
Trace-driven simulation for energy consumption in
High Throughput Computing systems

Matthew Forshaw, Nigel Thomas
School of Computing Science

Newcastle University
Newcastle upon Tyne, NE1 7RU

{m.j.forshaw,nigel.thomas}@ncl.ac.uk

A. Stephen McGough
School of Engineering and Computing Sciences

Durham University
Durham

stephen.mcgough@durham.ac.uk

Abstract—High Throughput Computing (HTC) is a powerful
paradigm allowing vast quantities of independent work to be
performed simultaneously. However, until recently little eval-
uation has been performed on the energy impact of HTC.
Many organisations now seek to minimise energy consumption
across their IT infrastructure though it is unclear how this will
affect the usability of HTC systems. We present here HTC-Sim,
a simulation system which allows the evaluation of different
energy reduction policies across an HTC system comprising a
collection of computational resources dedicated to HTC work and
resources provided through cycle scavenging – a Desktop Grid.
We demonstrate that our simulation software scales linearly with
increasing HTC workload.

I. INTRODUCTION

Modern computational power allows researchers to perform
work hitherto unimaginable. This is often achieved through the
processing of vast quantities of data (Big Data), performing
large scale simulations or ensembles of smaller simulations.
However, our desire to solve such problems has now far-
outstripped the computational power of a single computer.
Parallel computing, where multiple processing units are em-
ployed in the solving of a single piece of work, is a common
solution to such problems. Where this work can be sub-
divided into separate jobs that can be run independently of
each other we refer to this as a pleasingly parallel problem
and solve it using High Throughput Computing (HTC). Many
HTC systems exist, such as HTCondor [1] and BOINC [2],
with these systems being used to help solve research problems
from small scale up to grand research challenges.

Traditionally HTC systems were provisioned as either ded-
icated resources or as a shared facility (often referred to
as a Desktop Grid) with resources powered up all the time
either servicing jobs or sitting idle. The performability and
reliability of such systems is generally well understood [3].
However, with the power consumption of western european
data centres alone estimated at 56 TWh/year in 2007 and
projected to double by 2020 [4] it is imperative to improve
energy efficiency of IT operations. Due to their nature, HTC
systems would appear to be a prime candidate for such savings.

Aggressive power management policies, over the resources
which constitute an HTC system, are often proposed, though
these policies could have significant impact not only on

the energy consumption but also performance, reliability and
availability of resources for HTC users. Placing idle resources
into a sleep state too rapidly could lead to HTC resource
starvation, while weak policies may offer little energy savings.

It is therefore highly desirable to determine the ‘best’ set of
energy conservation policies which can be applied to both the
HTC system and the underlying hardware. Controlling such
factors as when idle resources are sent to sleep, when to wake
up resources, the selection of the resource to use in order to
minimise energy consumption or how to deal with jobs which
fail to complete. This is particularly important for Desktop
Grids, with priority for interactive users, as job eviction does
not imply that the job cannot complete with more time on a
different resource.

In previous work [5] we proposed an architecture capable
of managing policies for power management of resources in
a live HTC system. However, the determination of an optimal
set of policies is a complex process as the behaviour can often
be difficult to determine a priori, as subtle policy changes can
have significant impact on one or more of the key areas.

One solution to determining an optimal policy set is to test
policy changes on the live system. This has three significant
drawbacks: running the system under the new policy for a sig-
nificant amount of time to ensure statistical relevance; detailed
logging to determine energy consumption and monitoring of
the high-throughput architecture is required; and a danger that
changes could have unpredicted (negative) consequences. This
leads to making minor modifications to the policy set where we
are pretty sure that the impact on users will be low; significant
changes being considered too dangerous.

Two alternatives exist: a test environment or a simulation.
Test environments remove the need for site-wide monitoring
and do not affect the production system, however time is
required to evaluate changes and we need to justify how results
would map to the whole system. Instead we present here
HTC-Sim a Java based trace-driven simulation we have been
developing as part of our work in energy saving for HTC
systems. The simulation system allows for the quantifiable,
and quick, evaluation of different policies against the same
workload and interactive user patterns, if present.

The simulation system allows the modelling of energy con-
sumption and performance characteristics of the HTC system.

WOL

Z
ZZ

High-Throughput
Users

Interactive Users

High-Throughput
Management

Z
ZZ

Policy

Cluster Policy

Cluster Policy

Fig. 1. Model of an HTC system and multi-use environment

Thus it can be seen as a powerful tool for administrators to
evaluate new policies as well as the impact of changes to the
infrastructure itself.

The overall model for HTC-Sim is shown in Figure 1, where
two types of user can interact with the system – HTC users
and interactive users. These are handled through historical
trace logs for both user types. In both cases an empty log file
indicates absence of that user type. Interactive user trace logs
contain the login and logout time along with the resource used
– it is assumed that this is a fixed interaction. However, for the
HTC workload only the job submission time and the execution
time are considered – the execution start time and resource
used may change due to the active policy set. Resources within
the system are grouped into clusters, each representing a set
of homogeneous resources under the same policy set. In this
way we can model both sets of resources purchased together or
resources co-located and acting under identical policies. The
HTC system has its own policy set.

