13,093 research outputs found

    Effects of atmospheric sphericity on stratospheric chemistry and dynamics over Antarctica

    Get PDF
    Atmospheric sphericity is an important factor that must be considered in order to evaluate an accurate ozone loss rate in the polar stratosphere. The built-in plane-parallel radiative transfer scheme of a nudging chemical transport model (CTM) and an atmospheric general circulation model (AGCM) with coupled chemistry is modified by a pseudospherical approximation. The plane-parallel atmosphere radiative transfer version (PPA version) is compared with the pseudospherical atmosphere radiative transfer version (SA version) for both the nudging CTM and AGCM. The nudging CTM can isolate the chemical effects for a given dynamical field, while the interaction among the chemical, radiative, and dynamical processes can be studied with the AGCM. The present analysis focuses on Antarctica during an ozone hole period. In the ozone loss period over Antarctica, ozone starts to decrease earlier and minimum value of total ozone becomes lower in the SA versions of both the nudging CTM and the AGCM than in the corresponding PPA versions. The ozone mixing ratio decreases earlier in the SA version because of an earlier increase of ClO concentration initiated by the upward actinic flux at solar zenith angles greater than 90°. Dynamics plays an important role as well as the chemical processes. During the ozone recovery period, the ozone distribution becomes almost the same in the SA and PPA versions of the nudging CTM, while in the AGCM the ozone amount in the SA version remains at lower values compared to those of the PPA version. In the AGCM, a decrease of ozone over Antarctica enhances the latitudinal gradient of temperature and thus strengthens the polar vortex in the SA version. A resultant delay of the polar vortex breakup causes the delay of the ozone recovery. For the AGCM, ensemble runs are performed. The ensemble experiment exhibits large ozone variances after the middle of December, when the ozone recovery is dynamically controlled. Most ensemble members of the AGCM show a delay of the polar vortex breakup in the SA version, while a few members show opposite results. In the latter members, the polar vortex breakup is strongly affected by the enhanced EP flux from the troposphere around 100 hPa, which causes the variances in the ozone recovery period. Most members, however, do not show large statistical variances; that justifies the conclusions from the ensemble means

    The atmospheric effects of stratospheric aircraft. Report of the 1992 Models and Measurements Workshop. Volume 1: Workshop objectives and summary

    Get PDF
    This Workshop on Stratospheric Models and Measurements (M&M) marks a significant expansion in the history of model intercomparisons. It provides a foundation for establishing the credibility of stratospheric models used in environmental assessments of chlorofluorocarbons, aircraft emissions, and climate-chemistry interactions. The core of the M&M comparisons involves the selection of observations of the current stratosphere (i.e., within the last 15 years): these data are believed to be accurate and representative of certain aspects of stratospheric chemistry and dynamics that the models should be able to simulate

    Solving Vertical Transport and Chemistry in Air Pollution Models.

    Get PDF
    For the time integration of stiff transport-chemistry problems from air pollution modelling, standard ODE solvers are not feasible due to the large number of species and the 3D nature. The popular alternative, standard operator splitting, introduces artificial transients for short-lived species. This complicates the chemistry solution, easily causing large errors for such species. In the framework of an operational global air pollution model, we focus on the problem formed by chemistry and vertical transport, which is based on diffusion, cloud-related vertical winds, and wet deposition. Its specific nature leads to full Jacobian matrices, ruling out standard implicit integration. We compare Strang operator splitting with two alternatives: source splitting and an (unsplit) Rosenbrock method with approximate matrix factorization, all having equal computational cost. The comparison is performed with real data. All methods are applied with half-hour time steps, and give good accuracies. Rosenbrock is the most accurate, and source splitting is more accurate than Strang splitting. Splitting errors concentrate in short-lived species sensitive to solar radiation and species with strong emissions and depositions

