1,889 research outputs found

    Performance of solar-induced chlorophyll fluorescence in estimating water-use efficiency in a temperate forest

    Get PDF
    ยฉ The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Remote Sensing 10 (2018): 796, doi:10.3390/rs10050796.Water-use efficiency (WUE) is a critical variable describing the interrelationship between carbon uptake and water loss in land ecosystems. Different WUE formulations (WUEs) including intrinsic water use efficiency (WUEi), inherent water use efficiency (IWUE), and underlying water use efficiency (uWUE) have been proposed. Based on continuous measurements of carbon and water fluxes and solar-induced chlorophyll fluorescence (SIF) at a temperate forest, we analyze the correlations between SIF emission and the different WUEs at the canopy level by using linear regression (LR) and Gaussian processes regression (GPR) models. Overall, we find that SIF emission has a good potential to estimate IWUE and uWUE, especially when a combination of different SIF bands and a GPR model is used. At an hourly time step, canopy-level SIF emission can explain as high as 65% and 61% of the variances in IWUE and uWUE. Specifically, we find that (1) a daily time step by averaging hourly values during daytime can enhance the SIF-IWUE correlations, (2) the SIF-IWUE correlations decrease when photosynthetically active radiation and air temperature exceed their optimal biological thresholds, (3) a low Leaf Area Index (LAI) has a negative effect on the SIF-IWUE correlations due to large evaporation fluxes, (4) a high LAI in summer also reduces the SIF-IWUE correlations most likely due to increasing scattering and (re)absorption of the SIF signal, and (5) the observation time during the day has a strong impact on the SIF-IWUE correlations and SIF measurements in the early morning have the lowest power to estimate IWUE due to the large evaporation of dew. This study provides a new way to evaluate the stomatal regulation of plant-gas exchange without complex parameterizations.This research was supported by U.S. Department of Energy Office of Biological and Environmental Research Grant DE-SC0006951, National Science Foundation Grants DBI 959333 and AGS-1005663, and the University of Chicago and the MBL Lillie Research Innovation Award to Jianwu Tang. This study was also supported by the open project grant (LBKF201701) of Key Laboratory of Land Surface Pattern and Simulation, Chinese Academy of Sciences

    ๊ทผ์ ‘ ํ‘œ๋ฉด ์›๊ฒฉ ์„ผ์‹ฑ ์‹œ์Šคํ…œ๋“ค์„ ์ด์šฉํ•œ ์ง€์†์  ์‹๋ฌผ ๊ณ„์ ˆ ๋ฐ ํƒœ์–‘ ์œ ๋„ ์—ฝ๋ก์†Œ ํ˜•๊ด‘๋ฌผ์งˆ ๊ด€์ธก

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ํ™˜๊ฒฝ๋Œ€ํ•™์› ํ˜‘๋™๊ณผ์ • ์กฐ๊ฒฝํ•™, 2022.2. ๋ฅ˜์˜๋ ฌ.Monitoring phenology, physiological and structural changes in vegetation is essential to understand feedbacks of vegetation between terrestrial ecosystems and the atmosphere by influencing the albedo, carbon flux, water flux and energy. To this end, normalized difference vegetation index (NDVI) and solar-induced chlorophyll fluorescence (SIF) from satellite remote sensing have been widely used. However, there are still limitations in satellite remote sensing as 1) satellite imagery could not capture fine-scale spatial resolution of SIF signals, 2) satellite products are strongly influenced by condition of the atmosphere (e.g. clouds), thus it is challenging to know physiological and structural changes in vegetation on cloudy days and 3) satellite imagery captured a mixed signal from over- and understory, thus it is difficult to study the difference between overstory and understory phenology separately. Therefore, in order to more accurately understand the signals observed from the satellite, further studies using near-surface remote sensing system to collect ground-based observed data are needed. The main purpose of this dissertation is continuous observation of vegetation phenology and SIF using near-surface remote sensing system. To achieve the main goal, I set three