The remainder of this paper is structured as follows. In
Section II we discuss related work. In Section III we provide
details of the simulation model. We present a case study
of using our simulation with a HTCondor cluster in Section
IV. Performance evaluation of the HTC-Sim is presented in
section V before we discuss work we have performed with the
simulation to date in section VI. Conclusions and future plans
for extending HTC-Sim are presented in Section VII.

II. RELATED WORK

A. Simulation frameworks

A number of Grid and Cluster level simulators exist in-
cluding SimGrid [6], GridSim [7], and OptorSim [8] though
these focus more at the resource selection process both within
clusters and between clusters and lack the modelling of energy.
More recently Cloud simulators have been proposed which
are capable of modelling the tradeoff between not only cost
and Quality of Service, but also energy consumption. These
include CloudSim [9], GreenCloud [10], and MDCSim [11].
Our simulation environment is novel in its ability to model
multi-use clusters with interactive users, and use real-world
workload traces. We further support modelling of fault toler-
ance mechanisms including checkpointing and migration.

B. Energy efficient high throughput computing

The evaluation of techniques to reduce energy consumption
within high throughput computing environments is receiving
increasing attention. Minartz et al [12] explore energy saving
through the dynamic provisioning of resources within a high
performance computing cluster, while Niemi et al [13] demon-
strate energy savings through the consolidation of multiple
jobs onto the same hardware. Ponciano et al evaluate strategies
for energy-aware resource provisioning and job allocation
within opportunistic grids [14]. Terzopoulos et al investigate
the use of Dynamic Voltage Scaling techniques to reduce
energy consumption in a heterogeneous cluster to conform to
power budgets [15] imposed by infrastructure. These could be
modelled through our simulation system.

C. Power modeling

The energy consumption of server and commodity hardware
has been studied extensively. Early works leveraged low-level
metrics such as performance counters [16] when developing
predictive models of energy consumption. Often requiring sig-
nificant architecture knowledge and not generalisable to other
hardware, nor scalable to entire systems. Linear correlation
between energy consumption and CPU utilisation allows this
to be used as an energy predictor [17], while others derive
linear regression models based on utilisation of CPU, memory
and storage subsystems for single servers [18], [19], groups
of systems [17], [20] and virtualised environments [21]. Again
these could be modelled through our simulation system.

III. SYSTEM MODEL

We introduce our generic model of the entities and resources
within a HTC system along with our metrics for user impact,
energy, cost and environmental implications.

A. Compute resources

We model compute resources as being either dedicated -
whether local or cloud infrastructure - or multi-use cluster
machines shared with interactive users. We model a number of
characteristics for machines, namely architecture type, operat-
ing system, performance measures (e.g. CPU speed, number of
cores, memory) and energy profile. We further allow users of
the simulation to specify custom attributes for machines which
are specific to the environment which they are modelling.

We adopt the SPECpower [22] model for energy consump-
tion within a system. Here discrete values for CPU load are
equated with specific energy consumption levels. This allows
the energy consumption of a resource to be derived from the
current CPU load, if known. As shown in the state transition
diagram in Figure 2, resources are modelled as being in one
of three states based on the ACPI specification [23]:
• Active: in use either by an interactive user or a high-

throughput job. This equates to ACPI state S0.
• Idle: powered up but not actively processing work for

interactive user or high-throughput job. This state has
much lower energy consumption than the active state –

Idle

HTC

Sleep
Wake

Sleep

Task
allocation

Task
de-allocation

User
Interactive
user arrival

Interactive
user departure

HTC + User

Task allocation

Task
de-allocation

Interactive
user arrival

Interactive
user departure

Fig. 2. State transition diagram for an HTC resource

typically having around 5-10% CPU load. This is also
ACPI state 0.

• Sleep: computer state stored in RAM which remains
powered. All other components are powered down. This
allows for quick system resume without the need to restart
the operating system. ACPI state S3. The CPU is inactive
consuming only a base level of energy.

B. Interactive user sessions

We model interactive user sessions as a tuple 〈si, c, u, ei〉
where si and ei are the login and logout timestamps respec-
tively, c is the name of the computer, and u is a hash of
the interactive users identity. Hashing of the user identifier
provides anonymity to the user, while allowing us to correlate
multiple sessions from a particular user.

C. Cluster

We group resources into ‘clusters’ defined as a homoge-
neous group of machines, whose specifications are identical,
provisioned at the same time, co-located in the same physical
space, and governed by the same operating policies. The Power
Usage Effectiveness (PUE) [24] of the cluster can also be
taken into account here. We model the changing behaviour
of cluster machines over time. Factors include: times of
scheduled reboots, whether HTC jobs are currently permitted,
whether machines are currently available for use by interactive
users, whether HTC jobs are allowed to run on a machine
currently occupied by an interactive user, how long must a
resource remain idle before transitioning into a low power
state, and how long after a resource enters the idle state does
it become available to run HTC jobs.

