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DESIGN AND PERFORMANCE ANALYSIS FOR LDPC CODED

MODULATION IN MULTIUSER MIMO SYSTEMS

Jianming Wu, PhD

University of Pittsburgh, 2006

The channel capacity can be greatly increased by using multiple transmit and receive anten-

nas, which is usually called multi-input multi-output (MIMO) systems. Iterative processing

has achieved near-capacity on a single-antenna Gaussian or Rayleigh fading channel. How to

use the iterative technique to exploit the capacity potential in single-user and/or multiuser

MIMO systems is of great interest. We propose a low-density parity-check (LDPC) coded

modulation scheme in multiuser MIMO systems. The receiver can be regarded as a serially

concatenated iterative detection and decoding scheme, where the LDPC decoder performs

the role of outer decoder and the multiuser demapper does that of the inner decoder. For

the proposed scheme, appropriate selection of a bit-to-symbol mapping is crucial to achieve

a good performance, so we investigate and find the best mapping under various cases.

Analytical bound serves as a useful tool to assess system performance. The search for

powerful codes has motivated the introduction of efficient bounding techniques tailored to

some ensembles of codes. We then investigate combinatorial union bounding techniques for

fast fading multiuser MIMO systems. The union upper bound on maximum likelihood (ML)

decoding error probability provides a prediction for the system performance, with which

the simulated system performance can be compared. Closed-form expression for the union

bound is obtained, which can be evaluated efficiently by using a polynomial expansion.

In addition, the constrained channel capacity and the threshold obtained from extrinsic

information transfer (EXIT) chart can also serve as performance measures. Based on the

analysis for fast fading case, we generalize the union upper bound to the block fading case.
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1.0 INTRODUCTION

1.1 MULTI-INPUT MULTI-OUTPUT (MIMO) CHANNEL

Research on wireless communication systems attracts more and more interests. While pre-

vious wireless communication systems mainly provide voice service, current research focuses

on providing service of voice, video and data access. The demanding requirement for the

service in future wireless networks poses many challenges. Data rate should be high while

the resource of the wireless system is limited. In particular, the spectrum is very scarce

and expensive, so we need to maximize the data rate within a given bandwidth, that is, the

spectrum efficiency.

One way of maximizing the spectrum efficiency is to increase the transmit power. How-

ever, unlike the conventional point-to-point communication channel, the overall throughput

is interference limited in a wireless network. Improving the transmit power of one user cannot

increase the spectrum efficiency of the whole wireless network, because the stronger trans-

mit power, the stronger interference for other users. Without increasing the total transmit

power, however, the spectrum efficiency can be greatly increased by using multiple transmit

and receive antennas — instead of using a single antenna at both ends, which will be referred

to as multi-input multi-output (MIMO) channels in this dissertation.

This is very promising for future wireless communication systems. In [1], Teletar investi-

gates the capacity of MIMO channels, and shows that the capacity linearly increase with the

number of antennas when the channels exhibit rich scattering. In [2], Foschini evaluates the

capacity of MIMO channels with Monte Carlo simulation and also shows that large capacity

can be obtained. This large spectral efficiency is based on the condition that a rich scattering

environment provides independent transmission paths from each transmit antenna to each
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receive antenna. A transmission and reception strategy that exploits this structure achieves

capacity on approximately min(Nt, Nr) separate channels, where Nt is the number of trans-

mit antennas and Nr is the number of receive antennas. Thus, capacity scales linearly with

min(Nt, Nr) relative to a system with just one transmit and one receive antenna.

To achieve any point close to the capacity curve, a symbol constellation with a Gaussian

distribution is generally needed. However, to be practical, we restrict our attention to phase

shift keying (PSK) or quadrature-amplitude modulation (QAM) constellations, in which case

the capacity is referred to as “constrained capacity.” Our calculation shows that constrained

capacity still can be significantly increased by using multiple antennas. This means that the

channel can support higher data rate by spreading the transmit power over all antennas.

Consequently, MIMO systems can play an important role in the wireless systems.

1.2 TURBO PRINCIPLE

Most wireless systems employ error correcting coding to prevent the transmitted data from

being corrupted by the channel. Coding introduces additional signal structures that can be

utilized by decoding algorithms. Turbo-like codes are a broad class of powerful error correct-

ing codes, which yields astonishing performance close to the Shannon information-theoretical

capacity limits, yet enabling simple decoding algorithms. Followed by the discovery of the

powerful turbo codes [3], iterative processing techniques have received considerable atten-

tion. Beyond its application to decoding, the iterative algorithm known as “turbo principle”

[4] has been successfully applied to other parts of a digital receiver, like equalization [5],

coded modulation [6], multiuser detection [7], and others.

Due to the invention of turbo code, interests of low-density parity-check (LDPC) codes

have been rekindled [8], [9], which were proposed by Gallager in 1963 [10]. Gallager demon-

strated desirable properties of these codes and proposed a practical iterative decoding algo-

rithm for these codes. However, Gallager’s poineering work was relatively ignored for about

three decades until the recent advent of turbo codes in 1993. An LDPC code can be rep-

resented by its parity-check matrix, which alternatively can be represented by a bipartite
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graph [11]. When decoding is going on the graph, messages are passed from the bit nodes

to the check nodes and then from the check nodes back to the bit nodes iteratively, which is

often referred to as the message passing algorithm.

Iterative processing has achieved near-capacity on a single-antenna Gaussian or Rayleigh

fading channel. How to use the iterative technique to exploit the capacity potential in single-

user and/or multiuser MIMO systems is of great interest. In an attempt to approach the

capacity limits of single-input single-output (SISO) channels, Narayanan and Stüber propose

an iterative detection and decoding scheme with convolutional codes in [12]. Hochwald and

Brink extend the iterative detection and decoding scheme to MIMO channel [13]. For mul-

tiuser systems, Wang and Poor propose iterative receiver of joint detection and decoding for

coded code-division multiple-access (CDMA) systems in [14]. Based on the “turbo princi-

ple” and the characteristics of LDPC codes, we propose an LDPC coded modulation scheme

for multiuser MIMO systems in [15]. As depicted in Fig.6, the receiver can be regarded as

a serially concatenated iterative detection and decoding scheme, where the LDPC decoder

performs the role of the outer decoder and the multiuser demapper does that of the inner

decoder.

We identified that appropriate choice of bit-to-symbol map is crucial to achieve a good

performance for this iterative multiuser demapping and decoding scheme. We investigate

and find the optimal constellation mapping under various cases. One of our contributions in

this area therefore is that we find the best mapping for LDPC coded modulation in single-

user and multiuser MIMO systems. The best mapping for LDPC codes is Gray mapping

while the best mapping for convolutional codes is anti-Gray mapping [16].

1.3 BOUNDING TECHNIQUE

The error performance analysis of coded modulation systems is very complex and difficult,

especially to render an exact closed-form expression, while close-form measures are very

useful to assess system performance. As specific codes are even harder to be evaluated,

the performance of the ensembles of codes is considered in this dissertation. Fano [17]
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and Gallager [18] upper bounds were introduced as efficient tools to determine the error

exponents of the ensembles of random codes. The advent of turbo codes and the rediscovery

of LDPC codes have motivated the introduction of efficient bounding techniques tailored

to some carefully chosen ensembles of codes. These bounds provide information up to the

ultimate capacity limit, which means that they are suitable for long block codes.

As mentioned in Section 1.2, LDPC and turbo-like codes can approach the capacity

limits when the block length of the codes grows into infinity. When these codes are applied

to MIMO systems, the codes can exploit the diversity both in space and time domain,

which means that the proposed concatenated LDPC coded modulation scheme is expected

to perform at an operating point near the MIMO capacity if the length of the code is large.

However, the length of the codes cannot be brought to infinity in practice. In current wireless

local area network (WLAN) protocol IEEE 802.11n, for example, the length of the LDPC

code is proposed to be about two thousand because of delay constraint. This means that

the performance evaluation at a moderate length is of our interest. Hence, we use union

bound as a useful means to evaluate MIMO system performance. The union bound is the

summation of every pairwise error probability. Based on the distance distribution [19], the

union bound can be calculated as the summation of distinct pairwise error probability, each

of which is weighted by the multiplicity of codewords with the same distance.

Tight union bound techniques based on the Fano-Gallager’s tilting measures have been

investigated for SISO channels in [20], [21]. In this dissertation, we investigate the combi-

natorial union bounding techniques in single-user and multiuser MIMO systems [22]. The

union upper bound on maximum likelihood (ML) decoding error probability for turbo-like

or LDPC codes provides a performance prediction of the proposed transmission system al-

though the ML decoding is usually prohibitively complex for long block codes. We derive

union upper bounds on the ML detection using the distance distribution of the outer LDPC

codes. Closed-form expressions are obtained which with specific SNRs and a constellation

mapping rule can be evaluated efficiently by using a polynomial expansion.

4



1.4 OUTLINE OF DISSERTATION

The rest of the dissertation is divided into five parts.

In Chapter 2, to exploit the capacity potential of MIMO channel, we propose an LDPC

coded modulation scheme with iterative demapping and decoding for multiuser MIMO sys-

tems. We study the mapping influence on the system performance for the proposed scheme.

We tried various bit-to-symbol mappings and find that Gray mapping is the best one under

different cases.

In Chapter 3, we first calculate the constrained capacity for single-user MIMO systems.

Based on it, the constrained capacity region for multiuser MIMO systems is determined.

In Chapter 4, we derive the union upper bound of error probability for the proposed

scheme in multiuser fast fading MIMO systems. Closed-form expression for the union bound

is obtained, which can be evaluated efficiently by using a polynomial expansion. We compare

the system performance with the union upper bound, the capacity limit, and the threshold

obtained from EXIT chart analysis.

In Chapter 5, we generalize the union upper bound to multiuser block fading MIMO

systems.

Chapter 6 contains our conclusions.
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2.0 LDPC CODED MODULATION SCHEME FOR MULTIUSER MIMO

SYSTEMS

2.1 MIMO SYSTEM

2.1.1 Channel model

We consider the wireless channel with Nt transmit and Nr receive antennas as shown in

Figure 1. The fading coefficient hij is the complex path gain from the j-th transmit antenna

to the i-th receive antenna. The coefficients are assumed to be independent identically

distributed (i.i.d.) complex-valued Gaussian random variables. In Chapter 2, Chapter 3

and Chapter 4, we assume that each Gaussian variable is zero mean and unit variance with

independent real and imaginary parts. This is intended to model Rayleigh fading channel.

In Chapter 5, we assume that each Gaussian variable can be non-zero, which is intended to

model Ricean channel. We can write the channel matrix as h = [hij] ∈ CNr×Nt . The noise

n is circularly symmetric complex Gaussian (CSCG) with zero mean and N0 variance, and

we write the noise as n = [ni] ∈ CNr . The signal-to-noise ratio (SNR) is defined as the

ratio of the received signal-energy to the energy of the noise whose one sided power spectral

density is N0. The received signal-energy is the symbol energy times the number of transmit

antennas. Thus, the SNR is defined as SNR = NtEs/N0.

Based on different fading environment, we first assume that the channel matrix h in-

dependently changes per channel-use, which is usually called the fast fading channel. In

Chapter 2, Chapter 3 and Chapter 4, we will focus on the fast fading channel model. In

chapter 5, we generalize the model to a block fading channel. For block fading channel, the

channel coefficients matrix remains constant for TD channel-uses. clearly, 1 6 TD 6 T , where
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T is the total number of channel-uses for transmission of one codeword. When TD = 1, it

becomes a fast fading channel; when TD = T , it is a quasi-static fading channel. Throughout

the dissertation, the channel state information (CSI) is assumed to be known at the receiver,

but not at the transmitter.

In fast fading case, the received signal yt at t-th channel-use can be written as

yt = htxt + nt, for t = 1, · · · , T, (2.1)

where we define the following vector variables:

yt :=




y1t

...

yNrt


 ,nt :=




n1t

...

nNrt


 ,xt :=




x1t

...

xNtt


 , x̄t :=

1√
Es

xt,

ht :=




ht
11 · · · ht

1Nt

...
. . .

