266 research outputs found

    Software Development for Parallel and Multi-Core Processing

    Get PDF

    On the Virtualization of CUDA Based GPU Remoting on ARM and X86 Machines in the GVirtuS Framework

    Get PDF
    The astonishing development of diverse and different hardware platforms is twofold: on one side, the challenge for the exascale performance for big data processing and management; on the other side, the mobile and embedded devices for data collection and human machine interaction. This drove to a highly hierarchical evolution of programming models. GVirtuS is the general virtualization system developed in 2009 and firstly introduced in 2010 enabling a completely transparent layer among GPUs and VMs. This paper shows the latest achievements and developments of GVirtuS, now supporting CUDA 6.5, memory management and scheduling. Thanks to the new and improved remoting capabilities, GVirtus now enables GPU sharing among physical and virtual machines based on x86 and ARM CPUs on local workstations, computing clusters and distributed cloud appliances

    Phenomenology Tools on Cloud Infrastructures using OpenStack

    Get PDF
    We present a new environment for computations in particle physics phenomenology employing recent developments in cloud computing. On this environment users can create and manage "virtual" machines on which the phenomenology codes/tools can be deployed easily in an automated way. We analyze the performance of this environment based on "virtual" machines versus the utilization of "real" physical hardware. In this way we provide a qualitative result for the influence of the host operating system on the performance of a representative set of applications for phenomenology calculations.Comment: 25 pages, 12 figures; information on memory usage included, as well as minor modifications. Version to appear in EPJ

    Enhancing large-scale docking simulation on heterogeneous systems: An MPI vs rCUDA study

    Full text link
    [EN] Virtual Screening (VS) methods can considerably aid clinical research by predicting how ligands interact with pharmacological targets, thus accelerating the slow and critical process of finding new drugs. VS methods screen large databases of chemical compounds to find a candidate that interacts with a given target. The computational requirements of VS models, along with the size of the databases, containing up to millions of biological macromolecular structures, means computer clusters are a must. However, programming current clusters of computers is no easy task, as they have become heterogeneous and distributed systems where various programming models need to be used together to fully leverage their resources. This paper evaluates several strategies to provide peak performance to a GPU-based molecular docking application called METADOCK in heterogeneous clusters of computers based on CPU and NVIDIA Graphics Processing Units (GPUs). Our developments start with an OpenMP, MPI and CUDA METADOCK version as a baseline case of cluster utilization. Next, we explore the virtualized GPUs provided by the rCUDA framework in order to facilitate the programming process. rCUDA allows us to use remote GPUs, i.e. installed in other nodes of the cluster, as if they were installed in the local node, so enabling access to them using only OpenMP and CUDA. Finally, several load balancing strategies are analyzed in a search to enhance performance. Our results reveal that the use of middleware like rCUDA is a convincing alternative to leveraging heterogeneous clusters, as it offers even better performance than traditional approaches and also makes it easier to program these emerging clusters.This work is jointly supported by the Fundacion Seneca (Agencia Regional de Ciencia y Tecnologia, Region de Murcia) under grant 18946/JLI/13, and by the Spanish MEC and European Commission FEDER under grants TIN2015-66972-C5-3-R and TIN2016-78799-P (AEI/FEDER, UE). We also thank NVIDIA for hardware donation under GPU Educational Center 2014-2016 and Research Center 2015-2016. Furthermore, researchers from Universitat Politecnica de Valencia are supported by the Generalitat Valenciana under Grant PROMETEO/2017/077. Authors are also grateful for the generous support provided by Mellanox Technologies Inc.Imbernón, B.; Prades Gasulla, J.; Gimenez Canovas, D.; Cecilia, JM.; Silla Jiménez, F. (2018). Enhancing large-scale docking simulation on heterogeneous systems: An MPI vs rCUDA study. Future Generation Computer Systems. 79:26-37. https://doi.org/10.1016/j.future.2017.08.050S26377

    Proceedings of the First PhD Symposium on Sustainable Ultrascale Computing Systems (NESUS PhD 2016)

    Get PDF
    Proceedings of the First PhD Symposium on Sustainable Ultrascale Computing Systems (NESUS PhD 2016) Timisoara, Romania. February 8-11, 2016.The PhD Symposium was a very good opportunity for the young researchers to share information and knowledge, to present their current research, and to discuss topics with other students in order to look for synergies and common research topics. The idea was very successful and the assessment made by the PhD Student was very good. It also helped to achieve one of the major goals of the NESUS Action: to establish an open European research network targeting sustainable solutions for ultrascale computing aiming at cross fertilization among HPC, large scale distributed systems, and big data management, training, contributing to glue disparate researchers working across different areas and provide a meeting ground for researchers in these separate areas to exchange ideas, to identify synergies, and to pursue common activities in research topics such as sustainable software solutions (applications and system software stack), data management, energy efficiency, and resilience.European Cooperation in Science and Technology. COS