We are further able to model ‘special’ events through the
course of the simulation where the policies enacted on the
cluster may vary. Examples of this include clusters being
closed for upgrades, different policies for different days of
the week, or bank holidays.

D. HTC Job

The HTC workload comprises of jobs which may be part
of a batch. We define a job by the tuple 〈j, b, q, d, h, e, u, d〉,
where j is the identifier of a job (or batch of jobs), b is the
identifier of a job within a batch (if present), q is the time the
job was submitted into the system, d was the job duration, h is
the hash of the user who submitted the job, e is the HTC result
state of running the job (either ‘success’ or ‘terminated’) and
u, d represent the data transfer to and from the resource which

ran the job. Note that if a job was terminated then f represents
the time that the job termination was submitted. Although most
HTC systems can provide much more information on the jobs
which were run these are the core elements currently used
within the simulation.

Each job will transition through a number of states as
depicted in Figure 3. Jobs arriving into the system will be
initially queued, though if possible they will be allocated
immediately to a resource and enter the running state. In the
ideal case the running job will finish without any further state
transitions. However, if an interactive user takes possession
of a resource then the job will enter a suspend state where
execution is temporarily suspended – in the hope that the user
will leave soon afterward – after which the job can resume
running. If the suspension time becomes too great then the job
will be evicted back to the queue. If checkpointing is being
used then jobs will be checkpointed at intervals defined by
policy. Jobs may be terminated at any time in which case they
end up in the final ‘Job Removed’ state.

Job Running Job FinishedJob Queued Allocation

Checkpointing
Job Removed

Suspended

Eviction

Eviction

Interactive

user arrival

Interactive

user departure

Completion

Removal

Eviction

Interactive

user arrival

Removal

Removal

Removal

Fig. 3. State transition diagram for a job within an HTC system

E. Policy decisions - HTC
A number of common policy decisions exist within HTC

systems. We discuss those which have already been built into
our simulation model here:

1) Resource allocation: Given a set of available resources,
the HTC system must select the most appropriate resources to
optimise the required metrics. These may include random al-
location, lowest energy consumption, least chance of eviction,
or fastest resource. Further discussion of these policies can be
found in [25], [26].

2) Job resubmission: In an system where jobs can be
evicted through activities outside of its own control (reboots
and interactive users) the decision of whether to try and re-
submit a job which has previously been evicted needs to be
made. This is non-trivial as a job which has been evicted many
times may indicate that it is ‘broken’ and will never complete
or might just indicate that the job has been unfortunate in its
previous allocation to resources [27].

3) Reboots (deferral): Many Desktop Grid installations
have nightly reboot policies. Given that the best time for
running HTC workloads tends to be at night the ability for
HTC jobs to defer these reboots can significantly improve the
chance of jobs completing [25].

4) Suspension: Suspending jobs offers great potential for
‘saving’ the effort already exerted on a job. However, if the
suspension timeout is too short then this benefit can be lost,
whilst if the timeout is too long then a significant penalty is
imposed on the time a job takes to complete [25].

5) Checkpointing: Checkpointing can save both time and
energy by allowing jobs which are evicted to resume from
the last checkpoint. However, as the process of checkpointing
consumes both time and energy a careful balance is required
to minimise energy consumption [28].

F. Policy decisions - Infrastructure

A number of policy decisions can be made for the under-
lying infrastructure [25], these include:

1) Time before HTC usage: Once a computer becomes idle
it is a potential target for HTC work. However, in busy clusters
a logout could be quickly followed by a login causing a job
eviction. Therefore allowing some time between user logouts
and HTC use is desirable.

2) Time to sleep: Energy is saved by sending resources to
sleep as soon as they become idle. However, this increases
the time for HTC jobs as the resources need to return from
the sleeping state first. This is exacerbated if resources are
required to be idle for a set amount of time before they can
be used for HTC work.

3) Waking up resources: If the HTC system can not wake
up resources then this can lead to resource starvation once the
resources have gone to sleep. Likewise if they can wake up
computers then this leads to potentially more energy usage.

4) Allow HTC usage: At busy times of day it may be
desirable to disable HTC workload on specific clusters.

G. Metrics

When evaluating proposed policies, a number of metrics are
of particular interest, providing insight into the performance,
energy consumption and cost of operation. Below we outline
the range of metrics currently supported by HTC-Sim.

1) Performance: is measured as average job overhead -
defined as the time difference between the job entering and
departing the system, and the actual job execution time.

