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Abstract Directive-based programming models, such as OpenMP, OpenACC,
and OmpSs, enable users to accelerate applications by using coprocessors with
little effort. These devices offer significant computing power, but their use
can introduce two problems: an increase in the total cost of ownership and
their underutilization because not all codes match their architecture. Remote
accelerator virtualization frameworks address those problems. In particular,
rCUDA provides transparent access to any graphic processor unit installed
in a cluster, reducing the number of accelerators and increasing their utiliza-
tion ratio. Joining these two technologies, directive-based programming models
and rCUDA, is thus highly appealing. In this work, we study the integration of
OmpSs and OpenACC with rCUDA, describing and analyzing several applica-
tions over three different hardware configurations that include two InfiniBand
interconnections and three NVIDIA accelerators. Our evaluation reveals fa-
vorable performance results, showing low overhead and similar scaling factors
when using remote accelerators instead of local devices.
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1 Introduction

The use of coprocessors and hardware accelerators has increased continuously
in the past decade. In the most recent TOP500 ranking [1], dated November
2015, 104 supercomputers were equipped with accelerators. These devices offer
performance improvements over traditional processors for computational ker-
nels that match their architecture; moreover, they are more energy efficient,
delivering relatively large MFLOPS/Watt ratios.

The adoption of coprocessors to accelerate general-purpose codes became
more popular with the release of the CUDA programming model for NVIDIA
graphics processing units (GPUs) [2]. CUDA includes both high- and low-
level application programming interfaces (APIs) to leverage NVIDIA devices
as general-purpose accelerators. Prior to that, researchers matched GPU archi-
tectures to computational kernels, but these had to rely on complex graphics-
oriented APIs such as OpenGL [3] or Cg [4]. Following CUDA, OpenCL [5]
arose as an effort to offer a cross-vendor solution. The third-generation pro-
gramming model for accelerators, based on compiler directives, is composed
(among others) by OpenACC [6], OmpSs [7], and OpenMP 4 [8].

The traditional approach to furnish clusters with GPUs is to populate every
compute node with one or more of these devices. However, these configurations
present a low utilization rate of the computational resources available in the
hardware accelerators, mostly because of mismatches between the application’s
type of parallelism and the coprocessor architecture. Remote virtualization
has been recently proposed in order to overcome the underutilization problem.
Among the virtualization frameworks, the most prominent is rCUDA [9], which
enables cluster configurations to be built with fewer GPUs than nodes. With
this approach, GPU-equipped nodes act as GPGPU (general-purpose GPU)
servers for the rest of the compute nodes of the cluster, accomodating a CUDA-
sharing solution that potentially achieves a higher overall GPU load in the
system. Compared with other CUDA and OpenCL virtualization frameworks
(e.g., DS-CUDA [10], vCUDA [11], VOCL [12], or SnuCL [13]), rCUDA is a
mature, production-ready framework that offers support for the latest CUDA
revisions and provides wide coverage of current GPGPU APIs.

The combination of both technologies to execute directive-based acceler-
ated applications on remote coprocessors is obviously appealing. Nevertheless,
two problems need to be tackled in this approach: the overhead due to the
interconnect (in terms of increased latency and decremented transfer rate)
and the particular GPU-usage pattern imposed by the programming model
(which in many cases is suboptimal compared with fine-tuned coding directly
using the underlying accelerators API). Since remote accelerator virtualization
techniques have been demonstrated to be reasonably efficient only in certain
programming patterns, in this paper we address the open question of whether
remote virtualization is suitable for applications accelerated via directives.
Specifically, we analyze the performance of two popular directive-based pro-
gramming models, OpenACC and OmpSs, on top of rCUDA, using several
hardware configurations. For this purpose, we select two well-known applica-
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tions for OmpSs and the EPCC benchmark application-level implementation
and CloverLeaf OpenACC implementation for OpenACC. Our study reveals
affordable overheads and fair scaling trends for directive-based applications
using remote accelerators instead of local hardware.