    Single system image: A survey

    Get PDF
    Single system image is a computing paradigm where a number of distributed computing resources are aggregated and presented via an interface that maintains the illusion of interaction with a single system. This approach encompasses decades of research using a broad variety of techniques at varying levels of abstraction, from custom hardware and distributed hypervisors to specialized operating system kernels and user-level tools. Existing classification schemes for SSI technologies are reviewed, and an updated classification scheme is proposed. A survey of implementation techniques is provided along with relevant examples. Notable deployments are examined and insights gained from hands-on experience are summarized. Issues affecting the adoption of kernel-level SSI are identified and discussed in the context of technology adoption literature

    Exploring the interoperability of remote GPGPU virtualization using rCUDA and directive-based programming models

    Get PDF
    [EN] Directive-based programming models, such as OpenMP, OpenACC, and OmpSs, enable users to accelerate applications by using coprocessors with little effort. These devices offer significant computing power, but their use can introduce two problems: an increase in the total cost of ownership and their underutilization because not all codes match their architecture. Remote accelerator virtualization frameworks address those problems. In particular, rCUDA provides transparent access to any graphic processor unit installed in a cluster, reducing the number of accelerators and increasing their utilization ratio. Joining these two technologies, directive-based programming models and rCUDA, is thus highly appealing. In this work, we study the integration of OmpSs and OpenACC with rCUDA, describing and analyzing several applications over three different hardware configurations that include two InfiniBand interconnections and three NVIDIA accelerators. Our evaluation reveals favorable performance results, showing low overhead and similar scaling factors when using remote accelerators instead of local devices.The researchers from the Universitat Jaume I de Castello were supported by Universitat Jaume I research project (P11B2013-21), project TIN2014-53495-R, a Generalitat Valenciana grant and FEDER. The researcher from the Barcelona Supercomputing Center (BSC-CNS) Lausanne was supported by the European Commission (HiPEAC-3 Network of Excellence, FP7-ICT 287759), Intel-BSC Exascale Lab collaboration, IBM/BSC Exascale Initiative collaboration agreement, Computacion de Altas Prestaciones VI (TIN2012-34557) and the Generalitat de Catalunya (2014-SGR-1051). This work was partially supported by the U.S. Dept. of Energy, Office of Science, Office of Advanced Scientific Computing Research (SC-21), under contract DE-AC02-06CH11357. The initial version of rCUDA was jointly developed by Universitat Politecnica de Valencia (UPV) and Universitat Jaume I de Castellon (UJI) until year 2010. This initial development was later split into two branches. Part of the UPV version was used in this paper. The development of the UPV branch was supported by Generalitat Valenciana under Grants PROMETEO 2008/060 and Prometeo II 2013/009. We gratefully acknowledge the computing resources provided and operated by the Joint Laboratory for System Evaluation (JLSE) at Argonne National Laboratory.Castelló-Gimeno, A.; Peña Monferrer, AJ.; Mayo Gual, R.; Planas, J.; Quintana Ortí, ES.; Balaji, P. (2018). Exploring the interoperability of remote GPGPU virtualization using rCUDA and directive-based programming models. The Journal of Supercomputing. 74(11):5628-5642. https://doi.org/10.1007/s11227-016-1791-yS562856427411Strohmaier E, Dongarra J, Simon H, Meuer M (2015) TOP500 supercomputing sites. http://www.top500.org/lists/2015/11 . Accessed Nov 2015NVIDIA (2015) CUDA API reference, version 7.5Shreiner D, Sellers G, Kessenich JM, Licea-Kane BM (2013) OpenGL programming guide: the official guide to learning OpenGL. Addison-Wesley Professional, BostonMark WR, Glanville RS, Akeley K, Kilgard MJ (2003) Cg: a system for programming graphics hardware in a C-like language. ACM Trans Graph (TOG) 22(3):896–907Munshi A (2014)The OpenCL specification 2.0. 