2) Energy consumption: reporting fine grained energy con-
sumption results, at per-computer, cluster and system levels.
Providing a breakdown of energy consumption for each state,
e.g. sleep, idle, HTC and/or interactive user. Total energy
consumption is calculated as follows:

n∑
c=0

m∑
p=0

tc,pEc,p (1)

where n is the number of computers, m is the number of
power states, tc,p is the time spent by computer c in state p
and Ec,p is the energy consumed by computer c in state p.

In the case of resources based in data centres / machine
rooms, we utilise the Power Usage Effectiveness (PUE) [24]
value for the environment, describing the ratio of power
consumed by compute resources to the power consumed by
the cooling and lighting infrastructure to support the resources.

It is important to note that PUE values may not legitimately
be applied to desktop machines based on users’ clusters due to
the multi-use nature of the environment in which the machines
reside, and variations introduced by user occupancy.

3) Good jobs terminated: Policies governing the resubmis-
sion of evicted jobs may lead to good jobs being terminated.

4) Data transfer: is often a significant overhead. This is
particularly evident for jobs with large datasets, or when using
checkpointing. The simulation models the bandwidth available
between nodes, imposing time delays on data ingress/egress.

5) Cluster utilisation and throughput: Policies such as fault
tolerance and replication have the potential for significant
impact on throughput and overall cluster utilisation. We report
utilisation both in terms of the HTC workload in isolation,
and also including interactive user load, and report measures
of average and peak throughput.

6) Cost and environmental impact: It is insufficient to
evaluate energy consumption and performance of policies
without also considering their implications for cost. We model
electricity cost per kWh, and a carbon emissions charge for
each kilogram of CO2 produced from energy [29] (currently
£16 per metric tonne in the UK). These figures may be
specified at a system- or cluster-specific level to reflect the
costs associated with the users’ infrastructure, and any cost
differences in federated and cloud contexts. We have in previ-
ous works extended the energy model to account for additional
costs including the hardware and network infrastructure [30].

IV. CASE STUDY OF HTCONDOR

In this section we validate our simulation environment by
modelling the HTCondor deployment at Newcastle University
and use the simulation environment to explore a set of simple
resource selection policies. We also discuss the process of
obtaining interactive user and HTCondor workload trace data
across a twelve month period to drive the simulation.

A. Newcastle University HTCondor pool

In 2010 the Newcastle University’s HTCondor pool com-
prised ∼1400 desktop computers spread through 35 clusters
on campus. The opening hours of these clusters varied, with
some respecting office hours, and others available for use 24
hours a day. Clusters may belong to a particular department
within the University and serve a particular subset of users, or
may be part of a common area such as the University Library
or Students’ Union building. Computers within the clusters
are replaced on a four-year rolling programme with computers
falling into one of three broad categories as outlined in Table I.
In this work we lack resource utilisation information for the
HTC worker nodes, so adopt a power model employing easily
obtained manufacturer‘nameplate’ power consumption values
for each of the ACPI states.

The University has a policy to minimise energy consump-
tion on all computational infrastructure which has been in
place for a number of years. Hence the ‘Normal’ computers
have been chosen to be energy efficient. ‘High End’ computers
are provisioned for courses requiring large computational

Type Cores Speed Power Consumption
Active Idle Sleep

Normal 2 ∼3Ghz 57W 40W 2W
High End 4 ∼3Ghz 114W 67W 3W
Legacy 2 ∼2Ghz 100-180W 50-80W 4W

TABLE I
COMPUTER TYPES

and/or rendering requirements such as CAD or video edit-
ing, as such they have higher energy requirements. ‘Legacy’
computers pre-date the policy of purchasing energy efficient
computers and are also the oldest equipment within the infras-
tructure. All computers within a cluster are provisioned at the
same time and will contain equivalent computing resources.
Thus there is a wide variance between clusters within the
University but no significant variance within clusters.

These computer clusters are provisioned for the needs of
the primary (interactive) users of the system. Students gen-
erally demand Windows-based machines so the proportion of
resources capable of checkpointing (i.e. Linux) is limited. At
Newcastle University, Linux-based machines constitute only
∼5% of resources available to HTCondor.

All cluster machines within the pool reboot between 3am
and 5am each day to install new software, perform updates and
install patches. The reboot also helps to clear any temporary
faults which may be present on the machine.

B. HTCondor-specifics

We extend our generalised simulation environment to model
the operation of an HTCondor environment. HTCondor uses
ClassAds [31] to define jobs. A ClassAd is a name / value
pair document containing all information about a given job.
A ClassAd can contain any number of element pairs, our
system producing over 50, however, there are only currently
nine elements we require for our simulations. Table II maps
these to characteristics of a job which we identify in Sec-
tion III-D. Note that JobStatus can have values here
of 4 for completed jobs and 3 for terminated jobs. Note
also that the computation for d neglects the fact that jobs
can accumulate time through suspensions which would be
included here. This can easily be removed by subtracting
CumulativeSuspensionTime.

