20 research outputs found

    A comparative analysis of adaptive middleware architectures based on computational reflection and aspect oriented programming to support mobile computing applications

    Get PDF
    Mobile computing applications are required to operate in environments in which the availability for resources and services may change significantly during system operation. As a result, mobile computing applications need to be capable of adapting to these changes to offer the best possible level of service to their users. However, traditional middleware is limited in its capability of adapting to environment changes and different users requirements. Computational Reflection and Aspect Oriented Programming paradigms have been used in the design and implementation of adaptive middleware architectures. In this paper, we propose two adaptive middleware architectures, one based on reflection and other based on aspects, which can be used to develop adaptive mobile applications. The reflection based architecture is compared to an aspect oriented based architecture from a quantitative perspective. The results suggest that middleware based on Aspect Oriented Programming can be used to build mobile adaptive applications that require less processor running time and more memory space than Computational Reflection while producing code that is easier to comprehend and modify.8th IFIP/IEEE International conference on Mobile and Wireless CommunicationRed de Universidades con Carreras en Informática (RedUNCI

    QoS Contract Negotiation in Distributed Component-Based Software

    Get PDF
    Currently, several mature and commercial component models (for e.g. EJB, .NET, COM+) exist on the market. These technologies were designed largely for applications with business-oriented non-functional requirements such as data persistence, confidentiality, and transactional support. They provide only limited support for the development of components and applications with non-functional properties (NFPs) like QoS (e.g. throughput, response time). The integration of QoS into component infrastructure requires among other things the support of components’ QoS contract specification, negotiation, adaptation, etc. This thesis focuses on contract negotiation. For applications in which the consideration of non-functional properties (NFPs) is essential (e.g. Video-on-Demand, eCommerce), a component-based solution demands the appropriate composition of the QoS contracts specified at the different ports of the collaborating components. The ports must be properly connected so that the QoS level required by one is matched by the QoS level provided by the other. Generally, QoS contracts of components depend on run-time resources (e.g. network bandwidth, CPU time) or quality attributes to be established dynamically and are usually specified in multiple QoS-Profiles. QoS contract negotiation enables the selection of appropriate concrete QoS contracts between collaborating components. In our approach, the component containers perform the contract negotiation at run-time. This thesis addresses the QoS contract negotiation problem by first modelling it as a constraint satisfaction optimization problem (CSOP). As a basis for this modelling, the provided and required QoS as well as resource demand are specified at the component level. The notion of utility is applied to select a good solution according to some negotiation goal (e.g. user’s satisfaction). We argue that performing QoS contract negotiation in multiple phases simplifies the negotiation process and makes it more efficient. Based on such classification, the thesis presents heuristic algorithms that comprise coarse-grained and fine-grained negotiations for collaborating components deployed in distributed nodes in the following scenarios: (i) single-client - single-server, (ii) multiple-clients, and (iii) multi-tier scenarios. To motivate the problem as well as to validate the proposed approach, we have examined three componentized distributed applications. These are: (i) video streaming, (ii) stock quote, and (iii) billing (to evaluate certain security properties). An experiment has been conducted to specify the QoS contracts of the collaborating components in one of the applications we studied. In a run-time system that implements our algorithm, we simulated different behaviors concerning: (i) user’s QoS requirements and preferences, (ii) resource availability conditions concerning the client, server, and network bandwidth, and (iii) the specified QoS-Profiles of the collaborating components. Under various conditions, the outcome of the negotiation confirms the claim we made with regard to obtaining a good solution

