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Abstract 
 

 

Continuous observation of vegetation phenology and solar-

induced chlorophyll fluorescence using near-surface remote 

sensing systems 

Jongmin Kim 

Interdisciplinary Program in Landscape Architecture in  

Seoul National University 

Graduate School of Seoul National University 

Supervised by Professor Youngryel Ryu 

 

Monitoring phenology, physiological and structural changes 

in vegetation is essential to understanding feedbacks of vegetation 

between terrestrial ecosystems and the atmosphere by influencing 

the albedo, carbon flux, water flux and energy. To this end, 

normalized difference vegetation index (NDVI) and solar induced 

chlorophyll fluorescence (SIF) from satellite remote sensing have 

been widely used. However, there are still limitations in satellite 

remote sensing as 1) satellite imagery could not capture fine scale 

spatial resolution of SIF signals, 2) satellite products are strongly 

influenced by condition of atmosphere (e.g. clouds), thus it is 

challenge to know physiological and structural changes in vegetation 

on cloudy days and 3) satellite imagery captured a mixed signal from 

over- and understory, thus it is difficult to study the difference 

between overstory and understory phenology separately. Therefore, 

in order to more accurately understand the signals observed from the 

satellite, further studies using near-surface remote sensing system 

to collect ground-based observed data are needed.  

The main purpose of this dissertation is continuous 
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observation of vegetation phenology and SIF using near-surface 

remote sensing system. To achieve the main goal, I set three 

chapters as 1) developing low-cost filter-based near-surface 

remote sensing system to monitor SIF continuously, 2) monitoring 

SIF in a temperate evergreen needleleaf forest continuously, and 3) 

understanding the relationships between phenology from in-situ 

multi-layer canopies and satellite products.   

In Chapter 2, I developed the filter-based smart surface 

sensing system (4S-SIF) to overcome technical challenges of 

monitoring SIF in the field as well as to decrease sensor cost for 

more comprehensive spatial sampling. I verified the satisfactory 

spectral performance of the band pass filters and confirmed that 

digital numbers (DN) from 4S-SIF exhibited linear relationships with 

the DN from the hyperspectral spectroradiometer in each band (R2 > 

0.99). In addition, we confirmed that 4S-SIF shows relatively low 

variation of dark current value at various temperatures. Furthermore, 

the SIF signal from 4S-SIF represents a strong linear relationship 

with QEpro-SIF either changing the physiological mechanisms of the 

plant using DCMU (3-(3, 4-dichlorophenyl)-1, 1-dimethyurea) 

treatment. I believe that 4S-SIF will be a useful tool for collecting 

in-situ data across multiple spatial and temporal scales. 

Satellite-based SIF provides us with new opportunities to 

understand the physiological and structural dynamics of vegetation 

from canopy to global scales. However, the relationships between SIF 

and gross primary productivity (GPP) are not fully understood, which 

is mainly due to the challenges of decoupling structural and 

physiological factors that control the relationships. In Chapter 3, I 

reported the results of continuous observations of canopy-level SIF, 

GPP, absorbed photosynthetically active radiation (APAR), and 
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chlorophyll: carotenoid index (CCI) in a temperate evergreen 

needleleaf forest. To understand the mechanisms underlying the 

relationship between GPP and SIF, I investigated the relationships of 

light use efficiency (LUEp), chlorophyll fluorescence yield (Φ
F
), and 

the fraction of emitted SIF photons escaping from the canopy (𝑓𝑒𝑠𝑐) 

separately. I found a strongly non-linear relationship between GPP 

and SIF at diurnal and seasonal time scales (R2 = 0.91 with a 

hyperbolic regression function, daily). GPP saturated with APAR, 

while SIF did not. In addition, there were differential responses of 

LUEp and Φ
F
 to air temperature. While LUEp reached saturation at 

high air temperatures, Φ
F
 did not saturate. I also found that the 

canopy-level chlorophyll: carotenoid index was strongly correlated 

to canopy-level Φ
F
 (R2 = 0.84) implying that Φ

F
 could be more 

closely related to pigment pool changes rather than LUEp. In addition, 

I found that the 𝑓𝑒𝑠𝑐 contributed to a stronger SIF-GPP relationship 

by partially capturing the response of LUEp to diffuse light. These 

findings can help refine physiological and structural links between 

canopy-level SIF and GPP in evergreen needleleaf forest.  

We do not fully understand what satellite NDVI derived leaf-

out and full leaf dates actually observes because deciduous broadleaf 

forest consists of multi-layer canopies typically and mixed signal 

from multi-layer canopies could affect satellite observation. 

Ultimately, we have the following question: What phenology do we 

actually see from space compared to ground observations on multi-

layer canopy phenology? In Chapter 4, I reported the results of 8 

years of continuous observations of multi-layer phenology and 

climate variables in a deciduous broadleaf forest, South Korea. 

Multi-channel spectrometers installed above and below overstory 
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canopy allowed us to monitor over- and understory canopy 

phenology separately, continuously. I evaluated the widely used 

phenology detection methods, curvature change rate and threshold 

with NDVI observed above top of the canopy and compared leaf-out 

and full leaf dates from both methods to in-situ observed multi-layer 

phenology. First, I found that NDVI from the above canopy had a 

strong linear relationship with satellites NDVI (R2=0.95 for MODIS 

products and R2= 0.85 for Landsat8). Second, leaf-out dates 

extracted by the curvature change rate method and 10% threshold 

were well matched with understory leaf-out dates. Third, the full-

leaf dates extracted by the curvature change rate method and 90% 

threshold were similar to overstory full-leaf dates. Furthermore, I 

found that overstory leaf-out dates were closely correlated to 

accumulated growing degree days (AGDD) while understory leaf-

out dates were related to AGDD and also sensitive to the number of 

chill days (NCD). These results suggest that satellite-based leaf-

out and full leaf dates represent understory and overstory signals in 

the deciduous forest site, which requires caution when using satellite 

based phenology data into future prediction as overstory and 

understory canopy show different sensitivities to AGDD and NCD. 

 

 

Keyword: phenology, normalized difference vegetation index 

(NDVI), gross primary productivity (GPP), solar induced 

chlorophyll fluorescence (SIF), near-surface remote sensing, 

satellite, multi-layer canopy, canopy structure, canopy function  
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Chapter 1. Introduction 
 

1. Background 

Recent advances in satellite remote sensing provides us with 

new opportunities to understand the dynamics of carbon flux 

interaction between terrestrial vegetation and atmosphere at regional 

and global scales (Ryu et al., 2019). Satellite products have been 

widely used to monitoring spring phenology which is important for 

plant functioning and ecosystem services and their biophysical and 

biogeochemical feedbacks to the climate system (Bonan, 2008; Jeong 

et al., 2014; Keenan et al., 2014; Richardson et al., 2013a). In addition, 

recent remotely sensed solar induced chlorophyll fluorescence (SIF) 

has advanced our ability to estimate gross primary production (GPP) 

(Frankenberg et al., 2011; Joiner et al., 2013; Joiner et al., 2014; Sun 

et al., 2018; Sun et al., 2017; Zhang et al., 2016) and photosynthetic 

capacity (Zhang et al., 2014; Zhang et al., 2018). Satellite-based SIF 

is also used as detector of seasonal vegetation phenology (Jeong et 

al., 2017; Lu et al., 2018; Walther et al., 2016). 

To monitor phenology and SIF, satellite remote sensing has 

been widely used. Satellite has the advantage that we could see the 

vegetation changes in large area without visiting the site (Richardson 

et al., 2013b), thus it is currently being used as the most useful tool 

to see vegetation changes since the 1970s (Piao et al., 2019). 

However, there are still inherent limitations in satellite products 

compared to near-surface remote sensing, especially in Asia region 

as follows. First, satellite data could not capture fine scale spatial 

signals. In Asia, the land cover size is relatively small, thus, it is 

challenge to know detail dynamics of physiological and structural 

changes in vegetation by using low spatial resolution satellite 
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products(Riitters et al., 2000). Although high spatial satellites are 

lunched, in current stage of SIF, the spatial resolution is 7 by 3.5km 

by TROPOspheric Monitoring Instrument (TROPOMI) (Köhler et al., 

2018), 0.05˚ spatial resolution by GOME-2 and OCC-2. Second, 

satellite products could be affected by cloud strongly. In the East 

Asian, there are monsoon climate region, which are characterized by 

significant fluctuations in weather events, such as dry periods, heat 

waves and rainy and cloudy days (Lee et al., 2015). Therefore, 

satellite data showed large data gaps in summer season and it is hard 

to demonstrate detail mechanisms in spectral information and 

vegetation physiological relationship (e.g. SIF-GPP relationship) in 

cloudy days. Thirds, satellite could not distinguish understory and 

overstory separately. When we see the forest from the space by 

using satellite, the image contains a mixed signal of over- and 

understory. The seasonal pattern of NDVI observed from the satellite 

could be changed when two or more species are overlapped (Badeck 

et al., 2004). This phenomenon could directly affect the leaf-out and 

full-leaf dates extracted from the satellite imagery. Thus, we still 

need more research on the ground-based phenology and SIF to 

evaluate and better understand satellite-based results. 

Substantial efforts have been made to monitor ground-based 

phenology and SIF, however, current continuous field observation is 

still sparse and challenges. The first reason is that the commercially 

available products are still expensive. The disadvantage of near-

surface remote sensing system compared to satellite products is that 

it has a limited field of view (Richardson, 2009). To overcome this 

disadvantage, it is essential to develop an inexpensive system. By 

using the low-cost system, we can install the system in multi-points 

and collect data observe from large area. Second, the 
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spectroradiometer-based near-surface remote sensing systems 

have challenges of sensor calibration and maintenance in the field in 

order to meet the strict requirements necessary for high-quality 

data. The function of spectroradiometer can be influenced by 

environmental factors, which is difficult to control constant in the 

field (Pacheco-Labrador and Martín, 2015; Wang et al., 2015). 

Therefore, uncontrolled temperature can trigger changing 

radiometric magnitude, signal to noise ratio and spectral features 

(Hueni and Bialek, 2017; Pacheco-Labrador et al., 2019). These 

changing performance of sensor can make a difficulty to collect the 

high-quality data (Damm et al., 2011). Third, the spectroradiometer 

is difficult to use initially without background knowledge and 

experience. In order for more observations to be made in various 

regions and ecosystem, it should be easy for the user to use. Thus, 

we need to develop a ground-based remote sensing system, which 

is relatively inexpensive, flexible to environmental condition and easy 

to handle in the field. 

Further efforts are needed to characterize the SIF-GPP 

relationship in ground-based with respect to the relative roles of 

canopy structure and leaf physiology. Both GPP and SIF are driven 

by absorbed solar radiation (Porcar-Castell et al., 2014), but they 

differ in a few important respects. Whereas GPP is related to gas 

exchange between leaves and the atmosphere, SIF is an optical signal 

in the near-infrared (NIR) region, where light is strongly scattered 

in vegetation canopies (Zeng et al., 2019). This scattering results in 

a decrease in the signal at the top of the canopy (Yang and van der 

Tol, 2018), while there is no equivalent mechanism in GPP. It is 

therefore necessary to investigate the relationships of LUEP, Φ
F
, and 

𝑓𝑒𝑠𝑐  separately to understand the mechanisms underlying the 
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relationship between GPP and SIF. Compared to crops and deciduous 

forests, however, ENF have unique characteristics with respect to 

canopy structure and physiology. 

The diverse environmental conditions coexist in the most 

forest as multi-layer canopy structure form complex time and space 

at the same space. Previous studies have highlighted the influence of 

multi-layer canopy structure on forest turbulence characteristics, 

hydrological cycles, radiation regimes and photosynthetic capacity in 

leaf-level (Baldocchi et al., 2002; Song and Ryu, 2015). In these 

various environmental conditions, the leaf-out period of understory 

and overstory are also different. For example, understory species 

showed earlier leaf-out dates compared to overstory due to 

maximize annual mass gain and survival in habitats of deciduous 

broadleaf forest (Seiwa, 1999; Tomita and Seiwa, 2004). However, 

in signal from satellite products, the image contains a mixed signal of 

over- and understory. The mixed signal could affect the seasonal 

pattern of NDVI observed from the satellite (Badeck et al., 2004) and 

it can directly affect the phenology extracted from the satellite 

imagery. Ultimately, the following questions remain: What phenology 

do we actually see from space compared to ground observations on 

multi-layer canopy phenology? 

 

2. Purpose 

The main purpose of this dissertation is to investigate the 

difference between the satellite-based and the field-based results 

through continuous observation of vegetation phenology and SIF 

using near-surface remote sensing system. To achieve the main goal, 

the following steps are necessary. 1) developing low-cost filter-

based near-surface remote sensing system to monitor vegetation 
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phenology and SIF continuously, 2) continuously monitoring SIF in a 

temperate evergreen needleleaf forest, and 3) understanding the 

relationships between phenology from multi-layer canopies and 

satellite products.  

In Chapter 2, I present the filter-based smart surface 

sensing system (4S-SIF) to overcome technical challenges of 

monitoring SIF in the field as well as to decrease sensor cost for 

more comprehensive spatial sampling. To monitor SIF, I combined 

ultra-narrow band pass filters and photodiode detectors to observe 

electro-magnetic radiation at specific wavelengths (760nm, 756nm 

and 770nm). I verified the satisfactory spectral performance of the 

band pass filters and confirmed that digital numbers (DN) from 4S-

SIF exhibited linear relationships with the DN from the hyperspectral 

spectroradiometer. In this chapter, I 1) described the 4S-SIF 2) 

tested its performances in the lab with other commercial 

hyperspectral spectroradiometer to varying light intensities as well 

as sensitivity to temperature and humidity. After then, 3) I evaluated 

SIF quality from installed 4S-SIF sensor in the field with reference 

instruments. 

In Chapter 3, we report the results of continuous 

observations of canopy-level SIF, GPP, absorbed photosynthetically 

active radiation (APAR), and chlorophyll: carotenoid index (CCI) in 

a temperate evergreen needleleaf forest. To understand the 

mechanisms underlying the relationship between GPP and SIF, we 

investigated the relationships of light use efficiency ( LUEp ), 

chlorophyll fluorescence yield (Φ
F
), and the fraction of emitted SIF 

photons escaping from the canopy (𝑓𝑒𝑠𝑐) separately. In this chapter, 

my objective was to investigate the SIF-GPP relationship in a 

temperate ENF over the transition period between summer and 
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winter. I formulated the following two hypotheses: H1) The seasonal 

SIF-GPP relationship is linear in temperate ENF, as seasonal 

dynamics in LUEp are captured by Φ
F
. H2) 𝑓𝑒𝑠𝑐 does not affect the 

SIF-GPP relationship due to its seasonal stability.  

In Chapter 4, I monitored multi-layer phenology and climate 

variables continuously in a deciduous broadleaf forest, South Korea 

during 8 years. Multi-channel spectrometers installed above and 

below overstory canopy allowed us to monitor over- and understory 

canopy phenology separately, continuously. I evaluated the widely 

used phenology detection methods, curvature change rate and 

threshold with NDVI observed above top of the canopy and compared 

leaf-out and full leaf dates from both methods to in-situ observed 

multi-layer phenology. My detail research questions were: 1) What 

is the difference between extracted leaf-out and full-leaf dates 

according to different phenological phase detection methods? 2) How 

do satellite-based leaf-out and full-leaf dates differ from in-situ 

multi-layer phenology? 3) What should be caution when 

understanding the relationship between satellite-based spring 

phenology and climate changes? 
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Chapter 2. Monitoring sun-induced chlorophyll 

fluorescence using a filter-based near-surface remote 

sensing system 

 

1. Introduction 

Recent advances in satellite remote sensing of sun-induced 

chlorophyll fluorescence (SIF) provides us with new opportunities to 

understand the structural and physiological dynamics of vegetation at 

regional and global scales. The remotely sensed SIF has advanced 

our ability to estimate gross primary production (GPP) (Frankenberg 

et al., 2011; Joiner et al., 2013; Joiner et al., 2014; Sun et al., 2018; 

Sun et al., 2017; Zhang et al., 2016b) and photosynthetic capacity 

(Zhang et al., 2014; Zhang et al., 2018a). Satellite-based SIF is also 

used as detector of seasonal vegetation phenology (Jeong et al., 2017; 

Lu et al., 2018; Walther et al., 2016), indicator of drought stress in 

tropical rainforest and evergreen needleleaf forest (Yang et al., 

2018a; Zuromski et al., 2018) and used for understanding turbulent 

fluxes (e.g. Alemohammad et al. (2017)). However, there are cases 

where the ground-based SIF presents contradictory results compare 

to satellite observation. For example, the correlation between SIF 

and GPP was reported to be low in evergreen needleleaf forest, 

cornfield, cropland and mixed forest because environmental condition 

affect the SIF-GPP relationships (Cheng et al., 2013; Nichol et al., 

2019; Paul-Limoges et al., 2018). SIF was less responsive to 

drought than GPP in Mediterranean pine forest (Wohlfahrt et al., 

2018). In addition, SIF showed a strong linear relationship with 

absorbed photosynthetically active radiation (APAR) than GPP in 

soybean and rice paddy site (Miao et al., 2018; Yang et al., 2018b). 
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Thus, we still need more research on the ground-based SIF to 

evaluate and better understand satellite-based SIF and its 

relationship to GPP.  

Several studies have been presented to monitor ground-

based SIF. Recently, commercial hyperspectral spectroradiometer-

based systems have been introduced and used to observe ground-

based SIF. For example, there are SFLUOR box, Fluospec, FAME, 

Photospec, Flox and SIFspec (Campbell et al., 2019; Cogliati et al., 

2015; Du et al., 2019; Grossmann et al., 2018; Gu et al., 2018; Yang 

et al., 2018c). Although not configured as a system, numerous efforts 

have been made to observe ground-based SIF using a commercial 

hyperspectral spectroradiometer. (Cheng et al., 2013; DAMM et al., 

2010b; Daumard et al., 2010; Goulas et al., 2017; Julitta et al., 2016; 

Liu and Liu, 2018; Meroni and Colombo, 2006; Rossini et al., 2010; 

Wieneke et al., 2018; Zhou et al., 2016).  

Substantial efforts have been made to monitor ground-based 

SIF, however, current continuous field observation is still sparse and 

challenges. The first reason is that the commercially available 

spectroradiometer that has high performance for observing SIF are 

relatively expensive. The expensive sensors have limitations for 

installation in various location (Richardson, 2009). Therefore, in 

order to expand the observation, it is necessary to develop a low-

cost ground-based SIF sensor. Second, the spectroradiometer-

based systems have challenges of sensor calibration and maintenance 

in the field in order to meet the strict requirements necessary for 

high-quality SIF retrieval. The function of spectroradiometer can be 

influenced by environmental factors, which is difficult to control 

constant in the field (Pacheco-Labrador and Martín, 2015; Wang et 

al., 2015). For example, temperature could affect dimensional 
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modifications of the spectroradiometer optical and mechanical 

components (Pacheco-Labrador et al., 2019). Therefore, 

uncontrolled temperature can trigger changing radiometric magnitude, 

signal to noise ratio and spectral features (Hueni and Bialek, 2017; 

Pacheco-Labrador et al., 2019). These changing performance of 

sensor can influence SIF retrieval strongly (Damm et al., 2011). 

