133 research outputs found

    Meta-scheduling Issues in Interoperable HPCs, Grids and Clouds

    Get PDF
    Over the last years, interoperability among resources has been emerged as one of the most challenging research topics. However, the commonality of the complexity of the architectures (e.g., heterogeneity) and the targets that each computational paradigm including HPC, grids and clouds aims to achieve (e.g., flexibility) remain the same. This is to efficiently orchestrate resources in a distributed computing fashion by bridging the gap among local and remote participants. Initially, this is closely related with the scheduling concept which is one of the most important issues for designing a cooperative resource management system, especially in large scale settings such as in grids and clouds. Within this context, meta-scheduling offers additional functionalities in the area of interoperable resource management, this is because of its great agility to handle sudden variations and dynamic situations in user demands. Accordingly, the case of inter-infrastructures, including InterCloud, entitle that the decentralised meta-scheduling scheme overcome issues like consolidated administration management, bottleneck and local information exposition. In this work, we detail the fundamental issues for developing an effective interoperable meta-scheduler for e-infrastructures in general and InterCloud in particular. Finally, we describe a simulation and experimental configuration based on real grid workload traces to demonstrate the interoperable setting as well as provide experimental results as part of a strategic plan for integrating future meta-schedulers

    Survey and Analysis of Production Distributed Computing Infrastructures

    Full text link
    This report has two objectives. First, we describe a set of the production distributed infrastructures currently available, so that the reader has a basic understanding of them. This includes explaining why each infrastructure was created and made available and how it has succeeded and failed. The set is not complete, but we believe it is representative. Second, we describe the infrastructures in terms of their use, which is a combination of how they were designed to be used and how users have found ways to use them. Applications are often designed and created with specific infrastructures in mind, with both an appreciation of the existing capabilities provided by those infrastructures and an anticipation of their future capabilities. Here, the infrastructures we discuss were often designed and created with specific applications in mind, or at least specific types of applications. The reader should understand how the interplay between the infrastructure providers and the users leads to such usages, which we call usage modalities. These usage modalities are really abstractions that exist between the infrastructures and the applications; they influence the infrastructures by representing the applications, and they influence the ap- plications by representing the infrastructures

    ASCR/HEP Exascale Requirements Review Report

    Full text link
    This draft report summarizes and details the findings, results, and recommendations derived from the ASCR/HEP Exascale Requirements Review meeting held in June, 2015. The main conclusions are as follows. 1) Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude -- and in some cases greater -- than that available currently. 2) The growth rate of data produced by simulations is overwhelming the current ability, of both facilities and researchers, to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. 3) Data rates and volumes from HEP experimental facilities are also straining the ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. 4) A close integration of HPC simulation and data analysis will aid greatly in interpreting results from HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. 5) Long-range planning between HEP and ASCR will be required to meet HEP's research needs. To best use ASCR HPC resources the experimental HEP program needs a) an established long-term plan for access to ASCR computational and data resources, b) an ability to map workflows onto HPC resources, c) the ability for ASCR facilities to accommodate workflows run by collaborations that can have thousands of individual members, d) to transition codes to the next-generation HPC platforms that will be available at ASCR facilities, e) to build up and train a workforce capable of developing and using simulations and analysis to support HEP scientific research on next-generation systems.Comment: 77 pages, 13 Figures; draft report, subject to further revisio

    Big Data and Large-scale Data Analytics: Efficiency of Sustainable Scalability and Security of Centralized Clouds and Edge Deployment Architectures

    Get PDF
    One of the significant shifts of the next-generation computing technologies will certainly be in the development of Big Data (BD) deployment architectures. Apache Hadoop, the BD landmark, evolved as a widely deployed BD operating system. Its new features include federation structure and many associated frameworks, which provide Hadoop 3.x with the maturity to serve different markets. This dissertation addresses two leading issues involved in exploiting BD and large-scale data analytics realm using the Hadoop platform. Namely, (i)Scalability that directly affects the system performance and overall throughput using portable Docker containers. (ii) Security that spread the adoption of data protection practices among practitioners using access controls. An Enhanced Mapreduce Environment (EME), OPportunistic and Elastic Resource Allocation (OPERA) scheduler, BD Federation Access Broker (BDFAB), and a Secure Intelligent Transportation System (SITS) of multi-tiers architecture for data streaming to the cloud computing are the main contribution of this thesis study

    Dynamic scheduling based on particle swarm optimization for cloud-based scientific experiments