HTCondor provides powerful resource matching through
the ‘Matchmaker’ which takes in two ClassAd pairs namely
Requirements and Rank. Requirements is used to indi-
cate characteristics which must be present on a resource for
successful matching, such as type of operating system and
minimum memory, whilst rank indicates how to order all those
resources which match the requirements – with the top-raking
resource being used. As our main intention here is comparison
of energy consumption and overheads, and Requirements
and Rank were almost completely unused in our log [5], we
have ignored this information here. However, it would not be
difficult to extend the resource allocation code to take this into
account.

Job characteristic Tuple term HTCondor parameter or expression
Job identifier j ClusterId
Batch identifier b ProcId
Submission time q QDate
Job duration d EnteredCurrentStatus

-JobCurrentStartDate
Owner h Owner
Result state e JobStatus
Data transfer in u BytesSent
Data transfer out d BytesRecvd

TABLE II
JOB CHARACTERISTICS TO HTCONDOR MAPPINGS

C. Preparing User logs

Interactive logins on resources at Newcastle University are
handled through a central Managed Desktop Service (MDS).
By taking a dump of the user logins and user logouts from
2010 we are able to construct an amalgamated user trace log.
Unfortunately the MDS dumps are separate for logins and
logouts and each file can contain duplicate records – both
identical in time and separated by a few milliseconds. This is
a consequence of the login to the resource and the mounting
of remote user file-space. Further to this the records are not
generated in chronological order. We have developed a tool
which is able to remove the duplicates, match logins to logouts
and order the trace log. A further complication arises in the
case where a computer crashes or is powered off manually
during a logged in session. In this case there will be no
corresponding logout. As this accounted for less than 0.1%
of the trace log these were ignored.

Jan Feb Mar Apr May Jun Aug Sep Oct Nov Dec
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Date

N
u

m
b

e
r

o
f

u
s
e

r
lo

g
in

s
 p

e
r

d
a

y
 (

T
h

o
u

s
a

n
d

s
)

Fig. 4. Interactive user activity trace for 2010

Figure 4 illustrates the user profile from 2010, representing
1,229,820 user logins. It is easy to see the weekly cycle of
computer usage, with lower usage at the weekends, along with
term patterns indicating when the easter and summer breaks
occurred. We currently do not possess resource utilisation in-
formation from user sessions therefore assume 100% resource
utilisation of the computers whilst users are active.

D. Preparing HTCondor logs

HTCondor collects historical logs of jobs which have either
completed or been terminated. This can be extracted with
the condor_history -long command. However, this
history may only contain the previous N jobs (where N

Jan Feb Mar Apr May Jun Aug Sep Oct Nov Dec
1

10

100

1000

10000

100000

Date

N
u

m
b

e
r

o
f

S
u

b
m

is
s
io

n
s

Fig. 5. HTCondor workload trace for 2010

is configurable in HTCondor) and the jobs are ordered by
completion rather than submission time. In order to overcome
the former a regular capture of the history can be performed,
however, this may lead to duplicates. To solve this and the
ordering of records we have produced a tool which orders jobs
by submission time and removes duplicates. The simulation
itself is then able to read the processed HTCondor log directly
through an HTCondor translator.

Figure 5 illustrates the number of jobs submitted each day
during 2010. In total 561,851 jobs were submitted, with a
mean job submission rate of 1,454 jobs per day. There is no
clearly visible pattern to this trace log.

Furthermore, since December 2012 we have extend our
data collection to include event logs which include additional
information including periodic memory and disk utilisation
information throughout a jobs execution, and complete logs
for resource re-allocation, suspension and checkpointing. This
fine-grained event logging is typically only provided to the
submitting user of a job, but centralised collection of this
data may be enabled by including the following options in
an HTCondor configuration.

EVENT_LOG = /some/file/path
EVENT_LOG_USE_XML = True
EVENT_LOG_MAX_SIZE = 52428800
EVENT_LOG_MAX_ROTATIONS = 3

The HTCondor log files comprising our dataset were col-
lected using Condor v6.6, but our simulation remains compat-
ible with current versions of HTCondor (currently v8.1.6).

To facilitate the sharing of HTCondor traces across organ-
isational boundaries, we provide tooling support to automat-
ically sanitise logs obtained from running systems, removing
sensitive or personally identifiable information. Fields such as
job owner and executable name are replaced with hashes to
facilitate more detailed analysis of workload traces.

E. Example policies: Energy-aware resource allocation

Here we demonstrate the use of HTC-Sim by evaluating
a class of energy-efficient resource allocation strategies. The
efficacy of these policies is measured in terms of their impact
both on average job overhead and total energy consumption.

S1: HTCondor default: random resource selection favouring
powered up computers.

S2: Target the most energy efficient computers.

S3(i): Target computers with the least interactive user activ-
ity, ranked by; a) largest average inter-user interval, b) smallest
number of interactive users.

