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Abstract

Modeling reactive systems as infinite games has yielded a multitude of results in the
fields of program verification and program synthesis. The canonical parity condition,
however, neither suffices to express non-functional requirements on the modeled sys-
tem, nor to capture malfunctions of the deployed system. We address these issues by
investigating quantitative games in which the above characteristics can be expressed.

Parity games with costs are a variant of parity games in which traversing an edge
incurs some nonnegative cost. The cost of a play is the limit superior of the cost
incurred between answering odd colors by larger even ones. We extend that model by
using integer costs, obtaining parity games with weights, and show that the problem
of solving such games is in NP∩ coNP and that it is PTime-equivalent to the problem
of solving energy parity games.

We moreover show that Player 0 requires exponential memory to implement a win-
ning strategy in parity games with weights. Further, we show that the problem of
determining whether Player 0 can keep the cost of a play below a given bound is
ExpTime-complete for parity games with weights and PSpace-complete for the special
cases of parity games with costs and finitary parity games, i.e., it is harder than solving
the game. Thus, optimality comes at a price even in finitary parity games.

We further determine the complexity of computing strategies in parity games that
are resilient against malfunctions. We show that such strategies can be effectively
computed and that this is as hard as solving the game without disturbances.

Finally, we combine all these aspects and show that Player 0 can trade memory, cost,
and resilience for one another. Furthermore, we show how to compute the possible
tradeoffs for a given game.





Zusammenfassung

Die Modellierung von reaktiven Systemen durch unendliche Spiele ermöglichte zahl-
reiche Fortschritte in der Programmverifikation und der Programmsynthese. Die
häufig genutzte Paritätsbedingung kann jedoch weder nichtfunktionale Anforderun-
gen ausdrücken, noch Fehlfunktionen des Systems modellieren. Wir betrachten quan-
titative Spiele in denen diese Merkmale ausgedrückt werden können.

Paritätsspiele mit Kosten (PSK) sind eine Variante der Paritätsspiele in denen die
Benutzung einer Kante nichtnegative Kosten verursacht. Die Kosten einer Partie
sind der Limes Superior der Kosten zwischen ungeraden und den jeweils nächsten
größeren geraden Farben. Wir erweitern dieses Modell durch ganzzahlige Kosten
zu Paritätsspielen mit Gewichten (PSG). Wir zeigen, dass das Lösen dieser Spiele in
NP ∩ coNP liegt, dass es PTime-äquivalent dazu ist, Energieparitätsspiele zu lösen
und dass Spieler 0 exponentiellen Speicher benötigt, um zu gewinnen.

Ferner zeigen wir, dass das Problem, zu entscheiden, ob Spieler 0 die Kosten eines
Spiels unter einer gegebenen Schranke halten kann, ExpTime-vollständig für PSG ist,
sowie dass es PSpace-vollständig für die Spezialfälle PSK und finitäre Paritätsspiele
(FPS) ist. Optimalität ist also selbst in FPS nicht kostenlos.

Außerdem bestimmen wir die Komplexität davon, Strategien in Paritätsspielen zu
berechnen, die robust gegenüber Fehlfunktionen sind, zeigen, dass solche Strategien
effektiv berechnet werden können und beweisen, dass dies nur linearen Mehraufwand
bedeutet.

Darüberhinaus kombinieren wir die oben genannten Aspekte, zeigen, dass Spieler 0
Speicher, Kosten und Robustheit gegeneinander eintauschen kann und berechnen die
möglichen Kompromisse.
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CHAPTER 1

Introduction

In a classical view, a program takes some input, performs a transformation on that
input, and outputs the result before terminating. While such systems still exist, em-
bedded systems have become more and more prevalent in recent years; A modern car
typically comprises several hundreds if not thousands of embedded systems that work
in unison to guarantee safety and functionality of the car. Such embedded systems are
characterized by running indefinitely and by maintaining constant communication
with their environment throughout their runtime. Since such systems are ubiquitous
and are in control of a number of safety-critical systems, it is important to have ex-
pressive and well-understood formal methods for modeling such systems and their
environments in order to allow for formal reasoning about the systems.

One such model that has yielded a host of advances in the fields of verification and
synthesis of correct-by-construction reactive systems is the formalism of infinite games
in which the environment and the system are viewed as two players that compete to
satisfy some winning condition. Although this model is widely used for the design
and analysis of embedded systems, we argue that it has shortcomings that prevent it
from supporting in-depth analyses of the systems and from realistically modeling the
systems. In this work, we address these shortcomings, mitigate them via extensions
of the model of infinite games, and investigate and determine the overhead these
extensions incur in terms of complexity.

We first describe this model and how it is used in the modeling of reactive systems in
Section 1.1. Subsequently, in Section 1.2 and Section 1.3, we address the shortcomings
of this model and detail our approach to mitigating them. Finally, in Section 1.4 we
outline the structure of the remainder of this thesis.
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CHAPTER 1. INTRODUCTION

1.1 Modeling Reactive Systems as Infinite Games

In their most basic forms, embedded systems can be viewed as combinatorial circuits
comprised of logical gates and latches that are synchronized to some clock. In each
time step, the circuit obtains some input bits and outputs the result of the evaluation of
the gates and latches. As the construction of such circuits is, in general, quite involved
and since they are often used in safety-critical roles, it is paramount to obtain formal
methods to verify the correctness of a circuit with respect to some formal specification
or, ideally, to automatically construct such a circuit given only the specification.

Church [Chu57] first raised the question of how to construct such a circuit that con-
forms to a given specification automatically and formulated the “synthesis problem”
as follows:

“Given a requirement which a circuit is to satisfy we may suppose the
requirement expressed in some suitable logical system[...]. The synthesis
problem is then to find [...] a circuit that satisfies the given requirement (or
alternatively, to determine that there is no such circuit).”

For many such “suitable logical system[s]” the synthesis problem can be boiled down
to solving a game between two players, which we call Player 0 and Player 1, and who,
respectively, represent the circuit to be constructed and the environment that controls
the input to the circuit. Player 0 then wins the game by satisfying the specification,
while Player 1 wins by violating it. Throughout this work, for the sake of readability,
we consider Player 0 to be female, while we consider Player 1 to be male.

Consider, e.g., a system that is in charge of controlling access to some resource that
is shared between several clients: In each turn of the game modeling this scenario,
Player 1, i.e., the environment, may cause one or more of the clients to request access
to the resource. Conversely, Player 0, i.e., the system under construction, may grant
one or multiple such requests. In order to satisfy the typical requirements of fairness
and mutual exclusion, we declare Player 0 as the winner if she grants each request
eventually and if she at no point grants access to more than one client in the same
turn.

In this work, we consider games of infinite duration played on finite graphs, which
suffice to capture a wide range of formal specifications. Such games are played be-
tween the two players by moving a token around a finite graph, the so-called arena of
the game. The vertices of the arena are partitioned into those belonging to Player 0
and those belonging to Player 1.

In each turn, the player owning the vertex that currently carries the token picks a
successor of that vertex and moves the token to that successor. After infinitely many
such moves, the two players have constructed an infinite path through the graph, a
so-called play. The winner of the resulting play is then determined via the winning
condition, a set of plays that are proclaimed to be winning for Player 0.

Consider again the example of an embedded system tasked with controlling access
to some shared resource. We show an arena modeling this situation for two clients
in Figure 1.1. Here and in the remainder of this thesis, we draw vertices of Player 0

2



1.1. MODELING REACTIVE SYSTEMS AS INFINITE GAMES

r0=1

r0=0

r1=1

r1=0

g0=1

g0=0

g1=1

g1=0

Figure 1.1: An arena modeling an arbiter in control of one resource with two clients.

and Player 1 as ellipses and rectangles, respectively. In that arena, we model one time
step by moving the token from the leftmost vertex to the rightmost one. Returning the
token to the leftmost vertex via the lower edge starts the next time step.

In the arena shown in Figure 1.1, the vertices labeled with r0=1 and r1=1 denote that
the first and second client, respectively, request access to the resource in the current
time step, while the vertices labeled r0=0 and r1=0 denote that they do not. Dually, the
vertices labeled with g0=1 and g1=1 denote that the system grants access to the first
and second client, while the vertices labeled with g0=0 and g1=0 denote that it does
not grant access to the respective client in the current time step. By declaring exactly
those plays winning in which each visit to the vertices r0=1 and r1=1 is eventually
followed by a visit to the vertices g0=1 and g1=1, respectively, we force Player 0 to
implement an arbiter that eventually grants all requests for the resource in order to
win the game.

The main object of interest in infinite games are strategies for the two players, i.e.,
objects describing the behavior of the players. A strategy for Player i prescribes for
each play prefix ending in a vertex v of that player a successor of v to move to. If the
strategy can be implemented using a finite-state machine that processes the history of
the play and yields the next vertex to move to, we say that the strategy is finite-state.
If, for a given game G and a vertex v of G, there exists a strategy σ for Player i such
that all plays that start in v and that follow the behavior described by σ satisfy (for
Player 0) or violate (for Player 1) the winning condition, we say that Player i wins G
from v. In the example shown in Figure 1.1, Player 0 wins from every vertex. This is
witnessed, e.g., by the strategy which prescribes granting access to the first and to the
second client in alternation.

Büchi and Landweber [BL69] showed that in all infinite games whose winning con-
ditions are given by an ω-regular automaton that processes the resulting play, finite-
state winning strategies for both players exist and can be computed effectively. Since
a large number of “suitable logical system[s]” can be compiled into infinite games
with ω-regular winning conditions and since each finite-state strategy for Player 0 can
be transformed into a controller satisfying the specification given by the winning con-
dition, the result of Büchi and Landweber provides a solution to Church’s Problem for
a wide range of specifications.

3



CHAPTER 1. INTRODUCTION

1.2 Measuring Degrees of Satisfaction

The canonical winning condition used in infinite games is the parity condition. This
condition is induced by a labeling of the vertices of the underlying arena with natural
numbers, so-called colors. The winner of the resulting play is then determined by the
largest color seen infinitely often during the play. Player 0 wins the resulting play if
and only if that color is even. Games that are equipped with a parity condition are
called parity games. In such games, odd colors can be interpreted as requests, which
are answered by larger even colors. In this formulation, the parity condition amounts
to demanding that after a finite prefix all requests are answered.

The prevalence of this winning condition stems from the fact that a host of specifica-
tion languages for reactive systems can be compiled into parity games. Prime among
these specification languages is Linear Temporal Logic [Pnu77], one of the major logics
for specifying properties of reactive systems. Furthermore, parity games have applica-
tions in other fields of theoretical computer science: The emptiness problem for parity
automata over infinite trees can, e.g., be reduced to solving parity games [Wil01].
Moreover, the model-checking problem for modal µ-calculus can be reduced to that of
solving parity games as well [Wil01].

Apart from their utility in a number of fields of computer science, parity games also
feature a number of properties that make their use in solving the above problems at-
tractive. In particular, Mostowski [Mos91] as well as Emerson and Jutla [EJ91] showed
that if Player i wins a parity game from some vertex v, then she has a memoryless
winning strategy from v, i.e., a strategy that prescribes the next vertex based only on
the vertex currently holding the token.