In summary, the main contributions of this paper include (1) an analysis of
the challenges involved in integrating the directive-based programming models
for accelerators and the rCUDA remote GPU virtualization framework, and
(2) a study of the performance impact of using directive-based acceleration on
top of virtualized remote accelerator technologies.

The rest of the paper is structured as follows. Section 2 provides back-
ground information on the technologies explored in this paper. Section 3 re-
views work related to our research. Section 4 covers the integration efforts of
rCUDA and our target runtimes. Section 5 introduces our testbeds in terms of
hardware, software, and test codes. Section 6 presents our experimental eval-
uation, and Section 7 closes the paper with a brief summary and discussion of
future work.

2 Background

2.1 Directive-based programming models for accelerators

Directive-based programming models comprise a collection of compiler direc-
tives that the programmer employs to identify the pieces of code to be ac-
celerated. These directives instruct the compiler to process certain parts of
the code in order to map that computation to the available architecture and,
if needed, to perform the required data movements between host and device
memories. These high-level programming approaches are an appealing inter-
face for improving an application’s performance (including legacy codes) with
relatively little effort and code intrusiveness.

For our study, we selected two popular directive-based programming mod-
els for accelerators, OpenACC and OmpSs, as representative of fine-grained
and coarse-grained parallelism approaches, respectively.

2.1.1 OpenACC programming standard

OpenACC [6] is a standard API developed by PGI, Cray, and NVIDIA that
enables C, C++, or Fortran programmers to easily leverage heterogeneous
systems equipped with a general-purpose CPU plus a coprocessor.

Current compilers for directive-based accelerators still report inferior per-
formance with respect to that obtained when directly leveraging GPGPU
APIs. The development productivity of the former is clearly much higher,
and both industry and research institutions are actively working to turn this
into a broadly adopted solution.
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Fig. 1: rCUDA modular architecture.

2.1.2 OmpSs programming model

OmpSs [14], developed at the Barcelona Supercomputing Center, aims to pro-
vide an efficient programming model for heterogeneous and multicore architec-
tures. Similarly to OpenMP 4.0 it embraces a task-oriented execution model.

OmpSs detects data dependencies between tasks at execution time, with
the help of directionality clauses embedded in the code, and leverages this
information to generate a task graph during the execution. This graph is then
employed by the runtime to exploit the implicit task parallelism, via a dynamic
out-of-order, dependency-aware schedule. This mechanism provides a means to
enforce the task execution order without the need for explicit synchronization.

2.2 rCUDA Framework

The rCUDA middleware [9] enables access to all GPUs installed in a cluster
from all compute nodes. Figure 1 illustrates that rCUDA is structured follow-
ing a client-server architecture. The client is installed in the compute nodes,
and provides a transparent replacement for the native CUDA libraries. On the
other hand, the server is executed in the nodes equipped with actual GPUs,
providing remote GPGPU services. With this technology, the GPUs can be
shared between nodes, and a single node can use all the graphic accelerators
as if they were local. The aim is to achieve higher accelerator utilization while
simultaneously reducing resource, space, and energy requirements [15,16].

The rCUDA client exposes the same interface as does NVIDIA CUDA [2],
including the runtime and most of the driver APIs. Hence, applications are
not aware that they are running on top of a virtualization layer. The middle-
ware supports several communication technologies such as Ethernet [9] and
InfiniBand [9].

3 Related Work

Remote coprocessor virtualization technologies have been evaluated with var-
ious benchmarks and production applications in the past. The rCUDA pro-
totype was presented along with early results for remote GPGPU accelera-



Interoperability of rCUDA and Directive-Based Programming Models 5

tion from microbenchmarks based on the BLAS SGEMM and FFT kernels.
Advanced features were introduced together with evaluations of several code
samples from the NVIDIA SDK package. The literature containing these con-
tributions is reviewed in [17]. More recently, the remote acceleration of produc-
tion CUDA-enabled applications was evaluated with this framework, including
LAMMPS and CUDASW++ [15]. Moreover, five applications from the CUDA
Zone website were analyzed on top of the vCUDA framework [11]. DS-CUDA
was presented for the REM-MD molecular dynamics simulator [10].