S4: Target clusters closed for use by interactive users.
S5(i): Target less used clusters, ranked by; a) smallest total

interactive user duration, b) smallest mean interactive user
duration.

S6: A policy observing the number of interactive user
arrivals to each cluster across a sliding window of ∆ minutes,
with arriving jobs allocated to resources ordered by availabil-
ity. This policy may be expressed as:

min
c∈C

{
|Ec,t,∆|

}
(2)

where Ec,t,∆ is the set of interactive user sessions starting in
cluster c during the time frame [t−∆, t), C is the set of all
clusters and t is the current time.

10

100

1000

S
1

S
2

S
3
(a

)

S
3
(b

)

S
4

S
5
(a

)

S
5
(b

)

S
6
(3

0
)

S
6
(6

0
)

S
6
(1

2
0
)

S
6
(2

4
0
)

S
6
(3

6
0
)

A
v
e

ra
g

e
 t

a
s
k
 o

v
e

rh
e

a
d

 (
m

in
u

te
s
)

Fig. 6. Overhead results from exemplar policy

0

20

40

60

80

100

120

140

S
1

S
2

S
3
(a

)

S
3
(b

)

S
4

S
5
(a

)

S
5
(b

)

S
6
(3

0
)

S
6
(6

0
)

S
6
(1

2
0
)

S
6
(2

4
0
)

S
6
(3

6
0
)

E
n

e
rg

y
 c

o
n

s
u

m
e

d
 (

M
W

h
)

Fig. 7. Energy consumption results from exemplar policy

Figure 6 shows the average overheads for the previously
define policies. Policy S3 has a large detrimental impact on
overheads of jobs whilst all other policies have little impact
– with S2, S5(b) and S6 having slightly lower overheads.
We observe that policy S6 is capable of achieving savings
comparable with S5 which assumes perfect knowledge, with
sliding window size having little impact. Figure 7 shows that
the energy is lowest for policy S2 (target energy efficient
computers), making this the best policy to use.

0

200

400

600

800

1000

1200

0.5 1 2 3 4 5 6

Number of jobs (Million)

M
e

m
o

ry
 u

ti
lis

a
ti
o

n
 (

M
B

)

Fig. 8. Maximum memory footprint

V. PERFORMANCE EVALUATION

Here we evaluate the performance of our simulation soft-
ware and justify its applicability to arbitrary sized HTC data
sets. We evaluate this in terms of the wall-clock time to run the
simulation and the maximum memory footprint. The timing
for a simulation and the memory footprint will be a direct
consequence of the policy set being evaluated. For example a
simulation such as S6 which holds a sliding window of prior
user logins will require more memory to maintain this set
along with more time to process the set than a simulation based
solely on random resource selection. We therefore present
figures here for simulations based on policy S1.

Each simulation was run on a machine with an Intel
Core i7 860 2.80GHz processor with 4GB RAM and 500GB
7,200RPM Western Digital Blue hard drive, running the Fe-
dora 19 operating system. Results are based on ten simulation
runs using different machines to reduce random effects.

Running our real historical trace log of HTCondor workload
requires an average of 3:03 minutes. Running the simulation
without the HTCondor requires 2:06 minutes, whist running
without interactive users (representing a dedicated cluster)
requires 1:13 minutes. Note that you cannot just sum these
two times to give the overall simulation time due to simula-
tion book-keeping and the processing of cluster events such
as computer reboots and clusters opening and closing. The
memory footprint for these simulations are 802MB, 750MB
and 795MB respectively. The higher memory footprint from
the HTCondor only simulation most likely a consequence of
the larger ClassAds log file.

In order to evaluate the scalability of our simulation soft-
ware we investigate the execution time and memory footprint
when running larger (synthetic) workloads [25] – over ten
times our real workload (∼six million jobs). Figures 8 and 9
show the memory footprint and execution times respectively
for both our original simulation and synthetic trace logs. In
both cases the memory / time increases linearly with workload
indicating the simulation scales well with workload. The only
exception to this is the execution time for the largest synthetic
workload. However, as this requires a memory footprint close
to the normal Java memory allocation this is likely to be a
consequence of aggressive garbage collection.

0

100

200

300

400

500

600

700

800

0.5 1 2 3 4 5 6

Number of jobs (Million)

E
x
e

c
u

ti
o

n
 t

im
e

 (
S

e
c
o

n
d

s
)

Fig. 9. Execution time

VI. PRIOR USE OF HTC-SIM

We have been developing HTC-Sim for three years, using it
as a tool in order to evaluate the power-consumption of HTC
workload based at Newcastle University. Initial work [25]
investigated different resource selection algorithms, simple
polices to deal with jobs which are repeatedly evicted from
resources and cluster-based polices for determining when
computers should be sent to sleep.

