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Summary 
 

Virtualization, the use of hypervisors or virtual machine monitors to support multiple virtual 

machines on a single real machine, is quickly becoming more and more popular today due to its 

benefits of increased hardware utilization and system management flexibility, and because of 

increasing hardware and software support for virtualization in commodity platforms. With the 

hypervisor providing an abstraction layer separating virtual machines from the real hardware, 

and isolating virtual machines from each other, many useful architectural possibilities arise. 

In addition to hardware utilization and system management, virtualization has been shown to be 

a strong enabler for security -- both as a result of the isolation enforced by the hypervisor 

between virtual machines, and due to the hypervisor's high-privilege suitability as a strong base 

for security services provided for the virtual machines. 

 

Additionally, multicore is quickly gaining prevalence, with all manner of systems shifting to 

multicore hardware. Virtualization presents both opportunities and challenges with multicore 

hardware -- while the layer of abstraction provided by the hypervisor affords a unique 

opportunity to manage multicore complexity and heterogeneity beneath the virtual machines, 

supporting multicore in the hypervisor in a robust and secure way is not a trivial task. 

 

This report gives an overview of the state-of-the art regarding virtualization, multi-core systems 

and security. The report is a major deliverable to the SVaMP project pre-study and will serve as 

a basis for in-depth analysis of a selected set of multicore target systems in the second phase of 

the project. Starting from the state-of-the art designs described in this report, the second phase of 

the project will also identify design patterns and derive system models for secure virtualized 

multicore systems. 
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ABI   Application Binary Interface 

API   Application Programming Interface 

ASID   Address Space Identifier 

CPU   Central Processing Unit 

DMA   Direct Memory Access 
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DRM   Digital Rights Management 

EPT   Extended Page Table 
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MMM   Mixed-Mode Multicore reliability 
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VM   Virtual Machine 

VMCS  Virtual Machine Control Structure 
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VMM   Virtual Machine Monitor 
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1. Introduction 

This report gives an overview of virtualization technologies and research recent research results 

in the area. The purpose with the report is to give the foundation for the SVaMP project platform 

analysis, requirements and modeling work. 

The report is organized as follows. First, in Section 2, we give basic definitions regarding 

virtualization and the technologies behind virtualization. Section 3 discusses different 

hypervisor/virtual machine monitor architectures. In Section 4, we explain the major different 

motivations for introducing virtualization in a system. Section 5 describes important 

virtualization enabling hardware architectures. In Section 6, we discuss different hypervisor 

protected software architectures. The focus is well known design and description of hypervisor 

based platform security services. Finally, in Section 7, an overview of multicore systems and 

issues are given and in particular we treat virtualization in relation to mutlicore systems. 
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2. Virtualization technologies 

2.1.  What is virtualization? 

Virtualization is a computer system abstraction, in which a layer of virtualization logic manages 

and provides ``virtualized" resources to a client layer running above it. The client accesses 

resources using standard interfaces, but the interfaces do not communicate with the resources 

directly; instead, the virtualization layer manages the real resources and possibly multiplexes 

them among more than one client. 

The virtualization layer resides at a higher privilege level than the clients, and can interpose 

between the clients and the hardware. This means that it can intercept important instructions and 

events and handle them specially before they are executed or handled by the hardware. For 

example, if a client attempts to execute an instruction on a virtual device, the virtualization layer 

may have to intercept that instruction and implement it in a different way on the real resources in 

its control. Each client is presented with the illusion of having sole access to its resources, thanks 

to the management performed by the virtualization layer. The virtualization layer is responsible 

for maintaining this illusion and ensuring correctness in the resource multiplexing. Virtualization 

therefore promotes efficient resource utilization via sharing among clients, and furthermore 

maintains isolation between clients (who need not know of each other's existence). Virtualization 

also serves to abstract the real resources to the client, which decouples the client from the real 

resources, facilitating greater architectural flexibility and mobility in system design. 

For these reasons, virtualization technology has become more prominent, and its viable uses 

have expanded. Today virtualization is used in enterprise systems, service providers, home 

desktops, mobile devices, and production systems, among other venues. 

Oftentimes, the client in a virtualization system is known as the guest. 

2.2. Virtualization Basics 

2.2.1.  Interfaces 

An excellent overview of virtual machines is found here [79], and in a book by the same authors 

([80]). The article discusses, in part, how virtualization can be understood in terms of the 

interfaces present at different levels of a typical computer system. Interfaces offer different levels 

of abstraction which clients use to access resources. Virtualization technology exposes an 

expected interface, but behind the scenes is virtualizing resources accessed by the interface -- for 

example, in the case of a disk input/output interface, the ``disk" that the interface provides access 

to may actually be a file on a real disk when implemented by a virtualization layer. A discussion 

of important interfaces in a typical computer system follows. 
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2.2.1.1. Instruction Set Architecture (ISA) 

The ISA is the lowest level instruction interface that communicates directly with hardware. 

Software may be interpreted by intermediaries, for example a Java Virtual Machine or .NET 

runtime, or a script interpreter for scripting languages like Perl or Python, or it may be compiled 

from a high-level programming language like C, and the software may utilize system calls that 

execute code found in the operating system kernel, but in the end all software is executed 

through the ISA. In a typical system, some of the ISA can be used directly by applications, but 

another part of the ISA (usually that dealing with critical system resources) is only available to 

the higher-privileged operating system. If unprivileged software attempts to use a restricted 

portion of the ISA, the instruction will ``trap" to the privileged operating system. 

2.2.1.2. Device drivers 

Device drivers are a software interface provided by device vendors to enable the operating 

system to control devices (hard drives, graphics cards, etc.). Device drivers often reside in the 

operating system kernel and run at high privilege, and are hence part of the trusted computing 

base in traditional systems -- but as they are not always written with ideal security or robustness, 

they constitute a dominant source of operating system errors [30]. 

2.2.1.3. Applicatoin Binary Interface (ABI) 

The ABI is the abstracted interface to system resources that the operating system exposes to 

clients (applications). The ABI typically consists of system calls. Through system calls, 

applications can obtain access to system resources mediated by the operating system. The 

operating system ensures the access is permitted and grants it in a safe manner. The ABI can 

remain consistent across different hardware platforms since the operating system handles the 

particularities of the underlying hardware, thus exposing a common interface regardless of 

platform differences. 

2.2.1.4. Application Programming Interface  (API) 

An API provides a higher level of abstraction than the ABI. Functionality is provided to 

applications in the form of external code ``libraries" that are accessed using a function call 

interface. This abstraction can facilitate a common interface for applications not only across 

different hardware platforms (as with the ABI), but also across different operating systems, since 

the API can be reimplemented as necessary for each ABI. Furthermore, APIs can be built on top 

of other APIs, making it at least possible that only the lower-level APIs will have to be 

reimplemented to be used on a new operating system. (In reality, however, depending on the 

language used to implement the library, it doesn't usually work out so ideally.) As previously 

mentioned, however, all software is executed through the ISA in the end -- meaning that any API 

or application will have to be recompiled, even if it doesn't have to be reimplemented, as it 

moves to a new platform. 
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2.2.1.5. Interfaces, abstraction, and virtualization 

Each of these interface levels represents an opportunity for virtualization, since clients of an 

interface depend only on the structure and behavior of the interface (also known as its contract), 

and not its implementation. Here we see the idea of abstraction. Abstraction concerns providing 

a convenient interface to clients, and can be understood as follows -- an application asking an 

operating system for a TCP/IP network connection most likely does not care if the connection is 

formed over a wireless link, a cellular radio, or an ethernet cable, or if TCP semantics are 

achieved using other protocols, and it does not care about the network card model or the exact 

hardware instructions needed to set up and tear down the connection. The operating system deals 

with all these issues, and presents the application with a handle to a convenient TCP/IP 

connection that adheres to the interface contract, but may be implemented under the surface in 

numerous ways. Abstraction enables clients to use resources in a safe and easy manner, saving 

time and effort for common tasks. Virtualization, however, usually means more than just 

abstraction; it implies more about the nature of what lies behind the abstraction. A virtualization 

layer not only preserves abstraction for its clients, but may also use intermediate structures and 

abstractions between the real resources and the virtual resources it presents to clients [79] -- such 

as using files on a real disk to simulate virtual disks, or using various resources and techniques 

above the physical memory to simulate private address spaces. And it may multiplex resources 

(such as the CPU) among multiple clients, presenting each client with a picture of the resource 

corresponding to the client's own context, creating in effect more instances of the resource then 

exist in actuality. 

2.3. Types of virtualization 

There are two most prominent basic types of virtualization -- process virtualization and system 

virtualization [79]. Also noteworthy topics are binary translation, paravirtualization, and 

previrtualization (approaches to system and process virtualization), as well as containers, a more 

lightweight relative of system virtualization. These concepts illustrate basic types of 

virtualization currently in use. 

2.3.1. Process virtualization 

Process-level virtualization is a fundamental concept in virtually every modern mainstream 

computer system. In process virtualization, an operating system virtualizes the memory address 

space, central processing unit (CPU), CPU registers, and other system resources for each running 

process. Each process interacts with the operating system using a virtual ABI or API, unaware of 

the activities of other processes [79]. 

The operating system manages the virtualization and maintains the context for each process. For 

instance, in a context switch, the operating system must swap in the register values for the newly 
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scheduled process, so that the process can begin executing where it left off. The operating system 

typically has a scheduling algorithm to ensure that every process gets a fair share of CPU time, 

thereby maintaining the illusion of sole access to the CPU. Through virtual memory, each 

process has the illusion of its own independent address space, in which its own data and code as 

well as system and application libraries are accessible. A process can't access the address space 

of another process. The operating system achieves virtualization of memory through the use of 

page tables, which translate the virtual memory pages in processes' virtual address space to 

actual physical memory pages. To map a virtual address to a physical address, the operating 

system conducts a ``page table walk" and finds the physical page corresponding to the virtual 

page in question. In this way, different processes can even access the same system libraries in the 

same physical locations, but in different virtual pages in their own address spaces. A process 

simply sees a long array of bytes, whereas underneath, some or all of those bytes may be loaded 

into different physical memory pages or stored in the backing store (usually on a hard drive). 

Furthermore, a modern processor typically has multiple cache levels (termed the L1 cache, L2 

cache, and so on) where recently or frequently used memory pages can be stored to enhance 

retrieval performance -- the higher the level, the smaller the cache size but the greater the speed. 

(A computer system memory hierarchy can often be visualized as a pyramid, with slower, lower 

cost, higher capacity storage media at the bottom, and faster, higher cost, lesser capacity media at 

the top.) And, a CPU typically also uses other specialized caches and chips, such as a Translation 

Lookaside Buffer (TLB) that caches translations from virtual page numbers to physical page 

numbers (that is, the results of page table walks). Virtual memory is thus the outward-facing 

facade of a complex internal system of technologies. 

 

In short, processes interact obliviously with virtual memory and other resources through standard 

ABI and APIs, while the operating system manages the virtualization and multiplexing of 

resources under the hood. 

2.3.2. System virtualization 

In contrast to process virtualization, in system virtualization an entire system is virtualized, 

enabling multiple virtual systems to run isolated alongside each other [79]. A hypervisor or 

Virtual Machine Monitor (VMM) virtualizes all the resources of a real machine, including CPU, 

devices, memory, and processes, creating a virtual environment known as a Virtual Machine 

(VM). Software running in the virtual machine has the illusion of running in a real machine, and 

has access to all the resources of a real machine through a virtualized ISA. The hypervisor 

manages the real resources, and provides them to the virtual machines. The hypervisor may 

support one or more virtual machines, and thus is responsible for making sure all real machine 

resources are properly managed and shared, and for maintaining the illusion of the virtual 

resources presented to each virtual machine (so that each virtual machine ``thinks" it has its own 

real machine). 
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Note here that the VMM may divide the system resources in different ways. For instance, if there 

are multiple CPU cores, it may allocate specific cores to specific VMs in a fixed manner, or it 

may adopt a dynamic scheme where cores are assigned and unassigned to VMs flexibly, as 

needed. (This is similar to how an operating system allocates the CPU to its processes via its 

scheduling algorithm.) The same goes for memory usage -- portions of memory may be statically 

allocated to VMs, or memory may be kept in a ``pool" that is dynamically allocated to and 

deallocated from VMs. Static allocation of cores and memory is simpler, and results in stronger 

isolation, but dynamic allocation may result in better utilization and performance [79]. 

Virtualization of this standard type has been around for decades, and is increasing quickly in 

popularity today, thanks to the flexibility and cost-saving benefits it confers on organizations 

[89], as well as due to commodity hardware support discussed in section 5. Note as well that it is 

expanding from its traditional ground (the data center) and into newer areas such as security and 

mobile/embedded applications [54]. 

2.3.3. ISA translation 

If the guest and virtualization host utilize the same ISA, then no ISA translation is necessary. 

Clearly, running the host and guest with the same ISA and thus not requiring translation is 

simpler, and better for performance. Scenarios do arise, however, in which the guest uses a 

different ISA than the host. In these cases, the host must translate the guest's ISA. Both process 

and system virtualization layers can translate the ISA; a VMM supporting ISA translation is 

sometimes known as a ``Whole System" VMM [79]. 

ISA translation can enable operating systems compiled for one type of hardware to run on a 

different type of hardware. Therefore, it enables a software stack for one platform to be 

completely transitioned to a new type of hardware. This may be quite useful. For example, if a 

company requires a large legacy application but lacks the resources to port it to new hardware, 

they can use a whole system VMM. Another example of the benefits of ISA translation might be 

if an ISA has evolved in a new or branching CPU line, but older software should still be 

supported -- systems such as the IA32 Execution Layer, or IA32-EL ([18]), which supports 

execution of Intel IA-32 compatible software on Itanium processors, can be used. Alternatively, 

if a company develops for multiple hardware platforms, whole-system VMMs can facilitate 

multiple-ISA development environments consolidated on a single workstation. However, as 

already mentioned, ISA translation will likely degrade performance. 