chapters as 1) developing low-cost filter-based near-surface remote sensing system to monitor SIF continuously, 2) monitoring SIF in a temperate evergreen needleleaf forest continuously, and 3) understanding the relationships between phenology from in-situ multi-layer canopies and satellite products. In Chapter 2, I developed the filter-based smart surface sensing system (4S-SIF) to overcome the technical challenges of monitoring SIF in the field as well as to decrease sensor cost for more comprehensive spatial sampling. I verified the satisfactory spectral performance of the bandpass filters and confirmed that digital numbers (DN) from 4S-SIF exhibited linear relationships with the DN from the hyperspectral spectroradiometer in each band (R2 > 0.99). In addition, we confirmed that 4S-SIF shows relatively low variation of dark current value at various temperatures. Furthermore, the SIF signal from 4S-SIF represents a strong linear relationship with QEpro-SIF either changing the physiological mechanisms of the plant using DCMU (3-(3, 4-dichlorophenyl)-1, 1-dimethyurea) treatment. I believe that 4S-SIF will be a useful tool for collecting in-situ data across multiple spatial and temporal scales. Satellite-based SIF provides us with new opportunities to understand the physiological and structural dynamics of vegetation from canopy to global scales. However, the relationships between SIF and gross primary productivity (GPP) are not fully understood, which is mainly due to the challenges of decoupling structural and physiological factors that control the relationships. In Chapter 3, I reported the results of continuous observations of canopy-level SIF, GPP, absorbed photosynthetically active radiation (APAR), and chlorophyll: carotenoid index (CCI) in a temperate evergreen needleleaf forest. To understand the mechanisms underlying the relationship between GPP and SIF, I investigated the relationships of light use efficiency (LUE_p), chlorophyll fluorescence yield (ฮฆ_F), and the fraction of emitted SIF photons escaping from the canopy (f_esc) separately. I found a strongly non-linear relationship between GPP and SIF at diurnal and seasonal time scales (R2 = 0.91 with a hyperbolic regression function, daily). GPP saturated with APAR, while SIF did not. In addition, there were differential responses of LUE_p and ฮฆ_F to air temperature. While LUE_p reached saturation at high air temperatures, ฮฆ_F did not saturate. I also found that the canopy-level chlorophyll: carotenoid index was strongly correlated to canopy-level ฮฆ_F (R2 = 0.84) implying that ฮฆ_F could be more closely related to pigment pool changes rather than LUE_p. In addition, I found that the f_esc contributed to a stronger SIF-GPP relationship by partially capturing the response of LUE_p to diffuse light. These findings can help refine physiological and structural links between canopy-level SIF and GPP in evergreen needleleaf forests. We do not fully understand what satellite NDVI derived leaf-out and full leaf dates actually observe because deciduous broadleaf forest consists of multi-layer canopies typically and mixed-signal from multi-layer canopies could affect satellite observation. Ultimately, we have the following question: What phenology do we actually see from space compared to ground observations on multi-layer canopy phenology? In Chapter 4, I reported the results of 8 years of continuous observations of multi-layer phenology and climate variables in a deciduous broadleaf forest, South Korea. Multi-channel spectrometers installed above and below overstory canopy allowed us to monitor over- and understory canopy phenology separately, continuously. I evaluated the widely used phenology detection methods, curvature change rate and threshold with NDVI observed above top of the canopy and compared leaf-out and full leaf dates from both methods to in-situ observed multi-layer phenology. First, I found that NDVI from the above canopy had a strong linear relationship with satellites