The most significant energy consumption within a Desktop
Grid HTC cluster is normally owing to jobs which are evicted
due to interactive users taking control back from a resource
running a job. When jobs were evicted we called them miscre-
ant jobs. As such we used HTC-Sim to evaluate a number of
polices to reduce wasted energy in these circumstances [27].
We evaluated miscreant policies based on last execution time,
total number of evictions and the reasons for job eviction.
This lead to a potential saving of 50% of the energy for a
HTC cluster when only considering evictions due to resource
reboots. As this still left significant energy consumption for
miscreant jobs we are now evaluating two different approaches
to energy saving – those of checkpointing and migration of
jobs to different resources and more intelligent job placement
using Reinforcement Learning [32].

Checkpoint and Migration allows the current state of a run-
ning job to be stored and the job to resume execution from that
point. In the case where a job is evicted by interactive user this
saves both execution time as the jobs need not restart from the
beginning but also energy as effort is not expended repeating
the previously performed work. However, careful balancing is
required in order to determine how often checkpointing should
be performed as too many checkpoints will waste time and
energy in performing the checkpoints which will not be used
– including time and energy required to move checkpoints to
a new resource, whilst too few checkpoints will require more
work to be repeated – re-doing the work performed between
the last checkpoint and the point of eviction [28].

Significant energy can be saved by placing work onto a
resource which will not be used by an interactive user before
the job completes. However, this is not possible to compute
a priori as the times when an interactive user will login
nor the execution times for jobs can be known at the time
of resource selection. Analysis of interactive user trace logs

shows a high degree of seasonality at the level of: within a
day, across days within a week and between clusters within
an institution. These patterns are, however, quite complicated
hence we evaluate the use of Reinforcement Learning in order
to determine when and where jobs should be allocated within
the institution in order to minimise the number of evictions
and minimise the energy consumption. Through this work we
have shown that it is possible to save up to 53% of the wasted
energy within an institution [26].

A modified version of the simulation was used for evaluat-
ing the cost implications for running work on the cloud [30] –
using the same HTC workload trace log. These two simulation
models were then brought together in order to compare the cost
of running workloads on the Cloud versus running the same
workload on a Desktop Grid.

Alongside developing our simulation of a HTC cluster we
have also been developing an extension to the job scheduling
and management system within HTCondor [1] allowing us to
deploy a number of our developed polices [5]. Our simulation
software is allowing us to build up confidence in our policy
sets before deploying them to a production cluster.

VII. CONCLUSIONS AND FUTURE WORK

We have presented details of HTC-Sim for simulating High
Throughput Computing systems comprising both dedicated
resources and resources shared with interactive users. We
have presented the core model of the simulation along with
discussion of the trace logs required and the methods needed
to produce such logs, demonstrating how a set of resource
selection policies can be tested using the simulation software.
Though we focus on the modeling of our HTCondor system,
our simulation base and system model is easily generalisable
to other HTC systems.

We evaluate the impact of running the simulation software
both in terms of memory footprint and execution time and
show, through the use of synthetic trace logs that the simu-
lation software scales linearly in both memory and execution
time as the number of jobs to simulate increases. Thus making
this an applicable tool to use with other simulation workloads.

We are now investigating more advanced policy in order
to further reduce the energy consumption whilst maintaining
low overheads. We are also extending the simulation base
which will allow for federation of HTC systems both on owned
resources and resources obtained through Cloud bursting.

ACKNOWLEDGMENT

We thank the authors of previous papers culminating
in HTC-Sim. Newcastle University: B.Allen, C.Gerrard,
P.Haldane, J.Noble, D.Sharples & D.Swan; Arjuna Technolo-
gies Ltd: S.Hamlander & S.Wheater; Red Hat Inc: P.Robinson.

REFERENCES

[1] M. Litzkow, M. Livney, and M. W. Mutka, “Condor-a hunter of idle
workstations,” ser. ICDCS ’88, 1998, pp. 104–111.

[2] D. P. Anderson, “Boinc: A system for public-resource computing and
storage,” in Grid Computing, 2004. IEEE, 2004, pp. 4–10.

[3] S. Jarvis, N. Thomas, and A. van Moorsel, “Open issues in grid
performability,” IJSSST, vol. 5, no. 5, pp. 3–12, 2004.

[4] P. Bertoldi and B. Anatasiu, “Electricity Consumption and Efficiency
Trends in European Union Status Report 2009.”

[5] A. McGough, C. Gerrard, P. Haldane, D. Sharples, D. Swan, P. Robin-
son, S. Hamlander, and S. Wheater, “Intelligent Power Management
Over Large Clusters,” in CPSCom, 2010, pp. 88–95.

[6] A. Legrand and L. Marchal, “Scheduling distributed applications: The
simgrid simulation framework,” in CCGrid, 2003, pp. 138–145.

[7] R. Buyya and M. Murshed, “Gridsim: A toolkit for the modeling and
simulation of distributed resource management and scheduling for grid
computing,” CCPE, vol. 14, no. 13, pp. 1175–1220, 2002.