The versatility of parity games together with the above result showing that they
admit very simple winning strategies has led to them being the subject of a wide
range of work in theoretical computer science. For a in-depth introduction to the uses
of parity games and their connection to logics and automata, we refer to work by
Grädel, Thomas, and Wilke [GTW02]. Here, we focus on the use of parity games for
modeling embedded systems as described in the previous section.

While parity games suffice to model a wide range of scenarios in which such embed-
ded systems may be deployed, one crucial shortcoming of such games is their inability
to model quantitative conditions. Consider again our example of an embedded system
controlling access to a resource, where in this case we consider the scenario of only a
single client. It is straightforward to model this scenario as a parity game, where we
use the odd color one to denote a request for the resource, while we denote a grant of
that request with the even color two. We furthermore use the color zero to denote that
access to the resource is neither requested nor granted. In using the parity condition,
we relax our previous requirement of fairness and only require that all but finitely
many requests of the client are answered.

Now consider the sequence of colors

1 0 2 1 0 0 2 1 0 0 0 2 1 0 0 0 0 2 1 0 0 0 0 0 2 1 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 2 · · ·

This sequence satisfies the parity condition, as the largest color occurring infinitely

4



1.2. MEASURING DEGREES OF SATISFACTION

often is two. Intuitively, however, the behavior of the system is undesirable, as the
environment has to wait longer and longer for the satisfaction of its requests. The
parity condition is unable to express the requirement that this waiting time is bounded
along the play.

If we imposed some fixed upper bound of, e.g., five, on the waiting time for requests
to be answered, it would be straightforward to encode this bound in the arena of the
parity game such that Player 0 loses a play if infinitely often requests are open for
more than five steps. In general, however, one is interested in the question whether
such an upper bound exists without explicitly encoding a fixed one in the constructed
game.

Recently, there has been an increased focus of research on quantitative winning con-
ditions which allow modeling such situations in which an unknown, but finite bound
on some measure of cost on the resulting plays is required. In general, such quan-
titative winning conditions induce a finer structure on the set of plays than classical
winning conditions: In classical parity games, the set of plays is partitioned into plays
that are winning for Player 0 and those that are not. Quantitative conditions, in con-
trast, assign to each play some measure of cost and require Player 0 to ensure that the
cost of a play remains finite. Hence, such quantitative conditions refine the picture of
modeling embedded systems, as they enable more fine-grained analyses.

Among the notable examples of such quantitative conditions are the mean payoff
condition [EM79, ZP95, BCD+11, BFRR17] and its combination with the parity condi-
tion [CHJ05], the energy condition [CdAHS03, BFL+08] and its combination with the
parity condition [CD12], the average-energy condition [BMR+18], as well as the fini-
tary parity condition [CH06,CHH09,CF13] and its extension, the parity condition with
costs [FZ14].

Among these extensions, finitary parity games [CH06, CHH09] and their extension
to parity games with costs [FZ14] take a special role: In most combinations of the
parity condition with quantitative conditions, the two conditions are independent, i.e.,
Player 0 has to satisfy both conditions individually. In the finitary parity condition, in
contrast, these two conditions are conjoined, i.e., the quantitative condition measures
a “degree of satisfaction” of the parity condition.

Similarly to our above example, in finitary parity games, the odd and even colors
of parity games are interpreted as requests and responses, respectively. The cost of a
play is determined as the limit of the number of turns it takes for an odd color to be
answered by a larger even one. Player 0 wins a play if its cost is finite, i.e., if she is
able to eventually bound the number of steps between requests and their respective
responses. Chatterjee, Henzinger, and Horn [CHH09] showed that the problem of
solving finitary parity games is simpler than that of solving parity games and that
memoryless strategies still suffice for Player 0 to win, i.e., the finitary parity condition
retains and even improves upon the desirable properties of classical parity games.

Moreover, recall the above scenario of an arbiter with a single client, in which we
want Player 0 to win only if she is able to bound the waiting times for requests to
be granted. The finitary parity condition allows us to easily model this requirement,
since, e.g., the color sequence shown in the example above does not satisfy the finitary

5



CHAPTER 1. INTRODUCTION

parity condition.
While finitary parity games have attractive properties both in terms of the complex-

ity of the problem of solving them and in terms of memory requirements, they feature
a very simplistic cost model: Each step in the game induces unit cost of the modeled
resource, e.g., time. This model is sufficient to express the above condition of Player 0
bounding the number of steps between requests and their responses if one chooses an
appropriate underlying arena. It does not, however, allow to disentangle the measure
of cost from the structure of the arena. Thus, the finitary parity condition is ill-suited
to model scenarios in which, e.g., Player 0 and Player 1 may make multiple decisions
in each time step: Each passing of control from one player to the other implies at least
one unit of time passing. This is even illustrated by the simple scenario of an arbiter
controlling access to a shared resource for two clients shown in Figure 1.1. Here, we
modeled the scenario via an arena, in which only a single edge denotes an advance of
time, while traversing any other edge did not denote time passing. Furthermore, the
cost model of finitary parity games complicates the modeling of a resource other than
time, which may not be drained uniformly in each transition.

In order to alleviate this shortcoming, Fijalkow and Zimmermann [FZ14] general-
ized the cost model of finitary parity games, obtaining parity games with costs. This
model not only generalizes both the finitary parity condition and the parity condition,
but it also disentangles the measure of cost from the arena of the game. The winning
condition of parity games with costs is given by a coloring of the vertices and a label-
ing of the edges with nonnegative integers denoting the cost incurred when traversing
the edge. Analogously to finitary parity games, the cost of a play is then defined as
the limit of the cost incurred during the play infixes leading from a request for some
odd color to its answer by a larger even color. Fijalkow and Zimmermann showed that
the problem of solving parity games with costs is as hard as solving parity games and
that memoryless strategies still suffice for Player 0 to win. Hence, according to the
state of the art, solving such games is harder than solving finitary parity games, but
only as hard as its subsumption of parity games requires it to be.

While parity games with costs allow for more precise modeling of quantitative con-
ditions than finitary parity games, there still exist simple scenarios which cannot be
captured even by such extended games.

Consider, e.g., a system with an attached battery that allows clients to request the
current energy level of the battery from the system. The systems answers these re-
quests only after a certain number of steps, e.g., after computing the current level,
or after disconnecting consumers from the battery. In this scenario, one may want to
require the controller to respond to requests for the current energy level of the battery
with “up-to-date” information, i.e., the energy level should not be able to change ar-
bitrarily between the request of a client and the response of the system. This situation
cannot be modeled realistically using parity games with costs, as they are restricted
to using nonnegative weights. Hence, such a game can only model either charging or
discharging the battery, depending on the interpretation of the weights, but no parity
game with costs can model a battery that is both charged and discharged over the
course of a single play.

6



1.2. MEASURING DEGREES OF SATISFACTION

In this work, we alleviate the above problem by removing the restriction of parity
games with costs, thus also allowing edges to be labeled with negative weights. We
call the obtained games parity games with weights. Thus, we further extend the ex-
pressiveness of quantitative parity games and allow the modeling of resources that
can be charged or drained. We show that solving such games is as hard as solving
energy parity games, another widely used quantitative extension of parity games. We
furthermore show that, in contrast to parity games with costs, Player 0 requires mem-
ory in order to implement winning strategies in parity games with weights. Hence,
the added modeling capability afforded by parity games with weights comes at a price
both in terms of the complexity of solving such games, as well as in terms of memory
requirements.

Up to this point, we have only considered the boundedness problem for quantitative
extensions of parity games, i.e., the problem of deciding whether or not Player 0 can
ensure finite cost of a play. When the quantitative properties of the discussed exten-
sions of parity games are used to model some resource, this amounts to determining
whether there exists some finite amount of that resource that allows Player 0 to sat-
isfy the quantitative winning condition. A larger amount of the modeled resource,
however, in general comes at a price. Hence, it is desirable to determine the mini-
mal amount of the resource that still allows the system to satisfy the specification. In
terms of infinite game, this amounts to determining the minimal threshold b such that
Player 0 is able to satisfy the quantitative condition with respect to b. As we obtain
an upper bound on the maximal cost that Player 0 can enforce if she wins a parity
game with weights from our algorithm solving such games, we find that determining
the minimal such b amounts to solving the so-called threshold problem: Given some
parity game with weights G, some threshold b, and a vertex v of G, determine whether
Player 0 is able to enforce a cost of at most b when starting from v.

In this work, we show that the threshold problem is ExpTime-complete for parity
games with weights and that it is PSpace-complete for the special cases of parity games
with costs and finitary parity games. From the proof of membership in the respective
complexity classes we also obtain that exponential memory suffices for both players
to satisfy a given upper (for Player 0) or lower (for Player 1) bound on the cost. We
moreover show that exponential memory is necessary for both players to do so even
in the special case of finitary parity games.

Thus, playing optimally comes at a price, even in the special case of finitary par-
ity games, both in terms of the complexity of computing a strategy that realizes an
optimal bound (which rises from being solvable in polynomial time to requiring poly-
nomial space), as well as in terms of the complexity of that strategy (which rises from
memoryless strategies to strategies of exponential size).

In contrast to the above results, which yield necessity of exponential memory for
Player 0 in order to play optimally, if her only aim is to finitely bound the cost of
the play, then a positional strategy suffices to do so. While the exponential size of an
optimal strategy may be prohibitive in the context of embedded systems, it may also
be undesirable to only obtain some arbitrary finite upper bound on the cost of plays
in the same scenarios. We furthermore show that this dichotomy is, in general, not
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that strict, i.e., that there exists a gradual tradeoff between the memory required to
implement a strategy and the upper bound on the cost of plays that it guarantees.

1.3 Modeling Real-World Challenges

In the previous section we have detailed shortcomings of the classical game-theoretic
approach to modeling reactive systems. Namely, we have argued that the classical
and canonical parity conditon is ill-suited to capturing quantitative requirements to-
wards the system. We now furthermore argue that although the above approach of
modeling reactive systems via infinite games has proven very successful, it is based
on an overly optimistic world view: When modeling a reactive system as an infinite
game, intuitively, each outgoing edge of a vertex of Player 0 denotes an action that
the controller of the modeled system may take. The target of the edge denotes the
state of the system and its environment after that action has been executed. Due to
this model, we inherently presume that the engineer modeling the system takes into
account the complete set of interactions between the system and its environment as
well as all possible outcomes of all actions available to the system at any moment.

Consider again, for example, the arbiter controlling access to a resource for two
clients discussed above, which we modeled by the arena shown in :Figure 1.1. In: Sec. 1.1, Page 3
constructing this arena, we presumed Player 0, i.e., the player representing the con-
troller, to have full control over which client gains access to the resource. This model,
however, is not entirely realistic: When controlling access to some physical resource,
the actuator physically granting access to that resource may become stuck during op-
eration, thus not permitting or preventing access to the clients as required by the
controller. Similarly, when controlling access to some digital resource, such as shared
memory, bit flips may cause access to be granted to unintended clients as well.

The above possibilities are not modeled in the arena shown in Figure 1.1. In fact,
we argue that such malfunctions of the system cannot be effectively modeled using
the standard notion of infinite games: Giving Player 0 control over the occurrence
of such events would cause the system to disregard them, i.e., cause them to never
occur. Dually, giving control over such occurrences to Player 1 would enable the
(antagonistic) environment to cause such disturbances at will, thus preventing Player 0
from satisfying the specification in too many cases. In general, however it is necessary
to have formal methods allowing for precise modeling of such effects: Excluding them
from the design would yield a model that provides an overly optimistic and unrealistic
view of real-life systems.

