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Key Points: 
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forests  

 Physiological vegetation indices tracked the best evergreen forest photosynthetic 
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Abstract 

The accurate estimation of photosynthetic phenology using vegetation indices (VIs) is important 

for measuring the interannual variation of atmospheric CO2 concentrations, but the relative 

performances of structural and physiological VIs remain unclear. We found that structural VIs 

(normalized difference vegetation index, enhanced vegetation index, and near‐ infrared 

reflectance of vegetation) were suitable for estimating the start of the photosynthetically active 

season in deciduous broadleaf forests using gross primary production measured by FLUXNET as 

a benchmark, and a physiological VI (chlorophyll/carotenoid index) was better at identifying the 

end of the photosynthetically active season for deciduous broadleaf forests and both the start and 

end of season for evergreen needleleaf forests. The divergent performances were rooted in the 

combined control of structural and physiological regulations of carbon uptake by plants. Most 

existing studies of photosynthetic phenology have been based on structural VIs, so we suggest 

revisiting the dynamics of photosynthetic phenology using physiological VIs, which has 

significant implications on global plant phenology and carbon uptake studies. 

Plain Language Summary 

The uptake of photosynthetic carbon by forests is strongly seasonal, which can be characterized 

by photosynthetic phenology, e.g. the start and end of the photosynthetically active season (SOS 

and EOS, respectively). Satellite vegetation indices (VIs) can detect photosynthesis in canopies 

either structurally or physiologically. Clarifying the convergence or divergence of the performance 

of structural and physiological VIs is therefore crucial. This study compared the capacity of three 

structural VIs and one physiological VI for estimating SOS and EOS. Their performances were 

jointly controlled by structural and physiological regulations of carbon uptake by plants. The 

structural and physiological controls for deciduous broadleaf forests (DBFs) were nearly 

synchronous during green-up, and canopy structural changes were visible, so structural VIs were 

reliable for estimating SOS. Canopies, however, change slowly in evergreen needleleaf forests 

(ENFs) throughout the year and in DBFs during autumn, and the capacity to take up carbon is 

mainly limited by physiological stress, so physiological VIs outperformed structural VIs. Our 

study highlights the unique advantage of physiological VIs for estimating photosynthetic 

phenology. These findings constitute a step toward improving our understanding of the roles of 

the structural and physiological regulations of the dynamics of terrestrial carbon. 

1. Introduction 

Forests account for approximately four billion ha (~30%) of the terrestrial surface and offset the 

abundant anthropogenic CO2 emissions (Bonan, 2008). The uptake of photosynthetic carbon by 

forests is strongly seasonal, which substantially influences the interannual variation of atmospheric 

CO2 concentrations (Xia et al., 2015). A better understanding of the timing of photosynthetic 

activity, i.e. photosynthetic phenology, is therefore necessary for improving models of the global 

terrestrial ecosystem and for more accurately predicting future cycles of climate–carbon feedbacks 

(Peaucelle et al., 2019; Verger et al., 2015). 

The rate of carbon uptake by plants can be represented as the product of absorbed 

photosynthetically active radiation (APAR) and photosynthetic light-use efficiency (LUE) 

(Garbulsky et al., 2011; Penuelas et al., 2011). APAR determines the potential photosynthetic rate 

and is mainly controlled by canopy structure (Running et al., 2004). The potential photosynthetic 

rate, however, is often downregulated by environmental stresses, so LUE was introduced to 



 

 

quantify how much of this potential is actually realized (Penuelas et al., 2011). Environmental 

stresses can induce plant physiological responses, and excess APAR is dissipated by several 

photoprotective mechanisms, e.g. chlorophyll fluorescence emission and heat dissipation, which 

are remotely detectable (Demmig-Adams and Adams, 2000; Garbulsky et al., 2014). 

Satellite vegetation indices (VIs) have been widely used in recent decades to identify 

photosynthetic phenology and its response to climate change (Chang et al., 2019; D’Odorico et 

al., 2015; Gonsamo et al., 2012; Middleton et al., 2016; Wu et al., 2017). The information contents 

of existing VIs can be categorized into structure and physiology. Structural VIs mainly represent 

vegetation biomass, with typical examples including the normalized difference vegetation index 

(NDVI), enhanced vegetation index (EVI) and near‐ infrared reflectance of vegetation (NIRv). 