[8] W. H. Bell, D. G. Cameron, L. Capozza, A. P. Millar, K. Stockinger,
and F. Zini, “Optorsim - a grid simulator for studying dynamic data
replication strategies,” IJHPCA, 2003.

[9] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simulation
of scalable cloud computing environments and the cloudsim toolkit:
Challenges and opportunities,” in HPCS’09. IEEE, 2009, pp. 1–11.

[10] D. Kliazovich, P. Bouvry, Y. Audzevich, and S. U. Khan, “Greencloud:
A packet-level simulator of energy-aware cloud computing data centers,”
in GLOBECOM, 2010, pp. 1–5.

[11] S.-H. Lim, B. Sharma, G. Nam, E. K. Kim, and C. Das, “MDCSim: A
multi-tier data center simulation, platform,” in CLUSTER ’09, 2009.

[12] T. Minartz, J. M. Kunkel, and T. Ludwig, “Simulation of power
consumption of energy efficient cluster hardware,” Computer Science-
Research and Development, vol. 25, no. 3-4, pp. 165–175, 2010.

[13] T. Niemi, J. Kommeri, K. Happonen, J. Klem, and A.-P. Hameri,
“Improving energy-efficiency of grid computing clusters,” in Advances
in Grid and Pervasive Computing. Springer, 2009, pp. 110–118.

[14] L. Ponciano and F. Brasileiro, “On the impact of energy-saving strategies
in opportunistic grids,” in GRID 2010. IEEE, 2010, pp. 282–289.

[15] G. Terzopoulos and H. D. Karatza, “Dynamic voltage scaling scheduling
on power-aware clusters under power constraints,” in IEEE/ACM DS-RT.
IEEE, 2013, pp. 72–78.

[16] F. Bellosa, “The benefits of event: driven energy accounting in power-
sensitive systems,” in ACM SIGOPS EW. ACM, 2000, pp. 37–42.

[17] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a
warehouse-sized computer,” in ACM SIGARCH Computer Architecture
News, vol. 35, no. 2. ACM, 2007, pp. 13–23.

[18] D. Economou, S. Rivoire, C. Kozyrakis, and P. Ranganathan, “Full-
system power analysis and modeling for server environments.” Inter-
national Symposium on Computer Architecture-IEEE, 2006.

[19] S. Rivoire, P. Ranganathan, and C. Kozyrakis, “A comparison of high-
level full-system power models.” HotPower, vol. 8, pp. 3–3, 2008.

[20] P. Ranganathan, P. Leech, D. Irwin, and J. Chase, “Ensemble-level power
management for dense blade servers,” in ACM SIGARCH Computer
Architecture News, vol. 34, no. 2, 2006, pp. 66–77.

[21] G. Dhiman, K. Mihic, and T. Rosing, “A system for online power
prediction in virtualized environments using gaussian mixture models,”
in DAC 2010. IEEE, 2010, pp. 807–812.

[22] SPEC, “SPECpower ssj2008,” http://www.spec.org/power ssj2008/.
[23] Hewlett-Packard Corporation, Intel Corporation, Microsoft Corporation,

Phoenix Technologies Ltd and Toshiba Corporation, “ACPI Specifica-
tion,” http://www.acpi.info/DOWNLOADS/ACPIspec40a.pdf.

[24] C. Belady, A. Rawson, J. Pfleuger, and T. Cader, “Green grid data center
power efficiency metrics: PUE and DCiE,” Green Grid, Tech. Rep., 2008.

[25] A. S. McGough, M. Forshaw, C. Gerrard, P. Robinson, and S. Wheater,
“Analysis of power-saving techniques over a large multi-use cluster with
variable workload,” CCPE, vol. 25, no. 18, pp. 2501–2522, 2013.

[26] A. S. McGough and M. Forshaw, “Reduction of wasted energy in a
volunteer computing system through reinforcement learning,” Submitted
to SUSCOM, 2014.

[27] A. McGough, M. Forshaw, C. Gerrard, and S. Wheater, “Reducing the
number of miscreant tasks executions in a multi-use cluster,” in CGC,
2012, pp. 296–303.

[28] M. Forshaw, A. S. McGough, and N. Thomas, “On energy-efficient
checkpointing in high-throughput cycle-stealing distributed systems,” in
SMARTGREENS, 2014.

[29] Department of Energy and Climate Change, UK Gov, “CRC Energy
Efficiency Scheme Order: Table of Conversion Factors 2013/14,” 2014.

[30] A. S. McGough, M. Forshaw, C. Gerrard, S. Wheater, B. Allen, and
P. Robinson, “Comparison of a cost-effective virtual cloud cluster with
an existing campus cluster,” Future Generation Computer Systems, 2014.

[31] M. Solomon, “The ClassAd Language Reference Manual,” Computer
Sciences Department, University of Wisconsin, Madison, WI, Oct, 2003.

[32] R. Sutton and A. Barto, Reinforcement Learning: An Introduction, 1998.