It is a topic of active research to compute controllers that are resilient against such
malfunctions [TOLM12, ET14, HPSW16]. Related to the above problem of computing
resilient controllers are various notions of fault tolerance [AAE04, BGH+15, EKA08,
GR09] and of robustness [BCG+14, BCHJ09, BEJK14, BJP+12, MRT13, TCRM14, TN16,
BRS17,BBF+18,NWZ18a]. In particular, a survey of a large body of work dealing with
robustness in reactive synthesis has been presented by Bloem et al. [BEJK14]. The
work mentioned above, however, usually considers specifications given in some logic,
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r0=1

r0=0

r1=1

r1=0

g0=1

g0=0

g1=1

g1=0

Figure 1.2: An arena modeling an arbiter in control of one resource with disturbances.

they treat disturbances as occurring antagonistically, i.e., as under the control of the
environment, or they use a model of infinite games that differs significantly from the
standard model of two-player, turn-based games introduced above.

In this work we follow the approach of Dallal, Neider, and Tabuada [DNT16], who
have formalized the uncertainty about results of actions taken by Player 0 in the model
of infinite games by introducing games with disturbances. Such games extend the
standard model of infinite games as defined above by so-called disturbance edges.
Whenever it is the turn of Player 0, after she has picked an outgoing edge of the current
vertex, the play may instead move along one of the outgoing disturbance edges of that
vertex, thus modeling the occurrence of a disturbance.

This models the intuitive behavior of malfunctions and other disturbances: Consider
again the above example of an arbiter controlling access to a shared resource with two
clients and recall that we argued previously that the choice of Player 0 of granting
access to either client may be overridden by a malfunction of the system. We show an
infinite game with disturbances taking such malfunctions into account in Figure 1.2. In
that figure and in the remainder of this work, we denote disturbance edges by dotted
lines. In the arena shown in that figure, whenever Player 0 has chosen to either grant
or deny access to the resource to a client, a disturbance may occur and override her
decision.

Crucially, in this model, disturbance edges are not under the control of either player,
nor do they require an underlying model of their occurrence. Instead, they are treated
as rare events. In this model, the question of determining the winning player from
a given vertex is generalized: Instead of asking whether Player 0 wins a given game
with disturbances from some given vertex, we instead ask how many disturbances may
occur in order for her to still win the game. Furthermore, we ask to construct a strategy
that is resilient against as many disturbances as possible, i.e., that still produces a
winning play under the maximal number of disturbances that allow Player 0 to win at
all.

Dallal, Neider, and Tabuada [DNT16] have solved the problem of computing such
optimally resilient strategies only for safety games, i.e., for a very restricted class of in-
finite games in which it is the goal of Player 0 to avoid a given set of undesirable states.
In that setting, they have shown that constructing optimally resilient strategies does
not incur an overhead over solving the underlying game without disturbances. We
first generalize their notion of resilience against disturbances to the setting of parity
games and discuss the new phenomena that occur in this setting of more compli-
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CHAPTER 1. INTRODUCTION

cated winning conditions. Subsequently, we show that, even for this greatly extended
class of games, the problem of computing optimally resilient strategies is still only as
hard as solving the underlying game without disturbances, as well as that optimally
resilient strategies are not larger than winning strategies in the underlying game with-
out disturbances. Hence, playing with respect to disturbances comes for free even in
parity games.

Via these results, we raise the model of disturbances to the setting of parity games,
i.e., the canonical games used for modeling embedded systems, and show how to
solve the associated problems. Thus, we greatly increase the capability of the designer
of a formal model of embedded systems to accurately capture real-life phenomena
occurring when deploying such systems.

Finally, we investigate the notion of resilience in the quantitative parity games dis-
cussed in the previous section. In such games, there are two notions of quality for a
given strategy, namely the upper bound on the cost of resulting plays, and the number
of disturbances that allow Player 0 to still guarantee that upper bound. We show that
computing the pairs of r and b such that Player 0 can still guarantee cost at most b if
less than r disturbances occur is only as hard as solving the threshold problem for the
underlying game.

1.4 Outline

We first formally define the prerequisite notions of infinite games and complexity
theory in Chapter 2. In that chapter, we also give formal definitions of the parity con-
dition, the finitary parity condition, and the parity condition with costs as discussed
informally above.

Afterwards, we define the extension of parity games with costs to parity games with
weights in Chapter 3 and prove the results on the complexity of solving such games
and on the memory requirements. We moreover show that, if Player 0 has a winning
strategy in such a game, then she has one that ensures an exponential upper bound on
the cost of the resulting play. Furthermore, in Chapter 4 we investigate the problem
of solving parity games with weights with respect to some given bound and prove the
results claimed above. In that section, we furthermore investigate the problem for the
special cases of parity games with costs and finitary parity games.

We then define the model of games with disturbances and show how to construct
optimally resilient strategies, and prove that such strategies are not larger than win-
ning strategies in Chapter 5.

After having thus defined and investigated the metric of cost and resilience in isola-
tion, we investigate the tradeoffs between the different measures of quality discussed
throughout this work in Chapter 6. Here, we exhibit the tradeoffs between cost and
size of a strategy, as well as the tradeoff between cost and resilience of a strategy.

Finally, we conclude in Chapter 7 with an overview over open problems and with a
discussion of future work.
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CHAPTER 2

Preliminaries

In this chapter we define the mathematical notions required as prerequisites for the re-
mainder of this work. We first introduce basic notions of infinite games in Section 2.1.
Since a major contribution of this thesis is the characterization of the complexity of
a number of decision problems, we subsequently discuss the complexity classes oc-
curring in this work in Section 2.2. Finally, in Section 2.3 and Section 2.4, we present
previous work regarding qualitative and quantitative games, respectively, upon which
we build the contributions of this thesis.

We denote the nonnegative integers by N and the integers by Z. Moreover, we
define ∞ > n and −∞ < n for all n ∈ Z. As usual, we define ∞ + n = n + ∞ = ∞
and −∞− n = n−∞ = −∞ for all n ∈ Z.

For any set L, we write L∗, L+, and Lω to denote the set of all finite sequences, all
nonempty finite sequences, and all infinite sequences of elements from L, respectively.
Moreover, for any two sets L, K, we write LK to denote the set of all sequences lk,
where l ∈ L, k ∈ K. Finally, we write ε to denote the empty sequence.

2.1 Arenas and Strategies

In this work we exclusively consider two-player arena-based games with perfect infor-
mation. Such games are played between the two players Player 0 and Player 1 who
move a token around a graph, called the arena. Each vertex of the arena belongs to one
of the two players. At the beginning of each turn, the token is situated at some vertex
of the arena. The player owning that vertex picks an outgoing edge of the vertex,
moves the token along that edge and the next turn begins. By iterating this process
ad infinitum, the two players construct an infinite path through the arena, a so-called
play.

Formally, an arena A = (V, V0, V1, E) consists of a finite, directed graph (V, E) and Def. arena
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vI

v′I

vII

vIII

v′III

vIV

Figure 2.1: An arena with six vertices. Adapted from Chatterjee and Fijalkow [CF13].

a partition (V0, V1) of V into the vertices belonging to Player 0 and to Player 1. Since
we later only consider infinite paths through arenas, we aim to avoid dead-ends in A,
hence we assume each vertex in A to be non-terminal. When drawing arenas, we draw
the vertices of Player 0 as ellipses, while we draw the vertices of Player 1 as rectangles.
If the owner of a vertex is unknown or irrelevant, we draw that vertex as a diamond.
We define the size of A as |A| = |V|.

A play in A is an infinite path ρ through (V, E). We define |ρ| = ∞. In contrast,Def. play
a play prefix is a finite path through (V, E). Each play is a member of Vω, but notDef. play prefix
every infinite sequence of vertices from V is a play.

Example 2.1. Consider the arena A shown in Figure 2.1. The vertex vII belongs to
Player 0, while all other vertices, i.e., the vertices vI, v′I, vIII, v′III, and vIV belong to
Player 1. Hence, whenever the token is at vertex vII, Player 0 chooses to move the
token to either vIII or to v′III.

Dually, whenever the token is at any vertex other than vII, Player 1 chooses a suc-
ceeding vertex to move the token to. Since, however, all vertices of Player 1 except
for vIV only have a single succeeding vertex, Player 1 only has to “choose” such a ver-
tex when the token is at vIV. At all other vertices, the play proceeds “automatically,”
i.e., Player 1 cannot influence the evolution of the play 4

We formalize the notion of the two players choosing successor vertices via strategies.
In general, players are unconstrained in their choice of successor vertex: They may re-
sort to stochastic choices or pick the succeeding vertex completely arbitrarily. In this
work, however, we only consider deterministic strategies for both players. Such strate-
gies prescribe the next vertex to move to based only on the play prefix constructed so
far.

Fix an arena A = (V, V0, V1, E). A strategy for Player i ∈ {0, 1} is a mappingDef. strategy
σ : V∗Vi → V that satisfies (v, σ(πv)) ∈ E for all play prefixes πv ∈ V∗Vi. We say
that σ is positional if we have σ(πv) = σ(v) for all πv ∈ V∗Vi, i.e., if the strategy σDef. positional

strategy only uses the current vertex to determine the next move. In this case, we write σ(v)
to denote σ(πv) for all π ∈ V∗. A play v0v1v2 · · · is consistent with a strategy σ forDef. consistent play
Player i, if we have vj+1 = σ(v0 · · · vj) for every j ∈N where vj ∈ Vi.

12
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Example 2.2. Consider again the arena shown in Figure 2.1. A strategy for Player 0
is a function that, given a play prefix ending in vII, yields either vIII or v′III. Dually, a
strategy for Player 1 is a function that maps play prefixes ending in vI or v′I to vII, play
prefixes ending in vIII or v′III to vIV, and play prefixes ending in vIV to either vI or to v′I.

While both players have infinitely many strategies, they both only have two posi-
tional strategies: Player 0 has the two positional strategies σ and σ′ given by σ(πvII) =
vIII and σ′(πvII) = v′III for all π ∈ V∗, respectively, while Player 1 has the two posi-
tional strategies τ and τ′ defined via τ(πvIV) = vI and τ′(πvIV) = v′I for all π ∈ V∗,
respectively.

The plays (vIvIIvIIIvIV)
ω and (vIIIvIVvIvII)

ω are, e.g., consistent with both σ and τ.
In contrast, the plays (vIvIIv′IIIvIV)

ω and (v′IIIvIVv′IvII)
ω are both consistent with σ′.

Furthermore, the former play is consistent with τ, while the latter one is consistent
with τ′. 4

Picking an initial vertex as well as strategies for the two players uniquely determines
the resulting play.

Remark 2.3. LetA be an arena, let σ and τ be strategies for Player 0 and Player 1, respectively,
and let v be some vertex of A. There exists a single, unique play in A that starts in v and is
consistent with both σ and τ.

The above, very general definition of strategies affords the player playing consis-
tently with the strategy potentially infinite computational resources. In order to obtain
a more realistic model of strategies, we define finite-state strategies. In such strategies,
the respective player keeps track of the current “state” of the play using a finite-state
machine that processes the play prefix constructed thus far.