On the OpenCL side, the authors of the VOCL framework tested the SHOC
benchmark suite and several application kernels, including the BLAS GEMM,
matrix transpose, n-body, and Smith-Waterman [12]. Moreover, dOpenCL was
released with the evaluation of a tomography [18] production application.

All prior evaluations were based on either traditional GPGPU APIs (CUDA
and/or OpenCL) or custom high-level APIs specifically proposed for the frame-
work in use. Many of these evaluations presented favorable results, reporting
remote accelerations with low or negligible overheads. The studies, however,
also identified codes that benefited from local acceleration but experienced un-
bearable overhead from remote acceleration because of the increased latency
and possibly reduced bandwidth introduced by the interconnect.

In previous papers we reported a preliminary study of the interoperability
between directive-based programming models for coprocessors and virtualized
remote accelerators. In [19] we introduced a first study of simple OpenACC
directives on top of rCUDA. In this paper we extend an in-depth analysis of
the OmpSs programming model over virtualized remote GPUs [20] with an
analogous study for the OpenACC programming model.

4 Integrating rCUDA with Directive-Based Programming Models

The rCUDA framework supports the whole CUDA runtime API and most
of its driver API. However, supporting a high-level programming model may
require some updates in the rCUDA framework because the different proce-
dures adopted during code translation from a directive to CUDA code. Each
scenario needs to be studied separately in order to avoid performance loss.

4.1 OmpSs and rCUDA

4.1.1 Necessary modifications

One of the necessary changes to rCUDA is the point where the CUDA kernels
and functions are loaded. CUDA performs this initialization at the beginning
of the application’s execution, whereas in the OmpSs framework this event
occurs the first time that a GPU task is issued for execution.

Because rCUDA was designed with CUDA in mind, its initialization pro-
cedure mimics that of CUDA; and this process occurs at the beginning of a
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CUDA application’s execution. Nevertheless, when OmpSs uses CUDA, this
mechanism is triggered the first time a CUDA function is called; therefore this
behavior had to be modified in rCUDA. In particular, for each thread created
on the client side, the first call to any kernel configuration routine triggers a
load of the corresponding modules in the associated GPU server. From then
on, any other routine configuration call directed to the same GPU server does
not produce any effect. Several logical checks were added in order to ensure
that all threads are able to execute the required functions. Once these checks
are completed, the new loading mechanism avoids checking the function load
status again.

4.1.2 Reducing the communication overhead

Current GPU boards from NVIDIA can promote idle GPUs from a high-
performance state to an energy-saving passive one following the same approach
that has been exploited in x86 architectures via the C-states defined in the
ACPI standard [21]. When this occurs, the next CUDA call takes longer to
start because the GPU driver first needs to reactivate the GPU and then
execute the CUDA function. OmpSs favors high performance over energy effi-
ciency, preventing GPUs from entering an energy-saving state via regular calls
to the cudaFree function with no argument. This approach has no effect other
than keeping the GPU active, even when there is no work to execute, and has
the same effect as setting the GPU in persistence mode (e.g., by means of the
nvidia-smi utility).

Fortunately, rCUDA does not need this mechanism, which would other-
wise introduce certain communication overhead in the network by exchanging
a number of short messages between the client and the remote GPU server.
In particular the rCUDA server, which is a CUDA application per se, runs
on the GPU server node, thus preventing the GPU from entering the passive
state. We modified the rCUDA client middleware to intercept all cudaFree
calls, forwarding them to the server only if they are true memory-free calls, or
discarding the requests when they correspond to unnecessary activation com-
mands. These commands are distinguished by the function argument: when it
is a not NULL pointer, it is a real free call.