Third, the spectroradiometer is difficult to use initially without 

background knowledge and experience. In order for more 

observations to be made in various regions and ecosystem, it should 

be easy for the user to use. Thus, we need to develop a ground-

based SIF system, which is relatively inexpensive, flexible to 

environmental condition and easy to handle in the field. 

Using a photodiode can be used to monitoring the canopy 

functional changing. The variation of plant physiology can be 

estimated using observed reflectance at certain wavelength bands, 

such as photochemical reflectance index (PRI) (Gamon et al., 1997). 

To select the desired specific wavelength band, a system combining 

a photodiode and a filter has been devised (Garrity et al., 2010; 

Pontailler et al., 2003; Pontailler and Genty, 1996). These systems 

are used to monitor function of vegetation for deciduous, evergreen 

and crop species, and have proven to work continuously well (Gamon 

et al., 2015; Magney et al., 2016; Soudani et al., 2012). The 

combination of photodiode and filters have the potential to be used to 

extract SIF more easily because the Fraunhofer line depth (FLD) 

method can extract SIF using only two or three flux measurements, 

inside and outside an O2A absorption line (Meroni et al., 2009; 

Plascyk, 1975). In other words, SIF can be extracted by observing 

only a specific narrow wavelength band (e.g., 756 and 760 nm). 

Although combined filters and photodiodes already was presented to 
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extract SIF in leaf-level scale (Kebabian et al., 1999; Louis et al., 

2005; Moya et al., 2004), a system useful for continuously monitoring 

canopy SIF in the field has not yet been devised. 

Here, we present the filter-based smart surface sensing 

system (4S-SIF) to overcome technical challenges of monitoring SiF 

in the field as well as to decrease sensor cost for more 

comprehensive spatial sampling. To monitor SIF, we combined ultra-

narrow band pass filters and photodiode detectors to observe 

electromagnetic radiation at specific wavelengths (760nm, 756nm 

and 770nm). In this paper, we 1) describe the 4S-SIF 2) tested its 

performances in the lab with other commercial hyperspectral 

spectroradiometer to varying light intensities as well as sensitivity 

to temperature and humidity. After then, 3) we evaluate SIF quality 

from installed 4S-SIF sensor in the field with reference instruments.   

 

2. Instrument design and technical specifications of the filter-

based smart surface sensing system (4S-SIF) 

The fundamental structure of 4S-SIF is based on Kim et al. 

(2019). 4S-SIF consists of a Raspberry pi microcomputer 

(Raspberry Pi b3 module, Raspberry Pi Foundation, Cambridge, UK), 

customized printed circuit board (PCB) and 3D printing structure 

(Figure 1). We covered the top of the sensor with diffuser (White 

diffusing glass, Edmund optics, USA) to measure bi-hemispherical 

irradiance. Below the diffuser, we put the ultra-narrow band pass 

filters to select light for each specific wavelength respectively 

(755nm, 761nm and 770nm; Table 1). After then we put the 

collimating lens to 1) configure illumination to increase the signal and 

2) only to gather the photons that came in parallel from ultra-narrow 

band pass filter because changes in angle of incidence to band pass 
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filter could make wavelength shift (Renhorn et al., 2016; Rienstra, 

1998). The 3D printing structure was made of PET material and it 

supported the diffuser, filters, collimating lens and PCB for outdoor 

use. To measure up- and downwelling signal, we used two sensors 

in one pair (Figure 1). 

To quantify electro-magnetic radiation at specific 

wavelengths, we developed the customized PCB. The key 

components of PCB are 16-bit micro controller unit 

(STM32F373C8T6, STMicroelectronics, Switzerland), linear 

amplifiers (TLV6001IDBVT, Texas Instruments, USA), silicon 

photodiode (S2386-18K, Hamamatsu Photonics, Japan) and 

transceivers (SP3485CN-L, MaxLinear, USA). The photons coming 

from the bi-hemispherical direction and it scattered in the diffuser 

and pass through the ultra-narrow band pass filter and the 

collimating lens (LA1540-ML, Thorlab, USA). Therefore, only the 

photons corresponding to a specific wavelength band reaches the 

silicon photodiode and when the silicon photodiode detect the photon, 

it forms the voltage. The amplifier amplify the voltage and the micro 

controller convert the analog signal into a 16-bit digital number (DN) 

values. The DN values are sent to the Raspberry pi via transceivers. 

We built the python code in microcomputer to controls the workflow 

chain automatically. We set up the microcomputer to save upwelling- 

and downwelling DN values every 10 seconds. The stored data was 

easily shared over the internet. The list and price of parts explained 

in Appendix A. One pair of 4S-SIF cost is around $5,000 (as of July. 

2019) 
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Figure 1) Image of 4S-SIF instrument complete with diffuser, ultra-narrow band 

pass filter, collimating lens and silicon photodiode.  

 

2.1 Ultra-narrow band pass filter 

 Accurate specification of customized ultra-narrow band pass filter 

is one of the important factors in extracting SIF by FLD method 

(Damm et al., 2011; Meroni et al., 2009). To verify the performance 

of the filters, we used light source (HL-2000-CAL, Ocean Optics, 

USA) and hyperspectral spectroradiometer (QEpro, Ocean Optcis, 

USA). We lined up the light source, filters and fiber connected to the 

hyper-spectral radiometer in the dark room and then measure the 

spectral transmitted light curve. These filters exhibited around 1nm 

full width half maximum (FWHM) and the peak sensitivity were 755.4, 

760.6 and 770 nm, respectively (Table 1). 
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2.2 Calibration of 4S-SIF 

To calibrate the 4S-SIF sensors, we installed the 4S-SIF 

sensor located in Cheorwon rice paddy site (38.2013 N; 127.2507 

E). In this site, we have been collected SIF using QEpro 

spectroradiometer (QEpro spectroradiometer, Ocean Optics, USA) 

from 2016 (Yang et al., 2018b). We collected data during day of year 

(DOY) 234 to 242, cloudy and sunny days are included during this 

period. To avoid the influence of external environmental factors, the 

commercial spectroradiometer was kept in a temperature-controlled 

enclosure (Electronic enclosure, EIC SOLUTION, USA). We 

compared the voltages produced by the silicon photodiodes to the 

spectral irradiance observed from QEpro spectroradiometer across a 

wide range of radiation intensities. The both sensors were placed the 

zenith. To match the spectral resolution between QEpro and 4S-SIF, 

we applied transmittance of filter to QEpro spectral data and then 

compared between them. Digital numbers from 4S-SIF presented 

strong linear relationship with spectral irradiance values from the 

spectroradiometer in each bands (Figure 2). We also found that the 

linear relationships were tightly consistent over the roof top 

experiment. 

 

Figure 2) Evaluation of photodiodes at each band against a QEpro spectroradiometer 

across a wide range of solar radiation condition on 9 days.  
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2.3 Temperature response of 4S-SIF 

To confirm stability of 4S-SIF in outdoor environment 

condition, we exposed 4S-SIF to various temperature and humidity 

conditions. We put the 4S-SIF with HMP 155 humidity and 

temperature probe (HMP 155, VAISALA, Finland) into temperature 

control box (Electronic enclosure, EIC SOLUTION, USA) together. 

We changed the temperature at 0 to 40 Celsius degree and the 

relative humidity was 20 to 100 %. We measured the humidity and 

temperature using HMP 155 probe every 1min interval. In case of 

4S-SIF, we blocked all of the light and then measured the dark 

current value at 10 second intervals. We repeat this experiment two 

times. The each bands from 4S-SIF showed consistent dark current 

value over the variation of temperature and humidity (Figure 3). The 

dark current of 760nm was formed in a large range compare to other 

bands because we used twice as much resistance. This performance 

can be deduced that 4S-SIF produces consistently stable values 

when it exposed to the external environment.  
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Figure 3) Dark current from 4S-SIF under various temperature. 4S-SIF showed 

consistent dark current value at various temperature and relative humidity. 

 

2.4 Evaluate SIF quality from installed 4S-SIF sensor in the 

field 

We experimented to test 4S-SIF actually detects SIF with 

changing the physiological mechanism of the plants. The 

experimental sites are a building rooftop at Seoul National University 

(SNU), located in the west-central portion of Korean peninsula. We 

planted strawberry 1.8m x 1.8m x 0.4m planter that had been filled 

with a mixed soil between organic and pearlite (Lee et al., 2015). 

This small plot was built in open space to avoid shadows from 

canopies and buildings. We installed the QEpro spectroradiometer 

and 4S-SIF on horizontal booms 0.8m above the strawberry canopy. 

We build new system, which is combined servomotor with optical 

fiber, to measure upwelling and downwelling irradiance using one 

optical fiber and spectroradiometer. We moved the optical fiber 
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regularly using servomotor to observe the upwelling and downwelling 

irradiance of a single fiber with one spectroradiometer. We set a 

sufficient interval time for the upward and downward observation 

time to prevent the signal from mixing. The integration time of the 

spectroradiometer was set to 0.2 seconds in the upward direction and 

0.6 seconds in the downward direction. We observed up and 

downward signal once within one minute. We kept the 

spectroradiometer in temperature-controlled enclosure (Electronic 

enclosure, EIC SOLUTION, USA) at 23 degree as variations in 

temperature and humidity could influence the performance of the 

CCD array in the spectroradiometer. To match the field of view 

between QEpro spectroradiometer and 4S-SIF, we put the cosine 

correct to end of fiber optics. We calculated the footprint according 

to the calculation method of the previous study and found that more 

than 50% of the signals of both sensors are affected by straw berry 

(Marcolla and Cescatti, 2017). 

Data were collected from 10 October to 26 October (DOY: 

288 to 299) in 2019. We planted the strawberry before October and 

we treat water around 7L every day in the morning. The strawberry 

was treated on DOY 293 in the early morning by herbicide 3-(3’,4’

-dichlorophenyl)-1, 1-dimethylurea (DCMU) diluted to 10-4 M in 

1% ethanol with water. DCMU is known to bind selectively to 

photosystemⅡ and block its reoxidation by the plastoquinone pool 

(Van Rensen, 1989). Therefore, the DCMU treatment trigger that 

strawberry cannot perform the linear photosynthetic electron 

transport (Ruban et al., 1992) and the resulting excess energy 

causes an increase of chlorophyll fluorescence emission (Maxwell 

and Johnson, 2000). Binding DCMU to PSⅡ does not change the leaf 

pigment composition in the short-term, thus we can assume the 
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spectral reflectance is not affected by herbicide treatment during 

rooftop experiment (Rossini et al., 2015). We harvested whole 

strawberry at DOY 299.  

To extract SIF from QEpro and 4S-SIF, we used the FLD 

method (Meroni et al., 2009; Mohammed et al., 2019; Plascyk, 1975). 

For accurate comparison 4S-SIF, we applied the transmittance of 

each filter to the observed spectral data from QEpro. The data 

obtained every 1 minute were averaged by 10 minute. To reduce 

random noise, we first average the spectral data and then apply the 

FLD method to extract SIF (Zarco-Tejada et al., 2018). We remove 

that if the SIF extracted by 4S-SIF and QEpro is less than zero. 4S-

SIF stored the data every 2 seconds, and the SIF was extracted by 

averaging at 1 minute intervals as in QEpro. PAR and NDVI were 

measured using 4S-LED, which is described in detail in previous 

studies (Kim et al., 2019). We collected PAR and NDVI with 1min 

interval. To calculate SIF yield, we divide observed SIF by PAR. In 

all graphs the error bar represents mean ± 95% confidence interval 

(CI). 

 

3. Results 

SIF observed from the two sensors showed a similar pattern 

during rooftop experiment (Figure 4). Observed SIF using 4S-SIF 

and QEpro was changed according to DCMU treatment and harvesting. 

Incoming PAR was not significantly different during the experiment 

except DOY 297. On DOY 297, the day was fully cloudy, indicating 

that the PAR value and the SIF value observed by 4S-SIF and QEpro 

were relatively low. The SIF was found to increases approximately 

2-times after DCMU treatment (After DOY 293), and after 

harvesting, it was confirmed that the SIF value did not appear (After 
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DOY 299).  

 

Figure 4) Daily variation of PAR and observed SIF using QEpro and 4S-SIF during 

rooftop experiment. PAR was relatively consistent, but SIF was changed after DCMU 

and harvest. 

Observed SIF yield apparently noticed that the degree of 

response changed after the DCMU treatment (Figure 5). There was 

no significant change on the day when we treat DCMU. However, we 

found that the SIF yield value increased 210% from the day after. 

The size difference of the SIF yield observed in 4S-SIF and QEpro 

was slightly different, but it could be confirmed that the variation was 

similar pattern. After harvest, SIF yield value was close to zero.  

The NDVI value observed at 4S-LED was consistent 

regardless of DCMU treatment. The degree of change during the day 

was small compared to the SIF yield. The degree of change during 

the day was small compared to the SIF yield. The value of NDVI was 

0.6 before harvest and 0.33 after harvesting. 
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Figure 5) Daily variation of SIF yield and NDVI. SIF yield observed by 4S-SIF and 

QEpro showed clear change after DCMU treatment. On the other hands, NDVI was 

consistent around 0.6. Error bars indicate 95% CI.  

 

A strong linear relationship was found between QEpro SIF 

and 4S-SIF over the experimental period (R2 = 0.69, rRMSE = 40%, 

Figure 6). The daily comparison between QEpro SIF and 4S-SIF 

confirmed that R2 is relatively high (R2 = 0.88). 
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Figure 6) Scatter plots between 10-minute interval 4S-Sif and QEpro SIF. R2 and 

rRMSE represent toe coefficient of determination and the relative RMSE 

(RMSE/mean) of fitted linear regressions, respectively. 

 

4. Discussion 

4S-SIF showed reasonable performance compare to 

commercial spectroradiometer with low cost. A strong linear 

relationship was found between QEpro SIF and 4S-SIF over the 

experimental period (R2 = 0.69, rRMSE = 40%, Figure 6). The R2 

between SIF observed by two sensors on a diurnal scale was high as 

0.88. We found that there was difference between the QEpro SIF and 

4S-SIF slopes before and after DCMU treatment. We think that 

heterogeneous strawberry plot or heterogeneity of the portions other 

than the footprint of the strawberry plot affects the sensor signal and 

makes a difference (Appendix A). Heterogeneous strawberry may 
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be heterogeneous in response to DCMU treatment, which explains 

why the relationship slopes of QEpro SIF and 4S-SIF change after 

and before DCMU treatment. Even if the sensor observes bi-

hemispheric irradiance, we think heterogeneous plot could lead to 

different magnitude between both sensors because the distance 

between the sensor and the plants is short. Thus, the effect of the 

plant is more than 50 %.  

4S-SIF is relatively less influenced by temperature and 

humidity to measure electro-magnetic radiation. We confirmed that 

4S-SIF showed consistent over the variation of temperature and 

humidity (Figure 3). Although using hyperspectral spectrometer 

provides us with possibility to compare SIF extracted from O2A, O2B 

and various retrieval method, the systems based on hyperspectral 

spectrometer have challenges of sensor maintenance in the field 

because uncontrolled temperature and humidity could affect the 

charge-coupled device (CCD). First, CCD could be influenced by 

temperature. The dark current, which could affect the signal to noise 

ratio (SNR), increases non-linearly with increasing temperature of 

the CCD (Howell, 1989; Yang et al., 2018c). Since the high SNR is a 

key factor in SIF retrieval accuracy (Damm et al., 2011), it is 

important to keep high SNR. In addition, the uncontrolled dark current 

can affect the reliability of the extracted SIF because the dark current 

affects the calibration factor (Yang et al., 2018c). Second, relatively 

high humidity could lead to weird signal from CCD. The CCD present 

a relatively high SNR when exposed to low temperatures. However, 

if the temperature is lowered, water vapor may affect the CCD due 

to the temperature difference from the outside. Therefore, too high 

humidity should be avoided when we use spectroradiometer. For this 

reason, the spectroradiometer was used in the field while stored in a 



 

 ２４ 

temperature-controlled enclosure. 4S-SIF, on the other hand, is 

relatively less affected by temperature and humidity, requiring less 

additional processing.  

4S-SIF is easy-to-use compare to previous SIF monitoring 

systems. Substantial efforts have been made to monitor ground-

based SIF by combining additional structures with the commercial 

hyper-spectrometer. For example, the automatic moving robotic arm 

allowed collecting daily cycles of spectral data at different location 

(DAMM et al., 2010b). The white reference panel was moved 

automatically or manually to observe incoming light (Daumard et al., 

2010; Rossini et al., 2010). To measure incoming and outgoing light 

by using one spectrometer, shutter-based system (Miao et al., 2018; 

Yang et al., 2018c; Yang et al., 2015) and switch-based system was 

presented (Yang et al., 2018b). A system using a multiplexer to 

control multiple optical fibers has been devised (Cogliati et al., 2015). 

To collect information of multi view angle with incoming and outgoing 

light, combination of rotating glass prism and servo motor is used 

(Grossmann et al., 2018). To collect precise interpretation of the SIF 

signal, a system, which could synchronize sampling of spectral 

irradiance and environmental variables, is developed (Gu et al., 2018). 