A memory structureM = (M, init, upd) for an arena A with vertex set V and set E Def. memory
structureof edges consists of a finite set of memory states M, an initialization function init : V →

M, as well as an update function upd : M× E→ M. We extend the update function to
finite play prefixes via upd+(m, v) = m and upd+(m, πvv′) = upd(upd+(m, πv), (v, v′))
for all π ∈ V∗ and (v, v′) ∈ E. We define |M| = |M|.

A next-move function for Player i is a function nxt : Vi × M → V that satisfies Def. next-move
function(v, nxt(v, m)) ∈ E for all v ∈ Vi and all m ∈ M. A memory structureM together with

a next-move function nxt induce a strategy σ for Player i with memoryM via

σ(v0 · · · vj) = nxt(vj, upd+(init(v0), v0 · · · vj)) .

A strategy is called finite-state if it can be implemented by a memory structure. In a Def. finite-state
strategyslight abuse of notation, we define the size of a finite-state strategy |M| as the size
Def. size of strategyof a memory structure M implementing it.

An arena A = (V, V0, V1, E) and a memory structure M = (M, init, upd) for A
induce the extended arena A ×M = (V × M, V0 × M, V1 × M, E′) where we de- Def. extended arena
fine E′ as follows: We have ((v, m), (v′, m′)) ∈ E′ if and only if (v, v′) ∈ E and
upd(m, (v, v′)) = m′. Every play ρ = v0v1v2 · · · in A has a unique extended play Def. extended play
extM(ρ) = (v0, m0)(v1, m1)(v2, m2) · · · in A×M defined by m0 = init(v0) and

mj+1 = upd(mj, (vj, vj+1)), i.e., mj = upd+(init(v0), v0 · · · vj) .
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(vI, mI)

(v′I, mI)

(vII, mI)

(vIII, mI)

(v′III, mI)

(vIV, mI)

(vI, m′I)

(v′I, m′I)

(vII, m′I)

(vIII, m′I)

(v′III, m′I)

(vIV, m′I)

Figure 2.2: The arena from Figure 2.1 extended with the memory structure from Ex-
ample 2.4.

If the memory structureM is clear from the context, we omit it from the notation for
the extended play and just write ext(ρ). The extended play of a finite play prefix in A
is defined analogously.

Example 2.4. Consider again the arena from Example 2.1 shown in Figure 2.1. Let σ
be the strategy for Player 0 defined by

σ(v0 · · · vj) =

{
vIII if j > 0 and if vj−1 = vI, and
v′III otherwise

for all play prefixes v0 · · · vj with vj = vII, i.e., σ prescribes for Player 0 to “mimick”
the choices of upper and lower vertices made by Player 1, initially moving to v′III if the
play starts in vII.

The strategy σ can be implemented using the memory structureM = (M, init, upd)
with M = {mI, m′I}, init(v) = mI if v = vI and init(v) = m′I otherwise, and

upd(m, (v, v′)) =

{
mI if v′ = vI, and
m′I otherwise.

We illustrate the extended arena A×M in Figure 2.2. Moreover, since the memory
structure implementing σ has two elements, we directly obtain |σ| = 2. 4

2.2 Complexity Classes

We assume the reader to be familiar with the notion of decision problems. Further-
more, we assume that the reader has already encountered the models of alternating,
nondeterministic, unambiguous, and deterministic Turing machines and is familiar
with the notion of a Turing machine deciding a problem [Tur37, Pap94, HMU01].
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Class Model
Bound

Time Space

PTime deterministic polynomial –
UP unambiguous polynomial –
NP nondeterministic polynomial –

APTime alternating polynomial –
PSpace deterministic – polynomial

ExpTime deterministic exponential –

Table 2.3: Complexity classes used in this thesis.

In order to achieve uniform notation, however, we briefly recall their definitions
informally: The states of an alternating Turing machine T are partitioned into Def. alternating

Turing machineexistential and universal states. A run of T is a tree that is rooted at the initial con-
figuration of T. Each configuration that is in an existential state has a single outgoing
edge to one of its successor configurations. In contrast, each configuration that is in a
universal state has outgoing edges to each of its successor configurations. A run of T
is accepting if all branches of the run terminate in a configuration with an accepting
state.

The other machines mentioned above result from syntactical and semantic restric-
tions of this model:
• A nondeterministic Turing machine is an alternating Turing machine without Def. nondeterministic

Turing machineuniversal states,
• an unambiguous Turing machine is a nondeterministic Turing machine that Def. unambiguous

Turing machinehas at most one accepting run for each input, and
• a deterministic Turing machine is a nondeterministic Turing machine where Def. deterministic

Turing machineeach configuration has at most one successor configuration.
The complexity classes considered in this thesis arise from restricting the time or

space available to Turing machines to decide an instance of a given problem. We give
an overview over these complexity classes in Table 2.3. Furthermore, we denote the
complement of UP and of NP by coUP and coNP, respectively.

By definition we have PTime ⊆ UP ⊆ NP ⊆ APTime. We furthermore have PTime ⊆
coUP ⊆ coNP and coNP ⊆ PSpace ⊆ ExpTime. Results by Chandra, Kozen, and
Stockmeyer [CKS81] furthermore yield APTime = PSpace.

For a more thorough discussion of these models and complexity theory in general,
we refer to introductory works, e.g., by Papadimitriou [Pap94].

2.3 Qualitative Games

Having defined arenas, we now turn our attention to games. As we have already
described how the two players interact in order to construct a play, it remains to decide
which player wins the resulting infinite play. To this end, we equip an arena with a
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so-called winning condition, obtaining a game. For the remainder of this section, fix
some arena A with vertex set V and set of edges E.

A winning condition Win ⊆ Vω is a set of infinite sequences of vertices from A.Def. winning
condition We say that a play ρ of A is winning for Player 0 (according to Win) if ρ ∈ Win. In
Def. winning play this case, we also say that ρ satisfies the winning condition Win. Dually, we say that a

play ρ is winning for Player 1 if ρ ∈ Vω \Win. A game G = (A, Win) consists of anDef. game
arena A and a winning condition Win.

A winning condition Win is 0-extendable if for all ρ ∈ Vω and all π ∈ V∗, ρ ∈WinDef. 0-extendable
implies πρ ∈ Win. Dually, Win is 1-extendable if for all ρ ∈ Vω and all π ∈ V∗,Def. 1-extendable
ρ /∈ Win implies πρ /∈ Win. If Win is both 0-extendable and 1-extendable, we say
that Win is prefix-independent. Intuitively, if a winning condition is i-extendable,Def.

prefix-independent Player i may allow some finite prefix in which the winning condition is not yet satisfied
and she is allowed to only “play to win” in the infinite.

Example 2.5. Let A be the arena with vertex set V shown in Figure 2.1. We define the
winning condition Win via

Win =
{

v0v1v2 · · · ∈ Vω | (∃ω j.
(
vj = vI

)
)⇒ (∃ω j.

(
vj = vIII

)
)∧

(∃ω j.
(
vj = v′I

)
) ⇒ (∃ω j.

(
vj = v′III

)
)
}

,

where we write ∃ω to denote “there exist infinitely many.” Thus, we demand that if vI
or v′I are visited infinitely often, then vIII or v′III, respectively, are visited infinitely often.

The plays (vIvIIvIIIvIV)
ω and (vIIv′IIIvIVv′I)

ω are winning for Player 0. Dually, the
play (v′IvIIvIIIvIV)

ω is winning for Player 1.
Prepending a finite prefix to a play ρ does not change the set of vertices that appear

infinitely often in ρ. Thus, the winning condition Win is both 0-extendable as well
as 1-extendable, i.e., it is prefix-independent. 4

Let G = (A, Win) be a game. We say that a strategy σ for Player 0 is a winningDef. winning strategy
strategy for her from v ∈ V if all plays that start in v and are consistent with σ
are winning for her. Dually, a strategy τ for Player 1 is a winning strategy for him
from v ∈ V if every play that starts in v and is consistent with τ is not a member
of Win.

If Player i has a winning strategy from v, then we say Player i wins G from v andDef. winning a game
lift this notion to sets of vertices by saying that Player i wins G from V ′ ⊆ V, if she
wins G from each vertex in V ′. The winning region of Player i is the set of verticesDef. winning region
from which Player i wins G. We denote the winning region of Player i in G by Wi(G).
Solving a game amounts to determining its winning regions and computing winningDef. solving
strategies for either player.

Remark 2.6. For each game G we have W0(G) ∩W1(G) = ∅.

Example 2.7. Let again A be the arena shown in Figure 2.1, let Win be the winning
condition defined in Example 2.5 and let G = (A, Win). The strategy σ defined in
Example 2.4 is winning for Player 0 from all vertices of A. Hence, we obtain W0(G) =
V and, subsequently, W1(G) = ∅ due to Remark 2.6. 4
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Due to Remark 2.6 there exists no vertex v such that both players win G from v. This
remark does not, however, imply that from each vertex either player wins. If this is
the case, i.e., if W0(G) ∪W1(G) = V, then we say that G is determined. Def. determined

All winning conditions considered in this work belong to the so-called Borel hi- Def. Borel hierarchy
erarchy, which consists of sets Σj and Πj for each j ∈ N. In fact, this hierarchy
furthermore contains ordinal levels that subsume all sets Σj and Πj. Since we, how-
ever, only require the levels Σj and Πj for j ∈ N in this work, we omit these ordinal
levels.

The Borel hierarchy is defined inductively and at the lowest level contains open sets
and their complements. A set L ⊆ Vω is open if L = {πρ | π ∈ K, ρ ∈ Vω} for some Def. open set
set K ⊆ V∗. The Borel hierarchy is then defined via
• Σ1 = {L ⊆ Vω | L is open},
• Πj =

{
L ⊆ Vω | Vω \ L ∈ Σj

}
for j ≥ 1, and

• Σj+1 =
{

L ⊆ Vω | L =
⋃

k∈N Lk, where Lk ∈ Πj for all k ∈N
}

for j ≥ 1.
We say that a winning condition Win ⊆ Vω is Borel if it is part of the Borel hierar- Def. Borel winning

conditionchy, i.e., if Win ∈ Σj ∪Πj for some j ∈N.

Proposition 2.8 ([Mar75]). Let G = (A, Win) be a game. If Win is Borel, then G is deter-
mined.

The construction of the Borel hierarchy above only allows for union and comple-
mentation of sets. Due to De Morgan’s rule, however, Proposition 2.8 yields that any
game whose winning condition can be expressed as a Boolean combination of open
sets, is determined.

Our definition so far allows for arbitrary and very complex winning conditions. In
the following sections, we introduce common winning conditions and show how to
solve games with such winning conditions.

2.3.1 Safety Games and Attractors

We start with a very simple class of winning conditions that require Player 0 to ensure
that the play never reaches a given set of “unsafe” vertices.

Throughout this section, fix some arena A with vertex set V and set of edges E.
Given a set of vertices U ⊆ V, the safety condition Safety(U) is defined as Def. safety condition

Safety(U) =
{

v0v1v2 · · · ∈ Vω | ∀j ∈N. vj /∈ U
}

,

i.e., a play satisfies the safety condition if it does not contain vertices from U. We call
any game G = (A, Win) where Win = Safety(U) for some subset U of the vertices
of A a safety game. Def. safety game

For the remainder of this section, fix some set U ⊆ V. We now show how to solve
the game G = (A, Safety(U)).