NDVI and EVI may be the most widely used VIs and are strongly correlated with APAR (Huete 

et al., 2002). NIRv accounts for the influence of background brightness and quantifies the near-

infrared reflectance of terrestrial vegetation (Badgley et al., 2017). NIRv scales well with in situ 

eddy covariance measurements of CO2 flux at monthly and longer time scales (Badgley et al., 

2019) because of its sensitivity to structure (Kimm et al., 2020). Physiological VIs such as the 

photochemical reflectance index (PRI) were designed to characterize plant physiology. PRI 

represents both the diurnal activity of the xanthophyll cycle and seasonal changes to 

chlorophyll/carotenoid pigment ratios (Penuelas et al., 1994; Wong and Gamon, 2015b), and has 

been extensively demonstrated to adequately estimate LUE (Garbulsky et al., 2011; Penuelas et 

al., 2011; Zhang et al., 2017). 

To the best of our knowledge, most, if not all, studies that have extracted photosynthetic phenology 

using VIs have relied on structural VIs. These VIs only measure potential photosynthetic rates, 

overlooking actual rates, so erroneous results are expected. For example, the start of the 

photosynthetically active season (SOS) for deciduous forests has often been estimated to be later 

than it was (Jeong et al., 2017; Marien et al., 2019), and both SOS and the end of the 

photosynthetically active season (EOS) for evergreen forests cannot be accurately estimated using 

structural VIs (Wu et al., 2017). The main challenge of using physiological VIs, e.g., PRI, to track 

photosynthetic phenology is the limited availability of the key bands for calculating them. For 

example, the 531 nm wavelength, which can detect changing pigment levels during the dissipation 

of heat due to excess APAR (Wong and Gamon, 2015a; b), is specified as an ocean band, and 

some preprocessing (e.g. atmospheric correction) is not operationally implemented by MODIS 

products. The calculation of PRI from satellite data sets is therefore time consuming, hindering its 

wide application for monitoring photosynthetic phenology. 

The recent update of the MODIS reflectance product using the Multi-Angle Implementation of 

Atmospheric Correction (MAIAC) algorithm has allowed the easy acquisition of surface 

reflectance for both terrestrial and ocean bands across large areas and at high frequencies of 

observation (Lyapustin et al., 2012). The advent of this product offers promising prospects for 

tracking photosynthetic phenology using PRI. MODIS is not equipped with the reference band in 

the original PRI formula and alternative bands have been selected to calculate “MODIS PRI” 

(Goerner et al., 2009; He et al., 2016; Middleton et al., 2016).The “MODIS PRI” calculated from 

bands 1 and 11 is more closely linked to the seasonal change in chlorophyll/carotenoid pigments 

than to the daily xanthophyll cycle, and it was recently referred to as the chlorophyll/carotenoid 

index (CCI) (Gamon et al., 2016). 

Structural and physiological VIs can theoretically provide complementary information about 

photosynthetic activity based on LUE paradigm: the structural VIs represent potential 



 

 

photosynthetic rates, and the physiological VIs characterize the short-term downregulation of the 

maximum LUE, thus providing a measure of the extent to which the potential is realized under 

stress (Penuelas et al., 2011). Our understanding of the unique advantages of each VI for estimating 

photosynthetic phenology and the differences in their performance across different forest types 

(e.g. deciduous and evergreen) for different phenological indicators (e.g. SOS and EOS), however, 

is still very limited. To fill this knowledge gap, we assessed and compared the performance of 

three structural VIs (NDVI, EVI and NIRv) and one physiological VI (CCI) to extract SOS and 

EOS for forest photosynthetic activity. All four VIs were calculated using MAIAC reflectance. In 

situ gross primary productivity (GPP) at the sites of eddy-flux towers in ENFs and DBFs was used 

as a benchmark to validate the VI-derived photosynthetic phenologies. 

2. Materials and Methods 

2.1. FLUXNET data 

We selected 33 ENF and 18 DBF sites with eddy-flux towers from the FLUXNET-2015 data set 

(available at http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/) (Table S1). Detailed 

information for each site can be found in the supporting information. Sites were selected based on 

the criteria: (1) they were in the Northern Hemisphere with latitudes >30° (see Figure S1) and (2) 

had at least five years of concomitant in situ GPP and MODIS observations during 2001-2014.  