...

ht
Nr1 · · · ht

NrNt


 ,

where Es is the symbol energy.

x 1
y 1

y 2

y
x

x 2

n

n 2

n 1h 11

h 21

h

h

Nt

Nr Nt

Nt1

Nr

Nr

Figure 1: MIMO channel model
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2.1.2 Channel capacity

Strictly speaking, the Shannon capacity is 0 for quasi-static fading channel, since for any

given data rate, there is a strictly positive probability that the channel matrix h is too bad

to support it, that is, a channel outage occurs. In this case, we can talk about a tradeoff

between outage probability and supportable rate. Namely, given a transmission rate R, we

can find Pout(R) such that for any rate less than R and any δ there exists a code for which

the error probability is less than δ for all but a set of h whose total probability is less than

Pout(R). The notion of outage capacity is studied in [1].

In this dissertation, we will mainly focus on the ergodic capacity of MIMO channels. In

such a case, the channel is assumed to be fast fading. The ergodic capacity is the highest

data rate that can be reliably transmitted by coding over infinite channel-uses. In the rest

of this dissertation, we will refer to capacity as the ergodic capacity.

The capacity of MIMO channel is computed by Telatar in [1] and by Foschini in [2].

Assuming the fading coefficient matrix h is known to the receiver, the channel capacity of a

MIMO system with Nt transmit antennas and Nr receive antennas is:

C = E
(

log2 det
(
INt + SNR h∗h

))

= E
(

log2 det
(
INr + SNR hh∗

))
(2.2)

At high SNR, the capacity is approximated as:

C = min(Nt, Nr) log(SNR) + o(SNR) (2.3)

We observe that the MIMO channel capacity increases with SNR as min(Nt, Nr) log(SNR),

in contrast to log(SNR) for single-antenna channels at high SNR. This result suggests that

the multiple antenna channel can be viewed as min(Nt, Nr) parallel spatial channels.

To achieve any point on the capacity curve, a symbol constellation that is the channel

input with a Gaussian distribution is usually needed. However, to be practical, we restrict

our attention to PSK or QAM constellations. We will refer to capacity as constrained capacity

when the input is restricted to modulated constellation symbols.
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2.2 LDPC CODE

LDPC codes have shown extreme success in communication system design due to their

capacity approaching performance on SISO channels [23] and MIMO channels [13]. One of

the most desirable characteristics of turbo-like and LDPC codes is that the complexity of

the decoder grows linearly over the length of the code. This advantage can be used to attain

a near capacity performance by using an extremely long block length code. When employed

for MIMO channels, the soft-in soft-out message passing decoder can exploit the diversity

benefits available in space, time and frequency domain. As the results, if the length of the

outer code grows to infinity, the performance of the concatenated scheme can be brought

close to the MIMO channel capacity. Our interest is to investigate the performance of LDPC

codes in a multiuser MIMO system.

LDPC codes are codes specified by a parity-check matrix H that contains mostly 0’s and

relatively few 1’s. In particular, an (N, J,K) LDPC code is a code of block length N with

a parity-check matrix, where there are J 1’s in a column and K 1’s in a row. An (N , J , K)

LDPC code can be represented by a bipartite graph as shown in Figure 2, whose code rate

is Rc = 1−J/K. Each edge in the graph is related to the non-zero entry of the parity-check

matrix H.

Figure 2: Bipartite graph of an (8, 2, 4) LDPC code.

The low-density matrix H of size N(1−Rc)×N is randomly generated. By performing

the Gaussian elimination, H matrix can be represented in a systematic way as [I|P ], where

I is the identity matrix of size N(1−Rc)×N(1−Rc) and P is the parity check part of size

N(1−Rc)×NRc. The generator matrix is constructed as [P ′|I], where ′ denotes transpose.

9



Codewords are generated by using the generator matrix, which is the same for the senders

in our system.

Gallager proposed a probabilistic decoding algorithm for a LDPC code in [10]. Later

Tanner constructed a bipartite graph and applied Gallager’s decoding method on it. On

the bipartite graph, there are two disjoint sets of nodes. One set of nodes, called bit nodes,

corresponds to the bits in a codeword, and the other set of nodes, called check nodes,

corresponds to the set of parity check equations. Connections between these two sets of

nodes are determined by the parity check matrix. When decoding is going on, the message

is passed from the bit nodes to the check nodes and then from the check nodes back to the

bit nodes iteratively.

Based on the “turbo principle” and the characteristics of low density parity check (LDPC)

codes, we propose a soft demapping method for modulation, which is combined with soft

decoding for LDPC codes in an iterative manner in the multiuser MIMO system. The

receiver can be regarded as a serially concatenated iterative decoding scheme, where the

LDPC decoder performs the role of outer decoder and the demapping device does that

of the inner decoder. Previous study [16] has shown that the appropriate choice of bit-

to-symbol map is crucial to achieve a good performance in such a concatenated scheme for

convolutional codes. In this chapter, we focus on studying the mapping influence and finding

the best bit-to-symbol mapping for LDPC codes.

2.3 MULTIUSER MIMO SYSTEM MODEL

The concatenated transmission scheme with turbo-iterative demapping and decoding for

single user is shown in Figure 3.

We further consider a multiuser MIMO system with two senders and one receiver. The

simple multiuser system model is shown in Figure 4 and multiuser MIMO channel model is

shown in Figure 5. The detailed system model is shown in Figure 6. Each sender is equipped

with Nt transmit antennas, and the receiver with Nr receive antennas. When only one sender

is active, the model is reduced to a single-user MIMO system. Furthermore, when Nt = 1

10



LDPC 

encoder
mapper

binary

 source

demapper
LDPC 

decoder

sink

Figure 3: Single-user MIMO system model

and Nr = 1, it becomes a single-input single-output (SISO) Rayleigh fading channel. If we

set all the fading coefficients equal to 1, it is just a additive white Gaussian noise (AWGN)

channel.

x1

sender 1

sender 2

x2

receiver

y

Figure 4: Simple multiuser MIMO system model.

At the transmitter, each LDPC encoder is combined with a space-time modulator. For

each sender, the binary source is encoded as an LDPC code cu = (cu
1 , · · · , cu

N), where u = 1, 2,

is the user index and N is the block length of the code. The mapping device takes a group

of log2(M) coded bits and maps them into a constellation symbol, where M is the size of
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NrNt
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nNr

y1

y2

yNr

Figure 5: Multiuser MIMO channel model.

the constellation. Then, the mapping device transforms the symbol sequence into a space-

time symbol matrix xu, i.e. the serial to parallel conversion of the symbol sequence without

an explicit space-time coding. Two senders simultaneously transmit the space-time symbol

vectors in each MIMO channel-use.

At the receiver, the received signal at t-th channel-use is

yt = htxt + nt, for t = 1, · · · , T, (2.4)

where the vector variables are defined as following:

yt :=




y1t

...

yNrt


 ,nt :=




n1t

...

nNrt


 ,xt :=


x1

t

x2
t


 ,xu

t :=




xu
1t

...

xu
Ntt


 , x̄u

t :=
1√
Esu

xu
t ,

ht :=
(
h1t h2t

)
:=




h1t
11 · · · h1t

1Nt
h2t

11 · · · h2t
1Nt

...
. . .

...
...

. . .
...

h1t
Nr1 · · · h1t

NrNt
h2t

Nr1 · · · h2t
NrNt


 ,
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1
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1
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Figure 6: Detailed multiuser MIMO system model.
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where T = N
Nt log2(M)

is the number of channel uses with an assumption that N is a multiple

of Nt log2(M) without loss of generality; Esu for u = 1, 2, are the symbol energies of user

1 and user 2, respectively. we assume that they are equal, i.e., Esu = Es. Thus, this is

a model for equal SNRs for the two senders. The matrix ht is an [Nr × 2Nt] matrix with

i.i.d. complex-valued Gaussian random elements. For each sender, the channel matrix hut

for u = 1, 2 is the same as the described in the section 2.1.1. The SNR in multiuser MIMO

systems is defined as the ratio of the received signal-energy per user to the energy of the noise

whose one sided power spectral density is N0. Thus, the SNR is defined as SNR = NtEs/N0.

Referring to the receiver part of Fig.6, the received signal is iteratively demapped and

decoded by mutually exchanging soft information between the inner multiuser demapper

and the outer LDPC decoders. The demapper computes the posterior log-likelihood ratios

(LLRs) Lu
mp for each coded bit by using the channel observation y and the prior informa-

tion Lu
ma, which is zero initially. This posterior information Lu

mp, after subtracting the prior

part Lu
ma, becomes the so-called “extrinsic information” Lu

me, which is passed to the corre-

sponding LDPC decoder for the initialization of the LDPC message passing algorithm. The

decoder then calculates the posterior LLRs Lu
cp as the output of the decoder. Subtracting

the prior part Lu
ca forwarded from the demapper, we obtain the extrinsic information Lu

ce of

the decoder, which is fed back to the multiuser demapper.

In this decoding scheme, there are two kinds of iterations: one is super iteration, a single

iteration between demapping and decoding blocks; the other is internal iteration, an iteration

in the LDPC decoder itself. It should be noted that in this system, the two independent

codewords from the two independent senders are simultaneously demapped and decoded.

2.4 MULTIUSER ITERATIVE SOFT DEMAPPING AND DECODING

In this section, we will focus on the multiuser iterative soft demapping. For simplicity the

script t is omitted in this section since the demapping algorithm is the same for any time t.

The multiuser demapper calculates the posterior probability on each unmapped bit in

the received signal vector from both senders. We arrange all the bits in order from 0 to

14



A = 2Nt log2(M)− 1, where the first Nt log2(M) bits are from the sender 1 and the second

Nt log2(M) bits from sender 2. We keep all calculations in log domain in this section.

Let Lmp(ck), Lma(ck) and Lme(ck) denote the posterior probability, the prior probability

and the extrinsic information on the k-th bit of the multiuser demapper, respectively; We

name the collection of the corresponding probability of the first Nt log2(M) bits as L1
mp, L1

ma

and L1
me and the second Nt log2(M) bits as L2

mp, L2
ma and L2

me that are shown in Fig.6; Let

τ(c0···A,k) denote all the possible combinations of c0 · · · cA excluding ck. By using the total

probability theorem, the log ratios of the posterior probability on each bits of the demapper

can be written as

Lmp(ck) = log

∑
p
(
ck = 1, τ(c0···A,k)|y

)
∑

p
(
ck = 0, τ(c0···A,k)|y

) . (2.5)

Because the parity check matrix H is randomly generated, it assures near independence

until a convergence is reached. Thus, we can write the joint probabilities as the product of

individual terms. Using Bayes’ rule, (2.5) can be re-written as

Lmp(ck) = log

∑
p
(
y|ck = 1, τ(c0···A,k)

)
p
(
ck = 1, τ(c0···A,k)

)
∑

p
(
y|ck = 0, τ(c0···A,k)

)
p
(
ck = 0, τ(c0···A,k)

)

= log
p(ck = 1)

p(ck = 0)
+ log

∑
p
(
y|ck = 1, τ(c0···A,k)

)
p
(
τ(c0···A,k)

)
∑

p
(
y|ck = 0, τ(c0···A,k)

)
p
(
τ(c0···A,k)

)

= Lma(ck) + Lme(ck), (2.6)

Let cbin(j,k) = c0 · · · ck−1ck+1 · · · cA be the binary decomposition of j such that j =
∑A

i=0,i6=k ci 2
(i−u(i−k)), where u(t) = 1, t > 0 and u(t) = 0, t < 0; Let B = 2A − 1. The

extrinsic information on the k-th bit equals to

Lme(ck) = log

B∑
j=0

p
(
y|ck = 1, cbin(j,k)

)
exp

( A∑

i=0,i 6=k
ci=1

Lma ci

)

B∑
j=0

p
(
y|ck = 0, cbin(j,k)

)
exp

( A∑

i=0,i 6=k
ci=1

Lma ci

) . (2.7)

To calculate Lme(ck), we need the channel output y. The transition probability can be

expressed as

p(y|x,h) =
1

(πNo)n/2
exp(− 1

No

‖y − hx‖2), (2.8)
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where n = 1 if the signal is real, otherwise, n = 2 if the signal is complex.