Although ground-based SIF observations have been made using 

many systems and structures, firstly such system are difficult to use 

without background knowledge on system structure or 

spectroradiometer. Second, most observational methods use the 

hyper-spectrometer with optical fiber, which has the potential to 

cause light degradation over wavelength. Optical fiber is a useful tool 

for transmitting light, but depending on the degree of bending or 

damage, the intensity of the transmitted light varies from wavelength 

to wavelength (Boechat et al., 1991; Gloge, 1972). In contrast, the 
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4S-SIF is simple to use and free of fiber, making it easy to install 

and less sensitive to wavelength shift. 
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Chapter 3. Solar-induced chlorophyll fluorescence is 

non-linearly related to canopy photosynthesis in a 

temperate evergreen needleleaf forest during fall 

transition 

 

1 Introduction 

Recent advances in remote sensing of solar-induced 

chlorophyll fluorescence (SIF) open new opportunities to explore the 

physiological dynamics of vegetation from leaf to global scales 

(Frankenberg and Berry, 2018; Mohammed et al., 2019; Ryu et al., 

2019). SIF is an optical signal emitted by excited chlorophyll a 

molecules (Baker, 2008; Meroni et al., 2009; Mohammed et al., 2019) 

and it is closely related to photosynthetic activity as light absorbed 

by chlorophyll in leaves is used for photochemistry, non-

photochemical quenching (NPQ) and fluorescence (Baker, 2008; 

Müller et al., 2001; Maxwell and Johnson, 2000; Porcar-Castell et al., 

2014). Consequently, studies have investigated the relationship 

between SIF and gross primary productivity (GPP) at the canopy 

scale based on ground observations of various ecosystems, including 

crops (Damm et al., 2010a; Goulas et al., 2017; Li et al., 2020; Miao 

et al., 2018; Yang et al., 2018b) and deciduous forests (Gu et al., 

2018; Yang et al., 2017; Yang et al., 2015). However, few studies 

have characterized the relationship between SIF and GPP in 

evergreen needleleaf forest (ENF), despite their considerable 

contribution to both carbon fixation and stocks at the global scale 

(Jiang and Ryu, 2016; Liang et al., 2016; Pan et al., 2011; Thurner et 

al., 2014).  
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Further efforts are needed to characterize the SIF-GPP 

relationship in ENF with respect to the relative roles of canopy 

structure and leaf physiology. Both GPP and SIF are driven by 

absorbed solar radiation (Porcar-Castell et al., 2014), but they differ 

in a few important respects. Whereas GPP is related to gas exchange 

between leaves and the atmosphere, SIF is an optical signal in the 

near-infrared (NIR) region, where light is strongly scattered in 

vegetation canopies (Zeng et al., 2019). This scattering results in a 

decrease in the signal at the top of the canopy (Yang and van der Tol, 

2018), while there is no equivalent mechanism in GPP. This 

difference is evident in the formulae used to describe the two 

processes. The light use efficiency formula (Monteith, 1972) 

describes GPP, as follows: 

GPP = APAR ×  LUEP                                        (Eq. 1) 

where GPP is explained by variations in total absorbed 

photosynthetically active radiation (APAR) and light use efficiency 

of the canopy (LUEp). By contrast, SIF can be described as follows 

(Damm et al., 2015; Guanter et al., 2014): 

SIF = APAR ×  Φ
F 

×  𝑓𝑒𝑠𝑐                                   (Eq. 2) 

where Φ
F

 is the chlorophyll fluorescence yield from absorbed 

sunlight, and 𝑓𝑒𝑠𝑐  is the canopy escape fraction which is that the 

fraction of emitted SIF photons from all leaves in the canopy 

(Fournier et al., 2012; Zeng et al., 2019). Dechant et al. (2020) 

reported that the SIF-GPP relationship in crops was dominated by 

the strongly seasonal 𝑓𝑒𝑠𝑐 rather than the more temporally stable Φ
F
, 

indicating that 𝑓𝑒𝑠𝑐 is central to understanding SIF-GPP relationships. 

It is therefore necessary to investigate the relationships of LUEP, Φ
F
, 

and 𝑓𝑒𝑠𝑐  separately to understand the mechanisms underlying the 
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relationship between GPP and SIF. Compared to crops and deciduous 

forests, however, ENF have unique characteristics with respect to 

canopy structure and physiology, which we describe in more detail 

below. 

𝑓𝑒𝑠𝑐 is generally expected to show little seasonal variation in 

ENF due to relatively closed and stable canopy architecture. In 

particular, the main characteristics of overstory canopy structure, 

such as leaf area index (LAI), leaf angle distribution, and leaf 

clumping exhibit only minor seasonal variations in ENF (Lee et al., 

2019; Liu et al., 2012; Ryu et al., 2014). These unique canopy 

structure characteristics have direct implications for 𝑓𝑒𝑠𝑐, which can 

be estimated as follows (Zeng et al., 2019): 

𝑓𝑒𝑠𝑐 =
𝑁𝐼𝑅𝑣

𝑓𝑃𝐴𝑅
                                                   (Eq. 3) 

where 𝑁𝐼𝑅𝑉 is the product of the normalized difference vegetation 

index (NDVI) × NIR reflectance (Badgley et al., 2017), and fPAR is 

the ratio of APAR to incoming PAR. Zeng et al. (2019) demonstrated 

the good performance of Eq. 3 with extensive radiative transfer 

simulations. In ENF, there is little seasonal variation in NIR 

reflectance, despite the growth of new needles in the spring and leaf 

senescence in the fall (Kobayashi et al., 2018; Nagai et al., 2012; Ryu 

et al., 2014). Similarly, fPAR does not exhibit strong seasonal 

variation in most ENFs (Majasalmi et al., 2015), although smaller 

changes may result from understory vegetation and needle phenology 

(Majasalmi et al., 2017; Ryu et al., 2014; Serbin et al., 2013). 

In contrast to the stable canopy structure, ENF shows strong 

seasonal variation in physiology, which is reflected in the dynamics 

of Φ
F
 (Porcar‐Castell, 2011). Seasonal variation of leaf-level Φ

F
 

has been observed in accordance with the quantum yield of 
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photochemistry (Φ
PS(Ⅱ)

) , which has a unique seasonal pattern in 

ENF (Porcar‐Castell, 2011). To protect their leaves from cold 

temperatures during winter, some trees in ENF activate a mechanism 

which adjusts leaf pigment pools and dissipates excess energy by 

increasing the carotenoid / chlorophyll ratio (Míguez et al., 2015; 

Wong and Gamon, 2015). Therefore, the chlorophyll: carotenoid 

index (CCI) (Gamon et al., 2016) showed strong seasonal variation 

in ENF as closely tracking seasonal changes in carotenoid 

/chlorophyll ratio (Springer et al., 2017; Wong et al., 2019; Wong et 

al., 2020). The quantum yield of sustained NPQ (Φ
sNPQ

), which is 

associated with sustained accumulation of zeaxanthin, is dominant 

during the winter, when Φ
PS(Ⅱ)

 is strongly reduced (Demmig‐Adams 

and Adams III, 2006; Raczka et al., 2019; Verhoeven, 2014). When 

environmental conditions such as temperature and photoperiod are 

suitable for photosynthesis, ENF trees deactivate their protection 

mechanism, i.e., they undergo a de-hardening process, which 

declines Φ
sNPQ

 rapidly (Míguez et al., 2015; Porcar‐Castell, 2011; 

Raczka et al., 2019). During the growing season, trees in ENF 

partition absorbed energy primarily through Φ
PS(Ⅱ)

 and the quantum 

yield of reversible NPQ (Φ
rNPQ

), which is related to the xanthophyll 

cycle (Demmig-Adams and Adams III, 1996; Flexas et al., 2002; 

Jahns and Holzwarth, 2012). Although the relationship between 

canopy-level Φ
F
 and LUEP is not fully understood, Φ

F
 might show 

strong linear relationship with LUEP , owing to the stability of the 

canopy structure and the linear canopy-level SIF–GPP relationship 

reported by Magney et al. (2019).  

Here, our objective was to investigate the SIF-GPP 
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relationship in a temperate ENF over the transition period between 

summer and winter. Based on the above reasoning, we formulated the 

following two hypotheses:  

H1) The seasonal SIF-GPP relationship is linear in temperate ENF, 

as seasonal dynamics in LUEp are captured by Φ
F
.  

H2) 𝑓𝑒𝑠𝑐 does not affect the SIF-GPP relationship due to its seasonal 

stability.  

We used continuous measurements of SIF, GPP, APAR, 

hyperspectral reflectance (400 – 900 nm), and relevant 

meteorological variables to assess relationships among LUEP , Φ
F
, 

𝑓𝑒𝑠𝑐. In addition, we monitored leaf-level physiological changes using 

active fluorometers during spring transition. We examined the 

relationship between GPP and SIF at half-hourly and daily intervals, 

and assessed how the relationship was affected by sky conditions.  

 

2 Materials and Methods 

2.1 Study site 

Field data collection was conducted on Taehwa Mountain, 

Gyeonggi Province, South Korea (37.30482 N, 127.317489 E, 

elevation 178 m; Figure. S1). Annual precipitation is 953 ± 107 mm 

(mean ± standard deviation), and the mean annual temperature is 

12.7 °C, ranging from −17.8 °C to 33.9 °C (Lee et al., 2019). 

The mean annual GPP is approximately 1,751 g C m-2 yr-1 (Lee et 

al., 2019). The dominant overstory species is Korean pine (Pinus 

koraiensis Siebold et Zucc.) and the stand density is approximately 

400 trees ha−1. The peak growing season LAI is approximately 5 m2 

m-2 (Lee et al., 2019), mean tree diameter at breast height is 29.1 

± 5.1 cm, and mean canopy height is approximately 20 m. Korean 
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pine occupies more than 90% of the total basal area of the forest 

(Park et al., 2018). Korean azalea (Rhododendron yedoense f. 

poukhanense (H. Lév.) M. Sugim. ex T. Yamaz.) and East Asian 

sumac (Toxicodendron trichocarpum (Miq.) O. Kuntze) are the 

dominant understory species. Two towers accessible on foot are 

present at the site; the towers are 40 and 20 m tall, and are separated 

by 40 m. We visited the field site every 1–2 weeks over the course 

of the measurement period. 

 

2.2 Leaf-level fluorescence measurement 

We used a pulse-amplitude-modulation (PAM) system 

(MONI-PAM; Walz, Effeltrich, Germany) to measure the quantum 

yields of Φ
sNPQ

, Φ
rNPQ

, Φ
PS(Ⅱ)

, chlorophyll fluorescence (Φ
Fleaf

), 

and basal thermal energy dissipation (Φ
D
) at the leaf level between 

DOY 25–250 in 2019. To avoid confusion of symbols, we defined that 

Φ
F
 is for canopy-level and Φ

Fleaf
 is for the leaf-level (Appendix E). 

The MONI-PAM system uses the PAM technique, in which the active 

fluorometer system uses weak modulated light to measure 

fluorescence emitted from leaf samples. We installed three 

fluorometers on top of the 20 m tower, and attached each leaf clip to 

7 – 10 sunlit needles from the tips of adjacent branches near the top 

of the canopy. We endeavored to create a flat mat of needles when 

clipping needles into the sensor. Sensor heads were oriented 

southward to avoid leaf shadow effects, and clips were positioned as 

close to horizontal as possible. Sensors collected steady-state 

fluorescence yield (Fs), maximal fluorescence yield (F’m), incoming 

PAR, and temperature data at 30-minute intervals. After sunset, we 

collected Fs and F’m at 2-hour intervals between 22:00 and 4:00. 
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We assumed that nighttime Fs and F’m corresponded to minimal (Fo) 

and maximal fluorescence (Fm) values, respectively (Zhang et al., 

2019). We used formulae from previous studies to calculate quantum 

yields; an overview of these formulae and corresponding references 

is provided in Table 1. 

 

Table 1 Quantum yields estimated using the MONI-PAM system 

Parameter  

(quantum yield) 

Variab

les 
Formula Reference 

Photochemistry Φ
PS(Ⅱ)

 
(𝐹′

𝑚
 −  𝐹)

𝐹′
𝑚

 
Genty et al. 

(1989) 

Sustained NPQ Φ
sNPQ

 
𝐹 

𝐹𝑚
 −  

𝐹

𝐹𝑚𝑅
 

Porcar-Castell 

et al. (2011) 

Reversible NPQ Φ
rNPQ

 
𝐹 

𝐹′
𝑚

 − 
𝐹

𝐹𝑚𝑅
 

Porcar-Castell 

et al. (2011) 

Basal thermal energy 

dissipation 
Φ

D
 

𝐹 

𝐹𝑚𝑅
 − 𝛷𝐹 - 

Chlorophyll 

fluorescence 
Φ

Fleaf
 0.1 × 

𝐹𝑜 

𝐹𝑚𝑅
 

Zhang et al. 

(2019) 

NPQ, non-photochemical quenching 

 

FmR is summer night reference measured for our needles in 

the absence of sustained NPQ (Zhang et al., 2019). According to as 

equation 24 in Porcar‐Castell (2011), MONI-PAM based seasonal 

variation of Φ
Fleaf

 could be estimated as Table 1 based on the 

assumption of maximum fluorescence yield of 10% for PSII at the 𝐹𝑚 

state (Barber et al., 1989; Zhang et al., 2019). To calculate Φ
sNPQ

, 
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Φ
Fleaf

, and Φ
D
, we used the constant FmR which was measured on a 

summer night (DOY 255) at a time of low ФsNPQ and maximum 

Φ
PS(Ⅱ)

 (Porcar‐Castell, 2011; Zhang et al., 2019). 

Strong winds caused leaves to detach from sensors, 

complicating continuous data collection. We manually checked 𝐹𝑠-

values from each fluorometer head to identify outliers and excluded 

data when 𝐹𝑠 -values were extremely low (< 100). We have 

confirmed that the F-values always exceed 100 when the leaf was 

attached. In addition, we installed a micro-camera to monitor if 

leaves were unclipped from the fluorometer head. When unclipping 

was observed, we promptly returned to the site to reattach sensors.   

 

2.3 Canopy-level SIF and spectral reflectance measurements 

We measured far-red SIF (760 nm) and spectral reflectance 

(400–900 nm) using QE Pro and Jaz spectroradiometers (Ocean 

Insight, Dunedin, FL, USA) installed at the top of the 40 m tower 

(approximately 20 m above the canopy). The Jaz spectroradiometer 

covers a spectral range of 350–1,020 nm at a resolution of 1 nm, 

whereas the QE Pro covers a spectral range of 730–790 nm with a 

resolution of 0.17 nm, a sampling interval of 0.07 nm, and a signal-

to-noise ratio of approximately 1,000 (Yang et al., 2018b). We 

enclosed both spectroradiometers in a temperature-controlled box 

at 25°C. In addition, we installed a nitrogen gas tank to reduce the 

humidity in the temperature-controlled box in July, 2018. We 

injected nitrogen gas into the box with less than 10cc per min using 

a gas regulator. We collected spectral data during the transition from 

summer to winter from day of year (DOY) 250 to DOY 365 in 2018. 

We developed a custom-made rotating prism system, similar 
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to that of Berry and Kornfeld (2019), for collecting spectral data with 

the QE Pro spectroradiometer. The system consisted of a 

microcontroller (Arduino Nano; Arduino, NY, USA), a 12.5-mm 

aluminum and MgF2-coated N-BK7 right angle prism (Edmund 

Optics, Barrington, NJ, USA), two cosine correctors to measure bi-

hemispheric irradiance (CC-3; Ocean Insight), a servomotor (HS311; 

HITEC, Seoul, South Korea), an achromatic collimating lens (74-

ACR; Ocean Insight), and a 400-µm core fiber optic cable (Ocean 

Insight). We used different fixed integration time between upward-

facing (0.5 seconds) and downward-facing measurements (3.5 

seconds). We conducted additional test to support that our fixed 

integration time method did not affect our SIF estimates significantly 

(Figure. S3 – S5). To avoid saturation in QE Pro data, we selected 

the integration time value when photosynthetically active radiation 

(PAR) was peak in summer. Prism orientation was controlled by a 

motor that rotated the prism between a pair of fixed angles 

corresponding to upward and downward light measurements. We 

included a buffer time of 5 seconds between data collection and motor 

rotation, to avoid overlap in the measurement of the upward and 

downward signals. We obtained three scans at 30-second intervals 

at each prism orientation, and calculated the average of the three 

scans. Data were recorded between 05:00 and 20:00, and we 

corrected each pair of readings for dark current and charge-coupled 

device (CCD) non-linearity. For dark current correction, we 

averaged dark current values using permanently dark detector pixels, 

which were always blocked inside the sensor. We subtracted the 

mean dark current value from the raw values of all other pixels. In 

addition, we verified that the relationship between the permanently 

dark detector pixel values and dark current observed by blocking 
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light at the end of fiber optics was consistent over the whole day. In 

addition, the dark current did not show clear spectral variation over 

the pixels. We set the temperature of the thermoelectric cooler (TEC) 

of the QE Pro spectroradiometer at –20 °C, and we confirmed that 

there was small variation in actual TEC temperature during the 

measurement period (–18.5 ± 0.76 °C). We modified a custom-

written software package (Yang et al., 2018c) based on Omni Driver 

(Ocean Insight) development kits to facilitate automatic data 

collection. A laptop, which is connected to microcontroller and QE pro 

spectroradiometer, controlled the automated and synchronized 

workflow chain to collect data from the QE Pro and operate the 

servomotor via the microcontroller. 

To measure spectral reflectance at visible to near infrared, 

we used two Jaz spectroradiometers with two fiber optics with cosine 

correctors. We collected the data from both spectroradiometers 

simultaneously and then we calculated bi-hemispheric reflectance 

(Schaepman-Strub et al., 2006). We collected the spectral data 

continuously at every 1 min from 05:00 h to 20:00 h local time using 

custom-written software in Java script. 

To assure a high quality of radiometric calibration of the data 

we collected, we applied several strategies. First, we conducted the 

radiometric calibration of Jaz and QE Pro using a HL-2000-CAL 

Light Source (Ocean Insight) in the field at about monthly intervals. 

When we used the light source, we shielded the both the light source 

and the cosine corrector from direct sunlight to avoid stray light 

effects. Second, we confirmed that our radiometric calibrations were 

consistent by comparing the QE Pro and Jaz data. The relationship 

between radiometric calibrated irradiance data within the overlapping 

spectral region (730–780 nm) of the two instruments was consistent 
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over the entire measurement period (R2 > 0.98, RMSE < 0.01, slope 

= 1.01; Figure. S2). In addition, we conducted a wavelength 

calibration using a calibration light source (HG-1; Ocean Insight). 

 

2.4 SIF retrieval 

We used the Singular Vector Decomposition (SVD) method 

to extract the SIF signal from calibrated downward measurements 

obtained by the QE Pro instrument (Guanter et al., 2012; Guanter et 

al., 2013; Yang et al., 2018b; Zhao et al., 2014), averaging spectral 

data for 30 minutes prior before SIF retrieval to reduce random noise. 

To minimize atmospheric effects, we used a solar Fraunhofer line 

retrieval window of 745–759 nm, which has minimal atmospheric 

interference (Guanter et al., 2013). In addition, according to Chang 

et al. (2020), bi-hemispherical SIF measurement with narrower 

fitting window showed reasonable pattern compared to incoming PAR. 

We then extracted the first four singular vectors to reconstruct 

spectrum-training data on a daily basis. Next, we used a second-

order polynomial to fit surface reflectance based on the detailed 

evaluations of Guanter et al. (2013). Finally, although daily offset 

values only showed small variation across the season, we adjusted 

the daily offset value (i.e., the daily value without SIF) by forcing a 

value of zero for mean late night and early morning SIF. To quantify 

retrieval quality, we checked the rRMSE value between observed 

upwelling irradiance and reconstructive upwelling irradiance from 

SVD method. We removed the SIF value when rRMSE was larger than 

25 % as done by a previous study (Yang et al., 2018b). We also 

verified the performance of our retrieval method using the data-

driven simulations from ((Yang et al., 2018b); Figure. A1). Mean 

daily SIF was calculated as the average of all half-hourly values 
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collected during the period when the solar zenith angle was < 70°.     

