16 research outputs found

    Performance analysis of MIMO-SESS with Alamouti scheme over Rayleigh fading channels

    Get PDF
    Self-encoded spread spectrum (SESS) is a novel modulation technique that acquires its spreading sequence from the random input data stream rather than through the use of the traditional pseudo-noise code generator. It has been incorporated with multiple-input multiple-output (MIMO) systems as a means to combat fading in wireless channels. In this paper, we present the analytical study of the bit-error rate (BER) performance of MIMO-SESS systems under Rayleigh fading. The BER expressions are derived in closed form, and the veracity of the analysis is confirmed by numerical calculations that demonstrate excellent agreement with simulation results. The performance analysis shows that the effects of fading can be effectively mitigated by taking advantage of spatial and temporal diversities. For example, a 2 × 2 MIMO-SESS system can achieve about 7 dB performance improvement at 10-4 BER over a MIMO PN-coded spread spectrum system

    Performance analysis of MIMO-SESS with Alamouti scheme over Rayleigh fading channels

    Get PDF
    Las unidades fraseológicas han estado presentes en los repertorios desde los comienzos de la lexicografía. Y no solamente en los diccionarios generales, sino también en las catalogaciones especializadas, tanto de naturaleza monolingüe como bilingüe. No obstante, siempre ha existido dificultad terminológica para la categorización de los diferentes fenómenos del discurso repetido. Si bien esto no ha sido un inconveniente para que se hayan publicado numerosas compilaciones, sobre todo de refranes en un principio, ya que en la actualidad, fundamentalmente, gracias al auge de los estudios teóricos sobre fraseología, han proliferado otras obras (algunas aplicadas a la glosodidáctica, dada su importancia hoy en día) en las que se da cabida con mayor frecuencia a enunciados de valor específico y a locuciones; en unas ocasiones, ahondando en el origen que les dio entidad y, en otras, estableciendo etiquetados precisos que hasta el momento solían estar ausentes, pero con la finalidad, al fin y al cabo, de desentrañar el sentido, dada la escasa deducibilidad que presentan estas secuencias fijadas por la simple suma de sus elementos constitutivos. Un análisis de estos repertorios a través de los siglos, es, por tanto, el objetivo de este trabajo.Since the beginning of lexicography, phraseological units have been included in repertoires; not only in general dictionaries, but also in monolingual and bilingual specialized catalogues. However, there have always been terminological difficulties for classifying various phenomena of repeated speech. Although this has not been inconvenient for publishing many compilations of sayings, especially at the beginning, because nowadays they frequently include utterances with precise value and idioms, mainly due to the rise of theoretical studies on phraseology (some applied to ASL Linguistics, given its importance today). In them, sometimes, the origin of the phraseological unit is included and, in others, accurate labels that were absent before are determined in order, finally and ultimately, to unravel the meaning, given the reduced deductibility that these sequences present from the simple sum of their constituent elements. The objective of this work is, therefore, an analysis of these repertories throughout the centuries

    Novel precoded relay-assisted algorithm for cellular systems

    Get PDF
    Cooperative schemes are promising solutions for cellular wireless systems to improve system fairness, extend coverage and increase capacity. The use of relays is of significant interest to allow radio access in situations where a direct path is not available or has poor quality. A data precoded relay-assisted scheme is proposed for a system cooperating with 2 relays, each equipped with either a single antenna or 2-antenna array. However, because of the half-duplex constraint at the relays, relaying-assisted transmission would require the use of a higher order constellation than in the case when a continuous link is available from the BS to the UT. This would imply a penalty in the power efficiency. The simple precoding scheme proposed exploits the relation between QPSK and 16-QAM, by alternately transmitting through the 2 relays, achieving full diversity, while significantly reducing power penalty. Analysis of the pairwise error probability of the proposed algorithm with a single antenna in each relay is derived and confirmed with numerical results. We show the performance improvements of the precoded scheme, relatively to equivalent distributed SFBC scheme employing 16-QAM, for several channel quality scenarios. Copyright © 2010 Sara Teodoro, et al.European project CODIVPortuguese project CADWINPortuguese project AGILEFC