Let xk,1,j = map(ck = 1, cbin(j,k)); xk,0,j = map(ck = 0, cbin(j,k)). The function “map”

transforms the included bits into a constellation symbol. Substituting (2.8) into (2.7), we

obtain the extrinsic information as

Lme(ck) = log

B∑
j=0

exp
(
− 1

No

‖y − hxk,1,j‖2 +
A∑

i=0,i 6=k
ci=1

Lma ci

)

B∑
j=0

exp
(
− 1

No

‖y − hxk,0,j‖2 +
A∑

i=0,i 6=k
ci=1

Lma ci

) . (2.9)

This extrinsic information is used as the prior information for LDPC decoder. On the

code-graph, we perform the message passing algorithm [11] to decode the LDPC code.

2.5 BEST MAPPING FOR LDPC CODED MODULATION SCHEME IN

MULTIUSER MIMO SYSTEMS

In the proposed multiuser transmission-receive system, the factor to affect the system per-

formance is the mapping device once the LDPC code is selected and the iterative processing

is used. Appropriate selection of a bit-to-symbol mapping is crucial to achieve a good per-

formance, so we try to find the best mapping under different cases. We use the rate 1
2

(1024, 3, 6) LDPC codes in simulations, and try out all the different mappings considered

in [24], which include Gray, anti-Gray, natural, d21 and d23 maps. Figure 7 shows the five

different mappings for 8-PSK signals.

The Hamming distance between neighboring constellation symbols is 1 for Gray mapping;

the Hamming distance is largest between neighboring constellation symbols for anti-Gray

mapping.

The mutual information between the transmitted constellation symbol and the received

signal, referred to as symbol-wise mutual information, is independent of the applied mapping.
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000  001  011  010  110  111  101  100
1 111 1 11

Gray

000  001  010  011  100  101  110  111
312 1 12

Natural

000  011  101  110  111  001  010  100
2 122 2 22

D21

000  011  101  110  001  010  100  111
322 2 22

D23

000  111  001  110  011  100  010  101
232 3 32

Anti Gray

1

2

3

8-PSK

Figure 7: Five mappings for 8-PSK signal
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The mapping influences the partition of the total amount of the symbol-wise mutual infor-

mation. This partitioning of symbol-wise mutual information has an effect on the iterative

demapping and decoding.

We simulate extensively on AWGN and Rayleigh fading channels, and also in single-user

and multiuser MIMO systems. With simulation we try to determine the mapping which

goes most well with the use of iterative demapping and decoding receiver. On AWGN

and Rayleigh fading channels, we use 8-PSK modulation. To compare with the result for

convolutional codes, two simulation schemes are performed:

• Simulation scheme I—super iteration with internal iteration

• Simulation scheme II—super iteration without internal iteration

We know that there is no internal iteration for convolutional codes and the anti-Gray

mapping works best for convolutional codes on SISO channels [16]. We try to find the best

mapping for simulation scheme I and II. The results shown in Figure 8 and Figure 9 indicate

that the simulation scheme I works much better than the simulation scheme II.

From the figures, we can see that the Gray mapping is not as good as the anti-Gray

mapping for simulation scheme II, which agrees to the conclusion for convolutional codes.

This means that anti-Gray mapping works best when there is only super iteration. For

simulation scheme I, the Gray mapping greatly improves the performance and outperforms

the anti-Gray mapping. From the comparison we find that it is the best mapping among

the five mappings we tested. Since simulation scheme I works better than scheme II, Gray

mapping is the best one for the system.

The same results also hold in single-user and multiuser MIMO systems. In simulation,

we still use (1024, 3, 6) LDPC codes. They are mapped into 4-QAM signals and sequentially

separated into Nt symbol streams for transmission. In multiuser MIMO systems, each sender

simultaneously transmits Nt symbol streams to one receiver and transmits information at

the same rate. Each sender is equipped with two transmit antennas and the receiver with

two receive antennas. Since scheme I always works better than scheme II, we will compare

the performance for simulation scheme I. Figure 10 and Figure 11 show the performance with

Gray and anti-Gray mappings in single-user and multiuser MIMO systems, respectively.
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Figure 8: Performance comparison of different mappings on AWGN channel
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Figure 9: Performance comparison of different mappings on Rayleigh fading channel
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Figure 10: Performance comparison of different mappings on 2× 2 MIMO channel
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Figure 11: Performance comparison of different mappings in multiuser MIMO systems
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From the comparison, we again find that the Gray mapping performs better than the

anti-Gray mapping.

We found that the Gray mapping outperforms other mappings over a variety of channels

for simulation scheme I, which is different from the results of convolutional codes.
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3.0 CONSTRAINED CAPACITY CALCULATION FOR MULTIUSER

MIMO SYSTEMS

In the Chapter 2, we propose an LDPC coded modulation scheme with iterative demapping

and decoding, and find that Gray mapping performs best over AWGN and Rayleigh fading

channels, and also in single-user and multiuser MIMO systems. To assess the system per-

formance, we try to compare the system performance with the capacity limit and the upper

bound. We will focus on calculating the constrained capacity in this chapter 3, and derive

the upper bound in the next chapter 4.

The capacity of a channel is defined as the maximum mutual information between the

channel input and output. Shannons capacity theorem shows that this maximum mutual

information should be the maximum data rate that can be transmitted over the channel

with arbitrarily small error probability. When the instantaneous channel state information

(CSI) is known perfectly at the receiver, the capacity is the maximum mutual information

averaged over all channel states.

In a multiuser system with U senders, capacity becomes a U -dimensional region, where

the set of all rate vectors (R1, · · · , RU) are simultaneously achievable by all users.

To achieve any point on the capacity curve, a symbol constellation with a Gaussian

distribution, is usually needed. In practice, we restrict our attention to PSK or QAM

constellations. In the following sections, constrained capacity for single-user and multiuser

MIMO systems will be calculated.
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3.1 CONSTRAINED CAPACITY FOR SINGLE-USER MIMO SYSTEMS

In a single-user MIMO system, there is only one active sender in the system model. We

denote the transmitted signal vector as xu,for u = 1, 2.

Proposition 1. (Constrained capacity for MIMO channel with CSI)

The constrained capacity for a single-user MIMO system with CSI is equal to

Ch = log MNt − 1

MNt

MNt∑

k=1

Eh

{
En

{
log

MNt∑
i=1

exp
(− 1

2
(fT

k,i∆
−1fk,i − nT ∆−1n)

)}}
,

(3.1)

where ∆ is the covariance matrix of white Gaussian noise, fk,i = hxu
k + n − hxu

i , and E

denotes the expectation.

Proof : To calculate the capacity, we need to maximize the mutual information, aver-

aged over all channel states

Ch = max
p(xu)

I(xu;y)

= max
p(xu)

Eh{I(xu;y|h)}, u = 1, 2 (3.2)

We intend to use soft decoding in the receiver, so we study the channel with discrete-

valued multilevel/phase input and continuous-valued output. Further we assume the equiprob-

ability of input signals, and the maximization can be omitted. Then (3.2) can be written

as

Ch = max
p(xu)

∫∫∫
p(xu,y|h)p(h) log

p(xu,y|h)

p(xu|h)p(y|h)
dxu dy dh

= max
p(xu)

MNt∑

k=1

p(xu
k)

∫∫
p(h)p(y|xu

k ,h) log
p(y|xu

k ,h)

p(y|h)
dy dh

=
MNt∑

k=1

1

MNt

∫∫
p(h)p(y|xu

k ,h) log
p(y|xu

k ,h)
∑MNt

i=1 p(y|xu
i ,h) 1

MNt

dy dh

= log MNt − 1

MNt

MNt∑

k=1

Eh

{
En{log

MNt∑
i=1

p(y|xu
i ,h)

p(y|xu
k ,h)

}
}

,
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where

p(y|xu
i ,h)

p(y|xu
k ,h)

= exp
(− 1

2
(fT

k,i∆
−1fk,i − nT ∆−1n)

)
. ¤

In a certain mobile environment, the receiver cannot easily estimate the channel. For such

a case, we derive the constrained capacity for unknown channel state both at the receiver

and at the transmitter, which is given in the following corollary.

Corollary 1. (Constrained capacity for MIMO channel without CSI)

The constrained capacity for a single-user MIMO system without CSI is equal to

Ch̄ = log MNt − 1

MNt

MNt∑

k=1

En

{
log

MNt∑
i=1

Eh

{
exp

(− 1
2
fT
k,i∆

−1fk,i

)}

Eh

{
exp

(− 1
2
nT ∆−1n

)}
}

. (3.3)

3.2 CONSTRAINED CAPACITY REGION FOR MULTIUSER MIMO

SYSTEMS

We now calculate the capacity region for multiuser MIMO systems. Let S ⊆ {1, 2, · · · , U},
where U is the number of senders. Let Sc denote the complement of S. Let R(S) =

∑
u∈S Ru,

and let x(S) = {xu : u ∈ S}, where Ru is the achievable rate for user u. According to the

basic information theory [25], we know that the capacity region for a multiuser system is the

closure of the convex hull of the rate vectors satisfying the follows:

R(S) 6 I
(
x(S);y|x(Sc)

)
,

for all S ⊆ {1, 2, · · · , U} for some product distribution p1(x
1)p2(x

2) · · · pU(xU) on x1x2 · · ·xU .

For example, the capacity region of a 2-user MIMO system is the closure of the convex hull

of all (R1, R2) pairs satisfying

R1 6 I(x1;y|x2),

R2 6 I(x2;y|x1),
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R1 + R2 6 I(x1,x2;y).

To determine the capacity region of a 2-user MIMO system, we need to calculate the

capacities at corner points, that is, I(x1;y|x2), I(x2;y|x1) and I(x1,x2;y). We calculate

the sum mutual information I(x1,x2;y) first.

Proposition 2. (Constrained sum mutual information for 2-user MIMO systems)

The constrained sum mutual information with CSI equals

I(x1,x2;y) = 2 log MNt − 1

M2Nt

MNt∑
i,j=1

Eh

{
En

{
log

∑MNt

k,l=1 exp(−1
2
gT

i,j,k,l∆
−1gi,j,k,l)

exp(−1
2
nT ∆−1n)

}}
,

(3.4)

where gi,j,k,l := hxi,j + n− hxk,l and xi,j :=


x1

i

x2
j


.

Proof : The sum mutual information is the difference of entropies averaged over all

channel states

I(x1,x2;y) = Eh{I(x1,x2;y|h)}
= Eh{H(x1,x2|h)−H(x1,x2|y,h)}
= Eh{H(x1|h) + H(x2|x1,h)}+

∫∫∫∫
p(x1,x2,y,h) log p(x1,x2|y,h)dx1 dx2 dy dh

= H(x1) + H(x2)− 1

M2Nt

MNt∑
i,j=1

Eh

{
Ey

{
log

∑MNt

k,l=1 p(y|x1
k,x

2
l ,h)

p(y|x1
i ,x

2
j ,h)

}}

= 2 log MNt − 1

M2Nt

MNt∑
i,j=1

Eh

{
En

{
log

∑MNt

k,l=1 exp(−1
2
gT

i,j,k,l∆
−1gi,j,k,l)

exp(−1
2
nT ∆−1n)

}}
. ¤

In the calculation, we assume that the input signals are equiprobable, and xu’s and h

are mutually independent.

Since the conditional mutual information I(x1;y|x2) and I(x2;y|x1) are symmetric, we

only need to calculate one of them, which is given in the following proposition.
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Proposition 3. (Constrained conditional mutual information for 2-user MIMO systems)

The constrained conditional mutual information with CSI equals

I(x2;y|x1) = log MNt − 1

M2Nt

MNt∑
i,j=1

Eh

{
En

{
log

∑MNt

l=1 exp(−1
2
gT

i,j,l∆
−1gi,j,l)

exp(−1
2
nT ∆−1n)

}}
,

(3.5)

where gi,j,l = hxi,j + n− hxi,l.

Proof : Proof is the same as Proposition 2.

3.3 CAPACITY CALCULATION RESULTS

The constrained capacities of the SISO channel for various constellations appear in Figure

12. Figure 13 and Figure 14 show the constrained capacities for various constellations in a

single-user MIMO system with 2× 2 antennas and 4× 2 antennas, respectively. Here 2× 2

antennas mean that the number of transmit antennas and receive antennas are both two.

The constrained capacity calculation for single-user MIMO systems is also independently

shown in [13].