4.1.3 Dealing with synchronization

Task parallelism achieves high modularity by creating codes that can be totally
diferent (e.g., I/O, computation, or communication) and executed in any or-
der. Nonetheless, synchronization points are needed in order to maintain coher-
ence and to control the execution flow. OmpSs uses the directive #pragma omp

taskwait to ensure that all the previous tasks have been executed. However,
adding synchronization points usually has a negative impact on the applica-
tions’ performance, and the use of the named directive needs to be studied. The
OmpSs framework translates this directive into a cudaDeviceSynchronize

call, and the performance attained by CUDA and rCUDA in that scenario
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is crucial. rCUDA’s synchronization mechanism outperforms that native in
CUDA because the former accommodates a more aggresive implementation.
Concretely, rCUDA’s mechanism executes a nonblocking wait during a small
period before the real synchronization call. If it is successful, the synchroniza-
tion call is thus avoided. A detailed analysis can be found in [22].

4.2 OpenACC and rCUDA

4.2.1 Necessary adaptations

We target a distributed environment where clients do not necessarily feature an
actual GPU. Therefore, among the different options the PGI compiler offers to
generate separate GPU modules, we choose to produce PTX files (--keepptx).
This is a low-level source code that is compiled just in time on the GPGPU
server to produce an executable optimized for the specific GPU architecture.
The PGI compiler uses the following module management functions from the
CUDA driver API, which the current rCUDA release does not support.
cuModuleLoadData: This call loads an appropriate module for the target GPU
architecture, comprising a set of GPU kernel functions, and makes it available
for subsequent kernel executions.
cuModuleGetFunction: This function searches the code implementing a given
kernel name within the module loaded by the previous call and makes it avail-
able for subsequent use.

We implemented both functions in rCUDA and carefully tuned them for
the distributed environment. Our cuModuleLoadData implementation allows
the client to send all the GPU modules from the module repository of the
executed application to the GPGPU server when the first call to this function
is intercepted. Therefore, this mechanism is executed only once. These images
are stored in contiguous memory addresses in the server in order to enhance
efficiency in the cuModuleGetFunction call responses. This sequence of events
is illustrated in Figure 2.

4.2.2 Communication overhead

The PGI compiler performs data transfers between the host and the device,
exploiting a double-buffer mechanism, as illustrated in Figure 3a. This tech-
nique enables pipelined copies, overlapping transfers between the host memory
and one of the buffers with those between the peer buffer and the accelerator
memory. These intermediate buffers are registered as pinned memory, yielding
faster transfers than if these were issued directly from pageable user memory.
A similar mechanism is implemented by rCUDA when requested to perform
transfers from pageable memory, but it then performs a direct transfer from
the pinned buffers otherwise, avoiding the augmented latency and memory
stress of an additional pipeline stage [9]. The data transfer process when using
OpenACC on top of rCUDA is shown in Figure 3b.
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5 Experimental Setup

We have selected three different systems.

– Minotauro is a cluster with 126 nodes, each with two Intel Xeon E5649
6-core processors, (2.53 GHz), and 24 GB of DDR3-1333 RAM, connected
to two NVIDIA M2050 GPUs. The network is InfiniBand (IB) QDR.

– Tintorrum is composed of two compute nodes, each equipped with two
Intel Xeon E5520 quadcore processors (2.27 GHz) and 24 GB of DDR3-
1866 RAM memory. One of the nodes is connected to two NVIDIA C2050
GPUs; the remaining one is populated with four NVIDIA C2050. Internode
communications are accomplished via an IB QDR fabric.

– Argonne consists of two compute nodes, each equipped with two Intel E5-
2687W v2 8-core processors (3.40 GHz) and 64 GB of DDR3-1866 RAM.
The GPGPU server is endowed with an NVIDIA Tesla K40m GPU. Both
nodes are connected via an IB FDR interconnect.

In the experiments we employed rCUDA 5.0, with the modifications listed
in previous sections, as the remote GPGPU virtualization framework. rCUDA
servers are launched in each node where at least one GPU is physically installed
exposing the real GPUs as virtualized remote accelerators. CUDA 6.5 was
installed for the PGI compiler and for the OmpSs version 14.10. OmpSs was
compiled using g++ 4.4.7 in Tintorrum and g++ 4.4.4 in Minotauro.