0.5em minus 0.4em Khronos OpenCL working groupOpenACC directives for accelerators (2015). http://www.openacc-standard.org . Accessed Dec 2015OmpSs project home page. http://pm.bsc.es/ompss . Accessed Dec 2015OpenMP application program interface 4.0 (2013). OpenMP Architecture BoardPeña AJ (2013) Virtualization of accelerators in high performance clusters. Ph.D. dissertation, Universitat Jaume I, CastellónKawai A, Yasuoka K, Yoshikawa K, Narumi T (2012) Distributed-shared CUDA: virtualization of large-scale GPU systems for programmability and reliability. In: International conference on future computational technologies and applicationsShi L, Chen H, Sun J, Li K (2012) vCUDA: GPU-accelerated high-performance computing in virtual machines. IEEE Trans Comput 61(6):804–816Xiao S, Balaji P, Zhu Q, Thakur R, Coghlan S, Lin H, Wen G, Hong J, Feng W (2012) VOCL: an optimized environment for transparent virtualization of graphics processing units. In: Innovative parallel computing. IEEE, New YorkKim J, Seo S, Lee J, Nah J, Jo G, Lee J (2012) SnuCL: an OpenCL framework for heterogeneous CPU/GPU clusters. In: International conference on supercomputingDuran A, Ayguadé E, Badia RM, Labarta J, Martinell L, Martorell X, Planas J (2011) OmpSs: a proposal for programming heterogeneous multi-core architectures. Parallel Process Lett 21(02):173–193Castelló A, Duato J, Mayo R, Peña AJ, Quintana-Ortí ES, Roca V, Silla F (2014) On the use of remote GPUs and low-power processors for the acceleration of scientific applications. In: The fourth international conference on smart grids, green communications and IT energy-aware technologies, pp 57–62Iserte S, Castelló A, Mayo R, Quintana-Ortí ES, Reaño C, Prades J, Silla F, Duato J (2014) SLURM support for remote GPU virtualization: implementation and performance study. In: International symposium on computer architecture and high performance computing (SBAC-PAD)Peña AJ, Reaño C, Silla F, Mayo R, Quintana-Ortí ES, Duato J (2014) A complete and efficient CUDA-sharing solution for HPC clusters. Parallel Comput 40(10):574–588Kegel P, Steuwer M, Gorlatch S (2012) dOpenCL: towards a uniform programming approach for distributed heterogeneous multi-/many-core systems. In: International parallel and distributed processing symposium workshops (IPDPSW)Castelló A, Peña AJ, Mayo R, Balaji P, Quintana-Ortí ES (2015) Exploring the suitability of remote GPGPU virtualization for the OpenACC programming model using rCUDA. In: IEEE international conference on cluster computingCastelló A, Mayo R, Planas J, Quintana-Ortí ES (2015) Exploiting task-parallelism on GPU clusters via OmpSs and rCUDA virtualization. In: IEEE international workshop on reengineering for parallelism in heterogeneous parallel platformsHP Corp., Intel Corp., Microsoft Corp., Phoenix Tech. Ltd., Toshiba Corp. (2011) Advanced configuration and power interface specification, revision 5.0Reaño C, Silla F, Castelló A, Peña AJ, Mayo R, Quintana-Ortí ES, Duato J (2014) Improving the user experience of the rCUDA remote GPU virtualization framework. Concurr Comput 27(14):3746–3770PGI compilers and tools (2015) http://www.pgroup.com/ . Accessed Dec 2015Johnson N (2013) EPCC OpenACC benchmark suite. https://www.epcc.ed.ac.uk/ . Accessed Dec 2015Herdman J, Gaudin W, McIntosh-Smith S, Boulton M, Beckingsale D, Mallinson A, Jarvis SA (2012) Accelerating hydrocodes with OpenACC, OpenCL and CUDA. In: SC companion: high performance computing, networking, storage and analysi

    Using machine learning techniques to evaluate multicore soft error reliability

    Get PDF
    Virtual platform frameworks have been extended to allow earlier soft error analysis of more realistic multicore systems (i.e., real software stacks, state-of-the-art ISAs). The high observability and simulation performance of underlying frameworks enable to generate and collect more error/failurerelated data, considering complex software stack configurations, in a reasonable time. When dealing with sizeable failure-related data sets obtained from multiple fault campaigns, it is essential to filter out parameters (i.e., features) without a direct relationship with the system soft error analysis. In this regard, this paper proposes the use of supervised and unsupervised machine learning techniques, aiming to eliminate non-relevant information as well as identify the correlation between fault injection results and application and platform characteristics. This novel approach provides engineers with appropriate means that able are able to investigate new and more efficient fault mitigation techniques. The underlying approach is validated with an extensive data set gathered from more than 1.2 million fault injections, comprising several benchmarks, a Linux OS and parallelization libraries (e.g., MPI, OpenMP), as well as through a realistic automotive case study
    • …
    corecore