    Get PDF
    Los Experimentos de Barrido de Parámetros (PSEs) permiten a los científicos llevar a cabo simulaciones mediante la ejecución de un mismo código con diferentes entradas de datos, lo cual genera una gran cantidad de trabajos intensivos en CPU que para ser ejecutados es necesario utilizar entornos de cómputo paralelos. Un ejemplo de este tipo de entornos son las Infraestructura como un Servicio (IaaS) de Cloud, las cuales ofrecen máquinas virtuales (VM) personalizables que son asignadas a máquinas físicas disponibles para luego ejecutar los trabajos. Además, es importante planificar correctamente la asignación de las máquinas físicas del Cloud, y por lo tanto es necesario implementar estrategias eficientes de planificación para asignar adecuadamente las VMs en las máquinas físicas. Una planificación eficiente constituye un desafío, debido a que es un problema NP-Completo. En este trabajo describimos y evaluamos un planificador Cloud basado en Optimización por Enjambre de Partículas (PSO). Las métricas principales de rendimiento a estudiar son el número de usuarios que el planificador es capáz de servir exitosamente y el número total de VMs creadas en un escenario online (no por lotes). Además, en este trabajo se evalúa el número de mensajes enviados a través de la red. Los experimentos son realizados mediante el uso del simulador CloudSim y datos de trabajos de problemas científicos reales. Los resultados muestran que nuestro planificador logra el mejor rendimiento respecto de las métricas estudiadas con respecto a una asignación random y algoritmos genéticos. En este trabajo también evaluamos el rendimiento, a través de las métricas propuestas, cuando se provee al planificador información cualitativa relacionada a la longitud de los trabajos o no se provee la misma.Parameter Sweep Experiments (PSEs) allow scientists to perform simulations by running the same code with different input data, which results in many CPU-intensive jobs, and hence parallel computing environments must be used. Within these, Infrastructure as a Service (IaaS) Clouds offer custom Virtual Machines (VM) that are launched in appropriate hosts available in a Cloud to handle such jobs. Then, correctly scheduling Cloud hosts is very important and thus efficient scheduling strategies to appropriately allocate VMs to physical resources must be developed. Scheduling is however challenging due to its inherent NP-completeness. We describe and evaluate a Cloud scheduler based on Particle Swarm Optimization (PSO). The main performance metrics to study are the number of Cloud users that the scheduler is able to successfully serve, and the total number of created VMs, in online (non-batch) scheduling scenarios. Besides, the number of intra-Cloud network messages sent are evaluated. Simulated experiments performedusing CloudSim and job data from real scientific problems show that our scheduler achieves better performance than schedulers based on Random assignment and Genetic Algorithms. We also study the performance when supplying or not job information to the schedulers, namely a qualitative indication of job length.Fil: Pacini Naumovich, Elina Rocío. Universidad Nacional de Cuyo. Instituto de Tecnologías de la Información y las Comunicaciones; ArgentinaFil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaFil: Garcia Garino, Carlos Gabriel. Universidad Nacional de Cuyo. Instituto de Tecnologías de la Información y las Comunicaciones; Argentin

    An enhanced dynamic replica creation and eviction mechanism in data grid federation environment

    Get PDF
    Data Grid Federation system is an infrastructure that connects several grid systems, which facilitates sharing of large amount of data, as well as storage and computing resources. The existing mechanisms on data replication focus on finding file values based on the number of files access in deciding which file to replicate, and place new replicas on locations that provide minimum read cost. DRCEM finds file values based on logical dependencies in deciding which file to replicate, and allocates new replicas on locations that provide minimum replica placement cost. This thesis presents an enhanced data replication strategy known as Dynamic Replica Creation and Eviction Mechanism (DRCEM) that utilizes the usage of data grid resources, by allocating appropriate replica sites around the federation. The proposed mechanism uses three schemes: 1) Dynamic Replica Evaluation and Creation Scheme, 2) Replica Placement Scheme, and 3) Dynamic Replica Eviction Scheme. DRCEM was evaluated using OptorSim network simulator based on four performance metrics: 1) Jobs Completion Times, 2) Effective Network Usage, 3) Storage Element Usage, and 4) Computing Element Usage. DRCEM outperforms ELALW and DRCM mechanisms by 30% and 26%, in terms of Jobs Completion Times. In addition, DRCEM consumes less storage compared to ELALW and DRCM by 42% and 40%. However, DRCEM shows lower performance compared to existing mechanisms regarding Computing Element Usage, due to additional computations of files logical dependencies. Results revealed better jobs completion times with lower resource consumption than existing approaches. This research produces three replication schemes embodied in one mechanism that enhances the performance of Data Grid Federation environment. This has contributed to the enhancement of the existing mechanism, which is capable of deciding to either create or evict more than one file during a particular time. Furthermore, files logical dependencies were integrated into the replica creation scheme to evaluate data files more accurately

    Trace-Driven Simulation for Energy Consumption in High Throughput Computing Systems

    Get PDF
    High Throughput Computing (HTC) is a powerful paradigm allowing vast quantities of independent work to be performed simultaneously. However, until recently little evaluation has been performed on the energy impact of HTC. Many organisations now seek to minimise energy consumption across their IT infrastructure though it is unclear how this will affect the usability of HTC systems. We present here HTC-Sim, a simulation system which allows the evaluation of different energy reduction policies across an HTC system comprising a collection of computational resources dedicated to HTC work and resources provided through cycle scavenging -- a Desktop Grid. We demonstrate that our simulation software scales linearly with increasing HTC workload
    • …
    corecore