Support for OpenACC was obtained with the PGI (version 14.9) compiler
from The Portland Group [23], since this is a complete commercial tool that
implements most of the features in OpenACC 2.0.

5.1 Evaluation cases

The following OmpSs-enabled applications were selected for this study.
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(a) GPU pool configuration. (b) Several GPUs per node.

Fig. 4: rCUDA cluster configurations.

– N-body simulates a dynamical system of particles, under the influence of
physical forces, and is widely used in physics and astronomy.

– Cholesky factorization is a crucial operation for solving dense systems of
linear equations with a symmetric positive-definite coefficient matrix.

For the OpenACC evaluation we used the following applications:

– The EPCC OpenACC benchmark suite [24] is divided into three levels fo-
cused on basic directives, well-known kernels, and applications.

– CloverLeaf [25] solves the compressible Euler equations on a Cartesian
grid in two dimensions. Two CloverLeaf implementations based on either
kernels or loops OpenACC directives were analyzed.

6 Experimental Evaluation

All the results in the section are the average of 100 executions. The highest
relative standard deviation observed in the experiments was around 12%.

6.1 OmpSs

OmpSs implements workstealing between threads’ workloads and uses device-
to-device direct transfers via cudaMemcpyPeer functions that, unfortunately,
are not supported by rCUDA. To obtain results for applications that include
data movements between GPUs, we analyzed the overhead added by this type
of data transfers. Two scenarios can be identified when remote GPUs are
used. In the first case, remote GPUs are attached to the same server node
(Figure 4a), and the communication between them is done via the PCI-e bus.
In the second case, GPUs are attached to different server nodes (Figure 4b),
and the communication is performed through the network interconnect.

6.1.1 N-body

The N-body test was executed in Tintorrum using 57,600 particles, corre-
sponding to the largest volume that fits into the memory of a single GPU.
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Fig. 6: Synchronization time for N-
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GPUs in Tintorrum.

This case study involves no GPU memory transfers, and thus we can com-
pare directly the performance of the OmpSs-accelerated code executed on top
of CUDA and rCUDA. The application runs in the 2-GPU node. Additional
GPUs are “added” to the experiments by first populating the 4-GPU node
with up to 4 server processes (one per remote GPU) and, from then on, map-
ping the additional servers to the 2-GPU node. The work is divided equally
among the GPUs, showing the following workload distribution: 100% for re-
mote GPUs when up to 4 are used; and 66%–33% for remote–local devices
when all GPUs are employed. Figure 5 shows the outcome from this evalu-
ation, showing a linear reduction of the execution time when up to 5 server
processes/GPUs are employed. The speedups observed there demonstrate the
scalability of this parallel application when combined with rCUDA in order
to leverage a reduced number of GPUs. The same plot also exposes a notable
increase in execution time when the sixth server process/GPU is included in
the experiment. The reason is that, because of the architecture of the node
with 2 GPUs, the transfers between this last GPU and the IB network occur
through the QPI interconnect, which poses a considerable bottleneck for this
application.

We also emphasize that the use of OmpSs on top of rCUDA clearly outper-
forms the alternative based on OmpSs on top of CUDA. Figure 6 demonstrates
that the difference in favor of rCUDA is due to the overhead introduced with
the synchronization that is enforced by OmpSs.

6.1.2 Cholesky factorization

The Cholesky factorization test was executed in Minotauro using a matrix of
45,056×45,056 single-precision elements. In this case, the GPUs perform di-
rect data transfers. Nevertheless, this feature is not yet supported in rCUDA.
To overcome this deficiency, while still delivering a fair comparison between
the scalability of OmpSs over rCUDA and over native CUDA, we determine
the overhead introduced by a device-to-device communication for setup con-
figurations corresponding to a pool of GPUs and several GPUs per node. This
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overhead helps us extrapolate the results by adding the network overhead to
the real execution time.