To calculate Φ
F
, we divided observed SIF by NIRv × PAR, 

which is an estimate of the product of APAR times 𝑓𝑒𝑠𝑐 as shown in 

Eq. 2.    

 

2.5 Canopy-level photosynthesis estimates  

We estimated GPP by measuring CO2 flux above the canopy 

using an eddy covariance (EC) system. A three-dimensional sonic 

anemometer (CSAT-3; Campbell Science, Logan, UT, USA) and an 

open-path infrared gas analyzer (LI-7500A; LICOR, Lincoln, NE, 

USA) were installed at a height of 1 m on top of the 40 m tower, and 

data were processed using the 10-step KoFlux standardized data 

processing protocol (Kang et al., 2018). We used a variety of 

correction processes to convert raw data into high-quality flux data, 

including planar fit tilt correction (Wilczak et al., 2001), density 

fluctuation compensation (Webb et al., 1980), and frequency 

response correction (Fratini et al., 2012; Horst and Lenschow, 2009); 

all corrections were applied using LICOR EddyPro software. Data 

quality control procedures included removing outliers, filling data 

gaps using a marginal distribution sampling method (Reichstein et al., 

2005), and applying nighttime CO2 flux corrections. Quality control 

procedures were performed in MATLAB (MathWorks Inc., Natick, 

MA, USA). Between 34.5% and 42.2% of CO2 flux data were retained 

after quality control. We used friction velocity (u*) filtering (FVF; 

(Falge et al., 2001; Gu et al., 2005) and van Gorsel filtering (VGF) 

(van Gorsel et al., 2009; van Gorsel et al., 2008; van Gorsel et al., 

2007) to correct CO2 flux in estimates of GPP and ecosystem 

respiration (RE); these methods account for nighttime advection in 
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mountainous terrain. We determined that the u* threshold values 

ranged between 0.30–0.35, based on the scatterplot of nighttime CO2 

flux versus nighttime u*. Finally, we used mean GPP values derived 

from FVF and VGF partition to calculate mean daily GPP using half-

hourly values collected during the period when the solar zenith angle 

was < 70°. 

 

2.6 Meteorological variables and APAR 

We measured air temperature (HMP-35; Vaisala, Helsinki, 

Finland) and PAR (L180; LICOR) at the top of the tower. We assumed 

that the fraction of diffuse PAR is very closely related to the 

clearness index. Clearness index is the ratio of PAR above the canopy 

to the PAR at top of atmosphere (TOA). To calculate clearness index, 

we estimated PAR at TOA using the function of latitude, longitude 

and solar zenith angle (Cruse et al., 2015; Lee et al., 2015) and we 

used observed PAR value at the top of flux tower in the field. We 

defined cloudy days as days with a mean clearness index of < 0.5 

(Yang et al., 2018b; Yang et al., 2015). In addition, we confirmed that 

0.5 is around the median value in our site. 

We used low-cost spectral sensors (Smart Surface Sensing 

System, 4S, (Kim et al., 2019)) to measure (1) incoming PAR above 

the canopy, (2) PAR reflected by the canopy, and (3) PAR 

transmitted through the canopy. To measure transmitted light, we 

installed three sensors approximately 8 m apart at a height of 1 m 

and they were not affected by surrounding understory vegetation. 

Incoming PAR was measured using a single sensor at the top of the 

20 m tower. We calculated APAR by subtracting PAR reflected and 

transmitted by the canopy from incoming PAR (Yang et al., 2018b). 

We calibrated the 4S sensors before installation and after observation 
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(DOY 69 in 2019). To avoid using data collected in low-light 

conditions, we only used data collected during the period when the 

solar zenith angle was < 70°. Data were collected at 8 points per one 

second and averaged every half hour.  

 

2.7 Statistical analysis 

We used the median absolute deviation (MAD) method in 

MATLAB to exclude extreme outliers from the GPP and SIF datasets 

(Rousseeuw and Croux, 1993). We removed all outliers larger or 

smaller than 3-MAD within a 1-day window, as well as all negative 

values. 

 To analyze LUEP, Φ
F
, and 𝑓𝑒𝑠𝑐, we calculated the values for 

each term using Equations (1) and (2). We calculated LUEP as GPP 

divided by APAR, and estimated 𝑓𝑒𝑠𝑐 using Equation (3). Zeng et al. 

(2019) demonstrated that the 𝑁𝐼𝑅𝑣 -based approach explains 

variation in 𝑓𝑒𝑠𝑐  across different simulated canopy structures, soil 

brightness levels, and sun-sensor-canopy geometries. We 

estimated Φ
F
 as the observed SIF divided by the product of the 

observed PAR × estimated 𝑓𝑒𝑠𝑐 . Our methods for estimating 𝑓𝑒𝑠𝑐 

and Φ
F
 were identical to those of (Dechant et al., 2020).  

To calculate NDVI, we used 670 nm for red reflectance (r670) 

and 800 nm for NIR reflectance (r800) (Tucker, 1979), and used 

reflectance of 532 nm (r532) and 630 nm (r630)to calculate the 

chlorophyll: carotenoid index (CCI; (Gamon et al., 2016; Springer et 

al., 2017)) as following equations: 

NDVI =
r800−r670

r800+r670
                                              (Eq. 4) 

CCI =
r532−r630

r532+r630
                                               (Eq. 5) 

We averaged two neighboring channels to reduce noise when 
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extracting the wavelengths. 

To quantify the non-linear relationship between GPP-SIF 

and LUEP-Φ
F
, we fitted a hyperbolic regression function (Motulsky 

and Christopoulos, 2004) as follows: 

GPP = GPP𝑚𝑎𝑥  ×  
𝑆𝐼𝐹

𝑆𝐼𝐹+𝛼
                                       (Eq. 6) 

Where 𝛼  represents 𝑓𝑒𝑠𝑐 × Φ
F

× coefficient in radiance unit , and 

GPP𝑚𝑎𝑥 represents the point where photosynthetic activity in the 

canopy becomes asymptotically saturated under high-light 

conditions; we used the maximum observed value of GPP. This 

function has previously been used to investigate SIF-GPP 

relationships in cropland and temperate forests (Damm et al., 2015). 

SigmaPlot was used for curve fitting (Systat Software Inc., San 

Rafael, CA, USA), and we evaluated relationships between variables 

using the coefficient of determination (R2), root mean square error 

(RMSE), and relative RMSE (rRMSE; RMSE divided by the mean 

value). 

 

3 Results 

We observed decreases in GPP, SIF, and APAR between late 

summer and winter (DOY 250–285; Figure. 7 a–c). While GPP and 

APAR decreased gradually over the study period, SIF decreased 

rapidly at nearly double the rate of GPP. Daily LUEP, Φ
F
 and 𝑓𝑒𝑠𝑐  

declined over the course of the study period (Figure. 7 e–g). We 

observed a decline in LUEP , but the seasonal trend was not as 

pronounced for Φ
F
, air temperature and CCI. In addition, LUEP and 

𝑓𝑒𝑠𝑐  showed stronger sensitivity to sky conditions than Φ
F
, air 

temperature and CCI.  
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Figure 7) Seasonal variation in field-measured GPP, SIF, APAR and air temperature 

values (a–d), and 𝐋𝐔𝐄𝐏 , 𝚽𝐅 , 𝒇𝒆𝒔𝒄  and CCI (e–h). For GPP, SIF, APAR and air 

temperature, grey circles indicate half-hourly data, whereas black circles represent 

daily mean values. For 𝐋𝐔𝐄𝐏, 𝚽𝐅, 𝒇𝒆𝒔𝒄 and CCI, empty circle and black filled circle 

indicate clear and cloudy days. 𝐋𝐔𝐄𝐏 is light use efficiency of canopy photosynthesis 

(ratio of GPP to APAR), 𝚽𝐅 is canopy fluorescence yield (ratio of SIF and 𝒇𝒆𝒔𝒄 to 

APAR), CCI is chlorophyll: carotenoid index, and 𝒇𝒆𝒔𝒄 is the canopy escape fraction 

which is that the fraction of emitted SIF photons from all leaves in the canopy. Refer 

Eq. 1 to 3 for definitions of all terms.  
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The relationship between GPP and SIF in the canopy was 

strongly non-linear (Figure. 8); hyperbolic regression yielded a 

considerably higher R2 and lower rRMSE (R2 = 0.91, rRMSE = 19%) 

than linear regression (R2 = 0.80, rRMSE = 27%). We found that 

RMSE did not differ between cloudy and clear days (1.9 and 2.0, 

respectively).     

 

 

Figure 8) Relationship between SIF and GPP over APAR. The color of filled circles 

are half-hourly data with APAR, whereas black and white triangles represent daily 

means on cloudy and clear days, respectively. The hyperbolic regression line is the 

dashed red line, and R2 represents the coefficient of determination.  

 

We found that the slopes between SIF and APAR showed 

gradual changes with the air temperature (Figure. 9b). At high air 

temperature (~ 25 ℃), the slope of the SIF-APAR was 0.0006, and 

as the temperature decreased, the slope of the SIF-APAR became 
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smaller (~ 0 ℃, slope of the SIF-APAR was 0.00005). This 

corresponds to the decreasing seasonal pattern of canopy-level Φ
F
 

(Figure. 7f). On the other hand, the scatter plots in GPP-APAR and 

GPP- 𝑓𝑒𝑠𝑐 ×  APAR did not show a clear slope changes with air 

temperature, and the overall pattern of the two scatter plots did not 

show clear difference (Figure. 9a).  

 

 

Figure 9) The scatter plot of half hourly GPP and APAR (a), SIF and APAR (b) over 

the air temperature (both clear and cloudy days). Color map represents air 

temperature. 

 

 While mean daily LUEP  exhibited saturation in high air 

temperatures, Φ
F
 did not saturate (Figure. 10), but rather increased 

gradually with air temperature. We observed Φ
F
 values of 0.002–

0.008 (mW m-2 sr-1 nm-1) / (μmol photons m-2 s-1) at temperatures 

between –10 °C and 25 °C. When the air temperature was below 

freezing, Φ
F
 remained relatively constant at approximately 0.002. 

Values of LUEP ranged from approximately 0.005 to 0.04 (μmol CO2 

m-2 s-1) / (μmol photons m-2 s-1).  

Whereas LUEP showed strong sensitivity to sky conditions, 



 

 ４５ 

Φ
F
 was relatively insensitive (Figure. 10). We observed a variation 

of LUEP in response to changes in sky conditions (Figure. 10b), with 

lower values on clear days and higher values on cloudy days. In 

particular, LUEP exhibited a marked difference in magnitude between 

clear and cloudy days at temperatures > 10 °C.  

 

 

Figure 10) Relationships between air temperature and (a) daily mean canopy 

fluorescence yield (𝚽𝐅) and (b) light use efficiency of canopy photosynthesis (𝐋𝐔𝐄𝐏). 

 

We observed substantial differences in the relationships of 

LUEP  to Φ
F

 and 𝑓𝑒𝑠𝑐  (Figure. 11). The non-linear LUEP - Φ
F
 

relationship in seasonal time scale appeared. The correlation 

between LUEP  and 𝑓𝑒𝑠𝑐  was stronger (R2 = 0.53 with linear 

regression; Figure. 11a) than that between LUEP and Φ
F
 (R2 = 0.37 

with hyperbolic regression; Figure. 11b). In addition, the relationship 

between LUEP and Φ
F
 × 𝑓𝑒𝑠𝑐 was stronger than that between LUEP 

and Φ
F
 alone (R2 = 0.45 with hyperbolic regression; Figure. 115c). 
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Figure 11) Seasonal correlations between 𝐋𝐔𝐄𝐏 and (a) 𝒇𝒆𝒔𝒄, (b) 𝚽𝐅, and (c) 𝒇𝒆𝒔𝒄 

× 𝚽𝐅. Triangles indicate daily mean values (blue = cloudy days, red = clear days). 

The dashed black line is the non-linear regression line for all data; separate non-

linear regressions for cloudy and clear days are shown in blue and red, respectively. 

Black vertical arrows denote difference between clear and cloudy days. R2 represent 

the coefficient of determination. Black R2 is for all data, red R2 is for clear days and 

blue R2 is for cloudy days and.  

 

We found that canopy-level Φ
F
 was highly correlated to a 

canopy-level CCI across the seasons (R2 = 0.84, Figure. 12). The 

seasonal patterns for CCI and Φ
F
 were continuously decreasing 

during senescence period (Figure. 7). There was no significant 

difference in both CCI and Φ
F
 depending on fractions in diffuse light. 

In case of the CCI, there were data gaps during DOY 292 to 301 

because of unstable power supply (Figure. 7h). 
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Figure 12) Seasonal correlation between chlorophyll: carotenoid index (CCI) and 𝚽𝐅 

at the canopy level. All points are daily mean values. R2 represent the coefficient of 

determination. Color map represents air temperature. 

 

We found that leaf-level results based on active PAM 

measurements were overall similar as the canopy-level findings 

(Figure. 13). In particular, Φ
Fleaf

 gradually increased with air 

temperature and was rather insensitive to sky condition. However, 

leaf-level Φ
PS(Ⅱ)

 showed no consistent dependence on air 

temperature for high values in summer and there was a clear 

difference between clear and cloudy days. Φ
rNPQ

 also showed 

saturation at high air temperatures, but Φ
rNPQ

 reacted in the 

opposite direction to the sky condition compared to Φ
PS(Ⅱ)

. Φ
sNPQ

 

was less affected by sky condition and suddenly dropped at air 
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temperatures of about 5℃. 

 

Figure 13) Leaf-level quenching yield data from active fluorometer system. Daily 

mean leaf-level quantum yield of chlorophyll fluorescence (𝚽𝐅𝐥𝐞𝐚𝐟
) (a), quantum yield 

of photochemistry (𝚽𝐏𝐒(Ⅱ)) (b), quantum yield of sustained NPQ (𝚽𝐬𝐍𝐏𝐐) (c) and 

quantum yield of reversible NPQ (𝚽𝐫𝐍𝐏𝐐) (d) from late summer to winter. 

 

4 Discussion 

We explored the relationship between canopy-level GPP and 

SIF in a temperate ENF, and analyzed variations in LUEp, Φ
F
, and 

𝑓𝑒𝑠𝑐 individually to better understand the mechanisms underlying the 

GPP-SIF relationship. The relationship was found to be strongly 

non-linear, even on a seasonal time scale, contradicting our initial 
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hypothesis that the SIF-GPP relationship is linear for ENF (Figure. 

8). In addition, the product of Φ
F
 and 𝑓𝑒𝑠𝑐 correlated more strongly 

with LUEP  compared to Φ
F

 alone (Figure. 11), which partly 

contradicts our second hypothesis that 𝑓𝑒𝑠𝑐  does not substantially 

affect the SIF-GPP relationship in ENF. Here we provide a detailed 

discussion of our results with respect to the hypotheses. To 

strengthen our discussion, we include continuous observations of 

leaf-level chlorophyll fluorescence data collected from sunlit leaves. 

Although the growth stage of leaf-level data did not overlap with that 

of canopy data, the leaf-level data offer valuable information about 

functional relationships between efficiency terms and air temperature. 

 

4.1 Non-linear relationships between SIF and GPP 

We found that the SIF-GPP relationship was strongly non-

linear with the hyperbolic regression exhibiting considerably higher 

R2 (0.91) than the linear regression (0.80, daily; Figure. 8). Those 

results are partly opposed to our hypothesis H1) that the seasonal 

SIF-GPP relationship is linear in temperate ENF, as seasonal 

dynamics in LUEp would be captured by Φ
F
 (Magney et al., 2019). 

We think that different physiological mechanisms could explain the 

non-linear SIF-GPP relationship at diurnal and seasonal time scales. 

This is discussed in more detailed in the paragraphs below. 

At diurnal time scales, the non-linear SIF-GPP relationship 

could be explained by fundamental differences between the light 

responses of SIF and GPP. GPP saturates at high light whereas SIF 

has a stronger tendency to keep increasing (Gu et al., 2019). In fact, 

we could clearly see that SIF and GPP responded linearly and non-

linearly to APAR at diurnal time scales (Figure. 9 and Appendix B). 
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SIF showed strong linear relationships to APAR even though the 

slopes declined with time because Φ
F
 decreased. On the other hand, 

GPP showed clearly saturated pattern with APAR. This non-linear 

pattern could be explained by the low value of maximum rate of 

carboxylation (Vcmax) at our site. The light saturation point of GPP 

occurs at relatively low APAR under low Vcmax , and rises with 

increasing Vcmax. By contrast, SIF does not show a clear saturation 

pattern with APAR as it is much less sensitive to Vcmax than GPP 

based on the Soil Canopy Observation, photochemistry and Energy 

fluxes (SCOPE) model (Zhang et al., 2016a). Therefore, the SIF-

GPP relationship at half-hourly time scales is more strongly non-

linear in low Vcmax canopies. Our findings (Figure. 8) are consistent 

with those of (Zhang et al., 2016a), as Vcmax at our site was only 37.3 

µmol m-2 s-1 for sunlit leaves at the peak of the growing season (Kim, 

2014). Similar values (37.6 µmol m-2 s-1) have also been reported 

for Korean pine at other sites (Zhou et al., 2011). These values are 

notably lower than the global mean value for ENF species (62.5 µmol 

m-2 s-1; (Kattge et al., 2009)), suggesting that the diurnal SIF-GPP 

relationship might be more strongly non-linear in temperate ENF.   

While low Vcmax appears to explain the non-linearity of the 

diurnal SIF-GPP relationship, it cannot not fully explain the non-

linearity of the seasonal SIF-GPP relationship at our site. The non-

linear effects of low Vcmax  on the SIF-GPP relationship are 

substantially reduced when using daily mean values, and nearly 

disappear at the weekly scale, even with Vcmax values as low as 50 

μmol m-2 s-1 according to SCOPE simulations (Zhang et al., 2016a). 

Consistent with these results, Magney et al. (2019) reported that a 

non-linear SIF-GPP relationship at hourly time scales which became 

linear at daily and weekly time scales with relatively low Vcmax (40 
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µmol m-2 s-1; (Dutta et al., 2019)). In contrast, we found that daily 

mean values still showed a strong non-linear SIF-GPP relationship 

that was overlapping with the relationship based on half-hourly data 

(Figure. 8). This indicates that the low Vcmax alone cannot explain 

the non-linearity of the SIF-GPP relationship at the seasonal time 

scale at our site. 