A virtualization system may translate or optimize the guest ISA in different ways [79]. Through 

interpretation, an emulator runs a binary compiled for one ISA by reading the instructions one 

by one and translating them to a different ISA compatible with the underlying system. Through 

dynamic binary translation, blocks of instructions are translated at once and cached for later, 

resulting in higher performance than interpretation. Even if the guest and host run the same ISA, 
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the virtualization layer may also seek to dynamically optimize the binary code, as in the case of 

the HP Dyanmo system ([17]). 

Binary translation may also be needed in systems where the hardware is not virtualization-

friendly; in these cases, the VMM can translate unsafe instructions from a VM into safe 

instructions. 

2.3.4. Paravirtualization 

In relation to ISA translation, paravirtualization represents a different, possibly complementary 

approach to virtualization. In paravirtualization, the guest code is modified to use a different 

interface that is either safer or easier to virtualize, improves performance, or both. The interface 

used by the modified guest will either access the hardware directly or use virtual resources under 

the control of the VMM, depending on the situation, facilitating performance and reliability [89]. 

The Denali system uses paravirtualization in support of a lightweight, multi-VM environment 

suited for networked application servers [100]. 

Paravirtualization comes, of course, at the cost of modifying the guest software, which may be 

impossible or difficult to achieve and maintain. But in cases of well-maintained, open software 

(such as Linux), paravirtualized software distributions may be conveniently available. 

Like binary translation, paravirtualization can also serve in situations where underlying hardware 

is not supportive of virtualization. The paravirtualization of the guest gives the VMM control 

over all sensitive operations that must be virtualized and managed. 

2.3.5. Pre-virtualization 

Pre-virtualization, or transparent paravirtualization, as it is sometimes called, attempts to bring 

the benefits of both binary translation (which offers flexibility) and paravirtualization (which 

brings performance). Pre-virtualization is achieved via an intermediary between the guest code 

and the VMM -- this intermediary can come in the form of either a standard, neutral interface 

agreed on by VMM and guest OS developers, or an automated offline translation process such as 

using a special compiler. Both are offered by the L4Ka implementation of the L4 microkernel -- 

L4Ka supports the generic Virtual Machine Interface proposed by VMWare [92], and also 

provides their Afterburner tool that compiles unmodified guest OS code with special notations 

that enable it to run on a special, guest-neutral VMM layer [58]. 

Pre-virtualization aims to decouple the authoring of guest OS code from the usage of a VMM 

platform, and thereby retain the security and performance enhancements of paravirtualization 

without the ususal development overhead -- a neutral interface or offline compilation process 

facilitate this decoupling. Pre-virtualization is a newer technique that bears watching. 
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2.3.6. Containers 

Containers are an approach to virtualization that runs above a standard operating system but 

provides a complete, lightweight, isolated virtual environment for collections of processes [89]. 

An example is the OpenVZ project for Linux [65], or the system proposed in [81]. 

Applications running in the containers must run natively on the underlying OS -- containers do 

not promote heterogeneous OS environments. But in such situations, containers can pose a less-

resource intensive path to system isolation than traditional virtualization. 

One must, however, observe that a container system is not a minimal trusted hypervisor, but 

instead running as a part of what may be a monolithic OS; hence, any security ramifications in 

the container system architecture and the isolation mechanisms must be considered. 

2.4. Non-standard systems 

The above discussion on the basics of virtualization has concerned itself with typical system 

types, where layers of abstraction are used to expose higher and higher level interfaces to clients, 

promoting portability and ease-of-use, and creating a hierarchy of responsibility based on 

interface contracts. This common sort of architecture lends itself to virtualization. But it is worth 

mentioning that there are other types of computer systems in existence they may be not so 

amenable to virtualization. For instance, exokernels [37] take a totally different approach -- 

instead of trying to abstract and ``baby-proof" a system with higher and higher level interfaces, 

exokernels provide unfettered access to resources and allow applications to work out the details 

of resource saftey and management for themselves. This yields much more control and power to 

the application developer, but is more difficult and dangerous to deal with -- similar to the 

difference between programming in C and Java. 
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3. Hypervisors 

The hypervisor or VMM is the layer of software that performs system virtualization, facilitating 

the use of the virtual machine as a system abstraction as illustrated in Figure 1. 

 

Figure 1: Typical VM software architecture 

3.1. Traditional hypervisors 

Traditional hypervisors, such as Xen [19] and VMWare ESX [93], run on the bare metal and 

support multiple virtual machines. This is the classic type of hypervisor, dating back to the 1970s 

[41], when they commonly ran on mainframes. A traditional hypervisor must provide device 

drivers and any other components or services necessary to support a complete virtual system and 

ISA for its virtual machines. 

To virtualize a complete ISA and system environment, traditional hypervisors may use 

paravirtualization, as Xen does, or binary translation, as VMWare ESX does, or a combination of 

both, or neither, depending on such aspects as system requirements and available hardware 

support. 

The Xen hypervisor originally required paravirtualization, but can now support full virtualization 

if the system offers modern virtualization hardware support (see section 5). Additionally, Xen 

deals with device drivers in an interesting way. Instead of having all the device drivers included 

in the hypervisor itself, it instead uses the device drivers running in the OS found in the special 

high-privilege Xen administrative domain, sometimes known as Dom0 [29] (ch. 6). Dom0 runs 

an OS with all necessary device drivers. The other guests have been modified, as part of the 
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necessary paravirtualization, to use simple abstract device interfaces that the hypervisor then 

implements through request and response communication with Dom0 and its actual device 

drivers. 

3.1.1. Protection rings and modes 

In traditional hypervisor architecture, the hypervisor leverages a hardware-enforced security 

mechanism known as privilege rings or protection rings, or the closely related processor mode 

mechanism, to protect itself from guest VMs and to protect VMs from each other. The protection 

ring concept was introduced in the Multics operating system in the 1970s [75]. With protection 

rings, different types of code execute in different rings, with higher privilege code running in 

higher rings (ring 0 being the highest), with only specific predefined gateway mechanisms able 

to transfer execution from one ring to another. Processor modes function in a similar way. The 

current mode is stored as a hardware flag, and only when in certain modes can particular 

instructions execute. Transition between modes is a protected operation. For example, Linux and 

Windows typically use two modes -- supervisor and user -- and only the supervisor mode can 

execute hardware-critical instructions such as disabling interrupts, with the system call interface 

enabling transition from user to supervisor mode [101]. Memory pages associated with different 

rings or modes are protected from access by lower privilege rings or modes. Rings and modes 

can be orthogonal concepts, coexisting to form a lattice of privilege state. 

Following this pattern, the hypervisor commonly runs in the highest privilege ring or mode 

(possibly a new mode above supervisor mode, such as a hypervisor mode), enabling it to oversee 

the guest VMs and intercept and handle all important instructions affecting the hardware 

resources that it must manage. This subject will be further discussed in section 5 on virtualization 

hardware support. 

3.2.  Hosted hypervisors 

A hosted hypervisor, such as VirtualBox[95] or VMWare Workstation [83][94], runs atop a 

standard operating system and supports multiple virtual machines. The hypervisor runs as a user 

application, and therefore so do all the virtual machines. Performance is preserved by having as 

many VM instructions as possible run natively on the processor. Privileged instructions issued by 

the VMs (for example, those that would normally run in ring 0) must be caught and virtualized 

by the hypervisor, so that VMs don't interfere with each other or with the host. One potential 

advantage of the hosted approach is that existing device drivers and other services in the host 

operating system can be used by the hypervisor and virtualized for its virtual machines (as 

opposed to the hypervisor containing its own device drivers), reducing hypervisor size and 

complexity [79]. Additionally, hosted hypervisors often support useful networking 

configurations (such as bridged networking, where each VM can in effect obtain its own IP 

address and thereby network with each other and the host), as well as sharing of resources with 
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the host (such as shared disks). Hosted hypervisors provide a convenient avenue for desktop 

users to take advantage of virtualization. 

3.3. Microkernels 

Microkernels such as L4 [88] offer a minimal layer over the hardware to provide basic system 

services, such as Interprocess Communication (IPC) and processes or threads with isolated 

address spaces, and can serve as an apt base for virtualization [45]. (However, not everyone 

agrees on that last point [16][42].) Microkernels typically do not offer device drivers or other 

bulkier parts of a traditional hypervisor or operating system. To support virtualization, such 

services are often provided by a provisioning application such as Iguana on L4 [62]. The virtual 

machine runs atop the provisioning layer. Alternatively, an OS can be paravirtualized to run 

directly atop the microkernel, as in L4Linux [57]. 

Microkernels can be small enough to support formal verification, providing formal assurance for 

a system's Trusted Computing Base (TCB), as in the recently verified seL4 microkernel [53][63]. 

This may be of special interest to parties building systems for certification by the Common 

Criteria [24], or in any domain where runtime reliability and security are mission-critical 

objectives. 

Microkernels can give rise to interesting architectures. Since other applications can be written to 

run on the microkernel in addition to provisioned virtual machines, with each application running 

in its own address space isolated by the trusted microkernel, a system can be built consisting of 

applications and entire operating systems running side by side and interacting through IPC. 

Furthermore, the company Open Kernel Labs ([64]) advertises an L4 microkernel-based 

architecture where not only applications and operating systems, but also device drivers, file 

systems, and other components can be run in isolated domains, and where device drivers running 

in one operating system can be used by other operating systems via the mediation of the 

microkernel. (This is similar to the device driver approach in Xen.) 

3.4. Thin hypervisors 

There is some debate as to what really constitutes a ``thin" hypervisor. How thin does it have to 

be to be called thin? What functionality should it provide? VMWare ESXi, which installs 

directly on server hardware and has a 32MB footprint [93], is advertised as an ultra-thin 

hypervisor. But other hypervisors out there are considerably smaller, and one could argue that 

32MB is still quite large enough to harbor bugs and be difficult to verify. The seL4 microkernel 

has ``8,700 lines of C code and 600 lines of assembler" [53], and thus is quite a bit smaller while 

still providing isolation (although not, in itself, capable of full virtual machine support). 

SecVisor, a thin hypervisor intended to sit below a single OS and provide kernel integriy 

protection, is even tinier, coming in at 1112 lines when proper CPU support for memory 

virtualization is available [77] -- but of course, it offers still less functionality than seL4. This 
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also indicates that the term ``hypervisor" is a superset of ``virtual machine monitor", including as 

well architectures that provide but a thin monitoring and possibly ISA virtualization layer 

between a guest OS and the hardware. 

There are numerous thin hypervisor architectures in the literature, including the aforementioned 

SecVisor [77] and BitVisor [78]. Like traditional hypervisors and microkernels, thin hypervisors 

run on the bare metal. We will be most interested in ultra-thin hypervisors that monitor and 

interpose between the hardware and a single guest OS running above it. This presents the 

opportunity to implement various services without the guest needing to know, including security 

services. Since ultra thin hypervisors are intended to be extremely small and efficient, they are 

thus suitable for low cost, low resource computing environments such as embedded systems. 

The issue of hardware support is especially relevant for ultra-thin hypervisors, since any 

activities that can be handled by hardware relieve the hypervisor of extra code and complexity. 

Since an ultra-thin hypervisor runs with such a bare-bones codebase, hardware support will be 

instrumental in determining what it can do. 

One interesting question is if it is possible to create an ultra-thin hypervisor that will run beneath 

a traditional hypervisor/VMM, instead of beneath a typical guest OS, and thereby effectively 

provide security services for multiple VMs but still with an extremely tiny footprint. It is also 

interesting to consider the possibility of multicore support in a thin hypervisor, given the added 

complexity yet increasing relevance and prevalence of multicore hardware. 

Thin hypervisors will be discussed more later in the context of security architecture. 
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4. Advantages of System Virtualization 

Traditional system virtualization, by enabling entire virtual machines to be logically separated by 

the hypervisor from the hardware they run on, creates compelling possibilities for system design. 

Put another way, ``by freeing developers and users from traditional interface and resource 

constraints, VMs enhance software interoperability, system impregnability, and platform 

versatility." [79]. Virtualization yields numerous advantages, some of which are discussed in the 

following sections. 

4.1. Isolation 

The fundamental advantage of virtualization is isolation between the virtual machines, or 

domains, enforced by the hypervisor. (Domain is a more generic term than virtual machine, and 

can capture any isolated domain, such as a microkernel address space.) This leads to robustness 

and security. 

It is worth mentioning nowadays that, instead of traditional pure isolation, virtualization is used 

in architectures where virtual machines are intended to cooperate in some way (especially in 

mobile and embedded platforms, discussed in a later section). Therefore it may be important for 

the hypervisor to provide secure services for inter-VM communication, such as microkernel IPC. 

4.2. Minimized trusted computing base 

 A user application depends on, or trusts, all the software running beneath it. A compromise in 

any software beneath it on the stack, or in any other software that can compromise or control any 

software on the stack, can compromise the application itself. In modern operating systems, where 

software often runs with administrative privileges, a compromise of any piece of software can 

result in total machine compromise and therefore be devastating to any other software running on 

the machine. Such an architecture presents an immense attack surface -- the entire exposed 

facade through which the attacker can approach the system. It could include user applications, 

operating system interfaces, network services, devices and device drivers, etc. 

Virtualization addresses this problem by placing a trustworthy hypervisor at the highest privilege 

on the system and running virtual machines at reduced privilege. Software can be partitioned into 

virtual machines that are trusted and untrusted, and a compromise of an untrusted VM will have 

no effect on a trusted VM, since the hypervisor guards the gates, so to speak. Total machine 

compromise now requires compromise of the hypervisor, which typically presents a much 

slimmer attack surface than mainstream operating systems (although of course that varies in 

practice). A slimmer attack surface means, in principle, that it is easier to protect correctly. 