In a preliminary evaluation, we detected that the optimal algorithmic block
size for the Cholesky factorization using both CUDA and rCUDA is 2,048,
leading to data transfers of 16 MB. Next, we performed data transfers of
16 MB, using cudaMemcpyPeer, in order to simulate scenarios where both
GPUs are in the same node, and using the ib send bw test included in the
OFED-3.12 package to mimic a scenario where the GPUs are in different nodes.
The results indicate that each data movement respectively added 0.192 and
5.283 ms to the rCUDA execution time. The study can be found in [20].

Using the native CUDA, we executed the code with 1 and 2 GPUs in a
single node of the cluster. Using rCUDA, we employ up to four nodes with one
GPU per node. Unfortunately, an internal problem in the current implemen-
tation of OmpSs when linked with NVIDIA’s mathematical library CUBLAS
impeded experimentation with a larger number of GPUs.

The three columns with the labels rCUDA, rCUDA (intra), and rCUDA
(QDR) in Figure 7 correspond to the execution of the task-parallel code, linked
to rCUDA, with three different by-passes to deal with the lack of support for
device-to-device copies by adding the overhead previously measured. In the
first case, the copy is simply obviated so that this line reflects the peak perfor-
mance that could be observed if the cost of this type of copies was negligible.
In the second case, we assume that internode communications proceed at the
rate of intranode copies. This result thus approximates the performance that
could be observed in a configuration where all GPUs were in the same node.
In the third case, all the device-to-device copies occur at internode speed.

The performance results for rCUDA in the chart clearly demonstrate the
benefits of the remote virtualization approach for this application. We note
that the lines there correspond to the GFLOPS per GPU and show a profile
that is almost flat. Therefore, an increase in the number of GPUs by a factor
of g implies an increase in the aggregated GFLOPS rate by almost the same
proportion. The overhead of OmpSs over rCUDA with respect to OmpSs over
CUDA, when executed using a single local GPU, is merely about 5%.

Figure 7 also reveals a superlinear speed-up when just one GPU is used.
The main reason is that before a CUDA application starts its execution, sev-
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Fig. 9: Execution time for the EPCC application using local and remote GPUs.

eral steps need to be done (e.g., device initialization, libraries load, and context
creation. As the rCUDA server is a CUDA application itself, all these proce-
dures had been completed before the CUDA application’s execution.

6.2 OpenACC

An early analysis involving a set of microbenchmarks that cover the basic
OpenACC directives, including a scalability evaluation in terms of transfer
sizes, was presented in [19]. In this section we explore the behavior of the
applications.

6.2.1 EPCC applications

The tests in the EPCC benchmark collection are designed to enforce different
accelerator usage patterns, representative of common scientific applications.
Figure 8 shows different execution profiles of the benchmark examples. Himeno
is a memory-bound application, where over 99% of the execution time is spent
in data transfers between the host and device memories. In contrast, LE2D
spends more than 95% of its time executing a computation directive. The 27S
application spends roughly the same time in both types of tasks, but most of
the time (over 90%) is due to CPU utilization.

Figure 9a illustrates that an application such as LE2D clearly benefits from
rCUDA thanks to the synchronization mechanism described in the previous
section. On the other hand, the high volume of data transfers in the Himeno
application (more than 117,000) reduces the performance of the rCUDA-based
solution. Between these two cases, when the time of the data transfers is close
to that of the kernel execution, the overhead added by the use of a remote
GPU is visible but, as shown in Figure 9b, generally small. In the 512MB
scenario, the overhead using the C2050 is close to 40% because during the
short execution time, the performance difference between the network and the
PCIe bus cannot be compensated.
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Fig. 10: Distribution of time for the CloverLeaf KERNELS implementation.
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Fig. 11: CloverLeaf using local and remote GPUs.