The non-linearity of the SIF-GPP relationship at the 

seasonal time scale could be due to differences between LUEP and 

Φ
F
 in terms of physiological mechanisms. In particular, the seasonal 

variation of LUEP showed saturated pattern in high air temperature 

especially in clear days but Φ
F

 was highly correlated to air 

temperature (Figure. 10). Two main factors could contribute to the 

saturation of LUEP at high air temperature. First, higher PAR values 

coincide with high air temperature in summer and the resulting higher 

APAR may lead to stronger saturation of GPP, which is limited by 

Vcmax  under such conditions (Figure. A2). Second, the saturation 

pattern of LUEP  is related to distributions of intercepted photon 

energy (Porcar-Castell et al., 2014). The reversible NPQ is 

competitively involved in energy partitioning to reduce the excess 

energy at high air temperature, which is likely to explain saturation 

of LUEP in such air temperature (Figure. 13). As air temperature 

decreases, the sustained NPQ, which has unique seasonality in ENF, 

is activated and the portion of photochemistry and reversible NPQ is 

decreased, which may diminish the saturation of LUEP across autumn 

to winter (Figure. 13). According to SCOPE simulation and leaf-level 

measurement, SIF is much less sensitive to Vcmax and photon energy 

partitioning than GPP, which could explain the absence of saturation 

of Φ
F
 at high air temperatures (Gu et al., 2019; Zhang et al., 2016a).     
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The seasonal variation of Φ
F
 could be more tightly related 

to pigment pool changes rather than LUEP. We found that the Φ
F
-

CCI relationship was strongly linear in our site (R2 = 0.84; Figure. 

12) and CCI was strongly correlated to the pigments pool changes in 

sunlit leaves (Appendix D). Stronger CCI-Φ
F
 correlation (R2 = 0.84 

in Figure. 12) than CCI-LUEP correlation (R2 = 0.48 in Figure. S9) 

further supports our reasoning as CCI is known to be primarily 

sensitive to pigment pool changes. In addition, we found that LUEP 

responded to sky conditions while Φ
F
 (and CCI) did not respond 

(Figure. 7). The possibility of strong relationship between pigment 

pool changes and Φ
F
 have been suggested in previous studies. 

Springer et al. (2017) reported that leaf-level florescence yield and 

CCI had strong linear relationship in ENF. Simulations using SCOPE 

model also showed that the chlorophyll pool could control the 

magnitude of Φ
F
 when LAI is stable (Du et al., 2017).  

The leaf-level results based on active PAM measurements 

support our findings from the canopy-level data. We found overall 

similar relationships in Φ
Fleaf

, air temperature and sky condition 

compared to the canopy-level Φ
F

 (Figure. 10 and 13). Φ
Fleaf

 

continued to increase with air temperature (Figure. 13a). In high air 

temperature, Φ
rNPQ

 was the main de-excitation pathway to reduce 

excess energy (Figure. 13d) and caused the saturation of Φ
PS(Ⅱ)

 

(Figure. 13b). The dynamic range of changes in Φ
Fleaf

 was small 

(<0.01) within one day and from day to day, while Φ
rNPQ

 and Φ
PS(Ⅱ)

 

varied widely (~0.8) depending on sky conditions (Magney et al., 

2020). Therefore, Φ
rNPQ

 and Φ
PS(Ⅱ)

 seem more sensitive to sky 
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conditions, and Φ
Fleaf

 seems to be highly correlated with air 

temperature regardless of sky conditions. In addition, we found that 

Φ
Fleaf

 and Φ
PS(Ⅱ)

 had non-linear relationships on a diurnal scale 

(Appendix C), which is consistent with previous studies (Maguire et 

al., 2020; Porcar-Castell et al., 2014; Zhang et al., 2016a). 

It has been documented in the literature that the response of 

Φ
sNPQ

 to temperature differs between the fall and spring transitions. 

In particular, it was reported that the fall transition tends to be more 

gradual compared to the steeper transition in spring (Magney et al., 

2019; Porcar‐Castell, 2011; Raczka et al., 2019). This indicates that 

active PAM measurements at our site would also show such 

differences in the response of Φ
sNPQ

 to air temperature in fall 

compared to the spring measurements. However, this does not affect 

our results on the leaf-level responses of Φ
Fleaf

 and Φ
PS(Ⅱ)

 

regarding the high temperature response as at such temperature 

Φ
sNPQ

 is effectively zero and the response is expected to be more 

consistent between different times of the year. 

 

4.2 Role of 𝒇𝒆𝒔𝒄 in the SIF-GPP relationship 

𝑓𝑒𝑠𝑐 was fairly stable across the seasons especially in clear 

sky conditions (Figure. 7g). As we estimated 𝑓𝑒𝑠𝑐 as the ratio of 𝑁𝐼𝑅𝑣 

to fPAR (Eq. 3), it is instructive to examine the dynamics of these 

components individually. Both 𝑁𝐼𝑅𝑣  and fPAR exhibited seasonal 

variation, with declining values from late summer towards winter 

(Figure. S6). However, the seasonal variations in 𝑁𝐼𝑅𝑣  and fPAR 

partially canceled each other out (Eq. 3), resulting in the rather stable 

values of 𝑓𝑒𝑠𝑐 across the seasons particularly clear sky days (Figure. 
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7g). The seasonal patterns in 𝑁𝐼𝑅𝑣 and fPAR were at least partly 

caused by changes in daily mean solar zenith angle (Figure. S7), 

understory (Figure. S8) and needleleaf phenology (Li and Fang, 2015; 

Majasalmi et al., 2017; Ollinger, 2011).  

Despite its seasonal stability, 𝑓𝑒𝑠𝑐  played a role in 

strengthening the relationship between LUEP  and Φ
F
 due to its 

sensitivity to sky conditions (Figure. 11). This result appears to 

contradict our second hypothesis that 𝑓𝑒𝑠𝑐 does not affect the SIF-

GPP relationship due to its seasonal stability. Sky condition effects 

were primarily visible at diurnal time scales and tend not to show 

strong gradual seasonal variations, which implies that the 

contradiction could indeed be apparent. The tendency for 𝑓𝑒𝑠𝑐  to 

increase in diffuse sky conditions was also reported in a wheat site 

(Dechant et al., 2020) but no further detailed analyses were 

conducted. Therefore, we evaluated the separate responses of the 

two components of 𝑓𝑒𝑠𝑐 at our site. To focus on the response of fPAR 

and 𝑁𝐼𝑅𝑣 to diffuse sky conditions only, we removed the seasonal 

trends related to solar zenith angle and phenology (Figures. S10 and 

S8). After this, we compared between seasonally de-trended fPAR, 

𝑁𝐼𝑅𝑣  and clearness index. Based on this analysis, fPAR and 𝑁𝐼𝑅𝑣 

were positively and negatively correlated to clearness index, 

respectively (Figure. S10), which led to a negative relationship 

between 𝑓𝑒𝑠𝑐 and clearness index (R2 = 0.5; Figure. S10). Therefore, 

𝑓𝑒𝑠𝑐 could show high values in the cloudy conditions, similar to LUEP. 

 

4.3 Implications of non-linear SIF-GPP relationships in 

temperate ENF 

Our findings differ from previous results as SIF is nonlinearly 
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related to GPP in a temperate ENF. Based on in-situ data, several 

studies reported that Φ
F
 exhibits a linear response to seasonal 

variations in photosynthesis  (Springer et al., 2017; Zhang et al., 

2019), and that daily average SIF has a linear relationship with GPP 

at the canopy level in ENF (Magney et al., 2019). In addition, 

satellite-based SIF data showed a strong linear relationship with 

GPP at the seasonal scale (Jeong et al., 2017; Joiner et al., 2014; Sun 

et al., 2017; Walther et al., 2016; Zhang et al., 2018b). However, our 

findings of a strongly non-linear SIF-GPP relationship indicate that 

we need to study the SIF-GPP relationship in ENF in more detail, for 

example by conducting canopy structure and physiological aspect 

separately when using satellite SIF retrievals. In addition, more 

ground-based observations that cover the range of environmental 

conditions of ENF would be helpful to understand the non-linear 

SIF-GPP relationship better. Apart from that, the findings of 

Wohlfahrt et al. (2018) that SIF did not track GPP well during a 

short-term heat wave in ENF further indicate that non-linear, 

complex SIF-GPP relationships exist at different time scales, from 

diurnal scales over a few weeks up to the seasonal time scale. 

Our results support the importance of quantifying LUEP, Φ
F
, 

and 𝑓𝑒𝑠𝑐, individually, and assessing the relationships among these 

variables. In clear days, we found that there was a stronger 

correlation between LUEP  and Φ
F

 (R2 = 0.51) than a correlation 

between LUEP  and 𝑓𝑒𝑠𝑐  (R2 = 0.24; Figure. 11). Φ
F
 substantially 

outperformed 𝑓𝑒𝑠𝑐  in terms of LUEP  estimation, as Φ
F
 exhibited 

clear seasonality. In addition, we confirmed that APAR ×  𝑓𝑒𝑠𝑐  ≈

 𝑁𝐼𝑅𝑣  × PAR (Eq. 3) could not track GPP well especially in low air 

temperature (Figure. S12). These results suggest that satellite-
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based 𝑁𝐼𝑅𝑣  × PAR could not track GPP well in ENF in fall to winter. 

Nonetheless, our results suggest that 𝑓𝑒𝑠𝑐  strengthens the 

relationship between LUEP and Φ
F
 (improvement from R2 = 0.37 to 

R2 = 0.45; Figure. 11). Overall, our findings indicate that both 

physiological ( Φ
F

)  and structural variation ( 𝑓𝑒𝑠𝑐 ) should be 

considered together when estimating GPP using remotely sensed SIF 

data in ENF. In non-ENF sites, it is also necessary to assess LUEP, 

Φ
F
, and 𝑓𝑒𝑠𝑐 separately. Dechant et al. (2020) found that daily Φ

F
 

was not correlated with LUEP  (R2 < 0.08) while strong seasonal 

variation in 𝑓𝑒𝑠𝑐 showed a positive relationship with LUEP (R2 = 0.4 

– 0.6) in crops. Liu et al. (2020b) reported partly even stronger daily 

correlations between 𝑓𝑒𝑠𝑐 and LUEP for corn sites (R2 = 0.5 – 0.8). 

Thus, information about canopy structure (NIRv × PAR) may allow 

robust estimates of GPP in ecosystems other than ENF, which is also 

supported by several other studies (Badgley et al., 2019; Badgley et 

al., 2017; Baldocchi et al., 2020; Jiang et al., 2020; Wu et al., 2020). 

Simulating SIF in ENF currently still has considerable 

limitations, which could potentially be improved by considering our 

findings. For example, SCOPE (van der Tol et al., 2009; Vilfan et al., 

2016) was originally developed for crops and does not adequately 

represent the complex, highly clumped canopy structure of ENF. 

Furthermore, there is currently no process-based subroutine for 

Φ
sNPQ

 dynamics. Raczka et al. (2019) attempted to overcome this 

limitation by parameterizing a Φ
sNPQ

 model for the community land 

model (CLM) using field data. However, they assumed the light 

saturation point of Φ
rNPQ

 to be constant over the season. Parazoo et 

al. (2020) analyzed simulations from an ensemble of process based 

fluorescence models in an ENF site and found large discrepancies 
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among the models. Therefore, additional works are needed to 

improve process-based SIF models in ENF, particularly for the Φ
F
-

air temperature relationship that we observed. In addition, 

combination of leaf-level and canopy-level fluorescence data with 

3D radiative transfer model forced with LiDAR data could open up 

new possibilities to improve our understanding of the relationship 

between canopy structural and functional traits in ENF (Liu et al., 

2019).  

Although we found a non-linear SIF-GPP relationship and 

strong correlation between CCI and Φ
F
, further research is needed 

to deepen our understanding of the mechanisms leading to the 

observed patterns in our results as follows. First, the physiological 

mechanisms of ENF in spring and autumn could be different. 

According to Porcar‐Castell (2011), sustained NPQ in spring was 

larger than autumn under same air temperature. Therefore, to 

understand the physiological mechanisms in ENF in-depth, it is 

necessary to have simultaneous observations at the leaf- and canopy 

levels over a long period of time. Second, it is necessary to accurately 

estimate the total emitted SIF to understand the relationship between 

SIF and GPP at the canopy-level better. Total emitted SIF could have 

stronger correlation with GPP than canopy escaping SIF because 

shade leaves could not be ignored (Lu et al., 2020). In this respect, 

leaf-level physiological parameters such as Vcmax, ΦPS(Ⅱ)
 and Φ

Fleaf
 

in shade leaves should be also measured to understand whole canopy.  

   

5. Conclusion 

We investigated the relationship between in-situ, canopy-

level SIF and GPP data in a temperate ENF, and we found a strong 



 

 ５８ 

non-linear relationship between SIF and GPP. To understand the 

mechanisms underlying the non-linear SIF-GPP relationship, we 

investigated the relationships of LUEP, Φ
F
, and 𝑓𝑒𝑠𝑐 separately. Our 

detailed analyses resulted in three main conclusions. First, the SIF-

GPP relationship was strongly non-linear as their response to APAR 

and air temperature was different. In diurnal time scale, Φ
F
 was not 

saturated but LUEp showed a clearly saturated pattern especially in 

high light intensity and air temperature. In seasonal time scale, we 

found that there was non-linear LUEP and Φ
F
 relationship. Second, 

we found that 𝑓𝑒𝑠𝑐 could strengthen the Φ
F
-LUEp relationship as 𝑓𝑒𝑠𝑐 

responded to sky conditions in a similar way as LUEp. Third, seasonal 

variation of Φ
F
 could be more related to pigment pool changes rather 

than LUEp as Φ
F
 was strongly correlated to CCI during senescence 

period. Further research is needed to deepen our understanding of 

the mechanisms leading to the observed patterns in our results. We 

believe that our findings may contribute to a better understanding of 

SIF-GPP relationships in ENF. 
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Appendix A. Evaluation of SIF retrieval method 

 

In this paper, we retrieved SIF using the singular vector 

decomposition method (SVD). We verified the reliable retrieval 

performance of our method with data-driven simulations. The 

relationship between input SIF and retrieved SIF showed strong 

linear relationship and low bias (R2 = 0.97, RMSE = 0.08 and relative 

bias < 0.1 %, Figure. A1). 

To evaluate our SIF retrieval method, we used the outgoing 

irradiance spectra with known reflectance and known fluorescence 

magnitudes. The simulated upwelling irradiance (𝐼𝑂𝑈𝑇) was calculated 

as:  

𝐼𝑂𝑈𝑇 =  𝐼𝑖𝑛  × 𝑟𝑒𝑓 + 𝑆𝐼𝐹 

Where 𝐼𝑖𝑛 is measured incoming irradiance and 𝑟𝑒𝑓 stands 

for the reflectance spectra from field measurements with the Jaz 

spectrometer. To remove SIF effects in the measured reflectance, 

especially in the O2A band, we smoothed the reflectance using the 

rloess method using a span of 50% of the total pixel number of 

reflectance in MATLAB software (Mathworks, Inc., USA). 𝑆𝐼𝐹 

represents canopy fluorescence with known fixed spectral shape of 

emitted fluorescence which is measured. To consider realistic 

seasonal variation of SIF, we set the magnitude of SIF as 5 % of 

incoming irradiance for day of year (DOY) 251 – 280, 3% for DOY 

281 - 310 and 1% for DOY 311 – 365.  
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Figure. A1 Comparison between input and retrieved SIF  
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Appendix B. The relationships between SIF, GPP and APAR in sub 

daily time scale 

 

Figure. A2 Light response curves of GPP and SIF. CI indicates clearness index and 

each dot represents half-hourly data. 

 

Appendix C. Diurnal variation of leaf-level quantum yield of 

photochemistry and steady-state fluorescence yield 

 

Figure. A3 Diurnal variation of leaf-level quantum yield of photochemistry (𝚽𝐏𝐒(Ⅱ), 

(a)) and steady-state fluorescence yield (𝐅𝐬, (b)) and scatter plot between 𝚽𝐏𝐒(Ⅱ) 

and 𝐅𝐬 (c) 
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Appendix D. Leaf-level pigment analysis 

To collect leaf-level pigment data, we collected 4 to 5 sunlit 

leaves and grouped them into one sample and collected more than 

three samples every 2 – 3 weeks during 2019 winter to early 

summer. We cut the needle leaves into 1cm long segments and stored 

the samples in liquid nitrogen immediately (within 10 sec) to prevent 

pigment changes. In the lab, we first measured weight of the leaf 

samples and then incubated the samples in the brown vial with 5ml 

Dimethyl Sulfoxide (DMSO) at 65 ℃ in water bath for 6 hours. After 

that, we transferred the incubated sample to 2.5 ml disposable 

cuvette and put in the spectrophotometer. To measure the 

chlorophyll and carotenoid pigment contents, we used empirical 

functions based on Wellburn (1994). We computed canopy-level CCI 

as an average for data when solar zenith angle is <70 degree.  

 

Figure. A4 Seasonal correlation between leaf-level Chl:carotenoid and canopy-level 

chlorophyll: carotenoid index (CCI) 
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Appendix E. The nomenclature and method used in this study. 

Symbols 
Definition (C = canopy-level, L = 

leaf-level) 
Method 

GPP Gross primary productivity (C) Observed 

LUEp Light use efficiency (C) Eq. 1 

PAR Photosynthetically active radiation 

(C) 

Observed 

APAR 
Absorbed photosynthetically active 

radiation (C) 
PAR × fPAR 

fPAR 
Fraction of photosynthetically active 

radiation (C) 
Observed 

𝑓𝑒𝑠𝑐 Canopy escape fraction of the canopy 

(C) 

Eq. 3 

NDVI 
Normalized difference vegetation 

index (C) 
Eq. 4 

𝑁𝐼𝑅𝑉 Near-infrared reflectance of 

terrestrial vegetation (C) 

NDVI × NIR ref  

CCI Chlorophyll: carotenoid index (C) Eq. 5 

SIF 
Solar-induced chlorophyll 

fluorescence (C) 
Observed 

ΦF  Chlorophyll fluorescence yield for 

canopy-level (C) 

Eq. 2 

ΦFleaf
 

Quantum yield of Chlorophyll 

fluorescence (L) 
Table 1 

ΦPS(Ⅱ) 
Quantum yield of Photochemistry (L) 

Table 1 

ФsNPQ Quantum yield of Sustained NPQ (L) Table 1 
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ФrNPQ 
Quantum yield of Reversible NPQ (L) 

Table 1 

ФD 
Quantum yield of Basal thermal 

energy dissipation (L) 
Table 1 

FmR 
Summer night reference measured for 

needles in the absence of sustained 

NPQ (L) 

Observed 

Fs Steady-state fluorescence yield (L) Observed 

F’m 
Maximal fluorescence yield (L) 

Observed 

Fm Maximal fluorescence yield in the 

night time (L) 

Observed 

Fo 
Minimal fluorescence yield in the night 

time (L) 
Observed 
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Chapter 4. Monitoring spring phenology of a multi-

layer canopy in a deciduous broadleaf forest: What si

gnal do satellites actually see? 