    QoS Contract Negotiation in Distributed Component-Based Software

    Get PDF
    Currently, several mature and commercial component models (for e.g. EJB, .NET, COM+) exist on the market. These technologies were designed largely for applications with business-oriented non-functional requirements such as data persistence, confidentiality, and transactional support. They provide only limited support for the development of components and applications with non-functional properties (NFPs) like QoS (e.g. throughput, response time). The integration of QoS into component infrastructure requires among other things the support of components’ QoS contract specification, negotiation, adaptation, etc. This thesis focuses on contract negotiation. For applications in which the consideration of non-functional properties (NFPs) is essential (e.g. Video-on-Demand, eCommerce), a component-based solution demands the appropriate composition of the QoS contracts specified at the different ports of the collaborating components. The ports must be properly connected so that the QoS level required by one is matched by the QoS level provided by the other. Generally, QoS contracts of components depend on run-time resources (e.g. network bandwidth, CPU time) or quality attributes to be established dynamically and are usually specified in multiple QoS-Profiles. QoS contract negotiation enables the selection of appropriate concrete QoS contracts between collaborating components. In our approach, the component containers perform the contract negotiation at run-time. This thesis addresses the QoS contract negotiation problem by first modelling it as a constraint satisfaction optimization problem (CSOP). As a basis for this modelling, the provided and required QoS as well as resource demand are specified at the component level. The notion of utility is applied to select a good solution according to some negotiation goal (e.g. user’s satisfaction). We argue that performing QoS contract negotiation in multiple phases simplifies the negotiation process and makes it more efficient. Based on such classification, the thesis presents heuristic algorithms that comprise coarse-grained and fine-grained negotiations for collaborating components deployed in distributed nodes in the following scenarios: (i) single-client - single-server, (ii) multiple-clients, and (iii) multi-tier scenarios. To motivate the problem as well as to validate the proposed approach, we have examined three componentized distributed applications. These are: (i) video streaming, (ii) stock quote, and (iii) billing (to evaluate certain security properties). An experiment has been conducted to specify the QoS contracts of the collaborating components in one of the applications we studied. In a run-time system that implements our algorithm, we simulated different behaviors concerning: (i) user’s QoS requirements and preferences, (ii) resource availability conditions concerning the client, server, and network bandwidth, and (iii) the specified QoS-Profiles of the collaborating components. Under various conditions, the outcome of the negotiation confirms the claim we made with regard to obtaining a good solution

    Reconfigurable SCA Applications with the FraSCAti Platform

    Get PDF
    CORE A. Acceptance rate: 18% (35/189).International audienceThe Service Component Architecture (SCA) is a technology agnostic standard for developing and deploying distributed service-oriented applications. However, SCA does not define standard means for runtime manageability (including introspection and reconfiguration) of SOA applications and of their supporting environment. This paper presents the FraSCAti platform, which brings runtime management features to SCA, and discusses key principles in its design: the adoption of an extended SCA component model for the implementation of SOA applications and of the FraSCAti platform itself; the use of component-based interception techniques for dynamically weaving non-functional services such as transaction management with components. The paper presents micro-benchmarks that show that runtime manageability in the FraSCAti platform is achieved without hindering its performance relative to the de facto reference SCA implementation, Apache's Tuscany

    A comparative analysis of adaptive middleware architectures based on computational reflection and aspect oriented programming to support mobile computing applications

    Get PDF
    Mobile computing applications are required to operate in environments in which the availability for resources and services may change significantly during system operation. As a result, mobile computing applications need to be capable of adapting to these changes to offer the best possible level of service to their users. However, traditional middleware is limited in its capability of adapting to environment changes and different users requirements. Computational Reflection and Aspect Oriented Programming paradigms have been used in the design and implementation of adaptive middleware architectures. In this paper, we propose two adaptive middleware architectures, one based on reflection and other based on aspects, which can be used to develop adaptive mobile applications. The reflection based architecture is compared to an aspect oriented based architecture from a quantitative perspective. The results suggest that middleware based on Aspect Oriented Programming can be used to build mobile adaptive applications that require less processor running time and more memory space than Computational Reflection while producing code that is easier to comprehend and modify.8th IFIP/IEEE International conference on Mobile and Wireless CommunicationRed de Universidades con Carreras en Informática (RedUNCI

    Reflective mobile middleware for context-aware applications

    Get PDF
    The increasing popularity of mobile devices, such as mobile phones and personal digital assistants, and advances in wireless networking technologies, are enabling new classes of applications that present challenging problems to application designers. Applications have to be aware of, and adapt to, variations in the execution context, such as fluctuating network bandwidth and decreasing battery power, in order to deliver a good quality of service to their users. We argue that building applications directly on top of the network operating system would be extremely tedious and error-prone, as application developers would have to deal with these issues explicitly, and would consequently be distracted from the actual requirements of the application they are building. Rather, a middleware layered between the network operating system and the application should provide application developers with abstractions and mechanisms to deal with them. We investigate the principle of reflection and demonstrate how it can be used to support context-awareness and dynamic adaptation to context changes. We offer application engineers an abstraction of middleware as a dynamically customisable service provider, where each service can be delivered using different policies when requested in different contexts. Based on this abstraction, current middleware behaviour, with respect to a particular application, is reified in an application profile, and made accessible to the application for run-time inspection and adaptation. Applications can use the meta-interface that the middleware provides to change the information encoded in their profile, thus tailoring middleware behaviour to the user's needs. However, while doing so, conflicts may arise; different users may have different quality-of-service needs, and applications, in an attempt to full these needs, may customise middleware behaviour in conflicting ways. These conflicts have to be resolved in order to allow applications to come to an agreement, and thus be able to engage successful collaborations. We demonstrate how microeconomic techniques can be used to treat these kinds of conflicts. We offer an abstraction of the mobile setting as an economy, where applications compete to have a service delivered according to their quality-of-service needs. We have designed a mechanism where middleware plays the role of the auctioneer, collecting bids from the applications and delivering the service using the policy that maximises social welfare; that is, the one that delivers, on average, the best quality-of-service. We formalise the principles discussed above, namely reflection to support context-awareness and microeconomic techniques to support conflict resolution. To demonstrate their effectiveness in fostering the development of context-aware applications, we discuss a middleware architecture and implementation (CARISMA) that embed these principles, and report on performance and usability results obtained during a thorough evaluation stage