From the comparison of Figure 12, Figure 13 and Figure 14, we can see that the capacity

can be significantly increased by using multiple antennas. For example, for 4-QAM modula-

tion, transmission rate of 2 bits/channel-use occurs at about SNR=20 dB for 1× 1 antenna;

For 2×2 antennas, the rate of 2 bits/channel-use happens about at SNR=2 dB, and for 4×2

antennas the SNR is about at 0 dB. To achieve the same rate, a MIMO system requires less

power than a SISO sysetm. Also, we can compare the rates by fixing SNR. Fixing SNR=10

dB, the achievable rates are 1.75 bits/channel-use for 1 × 1 antenna, 3.75 bits/channel-use

for 2× 2 antennas, and 5.8 bits/channel-use for 4× 2 antennas. This demonstrates that we

can transmit signal with higher rate for MIMO systems.

Also, we compare the constrained capacity when CSI is known or unknown at the receiver.

Figure 15 shows that the channel capacity is increased when the receiver can estimate the

channel state information.
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Figure 12: Channel capacity: 1× 1 SISO channel
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Figure 13: Channel capacity: 2× 2 MIMO channel
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Figure 14: Channel capacity: 4× 2 MIMO channel
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Figure 16 and Figure 17 demonstrate the constrained capacity regions for BPSK mod-

ulation and 4-QAM modulation, respectively. In this multiuser MIMO system, each sender

is equipped with two transmit antennas and the receiver with two receive antennas.

From Figure 16 and Figure 17, we can see that the shape of capacity region changes

from rectangle to pentagon, and from pentagon back to rectangle with SNR increasing. To

simultaneously achieve high data rates for both senders, rectangle capacity region is desirable.
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Figure 16: Capacity region of 2-user MIMO systems: BPSK modulation case
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4.0 PERFORMANCE ANALYSIS FOR LDPC CODED MODULATION

SCHEME IN FAST FADING MULTIUSER MIMO SYSTEMS

In this chapter, we derive a union upper bound for the LDPC coded modulation scheme in

the multiuser MIMO system, which can be compared with the simulated system performance

as a benchmark. We first discuss the properties of an ensemble of LDPC codes. Next the

union upper bound is derived for multiuser MIMO systems. Finally, we investigate the union

upper bound under a variety of scenarios.

4.1 DISCUSSION ON THE ENSEMBLE OF LDPC CODES

Error performance of coded modulation systems is very complex and difficult to obtain

exact expressions. As specific codes are even harder to be evaluated, the performance of the

ensembles of codes is considered in this research.

Both senders use the codes from the same ensemble; thus, they share the same properties

of the ensemble of LDPC codes, which will be utilized in the following derivation of union

upper bounds. The transformation of an LDPC code into a space-time code is shown in

Figue 18.

Let H be the ensemble of the low-density parity-check matrices H, each of which defines

an (N ,J ,K) LDPC code. Let C be the ensemble of (N ,J ,K) LDPC codes defined by H.

The ensemble H is closed under the column permutation. That is, a column permutation of

a particular H ∈ H produces another low density parity check matrix belong to the same

ensemble. Accordingly, a permutation of a certain codeword in a particular codebook is a

codeword in another codebook in the ensemble C. Let Cd be the set of all codewords with
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Figure 18: Transformation of an LDPC code into a space-time code.

Hamming distance d from any codebook in the ensemble C, and denote the corresponding

set of space-time symbol matrices as Xd.

We assume that every code C ∈ C is equi-probably selectable; so does every codeword

c ∈ C. Thus, each bit within a randomly selected codeword in Cd can be modelled as a

Bernouli distributed random variable with the parameter d/N . We will refer to this as the

equiprobable property of the ensemble of LDPC codes.

Next we will introduce the notion of an ensemble-averaged distance distribution of LDPC

codes. Litsyn and Shevelevin propose a number of ways to calculate the distance distributions

in [19]. For a particular code C ∈ C, the distance distribution is defined as:

S(C) :=
(
S0(C) = 1, S1(C), · · · , SN(C)

)
,

where Sd(C) = |{c ∈ C : θ(c) = d}| for d = 0, · · · , N , where θ(·) denotes the Hamming

weight and | · | denotes the cardinality of the set. Then, the ensemble-averaged distance

distribution can be defined as:

S(C) :=
(
S0(C), S1(C), · · · , SN(C)

)
, where Sd(C) = 1

|C|
∑

C∈C Sd(C) = |Cd|
|C| .
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4.2 UNION UPPER BOUND FOR LDPC CODED MODULATION

SCHEME

In this section, we derive a union upper bound for the LDPC coded modulation scheme in the

multiuser MIMO system. We first calculate the pairwise error probability by averaging over

the channel fading ensemble. Based on it, we further compute the pairwise error probability

averaged over the column distance distribution, which will be discussed in detail in the

following Section 4.2.2. The union upper bound is calculated by summing up the averaged

pairwise error probabilities for the binary modulation scheme. Then, the derivation of union

upper bound is extended to the case of an M -ary modulation scheme. Finally, we provide

an example to illustrate the calculation of the union upper bound.

4.2.1 Pairwise error probability averaged over fast fading channel state

Let x(d1,d2) :=


x1

(d1)

x2
(d2)


 denote the space-time symbol matrix, where x1

(d1) is mapped from

the codeword with Hamming weight d1 for user 1 and x2
(d2) mapped from the codeword

with Hamming weight d2 for user 2. Assume the all-zero codewords are transmitted for

both senders. We consider the probability of transmitting x(0,0) in favor of deciding x(d1,d2),

conditioned on the channel state. This pairwise error probability based on ML detection can

be upper bounded by using the Chernoff bound

p
(
x(0,0) → x(d1,d2)|h

)
6 exp

(
− d2

(
x(0,0) ,x(d1,d2)

)

4N0

)
, (4.1)

where

d2
(
x(0,0) ,x(d1,d2)

)
=

T∑
t=1

‖htxt,(0,0) − htxt,(d1,d2)‖2
F ;

xt,(0,0) and xt,(d1,d2) are the t-th column of x(0,0) and x(d1,d2) respectively; F denotes the

Frobenius norm.

To calculate the upper bound on the pairwise error probability averaged over the channel

state, we take the average of the R.H.S of (4.1) with respect to the channel fading matrix h.

For single-user MIMO systems, the pairwise error probability averaged on the channel state
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can refer to [26]. For multiuser MIMO systems, the detailed derivation of pairwise error

probability averaged on channel state can refer to Appendix A. Then, the pairwise error

probability can be bounded by

p
(
x(0,0) → x(d1,d2)

)
6

T∏
t=1

(
1 +

|xt,(0,0) − xt,(d1,d2)|2
4N0

)−Nr

=
T∏

t=1

(
1 + |x̄t,(0,0) − x̄t,(d1,d2)|2ρ

)−Nr

(4.2)

where x̄t,(0,0) = 1√
Es

xt,(0,0), x̄t,(d1,d2) = 1√
Es

xt,(d1,d2) and ρ = Es

4N0
.

To illustrate the reasoning clearly, we first consider the BPSK mapping case. Let wu
t :=

|x̄u
t,(0)

−x̄u
t,(du)

|2
4

denote the weight of the t-th column error of user u, for time epoch t = 1, · · · , T .

The weight wu
t takes a value from the set of {0, · · · , Nt} and thus it has at most Nt+1 different

values. Then, (4.2) can be re-written as

p
(
x(0,0) → x(d1,d2)

)
6

T∏
t=1

(
1 + 4(w1

t + w2
t )ρ

)−Nr

. (4.3)

We notice that the pairwise error probability is determined by T column weight pairs

(w1
t , w

2
t ).

4.2.2 Pairwise error probability averaged over column distance distribution

We observe that the columns with the identical column weight pair (w1
t , w

2
t ) result in the

same term in the product of (4.3). Thus, we let li,j denote the number of columns of the

difference matrix (x̄(0,0)− x̄(d1,d2)), each of which has weight i from user 1 and weight j from

user 2. That is,

li,j :=
T∑

t=1

1t (4.4)

where 1t is the indicator function of t, which is either 1 if (w1
t , w

2
t ) = (i, j) or 0 otherwise.

This operation is shown in Figure 19.

By grouping the identical terms, (4.3) can be further simplified as

p
(
x(0,0) → x(d1,d2)

)
6

Nt∏
i=0

Nt∏
j=0

(
1 + 4(i + j)ρ

)−Nrli,j
.

(4.5)
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Figure 19: Grouping of the columns with the same weight pair.

Now we aim to compute the average pairwise error probability for any x(d1,d2) ∈ Xd1,d2 ,

where Xd1,d2 :=


Xd1

Xd2


. Collect li,j’s into an (Nt + 1) × (Nt + 1)-matrix, which is denoted

as L. Let us name L as the column distance distribution(CD) matrix. Also, define Ld1,d2 as

the collection of all CD matrices, i.e.,

Ld1,d2 :=
{
L | li,j ∈ {0, 1, · · · , T},

Nt∑
i=0

Nt∑
j=0

li,j = T,

Nt∑
i=0

ili,j = d1,

Nt∑
j=0

jli,j = d2

}
.

That is, each CD matrix in the set Ld1,d2 must satisfy the following constraints:

• ∑Nt

i=0

∑Nt

j=0 li,j = T :

the total number of columns should add up to T ;

• ∑Nt

i=0 ili,j = d1 and
∑Nt

j=0 jli,j = d2:

the weight of the first user’s codeword and that of the second user’s should add up to d1

and d2, respectively.
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Applying the equiprobable property of the ensemble of the codes, the probability of a

given L is the number of selections satisfying θ(cu) = du for a particular L divided by the

total number of such selections for any L. Using the usual combinatorial techniques, we

obtain the probability distribution of L as:

p (L) =





(
T
L

) ∏Nt

i=0

∏Nt

j=0

(
Nt

i

)li,j(Nt

j

)li,j ∏2
u=1

(
N
du

)−1
, ifL ∈ Ld1,d2

0, otherwise

(4.6)

where
(

T
L

)
is the multinomial coefficient, i.e.,

(
T

L

)
=

T !
Nt∏
i=0

Nt∏
j=0

li,j !

.

The multinomial coefficient,
(

T
L

)
, denotes the number of every possible way that the T

distinct columns can be partitioned into (Nt + 1)2 unordered subsets. The (i, j)-th subset

has li,j columns, where (i, j) with i = 0, · · · , Nt; j = 0, · · · , Nt is the index of the subset.

Thus, we obtain the upper bound of the pairwise error probability averaged over the

column distance distribution as following:

p
(
x(0,0) → x(d1,d2)

)
=

∑
L∈Ld1,d2

p
(
x(0,0) → x(d1,d2)

)
p (L)

6
∑

L∈Ld1,d2

(
T

L

) Nt∏
i=0

Nt∏
j=0

(
Nt

i

)li,j(Nt

j

)li,j(
1 + 4(i + j)ρ

)−Nrli,j
2∏

u=1

(
N

du

)−1

. (4.7)
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4.2.3 Union upper bound for LDPC coded modulation in MIMO multiple ac-

cess systems: BPSK case

The union bound on the word error probability for ML detection is to sum up the average

pairwise error probabilities of (4.7), each of which is weighted by the ensemble-averaged

distance distribution. In a MIMO multiple access system, a pairwise error happens if the

decoder is in favor of x(d1,d2), which is not equal to x(0,0). Applying the ensemble-averaged

distance distribution property, the average word error probability in a MIMO multiple access

system can be upper bounded by

Pe 6
N∑

d1=0

N∑

d2=0

Sd1Sd2p
(
x(0,0) → x(d1,d2)

)− S2
0p

(
x(0,0) → x(0,0)

)
, (4.8)

where Sdu = Sdu(C) for u = 1, 2.