 

 

1 Introduction 

Monitoring spring phenology is crucial for understanding 

feedbacks of vegetation to climate system (Peñuelas and Filella, 

2009). The leaf unfolding could influence the interaction between 

biosphere and atmosphere through energy exchanging, carbon 

cycling, water cycling (Bonan, 2008; Jeong et al., 2014; Keenan et 

al., 2014; Richardson et al., 2013a). The dates of leaf unfolding are 

strongly related to climate change, thus various studies have 

reported changes in spring phenology (Ettinger et al., 2020; Körner 

and Basler, 2010; Menzel, 2002; Menzel et al., 2006).  

To monitor leaf-out and full-leaf dates, satellite remote 

sensing has been widely used. Satellite observations have the 

advantage that we can quantify vegetation changes in large areas 

without visiting the site (Richardson et al., 2013b), thus it is currently 

being used as the most useful tool to see vegetation changes since 

the 1970s (Piao et al., 2019). In particular, the normalized difference 

vegetation index (NDVI) from satellite imagery has been widely 

applied in the study of plant phenology to extract leaf-out and full-

leaf dates (Helman, 2018). However, phenometrics detection based 

on satellite NDVI in deciduous broadleaf forest still has several 

important limitations.  

Typically, deciduous broadleaf forests have multi-layer 

canopies, which implies increased complexity in both space and time. 
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In the forest, understory and overstory vegetation compete for light 

and interact with each other vertically, so they are located in a 

specific environment according to their physiological tolerance 

(Barbier et al., 2008; Liu et al., 2020). Even though the understory 

and overstory are experiencing almost the same climatic conditions, 

they have different spring phenology due to different growth 

strategies. For example, most of the understory vegetation species 

unfold leaves before the leaf-out dates of the overstory to absorb 

enough light energy for survival under the shadow from overstory in 

summer (Augspurger, 2009; Muller, 1978; Richardson and O’Keefe, 

2009). However, when we see the forest from space by using 

satellites, the imagery contains a mixed signal of over- and 

understory. The seasonal pattern of NDVI observed from satellites 

could be changed when two or more species are overlapped (Badeck 

et al., 2004). This phenomenon could directly affect the leaf-out and 

full-leaf dates extracted from the satellite imagery. Ultimately, we 

have the following question: What phenology do we actually see from 

space compared to ground observations on multi-layer canopy 

phenology? 

Research on the understanding of relationships between 

continuously observed multi-layer phenology in the ground and 

spring phenology extracted by satellite is still lacking. To monitor 

multi-layer phenology separately, numerous efforts have been made 

from the ground. Previous studies observed multi-layer phenology 

by visual inspection (Kim et al., 2021; Richardson and O’Keefe, 

2009). Some studies also used RGB cameras to monitor multi-layer 

phenology. For example, Liu et al. (2021) installed trail cameras to 

monitor over- and understory phenology separately and Moore et al. 

(2017) installed two cameras to capture the changes of multi-layer 
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phenology. Furthermore, some studies tried to understand the 

satellite signal compared to in-situ observed multi-layer spring 

phenology (Nagai et al., 2014). In particular, one study compared 

MODIS leaf area index (LAI) products with in-situ observed plant 

area index from multi-canopies (Ahl et al., 2006), which showed that 

the understory development and temporal compositing of satellite 

data could make the difference between field observation and satellite 

estimation. Another study used low-cost spectral sensors to track 

multi-layer phenology and found that satellite NDVI could capture 

understory leaf unfolding in a deciduous broadleaf forest (Ryu et al., 

2014). However, although observations of multi-layer phenology 

and comparisons with satellite products have been made, studies that 

continuously observed multi-layer phenology for a long period in the 

field and compared it with satellite-based phenology are still lacking. 

This limits our understanding as the responses of phenology to 

climatic variations can only be quantified based on sufficiently long 

time series.  

Previous studies used inconsistent methods to extract leaf-

out and leaf-full dates. Although several methods are developed to 

extract phenological events (White et al., 2009; Xie and Wilson, 

2020), there are two approaches which have been broadly used to 

extract leaf-out and full-leaf date from satellite imagery. They 

include the vegetation growth curve (Zhang et al., 2003) and 

percentage of the vegetation growth amplitude (White et al., 1997). 

Both methods have the following advantages and disadvantages. The 

method based on vegetation growth curve fitting is ecologically 

meaningful and does not require pre-smoothing of data or a 

subjective threshold value (Zhang et al., 2003), but the logistic curve 

used in this approach could not fit well the seasonal dynamics of 



 

 ６８ 

vegetation in some region (Cao et al., 2015). The threshold method, 

on the other hand, is easy to use and it could be applied without 

considering vegetation growth trajectories. However, inconsistent 

threshold values could be arbitrarily selected to determine leaf-out 

dates and full-leaf dates. For example, threshold values of 10% 

(Jonsson and Eklundh, 2002), 15% (Moon et al., 2019), 20% (Wang 

et al., 2019; Yu et al., 2010), 30% (White et al., 2014), 50% (Bórnez 

et al., 2020; Bradley et al., 2007; White et al., 1997) have been used 

in previous studies. Therefore, further efforts are required to 

understand the difference between spring phenology from different 

phenology algorithm and in-situ observed leaf-out and full-leaf 

dates. 

In this study, our objective is to investigate the relationships 

between multi-payer phenology and leaf-out and full-leaf dates 

from the curvature change rate and threshold methods. For 

comprehensive assessment of their relationships, we observed 

multi-layer phenology and relevant climate variables continuously 

during 2013 – 2020 in a deciduous broadleaf forest, South Korea. 

We installed low-cost multi-channel spectrometers above and below 

overstory allowed us to monitor over- and understory phenology 

independently, continuously. Our goal is to address the following 

scientific questions: 1) What is the difference between extracted 

satellite-based leaf-out and full-leaf dates according to different 

phenology algorithm? 2) How do satellite-based leaf-out and full-

leaf dates relate to in-situ multi-layer phenology? 3) What are the 

implications of the difference between satellite-based and multi-

layer phenology? 
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2 Materials and Methods 

2.1 Study site 

Our study sites is a deciduous broadleaf forest (DBF) in 

Gwangneung Experimental Forest which is located in the mid-

western part of the Korean Peninsula (latitude: 37.748717N, 

longitude: 127.148176E, elevation: 260 m, slope: 10–20°). Annual 

maximum, minimum, and mean temperatures were 35, −15, and 10 °

C, respectively. Annual mean precipitation was around 1365 mm and 

mean annual gross primary productivity was around 1380 gC m-2 

year-1 (Lee et al., 2020). Overstory canopy consisted of Quercus 

acutissima, Quercus serrata, and Carpinus laxiflora. The overstory 

species were old natural deciduous from 60 to 600 years old. 

Dominant understory species is deciduous including Euonymus 

oxyphyllus and Cornus kousa. The mean canopy height was about 18 

m and maximum value of leaf area index (LAI) were around 5 – 6 in 

summer. We defined the overstory as trees higher than 10 m and 

understory as trees smaller than 10 m because the vertical variation 

of leaf area density was clearly divided by around 10 m based on a 

previous study (Figure 1, Song and Ryu (2015)).  

 

2.2 Multi-layer spectral reflectance and transmittance 

measurement 

To monitor over- and understory canopy phenology 

independently, continuously, we installed low-cost multi-channel 

spectrometers (LED sensors) on the 2m booms and installed the 

booms at 10 m and 22 m horizontally in a walkable 20 m high tower 

(Figure 14). The LED sensors measured spectral intensities in the 

bands of blue, green, red and near-infrared (NIR) (Ryu et al., 2014). 
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The LED sensors were covered by diffusers made out of Teflon 

material, so the field of view of sensor was approximately 180 

degrees. For each height, we installed two pairs, upward- and 

downward-facing direction, to monitor the bi-hemispheric 

reflectance. All sensors were connected to a data logger (CR1000 

Campbell Sci., Inc., CSI, Logan Utah) and we sampled the irradiance 

data every 30 seconds and stored half-hour mean values. We 

calculated daily dark current value which was measured during night 

time (22:00 – 03:00) and removed the dark current from observed 

digital number at each band for each day. To ensure long-term 

consistency of LED spectral data, we cross-calibrated the four bands 

of upward- and downward-facing LED sensors using a net 

radiometer (CNR4, Kipp & Zonen, the Netherlands). The net 

radiometer was installed at the 40 height of the tower 60 m from the 

LED installed tower. Although the wavelength range observed by 

LEDs and CNR4 were different and their relationships were non-

linear, it was confirmed that there was no significant different from 

year to year (Figure. S1). In addition, we co-located all LED sensors 

at the top of the 20 m tower and installed them in the zenith direction 

and then cross-calibrated each spectral band in 2013 and 2015.  

 
Figure 14) Experimental design at the deciduous broadleaf forest. White box 
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represent LED-sensors at 22 m and 10 m. The percentage of leaf area density data 

is from (Song et al., 2015). 

 

We calculated reflectance of red and NIR by using upward- 

and downward-facing sensors at each layer. To compute daily 

reflectance value, we averaged the observed data when solar zenith 

angle (SZA) was lower than 70 degrees because the Teflon diffuse 

material had increased bias from the ideal cosine response curve 

when the SZA was larger than 70 degrees (Ryu et al., 2010) and the 

signal to noise ratio could be lower when the light condition was low. 

In addition, we applied the Hampel outlier filter to remove severe 

outliers in red and NIR reflectance (Hampel, 1974). We applied the 

filter with a three standard deviations and a window length of 2 days. 

By using daily averaged red and NIR band, we computed NDVI as 

bellow equation (Tucker, 1979).  

NDVI =
ρNIR−ρred

ρNIR+ρred
                                            (Eq. 1) 

where ρ is spectral reflectance and NIR and red is daily 

mean NIR and red band reflectance.  

To monitor overstory phenology, we measured transmittance 

of overstory canopy. We used blue band from upward-facing sensors 

at 22 m and 10 m as blue light minimizes canopy scattering effects 

that can bias gap fraction estimation (Brusa and Bunker, 2014). To 

obtain relative large footprint and reduce variation in daily 

transmittance data, we chose measured data under diffuse sky 

condition to avoid heterogeneities in the radiation field that can be 

caused by sun flecks. We used clearness index, which is ratio of PAR 

above the canopy to the PAR at top of atmosphere, to define diffuse 

sky condition. We defined the diffuse sky condition when clearness 
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index was below 30 % threshold in the sorted half-hourly clearness 

index based on observed PAR data when SZA was less than 70. We 

applied a Hampel outlier filter in the same way as the reflectance to 

remove severe outliers. In addition, we removed daily mean data 

when light conditions were extremely low because as these 

conditions can lead to outliers. We defined the low light condition day 

as daily mean clearness index was below 30 % threshold in the sorted 

daily clearness index during whole observation period.  

 

2.3 Phenometrics detection  

We evaluated the widely used two phenology algorithm as 1) 

curvature change rate method and 2) threshold method with NDVI 

observed above top of the canopy. Before using both methods, we 

fitted the observed NDVI using the logistic function as below. 

Y = a +
b

1+exp (c−dx)
                                            (Eq. 2) 

where a, b, c and d are parameters, x is day of year and y is 

observed NDVI above top of the canopy. 

For the curvature change rate, we calculated the second-

order derivative of the fitting curve and we defined the leaf-out date 

and full-leaf dates as the first and second peak of NDVI of the second 

order derivative curve (Figure. S2). In case of the threshold method, 

we calculated the corresponding day of year (DOY) by applying 

different threshold values to logistic fitted NDVI. Previous studies 

applied cubic splines or normalized NDVI and then a dates 

corresponding to the threshold were selected because satellite 

products had a lot of data gaps and noise in seasonal pattern, thus 

strict fitting methods were required (Moon et al., 2019; Wang et al., 

2019; White et al., 1997). In our study, we used logistic fitting 
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method because 1) there was less noise and data gaps in LED data 

and 2) to do the same comparison with the curvature change rate 

method.   

To quantify the uncertainty of spring phenology from both 

phenology algorithm, we processed the data in the following way 

based on a previous study (Ryu et al., 2014). First, we calculated 

uncertainty in four parameters (a, b, c, d, in Eq.2) by using non-

linear regression parameter confidence interval function (nlparci 

function) in MATLAB (MathWorks Inc., Natick, MA, USA). Second, 

we made 10,000 samples by using multivariate normal random 

numbers (mvnrnd function in MATLAB) based on the uncertainty in 

four parameters from nlparci function. After that, we fitted the 

logistic curve with random samples and extracted leaf-out and full-

leaf dates from the two phenology algorithm. Finally, we could 

calculate error range as three standard deviation of the extracted 

whole leaf-out and full-leaf days. 

 

2.4 In-situ multi-layer phenology  

In this study, we derived in-situ multi-layer phenology from 

LED data collected from 10 m and 22 m heights. We used NDVI data 

collected at 10 m height to monitor in-situ understory phenology and 

the used 1-transmittance data in overstory canopy to extract in-situ 

overstory phenology. In a previous study (Ryu et al., 2014), the leaf-

out dates were defined as the date when 50 % of new leaves were 

over 1 cm and full-leaf date was defined as the dates when the leaves 

size was around 70 % of the full-leaf size in our site. Based on 

previous in-situ observed data, we determined the best method for 

estimating in-situ leaf-out and full-leaf dates of under- and 

overstory at our site as follows. For in-situ leaf-out and full-leaf 
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dates of understory canopy, we used observed NDVI data collected 

at 10 m LED sensor. To extract understory leaf-out dates, we fitted 

observed NDVI using the logistic function and then we generated the 

second-order derivative fitting curve. After then we determined 

leaf-out as DOY at the peak of second-order derivative fitting curve. 

To extract understory full-leaf dates, we used a threshold method 

(80 %) based on the fitted NDVI data. For overstory leaf-out and 

full-leaf dates, we used the 1-transmittance data from 10 m and 22 

m upward-facing blue LEDs. First, we calculated 1-transmittance 

value (i.e. absorptance without reflectance) and then we fitted them 

with the logistic function. Second, we used a threshold method (20 % 

for leaf-out dates and 70 % for full-leaf dates) to extract in-situ 

overstory leaf-out and full-leaf dates. We selected the fitting 

method and threshold value for understory and overstory leaf-out 

and full-leaf dates based on Ryu et al. (2014). In Ryu et al. (2014), 

leaf-out date was defined as the date when 50 % of new leaves were 

around 1 cm and full-leaf date was defined as the date when 70 % of 

full-leaf size. We confirmed that our threshold methods could track 

well visual observed multi-layer phenology (reference in-situ dates 

were from Ryu et al. (2014)) as bias were less than 2 days for 

under- and overstory leaf-out and full-leaf dates. To compute 

range of the error, we made 10,000 random samples as reported in 

the chapter of 2.3, and calculated one standard deviation of the 

extracted whole leaf-out and full-leaf days. In addition, we used the 

data collected from one camera with fisheye lens at around 16 m 

height to confirm that our methods of estimating in-situ leaf-out and 

full-leaf dates in the overstory canopy were correct. Through the 

installed camera, we were able to continuously check under- and 

overstory changes visually and we confirmed the difference in multi-
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layer phenology by years (Figure. A1). 

 

2.5 Satellite remote sensing data 

We used MODIS satellite products (MOD09GQ, MYD09GQ 

and MCD43A3) and Landsat 8 surface reflectance product to 

understand satellite NDVI based phenology. The MOD09GQ is daily 

Terra surface reflectance product and the MYD09GQ is daily Aqua 

surface reflectance product (Vermote and Wolfe, 2015). Both 

products have 250 m spatial resolution. MCD43A3 daily surface 

reflectance data set is adjusted for viewing geometry using the 

bidirectional reflectance distribution function and it has 500 m spatial 

resolution (Schaaf and Wang, 2015). Landsat 8 product is 

atmospherically corrected surface reflectance from the OLI/TIRS 

sensors and it has 30 m spatial resolution (Vermote et al., 2016). For 

MOD09GA and MYD09GQ, we downloaded the data via global subsets 

tool (DAAC, 2018). We chose highest quality data (no cloud, low or 

average of aerosol quantity, not adjacent to cloud) based on 

MODLAND QA bits from MO(Y)D09GA products. In case of the 

MCD43A3 and Landsat 8 surface reflectance products, we used 

Google Earth Engine to extract surface reflectance and NDVI. We 

selected one pixel which includes the tower location. 

 

2.6 Meteorological variables 

We measured air temperature (HMP-35; Vaisala, Helsinki, 

Finland) and PAR (L180; LICOR) at the top of the 40 m tower with a 

net radiometer also installed. In addition, we measured the air 

temperature at above (10 m) and below (30 m) the overstory canopy. 

To quantify thermal requirement for leaf-out, we calculated 

growing degree days (GDD) as follows: 
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GDD =
𝑇𝑚𝑎𝑥+𝑇𝑚𝑖𝑛

2
 – 𝑇𝑏𝑎𝑠𝑒                                      (Eq. 3) 

Where 𝑇𝑚𝑎𝑥  and 𝑇𝑚𝑖𝑛  are maximum and minimum air 

temperature during one day. 𝑇𝑏𝑎𝑠𝑒 is optimal base temperature and it 

is usually determined experimentally based on life cycle. Here, we 

adopted the 𝑇𝑏𝑎𝑠𝑒  as 5 ℃ for under and overstory based on a 

previous study (Prentice et al., 1992). The accumulated GDD (AGDD) 

was sum of GDD during preseason. We determined the preseason 

length as from DOY 1 to 91 because the understory leaves have not 

yet unfolded during this period. We used the fixed preseason length 

because the over- and understory species did not change much 

during whole observation period (2013 – 2020 spring). We defined 

the chilling days based on a widely used method as when the daily 

mean temperature was lower than 5 degree (Fu et al., 2015). The 

number of accumulated chill days (NCD) was defined as the sum of 

number of chilling days during preseason period.   

 

3 Results 

3.1 Seasonal to interannual variations of NDVI, 1-

transmittance, and air temperature  

NDVI from 22 m and 10 m LEDs, 1 – transmittance, and air 

temperature showed distinct seasonal patterns in the study site 

(Figure. 15). NDVI from 22 m and 10 m LED increased rapidly in the 

spring season (around DOY 100) and decreased in autumn (around 

DOY 300). In addition, we could see that satellite products (Landsat 

8 and MO(Y)D09GQ )-based NDVI exhibited strong seasonality 

similar to NDVI from 22 m LED (Figure. 15a). The 1 – transmittance 

was more scattered than NDVI, but it had similar seasonal pattern 

with NDVI (Figure. 15c). Air temperature was minimum -17.9 ℃ 
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and the maximum 30.7 ℃, and it increased and decreased gradually, 

not rapidly like NDVI and 1 – transmittance.  