To this end, we first note that Safety(U) is in Π1 and thus Borel: We have

Safety(U) = Vω \
{

v0v1v2 · · · ∈ Vω | ∃j ∈N. vj ∈ U
}

,
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where the latter set clearly is open, i.e., a member of Σ1. Hence, we obtain determinacy
of G via Proposition 2.8.

Remark 2.9. Safety games are determined.

In order to solve G, we compute the set of vertices from which Player 1 can force the
play to move to a vertex from U. As this notion is used in multiple places throughout
this work, we introduce it here in a general formulation.

Let X ⊆ V and let i ∈ {0, 1}. We inductively determine the vertices from which
Player i can force the play to visit a vertex from X by defining Attr0

i (X) = X and

Attrj
i(X) = Attrj−1

i (X) ∪
{

v ∈ Vi | ∃v′ ∈ Attrj−1
i (X). (v, v′) ∈ E

}
∪
{

v ∈ V1−i | ∀(v, v′) ∈ E. v′ ∈ Attrj−1
i (X)

}
.

The i-attractor of X is then defined as Attri(X) =
⋃

j∈N Attrj
i(X). If we want toDef. i-attractor

emphasize the arena A the attractor is computed in, we write AttrAi (X).
A straightforward induction yields that the computation of the attractor terminates

after at most |V| many steps.

Remark 2.10. For all i ∈ {0, 1} and all X ⊆ V we have Attri(X) = Attr|V|i (X).

Furthermore, Nerode, Remmel, and Yakhnis [NRY96] showed that the i-attractor
of X can be computed in linear time in |E|.

Proposition 2.11 ([NRY96]). Let X ⊆ V and let i ∈ {0, 1}.
1. Player i has a positional strategy σX such that each play starting in Attri(X) that is

consistent with σX contains a vertex from X.
2. The set Attri(X) and the strategy σX can be computed in linear time in |E|.

We call a strategy σX as defined in Proposition 2.11.1 a attractor strategy ofDef. attractor strategy
Player i towards X.

Example 2.12. Let A again be the arena from :Figure 2.1. The 0-attractor of {vI} is the: Sec. 2.1, Page 12
singleton set containing only vI, as Player 1 may always choose to move to v′I from vIV,
i.e., Player 0 cannot force the play to move to vI from any vertex other than vI.

The 0-attractor of {vI, v′I}, however, is the complete set of vertices of A. While
Player 0 cannot guarantee which vertex from that set will be visited, the structure of A
guarantees that either of the vertices will eventually be visited. 4

The i-attractor of X indeed contains all vertices from which Player i can force the
play to enter X at some point: Let v ∈ V \Attri(X). If v ∈ Vi, then v has only successors
in V \Attri(X). Dually, if v ∈ V1−i, then v has at least one successor in V \Attri(X).
We illustrate this situation in Figure 2.4 for Player 0.

Moreover, we call any set that satisfies the same property as V \Attri(X) a trap forDef. trap
Player i, as that player is unable to enforce leaving this set of vertices.
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XAttr0(X)V \Attr0(X)

7

7

Figure 2.4: The 0-attractor of some set X and the corresponding trap for Player 0.
Edges that cannot occur in the depicted situation are crossed out.

Remark 2.13. The complement of an i-attractor is a trap for Player i.

Player 1− i is always able to prevent a play that has entered a trap for Player i from
leaving the trap again by simply taking edges leading back into the trap at every of
his vertices.

Remark 2.14. Let i ∈ {0, 1} and let X ⊆ V be a trap for Player i. Player 1 − i has a
positional strategy τX such that no play starting in X that is consistent with τX contains a
vertex from V \ X.

We call a strategy τ from Remark 2.14 a trap strategy for Player 1. Moreover, traps Def. trap strategy
for Player i are closed under the computation of the 1− i-attractor.

Remark 2.15. If X is a trap for Player i, then Attr1−i(X) is also a trap for Player i.

Using the notion of attractors it is straightforward to solve the safety game G =
(A, Safety(U)). Solving G amounts to nothing more than computing the set of vertices
from which Player 1 can enforce visiting an “unsafe” vertex, i.e., to computing the 1-
attractor of U. Thus, we obtain W1(G) = Attr1(U) and, consequently, W0(G) = V \
W1(G) due to Remark 2.9. As the attractor can be computed in linear time due to
Proposition 2.11, the game G can be solved in linear time.

Remark 2.16. The following problem is in PTime:

“Given a safety game G = (A, Safety(U)) and a vertex v of A, does Player 0
win G from v?”

Moreover, we observe that the attractor strategy of Player 1 towards Attr1(U) and
the trap strategy of Player 0 in V \ Attr1(U) are winning strategies for either player
from their respective winning region. Hence, both players have positional winning
strategies.

Remark 2.17. Let G be a safety game and let i ∈ {0, 1}. Player i has a positional strategy
that is winning for her from Wi(G).
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2.3.2 Parity Games

Having discussed the very simple safety condition, we now consider the more involved
parity condition. Again fix some arenaAwith vertex set V and set of edges E. A parity
condition is given by coloring each vertex from V with some nonnegative integer. We
interpret a visit to an odd color as a request that is answered by visiting a largerDef. request

Def. answer even color. Using this interpretation, we demand that Player 0 ensures that almost all,
i.e., all but finitely many requests are eventually answered.

Formally, a coloring of a vertex set V is a function Ω : V → N. Since we interpretDef. coloring
odd colors as requests and larger even colors as answers, for each color c ∈ N we
define

Ans(c) =
{

c′ ∈N | c′ ≥ c and c′ is even
}

as the set of colors that answer a request for color c. We say that a request for color c
is open in a play prefix π = v0 · · · vj if there exists a j′ ≤ j such that Ω(vj′) = c, butDef. open request
there exists no j′′ ≥ j′ such that Ω(vj′′) ∈ Ans(c). Furthermore, we say that a request
is closed if it is not open. Finally, we say that in a play v0v1v2 · · · a visit to vertex vj′Def. closed request
answers a request opened by visiting vj if Ω(vj′) ∈ Ans(Ω(vj)). Since for each evenDef. answer
color c we have c ∈ Ans(c), only requests for odd colors can be open.

The parity condition over Ω is then defined viaDef. parity condition

Parity(Ω) =
{

v0v1v2 · · · ∈ Vω | ∃j ∈N. ∀j′ ≥ j. ∃j′′ ≥ j′. Ω(vj′′) ∈ Ans(Ω(vj′))
}

,

i.e., we require that after some finite prefix each request is answered. Equivalently,
and more standard, a play satisfies the parity condition if the maximal color occurring
infinitely often in a play is even. Analogously to safety games, we say that a game G =
(A, Win) is a parity game if Win = Parity(Ω) for some coloring Ω of V. WhenDef. parity game
drawing parity games, we label a vertex v with color c by v/c.

Mostowski [Mos91] as well as Emerson and Jutla [EJ91] showed that parity games
are determined, and that both players have positional winning strategies.

Proposition 2.18 ([Mos91, EJ91]). If a game G is a parity game, then G is determined and
both players have positional winning strategies from their winning regions.

Example 2.19. We show an example of a parity game G in Figure 2.5. Player 0 wins G
from every vertex using the positional strategy σ induced by σ(vII) = v′III, since the
even color Ω(v′III) = 4 is the largest color occurring in G. 4

Jurdzinski [Jur98] showed that the problem of solving parity games is in UP∩ coUP,
i.e., both the associated decision problem and its complement can be decided in
polynomial time using an unambiguous Turing machine. Furthermore, Calude et
al. [CJK+17] very recently showed that the problem can be solved in quasi-polynomial
time.

Proposition 2.20 ([Jur98, CJK+17]). The following problem is in UP∩ coUP:
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vI/1

v′I/3

vII/0

vIII/2

v′III/4

vIV/0

Figure 2.5: A parity game. Adapted from Chatterjee and Fijalkow [CF13].

“Given a parity game G with n vertices and d odd colors and a vertex v of G, does
Player 0 win G from v?”

Moreover, the problem can be solved in time O(nlog d+6).

The problem of whether there exists a polynomial-time algorithm solving parity
games is one of the major problems of theoretical computer science and has been open
for decades [EJS93].

Recently, a number of algorithms have been developed that solve parity games in
quasi-polynomial time [CJK+17,FJS+17,JL17,Leh18]. There exists, however, other work
that shows that the approach taken by state-of-the-art algorithms will not yield sub-
exponential runtime [Fri09, CDF+18].

2.4 Quantitative Games

Both winning conditions discussed thus far feature a very simple criterion for deciding
whether or not a play is winning for Player 0: In safety games, either a play only visits
safe vertices, or it does not. In parity games, the maximal color visited infinitely often
is either even or odd. While this stark distinction is conceptually simple, it requires an
external ordering of plays to reason about their “quality” apart from binary judgments.

We now discuss more involved winning conditions, in which each play is assigned
a cost. The players then compete to minimize (for Player 0) or maximize (for Player 1)
the cost of the constructed play, thus inducing a more gradual distinction between
winning and losing plays.

Recall that in a parity game, Player 0 is only required to ensure that the maximal
color seen infinitely often is even. Equivalently, when interpreting odd colors as re-
quests and larger even colors as responses to these requests, this allows Player 0 to
let the “waiting times” between requests and responses diverge, which is, in general,
undesirable.

Example 2.21. Consider the parity game G shown in Figure 2.6. Player 0 wins G from
all vertices. As she has no influence on the construction of the play in G, this implies
that all plays in G are winning for her.
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vI/1 vII/0 vIII/2

Figure 2.6: A parity game witnessing undesirable plays that Player 0 cannot avoid, but
that are winning for her.

In particular the play

ρ = vIvIIvIII · vIvIIvIIvIII · vIvIIvIIvIIvIII · vIvIIvIIvIIvIIvIII · · · ,

is winning for Player 0, as all requests are eventually answered. The waiting times
for the answers to these requests, however, diverge: The first request is answered after
two steps, while the answer for the second request only occurs after three steps, and
so on. 4

In order to prevent Player 0 from winning plays with such divergent waiting times,
Chatterjee and Henzinger [CH06] introduced the finitary parity condition, in which
Player 0 not only has to satisfy the parity condition, but she also has to ensure an
upper bound on the number of steps taken between requests and responses. Subse-
quently, Fijalkow and Zimmermann [FZ14] extended this very simple cost model by
allowing arbitrary nonnegative weights along the edges of the arena, obtaining the
parity condition with costs.

In this section, we introduce these two winning conditions formally and briefly
discuss their major characteristics. Throughout this section, fix some arena A with
vertex set V and set of edges E as well as a coloring Ω of V.

2.4.1 Finitary Parity Games

The motivation behind the introduction of the finitary parity condition is to only let
Player 0 win those plays in which she is eventually able to ensure an upper bound
on the waiting time between requests and responses. To this end, we first define the
distance between a request and its earliest response viaDef. distance between

request and response
Dist(v0v1v2 · · · , j) = min

{
j′ − j | j′ ≥ j, Ω(vj′) ∈ Ans(Ω(vj))

}
,

where min ∅ = ∞. This definition implies that, if the request for some odd color at
position j is unanswered, we obtain Dist(ρ, j) = ∞. Moreover, if Ω(vj) is even, we
have Dist(ρ, j) = 0 due to Ω(vj) ∈ Ans(Ω(vj)). We extend the notion of cost to playsDef. cost of play
by defining

Cost(ρ) = lim sup
j→∞

Dist(ρ, j) .