By applying(4.7) and defining αi,j and Φd1,d2 , (4.8) can be written as

Pe 6
N∑

d1=0

N∑

d2=0

(
N

d1

)−1(
N

d2

)−1

Sd1Sd2

∑
L∈Ld1,d2

(
T

L

) Nt∏
i=0

Nt∏
j=0

(αi,j)
li,j − S2

0

=
N∑

d1=0

N∑

d2=0

(
N

d1

)−1(
N

d2

)−1

Sd1Sd2Φd1,d2 − S2
0 , (4.9)

where

αi,j :=

(
Nt

i

)(
Nt

j

)(
1 + 4(i + j)ρ

)−Nr

, (4.10)

and

Φd1,d2 :=
∑

L∈Ld1,d2

(
T

L

) Nt∏
i=0

Nt∏
j=0

(αi,j)
li,j . (4.11)

To evaluate the R.H.S of (4.9) efficiently, we resort to the method of a polynomial expan-

sion. Let L denote a square matrix with (Nt +1)× (Nt +1) elements, the following equation

holds:

( Nt∑
i=0

Nt∑
j=0

xi,j

)T

=
∑
L∈L

(
T

L

) Nt∏
i=0

Nt∏
j=0

(xi,j)
li,j , (4.12)

where

L :=
{
L | li,j ∈ {0, · · · , T},

Nt∑
i=0

Nt∑
j=0

li,j = T
}

.
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By applying (4.12), we get

( Nt∑
i=0

Nt∑
j=0

αi,j yizj
)T

=
∑
L∈L

(
T

L

) Nt∏
i=0

Nt∏
j=0

(
αi,j yizj

)li,j

=
∑
L∈L

(
T

L

)
y
PNt

i=0 i li,jz
PNt

j=0 j li,j

Nt∏
i=0

Nt∏
j=0

(αi,j)
li,j

=
N∑

d1=0

N∑

d2=0

∑
L∈Ld1,d2

(
T

L

) Nt∏
i=0

Nt∏
j=0

(αi,j)
li,jyd1zd2

=
N∑

d1=0

N∑

d2=0

Φd1,d2y
d1zd2 , (4.13)

where N = NtT .

Then applying (4.13) to (4.9), Φd1,d2 can be calculated by collecting the coefficients αi,j’s

in
( ∑Nt

i=0

∑Nt

j=0 αi,j yizj
)T

.

Using the equiprobable property of the ensemble of the codes again, we can show that

the union upper bound for bit error probability as the following:

Pb 6
N∑

d1=0

N∑

d2=0

d1

N

d2

N

(
N

d1

)−1(
N

d2

)−1

Sd1Sd2Φd1,d2 . (4.14)

4.2.4 Union upper bound for LDPC coded modulation in MIMO multiple ac-

cess systems: M-ary case

The previous analysis is based on LDPC space-time code with the BPSK modulation. For

an M -ary modulation, we need to re-calculate the average pairwise error probability by

re-considering the distribution of L. We take the following approach.

Each entry of x̄(d1,d2) is selected from the M -ary symbols {si}M−1
i=0 . We have s0 mapped

from the string of all-zero bits of length log2(M). Let δi denote the Hamming weight of the

bits mapped to si, and ru
i the number of si’s contained in a particular column of x̄u

(du) for

u = 1, 2. Collect δi’s and ru
i ’s into M -tuples, i.e., δ = (δ0, · · · , δM−1) and ru = (ru

0 , · · · , ru
M−1).

Then, the column weight can be obtained by the inner product of the two, i.e., wu
t = ru · δ,

for t = 1, · · · , T . Each column weight wu
t takes a value from the set {0, · · · , Nt log2(M)}.
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Note the cardinality of this set is Nt log2(M) + 1. We also note that the column weight wu
t

is completely determined by ru for a fixed constellation mapping rule (i.e. for a fixed δ).

We note that any two columns with an identical column weight pair (w1
t , w

2
t ) produce

the same term in the product of the pairwise error probability. Thus, we denote lr1,r2 as the

number of the columns in the difference matrix (x̄(0,0)− x̄(d1,d2)), each of which has a weight

tuple r1 from user 1 and a weight tuple r2 from user 2, i.e., it can be written as

lr1,r2 :=
T∑

t=1

1t, (4.15)

where 1t = 1 if (w1
t , w

2
t ) = (r1 · δ, r2 · δ) and 0 otherwise. By grouping the identical terms

together, the expression of the upper bound on the pairwise error probability can be written

as

p
(
x(0,0) → x(d1,d2)

)
6

∏

r1∈R1

∏

r2∈R2

(
1 +

2∑
u=1

M−1∑
i=0

ru
i |si − s0|2ρ

)−Nrlr1,r2

(4.16)

We aim to compute the average pairwise error probability for any x(d1,d2) ∈ Xd1,d2 . Let

us collect lr1,r2 ’s into an (Nt log2(M) + 1)× (Nt log2(M) + 1)-matrix L. Define Ld1,d2 as the

collection of all such matrices that satisfy a set of constraints, i.e.,

Ld1,d2 :=
{
L | lr1,r2 ∈ {0, 1, · · · , T},

∑

r1∈R1

∑

r2∈R2

lr1,r2 = T,

∑

r1∈R1

(r1 · δ) lr1,r2 = d1,
∑

r2∈R2

(r2 · δ) lr1,r2 = d2

}
,

where Ru =
{
ru | ru

i ∈ {0, 1, · · · , Nt},
∑M−1

i=0 ru
i = Nt

}
for u = 1, 2.

Then, the distribution of L is as following:

p (L) =





(
T
L

) ∏2
u=1

(
N
du

)−1 ∏
ru∈Ru

(
Nt

ru

)lr1,r2 , ifL ∈ Ld1,d2

0, otherwise

(4.17)

where (
T

L

)
=

T !∏

r1∈R1

∏

r2∈R2

lr1,r2 !
,
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and (
Nt

ru

)
=

Nt !
M−1∏
i=0

ru
i !

.

Thus, the upper bound of the average pairwise error probability can be obtained as

p
(
x(0,0) → x(d1,d2)

)
=

∑
L∈Ld1,d2

p
(
x0,0 → xd1,d2

)
p (L)

6
∑

L∈Ld1,d2

(
T

L

) ∏

r1∈R1

∏

r2∈R2

((
Nt

r1

)(
Nt

r2

))lr1,r2

×
(
1 +

2∑
u=1

M−1∑
i=0

ru
i |si − s0|2ρ

)−Nrlr1,r2
2∏

u=1

(
N

du

)−1

(4.18)

By summing up the average pairwise error probabilities, we get the upper bound of the

word error probability for multiuser space-time coded M -ary modulation:

Pe 6
N∑

d1=0

N∑

d2=0

Sd1Sd2p
(
x(0,0) → x(d1,d2)

)− S2
0p

(
x(0,0) → x(0,0)

)

6
N∑

d1=0

N∑

d2=0

(
N

d1

)−1(
N

d2

)−1

Sd1Sd2

∑
L∈Ld1,d2

(
T

L

) ∏

r1∈R1

∏

r2∈R2

(βr1,r2)lr1,r2 − S2
0

=
N∑

d1=0

N∑

d2=0

(
N

d1

)−1(
N

d2

)−1

Sd1Sd2Ψd1,d2 − S2
0 , (4.19)

where

βr1,r2 :=

(
Nt

r1

)(
Nt

r2

)(
1 +

2∑
u=1

M−1∑
i=0

ru
i |si − s0|2ρ

)−Nr

, (4.20)

and

Ψd1,d2 :=
∑

L∈Ld1,d2

(
T

L

) ∏

r1∈R1

∏

r2∈R2

(βr1,r2)lr1,r2 . (4.21)
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By applying (4.12), we get:

( ∑

r1∈R1

∑

r2∈R2

βr1,r2 y(r1·δ)z(r2·δ)
)T

=
∑
L∈L

(
T

L

) ∏

r1∈R1

∏

r2∈R2

(
βr1,r2 y(r1·δ)z(r2·δ)

)lr1,r2

=
∑
L∈L

(
T

L

)(
y
P

r1∈R1
(r1·δ) lr1,r2

)(
z
P

r2∈R2
(r2·δ) lr1,r2

) ∏

r1∈R1

∏

r2∈R2

(
βr1,r2

)lr1,r2

=
N∑

d1=0

N∑

d2=0

∑
L∈Ld1,d2

(
T

L

) ∏

r1∈R1

∏

r2∈R2

(
βr1,r2

)lr1,r2

yd1zd2

=
N∑

d1=0

N∑

d2=0

Ψd1,d2y
d1zd2 , (4.22)

where N = NtT log2 M and

L :=
{
L | lr1,r2 ∈ {0, 1, · · · , T},

∑

r1∈R1

∑

r2∈R2

lr1,r2 = T
}

.

Applying (4.22) to (4.19), Ψd1,d2 can be evaluated by collecting the coefficients βr1,r2 ’s in( ∑
r1∈R1

∑
r2∈R2

βr1,r2 y(r1·δ)z(r2·δ)
)T

.

Then, the union upper bound for bit error probability for space-time coded M -ary mod-

ulation is:

Pb 6
N∑

d1=0

N∑

d2=0

d1

N

d2

N

(
N

d1

)−1(
N

d2

)−1

Sd1Sd2Ψd1,d2 . (4.23)

4.2.5 An illustrative example

We provide an example to illustrate how to calculate the union upper bound. Consider a

MIMO multiple access system with two senders under BPSK modulation, each of which

is equipped with two transmit antennas, and the receiver with two receive antennas. By

applying (5.18), we first form the [3× 3] matrix with elements αi,j, which are obtained as

α :=




α0,0 α0,1 α0,2

α1,0 α1,1 α1,2

α2,0 α2,1 α2,2


 =




1 2(1 + 4ρ)−2 (1 + 8ρ)−2

2(1 + 4ρ)−2 4(1 + 8ρ)−2 2(1 + 12ρ)−2

(1 + 8ρ)−2 2(1 + 12ρ)−2 (1 + 16ρ)−2
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We take log2(T )-fold two-dimensional convolution to obtain the [(N + 1) × (N + 1)]

coefficient matrix [Φd1,d2 ]. For an illustration, suppose N = 4, and thus T = 2.




α0,0 α0,1z α0,2z
2

α1,0y α1,1yz α1,2yz2

α2,0y
2 α2,1y

2z α2,2y
2z2


 ∗




α0,0 α0,1z α0,2z
2

α1,0y α1,1yz α1,2yz2

α2,0y
2 α2,1y

2z α2,2y
2z2




=




γ0,0 γ0,1z γ0,2z
2 γ0,3z

3 γ0,4z
4

γ1,0y γ1,1yz γ1,2yz2 γ1,3yz3 γ1,4yz4

γ2,0y
2 γ2,1y

2z γ2,2y
2z2 γ2,3y

2z3 γ2,4y
2z4

γ3,0y
3 γ3,1y

3z γ3,2y
3z2 γ3,3y

3z3 γ3,4y
3z4

γ4,0y
4 γ4,1y

4z γ4,2y
4z2 γ4,3y

4z3 γ4,4y
4z4




= γ · V, (4.24)

where ∗ and · denote two-dimensional convolution and dot product for matrices, respectively;

γ =




γ0,0 γ0,1 γ0,2 γ0,3 γ0,4

γ1,0 γ1,1 γ1,2 γ1,3 γ1,4

γ2,0 γ2,1 γ2,2 γ2,3 γ2,4

γ3,0 γ3,1 γ3,2 γ3,3 γ3,4

γ4,0 γ4,1 γ4,2 γ4,3 γ4,4




, and V =




1 z z2 z3 z4

y yz yz2 yz3 yz4

y2 y2z y2z2 y2z3 y2z4

y3 y3z y3z2 y3z3 y3z4

y4 y4z y4z2 y4z3 y4z4




.

We note that γ = α∗α, which are exactly the coefficients of expanded
( ∑2

i=0

∑2
j=0 αi,j yizj

)2
.

For T > 2, we repeat the convolution operation for log2(T ) times.

4.3 BOUND CALCULATION RESULTS AND COMPARISONS

In this section, we provide the simulation results of the LDPC coded modulation scheme

for the multiuser MIMO system depicted in Fig.6 and illustrate the performance of the

turbo-iterative multiuser detection and decoding processing receiver. We first study the

effect of super iteration and internal iteration. Next we introduce the thresholds obtained

by extrinsic information transfer (EXIT) chart analysis [27]-[29], which can be used as a
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performance limit. Then we compare the simulated system performance with the union

upper bound, the constrained capacity and the threshold. Finally, we investigate the union

upper bound and system performance for an LDPC coded modulation scheme with explicit

space-time coding.