NDVI (R2=0.95 for MODIS products and R2= 0.85 for Landsat8). Second, leaf-out dates extracted by the curvature change rate method and 10% threshold were well matched with understory leaf-out dates. Third, the full-leaf dates extracted by the curvature change rate method and 90% threshold were similar to overstory full-leaf dates. Furthermore, I found that overstory leaf-out dates were closely correlated to accumulated growing degree days (AGDD) while understory leaf-out dates were related to AGDD and also sensitive to the number of chill days (NCD). These results suggest that satellite-based leaf-out and full leaf dates represent understory and overstory signals in the deciduous forest site, which requires caution when using satellite-based phenology data into future prediction as overstory and understory canopy show different sensitivities to AGDD and NCD.์‹๋ฌผ ๊ณ„์ ˆ ๋ฐ ์‹์ƒ์˜ ์ƒ๋ฆฌํ•™์ , ๊ตฌ์กฐ์ ์ธ ๋ณ€ํ™”๋ฅผ ์ง€์†์ ์œผ๋กœ ๋ชจ๋‹ˆํ„ฐ๋ง ํ•˜๋Š” ๊ฒƒ์€ ์œก์ƒ์ƒํƒœ๊ณ„์™€ ๋Œ€๊ธฐ๊ถŒ ์‚ฌ์ด์˜ ์—๋„ˆ์ง€, ํƒ„์†Œ ์ˆœํ™˜ ๋“ฑ์˜ ํ”ผ๋“œ๋ฐฑ์„ ์ดํ•ดํ•˜๋Š”๋ฐ ํ•„์ˆ˜์ ์ด๋‹ค. ์ด๋ฅผ ๊ด€์ธกํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์œ„์„ฑ์—์„œ ๊ด€์ธก๋œ ์ •๊ทœํ™” ์‹์ƒ ์ง€์ˆ˜ (NDVI) ํƒœ์–‘ ์œ ๋„ ์—ฝ๋ก์†Œ ํ˜•๊ด‘๋ฌผ์งˆ (SIF)๋Š” ๋Œ€์ค‘์ ์œผ๋กœ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์šฐ์ฃผ ์œ„์„ฑ ๊ธฐ๋ฐ˜์˜ ์ž๋ฃŒ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ํ•œ๊ณ„์ ๋“ค์ด ์กด์žฌํ•œ๋‹ค. 1) ์•„์ง๊นŒ์ง€ ๊ณ ํ•ด์ƒ๋„์˜ ์œ„์„ฑ ๊ธฐ๋ฐ˜ SIF ์ž๋ฃŒ๋Š” ์—†๊ณ , 2) ์œ„์„ฑ ์ž๋ฃŒ๋“ค์€ ๋Œ€๊ธฐ์˜ ์งˆ (์˜ˆ, ๊ตฌ๋ฆ„)์— ์˜ํ–ฅ์„ ๋ฐ›์•„, ํ๋ฆฐ ๋‚ ์˜ ์‹์ƒ์˜ ์ƒ๋ฆฌํ•™์ , ๊ตฌ์กฐ์  ๋ณ€ํ™”๋ฅผ ํƒ์ง€ํ•˜๊ธฐ ํž˜๋“ค๋‹ค. ๋˜ํ•œ, 3) ์œ„์„ฑ ์ด๋ฏธ์ง€๋Š” ์ƒ๋ถ€ ์‹์ƒ๊ณผ ํ•˜๋ถ€ ์‹์ƒ์ด ํ˜ผํ•ฉ๋˜์–ด ์„ž์ธ ์‹ ํ˜ธ๋ฅผ ํƒ์ง€ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ๊ฐ ์ธต์˜ ์‹๋ฌผ ๊ณ„์ ˆ์„ ๊ฐ๊ฐ ์—ฐ๊ตฌํ•˜๊ธฐ์— ์–ด๋ ค์›€์ด ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ, ์œ„์„ฑ์—์„œ ํƒ์ง€ํ•œ ์‹ ํ˜ธ๋ฅผ ํ‰๊ฐ€ํ•˜๊ณ , ์‹์ƒ์˜ ์ƒ๋ฆฌํ•™์ , ๊ตฌ์กฐ์  ๋ณ€ํ™”๋ฅผ ๋ณด๋‹ค ์ •ํ™•ํžˆ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ทผ์ ‘ ํ‘œ๋ฉด ์›๊ฒฉ ์„ผ์‹ฑ ์‹œ์Šคํ…œ์„ ์ด์šฉํ•œ ์‹ค์ธก ์ž๋ฃŒ ๊ธฐ๋ฐ˜์˜ ์—ฐ๊ตฌ๋“ค์ด ์š”๊ตฌ๋œ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์˜ ์ฃผ ๋ชฉ์ ์€ ๊ทผ์ ‘ ํ‘œ๋ฉด ์›๊ฒฉ ์„ผ์‹ฑ ์‹œ์Šคํ…œ์„ ์ด์šฉํ•˜์—ฌ ์‹๋ฌผ ๊ณ„์ ˆ ๋ฐ SIF๋ฅผ ํ˜„์žฅ์—์„œ ์ง€์†์ ์œผ๋กœ ์‹ค์ธกํ•˜๊ณ , ์œ„์„ฑ ์˜์ƒ ๊ธฐ๋ฐ˜์˜ ์—ฐ๊ตฌ๊ฐ€ ๊ฐ–๊ณ  ์žˆ๋Š” ํ•œ๊ณ„์  ๋ฐ ๊ถ๊ธˆ์ฆ๋“ค์„ ํ•ด๊ฒฐ ๋ฐ ๋ณด์™„ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ด ๋ชฉ์ ์„ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ์•„๋ž˜์™€ ๊ฐ™์€ ์„ธ๊ฐ€์ง€ Chapter: 1) SIF๋ฅผ ๊ด€์ธกํ•˜๊ธฐ ์œ„ํ•œ ํ•„ํ„ฐ ๊ธฐ๋ฐ˜์˜ ์ €๋ ดํ•œ ๊ทผ์ ‘ ํ‘œ๋ฉด ์„ผ์‹ฑ ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ, 2)์˜จ๋Œ€ ์นจ์—ฝ์ˆ˜๋ฆผ์—์„œ์˜ ์—ฐ์†์ ์ธ SIF ๊ด€์ธก, 3)์œ„์„ฑ ๊ธฐ๋ฐ˜์˜ ์‹๋ฌผ ๊ณ„์ ˆ๊ณผ ์‹ค์ธกํ•œ ๋‹ค์ธต ์‹์ƒ์˜ ์‹๋ฌผ ๊ณ„์ ˆ ๋น„๊ต๋กœ ๊ตฌ์„ฑํ•˜๊ณ , ์ด๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. SIF๋Š” ์‹์ƒ์˜ ๊ตฌ์กฐ์ , ์ƒ๋ฆฌํ•™์  ๋ณ€ํ™”๋ฅผ ์ดํ•ดํ•˜๊ณ , ์ถ”์ •ํ•˜๋Š” ์ธ์ž๋กœ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์–ด, SIF๋ฅผ ํ˜„์žฅ์—์„œ ๊ด€์ธกํ•˜๊ธฐ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ๊ทผ์ ‘ ํ‘œ๋ฉด ์›๊ฒฉ ์„ผ์‹ฑ ์‹œ์Šคํ…œ๋“ค์ด ์ตœ๊ทผ ์ œ์‹œ๋˜์–ด ์˜ค๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์•„์ง๊นŒ์ง€ SIF๋ฅผ ๊ด€์ธกํ•˜๊ธฐ ์œ„ํ•œ ์ƒ์—…์ ์œผ๋กœ ์œ ํ†ต๋˜๋Š” ๊ด€์ธก ์‹œ์Šคํ…œ์€ ํ˜„์ €ํžˆ ๋ถ€์กฑํ•˜๋ฉฐ, ๋ถ„๊ด‘๊ณ„์˜ ๊ตฌ์กฐ์  ํŠน์„ฑ์ƒ ํ˜„์žฅ์—์„œ ๊ด€์ธก ์‹œ์Šคํ…œ์„ ๋ณด์ • ๋ฐ ๊ด€๋ฆฌํ•˜๊ธฐ๊ฐ€ ์–ด๋ ค์›Œ ๋†’์€ ์งˆ์˜ SIF๋ฅผ ์ทจ๋“ํ•˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ๋„์ „ ์ ์ธ ๋ถ„์•ผ์ด๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์˜ Chapter 2์—์„œ๋Š” SIF๋ฅผ ํ˜„์žฅ์—์„œ ๋ณด๋‹ค ์†์‰ฝ๊ฒŒ ๊ด€์ธกํ•˜๊ธฐ ์œ„ํ•œ ํ•„ํ„ฐ ๊ธฐ๋ฐ˜์˜ ๊ทผ์ ‘ ํ‘œ๋ฉด ์„ผ์‹ฑ ์‹œ์Šคํ…œ(Smart Surface Sensing System, 4S-SIF)์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์„ผ์„œ๋Š” ๋Œ€์—ญ ํ•„ํ„ฐ๋“ค๊ณผ ํฌํ† ๋‹ค์ด์˜ค๋“œ๊ฐ€ ๊ฒฐํ•ฉ๋˜์–ด ์žˆ์œผ๋ฉฐ, ์„œ๋ณด ๋ชจํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋Œ€์—ญ ํ•„ํ„ฐ ๋ฐ ๊ด€์ธก ๋ฐฉํ–ฅ์„ ์ž๋™์ ์œผ๋กœ ๋ณ€๊ฒฝํ•จ์œผ๋กœ์จ, ํ•œ ๊ฐœ์˜ ํฌํ† ๋‹ค์ด์˜ค๋“œ๊ฐ€ 3๊ฐœ์˜ ํŒŒ์žฅ ๋ฒ”์œ„(757, 760, 770 nm)์˜ ๋น› ๋ฐ ํƒœ์–‘์œผ๋กœ๋ถ€ํ„ฐ ์ž…์‚ฌ๋˜๋Š” ๊ด‘๋Ÿ‰๊ณผ ์‹์ƒ์œผ๋กœ ๋ฐ˜์‚ฌ/๋ฐฉ์ถœ๋œ ๊ด‘๋Ÿ‰์„ ๊ด€์ธกํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ณ ์•ˆ๋˜์—ˆ๋‹ค. ํฌํ† ๋‹ค์ด์˜ค๋“œ๋กœ๋ถ€ํ„ฐ ์ธ์‹๋œ ๋””์ง€ํ„ธ ์ˆ˜์น˜ ๊ฐ’์€ ์ƒ์—…์ ์œผ๋กœ ํŒ๋งค๋˜๋Š” ์ดˆ๊ณ ํ•ด์ƒ๋„ ๋ถ„๊ด‘๊ณ„(QE Pro, Ocean Insight)์™€ ๋šœ๋ ทํ•œ ์„ ํ˜• ๊ด€๊ณ„๋ฅผ ๋ณด์ด๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค (R2 > 0.99). ์ถ”๊ฐ€์ ์œผ๋กœ, 4S-SIF์—์„œ ๊ด€์ธก๋œ SIF์™€ ์ดˆ๊ณ ํ•ด์ƒ๋„ ๋ถ„๊ด‘๊ณ„๋ฅผ ์ด์šฉํ•˜์—ฌ ์ถ”์ถœํ•œ SIF๊ฐ€ ์„ ํ˜•์ ์ธ ๊ด€๊ณ„๋ฅผ ์ด๋ฃจ๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์‹์ƒ์˜ ์ƒ๋ฆฌํ•™์  ๋ณ€ํ™”๋ฅผ ์ผ์œผํ‚ค๋Š” ํ™”ํ•™ ๋ฌผ์งˆ์ธ DCMU(3-(3, 4-dichlorophenyl)-1, 1-dimethyurea)์„ ์ฒ˜๋ฆฌํ–ˆ์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์‚ฐ์ถœ๋œ SIF๋“ค์€ ์„ ํ˜• ๊ด€๊ณ„๋ฅผ ๋ณด์˜€๋‹ค. ๋ณธ ์„ผ์„œ๋Š” ๊ธฐ์กด ์‹œ์Šคํ…œ๋“ค์— ๋น„ํ•ด ์‚ฌ์šฉํ•˜๊ธฐ ์‰ฝ๊ณ  ๊ฐ„๋‹จํ•˜๋ฉฐ, ์ €๋ ดํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋‹ค์–‘ํ•œ ์‹œ๊ณต๊ฐ„์  ์Šค์ผ€์ผ์˜ SIF๋ฅผ ๊ด€์ธกํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ์œ„์„ฑ ๊ธฐ๋ฐ˜์˜ SIF๋ฅผ ์ด์šฉํ•˜์—ฌ ์ด์ผ์ฐจ์ƒ์‚ฐ์„ฑ(gross primary productivity, GPP)์„ ์ถ”์ •ํ•˜๋Š” ์—ฐ๊ตฌ๋Š” ์ตœ๊ทผ ํƒ„์†Œ ์ˆœํ™˜ ์—ฐ๊ตฌ ๋ถ„์•ผ์—์„œ ๊ฐ๊ด‘๋ฐ›๊ณ  ์žˆ๋Š” ์—ฐ๊ตฌ ์ฃผ์ œ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, SIF์™€ GPP์˜ ๊ด€๊ณ„๋Š” ์—ฌ์ „ํžˆ ๋งŽ์€ ๋ถˆํ™•์‹ค์„ฑ์„ ์ง€๋‹ˆ๊ณ  ์žˆ๋Š”๋ฐ, ์ด๋Š” SIF-GPP ๊ด€๊ณ„๋ฅผ ์กฐ์ ˆํ•˜๋Š” ์‹์ƒ์˜ ๊ตฌ์กฐ์  ๋ฐ ์ƒ๋ฆฌํ•™์  ์š”์ธ์„ ๋”ฐ๋กœ ๋ถ„๋ฆฌํ•˜์—ฌ ๊ณ ์ฐฐํ•œ ์—ฐ๊ตฌ๋“ค์ด ๋ถ€์กฑํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์˜ Chapter 3์—์„œ๋Š” ์ง€์†์ ์œผ๋กœ SIF, GPP, ํก์ˆ˜๋œ ๊ด‘ํ•ฉ์„ฑ์œ ํšจ๋ณต์‚ฌ๋Ÿ‰ (absorbed photosynthetically active radiation, APAR), ๊ทธ๋ฆฌ๊ณ  ํด๋กœ๋กœํ•„๊ณผ ์นด๋กœํ‹ฐ๋…ธ์ด๋“œ์˜ ๋น„์œจ ์ธ์ž (chlorophyll: carotenoid index, CCI)๋ฅผ ์˜จ๋Œ€์นจ์—ฝ์ˆ˜๋ฆผ์—์„œ ์—ฐ์†์ ์œผ๋กœ ๊ด€์ธกํ•˜์˜€๋‹ค. SIF-GPP ๊ด€๊ณ„์˜ ๊ตฌ์ฒด์ ์ธ ๋ฉ”์ปค๋‹ˆ์ฆ˜ ๊ด€๊ณ„๋ฅผ ๋ฐํžˆ๊ธฐ ์œ„ํ•˜์—ฌ, ๊ด‘ ์ด์šฉํšจ์œจ (light use efficiency, LUE_p), ์—ฝ๋ก์†Œ ํ˜•๊ด‘ ์ˆ˜๋“๋ฅ  (chlorophyll fluorescence yield, ฮฆ_F) ๊ทธ๋ฆฌ๊ณ  SIF ๊ด‘์ž๊ฐ€ ๊ตฐ๋ฝ์œผ๋กœ๋ถ€ํ„ฐ ๋ฐฉ์ถœ๋˜๋Š” ๋น„์œจ (escape fraction, f_esc)์„ ๊ฐ๊ฐ ๋„์ถœํ•˜๊ณ  ํƒ๊ตฌํ•˜์˜€๋‹ค. SIF์™€ GPP์˜ ๊ด€๊ณ„๋Š” ๋šœ๋ ทํ•œ ๋น„ ์„ ํ˜•์ ์ธ ๊ด€๊ณ„๋ฅผ ๋ณด์ด๋Š” ๊ฒƒ์„ ํ™•์ธํ–ˆ์œผ๋ฉฐ(R2 = 0.91 with a hyperbolic regression function, daily), ์ผ์ฃผ๊ธฐ ๋‹จ์œ„์—์„œ SIF๋Š” APAR์— ๋Œ€ํ•ด ์„ ํ˜•์ ์ด์—ˆ์ง€๋งŒ GPP๋Š” APAR์— ๋Œ€ํ•ด ๋šœ๋ ทํ•œ ํฌํ™” ๊ด€๊ณ„๋ฅผ ๋ณด์ด๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ LUE_p ์™€ ฮฆ_F ๊ฐ€ ๋Œ€๊ธฐ ์˜จ๋„์— ๋”ฐ๋ผ ๋ฐ˜์‘ํ•˜๋Š” ์ •๋„๊ฐ€ ๋‹ค๋ฅธ ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. LUE_p๋Š” ๋†’์€ ์˜จ๋„์—์„œ ํฌํ™” ๋˜์—ˆ์ง€๋งŒ, ฮฆ_F๋Š” ํฌํ™” ํŒจํ„ด์„ ํ™•์ธํ•  ์ˆ˜ ์—†์—ˆ๋‹ค. ๋˜ํ•œ, ๊ตฐ๋ฝ ์ˆ˜์ค€์—์„œ์˜ CCI์™€ ฮฆ_F๊ฐ€ ๋šœ๋ ทํ•œ ์ƒ๊ด€ ๊ด€๊ณ„๋ฅผ ๋ณด์˜€๋‹ค(R2 = 0.84). ์ด๋Š” ฮฆ_F๊ฐ€ ์—ฝ๋ก์†Œ ์ƒ‰์†Œ์— ์˜ํ–ฅ์„ LUE_p์— ๋น„ํ•ด ๋” ๊ฐ•ํ•œ ๊ด€๊ณ„๊ฐ€ ์žˆ์„ ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, f_esc๊ฐ€ ํƒœ์–‘๊ด‘์˜ ์‚ฐ๋ž€๋œ ์ •๋„์— ๋”ฐ๋ผ ๋ฐ˜์‘์„ ํ•˜์—ฌ, ฮฆ_F์™€ LUE_p์˜ ๊ฐ•ํ•œ ์ƒ๊ด€ ๊ด€๊ณ„๋ฅผ ํ˜•์„ฑํ•˜๋Š”๋ฐ ๊ธฐ์—ฌํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐœ๊ฒฌ์€ ์˜จ๋Œ€ ์นจ์—ฝ์ˆ˜๋ฆผ์—์„œ ๊ตฐ๋ฝ ์ˆ˜์ค€์˜ SIF-GPP๊ด€๊ณ„๋ฅผ ์ƒ๋ฆฌํ•™์  ๋ฐ ๊ตฌ์กฐ์  ์ธก๋ฉด์—์„œ ์ดํ•ดํ•˜๊ณ  ๊ทœ๋ช…ํ•˜๋Š”๋ฐ ํฐ ๋„์›€์ด ๋  ๊ฒƒ์ด๋‹ค. ์‹๋ฌผ ๊ณ„์ ˆ์€ ์‹์ƒ์ด ์ฒ ์„ ๋”ฐ๋ผ ์ฃผ๊ธฐ์ ์œผ๋กœ ๋‚˜ํƒ€๋‚ด๋Š” ๋ณ€ํ™”๋ฅผ ๊ด€์ธกํ•˜๋Š” ๋ฐ˜์‘์ด๋‹ค. ์‹๋ฌผ ๊ณ„์ ˆ์€ ์œก์ƒ์ƒํƒœ๊ณ„์™€ ๋Œ€๊ธฐ๊ถŒ ์‚ฌ์ด์˜ ๋ฌผ์งˆ ์ˆœํ™˜์„ ์ดํ•ดํ•˜๋Š”๋ฐ ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. ์œ„์„ฑ ๊ธฐ๋ฐ˜์˜ NDVI๋Š” ์‹๋ฌผ ๊ณ„์ ˆ์„ ํƒ์ง€ํ•˜๊ณ  ์—ฐ๊ตฌํ•˜๋Š”๋ฐ ๊ฐ€์žฅ ๋Œ€์ค‘์ ์œผ๋กœ ์‚ฌ์šฉ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ํ™œ์—ฝ์ˆ˜๋ฆผ์—์„œ์˜ ์œ„์„ฑ NDVI ๊ธฐ๋ฐ˜์˜ ๊ฐœ์—ฝ ์‹œ๊ธฐ ๋ฐ ์„ฑ์ˆ™ ์‹œ๊ธฐ๊ฐ€ ์‹ค์ œ ์–ด๋Š ์‹œ์ ์„ ํƒ์ง€ํ•˜๋Š”์ง€๋Š” ๋ถˆ๋ถ„๋ช…ํ•˜๋‹ค. ์‹ค์ œ ํ™œ์—ฝ์ˆ˜๋ฆผ์€ ๋‹ค์ธต ์‹์ƒ ๊ตฌ์กฐ์˜ ์‚ผ์ฐจ์›์œผ๋กœ ์ด๋ฃจ์–ด์ ธ ์žˆ๋Š” ๋ฐ˜๋ฉด, ์œ„์„ฑ ์˜์ƒ์€ ๋‹ค์ธต ์‹์ƒ์˜ ์‹ ํ˜ธ๊ฐ€ ์„ž์—ฌ ์žˆ๋Š” ์ด์ฐจ์›์˜ ๊ฒฐ๊ณผ๋ฌผ์ด๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋”ฐ๋ผ์„œ, ์œ„์„ฑ NDVI ๊ธฐ๋ฐ˜์˜ ์‹๋ฌผ ๊ณ„์ ˆ์ด ๋‹ค์ธต ์‹์ƒ ๊ตฌ์กฐ๋ฅผ ์ด๋ฃจ๊ณ  ์žˆ๋Š” ํ™œ์—ฝ์ˆ˜๋ฆผ์—์„œ ์‹ค์ œ ํ˜„์žฅ ๊ด€์ธก๊ณผ ๋น„๊ตํ•˜์˜€์„ ๋•Œ ์–ด๋Š ์‹œ์ ์„ ํƒ์ง€ํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ๊ถ๊ธˆ์ฆ์ด ๋‚จ๋Š”๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์˜ Chapter 4์—์„œ๋Š” ์ง€์†์ ์œผ๋กœ 8๋…„ ๋™์•ˆ ํ™œ์—ฝ์ˆ˜๋ฆผ๋‚ด์˜ ๋‹ค์ธต ์‹์ƒ์˜ ์‹๋ฌผ ๊ณ„์ ˆ์„ ๊ทผ์ ‘ ํ‘œ๋ฉด ์›๊ฒฉ ์„ผ์‹ฑ ์‹œ์Šคํ…œ์„ ์ด์šฉํ•˜์—ฌ ๊ด€์ธกํ•˜๊ณ , ์œ„์„ฑ NDVI ๊ธฐ๋ฐ˜์˜ ์‹๋ฌผ ๊ณ„์ ˆ๊ณผ ๋น„๊ตํ•˜์˜€๋‹ค. ๋‹ค์ฑ„๋„ ๋ถ„๊ด‘๊ณ„๋ฅผ ์ƒ๋ถ€ ์‹์ƒ์˜ ์œ„์™€ ์•„๋ž˜์— ์„ค์น˜ํ•จ์œผ๋กœ์จ, ์ƒ๋ถ€ ์‹์ƒ๊ณผ ํ•˜๋ถ€ ์‹์ƒ์˜ ์‹๋ฌผ ๊ณ„์ ˆ์„ ๊ฐ๊ฐ ์—ฐ์†์ ์œผ๋กœ ๊ด€์ธกํ•˜์˜€๋‹ค. ์‹๋ฌผ ๊ณ„์ ˆ์„ ํƒ์ง€ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๊ฐ€์žฅ ๋งŽ์ด ์‚ฌ์šฉ๋˜๋Š” ๋ฐฉ๋ฒ•์ธ 1) ์—ญ์น˜๋ฅผ ์ด์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•๊ณผ 2) ์ด๊ณ„๋„ํ•จ์ˆ˜๋ฅผ ์ด์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ฐœ์—ฝ ์‹œ๊ธฐ ๋ฐ ์„ฑ์ˆ™ ์‹œ๊ธฐ๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ  ์ด๋ฅผ ๋‹ค์ธต ์‹์ƒ์˜ ์‹๋ฌผ ๊ณ„์ ˆ๊ณผ ๋น„๊ตํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ, ์ฒซ๋ฒˆ์งธ๋กœ, ๊ตฐ๋ฝ์˜ ์ƒ์ธต๋ถ€์—์„œ ์‹ค์ธกํ•œ NDVI์™€ ์œ„์„ฑ ๊ธฐ๋ฐ˜์˜ NDVI๊ฐ€ ๊ฐ•ํ•œ ์„ ํ˜• ๊ด€๊ณ„๋ฅผ ๋ณด์ด๋Š” ๊ฒƒ์„ ํ™•์ธํ–ˆ๋‹ค (R2=0.95 ๋Š” MODIS ์˜์ƒ๋“ค ๋ฐ R2= 0.85 ๋Š” Landsat8). ๋‘๋ฒˆ์งธ๋กœ, ์ด๊ณ„๋„ํ•จ์ˆ˜ ๋ฐฉ๋ฒ•๊ณผ 10%์˜ ์—ญ์น˜ ๊ฐ’์„ ์ด์šฉํ•œ ๋ฐฉ๋ฒ•์ด ๋น„์Šทํ•œ ๊ฐœ์—ฝ ์‹œ๊ธฐ๋ฅผ ์ถ”์ •ํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ, ํ•˜๋ถ€ ์‹์ƒ์˜ ๊ฐœ์—ฝ ์‹œ๊ธฐ์™€ ๋น„์Šทํ•œ ์‹œ๊ธฐ์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค. ์„ธ๋ฒˆ์งธ๋กœ, ์ด๊ณ„๋„ํ•จ์ˆ˜ ๋ฐฉ๋ฒ•๊ณผ 90%์˜ ์—ญ์น˜ ๊ฐ’์„ ์ด์šฉํ•œ ๋ฐฉ๋ฒ•์ด ๋น„์Šทํ•œ ์„ฑ์ˆ™ ์‹œ๊ธฐ๋ฅผ ์‚ฐ์ถœํ•˜์˜€์œผ๋ฉฐ, ์ด๋Š” ์ƒ๋ถ€ ์‹์ƒ์˜ ์„ฑ์ˆ™ ์‹œ๊ธฐ์™€ ๋น„์Šทํ•˜์˜€๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ ์ƒ๋ถ€ ์‹์ƒ์˜ ๊ฐœ์—ฝ ์‹œ๊ธฐ์™€ ํ•˜๋ถ€ ์‹์ƒ์˜ ๊ฐœ์—ฝ ์‹œ๊ธฐ๊ฐ€ ์˜จ๋„์™€ ๋ฐ˜์‘ํ•˜๋Š” ์ •๋„๊ฐ€ ๋šœ๋ ทํ•˜๊ฒŒ ์ฐจ์ด๊ฐ€ ๋‚˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ƒ๋ถ€ ์‹์ƒ์˜ ๊ฐœ์—ฝ ์‹œ๊ธฐ๋Š” ์ ์‚ฐ ์ƒ์žฅ ์˜จ๋„ ์ผ์ˆ˜ (AGDD)์™€ ๊ฐ•ํ•œ ์ƒ๊ด€์„ฑ์„ ๋ณด์˜€๊ณ , ํ•˜๋ถ€ ์‹์ƒ์˜ ๊ฐœ์—ฝ ์‹œ๊ธฐ๋Š” AGDD์™€ ์—ฐ๊ด€์„ฑ์„ ๊ฐ–๊ณ  ์žˆ์„ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ถ”์œ„ ์ผ์ˆ˜(NCD)์—๋„ ๋ฏผ๊ฐํ•˜๊ฒŒ ๋ฐ˜์‘ํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ์œ„์„ฑ NDVI ๊ธฐ๋ฐ˜์˜ ๊ฐœ์—ฝ ์‹œ๊ธฐ๋Š” ํ•˜๋ถ€ ์‹์ƒ์˜ ๊ฐœ์—ฝ ์‹œ๊ธฐ์™€ ์—ฐ๊ด€์„ฑ์ด ๋†’๊ณ , ์„ฑ์ˆ™ ์‹œ๊ธฐ๋Š” ์ƒ๋ถ€ ์‹์ƒ์˜ ์„ฑ์ˆ™ ์‹œ๊ธฐ์™€ ๋น„์Šทํ•˜๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ๋˜ํ•œ, ์ƒ๋ถ€ ์‹์ƒ๊ณผ ํ•˜๋ถ€ ์‹์ƒ์ด ์˜จ๋„์— ๋‹ค๋ฅธ ๋ฏผ๊ฐ์„ฑ์„ ๊ฐ–๊ณ  ์žˆ์–ด, ์œ„์„ฑ์—์„œ ์‚ฐ์ถœ๋œ ์‹๋ฌผ ๊ณ„์ ˆ์„ ์ด์šฉํ•˜์—ฌ ๊ธฐํ›„๋ณ€ํ™”๋ฅผ ์ดํ•ดํ•˜๊ณ ์ž ํ•  ๋•Œ, ์–ด๋–ค ์ธต์˜ ์‹์ƒ์ด ์œ„์„ฑ ์˜์ƒ์— ์ฃผ๋œ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€ ๊ณ ๋ คํ•ด์•ผ ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ์‹œ์‚ฌํ•œ๋‹ค. ์œ„์„ฑ์€ ๋„“์€ ์ง€์—ญ์˜ ๋ณ€ํ™”๋ฅผ ์†์‰ฝ๊ฒŒ ๋ชจ๋‹ˆํ„ฐ๋งํ•  ์ˆ˜ ์žˆ์–ด ๋งŽ์€ ๊ฐ€๋Šฅ์„ฑ์„ ๊ฐ–๊ณ  ์žˆ๋Š” ๋„๊ตฌ์ด์ง€๋งŒ, ๋ณด๋‹ค ์ •ํ™•ํ•œ ์œ„์„ฑ ๊ด€์ธก ๊ฐ’์„ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ํ˜„์žฅ์—์„œ ๊ด€์ธก๋œ ์ž๋ฃŒ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๊ฒ€์ฆ์ด ์š”๊ตฌ๋œ๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” 1) ๊ทผ์ ‘ ํ‘œ๋ฉด ์„ผ์‹ฑ ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœ, 2) ๊ทผ์ ‘ ํ‘œ๋ฉด ์„ผ์‹ฑ ์‹œ์Šคํ…œ์„ ํ™œ์šฉํ•œ ์‹์ƒ์˜ ์ƒ๋ฆฌํ•™์  ๊ตฌ์กฐ์  ๋ณ€ํ™”์˜ ์ง€์†์ ์ธ ๊ด€์ธก, 3) ๋‹ค์ธต ์‹์ƒ ๊ตฌ์กฐ์—์„œ ๊ด€์ธก๋˜๋Š” ์‹๋ฌผ ๊ณ„์ ˆ ๋ฐ ์œ„์„ฑ์—์„œ ์ถ”์ •๋œ ์‹๋ฌผ ๊ณ„์ ˆ์˜ ์—ฐ๊ด€์„ฑ ํ‰๊ฐ€๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ฐœ๋ฐœํ•œ ๊ทผ์ ‘ ํ‘œ๋ฉด ์„ผ์„œ๋Š” ์ƒ์—… ์„ผ์„œ๋“ค๊ณผ ๋น„๊ตํ–ˆ์„ ๋•Œ, ๊ฐ€๊ฒฉ์ ์œผ๋กœ ์ €๋ ดํ•˜๊ณ  ์† ์‰ฝ๊ฒŒ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ, ์„ฑ๋Šฅ์ ์œผ๋กœ๋„ ๋ถ€์กฑํ•จ์ด ์—†์—ˆ๋‹ค. ๊ทผ์ ‘ ํ‘œ๋ฉด ์„ผ์‹ฑ ์‹œ์Šคํ…œ์„ ์ด์šฉํ•˜์—ฌ SIF๋ฅผ ์˜จ๋Œ€ ์นจ์—ฝ์ˆ˜๋ฆผ์—์„œ ์ง€์†์ ์œผ๋กœ ๊ด€์ธกํ•œ ๊ฒฐ๊ณผ, ์ด์ผ์ฐจ์ƒ์‚ฐ์„ฑ๊ณผ SIF๋Š” ๋น„์„ ํ˜• ๊ด€๊ณ„๋ฅผ ๊ฐ–๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋Š” ๋งŽ์€ ์„ ํ–‰ ์—ฐ๊ตฌ๋“ค์—์„œ ๋ฐœํ‘œํ•œ ์œ„์„ฑ ๊ธฐ๋ฐ˜์˜ SIF์™€ GPP๊ฐ€ ์„ ํ˜•์ ์ธ ๊ด€๊ณ„๋ฅผ ๋ณด์ธ๋‹ค๋Š” ๊ฒƒ๊ณผ๋Š” ๋‹ค์†Œ ์ƒ๋ฐ˜๋œ ๊ฒฐ๊ณผ์ด๋‹ค. ๋‹ค์ธก ์‹์ƒ์˜ ๋ด„์ฒ  ์‹๋ฌผ ๊ณ„์ ˆ์„ ์—ฐ์†์ ์œผ๋กœ ๊ด€์ธกํ•˜๊ณ , ์œ„์„ฑ ๊ธฐ๋ฐ˜์˜ ์‹๋ฌผ ๊ณ„์ ˆ๊ณผ ๋น„๊ตํ‰๊ฐ€ํ•œ ์—ฐ๊ตฌ์—์„œ๋Š” ์œ„์„ฑ ๊ธฐ๋ฐ˜์˜ ๊ฐœ์—ฝ ์‹œ๊ธฐ๋Š” ํ•˜๋ถ€ ์‹์ƒ์— ์˜ํ–ฅ์„ ์ฃผ๋กœ ๋ฐ›๊ณ , ์„ฑ์ˆ™ ์‹œ๊ธฐ๋Š” ์ƒ๋ถ€ ์‹์ƒ์˜ ์‹œ๊ธฐ์™€ ๋น„์Šทํ•œ ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ฆ‰, ๊ทผ์ ‘ ํ‘œ๋ฉด ์„ผ์‹ฑ ์‹œ์Šคํ…œ์„ ์ด์šฉํ•˜์—ฌ ํ˜„์žฅ์—์„œ ์‹ค์ธกํ•œ ๊ฒฐ๊ณผ๋Š” ์œ„์„ฑ ์˜์ƒ์„ ํ™œ์šฉํ•œ ์—ฐ๊ตฌ๋“ค๊ณผ๋Š” ๋‹ค๋ฅธ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์ผ ์ˆ˜๋„ ์žˆ์œผ๋ฉฐ, ์œ„์„ฑ ์˜์ƒ์„ ํ‰๊ฐ€ ๋ฐ ์ดํ•ดํ•˜๋Š”๋ฐ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณด๋‹ค ์ •ํ™•ํ•œ ์‹์ƒ์˜ ๊ตฌ์กฐ์ , ์ƒ๋ฆฌํ•™์  ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ทผ์ ‘ ํ‘œ๋ฉด ์„ผ์‹ฑ์„ ํ™œ์šฉํ•œ ํ˜„์žฅ์—์„œ ๊ตฌ์ถ•ํ•œ ์ž๋ฃŒ ๊ธฐ๋ฐ˜์˜ ๋” ๋งŽ์€ ์—ฐ๊ตฌ๋“ค์ด ํ•„์š”ํ•˜๋‹ค๋Š” ๊ฒƒ์„ ์‹œ์‚ฌํ•œ๋‹ค.Abstract i Chapter 1. Introduction 2 1. Background 2 2. Purpose 5 Chapter 2. Monitoring SIF using a filter-based near surface remote sensing system 9 1. Introduction 9 2. Instrument desing and technical spefications of the filter-based smart surface sensing system (4S-SIF) 12 2.1. Ultra-narrow band pass filter 14 2.2. Calibration of 4S-SIF 15 2.3. Temperature and humidity response 16 2.4. Evaluate SIF quality from 4S-SIF in the field 17 3. Results 20 4. Discussion 23 Chapter 3. SIF is non-linearly related to canopy photosynthesis in a temperate evergreen needleleaf forest during fall transition 27 1. Introduction 27 2. Methods and Materials 31 2.1. Study site 31 2.2. Leaf-level fluorescence measurement 32 2.3. Canopy-level SIF and spectral reflectance measurement 34 2.4. SIF retrieval 37 2.5. Canopy-level photosynthesis estimates 38 2.6. Meteorological variables and APAR 39 2.7. Statistical analysis 40 3. Results 41 4. Discussion 48 4.1. Non-linear relationships between SIF and GPP 49 4.2. Role of f_esc in SIF-GPP relationship 53 4.3. Implications of non-linear SIF-GPP relationship in temperate ENF 54 5. Conclusion 57 6. Appendix 59 Chapter 4. Monitoring spring phenology of multi-layer canopy in a deciduous broadleaf forest: What signal do satellites actually see in space 65 1. Introduction 65 2. Materials and Methods 69 2.1. Study site 69 2.2. Multi-layer spectral reflectance and transmittance measurement 70 2.3. Phenometrics detection 72 2.4. In-situ multi-layer phenology 74 2.5. Satellite remote sensing data 75 2.6. Meteorological variables 75 3. Results 76 3.1. Seasonal to interannual variations of NDVI, 1-transmittance, and air temperature 76 3.2. Inter-annual variation of leaf-out and full-leaf dates 78 3.3. The relationships between dates calculated according tothreshold and in-situ multi-layer phenology 80 3.4. The relationship between multi-layer phenology, AGDD and NCD 81 4. Discussion 82 4.1. How do satellite-based leaf-out and full-leaf dates differ from in-situ multi-layer phenology 83 4.2. Are the 10 % and 90 % thresholds from satellite-basedNDVI always well matched with the leaf-out and full-leaf dates calculated by the curvature change rate 86 4.3. What are the implications of the difference between satellite-based and multi-layer phenology 87 4.4. Limitations and implications for future studies 89 5. Conclusion 91 6. Appendix 92 Chapter 5. Conclusion 114 Abstract in Korean 115๋ฐ•

    Divergent estimates of forest photosynthetic phenology using structural and physiological vegetation indices

    Get PDF
    The accurate estimation of photosynthetic phenology using vegetation indices (VIs) is important for measuring the interannual variation of atmospheric CO2 concentrations, but the relative performances of structural and physiological VIs remain unclear. We found that structural VIs (normalized difference VI, enhanced VI, and near-infrared reflectance of vegetation) were suitable for estimating the start of the photosynthetically active season in deciduous broadleaf forests using gross primary production measured by FLUXNET as a benchmark, and a physiological VI (chlorophyll/carotenoid index) was better at identifying the end of the photosynthetically active season for deciduous broadleaf forests and both the start and end of season for evergreen needleleaf forests. The divergent performances were rooted in the combined control of structural and physiological regulations of carbon uptake by plants. Most existing studies of photosynthetic phenology have been based on structural VIs, so we suggest revisiting the dynamics of photosynthetic phenology using physiological VIs, which has significant implications on global plant phenology and carbon uptake studies