    Effects of stratosphere-troposphere chemistry coupling on tropospheric ozone

    Get PDF
    A new, computationally efficient coupled stratosphere-troposphere chemistry-climate model (S/T-CCM) has been developed based on three well-documented components: a 64-level general circulation model from the UK Met Office Unified Model, the tropospheric chemistry transport model (STOCHEM), and the UMSLIMCAT stratospheric chemistry module. This newly developed S/T-CCM has been evaluated with various observations, and it shows good performance in simulating important chemical species and their interdependence in both the troposphere and stratosphere. The modeled total column ozone agrees well with Total Ozone Mapping Spectrometer observations. Modeled ozone profiles in the upper troposphere and lower stratosphere are significantly improved compared to runs with the stratospheric chemistry and tropospheric chemistry models alone, and they are in good agreement with Michelson Interferometer for Passive Atmospheric Sounding satellite ozone profiles. The observed CO tape recorder is also successfully captured by the new CCM, and ozone-CO correlations are in accordance with Atmospheric Chemistry Experiment observations. However, because of limitations in vertical resolution, intrusion of CO-rich air in the stratosphere from the mesosphere could not be simulated in the current version of S/T-CCM. Additionally, the simulated stratosphere-to-troposphere ozone flux, which controls upper tropospheric OH and O3 concentrations, is found to be more realistic in the new coupled model compared to STOCHEM. © 2010 by the American Geophysical Union

    Development of the adjoint of GEOS-Chem

    Get PDF
    We present the adjoint of the global chemical transport model GEOS-Chem, focusing on the chemical and thermodynamic relationships between sulfate – ammonium – nitrate aerosols and their gas-phase precursors. The adjoint model is constructed from a combination of manually and automatically derived discrete adjoint algorithms and numerical solutions to continuous adjoint equations. Explicit inclusion of the processes that govern secondary formation of inorganic aerosol is shown to afford efficient calculation of model sensitivities such as the dependence of sulfate and nitrate aerosol concentrations on emissions of SOx, NOx, and NH3. The adjoint model is extensively validated by comparing adjoint to finite difference sensitivities, which are shown to agree within acceptable tolerances; most sets of comparisons have a nearly 1:1 correlation and R2>0.9. We explore the robustness of these results, noting how insufficient observations or nonlinearities in the advection routine can degrade the adjoint model performance. The potential for inverse modeling using the adjoint of GEOS-Chem is assessed in a data assimilation framework through a series of tests using simulated observations, demonstrating the feasibility of exploiting gas- and aerosol-phase measurements for optimizing emission inventories of aerosol precursors

    Tracer Applications of Noble Gas Radionuclides in the Geosciences

    Full text link
    The noble gas radionuclides, including 81Kr (half-life = 229,000 yr), 85Kr (11 yr), and 39Ar (269 yr), possess nearly ideal chemical and physical properties for studies of earth and environmental processes. Recent advances in Atom Trap Trace Analysis (ATTA), a laser-based atom counting method, have enabled routine measurements of the radiokrypton isotopes, as well as the demonstration of the ability to measure 39Ar in environmental samples. Here we provide an overview of the ATTA technique, and a survey of recent progress made in several laboratories worldwide. We review the application of noble gas radionuclides in the geosciences and discuss how ATTA can help advance these fields, specifically determination of groundwater residence times using 81Kr, 85Kr, and 39Ar; dating old glacial ice using 81Kr; and an 39Ar survey of the main water masses of the oceans, to study circulation pathways and estimate mean residence times. Other scientific questions involving deeper circulation of fluids in the Earth's crust and mantle also are within the scope of future applications. We conclude that the geoscience community would greatly benefit from an ATTA facility dedicated to this field, with instrumentation for routine measurements, as well as for research on further development of ATTA methods