The GPPs in the FLUXNET-2015 data set were calculated using gap-filled data for net ecosystem 

exchange and the standard flux-partitioning method (Lasslop et al., 2010). We used the GPPs from 

the nighttime-based approach (Reichstein et al., 2005), where nighttime data were used to 

parameterize a respiration model that was then applied to the entire data set to estimate ecosystem 

respiration. GPP was then calculated as the difference between ecosystem respiration and net 

ecosystem exchange. 

2.2. MODIS vegetation indices 

The VIs were calculated using surface reflectance from the MCD19A1 Version 6 product. This 

product was generated using the MAIAC algorithm, which uses an adaptive time series and spatial 

analysis to derive atmospheric aerosol concentration and surface reflectance without empirical 

assumptions (Lyapustin et al., 2012). MCD19A1 provides daily surface reflectance for MODIS 

bands 1-12 at spatial resolutions of 1 km. 

The time series of the MCD19A1 observations were first extracted at the closest pixel to each 

selected FLUXNET site for comparison with in situ GPP measurements. Pixels contaminated by 

cloud, snow or a high aerosol optical depth were then excluded based on the layer of quality 

assurance of the data set. Data with viewing zenith angles >40° were also excluded to minimize 

the effects of the bidirectional reflectance distribution function (BRDF) (Middleton et al., 2016; 

Wang et al., 2020). 

We analyzed the potentials of NDVI, EVI, NIRv and CCI to characterize SOS and EOS. These 

VIs were calculated as: 
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where B1, B2, B3 and B11 are surface reflectances in MODIS bands 1 (620–670 nm), 2 (841–876 

nm), 3 (459–479 nm) and 11 (526–536 nm), respectively. A scaled CCI (sCCI) was calculated to 

obtain only positive CCI values that compared better with other VIs (Rahman et al., 2004): 

( 1) / 2s C C I C C I                                                       (5) 

2.3 Extraction of SOS and EOS 

Remotely sensed phenologies using VIs are often biased by the effects of snow (Gonsamo et al., 

2012; Jin et al., 2017). Snow generally causes abnormal VI values. All VI values during winter 

(January, February and December) were therefore assigned as the 5% percentile of all available 

high-quality VIs during winters. This “fixed-winter” preprocessing was proposed by (Beck et al., 

2006) and can greatly reduce the effects of snow (Miao et al., 2013).  

Time series of in situ GPP and the VIs were smoothed using a double logistic function: 
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where Os is the smoothed observation, t is the date (day of year), Ob and Oe are observations (GPP 

or VIs) before spring green-up and after senescence, respectively, c and d are the slopes of the first 

and second inflection points associated with forest growth and recession speed, respectively, p and 

q are the dates of the two inflection points and Om is the maximum observation at the peak of 

growth. The parameters (Ob, Oe, c, d, p, q and k) were fitted against real observations using least 

squares. 

Two methods were adopted to extract SOS and EOS, and the first is the dynamic-threshold method. 

In situ smoothed GPP and VIs were normalized using:  
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where On is the normalized observation, Os is the smoothed observation using the double logistic 

function (Eq. 6) and Omin and Omax are the minimum and maximum smoothed observations, 

respectively. SOS and EOS were defined as the days of the year when On crossed a threshold. In 

this study, we specified the dynamic threshold as 0.2, because it is a commonly used threshold and 

performs well in the most of cases (Shen et al., 2014). 

The method proposed by (Gonsamo et al., 2013) (hereafter referred to as Gonsamo’s method) was 

also employed. Gonsamo’s method analytically estimates the SOS and EOS based on the minima 

and maxima of the first, second and third derivatives, i.e., 

SOS = p + 4.562/2Ob                                                    (8) 

EOS = q + 4.562/2Om                                                   (9) 

where p, q, Ob and Om are fitted parameters in Eq. (6). 



 

 

Note that the quality flag of MAIAC is very strict (Lyapustin et al., 2012), which results in low 

number of high-quality VI observations. We only selected reliable SOS and EOS estimations, such 

that the number of high-quality observations in a 20-days window around the SOS or EOS are 

larger than 2 (at least, one before and one after the SOS/EOS). This post-processing reduced the 

number of SOS and EOS estimates, but assured the reliability of the results. 

3. Results 

Whilst with slightly different statistics, SOS and EOS from dynamic-threshold and Gonsamo’s 

methods exhibited very similar patterns. Therefore, for simplicity, we only show here the results 

from dynamic-threshold method, and the results from the Gonsamo’s method can be found in the 

Supporting Information (Figure S2 and S3 for DBFs and ENFs, respectively). 

SOS and EOS over the DBF sites derived from NDVI, EVI, NIRv, and sCCI were compared with 

those derived from in situ GPP (see Figure 1). SOS derived from in situ GPP was accurately 

estimated by all four VIs, albeit with systematically earlier estimates (bias <0). NIRv estimated 

SOS for DBFs the best, with the highest R2 (0.70) and the smallest RMSE (9.57 d) and bias (-2.95 

d). In contrast, the performance of NDVI was less satisfactory (R2 = 60, RMSE = 13.14 d and bias 

= -7.54 d). EVI and sCCI provided intermediate accuracy values with slightly lower R2 (0.69 and 

0.67, respectively) and higher RMSEs (10.98 and 10.37 d, respectively) and biases (-4.95 and -

4.65 d, respectively) than for NIRv. The VI-detected EOSs were less correlated with their GPP 

counterparts (R2 ≤ 0.27) than were the VI-detected SOS. Estimates of EOS were systematically 

delayed for all four VIs, but the delay was much shorter for sCCI (3.37 d) than for the other three 

VIs (≥15.39 d). R2 (0.27) was higher and RMSE (12.19 d) was smaller for sCCI than the three 

structural VIs, demonstrating its potential for estimating GPP-derived EOS for the DBFs. Among 

the three structural VIs, NIRv and EVI performed comparably, with both much better than NDVI. 

 

Estimates of VI-derived SOS were systematically delayed over the ENF sites (Figure 2). The 

physiological VI (i.e., sCCI in this study), resulted in the smallest RMSE (16.61 d) and bias (9.78 

d), confirming its overwhelming performance over the three structural VIs. Similarly, the sCCI-

Figure 1. Scatterplots of the dates of the 

start of the photosynthetically active 

season (SOS, blue circles) and the end of 

the photosynthetically active season (EOS, 

yellow squares) estimated using the 

vegetation indices and in situ gross primary 

production (GPP) for deciduous broadleaf 

forests. SOS and EOS were extracted from 

dynamic-threshold method (Eq. (7)). 

Statistics are also shown in the figures with 

blue and yellow texts for SOS and EOS, 

respectively. DOY: day of year. 



 

 

based EOS estimates over the ENF sites correlated the best with GPP (R2 = 0.42) and had the 

smallest RMSE (17.69 d). 

 

4. Discussion 

The three structural VIs all estimated earlier SOSs over the DBF sites, as also reported by Fu et al 

(2014) and Jeong et al (2017). These earlier estimates were most obvious for NDVI (bias = -7.54 

d), due to its high sensitivity to understories. Greening in deciduous forests is often first observed 

at ground level, e.g. herbs and shrubs, so SOS estimated from NDVI mainly indicates the onset of 

greening of the understory rather than the trees (Ryu et al., 2014). EVI and NIRv were insensitive 

to background influences (Badgley et al., 2017; Huete et al., 2002) but had a slightly negative bias 

(-4.95 and -2.95 d, respectively), because trees require time to increase productivity after foliar 

unfolding, i.e. the timing of carbon assimilation lags behind structural change in deciduous forests 

(Kikuzawa, 2003). Contrarily, EOS for the DBF sites was later for the structural VIs compared 

with GPP, consistent with previous studies (Jeong et al., 2017; Marien et al., 2019). This occurs 

because photosynthesis in high-latitude northern deciduous forests is mainly stressed by 

photoperiod, although autumnal leaf fall is affected by temperature variability, causing 

photosynthesis to end before structural recession (Jeong et al., 2017; Medvigy et al., 2013). 

Structural VIs are widely used for detecting gradual morphological changes in vegetation, even 

though ENFs have relatively stable amounts of foliage seasonally. NDVI, EVI and NIRv are 

therefore not recommended for detecting the seasonality of GPP in evergreen forests (Gamon et 

al., 2016; Wang et al., 2020; Wong et al., 2019; Wu et al., 2017) because the derived SOSs and 

EOSs are highly uncertain (Figure 2). 