 

 
Figure 15) Inter-annual and seasonal variation in field-measured daily multi-layer 

NDVI, 1-transmittance, air temperature and satellite products (Landsat8 and MODIS; 

MO(Y)D09GQ) 

 

NDVI from 22m LED and satellites-based NDVI agreed well 

(Figure. 16). The NDVI from 22 m LED and satellite-based NDVI 

that combines NDVI of Landsat8, MOD09, MY09 and MCD43 had 

Pearson correlation coefficients (R2) of 0.94 and root mean square 

error (RMSE) of 0.04. Overall, magnitude of satellite-based NDVI 

was similar to NDVI from LED 22 m as bias was -0.03. In addition, 

we found  strong linear relationships between the individual satellite 

NDVI and the NDVI from 22 m LED (R2 of 0.85, 0.96, 0.96, 0.94 and 

bias of -0.05, -0.03, -0.04, and -0.03 for Landsat8, MOD09, 

MYD09 and MCD 43, respectively).  
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Figure 16) Scatter plot between MODIS and Landsat8-based NDVI and NDVI from 

LED 22 m. For satellite NDVI, we used Landsat8 (30 m, spatial resolution), MOD09 

(250 m), MYD09 (250 m) and MCD43A4 (500 m) products. The linear regression 

line was calculated by the relationship between satellite NDVI from whole products 

and NDVI observed by LED 22 m. 

 

3.2 Inter-annual variation of leaf-out and full-leaf dates  

We found that leaf-out dates detected from LED data in 22 

m using 10 % threshold method and curvature change rate method 

showed similar magnitudes and inter-annual variations with in-situ 

understory leaf-out dates (Figure. 17). The bias between the leaf-

out dates from 10 % threshold method and the curvature change rate 

method was 0.37 days. The leaf-out dates from 10 % threshold 

method had strong correlation with the leaf-out dates from curvature 

change rate method (R2 = 0.99). We also found that in-situ 

understory leaf-out dates were very similar to the leaf-out dates 
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from the 10 % threshold method (R2 of 0.86, bias = -1.1 days) and 

leaf-out dates from the curvature change rate method (R2 of 0.87, 

bias = -0.75 days).  

 

 
Figure 17) Annual leaf-out dates from understory, overstory, LED 22m with 

different phenology algorithm 

 

In case of the full-leaf dates, the relationships between in-

situ multi-layer, threshold and curvature change method-based 

full-leaf dates were complex. The dates calculated using the 70 % 

threshold method using NDVI from 22 m LED showed similar 

magnitude to the in-situ understory full-leaf dates (R2 = 0.93, bias 

= -0.5 days, Figure. 18). The dates calculated using the 90 % 

threshold method using NDVI from 22 m LED showed similar 

magnitude to the in-situ overstory full-leaf dates (R2 = 0.8, bias = 

-1.7 days) and full-leaf dates from curvature change rate method 

(R2 of 0.81, Bias = -2.1 days).  
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Figure 18) Annual full-leaf dates from understory, overstory, LED 22m with 

different phenology algorithm 

 

3.3 The relationships between dates calculated according to 

threshold and in-situ multi-layer phenology 

According to threshold value, we found that the extracted 

leaf-out and full-leaf dates showed various bias and R2 with in-situ 

multi-layer phenology. We found that bias was lowest with under- 

and overstory leaf-out dates and under- and overstory full-leaf 

dates when thresholds were 8 %, 50 %, 70 %, and 87 %, respectively. 

Overall, threshold-based dates had high R2 with understory leaf-out 

dates and full-leaf dates rather than overstory (Figure. 19b). In case 

of the leaf-out dates, threshold-based dates showed increased R2 

with overstory leaf-out dates as the threshold value increased, and 

R2 was decreased with understory leaf-out dates. When the 

threshold was from 35 % to 50 %, threshold-based dates had slightly 

higher R2 with overstory leaf-out dates than understory leaf-out 

dates. In case of the full-leaf dates, threshold-based dates had 

constant R2 with understory full-leaf dates as the threshold 

increased, while R2 with overstory full-leaf dates was decreased 
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gradually.  

 

 
Figure 19) The bias (a) and R2 (b) between observed leaf-out dates and full-leaf 

dates of multi-layer canopy and leaf-out dates and leaf-out dates calculated over 

the threshold changes 

 
3.4 The relationship between multi-layer phenology, AGDD 

and NCD 

In-situ understory and overstory leaf-out dates showed 

different relationships with AGDD and NCD (Figure. 20). Overstory 

leaf-out dates had a strong negative linear relationship with AGDD 

(R2 = 0.86). Understory leaf-out dates also had a negative linear 

relationship with AGDD, but there were some differences as 

understory leaf-out dates showed lower R2 with AGDD than 

overstory (R2 = 0.69) and the sensitivity was also slightly lower. 

The slope between AGDD and overstory leaf-out dates was – 0.19 

and understory was – 0.15 (both p-values < 0.05). In relation to 

NCD, leaf-out dates of understory showed significant relationship 

with NCD (p-value < 0.05) and overstory leaf-out date had no 

significant relationship with NCD (p-value > 0.1). Understory leaf-

out dates showed high R2 (R2 = 0.49) with NCD and the sensitivity 
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was also different between under- and overstory as the slope 

between the understory leaf-out dates and NCD was 0.96 and the 

slope of the overstory was 0.7.  

 

 
Figure 20) Relationships between leaf-out dates of over-, understory, and 

accumulated growing degree days (AGDD) (a) and number of accumulated chill days 

(NCD) (b). To avoid overlapping point between overstory and understory leaf-out 

dates, we used different size of the symbols. 

 

4 Discussion 

In this study, we comprehensively investigated the 

relationships between satellite-based and in-situ multi-layer spring 

phenology. In addition, we explored the relationships between leaf-

out and full-leaf dates calculated by the different phenology 

algorithm including curvature change rate, threshold percentage, and 

the in-situ multi-layer phenology. We assumed that the NDVI from 

22 m LED which was installed above overstory serves as the proxy 

of the satellite-based NDVI because 1) NDVI from 22m LED was 

strongly correlated to satellite-based NDVI (Figure. 16) and 2) 

NDVI from 22 m LED has fewer data gaps compared to satellite 

products (Figure. 15), so leaf-out and full-leaf dates based on NDVI 
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from 22m LED could have relatively less uncertainty than dates 

calculated by using satellite-based NDVI. We found that the 

understory leaf-out dates were similar to satellite-based leaf-out 

dates and satellite-based leaf-out and full-leaf dates calculated by 

threshold method showed different R2 and bias with multi-layer 

phenology according to threshold value. In addition, the under- and 

overstory leaf-out dates showed different responses to temperature. 

Here we provided a detailed discussion of the answers to the 

questions presented in the introduction.  

 

4.1 How do satellite-based leaf-out and full-leaf dates differ 

from in-situ multi-layer phenology?  

The satellite-based leaf-out dates were more strongly 

related to understory than overstory in a deciduous broadleaf forest. 

Satellite-based leaf-out dates showed similar inter-annual variation 

and magnitude to understory leaf-out dates (Figure. 17). Regardless 

of the phenology algorithm, both the curvature change rate and 

threshold 10 % were similar to the in-situ understory leaf-out dates 

(Curvature change rate method: R2 = 0.87, bias = -0.75, threshold 

10 %: R2= 0.86, bias = -1.12). Although the amount of LAI in the 

understory vegetation accounts for only 30 % of total LAI, it seems 

that the signal of understory could strongly affect the satellite-based 

leaf-out signal because overstory LAI was around zero at the time 

of the understory leaf-out. This results are similar to the results of 

previous studies. Ahl et al. (2006) found that the MODIS LAI product 

was earlier than the in-situ overstory LAI and explained that the 

understory components may have influenced the satellite signal. Ryu 

et al. (2014) found that in-situ understory leaf-out date was similar 

to leaf-out date from MODIS NDVI, while overstory leaf-out dates 
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were about 13 days later. The previous study only looked at single 

year of data, while we found that a consistent bias across 8 years.  

The relationships between satellite-based full-leaf dates 

and in-situ multi-layer phenology were complex. The satellite-

based full-leaf dates using the curvature change rate method were 

similar to the threshold of 90 % and in-situ overstory full-leaf dates 

(Figure. 18). When we averaged 8 years data, we could see that 

satellite-based full-leaf dates from curvature change rate was 

similar to overstory full-leaf dates clearly (Figure. S2). Satellite-

based full-leaf dates could be related to mixture of understory and 

overstory signal because satellite-based full-leaf dates were later 

than overstory leaf-out dates (Figures. 17 and 18). Understory full-

leaf dates were earlier than overstory full-leaf dates by 5.6 days, 

and 7.7 days earlier than satellite-based full-leaf dates using the 

curvature change rate method (Figure. 18). In satellite view, the 

influence of overstory full-leaf dates could be larger than understory 

because the overstory LAI is more than three times larger than 

understory LAI at maturity (Figure. 14).  

Satellite-based full-leaf dates based on threshold method 

had higher R2 with understory full-leaf date than overstory full-leaf 

dates regardless of the threshold % (Figure. 19). This phenomenon 

can be verified through simulation (Figure. A2). In simulation, we 

fixed full-leaf dates as DOY 120 and leaf-out dates were adjusted 

at 5-days interval from DOY 70 to 95. After then we checked the 

extracted dates from curvature change rate and 10%, 90 % threshold 

method. Although we fixed full-leaf dates, we found that full-leaf 

dates from threshold method were increased according to the 

increased leaf-out dates (Figure. A2). On the other hand, there were 

no changed in the full-leaf dates from curvature change rate method. 
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Understory leaf-out dates and full-leaf dates could be strongly 

correlated (Richardson et al., 2010) and satellite-based leaf-out 

dates could be influenced by understory leaf-out dates (Figure. 17). 

Threshold-based full-leaf dates could be affected by leaf-out dates 

(Figure. A2), thus threshold-based full-leaf dates using satellite 

NDVI had high R2 with understory full-leaf dates. Therefore, 

estimated full-leaf dates could be affected by used phenology 

algorithm and we should be careful this when interpreting the full-

leaf dates.  

Although it is challenging to compare satellite imagery and 

field observed data, our results are reliable for the following reasons. 

We used NDVI value observed by top of the canopy LED to 

understand satellite-based leaf-out and full-leaf dates because the 

satellite products had considerable data gaps and the data gaps could 

affect extracted leaf-out dates (White et al., 2014). In observed LED 

data, there were fewer data gaps (only less than 5 days during from 

DOY 60 to 180) compared to satellite products (Figure. 15a). Overall, 

inter-annual and seasonal pattern of satellite-based and LED-based 

NDVI was well matched (Figure. 15a) and LED-based NDVI was 

highly correlated with satellites with various spatial resolutions (R2 

= 0.94, RMSE = 0.04, Figure. 16). Furthermore, the spatial 

heterogeneity of the canopy in our site is relatively low as there was 

no significant difference between the averaged NDVI from one and 

four pixel of MODIS and corresponding averaged NDVI of the pixels 

of Landsat (Ryu et al., 2014). We also confirmed that there was no 

significant difference (bias = -1.13 days) between the satellite-

based leaf-out and LED (22 m) NDVI-based leaf-out dates (Figure. 

A3).  
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4.2 Are the 10 % and 90 % thresholds from satellite-based 

NDVI always well matched with the leaf-out and full-leaf 

dates calculated by the curvature change rate?  

We found that 10 % and 90 % thresholds based on NDVI from 

LED 22 m were most closely matched with leaf-out and full-leaf 

dates calculated by curvature change rate method (Figure. 17 and 

18). Threshold 10 % and 90 % had 0.38 days bias with curvature 

change rate-based leaf-out and full leaf dates. These results are 

similar to previous studies. According to Shang et al. (2017), the 

leaf-out dates from 9.18 % threshold method showed similar dates 

with curvature change rate method-based leaf-out dates. Although 

the mixture of grassland and forest could not be fitted well with 

logistic fitting method (Cao et al., 2015; Shang et al., 2017), their 

threshold value was similar with ours.  

If so, are the 10 % and 90 % thresholds based on NDVI from 

LED 22 m always similar to the leaf-out and full-leaf dates 

calculated by the curvature change rate? At our site, there were no 

differences in the curvature change rate-based leaf-out and full-

leaf dates and 10 % and 90 % threshold during 8 years (Figure. 17 

and 18). The leaf-out dates differed only by one day in 2013, 2019 

and 2020. However, the difference between dates from two methods 

could be changed depending on the growth rate of vegetation. In our 

simulation results, the difference between leaf-out dates from both 

methods were larger when the spring growth rate was lower (Figure. 

A2). These results mean that the threshold value with the same leaf-

out date as the curvature change rate method could vary depending 

on vegetation growth rate. In addition, we found that threshold-based 

full-leaf dates were strongly affected by leaf-out dates, while 

curvature change rate method did not. These results suggest that 
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type of variables used for phenology detection could also make the 

difference between extracted dates from threshold and curvature 

change rate methods. For example, canopy structure information (e.g. 

LAI), carbon flux (e.g. gross primary productivity (GPP)) and 

vegetation indices showed different spring growth rate even in the 

same site (White et al., 2014). In some sites, canopy structure and 

carbon flux increased more slowly than vegetation indices (Soudani 

et al., 2021a). Therefore, it is necessary to carefully consider and 

select a phenology algorithm according to the site characteristics and 

the used variables.  

 

4.3 What are the implications of the difference between 

satellite-based and multi-layer phenology? 

In-situ understory and overstory leaf-out dates responded 

to AGDD and NCD differently (Figure. 20). For AGDD, overstory 

leaf-out showed a stronger negative relationship than understory 

(Figure. 20a). On the other hand, understory showed a stronger 

positive correlation with NCD and overstory showed less correlation 

with NCD (Figure. 20b). In addition, Overstory leaf-out dates 

responded more sensitively to AGDD and the understory leaf–out 

dates were more sensitive to the NCD (Figure. 20). In the case of 

2013, we found that overstory leaf-out date had a low correlation 

with NCD compared to other years. (Figure. 20b). Even if we remove 

the 2013 data, the difference between overstory and understory 

leaf-out dates with NCD did not change significantly as the overall 

relationship between overstory leaf-out dates and NCD was R2 of 

0.4 (p-value > 0.1) and slope was 0.63 after removing 2013 data. 

The difference in response to temperature between under- and 

overstory species could be related to evolutionary aspects. In most 
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deciduous forests, understory species had earlier leaf-out dates than 

overstory species (Augspurger, 2004; Augspurger and Bartlett, 

2003; Gill et al., 1998; Richardson and O’Keefe, 2009; Seiwa, 1999). 

Understory have earlier leaf expansion in spring to avoid shade from 

overstory leaves. Extending the understory phenology by avoiding 

the shadow of the overstory leaves allows understory vegetation to 

maximize light absorption and used for energy to persist under 

overstory shade during the summer (Augspurger et al., 2005; Gill et 

al., 1998; Kwit et al., 2010; Seiwa, 1999; Vitasse, 2013). At the same 

time, understory are more likely to be exposed in the early spring 

frost (Augspurger, 2013; Hufkens et al., 2012; Vitasse et al., 2014). 

Therefore, to protect their leaves from spring frost, understory 

should respond sensitively to chill, thus understory leaf-out dates 

had strong positive correlation and sensitivity with NCD (Figure. 

20b). On the other hand, the overstory showed relatively weaker 

relationship with NCD because the overstory leaves emerge later and 

there is less possibility to be exposed to spring frost.  

What are the implications of different temperature responses 

of understory and overstory leaf-out?  We found that satellite-

based leaf-out dates tracked understory leaf-out dates (Figure. 17). 

In addition, we found that overstory was more sensitive to 

temperature increase than understory (Figure. 20). These results 

suggest that we need to be more careful in predicting total amount of 

carbon uptake from vegetation changes using satellite products. For 

example, numerous previous studies reported that the total amount 

of carbon uptake via photosynthesis could be increased because 

satellite-based leaf out dates are getting  earlier and growing 

seasons are getting longer (Myneni et al., 1997; Peñuelas and Filella, 

2009; Peñuelas et al., 2002; Piao et al., 2006; Piao et al., 2019). 



 

 ８９ 

Based on our data, we suggest that the amount of carbon uptake in 

deciduous forest may increase faster than previous expectation. In 

deciduous forest, the amount of LAI in the overstory is larger than 

the understory LAI and the amount of overstory photosynthesis is 

larger than understory generally (Misson et al., 2007; Muraoka et al., 

2008; Sampson et al., 2006). In our site, the overstory responds 

more sensitively to GDD, thus the leaf-out time of overstory is 

advanced earlier than that of understory according to warming. 

Therefore, overstory leaf-out dates, which have a greater impact on 

carbon uptake than leaf-out we see by using satellites, are changing 

more rapidly to climate change and it means that carbon uptake may 

increase faster than expected.  

 

4.4 Limitations and Implications for future studies 

Fewer studies have presented in-situ autumnal phenological 

events compared to spring phenology. The mechanisms and trends in 

response to temperature changes during senescence period are still 

not well known due to lack of research (Piao et al., 2019). 

Furthermore, there were difficulties in interpreting the autumn data 

observed in the field. For example, in this study, we only investigated 

the relationship between ground- and satellite observation during 

spring period for the following reason. We defined the in-situ spring 

phenology of overstory using transmittance data and used NDVI for 

in-situ spring phenology of understory. In spring, detecting 

phenometrics using transmittance and NDVI had relatively small 

differences compared to senescence period (Soudani et al., 2021a). 

On the other hand, in the senescence period, NDVI and transmittance 

could show a distinct difference. For example, the dominant 

overstory species on our site exhibits marcescence which is that 
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withering of the leaves on tress without leaf-fall and abscission 

(Abadía et al., 1996). Therefore, transmittance had high magnitude 

consistently during senescence period compared to NDVI because 

the leaves hung on the tree. This phenomenon causes difficulties in 

determining leaf-fall dates by using transmittance.  

Additional in-situ multi-layer phenology observation-based 

studies are needed to understand and interpret satellite-based 

phenology. We observed multi-layer phenology over 8 years and 

revealed that satellite-based leaf-out dates were mostly determined 

by understory unfolding (Figure. 17) and full-leaf dates were mostly 

related to overstory phenology (Figure. 18). However, we are aware 

of the limitation that we observed only a single site. Although the 

observed overstory dominant species in this study accounts for 

around 24.2 % of the forests in South Korea, the spring phenology of 

overstory could differ according to location and environmental 

conditions (Migita et al., 2007; Nakajima et al., 2012). In addition, the 

vertical and horizontal vegetation profiles of the ecosystem could be 

different depending on the land cover type. For example, understory 

accounts for a significant portion of the total vegetation in the 

savannah (Moore et al., 2016). In evergreen needleleaf forest, where 

the overstory is formed at high density, the question remains whether 

the understory unfolding could affect the satellite-based leaf-out 

dates. To understand the relationship between multi-layer and 

satellite-based phenology with high spatiotemporal resolution in 

various sites, recently developed low-cost near surface sensors 

could be helpful (Kim et al., 2019; Ryu et al., 2010; Soudani et al., 

2012). The in-situ observed multi-layer phenology can be used to 

validate satellite-based multi-layer phenology detection method. 