    The Atmospheric Effects of Stratospheric Aircraft: a First Program Report

    Get PDF
    Studies have indicated that, with sufficient technology development, high speed civil transport aircraft could be economically competitive with long haul subsonic aircraft. However, uncertainty about atmospheric pollution, along with community noise and sonic boom, continues to be a major concern; and this is addressed in the planned 6 yr HSRP begun in 1990. Building on NASA's research in atmospheric science and emissions reduction, the AESA studies particularly emphasizing stratospheric ozone effects. Because it will not be possible to directly measure the impact of an HSCT aircraft fleet on the atmosphere, the only means of assessment will be prediction. The process of establishing credibility for the predicted effects will likely be complex and involve continued model development and testing against climatological patterns. Lab simulation of heterogeneous chemistry and other effects will continue to be used to improve the current models

    Methane Mitigation:Methods to Reduce Emissions, on the Path to the Paris Agreement

    Get PDF
    The atmospheric methane burden is increasing rapidly, contrary to pathways compatible with the goals of the 2015 United Nations Framework Convention on Climate Change Paris Agreement. Urgent action is required to bring methane back to a pathway more in line with the Paris goals. Emission reduction from “tractable” (easier to mitigate) anthropogenic sources such as the fossil fuel industries and landfills is being much facilitated by technical advances in the past decade, which have radically improved our ability to locate, identify, quantify, and reduce emissions. Measures to reduce emissions from “intractable” (harder to mitigate) anthropogenic sources such as agriculture and biomass burning have received less attention and are also becoming more feasible, including removal from elevated-methane ambient air near to sources. The wider effort to use microbiological and dietary intervention to reduce emissions from cattle (and humans) is not addressed in detail in this essentially geophysical review. Though they cannot replace the need to reach “net-zero” emissions of CO2, significant reductions in the methane burden will ease the timescales needed to reach required CO2 reduction targets for any particular future temperature limit. There is no single magic bullet, but implementation of a wide array of mitigation and emission reduction strategies could substantially cut the global methane burden, at a cost that is relatively low compared to the parallel and necessary measures to reduce CO2, and thereby reduce the atmospheric methane burden back toward pathways consistent with the goals of the Paris Agreement

    Testing weighted splitting schemes on a one-column transport-chemistry model

    Get PDF
    In many transport-chemistry models, a huge system of ODE’s of the advection-diffusion-reaction type has to be integrated in time. Typically, this is done with the help of operator splitting. Rosenbrock schemes combined with approximate matrix factorization (ROS-AMF) are an alternative to operator splitting which does not suffer from splitting errors. However, implementation of ROS-AMF schemes often requires serious changes in the code. In this paper we test another classical second order splitting introduced by Strang in 1963, which, unlike the popular Strang splitting, seemed to be forgotten and rediscovered recently (partially due to its intrinsic parallellism). This splitting, called symmetrically weighted sequential (SWS) splitting, is simple and straightforward to apply, independent of the order of the operators and has an operator-level parallelism. In the experiments, the SWS scheme compares favorably to the Strang splitting, but is less accurate than ROS-AMF

    The atmospheric effects of stratospheric aircraft

    Get PDF
    This document presents a second report from the Atmospheric Effects of Stratospheric Aircraft (AESA) component of NASA's High-Speed Research Program (HSRP). This document presents a second report from the Atmospheric Effects of Stratospheric Aircraft (AESA) component of NASA's High Speed Research Program (HSRP). Market and technology considerations continue to provide an impetus for high-speed civil transport research. A recent United Nations Environment Program scientific assessment has shown that considerable uncertainty still exists about the possible impact of aircraft on the atmosphere. The AESA was designed to develop the body of scientific knowledge necessary for the evaluation of the impact of stratospheric aircraft on the atmosphere. The first Program report presented the basic objectives and plans for AESA. This second report presents the status of the ongoing research as reported by the principal investigators at the second annual AESA Program meeting in May 1992: Laboratory studies are probing the mechanism responsible for many of the heterogeneous reactions that occur on stratospheric particles. Understanding how the atmosphere redistributes aircraft exhaust is critical to our knowing where the perturbed air will go and for how long it will remain in the stratosphere. The assessment of fleet effects is dependent on the ability to develop scenarios which correctly simulate fleet operations
    corecore