    Novel precoded relay-assisted algorithm for cellular systems

    Get PDF
    Cooperative schemes are promising solutions for cellular wireless systems to improve system fairness, extend coverage and increase capacity. The use of relays is of significant interest to allow radio access in situations where a direct path is not available or has poor quality. A data precoded relay-assisted scheme is proposed for a system cooperating with 2 relays, each equipped with either a single antenna or 2-antenna array. However, because of the half-duplex constraint at the relays, relaying-assisted transmission would require the use of a higher order constellation than in the case when a continuous link is available from the BS to the UT. This would imply a penalty in the power efficiency. The simple precoding scheme proposed exploits the relation between QPSK and 16-QAM, by alternately transmitting through the 2 relays, achieving full diversity, while significantly reducing power penalty. Analysis of the pairwise error probability of the proposed algorithm with a single antenna in each relay is derived and confirmed with numerical results. We show the performance improvements of the precoded scheme, relatively to equivalent distributed SFBC scheme employing 16-QAM, for several channel quality scenarios. Copyright © 2010 Sara Teodoro, et al.European project CODIVPortuguese project CADWINPortuguese project AGILEFC

    Design and Performance Analysis for LDPC Coded Modulation in Multiuser MIMO Systems

    Get PDF
    The channel capacity can be greatly increased by using multiple transmit and receive antennas, which is usually called multi-input multi-output (MIMO) systems. Iterative processing has achieved near-capacity on a single-antenna Gaussian or Rayleigh fading channel. How to use the iterative technique to exploit the capacity potential in single-user and/or multiuser MIMO systems is of great interest. We propose a low-density parity-check (LDPC) coded modulation scheme in multiuser MIMO systems. The receiver can be regarded as a serially concatenated iterative detection and decoding scheme, where the LDPC decoder performs the role of outer decoder and the multiuser demapper does that of the inner decoder. For the proposed scheme, appropriate selection of a bit-to-symbol mapping is crucial to achieve a good performance, so we investigate and find the best mapping under various cases.Analytical bound serves as a useful tool to assess system performance. The search for powerful codes has motivated the introduction of efficient bounding techniques tailored to some ensembles of codes. We then investigate combinatorial union bounding techniques for fast fading multiuser MIMO systems. The union upper bound on maximum likelihood (ML) decoding error probability provides a prediction for the system performance, with which the simulated system performance can be compared. Closed-form expression for the union bound is obtained, which can be evaluated efficiently by using a polynomial expansion. In addition, the constrained channel capacity and the threshold obtained from extrinsic information transfer (EXIT) chart can also serve as performance measures. Based on the analysis for fast fading case, we generalize the union upper bound to the block fading case

    Combined distributed turbo coding and space frequency block coding techniques

    Get PDF
    The distributed space-time (frequency) coding and distributed channel turbo coding used independently represent two cooperative techniques that can provide increased throughput and spectral efficiency at an imposed maximum Bit Error Rate (BER) and delay required from the new generation of cellular networks. This paper proposes two cooperative algorithms that employ jointly the two types of techniques, analyzes their BER and spectral efficiency performances versus the qualities of the channels involved, and presents some conclusions regarding the adaptive employment of these algorithms. © 2010 V. Bota et al.FP7/ICT/2007/21547

    Combined distributed turbo coding and space frequency block coding techniques

    Get PDF
    The distributed space-time (frequency) coding and distributed channel turbo coding used independently represent two cooperative techniques that can provide increased throughput and spectral efficiency at an imposed maximum Bit Error Rate (BER) and delay required from the new generation of cellular networks. This paper proposes two cooperative algorithms that employ jointly the two types of techniques, analyzes their BER and spectral efficiency performances versus the qualities of the channels involved, and presents some conclusions regarding the adaptive employment of these algorithms. © 2010 V. Bota et al.FP7/ICT/2007/21547

    Combined distributed turbo coding and space frequency block coding techniques

    Get PDF
    The distributed space-time (frequency) coding and distributed channel turbo coding used independently represent two cooperative techniques that can provide increased throughput and spectral efficiency at an imposed maximum Bit Error Rate (BER) and delay required from the new generation of cellular networks. This paper proposes two cooperative algorithms that employ jointly the two types of techniques, analyzes their BER and spectral efficiency performances versus the qualities of the channels involved, and presents some conclusions regarding the adaptive employment of these algorithms. © 2010 V. Bota et al.FP7/ICT/2007/21547