4.3. Architectural flexibility 
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The decoupling of virtual and real renders a great deal of architectural flexibility. VMs can be 

combined on a single platform arbitrarily to meet particular needs. In the case of whole-system 

VMMs that translate the ISA, the flexibility even extends to running VMs on more than one type 

of hardware, and combining VMs meant for more than one type of hardware on a single 

platform. 

4.4. Simplified development 

Virtualization can lead to simplified software development and easier porting. As mentioned, 

instead of porting an application to a new operating system, an entire legacy software stack can 

simply run in a virtual machine, alongside other operating systems, on a single platform. In the 

case of ISA translation, instead of targeting every hardware platform, a developer can write for 

one platform, and rely on virtualization to extend support to other platforms. 

In addition to reducing the need for porting and developing across platforms, virtualization can 

also facilitate more productive development environments, for instance by enabling a 

development or testing workstation to run instances of all target operating systems. 

Another example is that when developing a system typically comprised of multiple separate 

machines, system virtualization can be used to virtualize all these machines on a single machine 

and connect them with a virtual network. This approach can also be used to facilitate product 

demos of such systems -- instead of bringing all the separate machines to a customer, a laptop 

hosting all the necessary virtual machines can be used to portably demonstrate system 

functionality. 

4.5. Management 

The properties of virtualization result in many interesting benefits when it comes to system 

management. 

4.5.1. Consolidation/Resource sharing 

Virtualization can increase efficiency in resource utilization via consolidation [44][54]. Systems 

with lower needs can be run together on single machines. More can be done with less hardware. 

Virtualization's effectiveness in reducing costs has been known for decades [41]. 

4.5.2. Load balancing and power management 

In the same vein as consolidation, virtualization can be used to balance CPU load by moving 

VMs off of heavily loaded platforms (load balancing), and can also be used to combine VMs 

from lightly loaded machines onto fewer machines in order to power down unneeded hardware 

(power management) [44][54]. 

4.5.3. Migration 
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Virtual machines can be migrated live (that is, in the middle of execution) between systems. 

Research has been done to support virtualization-based migration even on mobile platforms [84]. 

In theory, computing context could be migrated between any compatible device capable of 

virtualization. Challenges include ensuring that a fully compatible environment is provided for 

virtual machines in each system they migrate to (including a consistent ISA), so that execution 

can be safely resumed. Besides further enabling the above mentioned management applications 

of consolidation and load balancing, migration supports new scenarios where working context is 

seamlessly transitioned between environments, such as for employees working in multiple 

corporate offices, client sites, and travel in between. 

4.6. Security 

Last but definitely not least, virtualization can provide security advantages, and is moving more 

and more in this direction [54]. Of course, these advantages are founded on the minimized TCB 

and VM/VMM isolation mentioned earlier, the basic properties that make virtualization 

attractive in secure system design. But building upon these foundational properties can lead to 

substantial additional security benefit. 

A hypervisor has great visibility into and control over its virtual machines, yet is isolated from 

them, and thus forms an apt base for security services of many and varied persuasions. An 

interesting aspect of virtualization-based security architecture is that it can bring security services 

to unmodified guest systems, including commodity platforms. 

By using virtualization in the creation of secure systems, designers can reap not only the bounty 

of isolated domains, but additionally the harvest of whatever security services the hypervisor can 

support. A later section will discuss virtualization-based security services in greater detail. 

4.7. Typical Virtualization Scenarios 

4.7.1. Hosting center 

Hosting centers can use virtualization to provide systems for clients. Clients can share time on 

virtualized systems with quality of service guarantees. Restricted to their own isolated domains, 

clients are prevented from interfering with each other. This scenario sounds quite familiar to the 

time-sharing mainframes of yesteryear, and indeed the scenarios bear resemblance. The hosting 

center is a very typical virtualization use-case, where VMs are purely isolated and share 

resources according to a local policy. 

4.7.2. Desktop 

Virtualization on the desktop is becoming much more common nowadays, which has inspired 

(and is inspired by) progress in virtualization support in commodity desktop hardware [61]. In 

corporations, especially development houses, virtualization is used to give engineers easy access 
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to multiple target platforms. Another possible corporate scenario is enabling employees to have 

virtual machines configured for different clients or workplace scenarios on one machine. With 

VirtualBox freely available, even home users can cheaply leverage virtualization to access 

multiple operating systems or partition their system into trusted and untrusted domains. 

Virtualization gives desktop users the freedom to have all the heterogeneous computing 

environments they need at their fingertips, without absorbing extra hardware cost. 

4.7.3. Service provider 

A service provider (such as a web service provider) may utilize virtualization to consolidate 

resources or servers onto fewer hardware platforms. For instance, a web application may have a 

front end web server and multiple back end tier servers, hosted as virtual machines on a single 

physical machine. 

4.7.4. Mobile/embedded 

Lastly, a quickly emerging virtualization scenario is the mobile/embedded arena -- it is becoming 

more and more common now to have mobile devices containing isolated domains entrusted with 

different purposes [85], such as an employee smartphone containing isolated home and work 

environments [54]. With processors shrinking in size and increasing in performance, growing 

numbers of embedded systems have the power to support virtualization and leverage its benefits. 

Embedded CPUs with multiple cores and/or built-in security/virtualization support, as in the 

already discussed ARM Trustzone, further enhance possibilities. 

Multiple companies are working in the mobile virtualization space, including Open Kernel Labs 
2
, VirtualLogix 

3
, and now VMWare 

4
. It has been found to be not unduly onerous to port 

virtualization architectures to mobile platforms [25], and open systems such as the L4 

microkernel [88] and Xen on ARM [46][103] afford open, low-cost solutions. 

Therefore, the benefits of virtualization already discussed can be brought to mobile systems, in 

addition to enabling applications and benefits specific to the mobile/embeddded environment. 

For example, due to the high frequency of hardware changes and the wide variety of available 

platforms in embedded systems, virtualization can provide an especially convenient layer of 

abstraction to facilitate application development. Applications could be distributed as an entire 

software stack (including a specific OS) to run in a VM, and therefore not depend on any 

particular ABI [44]. Isolated virtual machines can serve as mobile testbed components or nodes 

in opportunistic mobile sensor networks [32], and support heterogeneous application 

                                                 
2
http://www.ok-labs.com/ 

3
http://www.virtuallogix.com/ 

4
http://www.vmware.com/technology/mobile/ 
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environments [44]. Modularity and live system migration is of special interest in the mobile 

environment. Virtualization can also support mobile payment, banking, ticketing, or other similar 

applications via isolated trusted components (as in TrustZone design tiers) -- for instance, 

Chaum's vision of a digital wallet, with one domain controlled by the bank and one domain by 

the user [27], could potentially be implemented with virtualization, enabling people to carry ``e-

cash" in their PDA or smartphone. And of course, beyond isolation, many aspects of security in 

embedded scenarios may be served by virtualization, as will be discussed later. 
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5. Hardware Support for Virtualization 

Virtualization benefits from support in the underlying hardware architecture. If hardware is not 

built with system virtualization in mind, then it can become difficult or impossible to implement 

virtualization correctly and efficiently. Challenges can include virtualization of the CPU, 

memory, and device input/output. For example, if a non-privileged CPU instruction (that is, a 

portion of the ISA that non-privileged user code is still permitted to execute) can modify some 

piece of privileged hardware state for the entire machine, then one virtual machine is effectively 

able to modify the system state of another virtual machine. The VMM must prevent this breach 

of consistency. In another common example relating to memory virtualization, standard page 

tables are designed for one level of virtualized memory, but virtualization requires two -- one 

layer for the VMM to virtualize the physical memory for the guest VMs, and one layer for the 

guest VMs to virtualize memory for their own processes. Lacking hardware support for this 

second level of paging can incur performance penalties, so called shadow page tables as 

illustrated in Figure 2.  In another example, regarding device I/O where devices use DMA to 

write directly to memory pages, a VMM must ensure that devices being used by one VM are not 

allowed to write to memory used by another VM. If the VMM must validate every I/O operation 

in software, it can be expensive. There are many other potential issues with hardware and 

virtualization, mostly centering around the cost and difficulty of trapping/intercepting and 

emulating instructions and dealing with overhead from frequent context switches in and out of 

the hypervisor and VMs whenever privileged state is accessed. It is important that hardware 

contain mechanims for dealing with virtualization issues if virtualization is to be effectively and 

reasonabley supported. 
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Figure 2: Usage of shadow page tables 

Without hardware support, VMMs can also rely on the aforementioned paravirtualization, in 

which the source code of an operating system is modified to use a different interface to the 

VMM that the VMM can virtualize safely and efficiently, or the already described binary 

translation [61], in which the VMM translates unsafe instructions at runtime. Neither of these 

solutions is ideal, since paravirtualization, while effective and often resulting in performance 

enhancements, requires source-code level modification of an operating system (something not 

always easy or possible), and translation, as stated earlier, can be resource intensive and 

complicated. (Pre-virtualization could offer a better solution here.) Specifically regarding I/O 

virtualization without hardware support, a VMM can emulate actual devices (so that device 

instructions from VMs are intercepted and emulated by the VM, analagous to binary translation), 

supporting existing interfaces, or it can provide specially crafted new device interfaces to its 

VMs [49]. Emulating devices in a VM can be slow, and difficult to implement correctly, while 

providing a new interface requires modification to a VM's device drivers and/or OS, which may 

be inconvenient. Besides sidestepping these troubles, having hardware shoulder more of the 

burden for virtualization support can simplify a hypervisor's code overall, further minimizing the 

TCB, easing development, and raising assurace in security [61]. There are other software-based 

solutions for enabling virtualization without hardware support, such as the ``Gandalf" VMM [50] 

that attempts to implement lightweight shadow paging for memory management, but it is 

unlikely that a software-based solution will be able to compete with a competent hardware-based 

solution. 
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5.1. Basic virtualization requirements 

Popek and Goldberg outlined basic requirements for a system to support virtual machines in 

1974 [69]. The three main requirements are summed up in a simple way in [2]:   

1. Fidelity -- Also called equivalency, fidelity indicates that running software on a 

virtual machine should result in identical results or behavior as running it on a real 

machine (excepting time-related issues). 

2. Performance -- Performance should be reasonably efficient, which is achieved by 

having as many instructions as possible run natively, direct on the hardware, without 

trapping to the VMM.  

3. Safety -- The hypervisor or VMM must have total control over the virtualized 

hardware resources.  

Many modern hardware platforms were not designed to support virtualization and did not meet 

the fidelity requirement out of the box, meaning that VMM software had to do extra work -- 

negatively impacting the efficiency requirement. But today, CPUs are being built with more 

built-in virtualization support, including chips by Intel and AMD, and are actually able to meet 

Popek and Goldberg's requirements. 

5.2.  Challenges in x86 architecture 

Intel x86 CPU architecture formerly offered no virtualization support, and indeed included many 

issues that hindered correct virtualization (necessitating binary translation or paravirtualization). 

As a common architecture, it is worth taking a closer look at some of its issues. Virtualization 

challenges in Intel 86x  architecture include (as described in [61]):   

    Certain IA-32 and Itanium instructions can reveal the current protection ring 

level to the guest OS. Under virtualization, the guest OS will be running in a 

lower-than-normal privilege ring. Therefore, being able to discern the current 

ring breaks Popek and Goldberg's fidelity condition, and can reveal to the guest 

that it is running in a virtual machine.  

     In general, if a guest OS is made to run at lower privilege than ring 0, issues 

may arise if any portion of the OS was written expecting to be run in ring 0.  

     Some IA-32 and Itanium non-faulting instructions (that is, non-trapping, non-

privileged instructions) modify privileged CPU state. User-level code can 

execute such instructions, and they don't trap to the operating system. 

Therefore, VMs can issue non-trapping instructions that modify state affecting 

other VMs. 

     IA-32 SYSENTER and SYSEXIT instructions, typically used to start and end 

system calls, cause a trap to and exit from ring 0, respectively. If SYSEXIT is 

called outside ring 0, it causes a trap to ring 0. With a VMM running at ring 0, 
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SYSENTER and SYSEXIT will therefore trap to the VMM -- bon system call 

entry (when the user application calls SYSENTER, trapping to ring 0) and exit 

(when the guest OS not at ring 0 calls SYSEXIT, resulting in a trap to ring 0). 

This creates additional overhead and complication for the VMM.  

     Activating and deactivating interrupt masking (for blocking of external 

interrupts from devices) by the guest OS is a privileged action and may be a 

frequent activity. Without hardware support, it could be costly for a VMM to 

virtualize this functionality. This concern also applies to any privileged CPU 

state that may be accessed frequently.  

     Also relating to interrupt masking, the VMM may have to deliver virtual 

interrupts to a VM, but the guest OS may have masked interrupts. Some 

mechanism is required to ensure prompt delivery of virtual interrupts from the 

VMM when the guest deactivates masking.  

     Some aspects of IA-32 and Itanium CPU state are hidden -- meaning they are 

inaccessible for reading and/or writing by software -- and it is therefore 

impossible for a context switch between VMs to properly transition that state.  

     Intel CPUs typically contain four protection rings. The hypervisor runs at ring 

0. In 64-bit mode, the paging-based memory protection mechanism doesn't 

distinguish between rings 0-2; therefore, the guest OS must run at ring 3, 

putting it at the same privilege level as user applications (and therefore leaving 

the guest OS less protected from the applications running on it). This 

phenomenon is known as ring compression.  

Modern Intel and AMD CPUs offer hardware support to deal with these challenges. Prominent 

aspects of hardware virtualization support include support for virtualization of CPU, memory, 

and device I/O, as well as support for guest migration. 

5.3. Intel VT 

Intel Virtualization Technology (VT) is a family of technologies supporting virtualization on 

Intel IA-32, Xeon, and Itanium platforms. It includes elements of support for CPU, memory, and 

I/O virtualization, and guest migration.  

Intel VT on IA-32 and Xeon is known as VT-x, whereas Intel VT for Itanium is known as VT-i. 