    Synergy between TROPOMI sun-induced chlorophyll fluorescence and MODIS spectral reflectance for understanding the dynamics of gross primary productivity at Integrated Carbon Observatory System (ICOS) ecosystem flux sites

    Get PDF
    An accurate estimation of vegetation gross primary productivity (GPP), which is the amount of carbon taken up by vegetation through photosynthesis for a given time and area, is critical for understanding terrestrialโ€“atmosphere CO2 exchange processes and ecosystem functioning, as well as ecosystem responses and adaptations to climate change. Prior studies, based on ground, airborne, and satellite sun-induced chlorophyll fluorescence (SIF) observations, have recently revealed close relationships with GPP at different spatial and temporal scales and across different plant functional types (PFTs). However, questions remain regarding whether there is a unique relationship between SIF and GPP across different sites and PFTs and how we can improve GPP estimates using solely remotely sensed data. Using concurrent measurements of daily TROPOspheric Monitoring Instrument (TROPOMI) SIF (daily SIFd); daily MODIS Terra and Aqua spectral reflectance; vegetation indices (VIs, notably normalized difference vegetation index (NDVI), near-infrared reflectance of vegetation (NIRv), and photochemical reflectance index (PRI)); and daily tower-based GPP across eight major different PFTs, including mixed forests, deciduous broadleaf forests, croplands, evergreen broadleaf forests, evergreen needleleaf forests, grasslands, open shrubland, and wetlands, the strength of the relationships between tower-based GPP and SIFd at 40 Integrated Carbon Observation System (ICOS) flux sites was investigated. The synergy between SIFd and MODIS-based reflectance (R) and VIs to improve GPP estimates using a data-driven modeling approach was also evaluated. The results revealed that the strength of the hyperbolic relationship between GPP and SIFd was strongly site-specific and PFT-dependent. Furthermore, the generalized linear model (GLM), fitted between SIFd, GPP, and site and vegetation type as categorical variables, further supported this site- and PFT-dependent relationship between GPP and SIFd. Using random forest (RF) regression models with GPP as output and the aforementioned variables as predictors (R, SIFd, and VIs), this study also showed that the spectral reflectance bands (RF-R) and SIFd plus spectral reflectance (RF-SIF-R) models explained over 80โ€‰% of the seasonal and interannual variations in GPP, whereas the SIFd plus VI (RF-SIF-VI) model reproduced only 75โ€‰% of the tower-based GPP variance. In addition, the relative variable importance of predictors of GPP demonstrated that the spectral reflectance bands in the near-infrared, red, and SIFd appeared as the most influential and dominant factors determining GPP predictions, indicating the importance of canopy structure, biochemical properties, and vegetation functioning on GPP estimates. Overall, this study provides insights into understanding the strength of the relationships between GPP and SIF and the use of spectral reflectance and SIFd to improve estimates of GPP across sites and PFTs.</p

    Spatio-Temporal Convergence of Maximum Daily Light-Use Efficiency Based on Radiation Absorption by Canopy Chlorophyll

    Get PDF
