12 research outputs found

    Parity games with weights

    Get PDF
    Quantitative extensions of parity games have recently attracted significant interest. These extensions include parity games with energy and payoff conditions as well as finitary parity games and their generalization to parity games with costs. Finitary parity games enjoy a special status among these extensions, as they offer a native combination of the qualitative and quantitative aspects in infinite games: The quantitative aspect of finitary parity games is a quality measure for the qualitative aspect, as it measures the limit superior of the time it takes to answer an odd color by a larger even one. Finitary parity games have been extended to parity games with costs, where each transition is labeled with a nonnegative weight that reflects the costs incurred by taking it. We lift this restriction and consider parity games with costs with arbitrary integer weights. We show that solving such games is in NP and coNP, the signature complexity for games of this type. We also show that the protagonist has finite-state winning strategies, and provide tight pseudo-polynomial bounds for the memory he needs to win the game. Naturally, the antagonist may need infinite memory to win. Moreover, we present tight bounds on the quality of winning strategies for the protagonist. Furthermore, we investigate the problem of determining, for a given threshold b, whether the protagonist has a strategy of quality at most b and show this problem to be EXPTIME-complete. The protagonist inherits the necessity of exponential memory for implementing such strategies from the special case of finitary parity games

    Optimality and resilience in parity games

    Get PDF
    Modeling reactive systems as infinite games has yielded a multitude of results in the fields of program verification and program synthesis. The canonical parity condition, however, neither suffices to express non-functional requirements on the modeled system, nor to capture malfunctions of the deployed system. We address these issues by investigating quantitative games in which the above characteristics can be expressed. Parity games with costs are a variant of parity games in which traversing an edge incurs some nonnegative cost. The cost of a play is the limit superior of the cost incurred between answering odd colors by larger even ones. We extend that model by using integer costs, obtaining parity games with weights, and show that the problem of solving such games is in the intersection of NP and coNP and that it is PTIME-equivalent to the problem of solving energy parity games. We moreover show that Player 0 requires exponential memory to implement a winning strategy in parity games with weights. Further, we show that the problem of determining whether Player 0 can keep the cost of a play below a given bound is EXPTIME-complete for parity games with weights and PSPACE-complete for the special cases of parity games with costs and finitary parity games, i.e., it is harder than solving the game. Thus, optimality comes at a price even in finitary parity games. We further determine the complexity of computing strategies in parity games that are resilient against malfunctions. We show that such strategies can be effectively computed and that this is as hard as solving the game without disturbances. Finally, we combine all these aspects and show that Player 0 can trade memory, cost, and resilience for one another. Furthermore, we show how to compute the possible tradeoffs for a given game.Die Modellierung von reaktiven Systemen durch unendliche Spiele ermöglichte zahlreiche Fortschritte in der Programmverifikation und der Programmsynthese. Die häufig genutzte Paritätsbedingung kann jedoch weder nichtfunktionale Anforderungen ausdrücken, noch Fehlfunktionen des Systems modellieren. Wir betrachten quantitative Spiele in denen diese Merkmale ausgedrückt werden können. Paritätsspiele mit Kosten (PSK) sind eine Variante der Paritätsspiele in denen die Benutzung einer Kante nichtnegative Kosten verursacht. Die Kosten einer Partie sind der Limes Superior der Kosten zwischen ungeraden und den jeweils nächsten größeren geraden Farben. Wir erweitern dieses Modell durch ganzzahlige Kosten zu Paritätsspielen mit Gewichten (PSG). Wir zeigen, dass das Lösen dieser Spiele im Schnitt von NP und coNP liegt, dass es PTIME-äquivalent dazu ist, Energieparitätsspiele zu lösen und dass Spieler 0 exponentiellen Speicher benötigt, um zu gewinnen. Ferner zeigen wir, dass das Problem, zu entscheiden, ob Spieler 0 die Kosten eines Spiels unter einer gegebenen Schranke halten kann, EXPTIME-vollständig für PSG ist, sowie dass es PSPACE-vollständig für die Spezialfälle PSK und finitäre Paritätsspiele (FPS) ist. Optimalität ist also selbst in FPS nicht kostenlos. Außerdem bestimmen wir die Komplexität davon, Strategien in Paritätsspielen zu berechnen, die robust gegenüber Fehlfunktionen sind, zeigen, dass solche Strategien effektiv berechnet werden können und beweisen, dass dies nur linearen Mehraufwand bedeutet. Darüberhinaus kombinieren wir die oben genannten Aspekte, zeigen, dass Spieler 0 Speicher, Kosten und Robustheit gegeneinander eintauschen kann und berechnen die möglichen Kompromisse