Of those two, this document will focus on VT-x. Intel VT also includes a component known as 

VT-d for I/O virtualization, discussed in later this section, and VT-c for enhancing virtual 

machine networking, which is not discussed. 

5.3.1. VT-x 

Technologies under the VT-x heading include support for CPU and memory virtualization, as 

well as guest migration. 
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A foundational element of Intel VT-x's CPU virtualization support is the addition of a new bit of 

CPU state, orthogonal to protection ring, known as VMX root operation mode [61]. (Intel VT-i 

has a similar new bit -- the ``vm" bit in the processor status register, or PSR.) The hypervisor 

runs in VMX root mode, whereas virtual machines do not. When executed outside VMX root 

mode, certain privileged instructions will invariably trap to VMX root mode (and hence the 

VMM), and other instructions and events (such as different exceptions) can also be configured to 

trap to VMX root mode. Exit from VMX root mode is called a VM entry and entry to this mode 

is called a VM exit. VM entries and exits are managed in hardware via a structure known as the 

Virtual Machine Control Structure (VMCS). The VMCS stores virtualization-critical CPU state 

for VMs and the VMM so that it can be correctly swapped in and out by hardware during VM 

entries and exits, freeing VMM software from this burden. Note also that the VMCS contains 

and provides access to formerly hidden CPU state, so that the entire CPU state can be virtualized. 

The VMCS stores the configuration for which optional instructions and events will trap to VMX 

root mode. This enables the VMM to ``protect" appropriate registers, handle certain instructions 

and exceptions, handle activity on certain input/output ports, and other conditions. A set of CPU 

instructions provides the VMM with configuration access to the VMCS. 

Regarding interrupt masking and virtualization, the interrupt masking state of each VM is 

virtualized and maintained in the VMCS. Further, VT-x provides a control feature whereby a 

VMM can force traps on all external interrupts and prevent a VM from modifying the interrupt 

masking state (and attempts by the guest to modify the state won't trap to the VMM). There is 

also a feature whereby a VMM can request a trap if the VM deactivates masking [61]. Therefore, 

if masking is active, the VMM can request a trap when masking is again deactivated -- and then 

deliver a virtual interrupt. 

Additionally, it is important to observe that since VMX root mode is orthogonal to protection 

ring, a guest OS can still run at ring 0 -- just not in VMX root mode. This alleviates any 

problems arising from a guest OS running at lower privilege but expecting to run at ring 0 (or 

from a guest OS being able to detect that it isn't running in ring 0). It also solves the problem of 

SYSENTER and SYSEXIT always faulting to the VMM and thus impacting system call 

performance -- now, they will behave as expected, since the guest OS will run in ring 0. 

Another salient element of VT-x's CPU virtualization support is hardware support for 

virtualizing the Task Priority Register (TPR) [61]. The TPR resides in the Advanced 

Programmable Interrupt Controller (APIC), and tracks the current task priority -- only interrupts 

of higher priority priority will be delivered. An OS may require frequent access to the TPR to 

manage task priority (and therefore interrupt delivery and performance), but a guest OS must not 

modify the state for any other guest OSes, and trapping frequent TPR access in the VMM could 

be expensive. Under VT-x, a virtualized copy of the TPR for each VM can be kept in the VMCS, 

enabling the guest to manage its own task priority state -- and a VM exit will only occur when 

the guest attempts to drop its shadow value below a threshold value also set in the VMCS [61]. 



      2009-12-08 

 

The VM can therefore modify, within set bounds, its TPR -- without trapping to the VMM. (This 

technology is advertised as Intel VT FlexPriority.) 

Moving on from virtualization of the CPU, Intel VT-x also now contains a feature called 

Extended Page Tables (EPTs) [44], which support virtualization memory management. Standard 

hardware page tables translate from virtual page numbers to physical page numbers. In 

virtualization scenarios, use of these basic page tables requires frequent synchronization effort 

for the VMM, since (as described in the beginning of section 5) the VMM needs to virtualize the 

physical page numbers for each guest. The VMM must somehow maintain the physical 

mappings for each guest VM. With EPTs, there are now two levels of page tables -- one page 

tabe translates from ``guest virtual" to ``guest physical" page numbers for each VM, and a 

second page table translates from ``guest physical" to the ``host physical" page numbers that 

correspond to actual physical memory. In this way, a VM is free to access and use its own page 

tables, mapping between the VM's own virtual and ``guest physical" addresses, in a normal way, 

without needing to trap to the VMM -- resulting in performance savings. 

However, EPTs do result in a longer page table ``walk" (a page table walk is the process of 

``walking" though the page tables to find the physical address corresponding to a virtual 

address), due to the second page table level. Therefore, if a process incurs many TLB misses, 

necessitating many page table walks, performance could suffer. One possible solution to this 

problem is to increase page size, which could reduce the number of TLB misses (depending on 

the process's memory layout). 

Another VT-x feature supporting memory virtualization is Virtual Process Identifier (VPID), 

which enable a VMM to maintain a unique ID for each process running within the VMs (and for 

its own process). TLB entries can then be tagged with a VPID, and therefore the TLB won't have 

to be flushed (which is expensive) in VM entries and exits ([61]), since entries for different VMs 

are distinguishable. 

Finally, VT-x includes a component dubbed ``FlexMigration" that facilitates migration of guest 

VMs among supporting Intel CPUs. Migration of guest VMs in a varied host pool can be 

challenging, since guest VMs may query the CPU for its ID and thereafter expect the presence of 

a certain instruction set, but then may be migrated to another system supporting slightly different 

instructions. FlexMigration helps possibly heterogeneous systems in the pool to expose 

consistent instruction sets to all VMs, thus enabling live guest migration. 

5.3.2. VT-d 

Device I/O uses DMA, enabling devices to write directly to memory pages without going 

through the operating system kernel. (DMA for devices has been a source of security issues in 

the past, with devices such as Firewire devices being able to write to kernel memory, even if 

accessed by an unprivileged user. Attacks on the system via DMA are sometimes called ``attacks 
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from below".) The problem with DMA for devices on virtualization platforms is that devices 

being used by a guest shouldn't be allowed to access memory pages on the system belonging to 

other guests or the VMM -- therefore, on traditional systems, all device I/O operations must be 

checked with or virtualized by the VMM, thereby reducing performance. Hardware support can 

enable guest associations and memory access permissions to be established for devices and 

automatically checked for any I/O operation. 

Intel VT for Directed I/O (also known as Intel VT-d) offers hardware support for device I/O on 

virtualization platforms [49]. It provides several key features (as described in [49]):   

 Device assignment -- The hardware enables specification of numerous isolated 

domains (which might correspond to virtual machines on a virtualization 

platform). Devices can be assigned to one or more domains, so that they can only 

be used by those domains. In particular, this allows a VM domain to use the 

device without trapping to the VMM.  

 DMA remapping -- through use of I/O page tables, the pages included in each I/O 

domain and the pages that can be accessed by each device can be restricted. 

Furthermore, pages that devices write to can be logically remapped to other 

physical pages. In I/O operations, the page tables are consulted to check if the 

page in question may be accessed by the device in question on behalf of the 

current domain. Different I/O domains are effectively isolated from each other. 

Note that this feature is necessary to make device assignment safely usable -- 

since it prevents a device assigned to one domain from accessing pages belonging 

to another domain.  

 Interrupt remapping -- Device interrupts can be restricted to particular domains, 

so that devices only issue interrupts to the domains that are expecting them.  

DMA remapping offers a plethora of potential uses, both for standard systems with a single OS 

and for VMMs with multiple VMs [49]. For standard systems, DMA remapping can be used to 

protect the operating system from devices (by prohibiting device access to kernel memory 

pages), and to partition system memory into different I/O domains to isolate the activity of 

different devices. It can also be used on 64-bit systems to support legacy 32-bit devices that are 

only equipped to write to a 4GB physical address space; the addresses the device writes to can be 

remapped to higher addresses in the larger system address space (which would otherwise require 

expensive OS-managed bounce buffers). 

A VMM, on the other hand, might simply assign devices to domains (which will most likely 

correspond to VMs), and devices will thereby be restricted to operating on any memory owned 

by that domain (VM). As mentioned, this will also enable guest VMs (and their device drivers) 

to interact with their assigned I/O devices without trapping to the VMM. Furthermore, the VMM 

can assign devices to multiple domains to facilitate I/O sharing or communication. Finally, if the 

VMM virtualizes the DMA remapping instructions for its VMs, then the guest VMs can use the 
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remapping support in a similar way to an OS on a standard system -- protecting the OS, limiting 

and partitioning the memory regions that a device can write to, and remapping regions for legacy 

devices. To virtualize the remapping instructions and state, the VMM could maintain this state 

(in an eagerly updated ``shadow copy" [49]) for each VM, by intercepting VM modification of 

its I/O page tables and VM usage of the registers controlling the remapping. (Perhaps a future 

hardware revision could provide built-in hardware support for virtualization of the remapping 

facilities.) 

The interrupt remapping component of VT-d can also be put to multiple uses by a VMM [49]. A 

VMM can ensure that device-generated interrupts are routed only to the domains that the devices 

are assigned to. It can also use the remapping hardware as a kind of ``interrupt firewall" to 

ensure that external interrupts do not have characteristics that would cause them to be confused 

with internal VMM interrupts. Finally, the interrupt remapping can be used to enable safe 

migration of interrupts (the transfer of interrupts to the correct processor) when the associated 

domain/workload has moved to another processor -- useful in load balancing situations. 

5.4. AMD-V 

AMD's version of virtualization support is entitled AMD-V [6], and offers comparable support 

for CPU, memory, and I/O virtualization, and migration. 

5.4.1. CPU 

AMD-V incorporates a new bit of CPU state entitled ``guest mode" [7] that is analagous to non-

VMX root mode in Intel VT-x. Guest mode is entered via the VMRUN instruction. Whenever 

VMRUN is called for a specific VM, the hardware accesses a structure called a Virtual Machine 

Control Block (VMCB) for that VM. The VMCB stores configuration information on what 

events and interrupts should be intercepted by the VMM for that guest, as well as CPU state for 

that VM, and bits to indicate additional special instructions for preparing the VM's execution 

environment. On VMRUN, the VMCB is used to swap in the VM CPU state, and VMM state is 

saved to memory for later. 

AMD-V also offers similar support to Intel for interrupt virtualization [7]. First, it has a master 

bit in the VMCB that activates or deactivates interrupt virtualization -- if active, then the guest 

interrupt masking bit only controls virtual interrupts, and the VMM's interrupt masking bit 

controls physical (external) interrupts. (If interrupts aren't virtualized, the guest controls both 

physical and virtual interrupt masking.) If interrupts are virtualized, then the TPR value for each 

guest is also virtualized. The VMM can choose to intercept all physical interrupts, deliver virtual 

interrupts to guests, and also force a trap when a VM with interrupts masked enables them once 

again. There are additionally mechanisms for the VMM to clear out the pending interrupt queue 

in an arbitrary manner or disregard certain interrupt vectors when determining the highest 
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priority pending external interrupt -- this can help in the case of a VM that is blocking other VMs 

by not processing its own external interrupts. 

5.4.2. Memory 

Rapid Virtual Indexing, also known as Nested Paging, is AMD's version of hardware support for 

virtualization memory management [5]. Like Intel's EPTs, it incorporates a second level of 

hardware page tables, eliminating the need for shadow paging. It functions similarly to EPTs, 

and has been shown to yield dramatic performance increases (but, likewise, potentially suffers 

from the problem of slower page table walks) [91]. 

Address Space Identifiers (ASIDs) are used to eliminate the need for TLB flushes when 

switching to a new VM [5]. An ASID is a unique ID assigned to each guest by the hypervisor, 

and is used to tag TLB entries, so that TLB entries for different VMs can be distinguished. It is 

similar to Intel's VPID feature, and basically updates the TLB along with the page tables to 

support a two-level virtual memory scheme. 

5.4.3. Migration 

AMD-V Extended Migration also provides hardware support for live migration of VMs between 

AMD Opteron processors in a pool of systems [8]. This support includes features to facilitate 

backward compatibility (by limiting the instruction set features exposed to guests to the lowest 

common denominator of all systems in the pool) and forward compatibility (by allowing VMMs 

to disable instructions found on newer processors that guests expect to not be functioning). In 

other words, similar to Intel's FlexMigration, it helps ensure that a guest will never find an 

unexpected instruction environment, no matter where it migrates to in the pool. 

5.4.4. I/O 

Similar to Intel VT-d, AMD-V contains a component termed an I/O Memory Management Unit 

(IOMMU) (previously DEV) that provides support for I/O virtualization [4]. It uses similar 

components -- through I/O page tables, I/O memory accesses are checked for permissibility and 

remapped. Through a device table, devices can be assigned to certain domains, which correspond 

to a particular portion of the I/O page tables (and therefore memory regions and remappings). 

And, through an interrupt mapping table, interrupts are checked for permissibility and routed to 

the appropriate domains. 

It is worth mentioning that, due to AMD64 systems consisting potentially of multiple processors 

and device nodes that are spread out and connected with AMD ``HyperTrasport" links, an 

IOMMU can only intercept I/O memory accesses if the operation goes through the IOMMU 

node in the HyperTransport network -- therfore, multiple IOMMUs can be necessary to cover all 

devices [4]. 
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5.5. ARM TrustZone 

ARM TrustZone technology, for ARM11 and ARM Cortex embedded processors (include ARM 

Cortex-A9 MPCore multicore processors), offers support for creating two securely isolated 

virtual cores (or ``worlds", as they are termed) on a single real core. One world is Secure and one 

world is Normal, and TrustZone manages transitions between them, preventing state or data from 

leaking from the Secure world to the Normal world [13]. While overall less developed and more 

limited in capabilities than Intel VT or AMD-V, and intended more for supporting security 

architectures in general, it does offers some similar components to those found in 86x  

virtualization support packages. It is described in detail in [13], and also in [11]. 