4.3.1 Study on the effect of super iteration and internal iteration

As mentioned in Section 2.3, there are two kinds of iterations for the receiver. We investigate

the optimal ratio of the number of super iterations (NSI) to the number of internal iterations

(NII), given the total number of iterations (TNI). In simulations, each sender is equipped

with two transmit antennas and the receiver with two receive antennas. The regular LDPC

(1024,3,6) codes are used.

For compact description of the simulation results, Table I tabulates the required SNRs

to achieve bit-error-rate (BER) of 10−4 at each option for the (1024,3,6) LDPC code with

BPSK modulation in a multiuser MIMO system. The TNIs considered are 30, 60 and 120.

For each TNI, we vary the ratio between the NSI and the NII and make a notice on the best

option. We note that the performance benefit is about 0.3dB when the TNI varies from 30

to 60; the benefit becomes about 0.1dB when the TNI varies from 60 to 120. At the TNI of

60, the best combination is found to be 6 super iterations and 10 internal iterations.

Table 1: Comparison of SNRs to achieve BER of 10−4

TNI 30 30 60 60 60 120

NSI 3 6 3 6 12 6

NII 10 5 20 10 5 20

SNR (dB) 1.5 2.1 1.4 1.2 2.1 1.1

In addition, we find from extensive simulations that increasing the NSI is beneficial when

the number of bits per channel use is increased. For example, using 4-QAM modulation and

fixing the TNI at 60, it is better off to have the NSI increased to twelve while the NII

decreased to five. We try three cases: NSI and NII are (12,5), (6,10) and (3,20). Figure
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20, Figure 21 and Figure 22 are the system performances for above three cases for 4-QAM

modulation in a multiuser MIMO system. In what follows, we fix the TNI at 60 and use the

best ratio obtained for each constellation option.
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Figure 20: System performance for (NSI, NII)=(12, 5)

4.3.2 EXIT chart analysis

Besides bounding techniques, EXIT chart analysis is also an interesting tool to assess the

system.

Typically, the bit error rate (BER) chart of iterative decoding can be divided into three

regions:

• the low SNR region with negligible iterative BER reduction. This means that iteration

does not work in low SNR region.
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Figure 21: System performance for (NSI, NII)=(6, 10)
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Figure 22: System performance for (NSI, NII)=(3, 20)
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• the turbo cliff region with iterative BER reduction over iterations. This means that

iteration start to work at this region.

• the BER floor region. BER can reach rather low after few iterations.

Using EXIT chart analysis, we try to find the SNR where turbo cliff happens, that is,

the SNR at which the iteration start to work.

For EXIT chart analysis, we note that, there are at least two methods available in the

literature [27]-[29]. In [28], the MIMO demapper is combined with the bit nodes of the

LDPC decoder, which is treated as one entity for the EXIT chart analysis. The check node

in the decoder is the other entity. In another approach, e.g. in [29], the MIMO demapper is

treated as one entity for the EXIT chart analysis and the entire LDPC decoder as the other.

We provide our EXIT results based on the latter method. That is, the multiuser-demapper

is regarded as one entity and the LDPC decoder as the other. The latter method gives us a

clear view of the separate effects of the demapper and the decoder. For the decoder transfer

curve, a randomly selected (1024,3,6) LDPC code is used and the number of the LDPC

internal iterations is fixed at ten. In particular, the mutual information at the output of

the LDPC decoder is calculated from the extrinsic information obtained at the end of ten

internal iterations; the mutual information at the input of the LDPC decoder is obtained

from the prior information, which is as usual assumed to be Gaussian distributed. The

relationship of mutual information between the input and the output of the decoder is used

to generate the transfer characteristic curve for the LDPC decoder.

To investigate the nature of the iterative algorithm, both the multiuser dempper and

LDPC decoder characteristics are plotted into a single chart. However, the axes are swapped

for the transfer characteristics of the LDPC decoder. Figure 23 shows the EXIT chart of

multiuser demapper and LDPC decoder with 4-QAM modulation.

The exchange of extrinsic information can be visualized as a decoding trajectory. For

SNR=4 dB, the trajectory gets stuck after two iterations since the transfer curves intersect;

For SNR=4.7 dB, the trajectory has just managed to sneak through the bottleneck. When

SNR is greater than this threshold, the iterative algorithm starts to work.
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Figure 23: EXIT chart with transfer characteristics for a set of SNRs
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4.3.3 Comparison of system performance with union upper bounds, constrained

capacity and threshold from EXIT chart analysis

In this section, the simulated system performance results will be compared with the union

upper bounds, as well as with well established performance prediction measures such as the

constrained channel capacities and the threshold values obtained from EXIT chart analysis.

For all simulations, the regular LDPC codes with the bit node degree 3 and the check node

degree 6 are used, i.e., J = 3, K = 6. The rate Rc of this binary code is thus 1/2. We simulate

various block lengths, i.e., 256, 512 and 1024, to see how the bounds and the simulation

results scale with increase in block length. In addition, each sender is equipped with two

transmit antennas and the receiver with two receive antennas. Two different modulation

cases, BPSK and 4-QAM with the Gray constellation mapping, are considered.

Fig.24 and Fig.25 show the comparison of performance curves with the upper bounds,

the constrained capacities, and the thresholds from the EXIT chart analysis for single-user

and multiuser MIMO systems, respectively. The constrained capacity is calculated from the

Monte Carlo evaluation of the mutual information between the vector input and the vector

output of the channel. Each entry of the vector input is assumed to be equally likely selected

from a constellation such as BPSK and 4-QAM and the channel is assumed to be ergodic.

There are four performance curves in total in the two figures. The first two curves in

Fig.24 are for the single-user MIMO system with BPSK and 4-QAM modulations. The

next two curves in Fig.25 are for the multiuser MIMO system with BPSK and 4-QAM

modulations. For convenience, we may refer to them as the first, the second, the third and

the fourth scenarios respectively. Given the TNI at 60, the NSIs and NIIs are divided into

four cases such as (3, 20), (6, 10), (6, 10), and (12, 5) for the four scenarios, respectively. Since

both senders are equipped with two transmit antennas, the number of transmitted coded

bits are 2, 4, 4 and 8 in one channel-use. The second and the third scenarios are similar in

that they are both sending four coded bits per channel-use, and 4-QAM can be treated as

two orthogonal BPSKs. Also note that in Fig.25, the x-axis is signal-to-noise ratio per user.

If the two users are treated as one super-user, there will be a 3dB shift in SNR to the right.

With this adjustment, we note that the second and the third scenarios indeed show a very
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Figure 24: Comparison of performance, bounds, capacities and thresholds in single-user

MIMO systems

54



−2 −1 0 1 2 3 4 5 6 7 8
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

bound
performance
capacity
threshold

BPSK 4−QAM

Figure 25: Comparison of performance, bounds, capacities and thresholds in multiuser

MIMO systems
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similar performance as expected. For the fourth scenario, we note that the simulation result

goes above the union upper bound in high SNR region, which indicates that more iterations

are needed, especially the internal iterations. We can see that the iterative processing in

MIMO multiple access systems still has much potential to be improved.

From investigation of them, we note that each measure provides a different perspective.

The union upper bound not only can predict the waterfall region for the iterative detection

and decoding receiver, but also provide information on the error floor behavior of the en-

semble of the codes. On the other hand, the threshold values from the EXIT chart analysis

seem to indicate the starting point of the water-fall region.

Table II shows the results of upper bounds and simulated performances for different block

lengths up to a thousand as well as for different number of antennas. From the table, we

can see that both the bounds and the performance curves move toward the capacity limits

as the block length increases. In fact, we note that the performance curves move toward the

capacity limits faster than the union bounds do.

In addition, we investigate the number of multiplication required to evaluate the union

upper bounds. The results for BPSK modulation for two users are tabulated in Table II. The

required multiplications are for the convolution operation which is on the order of O(N2U),

where U is the number of users.

It is worthwhile to note that if the block length is further increased to a level beyond a

thousand, both the threshold value from the EXIT chart and the waterfall SNR from system

simulation would continue to converge to the capacity limit; while the union bound will

converge only to a cut-off SNR. We believe that the cut-off SNR would be the SNR point

at which the waterfall cliff occurs as the block length is increased. This opens up a future

research direction for tight union bound techniques that continue to work beyond the cut-

off SNR point. There are significant recent developments in this direction for single-input

single-output channels [20], [21]. Finding tight union bounds for single-user and multiuser

MIMO systems is an open research area.
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Table 2: Comparison of bounds, performances and complexity of enumeration for bounds

Block length No. of Error floor Bound gap Performance gap No. of mults

(bits) Tx and Rx of bound from capacity from capacity for Φd1,d2

antennas (log) (dB) (dB)
(
O(N2U)

)

256 2× 2 −4.45 2.8 3.6 2.8× 108

512 2× 2 −5.13 2.7 2.8 4.4× 109

1024 2× 2 −5.48 2.6 2.4 6.9× 1010

1024 4× 4 −5.91 2.3 2.0 6.9× 1010

4.3.4 Performance and union upper bounds for LDPC coded modulation with

Alamouti space-time transmission scheme

In previous LDPC coded modulation scheme, the mapping device transforms the symbol

sequence into a space-time symbol matrix, i.e., the serial to parallel conversion of the symbol

sequence without an explicit space-time coding, which is also called direct transmission

scheme. We call this symbol matrix as space-time (ST)-I codeword.

Besides the above operation, scheme II further encodes the ST-I codeword with orthog-

onal space-time block code (OSTBC) encoder [30] as shown in Figure 26.

LDPC

encoder 1
mapper 1

LDPC

encoder 2
mapper 2

sender 1

sender 2

C
1

C
2

X

OSTBC

encoder 2

OSTBC

encoder 1

Figure 26: LDPC coded modulation with Alamouti space-time coding transmission scheme
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For Nt = 2, the OSTBC coding scheme is actually the Alamouti scheme [31], that is,


x1

x2


 ⇒


x1 −x∗2

x2 x∗1




Then, we correspondingly call the encoded symbol matrix as ST-II codeword.

From the property of OSTBC, we notice that each leading column of sub-blocks of ST-II

codeword is identical to the corresponding column of ST-I codeword. The rest Nt−1 columns

of each sub-block are the repetitions of leading column with operations of permutation,

conjugation and negation. Since these operations do not affect column weights, they can

be ignored for computing column distance distribution. Then, we can regard the ST-II

codeword as Nt repetitions of ST-I codeword. So the pairwise error probability for scheme

II becomes:

p
(
x(0,0) → x(d1,d2)

)
6

∏

r1∈R1

∏

r2∈R2

(
1 +

2∑
u=1

M−1∑
i=0

ru
i |si − s0|2ρ

)−NrNtlr1,r2

.

(4.25)

Using the same derivation as Scheme I, we can get the union upper bound on bit error

probability for scheme II as following:

Pb 6
N∑

d1=0

N∑

d2=0

d1

N

d2

N

(
N

d1

)−1(
N

d2

)−1

Sd1Sd2Ψd1,d2 , (4.26)

where the definition of Ψd1,d2 is same as scheme I, but here

βr1,r2 :=

(
Nt

r1

)(
Nt

r2

)(
1 +

2∑
u=1

M−1∑
i=0

ru
i |si − s0|2ρu

)−NrNt

. (4.27)

The comparison of the performance curves and bounds for LDPC coded modulation with

Alamouti scheme is shown in Figure 27. In the simulation, a (512,3,6) LDPC code is used.
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outi scheme in multiuser MIMO systems
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4.4 SUMMARY OF THE PERFORMANCE AND OTHER ANALYTICAL

ASSESS MEASURES

The channel capacity can be significantly increased by using multiple transmit and multi-

ple receive antennas. The LDPC coded modulation scheme with iterative demapping and

decoding can be utilized to exploit the capacity potential available in the MIMO multiple

access system. We proposed novel union upper bound techniques for the multiuser MIMO

system. We provided some system simulation results which can be contrasted with the union

upper bounds. It was shown that the union bounds can be used in combination with the

EXIT chart analysis as a performance evaluation tool. It is worthy to note that while the

EXIT chart analysis provides the threshold value which are only a single SNR point on the

BER graph, the union bounds provide information on waterfall region as well as the error

floor behavior.
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5.0 PERFORMANCE ANALYSIS FOR LDPC CODED MODULATION

SCHEME IN BLOCK FADING MULTIUSER MIMO SYSTEMS

Based on the analysis in Chapter 4, we generalize the derivation of the union upper bound

to block fading case.