CCI can detect the physiological dynamics of GPP, unlike the structural VIs. Previous studies have 

reported that CCI was strongly correlated with the size of the pigment pool (Gamon et al., 2016; 

Wong et al., 2019), which is an important determiner of LUE and ultimately influences 

photosynthesis (Croft et al., 2017). The capacity of CCI to track subtle seasonal variations in 

physiology, specifically the chlorophyll/carotenoid ratio, was confirmed on both foliar (Wong et 

al., 2019) and canopy (Gamon et al., 2016; Wang et al., 2020) scales. Our study, for the first time, 

Figure 2. Scatterplots of the dates of the 

start of the photosynthetically active 

season (SOS, blue circles) and the end of 

the photosynthetically active season (EOS, 

yellow squares) estimated using the 

vegetation indices and in situ gross primary 

production (GPP) for evergreen needleleaf 

forests. SOS and EOS were extracted from 

dynamic-threshold method (Eq. (7)). 

Statistics are also shown in the figures with 

blue and yellow texts for SOS and EOS, 

respectively. DOY: day of year. 



 

 

demonstrated the promising potential of CCI to extract photosynthetic metrics of phenology, 

especially for those with gradual structural variation, e.g. EOS for DBFs and both SOS and EOS 

for ENFs. 

Forest GPP is simultaneously controlled by its capacities to absorb PAR and to convert APAR into 

fixed carbon (Penuelas et al., 2011). APAR, representing potential photosynthetic rate, is mainly 

controlled by forest structure so can be well characterized by structural VIs. Potential 

photosynthetic rates, however, are often downregulated, which can be tracked by the physiological 

VIs (Demmig-Adams and Adams, 2000). The structural and physiological controls of the capacity 

of DBF plants to take up carbon in spring are nearly synchronous, but canopy structural changes 

are more “visible” from remotely sensed observations (Gamon et al., 2016), so structural VIs are 

more reliable for estimating SOS for DBFs, especially those insensitive to background influences 

(e.g. NIRv). The structural recession of DBFs in autumn, however, is gradual, and the 

photosynthetic rate is mainly controlled by physiology (Gallinat et al., 2015), so EOS for DBFs is 

detected better by the physiological VIs, e.g., CCI, than by the structural VIs. The canopy structure 

of evergreens is relatively stable throughout the year, and the dynamics of GPP are mainly 

determined by physiological constraints (Gamon et al., 2016; Wong and Gamon, 2015b). 

Physiological VIs may therefore be best for ENFs. 

Solar‐ induced chlorophyll fluorescence (SIF) is also a widely used physiological proxy for 

tracking GPP dynamics (Jeong et al., 2017; Walther et al., 2016). It is deemed to be directly linked 

to photosynthetic activity (Porcar-Castell et al., 2014). For example, a recent study demonstrated 

its high accuracy in capturing EOS (Zhang et al., 2020). Therefore, the comparison between SIF 

and other VIs is imperative especially for the evergreen species, e.g., tropical forests, for which it 

is hard to extract their phenology. The temporal and spatial resolutions of satellite-observed SIF 

are very coarse, which makes the direct comparison between them difficult, whilst the advent of 

reconstructed SIF from MODIS data (Zhang et al., 2018) provides a new opportunity to compare 

the performance between SIF and other VIs. 

The structural VIs are also influenced by physiology (Badgley et al., 2019), and physiological VIs 

are similarly confounded by canopy structure (Middleton et al., 2016). Pioneering studies have 

separated the structural and physiological components to obtain more “pure” spectral observations 

(Hilker et al., 2011; Zeng et al., 2019), which can be potentially used to decouple the 

structural/physiological influence from physiological/structural VIs. The estimation of 

photosynthetic phenology is expected to be further improved if such “pure” structural or 

physiological VIs are adopted. 

5. Conclusions 

The capacities of structural (NDVI, EVI and NIRv) and physiological (CCI) VIs calculated using 

MAIAC reflectances for estimating forest photosynthetic phenology were assessed and compared 

over 51 forest sites with eddy-flux towers. Results showed that structural VIs are more suitable for 

estimating the SOS for DBFs, and the physiology-related CCI is better at identifying the EOS for 

DBFs and both the SOS and EOS for ENFs. The combined control of structural and physiological 

regulations on carbon uptake by plants is underlying the divergence. 

Our study highlights the unique advantage of CCI over existing structural VIs for estimating 

photosynthetic phenology, especially for ENFs and EOS for DBFs. Most of the existing trending 

and attributing studies of photosynthetic phenology have relied on structural VIs. Revisiting global 



 

 

photosynthetic phenology using CCI is therefore necessary, and this will also improve our 

understanding of the roles of the structural and physiological regulation of global GPP dynamics. 
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