First to mention is that the system bus control signals now contain one extra bit, the NS or 

``Non-Secure" bit, that functions like a 33rd address bit to differentiate between the two worlds. 

Each virtual core has its own address space -- through special TrustZone memory controllers 

([12][15]), physical memory is statically assigned to the Secure or Normal worlds. Furthermore, 

TrustZone provides a feature called the Advanced Peripheral Bus (APB) that is connected to the 

main system bus by a bridge component -- this bridge component enforces security for all 

peripherals on the APB, and can deny insecure or otherwise problematic transactions from being 

dispatched to peripherals. Hardware devices can be assigned to the Secure or Normal world. This 

enables tight control of, for example, the interrupt controller, screen and keyboard. 

Both worlds have user and privileged modes, as in normal operating systems. But the Secure 

world also contains a special mode called ``Monitor Mode" that is responsible for context 

switching between the two worlds. The secure monitor call (SMC) instruction always traps to 

Monitor mode. External interrupts and aborts can also be made to trap to Monitor mode, but 

system calls, MMU memory faults, and misuse of undefined or privileged instructions can't be 

configured to trap to Monitor mode. The Secure and Normal worlds and Monitor mode have 

their own exception handlers. Monitor mode is responsible for swapping in and out CPU state 

(i.e., registers) when switching from one world to another, enabling execution to begin where it 

left off in whichever world is being switched to. 

TrustZone supplies two virtual MMUs for its two worlds, enabling each one to manage its own 

virtual to physical mappings for greater efficiency and isolation. Note that the Secure world can 

map in pages from the Normal world, but not the other way around. Important MMU state (such 

as the location of page tables) is kept independently for each world. Additionally, TLB entries 

are tagged with the associated world, to prevent the need for TLB flushes in a context switch. 

Cache entries are also tagged with the associated world, easily facilitating cache usage by both 

worlds. 

External interrupts generated for either world can be handled efficiently; if they are destined for 

the currently running world, then they are delivered immediately, whereas if they are intended 
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for the other world, execution can trap to Monitor mode and then the interrupt can be properly 

routed. The Monitor typically runs in a non-interruptible state (interrupts masked). 

In addition to the above-described mechanisms, one could say that security begins on TrustZone 

platforms with the secure boot process initiated when the device is powered on. The hardware 

bootloaders that kick off the process can utilize public key cryptography to verify the integrity of 

code at each successive step in the process (creating a chain of trust), and can leverage some kind 

of TPM or other tamper-resistant module. The system always boots into the Secure world first, 

and the Secure world then loads the Normal world -- this prevents untrusted code in the Normal 

world from making unauthorized system changes before the Secure world has properly prepared 

the system. 

There are numerous other features available in the TrustZone hardware ``library", including a 

special DMAC capable of simultaneously handling channels for the Secure and Normal worlds. 

As previously covered, taking the I/O memory traffic burden off of the processor and the high-

privilege software can offer significant performance savings. 

So, while TrustZone doesn't offer support for arbitrarily many virtual machines, it does support 

two strongly isolated virtual cores with partitioned devices and independent memory 

management facilities, as well as regulated paths for transition between the two worlds. 

Potential TrustZone system designs for secure architectures, using various TrustZone-supportive 

hardware components, can be broken down into different tiers, as described in [14]:   

 Tier One -- In this basic (and low-cost) mode, intended to support secure PIN 

entry and payment protocols, the Secure world runs a Secure OS and the Normal 

world runs an Open OS. The Open OS is running and controlling input 

peripherals and the screen the majority of the time, but if secure entry of a PIN or 

other data is required (especially in service of some type of payment transaction), 

the Secure OS takes control of the input devices and the screen. The Secure OS 

uses an isolated contiguous block of SRAM. It is booted with a trusted boot 

process, whereby a hardware component boots a base OS, then loads the Secure 

OS, which subsequently loads the Open OS.  

 Tier Two -- A superset of Tier One, Tier Two is intended to support DRM 

applications. The Secure OS owns certain protected memory regions used for 

DRM content, and if the Secure OS itself doesn't perform the decoding, then an 

external chip or other peripheral can also be used (and access to this component 

will be restricted to the Secure OS). Tier Two involves more complex control 

capabilities over devices and I/O than Tier One, to safeguard the protected 

content.  

 Tier Three -- Tier Three, a superset of Tier Two, is intended to offer full support 

for ``cloud computing" ([14]) in which secure services run in a protected manner 
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in the Secure OS and untrusted data is received, processed, and distributed by the 

Open OS. It increases support for device control, and adds the DMA controller as 

well as additional acceleration mechanisms for securely, efficiently processing 

DRM on large content files.´ 

Tier Three can therefore also be used to support system virtualization. The hypervisor runs in the 

Secure world, and a single guest runs in the Normal world. The DMA controller and device 

control mechanisms support I/O virtualization, and the TrustZone isolation mechanisms and 

interrupt handling support isolate the hypervisor from the guest.  



      2009-12-08 

 

6. Hypervisor-based security architectures 

6.1. Advantages 

Virtualization serves as a powerful enabler for security services and security architectures, due to 

the hypervisor's minimized TCB, the isolation enforced between hypervisors and guests, and the 

hypervisor's presence in a higher hardware protection zone than the guest(s). Security services 

based on a hypervisor have excellent visibility into guests, yet are still securely protected from 

guests -- this overcomes the problems inherent in traditional architectures such as intrusion 

detection systems, where the security service is either remotely located (with greatly reduced 

visibility) or located on the monitored system itself (with greatly increased vulnerability to 

attackers) [39]. 

Due to modern operating systems' bulk and complexity, and abundance of continually unearthed 

critical security flaws, security services implemented by such OSs may not be trustworthy. In 

fact, the OSs themselves may not be trustworthy. Hypervisor-based security services can be 

externally applied, in some cases to totally unmodified guest OSs, and thereby bring more 

trustworthy security. This can provide protection for the guest OS from its applications, for the 

guest applications from each other, and even for guest applications from the guest OS. 

Implementing secure services through hypervisors and virtualization also benefits from 

virtualization's inherent modularity. Services can potentially be reused for different guests and on 

different hardware platforms. This could facilitate, for example, a company enforcing consistent 

security policies efficiently on a wide variety of systems. 

 

6.2. Virtualization security challenges 

While offering clear benefits, virtualization also creates security-related challenges that must be 

considered when implementing hypervisor-based secure architectures. 

Virtualization is simpler when it concerns strictly isolated virtual machines -- but what about 

when VMs must cooperate? Bellovin discusses the difficulties in defining the interfaces and 

interactions between VMs, and how this breaks pure isolation and introduces problems [22]. 

Indeed, as shall be discussed later, there are many emerging scenarios (particularly in mobile 

platforms) where isolated domains must cooperate in some fashion, and in such cases some sort 

of mandatory access control, information flow control, or other mechanisms must ensure the 

security of the interactions and the protection of important resources in the system. 

Garfinkel and Rosenblum enumerate a number of potential security problems introduced by 

virtualization [40]:   
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 Scaling -- Virtualization enables rapid creation and addition of new virtual 

machines. Without total automation, this dynamic growth capacity can destabilize 

security management activities such as system configuration and updates, 

resulting in vulnerability to security incidents.  

 Transience -- Whereas normal computing environments/networks tend to 

converge on a stable state, with a consistent collection of machines, virtualization 

environments can have machines that quickly come and go. This can foil attempts 

at consistent management, and leave, for instance, VMs that come and go and are 

vulnerable to and/or infected by a worm that goes undetected. Infections can 

persist within such a fluctuating environment and be difficult to stamp out.  

 Software lifecycle -- Since a VM's state is encapsulated in the VMM software 

(along with any supporting hardware), snapshots of state can easily be taken. A 

VM can be instantiated from a prior snapshot, enabling easy state rollback -- this 

can interfere with assumptions about the lifecycle of running software. For 

example, previously applied patches or updates may be lost, or VMs that accept 

one-time passwords may be made to re-accept used passwords. If rolled back state 

causes the reuse of stream cipher keys or repetition of other cryptographic 

mechanisms that shouldn't be reused in an identical fashion, cryptosystems may 

be compromised.  

 Diversity -- Increased heterogeneity of operating systems and environments will 

increase security management difficulties, and present a more varied attack 

surface.  

 Mobility -- While also cited as an advantage of virtualization, mobility and 

migration automatically engender more complexity and security issues. Moving a 

VM across different machines automatically increases that VM's TCB to include 

each one of those machines -- therefore increasing security risk, and in a dynamic 

environment, potentially making it harder to track which VMs may have been 

exposed to physical machine compromises. It also poses the danger of moving 

VMs from an untrusted environment (such as a home machine) to a trusted 

environment, and makes it easier for a malicious insider to steal a machine (since 

a machine is simply a file on a disk).  

 Identity -- Static means of identifying machines, such as MAC addresses or 

owner name, may not function with virtualization. Machine ownership and 

responsibility is harder to track in a dynamic virtualized environment.  

 Data lifetime -- Guest OSs may have security requirements about data lifetime 

that are invalidated by a VMM's logging and instruction replay mechanisms; 

through external logging facilities, combined with VM mobility, it is possible that 

sensitive data may be left in widely distributed persistent storage.  
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Nichols echoes the configuration and management difficulties, and highlights other virtualization 

security issues in [90]. For instance, virtual networks, whose traffic is routed internally within a 

physical machine, won't be protected by all the usual physical network security mechanisms, 

allowing attacks to be mounted and spread. Furthermore, attacks on VMMs yield a bigger payoff 

than traditional OS platforms, since a VMM can control multiple virtual machines (and possibly 

a varying collection over time), so any hypervisor vulnerability becomes extremely critical. 

Nichols also mentions how security and management tools supporting virtual environments in 

general are not yet mature, due to the relatively recent gains in virtualization popularity. 

Measures may have to be taken to address these challenges, depending on local requirements. 

Fortunately, ultra-thin, single guest, monitoring/enforcement-oriented hypervisors are not 

affected by many of these concerns -- their small code size lessens likelihood of hypervisor 

compromise, with a single guest and no hypervisor network presence there is no virtual network, 

and they do not support the complex management features (mobility, transience) that result in 

security difficulties. However, they may create some additional management complexity simply 

because of the increase in individual system complexity. Also, should such a monitoring 

hypervisor be made to sit beneath a traditional VMM, some of these issues may of course need to 

be addressed again. 

6.3. Architectural limitations 

Hypervisor-based security services are not a panacea. There are limitations to what can be 

accomplished. 

6.3.1. The semantic gap 

Hypervisor-based services, as running external to and at higher privilege than the guest OSes, 

have complete access to guest memory, but do not have intimate access to guest OS services and 

context. They have total visibility into the guest, and have the capacity to see all guest memory 

pages, but they do not have interactivity with guest ABIs, APIs, and abstractions. To have 

understanding of guest state, the hypervisor (or the service running on it) must somehow bridge 

the so-called semantic gap -- the gap in understanding between the hypervisor's view and the 

guest OS state. Without additional facilities to bridge this gap, the hypervisor will see guest 

memory, but it will be a meaningless jumble of values. The hypervisor must be endowed with 

relevant structural, contextual knowledge of the particular guest OS in question. 

This is important for security because many security services must have accurate understanding 

of relevant guest state to implement meaningful functionality. Without such knowledge, a service 

won't know what is happening in a guest nor will it be able to make reasonable deductions, 

decisions, or actions based on guest state. Such a service must have processing facilities capable 

of mapping in guest pages and then interpreting the pages to divine the current relevant state 
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from raw guest memory. Different services may require knowledge of different aspects of guest 

state. 

Using the hypervisor's view into its VMs coupled with contextual knowledge and processing 

facilities to interpret guest OS state is known as VM introspection (VMI); introduced in the 

Livewire system [39], it is an established technique, but increases the complexity of the security 

services code, and furthermore introduces management issues since the knowledge base must 

remain updated in parallel with any relevant updates to the monitored guest OS. 

VMI could be divided into two areas -- inspection, and interpretation (or semantic 

reconstruction). Inspection is the process of actually mapping the proper guest pages into 

hypervisor memory. Interpretation is the process of comprehending those pages. There are VMI 

frameworks in existence such as the publicly available XenAccess [66], as well as the as yet 

unreleased VIX toolkit (also for Xen) [43], that attempt to provide extensible foundations and 

tools for VMI. VIX, for instance, contains a set of Unix-like utilities built over an inspection 

library that can be used from a Xen administrative domain to examine a running virtual machine 

-- this may reveal relevant forensics data, or discrepancies between the guest OS and VMM 

views due to malware such as rootkits. XenAccess provides an API for mapping and inspecting 

guest pages from an observer domain, and some examples of how to use the API and interpret 

guest memory. More advanced, context-specific modules for interpreting state can be built above 

XenAccess. 

6.3.2. Interposition granularity 

For performance reasons, as many guest instructions as possible run directly on the hardware. 

However, as we know, certain instructions and events must trap to and be handled by the 

hypervisor so it can enforce virtualization, isolation, and so forth. The granularity of events on 

which the hypervisor can interpose is limited by the hardware interface. The ability to handle 

events by immediately trapping to hypervisor control is sometimes called active monitoring, 

since the hypervisor and the security service can guarantee active response to supported events, 

as opposed to passive monitoring, wherein guests are periodically monitored at the discretion of 

the hypervisor-based monitoring service. Passive monitoring by the hypervisor can't guarantee 

discovery of problems resident in unmonitored state or conditions that can hide or change 

between monitoring cycles, and can't support immediate prevention or handling of events or 

negative conditions as they arise. 