5.1 BLOCK FADING MULTIUSER MIMO SYSTEM MODEL

Consider a multiuser MIMO system as illustrated in Figure 6. A codeword of length N

is mapped into a [Nt × T ] space-time transmission matrix xu for u = 1, 2 in a one-to-one

relationship. T is the total number of channel-uses for a codeword to be transmitted. For the

block fading channel, the channel coefficients matrix remains constant for TD channel-uses

as shown in Figure 28. We call TD the coherence time of the channel. Then the number of

blocks is Nb = T/TD, which is assumed to be an integer without loss of generality.

The whole space-time codeword is composed from block space-time (BST) codewords.

We regard the BST codeword as a super-symbol, which contains NtTD log(M) bits. Thus,

we can consider an BST matrix constellation of size Q = 2NtTD log(M). {Sp}Q−1
p=0 are the super-

symbols of the Q-ary BST constellation, where S0 mapped from the string of all-zero bits of

length NtTD log(M). There are a total number of Nb BST codewords within a space-time

code, i.e., x = [x1,x2, · · · ,xNb
], and xj for j = 1, · · · , Nb, takes a value Sp from the BST

constellation. We denote S̄p := 1√
Es

Sp as the normalized BST super symbol.

In the block fading case, the received signal yt at t-th BST block transmission can be

written as:

yt = htxt + nt, for t = 1, · · · , Nb, (5.1)
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Figure 28: Block fading MIMO channel.

where we define the following vector variables:

yt :=




y11 · · · y1TD

...
. . .

...

yNr1 · · · yNrTD


 ,nt :=




n11 · · · n1TD

...
. . .

...

nNr1 · · · nNrTD


 ,

xt :=


x1

t

x2
t


 ,xu

t :=




xu
11 · · · xu

1TD

...
. . .

...

xu
Nr1 · · · xu

NrTD


 , x̄u

t :=
1√
Esu

xu
t ,

ht :=
(
h1t h2t

)
:=




h1t
11 · · · h1t

1Nt
h2t

11 · · · h2t
1Nt

...
. . .

...
...

. . .
...

h1t
Nr1 · · · h1t

NrNt
h2t

Nr1 · · · h2t
NrNt


 .

In this chapter, we also generalize the distribution of channel fading coefficients to Ricean

distribution, not restricted to Rayleigh distribution. The channel fading matrix is held during

each block of TD channel-uses, and changes independently in another block.
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5.2 PAIRWISE ERROR PROBABILITY AVERAGED OVER BLOCK

CHANNEL FADING STATE AND BLOCK DISTANCE

DISTRIBUTION

Inspired by the derivation of the union bound for M -ary LDPC coded modulation scheme

in the fast fading case, we further derive the union bound in block fading case.

Let δp denote the Hamming weight of the bits mapped to super-symbol Sp for p =

0, · · · , Q − 1, and let lp,q denote the number of simultaneous appearance of Sp for user 1

and Sq for user 2 in the whole space-time code. From the definition, we note that following

conditions are satisfied:

• ∑Q−1
p=0

∑Q−1
q=0 lp,q = Nb:

the total number of blocks should add up to Nb;

• ∑Q−1
p=0 δp lp,q = d1 and

∑Q−1
q=0 δq lp,q = d2:

the weight of the first user’s codeword and that of the second user’s should add up to d1

and d2, respectively.

Let x(d1,d2) :=


x1

(d1)

x2
(d2)


 denote the space-time symbol matrix, where x1

(d1) is mapped

from the codeword with Hamming weight d1 for user 1 and x2
(d2) mapped from the codeword

with Hamming weight d2 for user 2. The pairwise error probability based on ML detection

can be upper bounded by using the Chernoff bound

p
(
x(0,0) → x(d1,d2)|h

)
6 exp

(
− d2

(
x(0,0) ,x(d1,d2)

)

4N0

)
, (5.2)

where

d2
(
x(0,0) ,x(d1,d2)

)
=

Nb∑
t=1

‖htxt,(0,0) − htxt,(d1,d2)‖2
F ;

xt,(0,0) and xt,(d1,d2) are the t-th block of x(0,0) and x(d1,d2) respectively; F denotes the Frobe-

nius norm.
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Therefore we can write the pairwise error probability conditioned on channel state as:

p
(
x(0,0) → x(d1,d2)|h

)
6

Nb∏
t=1

p
(
xt,(0,0) → xt,(d1,d2)|h

)

=

Q−1∏
p=0

Q−1∏
q=0

p
(
S(0,0) → S(p,q)|h

)lp,q
, (5.3)

where S(0,0) =


S0

S0


 and S(p,q) =


Sp

Sq


.

Now our task is to calculate the block pairwise error probability

p
(
S(0,0) → S(p,q)|h

)
.

p
(
S(0,0) → S(p,q)|h

)
6 exp

(
− d2

(
S(0,0) , S(p,q)

)

4N0

)

= exp

(
− ‖hS(0,0) − hS(p,q)‖2

F

4N0

)

= exp
(
− ‖hS̄(0,0) − hS̄(p,q)‖2

F ρ
)

(5.4)

where ρ = Es

4N0
and h is the fading coefficients matrix for some block.

Proposition 4. (Block pairwise error probability )

For the normalized transmitted BST super symbol matrix c, the block pairwise error

probability of decoding in favor of e is bounded by

p
(
c → e|h)

6
Nr∏
i=1

2Nt∏
j=1

1

1 + λjρ
exp

(
− Ki,jλjρ

1 + λjρ

)

over Ricean fading channel; and bounded by

p
(
c → e|h)

6
2Nt∏
j=1

( 1

1 + λjρ

)Nr
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over Rayleigh fading channel, where Ki,j is the Ricean factor and c and e are defined as

following:

c :=


c1

c2


 :=




c1
11 · · · c1

1TD

...
. . .

...

c1
Nt1

· · · c1
NtTD

c2
11 · · · c2

1TD

...
. . .

...

c2
Nt1

· · · c2
NtTD




,

where cu :=




cu
11 · · · cu

1TD

...
. . .

...

cu
Nt1

· · · cu
NtTD


 , for u = 1, 2;

e :=


e1

e2


 :=




e1
11 · · · e1

1TD

...
. . .

...

e1
Nt1

· · · e1
NtTD

e2
11 · · · e2

1TD

...
. . .

...

e2
Nt1

· · · e2
NtTD




,

where eu :=




eu
11 · · · eu

1TD

...
. . .

...

eu
Nt1

· · · eu
NtTD


, for u = 1, 2.

Proof : Over block fading channel, the received signal during some block can be ex-

pressed as

y = hc + n,

where

y :=




y11 · · · y1TD

...
. . .

...

yNr1 · · · yNrTD


 ,n :=




n11 · · · n1TD

...
. . .

...

nNr1 · · · nNrTD


 ,

65



h :=
(
h1 h2

)
:=




h1
11 · · · h1

1Nt
h2

11 · · · h2
1Nt

...
. . .

...
...

. . .
...

h1
Nr1 · · · h1

NrNt
h2

Nr1 · · · h2
NrNt


 .

The probability of transmitting c and deciding in favor of e at the decoder is bounded

by

p
(
c → e|h)

6 exp

(
− d2

(
c , e

)
Es

4N0

)

= exp
(
− d2

(
c , e

)
ρ
)
, (5.5)

where d2
(
c , e

)
= ‖hc− he‖2

F ; F denotes the Frobenius norm.

Now our task is to calculate d2
(
c , e

)
. To calculate it, we first introduce the following

Lemma.

Lemma 1. Let A =




a11 · · · a1n

...
. . .

...

am1 · · · amn


 ,B =




b11 · · · b1k

...
. . .

...

bn1 · · · bnk


, then ‖AB‖2

F =
∑m

i=1 AiBB∗A∗
i ,

where Ai = (ai1 · · · ain).

By applying Lemma 1, we get

d2
(
c , e

)
= ‖h(c− e)‖2

F

=
Nr∑
i=1

hi(c− e)(c− e)∗h∗i ,

where hi = (h1
i1, · · · , h1

iNt
h2

i1, · · · , h2
iNt

).

Let B := (c− e)(c− e)∗. Clearly, B is Hermitian and non-negative definite. Thus, there

exists a 2Nt × 2Nt unitary matrix U such that B = UDU∗, where D =




λ1

. . .

λ2Nt


 is a
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diagonal matrix and its entries are made of eigenvalues of B. Then,

d2
(
c , e

)
=

Nr∑
i=1

hiBh∗i

=
Nr∑
i=1

hiUDU∗h∗i

=
Nr∑
i=1

(hiU)D(hiU)∗

=
Nr∑
i=1

2Nt∑
j=1

λj|hiUj|2

=
Nr∑
i=1

2Nt∑
j=1

λj|αi,j|2, (5.6)

where Uj =




u1j

...

u2Ntj


 and αi,j := hiUj.

Since B is Hermitian and non-negative definite, λ’s are real and non-negative, i.e., λj > 0,

for j = 1 · · · 2Nt. Since U is unitary, {U1, · · · ,U2Nt} is an orthonormal basis of C2Nt and

αi,j are independent complex Gaussian random variables with mean E(hiUj) and variance

0.5 per dimension.

Let Ki,j := |E(αi,j)|2 = |E(hiUj)|2 = |E(hi)Uj|2. Thus, |αi,j| are independent Rician

distributions with pdf

p(|αi,j|) = 2|αi,j| exp
(− |αi,j|2 −Ki,j

)
I0

(
2|αi,j|

√
Ki,j

)
, (5.7)

where I0(·) is the zero-order modified Bessel function of the first kind.

Substituting (5.6) to (5.5), the block pairwise error probability is bounded by

p
(
c → e|h)

6 exp
( Nr∑

i=1

2Nt∑
j=1

λj|αi,j|2ρ
)

=
Nr∏
i=1

2Nt∏
j=1

exp
(− λj|αi,j|2ρ

)
. (5.8)

Now we need to average over the channel state. Since the distribution of the channel

state is known, we just do expectation with respect to the channel state using the following

lemma.
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Lemma 2. For f(|x|) = exp(−a|x|2), a > 0, p(|x|) = 2|x| exp
( − |x|2 − K

)
I0

(
2|x|√K

)
,

K = |E(x)|2, the expectation of f(|x|), i.e., E
(
f(|x|)) = 1

1+a
exp

(
− Ka

1+a

)
.

By using Lemma 2, the average block pairwise error probability for Ricean fading channel

can be written as

p
(
c → e

)
6

Nr∏
i=1

2Nt∏
j=1

1

1 + λjρ
exp

(
− Ki,jλjρ

1 + λjρ

)
. (5.9)

For Rayleigh fading channel, Ki,j = 0. Then,

p
(
c → e

)
6

Nr∏
i=1

2Nt∏
j=1

1

1 + λjρ

=
2Nt∏
j=1

( 1

1 + λjρ

)Nr

. ¤ (5.10)

By using the Proposition, we can get the block pairwise error probability over Ricean

fading channel as

p (S(0,0) → S(p,q)) 6
Nr∏
i=1

2Nt∏
j=1

1

1 + λ
(p,q)
j ρ

exp
(
− Ki,jλ

(p,q)
j ρ

1 + λ
(p,q)
j ρ

)
(5.11)

and over Rayleigh fading channel as

p (S(0,0) → S(p,q)) 6
2Nt∏
j=1

( 1

1 + λ
(p,q)
j ρ

)Nr

, (5.12)

where λ
(p,q)
j , for j = 1, · · · , 2Nt, are the eigenvalues of

(S̄(0,0) − S̄(p,q))(S̄(0,0) − S̄(p,q))
∗.

Then, the pairwise error probability over Ricean fading channel can be bounded by

p
(
x(0,0) → x(d1,d2)

)
6

Q−1∏
p=0

Q−1∏
q=0

p
(
S(0,0) → S(p,q)

)lp,q

=

Q−1∏
p=0

Q−1∏
q=0

( Nr∏
i=1

2Nt∏
j=1

1

1 + λ
(p,q)
j ρ

exp
(
− Ki,jλ

(p,q)
j ρ

1 + λ
(p,q)
j ρ

))lp,q

. (5.13)

Now we aim to compute the average pairwise error probability for any x(d1,d2) ∈ Xd1,d2 .