    Towards certifiable reconfigurable real-time mission critical software systems

    Get PDF
    This thesis makes a contribution towards the certification of reconfigurable real-time mission critical software systems. In highly reconfigurable software systems it is possible for a situation to arise where the system expends most or all of its resources on reconfiguring, and thus cannot provide sufficient resources to conduct intended computing functions. This anomaly has been termed "configuration thrashing" by the author due to its loose analogy to memory thrashing. If configuration thrashing is not eliminated, or at least minimised, then it is possible for circumstance to occur where reconfigurable systems cannot be certified due to potential failure to meet deadlines caused by configuration thrashing. The elimination of reconfiguration thrashing is a step towards certifiable dynamic reconfigurable systems capable of enforcing deadlines. The elimination of reconfiguration thrashing is necessary, though not sufficient, for this goal. In order to restrict configuration thrashing it is necessary to understand the possibilities available within reconfigurable software. A VDM-SL model is presented to explore the options available for reconfigurable architectures, and has allowed many operators to be formally specified providing a much greater understanding of the tasks involved in reconfiguration. The thesis demonstrates how model checkers can be used to check software processes for configuration thrashing using predefined CSP models, thus allowing system programmers to engineer configuration thrashing out of systems. However, model checkers are susceptible to state space explosion, particularly if models are large and / or complex, which may make the use of the model checkers impractical or even impossible for some systems. The thesis therefore also explores potential run-time solutions to configuration thrashing. These solutions allow developers to include additional logic / processes within their systems in order to eliminate configuration thrashing (without the use of model checkers). Several options are explored in-depth, from providing mechanisms for developers to choose when reconfiguration can / cannot occur, to a rule based solution. The exploration of the rule based solution explores issues such as rule expression, rule predictability, as well as potential core rules. The two approaches taken within this thesis to eliminate, or at least restrict sufficiently, configuration thrashing form a basis which would allow for the certification of reconfigurable real-time mission critical software systems.EThOS - Electronic Theses Online ServiceBAE SystemsGBUnited Kingdo

    An Autonomic Cross-Platform Operating Environment for On-Demand Internet Computing

    Get PDF
    The Internet has evolved into a global and ubiquitous communication medium interconnecting powerful application servers, diverse desktop computers and mobile notebooks. Along with recent developments in computer technology, such as the convergence of computing and communication devices, the way how people use computers and the Internet has changed people´s working habits and has led to new application scenarios. On the one hand, pervasive computing, ubiquitous computing and nomadic computing become more and more important since different computing devices like PDAs and notebooks may be used concurrently and alternately, e.g. while the user is on the move. On the other hand, the ubiquitous availability and pervasive interconnection of computing systems have fostered various trends towards the dynamic utilization and spontaneous collaboration of available remote computing resources, which are addressed by approaches like utility computing, grid computing, cloud computing and public computing. From a general point of view, the common objective of this development is the use of Internet applications on demand, i.e. applications that are not installed in advance by a platform administrator but are dynamically deployed and run as they are requested by the application user. The heterogeneous and unmanaged nature of the Internet represents a major challenge for the on demand use of custom Internet applications across heterogeneous hardware platforms, operating systems and network environments. Promising remedies are autonomic computing systems that are supposed to maintain themselves without particular user or application intervention. In this thesis, an Autonomic Cross-Platform Operating Environment (ACOE) is presented that supports On Demand Internet Computing (ODIC), such as dynamic application composition and ad hoc execution migration. The approach is based on an integration middleware called crossware that does not replace existing middleware but operates as a self-managing mediator between diverse application requirements and heterogeneous platform configurations. A Java implementation of the Crossware Development Kit (XDK) is presented, followed by the description of the On Demand Internet Computing System (ODIX). The feasibility of the approach is shown by the implementation of an Internet Application Workbench, an Internet Application Factory and an Internet Peer Federation. They illustrate the use of ODIX to support local, remote and distributed ODIC, respectively. Finally, the suitability of the approach is discussed with respect to the support of ODIC
    corecore