6.2.2 CloverLeaf

Figure 10 shows the distribution of execution time for the CloverLeaf miniap-
plication. “Kernels” represents the time spent executing computational direc-
tives, while “Other calls” represents the rest of the CUDA functions generated
by the compiler, including CUDA initialization, data transfers, and synchro-
nization mechanisms. This experiment shows that the portion of time that
corresponds to the GPU computations increases with the problem size.

On the CloverLeaf KERNELS implementation, while the execution time
increases with the problem size, the overhead of using remote accelerators
decreases from 60% (remote K40m) and 27% (remote C2050) to 3% for large
sizes with the C2050 GPU and a negative overhead of −6% for the K40m (Fig-
ure 11a). Increasing the execution time compensates for the network usage by
reducing the overhead. The execution in the K40m GPU allows the evaluation
of larger data sizes because of its larger memory. In this case the superlin-
ear speedup brought by rCUDA becomes visible again. Figure 11b shows the
difference between the CUDA and rCUDA synchronization mechanisms. For
the K40m, the rCUDA implementation decreases the execution time by 100 s,
cancelling the network overhead. For the C2050 GPU, this reduction is not suf-
ficient to compensate for the network overhead because the QDR interconnect
is slower than the FDR network.
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Similar conclusions are derived for the CloverLeaf LOOPS implementation,
where we obtain results that are close to those in Figure 11a: from 70% and
45% to −2% and 6% for the K40m and C2050, respectively.

7 Conclusions

Our main conclusion from this study is the viability of providing remote ac-
celerator virtualization services on top of two directive-based programming
models, OmpSs and OpenACC. The performance of using virtualized remote
accelerators tightly depends on the interconnection network. The number of
memory transfers, although not explicitly addressed by the programmers in
directive-based programming models, is a key factor impacting the applica-
tion performance. In our experiments, executions featuring a large number
of data transfers suffered the most performance degradation in comparison
with locally-accelerated runs. Applications with high compute-per-data ratios
benefit from GPU performances with respect to multicore CPU ones, hence
favoring the remote acceleration solutions. In fact, we obtained the largest
overheads for executions using fairly reduced dataset sizes.On the other hand,
the use of synchronizations tends to reduce the overhead when using rCUDA
with respect to locally-accelerated executions because it integrates a more
aggressive polling implementation than the native CUDA library.

Because the characteristics of the rCUDA implementation, we have demon-
strated that the overhead introduced by remote accelerator virtualization is
more than compensated for a few relevant applications. These results indicate
that considerable benefits are possible for production scenarios.

As part of future work, we plan to analyze multi-GPU and OpenACC-
enabled applications, and to redesign rCUDA in order to accommodate device-
to-device communications embedded for high performance in OmpSs. More-
over, we plan to analyze how the distribution of the accelerators in the cluster
affects the behavior of these programming models on top of remote virtualiza-
tion, as well as how to tackle this from the compiler perspective.
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19. A. Castelló, A. J. Peña, R. Mayo, P. Balaji, and E. S. Quintana-Ort́ı, “Exploring the
suitability of remote GPGPU virtualization for the OpenACC programming model using
rCUDA,” in IEEE International Conference on Cluster Computing, Sep. 2015.
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22. C. Reaño, F. Silla, A. Castelló, A. J. Peña, R. Mayo, E. S. Quintana-Ort́ı, and J. Duato,
“Improving the user experience of the rCUDA remote GPU virtualization framework,”
Concurr. Comput., vol. 27, no. 14, pp. 3746–3770, 2014.

23. “PGI compilers and tools,” http://www.pgroup.com/, 2015.
24. N. Johnson, “EPCC OpenACC benchmark suite,” https://www.epcc.ed.ac.uk/, 2013.
25. J. Herdman, W. Gaudin, S. McIntosh-Smith, M. Boulton, D. Beckingsale, A. Mallinson,

and S. A. Jarvis, “Accelerating hydrocodes with OpenACC, OpenCL and CUDA,” in
SC Comp.: High Performance Computing, Networking, Storage and Analysis, 2012.