    Computer Science Logic 2018: CSL 2018, September 4-8, 2018, Birmingham, United Kingdom

    Get PDF

    Sets Which Contain a Quadratic Residue Modulo p for Almost All p

    Get PDF
    In a mean-payoff parity game, one of the two players aims both to achieve a qualitative parity objective and to minimize a quantitative long-term average of payoffs (aka. mean payoff). The game is zero-sum and hence the aim of the other player is to either foil the parity objective or to maximize the mean payoff. Our main technical result is a pseudo-quasi-polynomial algorithm for solving mean-payoff parity games. All algorithms for the problem that have been developed for over a decade have a pseudo-polynomial and an exponential factors in their running times; in the running time of our algorithm the latter is replaced with a quasi-polynomial one. By the results of Chatterjee and Doyen (2012) and of Schewe, Weinert, and Zimmermann (2018), our main technical result implies that there are pseudo-quasi-polynomial algorithms for solving parity energy games and for solving parity games with weights. Our main conceptual contributions are the definitions of strategy decompositions for both players, and a notion of progress measures for mean-payoff parity games that generalizes both parity and energy progress measures. The former provides normal forms for and succinct representations of winning strategies, and the latter enables the application to mean-payoff parity games of the order-theoretic machinery that underpins a recent quasi-polynomial algorithm for solving parity games

    Predicting Winning Regions in Parity Games via Graph Neural Networks

    Get PDF
    Solving parity games is a major building block for numerous applications in reactive program verification and synthesis. While they can be solved efficiently in practice, no known approach has a polynomial worst-case runtime complexity. We present a incomplete polynomial-time approach to determining the winning regions of parity games via graph neural networks. Our evaluation on 900 randomly generated parity games shows that this approach is effective and efficient in practice. It correctly determines the winning regions of ∼60% of the games in our data set and only incurs minor errors in the remaining ones. We believe that this approach can be extended to efficiently solve parity games as well

    The Theory of Universal Graphs for Infinite Duration Games

    Get PDF
    We introduce the notion of universal graphs as a tool for constructing algorithms solving games of infinite duration such as parity games and mean payoff games. In the first part we develop the theory of universal graphs, with two goals: showing an equivalence and normalisation result between different recently introduced related models, and constructing generic value iteration algorithms for any positionally determined objective. In the second part we give four applications: to parity games, to mean payoff games, and to combinations of them (in the form of disjunctions of objectives). For each of these four cases we construct algorithms achieving or improving over the best known time and space complexity.Comment: 43 pages, 10 figure

    Optimal Strategies in Weighted Limit Games

    Get PDF
    We prove the existence and computability of optimal strategies in weighted limit games, zero-sum infinite-duration games with a B\"uchi-style winning condition requiring to produce infinitely many play prefixes that satisfy a given regular specification. Quality of plays is measured in the maximal weight of infixes between successive play prefixes that satisfy the specification.Comment: In Proceedings GandALF 2020, arXiv:2009.09360. Full version at arXiv:2008.1156

    The Theory of Universal Graphs for Infinite Duration Games

    Get PDF
    We introduce the notion of universal graphs as a tool for constructing algorithms solving games of infinite duration such as parity games and mean payoff games. In the first part we develop the theory of universal graphs, with two goals: showing an equivalence and normalisation result between different recently introduced related models, and constructing generic value iteration algorithms for any positionally determined objective. In the second part we give four applications: to parity games, to mean payoff games, to a disjunction between a parity and a mean payoff objective, and to disjunctions of several mean payoff objectives. For each of these four cases we construct algorithms achieving or improving over the best known time and space complexity
    corecore