Similar to the analysis for the fast fading case, collect lp,q’s into a Q × Q matrix, which is

68



denoted as L. Name L as the block distance distribution (BD) matrix and define Ld1,d2 as

the collection of all BD matrices, i.e.,

Ld1,d2 :=
{
L | lp,q ∈ {0, 1, · · · , Nb},

Q−1∑
p=0

Q−1∑
q=0

lp,q = T,

Q−1∑
p=0

p lp,q = d1,

Q−1∑
q=0

q lp,q = d2

}
.

Using the usual combinatorial techniques, we obtain the probability distribution of L as:

p (L) =





(
T
L

) ∏2
u=1

(
N
du

)−1
, ifL ∈ Ld1,d2

0, otherwise

(5.14)

where
(

T
L

)
is the multinomial coefficient, i.e.,

(
T

L

)
=

T !
Nt∏
i=0

Nt∏
j=0

li,j !

.

Thus, we obtain the upper bound of the pairwise error probability averaged over the

block distance distribution as following:

p
(
x(0,0) → x(d1,d2)

)
=

∑
L∈Ld1,d2

p
(
x(0,0) → x(d1,d2)

)
p (L)

6
∑

L∈Ld1,d2

(
T

L

) Q−1∏
p=0

Q−1∏
q=0

( Nr∏
i=1

2Nt∏
j=1

1

1 + λ
(p,q)
j ρ

exp
(
− Ki,jλ

(p,q)
j ρ

1 + λ
(p,q)
j ρ

))lp,q 2∏
u=1

(
N

du

)−1

.

(5.15)
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5.3 UNION UPPER BOUND FOR LDPC CODED MODULATION

SCHEME IN BLOCK FADING MULTIUSER MIMO SYSTEMS

We sum up the average pairwise error probabilities, each of which is weighted by the

ensemble-averaged distance distribution. Applying the ensemble-averaged distance distri-

bution property, the average word error probability in a MIMO multiple access system can

be upper bounded by

Pe 6
N∑

d1=0

N∑

d2=0

Sd1Sd2p
(
x(0,0) → x(d1,d2)

)− S2
0p

(
x(0,0) → x(0,0)

)
, (5.16)

where Sdu = Sdu(C) for u = 1, 2.

By applying(5.15) and defining αp,q and Φd1,d2 , (5.16) can be written as

Pe 6
N∑

d1=0

N∑

d2=0

(
N

d1

)−1(
N

d2

)−1

Sd1Sd2

∑
L∈Ld1,d2

(
T

L

) Q−1∏
p=0

Q−1∏
q=0

(αp,q)
lp,q − S2

0

=
N∑

d1=0

N∑

d2=0

(
N

d1

)−1(
N

d2

)−1

Sd1Sd2Φd1,d2 − S2
0 , (5.17)

where

αp,q :=
Nr∏
i=1

2Nt∏
j=1

1

1 + λ
(p,q)
j ρ

exp
(
− Ki,jλ

(p,q)
j ρ

1 + λ
(p,q)
j ρ

)
, (5.18)

and

Φd1,d2 :=
∑

L∈Ld1,d2

(
T

L

) Q−1∏
p=0

Q−1∏
q=0

(αp,q)
lp,q . (5.19)

Using the same method of polynomial expansion as in Chapter 4, (5.17) can be efficiently

evaluated.

Then, the union upper bound for bit error probability on block fading channel is:

Pb 6
N∑

d1=0

N∑

d2=0

d1

N

d2

N

(
N

d1

)−1(
N

d2

)−1

Sd1Sd2Ψd1,d2 (5.20)

70



5.4 BOUND CALCULATION RESULTS AND COMPARISONS

In this section, the simulated system performance results will be compared with the union

upper bounds. For all simulations, the regular (1024, 3, 6) LDPC codes are used. The rate

Rc of this binary code is thus 1/2. Each sender is equipped with two transmit antennas and

the receiver with two receive antennas. Two different modulation cases, BPSK and 4-QAM

with the Gray constellation mapping, are considered.

Fig.29 and Fig.30 show the comparison of performance curves with the upper bounds

when TD = 2 for single-user and multiuser MIMO systems, respectively.
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Figure 29: The comparison of performance and bounds in single-user MIMO systems

From the figures, we note that the union upper bounds on ML detection for block fading

channel can accurately predict the waterfall region of the iterative detection and decoding
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Figure 30: The comparison of performance and bounds in multiuser MIMO systems
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receiver.

In addition, we study the effect when TD increases. Fig.31 and Fig.32 show the change

of curves with TD = 1, 2 and 4 for single-user and multiuser MIMO systems, respectively.

From the figures, we note that the bounds move right much quicker than the performance

curves when TD increases. At TD = 4, the union upper bound is loose for the performance

curve. When TD = T , the union upper bound is too loose and almost useless for the

prediction of the performance. So our future work is to find a tight upper bound for quasi-

static fading channel, i.e., when TD = T .
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Figure 31: The comparison of performance and bounds for TD = 1, 2 and 4 in single-user

MIMO systems with BPSK modulation
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Figure 32: The comparison of performance and bounds for TD = 1, 2 and 4 in multiuser

MIMO systems with BPSK modulation
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6.0 CONCLUSION

The channel capacity can be significantly increased by using multiple transmit and receive

antennas. How to use the iterative technique to exploit the capacity potential in multiuser

MIMO systems is of great interest. The purpose of this dissertation is to propose a transmis-

sion scheme to exploit the capacity potential in MIMO systems and provide upper bounds,

capacity limits and thresholds obtained from EXIT chart analysis as the benchmark for the

proposed scheme. The main contributions of this dissertation are summarized as follows:

• We propose an LDPC coded modulation scheme with iterative demapping and decoding

for multiuser MIMO systems. We tried various bit-to-symbol mappings and find that

Gray mapping is the best one for the proposed scheme in both SISO and MIMO systems,

and also in both single-user and multiuser systems.

• We calculate the constrained capacity for single-user MIMO systems and compare the

constrained capacity with CSI or without CSI. Based on the capacity calculation for

single-user case, the constrained capacity region for multiuser MIMO systems is deter-

mined.

• We analyze the union upper bound of error probability for the proposed scheme in

multiuser fast fading MIMO systems. Closed-form expression for the union bound is

obtained, which can be evaluated efficiently by using a polynomial expansion. We com-

pare the system performance with the union upper bound, the capacity limit and the

threshold obtained from EXIT chart analysis. The result shows they are well matched.

• We generalize the union upper bound to multiuser block fading MIMO systems. The

performance curve is well matched with the upper bound when the coherence time is not

very large.
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From the simulation results for the block fading case, we note that the union upper

bound is loose when the coherence time is large. To find tight bound for the transmission

scheme when the coherence time is large will be an interesting and challenging task in the

future.
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APPENDIX A

PROOF OF LEMMA 1

Lemma 1 Let A =




a11 · · · a1n

...
. . .

...

am1 · · · amn


 ,B =




b11 · · · b1k

...
. . .

...

bn1 · · · bnk


, then ‖AB‖2

F =
∑m

i=1 AiBB∗A∗
i ,

where Ai = (ai1 · · · ain).

Proof :

‖AB‖2
F = Tr

(
AB(AB)∗

)

= Tr
(
ABB∗A∗

)

=
m∑

i=1

AiBB∗A∗
i . ¤
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APPENDIX B

PROOF OF LEMMA 2

Lemma 2 For f(|x|) = exp(−a|x|2), a > 0, p(|x|) = 2|x| exp
( − |x|2 − K

)
I0

(
2|x|√K

)
,

K = |E(x)|2, the expectation of f(|x|), i.e., E
(
f(|x|)) = 1

1+a
exp

(
− Ka

1+a

)
.

Proof: Let y = |x|. We utilize the following identity:

∫ ∞

0

2y exp(−y2 −K)I0(2y
√

K) dy = 1. (B.1)

Let 2y
√

K = z. Then, y = z
2
√

K
. (B.1) is transformed as

∫ ∞

0

z exp(− z2

4K
)I0(z) dz = 2K exp(K). (B.2)

For the expectation of f(|x|),

E
(
f(|x|)) = E

(
f(y)

)

=

∫ ∞

0

exp(−ay2)2y exp(−y2 −K)I0(2y
√

K) dy

=
exp(−K)

2K

∫ ∞

0

z exp
(
− (1 + a)z2

4K

)
I0(z) dz

=
exp(−K)

2K

∫ ∞

0

z exp
(
− z2

4K/(1 + a)

)
I0(z) dz

=
exp(−K)

2K
× 2× K

1 + a
exp

( K

1 + a

)

=
1

1 + a
exp

(
− Ka

1 + a

)
. ¤
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APPENDIX C

PROOF OF PAIRWISE ERROR PROBABILITY AVERAGED OVER FAST

FADING CHANNEL STATE

The pairwise error probability based on ML detection can be upper bounded by using the

Chernoff bound

p
(
x(0,0) → x(d1,d2)|h

)
6 exp

(
− d2

(
x(0,0) ,x(d1,d2)

)

4N0

)
, (C.1)

where

d2
(
x(0,0) ,x(d1,d2)

)
=

T∑
t=1

‖htxt,(0,0) − htxt,(d1,d2)‖2
F ;

xt,(0,0) and xt,(d1,d2) are the t-th column of x(0,0) and x(d1,d2) respectively; F denotes the

Frobenius norm.

By applying Lemma 1, we get

d2
(
x(0,0) ,x(d1,d2)

)
=

T∑
t=1

Nr∑
i=1

ht
i

(
xt,(0,0) − xt,(d1,d2)

)(
xt,(0,0) − xt,(d1,d2)

)∗(
ht

i

)∗
,

where ht
i = (h1t

i1, · · · , h1t
iNt

, h2t
i1, · · · , h2t

iNt
).
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Let Bt :=
(
xt,(0,0) − xt,(d1,d2)

)(
xt,(0,0) − xt,(d1,d2)

)∗
. Clearly, Bt is Hermitian and non-

negative definite. Thus, there exists a 2Nt×2Nt unitary matrix Ut such that Bt = UtDtU
∗
t ,

where Dt is a diagonal matrix and its entries are made of the eigenvalues of Bt. Then,

d2
(
c , e

)
=

T∑
t=1

Nr∑
i=1

ht
iBt

(
ht

i

)∗

=
T∑

t=1

Nr∑
i=1

ht
iUtDtU

∗
t

(
ht

i

)∗

=
T∑

t=1

Nr∑
i=1

(ht
iUt)Dt

(
ht

iUt

)∗

=
T∑

t=1

Nr∑
i=1

αt
iDt

(
αt

i

)∗

where αt
i = ht

iUt = (α1t
i1, · · · , α1t

iNt
, α2t

i1 · · · , α2t
iNt

).

Now we calculate the eigenvalues of Bt by using the following lemma.

Lemma 3. For B = b × b∗, where b =




b1

...

bn


, there exists exact one eigenvalue that is

λ = |b|2.

Applying the lemma, the diagonal matrix can be written as

Dt =




|xt,(0,0) − xt,(d1,d2)|2

0
. . .

0




,

and

d2
(
c , e

)
=

T∑
t=1

Nr∑
i=1

α1t
i1|xt,(0,0) − xt,(d1,d2)|2

(
α1t

i1)
∗

=
T∑

t=1

Nr∑
i=1

|xt,(0,0) − xt,(d1,d2)|2|α1t
i1|2.
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Then, (C.1) can be written as

p
(
x(0,0) → x(d1,d2)|h

)
6 exp

(
−

∑T
t=1

∑Nr

i=1 |xt,(0,0) − xt,(d1,d2)|2|α1t
i1|2

4N0

)

=
T∏

t=1

Nr∏
i=1

exp

(
− |xt,(0,0) − xt,(d1,d2)|2|α1t

i1|2
4N0

)
.

By applying Lemma 2 for Rayleigh fading case, i.e. K = 0 case, we can get

p
(
x(0,0) → x(d1,d2)|h

)
6

T∏
t=1

Nr∏
i=1

1

1 +
|xt,(0,0)−xt,(d1,d2)|2

4N0

=
T∏

t=1

(
1 +

|xt,(0,0) − xt,(d1,d2)|2
4N0

)−Nr

.
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