The finitary parity condition, introduced by Chatterjee and Hezinger [CH06]Def. finitary parity
condition
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then requires Player 0 to eventually ensure a finite upper bound on the distance be-
tween requests and their responses. Formally, we define

FinParity(Ω) = {ρ ∈ Vω | Cost(ρ) < ∞} .

Analogously to the safety condition and the parity condition, we call a game G =
(A, Win) a finitary parity game if Win = FinParity(Ω) for some coloring Ω of A. Def. finitary parity

gameSince Dist(ρ, j) < ∞ implies that the request at position j of ρ is eventually an-
swered, ρ ∈ FinParity(Ω) implies that all but finitely many requests in ρ are an-
swered. Hence, the finitary parity condition strengthens the parity condition.

Remark 2.22. For each coloring Ω we have FinParity(Ω) ⊆ Parity(Ω).

Moreover, the finitary parity condition indeed implements the above intuition of
preventing Player 0 from letting the waiting times between requests and responses
diverge.

Example 2.23. Consider again the arena A and the coloring Ω shown in Figure 2.6
as well as the play ρ defined in Example 2.21 and recall ρ ∈ Parity(Ω). Since we
have lim supj→∞ Dist(ρ, j) = ∞ we, in contrast, obtain ρ /∈ FinParity(Ω), i.e., ρ is
indeed losing for Player 0 in the finitary parity game (A, FinParity(Ω)). 4

Chatterjee and Henzinger [CH06] showed that the problem of solving finitary parity
games is in NP∩ coNP and that such games can be solved in exponential time, which
was later improved to PTime by Chatterjee, Henzinger, and Horn [CHH09]. From the
algorithm solving finitary parity games, the authors furthermore obtain an argument
that finitary parity games are determined.

Proposition 2.24 ([CH06]). Finitary parity games are determined.

Moreover, the authors showed Player 0 still only requires positional strategies in
order to win in finitary parity games. Dually, Player 1 has, in general, no finite-state
winning strategy, as witnessed by the game shown in Figure 2.6.

Proposition 2.25 ([CH06]).
1. Let G be a finitary parity game. Player 0 has a positional strategy that is winning for

her from W0(G).
2. There exists a finitary parity game G with vertex set V such that W1(G) = V, but

Player 1 has no finite-state winning strategy from any vertex of G.

Since positional strategies suffice for Player 0 to win from her winning region in
finitary parity games, a straightforward argument yields that, if she is able to bound
the distance between requests and responses at all, then she is able to bound this
distance by the number of vertices in A. In order to state this proposition succinctly,
we lift the notion of costs to strategies.

To this end, we observe that the simple definition Cost(σ) = supρ Cost(ρ), where ρ

ranges over all plays consistent with σ would entail Cost(σ) = ∞ if W0(G) 6= V.
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Thus, in order to obtain a more useful notion, we include the starting vertex into the
definition of the cost of a strategy and defineDef. cost of strategy

Costv(σ) = sup
ρ

Cost(ρ) ,

where ρ ranges over all plays starting in v and consistent with ρ.

Proposition 2.26 ([CH06]). Let G be a finitary parity game with n vertices. Player 0 has a
strategy σ such that maxv∈W0(G) Costv(σ) ≤ n, with max ∅ = 0.

While Chatterjee and Henzinger initially only showed that the problem of solving
finitary parity games is in NP∩ coNP, Chatterjee, Henzinger, and Horn [CHH09] later
lowered that upper bound on the complexity by showing that finitary parity games
can be solved in polynomial time.

Proposition 2.27 ([CHH09]). The following problem is in PTime:

“Given a finitary parity game G with n vertices and a vertex v of G, does Player 0
win G from v?”

Moreover, it can be solved in time O(n4).

Thus, there exist algorithms for solving finitary parity games that are asymptotically
faster than the fastest currently known algorithms solving parity games.

2

2.4.2 Parity Games with Costs

The finitary parity condition introduced by Chatterjee, Henzinger and Horn has a very
simple underlying cost model: Each traversal of an edge incurs unit cost, i.e., the cost
of answering a request is the number of turns taken until it is answered.

Fijalkow and Zimmermann [FZ14] extended this simple cost model by allowing
for arbitrary nonnegative weights of edges, obtaining parity games with costs. Such
games allow more freedom in the modeling of resources such as time, as traversing an
edge may consume an arbitrary amount of the resource, or none at all.

In a parity game with costs, each edge e is assigned a weight w and traversing e
increases the cost associated with all open requests by w. In order to win, Player 0 is
again required to eventually bound the costs incurred between requests and responses.

Formally, fix some arena A with vertex set V and set of edges E as well as some
coloring Ω of V. A weight function is a mapping Weight : E → N that assignsDef. weight function
to each edge a nonnegative weight. We extend the weight function Weight to play
prefixes and plays as usual: Weight(ε) = Weight(v) = 0 for empty play prefixes and
play prefixes of length one and Weight(π · vv′) = Weight(πv) + Weight(v, v′) for all
longer play prefixes.

Using this notion of weight of a play infix, we are now able to define the cost of
a request in a play or play prefix. As we consider a request for color c answered
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v1/1 v2/0 v3/2
1

0

1

0

Figure 2.7: A parity game with costs.

as soon as the first color c′ ∈ Ans(c) is visited, and since the weight of a play infix is
monotonically increasing, we define the cost of the request for c as the minimal weight
incurred along the infix leading to any first such color c′. Following this intuition, we
define

Cor(v0v1v2 · · · , j) = min
{

Weight(vj · · · vj′) | j′ ≥ j, Ω(vj′) ∈ Ans(Ω(vj))
}

,

where min ∅ = ∞.
We call Cor(ρ, j) the cost of response of the request posed at position j of ρ. Simi- Def. cost of response

larly to finitary parity games, we lift the notion of cost to plays via Def. cost of play

Cost(ρ) = lim sup
j→∞

Cor(ρ, j) .

The weight function for edges is used implicitly in the definition of Cost(ρ). We ensure
that the weight function used is always clear from the context.

Analogously to the finitary parity condition, the parity condition with costs then Def. parity condition
with costsrequires Player 0 to bound the cost of plays. Formally, for a fixed coloring Ω and

weight function Weight we define

CostParity(Ω, Weight) = {ρ ∈ Vω | Cost(ρ) < ∞} .

Analogously to the previously discussed winning conditions, we call G = (A, Win) a
parity game with costs if Win = CostParity(Ω, Weight) for some coloring Ω and Def. parity game

with costssome weight function Weight. We assume the weight function to be given in binary
encoding. Thus, we have |G| = |A| dlog We, where W is the largest weight occurring
in G.

Example 2.28. Consider the arena A, the coloring Ω, and the weight function Weight
shown in Figure 2.7. Moreover, consider once again the play

ρ = v1v2v3︸ ︷︷ ︸
π0

· v1v2v2v3︸ ︷︷ ︸
π1

· v1v2v2v2v3︸ ︷︷ ︸
π2

· v1v2v2v2v2v3︸ ︷︷ ︸
π3

· · ·

defined in Example 2.21 with the infixes πj of ρ defined as indicated. The play ρ
satisfies the parity condition with costs, as we have Weight(πj) = 2 for each j ∈N. 4

When solving a parity game with costs, the actual weights assigned to edges are
irrelevant. Instead it suffices to only distinguish for each edge e between the two
cases Weight(e) = 0 and Weight(e) > 0.
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Remark 2.29. Let G = (A, CostParity(Ω, Weight)) be a parity game with costs and define
the weight function Weight′(e) = min {Weight(e), 1} for all edges e of A. We then have
CostParity(Ω, Weight) = CostParity(Ω, Weight′)

Fijalkow and Zimmermann showed that parity games with costs are determined,
since their winning condition is Borel.

Proposition 2.30 ([FZ14]). Parity games with costs are determined.

Due to the flexibility afforded by including the weight function Weight as a parame-
ter of the winning condition, the parity condition with costs subsumes both the parity
condition as well as the finitary parity condition.

Remark 2.31. For each coloring Ω and each weight function Weight we have that
1. if, for all e ∈ E, we have Weight(e) = 0, then we obtain CostParity(Ω, Weight) =

Parity(Ω), and that
2. if, for all e ∈ E, we have Weight(e) > 0, then we obtain CostParity(Ω, Weight) =

FinParity(Ω).

The parity condition with costs strengthens the parity condition, but it generalizes
the finitary parity condition.

Remark 2.32. For each coloring Ω and each weight function Weight we have

FinParity(Ω) ⊆ CostParity(Ω, Weight) ⊆ Parity(Ω) .

Mogavero, Murano, and Sorrentino [MMS15] showed that the problem of solv-
ing a parity game with costs G = (A, CostParity(Ω, Weight)) with n vertices, d
odd colors and largest weight W can be reduced to the problem of solving a parity
game G ′ = (A ×M, Parity(Ω′)) with d colors, where |M| = dn. Due to Proposi-
tion 2.20, we obtain that parity games with costs can be solved in quasipolynomial
time and that both the corresponding decision problem and its complement can be
solved in polynomial time on an unambiguous Turing machine.

Proposition 2.33 ([Jur98, MMS15, CJK+17]). The following problem is in UP∩ coUP:

“Given a parity game with costs G with n vertices, d odd colors, and largest
weight W, and a vertex v of G, does Player 0 win G from v?”

Moreover, it can be solved in time O((n4d)log d+6).

Furthermore, Fijalkow and Zimmermann showed that Player 0 still does not require
memory in order to win a parity game with costs. Since parity games with costs,
however, subsume finitary parity games, as stated in Remark 2.31.2, the necessity of
infinite memory for Player 1 follows directly from Proposition 2.25.2.

Proposition 2.34 ([FZ14]).
1. Let G be a parity game with costs. Player 0 has a positional strategy that is winning for

her from W0(G).

26



2.5. SUMMARY

Complexity
Memory

Bounds
Player 0 Player 1

Safety PTime pos. pos. –

Parity
UP∩ coUP

pos. pos. –
quasi-polynomial

Finitary Parity PTime pos. inf. n

Parity with Costs
UP∩ coUP

pos. inf. nW
quasi-polynomial

Table 2.8: Characteristic properties of variants of parity games.

2. There exists a parity game with costs G with vertex set V such that W1(G) = V, but
Player 1 has no finite-state winning strategy from any vertex of G.

Finally, due to similar reasoning as in the case of finitary parity games, the existence
of positional winning strategies for Player 0 implies that if Player 0 can eventually
bound the cost incurred between requests and responses, then she can ensure that
each answered request is followed by a response after visiting each vertex of the game
at most once in the meantime.

Analogously to the case of finitary parity games, we lift the notion of cost to strate-
gies for parity games with costs via Costv(σ) = supρ Cost(ρ), where ρ ranges over all
plays that start in v and that are consistent with σ.

Proposition 2.35 ([FZ14]). Let G be a parity game with costs with n vertices and largest
weight W. Player 0 has a strategy σ such that maxv∈W0(G) Costv(σ) ≤ nW, with max ∅ = 0.