The hypervisor can handle any event that can be made to trap to the hypervisor's high privilege 

mode, possibly including privileged instructions, memory accesses, device operations, 

exceptions/interrupts, or other conditions. Without special virtualization support in hardware, the 

range and specification of traps may be more limited. In either case, the hardware-supported 

granularity may not be sufficient for certain applications. For example, certain security 

monitoring services may need to guarantee response to fine-grained guest events. This problem 
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can be alleviated by using already discussed techniques such as paravirtualization and 

previrtualization, where the guest OS is made to use a hypercall interface, or binary translation, 

where appropriate instructions are translated at runtime. These techniques suffer problems 

already mentioned. Another method is to dynamically introduce hook code into the guest OS, but 

this code, as resident on the guest and potentially vulnerable to guest compromise, comes with its 

own security problems. The Lares system [67] uses carefully placed and VMM-protected hook 

code injected into the guest OS to increase the active monitoring capabilities of the VMM. 

Limitations on interposition granularity and the capacity for VM introspection are critical issues 

for implementing security services, and any improvement to either area will enhance the 

possibilities for virtualization-based security architectures. 

6.4. Architectural patterns 

When designing virtualization-based security services (that is, security services that run atop a 

hypervisor and operate on guest domains), there are basic architectural/design patterns that may 

be followed. 

6.4.1. Augmented traditional hypervisor 

One method for implementing security services using traditional system virtualization 

hypervisors is to implement the services in the hypervisor itself. This may be convenient for 

development, especially if the code of the hypervisor is readily available and already understood. 

However, it poses the major disadvantage of adding to the complexity and code size of the 

hypervisor, which counters one of virtualization's fundamental strong points -- the minimized 

TCB presented by the hypervisor. Therefore, it is most likely advisable to take a different 

approach. 

6.4.2. Security VM 

With traditional hypervisors, it is quite common to implement security services in a specially 

designated security VM, similar to Xen's administrative domain ``dom0". Through this approach, 

the security services run in a special VM granted all the necessary privileges by the hypervisor, 

presumably runnning a stripped down operating system specially crafted for the security 

services. The VMM/hypervisor must be modified only to the extent that it can communicate with 

the security VM and provide it with the privileges and resources it needs to implement the 

security services. This approach, while probably presenting more development overhead than 

developing directly in the hypervisor, preserves the hypervisor's minimal TCB, and is 

furthermore more modular (enabling the security services to be more easily modified, 

transferred, or recombined in other systems in the future). 

6.4.3. Microkernel application 
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In the case of a microkernel serving as a hypervisor, security services can be implemented in a 

specially written microkernel application, which will run in its own protected address space. It 

can connect to the VM provisioning layers using the microkernel's IPC services. The application 

will have to run with sufficient privileges to implement the desired security services. 

6.4.4. Thin hypervisor 

Lastly, thin, single-guest hypervisors can be used to provide an ultra-low footprint monitoring 

and enforcement layer between hardware and OS software for implementing security services. 

The extremely small code size can lead to easier verification and hopefully therefore stronger 

security and correctness. It is important to consider what types of services can be implemented 

on which hardware platforms, and still maintain the ultra-low footprint.  

6.5. Isolation-based services 

We can now briefly examine some of the potential security services provided by virtualization-

based architectures, of which there are many. They can be loosely divided into two categories -- 

monitoring- and isolation-based services. Monitoring-based services focus on observing, 

interpreting, and possibly responding to VM state, and may make heavy use of VM 

introspection. Isolation-based services, on the other hand, leverage the hypervisor's high 

privilege and interposition capability to isolate and protect system components and enforce 

system security. Note that this distinction is not precise, and other categorizations are possible. 

We will describe some isolation-based services first. 

 

6.5.1. Isolation architectures 
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Figure 3: Domain isolation in a mobile device 

While this section focuses on isolation-based security services, it is also worth discussing the 

interesting possibilities for isolation architectures engendered by virtualization. Although 

isolation of hosted domains is a given security advantage in virtualization, it bears deeper 

investigation in specific contexts. For example, in a system that contains important components 

and trusted and untrusted software, virtualization can be used to create a safer environment for 

the trusted and critical components. Envision a mobile system containing trusted cellular 

hardware (including the SIM card and cellular radio, which must be safe from compromise), a 

trusted software stack that controls authentication and the critical hardware, an untrusted 

software stack running user applications and accessing wireless networks (such as cellular, 

802.11 or Bluetooth), a trusted hardware and software component for decoding and protecting 

DRM content, and possibly other components that must be protected (such as a module for 

storing private user information). While these components may have been initially contained in a 

single domain/OS, hence each vulnerable to any compromise of the other, virtualization can 

support such a scenario by isolating each component in its own domain [25] (see Figure 3). The 

hypervisor-enforced isolation protects each domain from the compromise of other components 

(and potentially protecting each component from even a compromise of itself). The hypervisor 

must provide secure communication facilities between domains, and possibly limit the 

communication to only what is needed to support functional requirements. To illustrate the 

advantages with an example from [32]-- if the device's Bluetooth implementation is 

compromised (Bluetooth has been known to have security vulnerabilities [74]), user applications 

may be vulnerable, but system authentication and the cellular radio will remain unharmed. 

Therefore, virtualization can be used to partition a system into various isolated yet cooperative 

domains and thereby increase security for the system as a whole, also reducing the TCB for the 

most important components. 

6.5.2. Kernel code integrity 

There are multiple research systems supporting kernel code integrity. 

First off, we have SecVisor [77], an ultra-thin hypervisor (only 1100 lines of code in the 

presence of Intel-VT or AMD-V) supporting a single guest, ensuring that only user-approved 

code is ever executed in kernel mode and that kernel code is not modified (except by SecVisor). 

The system uses IOMMU support to prevent DMA writes to kernel code, page tables for 

memory protection, and MMU support to virtualize guest OS memory to protect the page tables. 

All hardware locations where kernel entry points are specified (such as the interrupt vector table) 

are virtualized, so that SecVisor can always verify that kernel entries will go to a valid kernel 

code location. When in kernel mode, user mode pages are marked non-executable, and vice 

versa. This forces a trap whenever transitioning between modes, enabling SecVisor to switch the 
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set of pages marked non-executable. This trap also enables SecVisor to enforce, in the case of 

transitioning from kernel code to user code, that the CPU switches to user mode. (Therefore, a 

buffer overflow in the kernel can't be made to execute shellcode in a malicious user process.) 

When marking pages executable, SecVisor also marks them read-only, so that code that can be 

executed can't be modified. Furthermore, when entering kernel mode, SecVisor only marks as 

executable those pages that are approved by the kernel code policy, so that execution of non-

approved code will trap. 

A VMM-based kernel protection system, found in [104] and dubbed KIUCON  for usage control 

framework for kernel integrity, offers more flexibility. This system provides an access control 

model based on subjects, objects, attributes, rights, and events. Subjects include processes and 

loadable kernel modules, objects include kernel memory spaces and registers, attributes describe 

subjects or objects, rights are actions on objects permissible by subjects, and events are key 

points at which policy can be enforced by the system. Virtual machine introspection techniques 

are used to determine subject attributes. Policy includes predicates describing whether rights are 

to be granted or denied depending on events, subjects, objects, and attributes. One interesting 

feature of the system is that rights and attributes are dynamic and mutable with continuity -- 

meaning that if an event happens which changes a subject's attributes, its currently granted 

access rights may be revoked. There may be cascading rights evaluations from a single event. 

The authors successfully used the system to summarily defeat a large collection of rootkits 

attempting to modify the kernel. The flexibility of the system indicates it could be adapted and 

expanded for further uses. In tests it was run on the Bochs emulator, but could be used with other 

virtualization layers as well. 

6.5.3. Memory multi-shadowing 

The Overshadow system [28] runs in a VMM and protects applications on a guest OS from each 

other and from the guest OS itself by using multiple views of guest application memory. To the 

application, the real view of memory is presented. To other processes (including the OS), an 

encrypted and integrity-protected view of the memory is presented. The crucial component in 

this system is a protected shim that is inserted into protected applications at load time -- this shim 

is needed to identify and maintain the context of each protected application, and is also used by 

the Overshadow system to handle complicated operations such as marshalling system call 

arguments and return values to enable safe transition of data across the application-OS protection 

boundary. The shim uses a hypercall interface to communicate directly with the VMM. 

Overshadow uses multiple page tables for an application (one with cleartext pages for the 

application's own use, one with ciphertext for the use of the rest of the system), and any 

protected page will only be present in one page table at any given time. Pages can be swapped to 

disk in encrypted state, and encrypted data can be moved around by untrusted components. In 

one limited sense, Overshadow is able to remove the OS from the application's TCB, in that the 

OS can no longer inspect or tamper with application memory pages. The Overshadow system 
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was built on a VMWare binary translation VMM, but it is pointed out that a smaller, higher 

assurance VMM could have been used as well. 

Another system dubbed Software-Privacy Preserving Platform (SP
3
)
 
[105] (published at the 

same time as Overshadow, in March 2008) also protects data secrecy for user applications, 

including memory pages and even registers (the latter during context switches). However, unlike 

Overshadow, SP
3
 instead relies on extensions to the page table and emulation of a modified x86 

interface in the Xen hypervisor, and requires modification of guest code to utilize new virtual 

instructions that prompt the hypervisor to invoke operations for creating and managing 

protection domains. Fortunately, at least in the case of Linux, significant modifications to the 

guest OS were not required. Protection domains can consist of one or more guest processes, and 

memory for a domain is encrypted with a domain-specific set of keys. Furthermore, the 

hypervisor maintains a cache of decrypted pages, to speed up memory accesses in cases when the 

page has been already encrypted. So, while some features of this system are more developed than 

Overshadow, it does require modification of guest code, which Overshadow managed to avoid. 

6.5.4. Protecting against a malicious OS 

In a follow up [70] to Overshadow, it is pointed out that many virtualization-based security 

architectures have focused on isolating applications and domains, protecting memory, and other 

such services, but have not addressed ``OS semantics". The authors highlight that in spite of 

Overshadow's memory protection, it won't safeguard an application against its own 

vulnerabilities, nor can it prevent a compromised and malicious OS from posing a serious threat. 

For example, a malicious OS could grant multiple mutexes simultaneously, or simply refuse to 

schedule a process, or carry out other nevarious activities that render applications useless. 

Therefore, the authors suggest and motivate more developed system components that expand 

Overshadow's model and take more aspects of security-critical functionality out of the hands of 

the OS, protecting applications at the level of OS semantics. 

6.5.5.  I/O Security 

BitVisor [78] is a thin hypervisor system that provides I/O security for a single guest OS. It relies 

on modern virtualization hardware support (Intel VT or AMD-V). For example, it uses IOMMU 

functionality to protect against DMA attacks, and I/O instruction trapping bitmaps to configure 

which devices' instructions will trap to the hypervisor. It implements its services via what it 

terms parapass-through drivers -- drivers that can be substantially smaller than usual device 

drivers, since they only need to handle a small subset of normal driver functionality, namely the 

control and data instructions. Handling the control instructions enables BitVisor to observe 

device state, and handling the data instructions enables it to perform security operations on the 

data. Such a parapass-through driver resides in the hypervisor layer. Most I/O instructions pass 

through the driver directly to the hardware, but the control and data instructions are specially 
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handled. A test system was implemented using an ATA parapass-through driver to perform 

encryption of stored data, a service that could be provided regardless of the guest OS. 

6.5.6.  Componentization 

The Nizza system [47] is based on a L4-microkernel variant and provides a way to decompose an 

operating system and its applications into critical/secure and non-critical components, reducing 

the TCB for applications and even removing the OS from the TCB. Security critical components, 

such as for sealed storage, cryptography, and ensuring application isolation within a GUI, are run 

as microkernel applications. These components are loaded by an additional ``loader" microkernel 

application. The guest OS may be paravirtualized to run on the microkernel, or may run above a 

VM provisioning layer. Applications and the guest OS then rely on the isolated, minimized 

microkernel components for secure functionality. They connect to these services using the IPC 

system call interface exposed by the microkernel. 

The Nizza system does require potentially extensive modification to guest software, but presents 

a compelling method of drastically reducing application TCB. In comparison to the Nizza 

system, Overshadow attempts a similar (albeit lesser) goal without requiring guest modification, 

which leads to more performance and implementation challenges on the VMM side. 

6.5.7. Mandatory Access Control (MAC) 

MAC policies such as Bell LaPadula, the Biba integrity model, and the Chinese Wall model [10] 

can offer stronger security for critical applications. With hypervisor-based MAC, the benefits of 

MAC can be brought to existing systems and architectures, and enable greater security for virtual 

domains. The sHype system [73] brings MAC to the Xen hypervisor. Its granularity operates at 

the level of VMs and the shared VM resources (event channels and shared memory) used by Xen 

guest device drivers, enabling the mentioned MAC policies and others to be applied to domains 

and their interactions. This can facilitate a secure VM coalition as earlier described, where 

domains cooperate securely to achieve the system goals. 

The Xen Security Modules project [31] is still developing, and attempts to modularize the 

application of MAC and other services for Xen. It provides a common framework whereby 

different security services and models can be used depending on the situation. For instance, it 

supports both sHype and Flask [82] modules. 

6.5.8. Instruction set virtualization 

The Secure Virtual Architecture (SVA) system [33] presents an interesting design where a 

hypervisor layer exports a type safe instruction set interface for carrying out all the activities in 

the system. The interface is divided into SVA-Core (which includes all instructions for typical 

computation, including logic, arithmetic, memory allcation, function calls, branching, and other 

instructions) and SVA-OS (consisting of privileged OS-only operations such as I/O and MMU 
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configuration that are typically implemented in assembly). All virtual machines must use this 

interface. Operating systems that run in a virtual machine will have to be ported in three steps:   

1. Port the platform-dependent portions of the kernel, including all assembly code, to 

use the SVA interface. The authors argue that this is acceptable as a typical step for 

porting an OS, and furthermore may be easier for SVA, since SVA's interface is 

higher level and more abstract than typical ISAs.  

2. Make certain documented, specific changes to kernel memory allocators.  

3. Optional modifications to the kernel to improve SVA performance.  

Applications, on the other hand, typically need only be recompiled to take advantage of the 

secure SVA-Core interface. 