    Combined distributed turbo coding and space frequency block coding techniques

    Get PDF
    The distributed space-time (frequency) coding and distributed channel turbo coding used independently represent two cooperative techniques that can provide increased throughput and spectral efficiency at an imposed maximum Bit Error Rate (BER) and delay required from the new generation of cellular networks. This paper proposes two cooperative algorithms that employ jointly the two types of techniques, analyzes their BER and spectral efficiency performances versus the qualities of the channels involved, and presents some conclusions regarding the adaptive employment of these algorithms. © 2010 V. Bota et al.FP7/ICT/2007/21547

    Differential Coding for MIMO and Cooperative Communications

    Get PDF
    Multiple-input multiple-output (MIMO) wireless communication systems have been studied a lot in the last ten years. They have many promising features like array gain, diversity gain, spatial multiplexing gain, interference reduction, and improved capacity as compared to a single-input single-output (SISO) systems. However, the increasing demand of high data-rate in current wireless communications systems motivated us to investigate new rate-efficient channel coding techniques. In this dissertation, we study differential modulation for MIMO systems. Differential modulation is useful since it avoids the need of channel estimation by the receiver and saves valuable bandwidth with a slight symbol error-rate (SER) performance loss. The effect of channel correlation over differential MIMO system has not been studied in detail so far. It has been shown in the literature that a linear memoryless precoder can be used to improve the performance of coherent MIMO system over correlated channels. In this work, we implement precoded differential modulation for non-orthogonal and orthogonal space-time blocks codes (STBCs) over arbitrarily correlated channels. We design precoders based on pair-wise error probability (PEP) and approximate SER for differential MIMO system. The carrier offsets, which result because of the movement of the receiver or transmitter and/or scatterers, and mismatch between the transmit and receive oscillators, are a big challenge for the differential MIMO system. The carrier offsets make the flat fading channel behave as a time-varying channel. Hence, the channel does not remain constant over two consecutive STBC block transmission time-intervals, which is a basic assumption for differential systems and the differential systems break down. Double-differential coding is a key technique which could be used to avoid the need of both carrier offset and channel estimation. In this work, we propose a double-differential coding for full-rank and square orthogonal space-time block codes (OSTBC) with M-PSK constellation. A suboptimal decoder for the double-differentially encoded OSTBC is obtained. We also derive a simple PEP upper bound for the double-differential OSTBC. A precoder is also designed based on the PEP upper bound for the double-differential OSTBC to make it more robust against arbitrary MIMO channel correlations. Cooperative communication has several promising features to become a main technology in future wireless communications systems. It has been shown in the literature that the cooperative communication can avoid the difficulties of implementing actual antenna array and convert the SISO system into a virtual MIMO system. In this way, cooperation between the users allows them to exploit the diversity gain and other advantages of MIMO system at a SISO wireless network. A cooperative communication system is difficult to implement in practice because it generally requires that all cooperating nodes must have the perfect knowledge of the channel gains of all the links in the network. This is infeasible in a large wireless network like cellular system. If the users are moving and there is mismatch between the transmit and receive oscillators, the resulting carrier offset may further degrade the performance of a cooperative system. In practice, it is very difficult to estimate the carrier offset perfectly over SISO links. A very small residual offset error in the data may degrade the system performance substantially. Hence, to exploit the diversity in a cooperative system in the presence of carrier offsets is a big challenge. In this dissertation, we propose double-differential modulation for cooperative communication systems to avoid the need of the knowledge of carrier offset and channel gain at the cooperating nodes (relays) and the destination. We derive few useful SER/bit error rate (BER) expressions for double-differential cooperative communication systems using decode-and-forward and amplify-and-forward protocols. Based on these SER/BER expressions, power allocations are also proposed to further improve the performance of these systems. List of papers included in the dissertation This dissertation is based on the following five papers, referred to in the text by letters (A-E)
    corecore