2.5 Summary

We have defined arenas, games and strategies, as well as the safety condition and the
parity condition. Moreover, we have introduced two quantitative extensions of the
parity condition, namely the finitary parity condition and the parity condition with
costs. Furthermore, we have discussed the characteristics of these winning conditions.
We summarize these characteristics in Table 2.8.

Recall that the parity condition with costs only allows for nonnegative costs. In
the following chapter, we lift this restriction and allow the use of arbitrary integer
weights. We show how to solve the resulting games and we show that Player 0 now
not only requires memory in order to implement a winning strategy, but that she in
fact requires exponential memory. We furthermore show that exponential memory
indeed suffices for her to win and that she, if she wins, can bound the maximal cost
by an exponential value.
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Parity Games with Weights

In the previous section, we recalled the definition of two quantitative extensions of
parity games. First, we recalled finitary parity games, introduced by Chatterjee and
Henzinger [CH06]. In such games, Player 0 is required to eventually guarantee an
upper bound on the number of edges traversed between a visit to a request for an odd
color and the visit to a larger even color answering the request. This winning condition
effectively models situations in which each step taken in the game incurs a unit cost of
some resource, e.g., time. The requirement of an upper bound on the number of steps
between requests and responses then amounts to demanding that Player 0 bounds the
waiting time for responses.

Finitary parity games can be solved in polynomial time, as shown by Chatterjee,
Henzinger, and Horn [CHH09]. Thus, according to the state of the art, solving such
games is in fact easier than solving classical parity games. Moreover, there exist po-
sitional winning strategies for Player 0, while Player 1, in general, requires infinite
memory to win.

Subsequently, we recalled parity games with costs, a generalization of finitary parity
games due to Fijalkow and Zimmermann [FZ14]. In order to disentangle the cost
incurred by a play infix from the structure of the underlying arena, and thus to allow
for more flexibility in the modeling of resources, the authors extended the simple
cost model of finitary parity games by allowing for arbitrary nonnegative weights: In
parity games with costs, each edge is labeled with some nonnegative weight and it
is the task of Player 0 to bound the weights accumulated between almost all visits to
requests and their corresponding responses. Solving such games comes with an added
difficulty over solving finitary parity games: While the weight incurred by a request is
still monotonically increasing in this setting, it is not strictly monotonically increasing
anymore, as a play may traverse edges of weight zero.

Due to this added complication, the problem of solving parity games with costs is
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in UP∩ coUP [MMS15]. While the problem of solving parity games with costs is thus
believed to be harder than solving the special case of finitary parity games, it is only
as hard as its subsumption of the problem of solving classical parity games requires
it to be. The extension to nonnegative weights does not, however, entail an increase
in the complexity of winning strategies: Positional strategies still suffice for Player 0
to win, i.e., winning strategies for her are not larger than in the special cases of parity
games and finitary parity games.

We have argued in : Section 1.2 that even this extended model of parity games with:Page 4
costs is insufficient to describe, e.g., scenarios in which the modeled systems contains
a rechargeable resource. In order to mitigate this shortcoming, in this chapter, we
further extend the model of parity games with costs by removing the restriction to
nonnegative weights along the edges, obtaining parity games with weights.

This extension further complicates the problem of solving the resulting games: In
contrast to parity games with costs, in parity games with weights the cost incurred
of a request is not bounded by zero from below, nor does it develop monotonically.
Hence, in a first step we adapt the definition of the cost of answering a request to take
this non-monotonicity into account and demand that Player 0 not only bounds the
costs incurred by request from above, as required by the parity condition with costs,
but also from below.

Moreover, recall that, when solving parity games with costs, we were able to only
consider “abstract” costs due to :Remark 2.29. This is no longer the case in parity: Sec. 2.4, Page 26
games with weights, as the weight along a play infix may first increase, but later
decrease and reach, e.g., zero again. In order to track such developments of the weight
along a play infix correctly, we are required to retain precise information about the
development of the weight, i.e., we are no longer able to replace the weights in a game
by abstract ones.

We show that in spite of the more involved cost model and the complications de-
scribed above, the problem of solving parity games with weights is only in NP∩coNP.
While the generalization of the cost model thus only incurs a minor increase in the
complexity of solving the resulting games, we furthermore show that Player 0 now
requires exponential memory in order to implement a winning strategy. Exponential
memory, however, also suffices for her to win. Hence, the additional modeling capa-
bility also comes at a price in terms of the memory required by Player 0 in order to
implement a winning strategy.

The remainder of this chapter is structured as follows: First, we formalize the parity
condition with weights in Section 3.1 and show that despite the additional complexity
of the condition in comparison to the parity condition with costs, games with this
novel condition are still determined.

Subsequently, we show in Section 3.2 how to solve parity games with weights. To
this end, we show how to reduce the problem of solving parity games with weights
to that of iteratively solving energy parity games, a well-known quantitative variant
of parity games introduced by Chatterjee and Doyen [CD12]. This construction fol-
lows the structure of the proof of NP ∩ coNP-membership of solving parity games
with costs by Fijalkow and Zimmermann [FZ14], which in turn follows the approach
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of Chatterjee, Henzinger, and Horn [CHH09] to showing PTime-membership of the
problem of solving finitary parity games. Due to recent advances by Daviaud, Jur-
dziński, and Lazić [DJL18], this reduction furthermore implies that parity games with
weights can be solved in pseudo-quasi-polynomial time. Moreover, the associated
decision problem is in NP∩ coNP due to results by Chatterjee and Doyen [CD12].

Furthermore, in Section 3.3 we show that the same relation as shown in the previous
section also holds in the opposite direction, i.e., we show how to solve energy parity
games by iteratively solving parity games with weights. As a consequence, we obtain
that solving parity games with weights is as hard as solving energy parity games.

Having thus determined the complexity of solving parity games with weights, we
then turn our attention to the memory required by both players to implement winning
strategies in Section 3.4. Since, in contrast to parity games with costs and due to the
occurrence of negative weights, we are now required to keep track of the weight of the
play so far, Player 0 now requires memory exponential in the size of the game in order
to implement winning strategies. Clearly, Player 1 inherits the necessity of infinite
memory in order to implement a winning strategy from the special case of finitary
parity games (cf. :Proposition 2.25.2). : Sec. 2.4, Page 23

Finally, in Section 3.5 we then discuss the upper bounds on the costs incurred during
a play that Player 0 can ensure if she wins at all. Recall that we denote the number of
vertices, the number of odd colors, and the largest weight occurring in a parity game
with costs by n, d, and W, respectively. In such a game, Player 0 can ensure that almost
all requests are answered with cost at most O(nW) if she wins at all, due to Fijalkow
and Zimmermann [FZ14] (cf. :Proposition 2.35). We show that a similar argument : Sec. 2.4, Page 27
to that of Fijalkow and Zimmermann yields an upper bound of O((ndW)2) in parity
games with weights, where W now denotes the largest absolute weight occurring in
the game. This increased upper bound on the maximal cost is in large parts due to the
increased memory requirements for winning strategies for her.

This chapter is based on work published at CSL 2018 [SWZ18].

3.1 Definitions

In this section, we first extend the notions introduced in Chapter 2 to account for
negative weights. Afterwards, we formally introduce the parity condition with weights
and show that games with this condition are determined.

First, we extend the edge-labeling to include negative weights. To this end, let A be
an arena with vertex set V and edge set E. We redefine a weight function of A to be Def. weight function
a function Weight : E→ Z. Analogously to the prior definition of weight functions, we
extend the weight function to finite play prefixes via Weight(ε) = Weight(v) = 0 for
empty play prefixes and play prefixes of length one and Weight(πvv′) = Weight(πv′)+
Weight(v, v′) for all longer play prefixes. For the sake of readability, we use the term
weight function interchangeably with the term weighting. For the remainder of this
section, fix some arena A = (V, V0, V1, E), as well as a coloring Ω : V → N and a
weighting Weight : E→ Z of A.
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We aim to define the parity condition with weights as a generalization of the parity
condition with costs and thus, in turn, of the finitary parity condition. To this end,
given some play ρ, recall that we interpret each visit to an odd color in ρ as a request
for that color, and each subsequent visit to a larger even color as an answer to that
request. In parity games with costs, the cost of answering a request is defined as the
accumulated weight of the play infix between a request and its earliest answer. This
definition relies on the weight function along a play prefix being monotonic. Due to
the presence of negative weights in the setting of parity games with weights, however,
this assumption does not hold true anymore.

Thus, the first challenge in this setting is to define the cost of answering requests,
as the weight may both increase and decrease during the course of the play. We
require the weight of the infix to be bounded from above and from below. It does not,
however, suffice to consider the accumulated weight of the infix between a request and
its response.

Example 3.1. Consider the arena A shown in Figure 3.1a together with a coloring and
a weighting. This game is played in turns, each of which starts in vreq and ends in vans.
In each turn, both players choose some number of iterations in their respective vertex.
Consider the play in which, in the j-th turn, Player 1 opts to remain in his vertex v1
for j cycles before yielding control to Player 0 by moving to v0, where she remains for j
cycles as well. We show the evolution of the weight along this play in Figure 3.1b.

This play witnesses that only considering the accumulated weight along an infix
between a request and its earliest response is insufficient: Each πj as indicated in
Figure 3.1b has weight zero. Intuitively, however, Player 0 fails to bound the cost of
requests along ρ, as Player 1 may remain in his vertex v1 arbitrarily long and may thus
incur arbitrary “costs” (for a generalized notion of costs) for the request for color 1
posed by visiting vreq. 4

As argued in Example 3.1, we aim to define the cost of answering a request as
the largest absolute cost that is incurred during the infix between the request and its
answer. To this end, given a play (prefix) π = v0v1v2 · · · , we define the amplitudeDef. amplitude
of π as

Ampl(π) = sup
j<|π|

∣∣Weight(v0 · · · vj)
∣∣ .

This definition generalizes both the notion of distance of a play infix used by the
finitary parity condition, as well as the notion of the weight of a play infix used by the
parity condition with costs: If each edge has weight one, then we obtain Ampl(π) =
Dist(π), i.e., the measure of distance employed in the definition of the finitary parity
condition. Similarly, if Weight only assigns nonnegative weights, then the amplitude
of an infix is equal to its weight. Thus, the amplitude is indeed an intuitive and
straightforward extension of the quality measure of the parity condition with costs to
the setting of parity games with weights.

We now define the cost of answering a request in the setting of parity games with
weights. Intuitively, we demand that Player 0 bounds the amplitude of each infix
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Cor(ρ, j)

Cor(ρ, j)

Weight

vj vj′

Figure 3.2: The cost-of-response of some request posed by visiting the vertex vj, which
is first answered by visiting the vertex vj′ .

between a request and any of its answers both from above and from below. Formally,
we define the cost-of-response of the request posed at position j ∈N of a play byDef. cost-of-response

Cor(v0v1v2 · · · , j) = min
{

Ampl(vj · · · vj′) | j′ ≥ j, Ω(vj′) ∈ Ans(Ω(vj))
}

,

where min ∅ = ∞. Since, in contrast to the weight of an infix, the amplitude of an
infix is monotonic, albeit no longer strictly monotonic, Cor(ρ, j) is the amplitude of
the shortest infix that starts at position j and ends at an answer to the request posed
at position j. We illustrate this notion in Figure 3.2.