The system uses a ``safety checking compiler" to compile guest code to produce SVA bytecode, 

whose safety properties are then checked at load time by a Java-reminiscent ``bytecode verifier". 

This process can occur offline, combined with digital signatures to authenticate the verification. 

A runtime translator converts the bytecode into native machine instructions. Since SVA can 

manage all critical system operations via its type safe interface, it can provide security 

guarantees for the guest systems (even though the guest kernel is probably written in C), 

including control flow integrity, type safety for certain types of objects, array bounds safety, no 

dereferences of uninitialized pointers, and no double frees, among others. 

In a sense, SVA is like ``Java for operating systems" in that safety guarantees are enforced and 

software isolated by a virtualization layer -- but it is quite interesting to consider how this system 

facilitates bringing such guarantees to legacy systems implemented in unsafe languages with 

arguably reasonable porting cost. It in effect creates a new interface layer between the ISA and 

the ABI. 

6.6. Monitoring-based services 

Now we shall discuss some monitoring-based services presented in research. Monitoring services 

also leverage the hypervisor's high privilege, but focus more on observing, interpreting, and 

possibly responding to guest state. Monitoring services may operate at a higher level of 

abstraction than isolation services, and require knowledge and interpretation of higher level guest 

OS abstractions. 

6.6.1. Attestation 

Hypervisors, in their high-privilege position, can be used to attest to guest code integrity and 

state. This, of course, aligns with the Trusted Computing Group (TCG) and their architectures 

for remote attestation. An emerging potential area for attestation is on mobile devices; the TCG 

has relased a mobile platform specification [87], and virtualization may possibly be used to 

fulfill this specification. While SELinux has already been used to do so [1][106], to our 
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knowledge virtualization has not. Discussion on utilizing ARM TrustZone technology to 

facilitate Trusted Computing is found in [102]. 

An early VMM-based system for attestation was Terra [38]. Terra, using a ``Trusted VMM" 

coupled with a management VM, supports open and closed box domains, sealed storage, and 

remote code attestation for domains. If a domain is designated as closed-box, Terra gives it 

stronger isolation -- in addition to standard memory isolation, it will provide privacy and 

integrity protection for stored data, thus sealing it off from observers. Closed-box domains can't 

even be examined by the system owner. A closed box domain can approximate a proprietary 

closed box system such as a hardware component or custom embedded system. Suggested 

examples of such systems are game consoles, ATMs and mobile phones. Terra was implemented 

using VMWare GSX Server, with a management VM that is charged with allocating resources 

(memory, disk, devices) as well as setting up connections between VMs. It is remarked that, as 

with Overshadow, a higher assurance VMM could be used in production environments. Due to 

Terra's support for closed-box domains and sealed storage, it could be argued that it also 

provides isolation-based services, but it was placed in the monitoring section due to its 

attestation and trusted computing emphasis. 

6.6.2. Malware analysis 

Numerous virtualization-based systems for malware analysis have been presented. Two 

examples will be discussed. 

Firstly, the Patagonix system [59] is interesting because it attempts to dispense with the semantic 

gap in a unique way. It tracks code execution by using generic hardware mechanisms that remain 

consistent independent of any OS differences. By setting the non-executable (NX) bit on all 

pages, any code execution traps to the hypervisor, whereupon the page can be inspected. (Code 

need only be inspected when it first runs, or after it is modified.) Hardware-stored data such as 

addresses of page tables themselves is used to differentiate between execution contexts. The 

system uses a database of known good binaries (including Windows and Linux kernel binaries) 

to check the identity of executing code. This database is the only aspect of the system that is OS-

dependent, and since it is decoupled from the implementation of the system (and arguably much 

easier to acquire system binaries than to implement system-dependent logic), the system's 

generic convenience is maintained. The results of the identity checking are sent to the user, who 

can compare Patagonix's report on currently executing code with the report issued by the OS 

itself, and thereby detect covert executions like rootkits. The system successfully detected all 

rootkits tested on it. So long as a sufficient database of known-good binaries for the guest in 

question is available, the system can support any guest. 

Another system described here [51] offers broader malware detection support, but is more 

heavily dependent on VM introspection. It uses VM introspection and semantic reconstruction to 

capture the relevant state of an observed system (files, processes, etc.). This state can be 
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compared with the state reported by the operating system to detect discrepancies. The semantic 

reconstruction facilities also enable the system to run existing malware detection utilities 

externally on a VM, potentially even facilitating the use of utilities written for one platform to 

scan a different platform. The system supports multiple VMMs, including Xen, VMware, 

UserMode Linux and QEMU. 

6.6.3. Intrusion detection 

Another natural virtualization monitoring service is intrusion detection. The previously 

introduced Livewire system [39] was the seminal use of VM introspection. It consists of a 

management VM, running both a policy engine and a semantic reconstruction component that 

used standard crash dump utilities on guest pages to analyze system state. A later system, 

Introvirt [52], supports an interesting feature whereby exploit-specific predicates (possibly 

written by a software patch author) can be used to provide perfect detection of the occurrence of 

the exploit. To bridge the semantic gap between predicates and guest software, and enable 

predicates to be highly expressive, the system can execute existing guest code (such as system 

calls or application functions) in the guest address space. To prevent modification to guest state 

as a result of executing the guest code, the system supports rollback functionality. 

6.6.4. Forensics 

Virtualization-based forensics services enable new possibilities for live forensics analysis. While 

offline analysis can accommodate many forensics applications, volatile and dynamic system state 

can only be obtained via live analysis of a running system under attack. Traditionally however, 

live analysis presents difficulties since the presence of the forensics investigator might be easily 

discerned by an attacker, and other aspects of system state may be affected by the investigator's 

presence. In the previously cited system using the VIX toolkit [43], safe live analysis is enabled 

via virtual machine isolation and introspection. The system runs in a Xen administrative domain, 

and data is therefore gathered externally to the monitored user VM. While the authors hope the 

system is undetectable, they acknowledge that using timing/performance analysis or other similar 

circumstantial techniques an attacker may be able to conclude that the system is being monitored. 

It has been suggested that running such a forensics system on its own core in a multicore system 

might lessen the potential for timing analysis, but it may still be necessary to ``freeze" the 

monitored system in certain moments to gather state information. 

6.6.5. Execution logging and replay 

Another apt and canonical use of virtualization's monitoring possibilities is to log and replay VM 

execution. The ReVirt system [35] enables complete logging and replay of VM execution, and 

since it is VMM-based, the logging will persist in periods before, during, and after guest attacks. 

Then, if an attack is discovered, the incident can be replayed in exactitude to ascertain its source, 

cause, effects, and so on. It can also be used to generally audit system activities. ReVirt can 
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naturally enhance or be combined with intrusion detection, malware analysis and forensics 

services. 

To reconstruct execution completely, instruction by instruction, ReVirt must log all non-

deterministic events and data, and it does so with reasonable performance. Non-deterministic 

events that must be logged include device input and system interrupts -- fortunately, such events 

can be handled by the VMM. 

SMP-ReVirt [36] brings the same complete logging and replay functionality to multiprocessor 

systems, and must deal with such challenges as shared memory (since the order of operations on 

such memory by different cores must be preserved), which can introduce significant performance 

overhead over single-processor ReVirt. 

6.7. Alternatives 

What other alternatives are out there for implementing security services in a way that is isolated 

from yet with high-privilege visibility into the monitored system? We have already mentioned 

Flask/SELinux as possible alternatives ([1][106]), although we also saw with Xen Security 

Modules [31] that Flask may complement rather than supplant virtualization. 

Another possibility is enforcing security via FPGAs. [26] proposes a solution where a FPGA is 

used to enforce a configurable security policy in a high-performance hardware-based manner. 

Other dedicated hardware security modules may be able to offer specific high-assurance security 

services, such as storage or I/O encryption modules (as in the venerable BLACKER [97]), 

tamper proof smart cards for a variety of cryptography and authentication applications, or 

Trusted Platform Modules (TPMs) for sealed storage, attestation, and other uses. Of course, any 

of these hardware solutions could also be combined with virtualization. 
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7. Multicore systems 

7.1. Why multicore? 

An excellent overview of multicore hardware today, including hardware and software concerns 

and challenges, is found here [23]. Additionally, this article [68] also discusses contemporary 

multicore developments, and furthermore merges the discussion with description of 

virtualization concerns and opportunities on multicore. 

As noted in [23] [68] and elsewhere, the advent of ubiquitous multicore is due to the megahertz 

plateau in CPU development. Heat and power consumption curves increase beyond tractable 

levels when CPU clock speeds are pushed beyond their current leveling-off capabilities. New 

methods were needed to increase performance, among them the following (as described in [23] 

[68]:   

 Increase the L2 cache size. The benefits of this strategy can only be as great as the 

losses due to L2 cache misses, which vary from context to context. Note that 

increasing L1 cache size is not recommended, since making the L1 cache too 

large would have a negative impact on clock frequency.  

 Exploit instruction level parallelism (ILP) by having the CPU execute 

parallelizable instructions simultaneously. The benefits of this technique are 

limited by the inherenet parallelism in the instruction set and the executing 

program, and it must be balanced with the resultant complexity in hardware 

needed to detect and exploit ILP.  

 Increase use of pipelining, wherein multiple instructions are piped through the 

different stages of an execution cycle one after the other, so that overall 

throughput is increased. Multiple instructions can be active in different stages of 

processing, instead of the processor having to complete the execution of an 

instruction before starting a new one. However, this approach can increase 

processor complexity, as well as increase the time for a single instruction to be 

processed.  

 Simultaneous multithreading (SMT), also called Hyperthreading on Intel 

platforms, where a single core with multiple functional units can execute multiple 

threads simultaneously.  

 Multicore CPUs, where multiple cores are located on a single chip.  

All these techniques have of course been used.  

In particular, also noted by [23] [68] and elsewhere, multicore CPUs create challenges for both 

software and hardware. The dominant Von Neumann hardware architecture, with a uniform 

memory space accompanied by input, output, and a sequential processing unit, lends itself to 

single processor systems. The creators of the Barrelfish multicore operating system agree that OS 



      2009-12-08 

 

designers, in spite of the considerable differences between multicore and single core hardware, 

still think of systems in a Von Neumann way (in part due to the continuance of laborious cache 

coherence mechanisms) -- continuing to see a system with a uniform computation and memory 

architecture [21]. There are many new hardware-related questions that must be addressed in 

order to create efficient and suitable multicore systems. In addition, common software 

development models, as an outgrowth of the sequential Von Neumann instruction architecture, 

are not well suited to parallel programming. Software developers in general do not have the tools 

or knowledge to leverage parallelism in most types of software, presenting a formidable obstacle 

to the fruitful use of multicore hardware. The following subsections will discuss these issues. 

7.2. Hardware considerations 

In some situations, multicore hardware might seem to be a simple extension of single core. For 

example, in a basic dual-core situation, the two cores might have private L1 caches, but share the 

L2 cache and the communication interfaces. The rest of the system might be the same. However, 

as system complexity increases, such as in a many-core hardware platform like Tilera's 

TilePro64 [86], a broad spectrum of issues come to light. A range of hardware concerns in 

multicore systems is illustrated in [23] (Section 2.1), and summarized in the following 

subsections. 

7.2.1. Core count and complexity 

The number of cores that a system should have is directly related to the parallelism in the 

expected workload. If performance gain for adding cores is not linear, it is most likely better to 

focus on increasing the performance capacity of each of a few cores. If on the other hand 

performance gain for adding cores is expected to be linear, then more cores are most welcome. 

However, here an interesting phenomenon takes hold, where the spatial area of the chip must be 

considered -- performance gains resultant from adding any complexity to the chip must be 

proportional to the increase in chip spatial area (that is, the gain should be at least as substantial 

as the area increase), or else the better path is to simply add additional chips. This concern is 

only the first way in which we will see that physical size and layout affect multicore systems. 

7.2.2. Core heterogeneity 

Cores in a multicore system may be homogeneous (identical) or heterogeneous by design. There 

may also be a distinction where cores implement the same instruction set, but have differing 

assemblies of functional units or other components. For generic, non-specialized workloads, 

fully homogeneous cores (as found in Intel or Tilera processors) are advisable. However, in 

specialized cases where the workload is expected to have characteristics appropriate to multiple 

architectures, heterogeneity may be beneficial. The Cell processor is an example in which some 

cores use different instruction sets than others. A common pattern in large heterogeneous core 

systems is to have a small number of high performance cores that execute generic, non-
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parallelizable workloads, and a large number of small cores usable for highly parallel workloads. 

It must be noted that core heterogeneity can greatly complicate software development, and taking 

full advantage of the available core palette can be challenging. 

Core heterogeneity in general is more common in embedded systems than desktop systems. 

7.2.3. Memory hierarchy 

Memory hierarchy becomes considerably more complicated in a multicore scenario. Cores may 

have internal memory for their own use, and they typically still have a private L1 cache. But 

should cores share an L2 cache, or have private L2 caches as well? Should they share an L3 

cache? How many cores should share each cache? Shared caches can result in better utilization 

of hardware, and may create performance gains in situations where cores are sharing loads or in 

other such circumstances, but sharing requires more costly external (off-core) communication, 

and may hurt performance in other scenarios. It also decreases inherent isolation between cores 

(which may be a security or reliability concern). Additionally, the less cache sharing, the more 

complex the coherency maintenance mechanisms must be -- if each core has a fully private, 

multi-megabyte L2 cache, and the system has many cores, maintaining coherency can be 

daunting. On the other hand, sharing a cache between too many cores also becomes complicated 

and costly. The problems will only increase as the number of cores increases. 

The Tile64 is an example of a multicore CPU where each CPU in an eight by eight mesh has its 

own L2 cache, and the chip even supports an additional ``dynamic distributed cache" (DDC) 

comprising the caches of a core's neighbors [86]. 