Recently, method for estimating background reflectance using the 
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ratio of bidirectional reflectance distribution function and albedo data 

(Pisek et al., 2021) or estimating understory and overstory LAI using 

multi-angle imaging spectroradiometer (Liu et al., 2017) or 

estimating phenometrics using synthetic aperture radar (Soudani et 

al., 2021b) have been developed, but sufficient verification has not 

been made yet.  

 

Conclusion 

In this study, we comprehensively investigated the 

relationship between in-situ multi-layer and satellite-based 

phenology. We installed multi-channel spectrometers at above and 

below overstory canopy to monitor over- and understory canopy 

phenology separately. Our analyses resulted in three main findings. 

First, satellite-based leaf-out dates were strongly related to 

understory leaf-out dates while satellite-based full-leaf dates were 

related to overstory full-leaf dates. Second, depending on the 

threshold % and vegetation growth rate, the leaf-out and full-leaf 

dates calculated by the curvature change rate and threshold method 

are different. Third, overstory- and understory leaf-out dates 

showed different responses to temperature as overstory leaf-out 

dates were strongly correlated to AGDD while understory leaf-out 

dates were less strongly related to AGDD and also sensitive to NCD. 

Overall, these results suggested we need to be more careful in 

interpreting climate change-related vegetation changes based on 

satellite observations. The satellite-based spring phenology may 

have different results depending on which phenology algorithm was 

used based on our results. Furthermore, satellite-based leaf-out and 

full-leaf dates were mixture of understory and overstory signals, 

thus which vegetation layer affected the satellite observation signal 
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should be sufficiently considered when we explore the relationship 

between satellite-based spring phenology and climate changes.   
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Appendix A. Image-based multi-layer phenology monitoring 

To monitor the seasonal variation of multi-layer canopy 

phenology, camera (Nikon Coopix 4500; Nikon, Tokyo, Japan) was 

installed with fisheye lens (FC-E8; Nikon) at 18 m height on same 

tower with LED sensors (Choi et al., 2011). The camera was 

connected to a laptop using a LAN cable, thus the image files were 

stored in the laptop in JPEG format automatically. The camera was 

set to take pictures with one hour interval from 0900 to 1700. We 

visually confirmed whether the extracted multi-layer leaf-out dates 

were consistent with the collected photos. For example, the 

greenness of the understory (background color) was clearly different 

in 2014 and 2016 even though the overstory leaf-size was similar in 

2014 and 2016 (Figure. A1).  

 
A1) The fitted curve of overstory (1 - transmittance) and overstory (NDVI) in 2014 

(a) and 2016 (b) and collected images at overstory SOS in 2014 (c) and 2016 (d). 

We could see leaf size of overstory was similar in both images, but the understory 

(background) was much greener in 2016 because the days between understory SOS 

and overstory SOS was longer in 2014   
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Appendix B. Simulation of spring phenology detection 

We simulated phenological green-up curve of NDVI to 

understand the difference between threshold method and curvature 

change rate method. We fixed full-leaf date at DOY 120 and changed 

the leaf-out dates from DOY 70 to DOY 95 with 5-days interval. 

After then we fitted the NDVI value using logistic fitting method (Fig. 

A2a) and applied threshold 10 %, 90 % and curvature change rate 

method (Figure. A2b and c). In case of the leaf-out dates, threshold 

10 % and dates from curvature change rate method were increased 

according to delayed leaf-out dates (Figure. A2b). On the other hand, 

the two methods showed different results for full-leaf dates. The 

full-leaf dates based on threshold method were affected by leaf-out 

dates. The full-leaf dates based on the threshold 90 % were 

increased continuously as the leaf-out dates increased. However, 

the full-leaf dates from the curvature change method showed a 

constant value except case 6 (Figure. A2c).  

 
A2) Simulated phenological green-up curve of NDVI (a) and leaf-out dates and 

full-leaf dates from threshold and curvature change rate method (b and c).  
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Appendix C. Comparison between leaf-out dates from MODIS 

NDVI and LED NDVI 

In this study, we used NDVI observed by LED 22 m to 

understand satellite-based spring phenology. In addition, we 

confirmed that LED 22 m-based NDVI and satellite-based NDVI 

(MODIS and Landsat) had strong linear correlation (R2 = 0.94, Figure. 

3). We additionally confirmed that the LED- and satellite-based 

leaf-out dates were significantly correlated (Figure. A3). We fitted 

MODIS MCD43 product (500m spatial resolution) using logistic 

fitting method and then calculated leaf-out dates using 10 % 

threshold and curvature change rate method. During 8 years, the 

relationship had R2 of 0.84 and bias was -1.13 day. In 2018, we found 

that MODIS product showed much earlier leaf-out dates compared 

to LED-based. Except 2018, R2 was 0.94 and bias was -0.58.  

 

A3) Annual MODIS NDVI based leaf-out dates and LED NDVI leaf-out dates (22 

m) (a) and scatter plot between MODIS NDVI leaf-out dates and leaf-out dates 

from LED 22 m NDVI (b). To calculate MODIS based leaf-out dates, we used MCD43 

(500 m, spatial resolution) product.  
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Chapter 5. Conclusion 
 

Satellite remote sensing is a useful tools with many 

possibilities because it can easily monitor vegetation changes from 

canopy to global scale. However, to understand more accurate 

satellite observation values, evaluations based on observed in-situ 

data from the ground are required. In this dissertation, I conducted 1) 

developing low-cost filter-based near-surface remote sensing 

system to monitor vegetation phenology and SIF continuously, 2) 

monitoring SIF in a temperate evergreen needleleaf forest 

continuously, and 3) understanding the relationships between 

phenology from multi-layer canopies and satellite products. The 

developed near surface remote sensing system was low-cost, easy 

to use and showed reasonable performance compared to commercial 

spectroscopy system. As a result of continuously observed SIF and 

GPP in temperate evergreen needleleaf forest using near surface 

remote sensing system, it was confirmed that SIF and GPP showed a 

non-linear relationship. This result is contradictory to the linear 

relationship between satellite based SIF and GPP from numerous 

previous studies. From Chapter 4, I found that satellite-based leaf-

out and full leaf dates represent understory and overstory signals in 

a deciduous forest site, which requires caution when using satellite 

based phenology data into future prediction as overstory and 

understory canopy show different sensitivities to air temperature. 

Therefore, observed data in the field by using near-surface remote 

sensing system could show different results compared to studies 

using satellite imagery and the in-situ observed data could be used 

to evaluate and understand outputs from satellite products.  
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근접 표면 원격 센싱 시스템들을 이용한 지속적 식생 계절 

및 태양 유도 엽록소 형광물질 관측 
 

김종민 

서울대학교 환경대학원 협동과정조경학 

논문지도교수: 류영렬 

 

식물 계절 및 식생의 생리학적, 구조적인 변화를 지속적으로 

모니터링 하는 것은 육상생태계와 대기권 사이의 에너지, 탄소 순환 

등의 피드백을 이해하는데 필수적이다. 이를 관측하기 위하여 위성에서 

관측된 정규화 식생 지수 (NDVI) 태양 유도 엽록소 형광물질 (SIF)는 

대중적으로 사용되고 있다. 그러나, 우주 위성 기반의 자료는 다음과 

같은 한계점들이 존재한다. 1) 아직까지 고해상도의 위성 기반 SIF 

자료는 없고, 2) 위성 자료들은 대기의 질 (예, 구름)에 영향을 받아, 

흐린 날의 식생의 생리학적, 구조적 변화를 탐지하기 힘들다. 또한, 3) 

위성 이미지는 상부 식생과 하부 식생이 혼합되어 섞인 신호를 탐지하기 

때문에, 각 층의 식물 계절을 각각 연구하기에 어려움이 있다. 그러므로, 

위성에서 탐지한 신호를 평가하고, 식생의 생리학적, 구조적 변화를 

보다 정확히 이해하기 위해서는 근접 표면 원격 센싱 시스템을 이용한 

실측 자료 기반의 연구들이 요구된다. 본 학위논문의 주 목적은 근접 

표면 원격 센싱 시스템을 이용하여 식물 계절 및 SIF를 현장에서 

지속적으로 실측하고, 위성 영상 기반의 연구가 갖고 있는 한계점 및 

궁금증들을 해결 및 보완하는 것이다. 이 목적을 달성하기 위하여, 

아래와 같은 세가지 Chapter: 1) SIF를 관측하기 위한 필터 기반의 

저렴한 근접 표면 센싱 시스템 개발, 2)온대 침엽수림에서의 연속적인 

SIF 관측, 3)위성 기반의 식물 계절과 실측한 다층 식생의 식물 계절 

비교로 구성하고, 이를 진행하였다. 
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SIF는 식생의 구조적, 생리학적 변화를 이해하고, 추정하는 

인자로 사용될 수 있어, SIF를 현장에서 관측하기 위한 다양한 근접 

표면 원격 센싱 시스템들이 최근 제시되어 오고 있다. 그러나, 아직까지 

SIF를 관측하기 위한 상업적으로 유통되는 관측 시스템은 현저히 

부족하며, 분광계의 구조적 특성상 현장에서 관측 시스템을 보정 및 

관리하기가 어려워 높은 질의 SIF를 취득하는 것은 매우 도전 적인 

분야이다. 본 학위 논문의 Chapter 2에서는 SIF를 현장에서 보다 

손쉽게 관측하기 위한 필터 기반의 근접 표면 센싱 시스템(Smart 

Surface Sensing System, 4S-SIF)을 개발하였다. 센서는 대역 

필터들과 포토다이오드가 결합되어 있으며, 서보 모터를 사용하여 대역 

필터 및 관측 방향을 자동적으로 변경함으로써, 한 개의 포토다이오드가 

3개의 파장 범위(757, 760, 770 nm)의 빛 및 태양으로부터 입사되는 

광량과 식생으로 반사/방출된 광량을 관측할 수 있도록 고안되었다. 

포토다이오드로부터 인식된 디지털 수치 값은 상업적으로 판매되는 

초고해상도 분광계(QE Pro, Ocean Insight)와 뚜렷한 선형 관계를 

보이는 것을 확인하였다 (R2 > 0.99). 추가적으로, 4S-SIF에서 관측된 

SIF와 초고해상도 분광계를 이용하여 추출한 SIF가 선형적인 관계를 

이루는 것을 확인하였다. 식생의 생리학적 변화를 일으키는 화학 물질인 

DCMU(3-(3, 4-dichlorophenyl)-1, 1-dimethyurea)을 처리했음에도 

불구하고, 산출된 SIF들은 선형 관계를 보였다. 본 센서는 기존 

시스템들에 비해 사용하기 쉽고 간단하며, 저렴하기 때문에 다양한 

시공간적 스케일의 SIF를 관측할 수 있다는 장점이 있다. 

위성 기반의 SIF를 이용하여 총일차생산성(gross primary 

productivity, GPP)을 추정하는 연구는 최근 탄소 순환 연구 분야에서 

각광받고 있는 연구 주제이다. 그러나, SIF와 GPP의 관계는 여전히 많

은 불확실성을 지니고 있는데, 이는 SIF-GPP 관계를 조절하는 식생의 

구조적 및 생리학적 요인을 따로 분리하여 고찰한 연구들이 부족하기 때

문이다. 본 학위 논문의 Chapter 3에서는 지속적으로 SIF, GPP, 흡수된 

광합성유효복사량 (absorbed photosynthetically active radiation, 
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APAR), 그리고 클로로필과 카로티노이드의 비율 인자 (chlorophyll: 

carotenoid index, CCI)를 온대침엽수림에서 연속적으로 관측하였다. 

SIF-GPP 관계의 구체적인 메커니즘 관계를 밝히기 위하여, 광 이용효

율 (light use efficiency, LUEp ), 엽록소 형광 수득률 (chlorophyll 

fluorescence yield, Φ
F
) 그리고 SIF 광자가 군락으로부터 방출되는 비

율 (escape fraction, 𝑓𝑒𝑠𝑐)을 각각 도출하고 탐구하였다. SIF와 GPP의 

관계는 뚜렷한 비 선형적인 관계를 보이는 것을 확인했으며(R2 = 0.91 

with a hyperbolic regression function, daily), 일주기 단위에서 SIF는 

APAR에 대해 선형적이었지만 GPP는 APAR에 대해 뚜렷한 포화 관계

를 보이는 것을 확인하였다. 추가적으로 LUEp 와 Φ
F
 가 대기 온도에 따

라 반응하는 정도가 다른 것을 확인하였다. LUEp는 높은 온도에서 포화 

되었지만, Φ
F
는 포화 패턴을 확인할 수 없었다. 또한, 군락 수준에서의 

CCI와 Φ
F
가 뚜렷한 상관 관계를 보였다(R2 = 0.84). 이는 Φ

F
가 엽록

소 색소에 영향을 LUEp에 비해 더 강한 관계가 있을 수 있음을 시사한

다. 마지막으로, 𝑓𝑒𝑠𝑐가 태양광의 산란된 정도에 따라 반응을 하여, Φ
F
와 

LUEp의 강한 상관 관계를 형성하는데 기여하는 것을 확인하였다. 이러

한 발견은 온대 침엽수림에서 군락 수준의 SIF-GPP관계를 생리학적 

및 구조적 측면에서 이해하고 규명하는데 큰 도움이 될 것이다. 

식물 계절은 식생이 철을 따라 주기적으로 나타내는 변화를 관

측하는 반응이다. 식물 계절은 육상생태계와 대기권 사이의 물질 순환을 

이해하는데 매우 중요하다. 위성 기반의 NDVI는 식물 계절을 탐지하고 

연구하는데 가장 대중적으로 사용된다. 그러나, 활엽수림에서의 위성 

NDVI 기반의 개엽 시기 및 성숙 시기가 실제 어느 시점을 탐지하는지

는 불분명하다. 실제 활엽수림은 다층 식생 구조의 삼차원으로 이루어져 

있는 반면, 위성 영상은 다층 식생의 신호가 섞여 있는 이차원의 결과물

이기 때문이다. 따라서, 위성 NDVI 기반의 식물 계절이 다층 식생 구조

를 이루고 있는 활엽수림에서 실제 현장 관측과 비교하였을 때 어느 시

점을 탐지하는지에 대한 궁금증이 남는다. 본 학위 논문의 Chapter 4에



 

 １１９ 

서는 지속적으로 8년 동안 활엽수림내의 다층 식생의 식물 계절을 근접 

표면 원격 센싱 시스템을 이용하여 관측하고, 위성 NDVI 기반의 식물 

계절과 비교하였다. 다채널 분광계를 상부 식생의 위와 아래에 설치함으

로써, 상부 식생과 하부 식생의 식물 계절을 각각 연속적으로 관측하였

다. 식물 계절을 탐지하기 위하여 가장 많이 사용되는 방법인 1) 역치를 

이용하는 방법과 2) 이계도함수를 이용하는 방법을 사용하여 개엽 시기 

및 성숙 시기를 계산하고 이를 다층 식생의 식물 계절과 비교하였다. 본 

연구 결과, 첫번째로, 군락의 상층부에서 실측한 NDVI와 위성 기반의 

NDVI가 강한 선형 관계를 보이는 것을 확인했다 (R2=0.95 는 MODIS 

영상들 및 R2= 0.85 는 Landsat8). 두번째로, 이계도함수 방법과 10%

의 역치 값을 이용한 방법이 비슷한 개엽 시기를 추정하는 것을 확인하

였으며, 하부 식생의 개엽 시기와 비슷한 시기임을 확인하였다. 세번째

로, 이계도함수 방법과 90%의 역치 값을 이용한 방법이 비슷한 성숙 시

기를 산출하였으며, 이는 상부 식생의 성숙 시기와 비슷하였다. 추가적

으로 상부 식생의 개엽 시기와 하부 식생의 개엽 시기가 온도와 반응하

는 정도가 뚜렷하게 차이가 나는 것을 확인할 수 있었다. 상부 식생의 

개엽 시기는 적산 생장 온도 일수 (AGDD)와 강한 상관성을 보였고, 하

부 식생의 개엽 시기는 AGDD와 연관성을 갖고 있을 뿐만 아니라 추위 

일수(NCD)에도 민감하게 반응하는 것을 확인하였다. 이러한 결과는 위

성 NDVI 기반의 개엽 시기는 하부 식생의 개엽 시기와 연관성이 높고, 

성숙 시기는 상부 식생의 성숙 시기와 비슷하다는 것을 의미한다. 또한, 

상부 식생과 하부 식생이 온도에 다른 민감성을 갖고 있어, 위성에서 산

출된 식물 계절을 이용하여 기후변화를 이해하고자 할 때, 어떤 층의 식

생이 위성 영상에 주된 영향을 미치는지 고려해야 한다는 것을 시사한다.  

위성은 넓은 지역의 변화를 손쉽게 모니터링할 수 있어 많은 가

능성을 갖고 있는 도구이지만, 보다 정확한 위성 관측 값을 이해하기 위

해서는 현장에서 관측된 자료를 기반으로 한 검증이 요구된다. 본 학위 

논문에서는 1) 근접 표면 센싱 시스템을 개발, 2) 근접 표면 센싱 시스

템을 활용한 식생의 생리학적 구조적 변화의 지속적인 관측, 3) 다층 식



 

 １２０ 

생 구조에서 관측되는 식물 계절 및 위성에서 추정된 식물 계절의 연관

성 평가를 수행하였다. 개발한 근접 표면 센서는 상업 센서들과 비교했

을 때, 가격적으로 저렴하고 손 쉽게 사용할 수 있었으며, 성능적으로도 

부족함이 없었다. 근접 표면 센싱 시스템을 이용하여 SIF를 온대 침엽수

림에서 지속적으로 관측한 결과, 총일차생산성과 SIF는 비선형 관계를 

갖는 것을 확인하였다. 이는 많은 선행 연구들에서 발표한 위성 기반의 

SIF와 GPP가 선형적인 관계를 보인다는 것과는 다소 상반된 결과이다. 

다측 식생의 봄철 식물 계절을 연속적으로 관측하고, 위성 기반의 식물 

계절과 비교평가한 연구에서는 위성 기반의 개엽 시기는 하부 식생에 

영향을 주로 받고, 성숙 시기는 상부 식생의 시기와 비슷한 것을 확인하

였다. 즉, 근접 표면 센싱 시스템을 이용하여 현장에서 실측한 결과는 

위성 영상을 활용한 연구들과는 다른 결과를 보일 수도 있으며, 위성 영

상을 평가 및 이해하는데 사용될 수 있다. 따라서, 보다 정확한 식생의 

구조적, 생리학적 메커니즘을 이해하기 위해서는 근접 표면 센싱을 활용

한 현장에서 구축한 자료 기반의 더 많은 연구들이 필요하다는 것을 시

사한다.    
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