    Light-use efficiency (LUE), which quantifies the plants' efficiency in utilizing solar radiation for photosynthetic carbon fixation, is an important factor for gross primary production estimation. Here we use satellite-based solar-induced chlorophyll fluorescence as a proxy for photosynthetically active radiation absorbed by chlorophyll (APAR ) and derive an estimation of the fraction of APAR (fPAR ) from four remotely sensed vegetation indicators. By comparing maximum LUE estimated at different scales from 127 eddy flux sites, we found that the maximum daily LUE based on PAR absorption by canopy chlorophyll (ฮต ), unlike other expressions of LUE, tends to converge across biome types. The photosynthetic seasonality in tropical forests can also be tracked by the change of fPAR , suggesting the corresponding (ฮต ) to have less seasonal variation. This spatio-temporal convergence of LUE derived from fPAR can be used to build simple but robust gross primary production models and to better constrain process-based models. chl chl chl max chl max chl chl ch

    Combining solar-induced chlorophyll fluorescence and optical vegetation indices to better understand plant phenological responses to global change

    Get PDF
    Altres ajuts: J.P. acknowledges support from the Fundaciรณn Ramรณn Areces grant CIVP20A6621.Recent advances in the satellite retrieval of solar-induced chlorophyll fluorescence (SIF) provide new opportunities for understanding the phenological responses of ecosystems to global climate change. Because of the strong link between SIF and plant gross photosynthesis, phenological events derived from SIF represent the seasonal variation of ecosystem functioning (photosynthetic phenology) and differ from phenologies derived from traditional vegetation indices. We provide an overview of recent advances in remotely sensed photosynthetic phenologies, with a focus on their driving factors, their impact on the global carbon cycle, and their relationships with vegetation index-derived land surface phenology metrics. We also discuss future research directions on how to better use various phenological metrics to understand the responses of plants to global change

    Reduction of structural impacts and distinction of photosynthetic pathways in a global estimation of GPP from space-borne solar-induced chlorophyll fluorescence

    Get PDF
    Quantifying global photosynthesis remains a challenge due to a lack of accurate remote sensing proxies. Solar-induced chlorophyll fluorescence (SIF) has been shown to be a good indicator of photosynthetic activity across various spatial scales. However, a global and spatially challenging estimate of terrestrial gross primary production (GPP) based on satellite SIF remains unresolved due to the confounding effects of species-specific physical and physiological traits and external factors, such as canopy structure or photosynthetic pathway (C-3 or C-4). Here we analyze an ensemble of far-red SIF data from OCO-2 satellite and ground observations at multiple sites, using the spectral invariant theory to reduce the effects of canopy structure and to retrieve a structure-corrected total canopy SIF emission (SIFtotal). We find that the relationships between observed canopy-leaving SIF and ecosystem GPP vary significantly among biomes. In contrast, the relationships between SIFtotal and GPP converge around two unique models, one for C-3 and one for C-4 plants. We show that the two single empirical models can be used to globally scale satellite SIF observations to terrestrial GPP. We obtain an independent estimate of global terrestrial GPP of 129.56 +/- 6.54 PgC/year for the 2015-2017 period, which is consistent with the state-of-the-art data- and process-oriented models. The new GPP product shows improved sensitivity to previously undetected 'hotspots' of productivity, being able to resolve the double-peak in GPP due to rotational cropping systems. We suggest that the direct scheme to estimate GPP presented here, which is based on satellite SIF, may open up new possibilities to resolve the dynamics of global terrestrial GPP across space and time.Peer reviewe
    • โ€ฆ
    corecore