7.2.4. Interconnects (core communication) 

Cores in a multicore system need to communicate with each other. A primary reason is to 

support cache coherency. We will not go in depth into the various possibilities for core 

interconnection (such as crossbars, rings, meshes, and hierarchies) here, but as with other 

aspects, the challenges of core interconnection increase with the number of cores, and physical 

layout of the cores can become an important consideration. 

7.2.5. Extended instruction sets¨’ 

The x86 instruction set is firmly in place, and isn't going anywhere [68]; hence, though it may 

not have been intended to support multicore from the beginning, it is necessary to use expanded 

instructions that can support multicore. In general, if an ISA must continue to be used on 

multicore hardware, it may be necessary to upgrade it with special instructions to support 

multicore operations, especially specific instructions relevant to implementing 

shared/transactional memory [23] (Section 2.3.1) or low-latency message passing. For instance, 

memory shuffling instructions that can atomically read a location value and set a new value 

based on a test predicate can be useful for synchronization. 
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7.2.6. Other concerns 

Other issues, including how the main system memory will be laid out and interface with the 

cores, and maintain sufficient bandwidth to the cores, as well as how many simultaneous threads 

to support on each core, are other important concerns with their own tradeoffs. For instance, 

supporting more simultaneous threads on a core can increase the number of cache misses (since 

multiple threads compete for the cache), but can overall increase performance and utilization 

since the core's processing components will be used by other threads when a thread must wait for 

a cache miss to be filled. Regarding memory interfaces, in some cases with large numbers of 

cores, it may even become beneficial to forego the traditional strategy of having external 

interfaces along the periphery of the chip and instead stack chips in a 3D manner [60]. 

7.3. Software considerations 

Some would say that software is at the heart of the multicore problem, since all the advanced 

hardware in the world isn't going to help if software isn't written to utilize multicore capabilities. 

Software concerns in multicore systems are discussed in [23] (Section 2.2), and summarized in 

the followikng subsections. 

7.3.1. Programming models 

The dominant imperative programming model, where instruction after instruction, function after 

function are executed in sequence without easy support for concurrent programming and 

synchronization and safe sharing of data, must be evolved to suport multicore. But concurrency 

and synchronization are not simple tasks -- for instance, concurrency vulnerabilities have been 

discovered in system call wrappers (system call interposition layers/reference monitors intended 

to support security) due to improper synchronization between the wrappers and the system calls, 

among other causes [96]. 

A general strategy for how to handle interprocess (inter-core) cooperation and concurrent 

programming must be settled on. The fundamental mechanism can be something along the lines 

of shared memory, where cores synchronize and share access to regions of memory, or message 

passing. Message passing may be more useful in situations where cores are more widely 

distributed and do not have easy access to shared physical memory. If software such as the OS 

kernel is to run on multiple cores, special care must be taken when synchronizing its data. 

Firstly, though, one must note that programming may indeed proceed using the standard 

sequential model, should a compiler be available that can automatically extract parallelism. 

However, the parallelism to be found in common programs may be quite minimal, not to 

mention difficult for a compiler to discover and articulate. Therefore, it is most likely needed to 

proceed with other approaches. 
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There are many programming models available to support concurrency and parallelism. The 

dominant model is kernel threads (such as pthreads on Unix). Kernel threads are supported by 

the OS, and hence are expensive to create and destroy. They may need to synchronize with other 

threads using mutexes or other synchronization primitives or strategies. Kernel threads are a low 

level primitive, and thus suitable for expert implmentation -- including implementation of 

additional higher-level programming models. 

User-level threads, as opposed to kernel threads, are created and managed by user-level 

processes. This can make them less expensive than kernel threads. However, they are far less 

common than kernel threads. 

In the Single-Program, Multiple Data (SPMD) model, the program is meant to be run identically 

in multiple threads on multiple collections of data. This model could be seen as a master with 

worker threads, where the master sends data to a force of identical workers who operate on the 

data in parallel. It may be that the parallel workers collectively contribute to a greater result, 

requiring concurrent operation. OpenMP is a programming language extension that was 

originally implemented to support this model [34]. 

The task programming model is slightly different, in that a task is an independent unit of work 

that may be executed in parallel, but doesn't have to be. Cilk is a task-oriented extension to the C 

programming language [71]. 

Domain-specific languages, as opposed to generic languages like C, C++, and Java, may provide 

a deft approach to extracting parallelism from a workload, in that the specific parallelizable 

qualities of the workload can be brought out and facilitated by the language. 

Although there are clearly many alternatives for paralell programming, most development uses 

kernel threads (and that only minimally), and the overall mentality of most software development 

is, understandbly, grounded in the sequential model. 

7.3.2. Programming tools 

Programming tools, including languages and debugging support, must meet the challenge of 

multicore, multithreaded development. 

Debugging of course becomes instantly more complex if there are multiple execution contexts in 

a program. Concurrent programming gives rise to non-determinism as well as new error classes 

such as deadlock. Debuggers meant for single-threaded development may be insufficient to deal 

with such complexity, and programmers used to single-threaded development may not know 

how to debug multithreaded programs. 

Programming languages need to evolve to support multithreaded, multicore-friendly 

development. As mentioned, extensions such as OpenMP and Cilk provide high-level 

mechanisms for leveraging multicore parallelization. A difficulty here is that fundamental 
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change of programming languages and models takes significant time, and multicore hardware, 

unfortunately, is being introduced into a legacy world filled with single-threaded code and 

mentality. 

7.3.3.  Locality 

 The easy accessibility of memory to cores, whether from caches or system memory, is essential 

for performance. The more that cores can be made to reference locally accessible memory, the 

higher performance that can be attained. Different strategies can increase locality within a 

specific core, or within an entire chip, with different tradeoffs. For example, if memory locality 

can be increased within a chip, this might result in more communication between cores within 

the chip as they share their caches, but less communication off the chip, the latter type of 

communication being more expensive. Multicore systems in the future seem to be heading 

towards more Non-Uniform Memory Architecture (NUMA)-like architectures, where physical 

memory is more closely associated with individual multicore CPUs, in an effort to enhance 

locality [68]. 

7.3.4.  Load-balancing and scheduling 

Scheduling of threads (including when and how often they are scheduled and how they are 

distributed among cores) is clearly an important challenge in multicore. Different scheduling 

policies can greatly influence system performance and properties, including (of course) locality. 

Scheduling must also be considered in higher level models like tasks, where threads are but an 

underlying entity. 

7.4.  Interesting multicore architectures 

7.4.1. The Barrelfish multikernel 

The Barrelfish operating system [76][20][21] is intended to deal with both increasing system 

heterogeneity and the distributed nature of multicore hardware. The authors argue that OSs are 

still being developed as if they are to be run on uniform CPU and memory architectures, but they 

need to be rewritten to function well on, take advantage of and scale on new multicore hardware. 

Additionally, with continual rapid, dynamic shifts in hardware technologies, increasing core 

counts, and massive amounts of variety present in cores, devices, memory hierarchies, core 

interconnects, and other hardware aspects, it is difficult for designers to optimize for certain 

system configurations. Greater flexibility and management of diversity is required. To achieve 

this, Barrelfish acknowledges modern computer systems as networked enviornments in their own 

right and attempts to integrate distributed systems lessons in supporting dynamic, diverse, 

adaptable, scalable systems. Introducing the concept of a multikernel [20], Barrelfish treats cores 

as indepedent, isolated, distributed entities, capable of running independent software stacks and 

communicating with each other via message passing/IPC. It is capable of managing 
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heterogeneous cores. The authors argue that handling shared state via message passing is less 

expensive than using shared memory, and that by making the OS implementation as independent 

as possible from the specifics of hardware implementation, it can remain easily adaptable and 

scalable to new architectures. (Only the message passing mechanisms and the device- and CPU- 

specific interfaces are tailored to specific hardware.) 

In a multikernel model, each core is intended to be a truly independent entity. In the Barrelfish 

multikernel, each core has its own independent CPU driver running in privileged mode. CPU 

drivers share no state with each other. This minimal driver is non-preemptible, and processes 

traps and interrupts in serial. It does not perform inter-core communication. A user-level monitor 

process also runs on each core, and is responsible for communicating with other cores and the 

system and maintaining its own copies of any global system state. Processes in Barrelfish are 

unconventionally implemented as a collection of ``dispatcher" objects. A process has dispatchers 

situated on each core upon which it might execute. The CPU drivers schedule the dispatchers, 

and then a dispatcher runs its own user-level thread scheduling on its own core. 

7.4.2. Configurable isolation 

With cores sharing components such as caches, core interconnects, and external communication 

interfaces, multicore hardware presents the potential for isolation problems. This may result in 

security issues, where state leaks between execution contexts. It may also result in reliability 

issues, since a failure in one core (or its components) may cascade into a failure in another core. 

Furthermore, as hardware feature size and the space between components decreases, the 

likelihood for hardware failure increases [9][98], meaning that in today's chips there is more risk 

for such hardware failures. Therefore, in [9], the authors propose a configurable isolation model 

where cores can be configured as fully isolated from each other and not sharing any unnecessary 

components in critical scenarios, or can be allowed to share resources in the usual way in 

common scenarios. The authors point out the need for fault isolation, detection, and repair, and 

argue that such a configurable isolation system would support scenarios where either speed or 

reliability are important concerns. 

7.4.3. Mixed-Mode Multicore (MMM) reliability 

For the same reasons, the authors in [98] provide a system for making flexible use of Dual-

Modular Redundancy (DMR), in which a process is run simultaenously on multiple cores in 

order to achieve greater robustness. The contribution of the research is MMM. On traditional 

DMR systems, everything runs in DMR mode, which can be expensive. Under MMM, only 

critical processes are run in DMR mode, while non-critical processes can execute normally. As 

with the configurable isolation proposal, this system enables users to take advantage of 

robustness or performance, depending on the needs of the situation. 

7.5. Multicore and virtualization 
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As mentioned, a discussion of multicore and virtualization can be found in [68]. The article 

highlights how virtualization provides a promising path for scalablitiy -- indeed, if software 

cannot generally be adapted to parallel models, then at least utilization of multicore hardware can 

be achieved by housing multiple independent systems on it. It also emphasizes that virtualization 

is good for locality -- if a virtual machine is assigned to a single chip or core, then its locality to 

that chip or core will increase. Finally, it mentions that I/O requirements will be more complex 

and critical in a multicore virtualization scenario, requiring channel and device assignments for 

cores and VMs. Fortunately, I/O hardware support (Intel VT-d and AMD-IOMMU) seems to be 

rising to the challenge. 

Overall, virtualization seems like an apt way to leverage multicore hardware. Multiple VMs can 

be hosted on a system, and users may benefit from adopting a new architectural perspective, 

where they divide their system into categorized and trusted/untrusted domains (for example, one 

domain for financial applications, one for games, one for office work, etc.). It has already been 

mentioned how virtualization can abstract hardware differences, and thus facilitiate smoother 

transitions between platforms as hardware evolves. It appears a big win, so to speak. 

However, before jumping ahead, we must consider some important issues. First, how does this 

affect the security of the system? With more complex hardware and software, is it more likely 

that the system will host critical vulnerabilities? Will the potential isolation and reliability 

difficulties in multicore engender security liabilities? Furthermore, hypervisors must be 

explicitly designed (and made more complex) to support multicore. These changes may make the 

hypervisor -- the system TCB -- harder to verify. For example, the seL4 microkernel, as we saw, 

is formally verified, but only for a single core environment! What kind of multicore support does 

a particular hypervisor offer? How good is it at promoting fair and efficient scheduling, and 

locality? One can't sidestep these issues when looking to multicore virtualization for answers. 

7.5.1. Multicore virtualization architectures 

There are a number of architectures in research that are specifically intended to enhance system 

potential via multicore and virtualization. In this section we wil discuss two of them. 

7.5.1.1. Managing dynamic heterogeneity 

For example, the authors of [99] (who were also behind the MMM system above) propose a 

system addressing an interesting problem. They point out that even if a multicore system has 

physically homogeneous cores, those cores can exhibit widely varying runtime characteristics, 

making them in effect heterogeneous. These characteristics can include thermal state, other 

hardware strain, cache and TLB contents, and potentially other aspects, and altogether this 

runtime heterogeneity can have a sizble impact on performance. The proposed system is a thin 

hypervisor meant to run directly on the hardware and abstract and manage this multicore 

dynamic heterogeneity, and thereby increase overall system performance. The hypervisor can 
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support different nummbers of virtual cores than there are real cores, and can be run below a 

guest OS or a traditional hypervisor and manage the heterogeneity for virtual machines. The 

virtualization layer can also support MMM. 

7.5.1.2. Sidecore 

Another interesting architecture is Sidecore [56], whose authors make the observation that VM 

entries and exits are expensive even with hardware support, and offer a solution to this problem 

that leverages multicore hardware. They offer a system whereby the VMM functionality is 

partitioned and partially assigned to specific cores in a multicore system. Then, those cores 

(termed sidecores) will always run in VMM mode, thereby removing the need for VM entries 

and exits for those cores. Using sidecalls for certain tasks, guest VMs or system devices can 

communicate with the sidecores, rather than perform costly VM entries and exits to enter VMM 

mode themselves. The paper includes experimental results highlighting the performance 

advantages of implementing an operation via sidecalls instead of typical VM entries and exits. 

The authors also cite many other supporting influences that facilitate or justify this sort of 

architecture. For instance, it is reasonably argued that having cores specialize on portions of the 

VMM will increase locality. They also suggest that, as in [55], assigning certain functionality to 

specialized heterogeneous cores can increase performance, and that assigning cores will simplify 

and enhance scalability for I/O in multicore virtualization systems. Finally, they cite evidence 

that multicore architecture is moving towards high-performance inter-core communication [72], 

as in AMD HyperTransport [3] and Intel QuickPath [48], which will further improve the inter-

core communication latency of sidecore-inspired architectures. 
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