We say that a request at position j of a play ρ is answered with cost b if Cor(ρ, j) =Def. answered with
cost b b. Consequently, a request with even color is answered with cost zero. The cost-of-

response of an unanswered request is infinite, even if the amplitude of the remaining
play is finite. In particular, this means that an unanswered request at position j may
be “unanswered with finite cost b” (if the amplitude of the remaining play is b ∈ N)
or “unanswered with infinite cost” (if the amplitude of the remaining play is infinite).
In either case, however, we have Cor(ρ, j) = ∞.

Example 3.2. Consider the game shown in Figure 3.3. We consider three plays show-
casing answered and unanswered requests, the latter with finite and infinite cost, re-
spectively.

First, consider ρ0 = vIvIIv′IIvIIv′IIvII(vIII)
ω. The request for color 1 posed by visit-

ing vI is answered with cost three, since Weight(vIvIIv′IIvIIv′IIvII) = −3 and since all
other prefixes of ρ0 in which that request is open have smaller absolute weight. Now
consider ρ1 = vIvIIv′IIvIIv′II(vII)

ω. In ρ1, the request for color one posed by visiting vI is
unanswered with cost three: Even though the request is unanswered, the amplitude of
the play is finite, as it only traverses the self-loop of vII with weight zero ad infinitum.
Finally, let ρ2 = vI(vIIv′II)

ω. Since the request for color one posed by visiting vI is never
answered, and since the weight of the prefixes of ρ2 diverges towards−∞, that request
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vI/1 vII/0

v′II/0

vIII/2
+1

0

-1

+1

-1

0

Figure 3.3: A parity game with weights exemplifying the nomenclature regarding an-
swered and unanswered requests.

is unanswered with infinite cost. As the request posed at the initial position is unan-
swered in both ρ1 and in ρ2, we, in contrast, have Cor(ρ1, 0) = Cor(ρ2, 0) = ∞. 4

We define the cost of a play ρ as Cost(ρ) = lim supj→∞ Cor(ρ, j) and we define the Def. cost of a play
parity condition with weights as Def. parity condition

with weights
WeightParity(Ω, Weight) = {ρ ∈ Vω | Cost(ρ) < ∞} .

Hence, a play ρ is winning for Player 0 according to parity condition with weights if
and only if there exists a bound b ∈N such that almost all requests in ρ are answered
with cost at most b. In particular, only finitely many requests may be unanswered,
even with finite cost.

We call a game G = (A, WeightParity(Ω, Weight)) a parity game with weights, Def. parity game
with weightswhere we again assume the function Weight to be given in binary encoding. Hence, we

obtain |G| = |A| log(W), where W is the largest absolute weight assigned by Weight.
Moreover, we extend the notion of cost to strategies similarly to the special case of

parity games with costs: Let σ be a strategy for Player 0 and let v be a vertex of G. We
define

Costv(σ) = sup
ρ
(Cost(ρ)) ,

where ρ ranges over all plays starting in v and consistent with σ. Thus, we di-
rectly obtain that the strategy σ is winning for Player 0 from some vertex v if we
have Costv(σ) < ∞.

Dually, we aim to define a measure of cost for strategies of Player 1 such that a
strategy is winning for him from a vertex if and only if the cost of the strategy with
respect to that vertex is infinite. Recall that, in order to win, Player 1 has to enforce
infinite cost of the resulting play. Following this intuition, for a strategy τ of Player 1
we define

Costv(τ) = min
ρ

(Cost(ρ)) ,
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vI/0 vII/1 vIII/2

0

0

+1
0

0

Figure 3.4: A parity game with weights

where ρ again ranges over all plays starting in v and consistent with τ. Note that we
use the minimum over the cost of all consistent plays instead of the infimum. We are
able to do so due to the cost of plays being trivially bounded from below by zero.

Our definition of Costv(σ) yields a uniform bound on the cost of the plays consistent
with σ. If such a bound exists, then σ clearly is winning for Player 0 from v. This
implication does, however, not hold true in the other direction.

Example 3.3. Consider the parity game with weights G shown in Figure 3.4. We
define a strategy σ for Player 0 that is winning for her from vI, but for which we
have CostvI(σ) = ∞.

To this end, let π be a play prefix in G that starts in vI and ends in a vertex of
Player 0. Then π begins with a finite prefix of the form (vI)

j, after which vI is never
visited again. We define σ(π) to prescribe to remain in vII for j steps upon each visit
to vII before subsequently moving to vIII.

Let ρ be a play starting in vI consistent with σ. Then ρ is either of the form (vI)
ω or

of the form (vI)
j((vII)

j+1vIII)
ω. In the former case, ρ does not contain any request for

an odd color and hence clearly satisfies the parity condition with weights. In the latter
case, we have Cost(ρ) = j < ∞, i.e., ρ again satisfies the parity condition with weights.
Thus, σ is indeed winning for Player 0 from vI.

For each j ∈ N, however, the play ρj = (vI)
j((vII)

j+1vIII)
ω is consistent with σ and

has Cost(ρj) = j. Hence, we have CostvI(σ) = ∞. 4

We will later see that while the converse direction does not hold true a priori, it does
indeed hold true for finite-state strategies, due to a pumping argument.

The remainder of this chapter is dedicated to analyzing the properties of parity
games with weights, i.e., the complexity of solving them, the memory required by
both players to implement winning strategies, and the maximal cost of a play that
Player 0 is forced to allow if she wins.

We begin our analysis of parity games with weights by showing that they are de-
termined. To this end, we show that the condition is Borel, which suffices due to
:Proposition 2.8.: Sec. 2.3, Page 17

Lemma 3.4. Parity games with weights are determined.

Proof. Recall that we argued earlier that a winning condition is Borel if it is a Boolean
combination of open sets, i.e., constructed from open sets via union, intersection, and
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complementation. In order to show that the parity condition with weights is indeed
determined, we first rewrite it as follows:

WeightParity(Ω, Weight) =

{
ρ ∈ Vω | lim sup

j→∞
Cor(ρ, j) < ∞

}

=
⋃

b∈N

{
ρ ∈ Vω | lim sup

j→∞
Cor(ρ, j) ≤ b

}

=
⋃

b∈N

⋃
j∈N

{
ρ ∈ Vω | sup

j′≥j
Cor(ρ, j′) ≤ b

}
=
⋃

b∈N

⋃
j∈N

⋂
j′≥j

{
ρ ∈ Vω | Cor(ρ, j′) ≤ b

}
.

Since we furthermore have{
ρ ∈ Vω | Cor(ρ, j′) ≤ b

}
= Vω \

{
ρ ∈ Vω | Cor(ρ, j′) > b

}
,

and since, for fixed j′ ∈ N and b ∈ N, the set {ρ ∈ Vω | Cor(ρ, j′) > b} is clearly
open, the parity condition with weights is Borel. Hence, parity games with weights
are indeed determined due to Proposition 2.8.

The parity condition with weights subsumes several winning conditions considered
previously.

Remark 3.5. For each coloring Ω we have
1. Parity(Ω) = WeightParity(Ω, Weight), where Weight assigns weight zero to all

edges,
2. FinParity(Ω) = WeightParity(Ω, Weight), where Weight assigns positive weight

to all edges, and
3. if Weight assigns nonnegative cost to all edges, then we have CostParity(Ω, Weight) =

WeightParity(Ω, Weight).

Recall that the problem of solving parity games with costs is in UP ∩ coUP due
to :Proposition 2.33. In the following section we show that the problem of solving : Sec. 2.4, Page 26
parity games with weights is in NP∩ coNP and that it can be solved in pseudo-quasi-
polynomial time, i.e., the complexity of solving parity games with weights increases
only slightly over the special case of parity games with costs.

3.2 Computational Complexity

We now show how to solve parity games with weights and prove the problem of
solving them to be in NP∩ coNP. Our approach is inspired by the PTime-membership
proof for the problem of solving finitary parity games [CHH09] and by the NP∩coNP-
membership proof for the problem of solving parity games with costs [FZ14].
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First, in Section 3.2.1, we define a stricter variant of the parity condition with
weights, which we call bounded parity games with weights, and show how to solve
parity games with weights in polynomial time using an oracle solving bounded parity
games with weights.

In a second step we repeat this approach in order to solve bounded parity games
with weights. For bounded parity games with costs and finitary parity games, the
respective authors could solve the bounded variants of the games by iteratively solv-
ing classical parity games. These approaches leveraged the monotonicity of the cost
measures in both kinds of games, which allowed to only consider “abstract” weights,
due to :Remark 2.29. Thus, the target of the reduction, i.e., classical parity games, was: Sec. 2.4, Page 26
not required to support quantitative features for these reductions.

For parity games with weights, in contrast, the weights along a play infix need to
be tracked precisely in order to determine whether or not a request has finite cost, as
argued previously. Thus, we require quantitative games as the target of the reduction,
i.e., games that allow such tracking.

Hence, we reduce the problem of solving bounded parity games with weights
to that of iteratively solving energy parity games as introduced by Chatterjee and
Doyen [CD12]. We formally define energy parity games and their properties re-
quired for our construction in Section 3.2.2 before subsequently showing how to solve
bounded parity games with weights in polynomial time using oracles that solve en-
ergy parity games in Section 3.2.3. As the problem of solving energy parity games
is known to be in NP ∩ coNP due to Chatterjee and Doyen [CD12], this construction
yields membership of the problem of solving parity games with weights in the same
complexity class.

Thus, in this section, we give an algorithm for solving parity games with weights
that uses an oracle solving energy parity games. Later, in Section 3.3, we show a dual
result to the one presented in this section: Given an oracle solving parity games with
weights, we are able to solve energy parity games in polynomial time, again taking a
detour via bounded parity games with weights. Hence, the problems of solving parity
games with weights, that of solving their bounded variant, as well as the problem of
solving energy parity games are polynomial-time equivalent and thus, all belong to
the same complexity class.

3.2.1 Bounded Parity Games with Weights

We first introduce the bounded parity condition with weights, which strengthensDef. bounded parity
condition with
weights

the parity condition with weights by additionally demanding that the amplitude of
each suffix succeeding an unanswered request is finite. Following this intuition, this
condition is also induced by a coloring Ω and a weighting Weight:

BndWeightParity(Ω, Weight) = WeightParity(Ω, Weight)∩
{ρ ∈ Vω | no request in ρ is unanswered with infinite cost} .

We call a game G = (A, Win) a bounded parity game with weights if Win =Def. bounded parity
game with weights
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BndWeightParity(Ω, Weight) for some coloring Ω and some weighting Weight.
This condition allows for a finite number of unanswered requests, as long as they

are unanswered with finite cost. Moreover, it is 1-extendable, but not 0-extendable:
Prepending a play prefix may introduce a request that is unanswered with infinite
cost, but it cannot bound the cost of a later request or answer that request. Finally,
by showing that the bounded parity condition with weights is Borel, we obtain that
games with this condition are determined.

Lemma 3.6. Bounded parity games with weights are determined.

Proof. Similarly to the proof of Lemma 3.4 we again leverage :Proposition 2.8 to ob- : Sec. 2.3, Page 17
tain the desired result.

Recall that the parity condition with weights is Borel as argued in the proof of
Lemma 3.4. We show that the set

Bnd = {ρ ∈ Vω | no request in ρ is unanswered with infinite cost}

is Borel as well. This then implies that the bounded parity condition with weights is
Borel, which yields the desired result. To this end, we reformulate the set Bnd via

{v0v1v2 · · · ∈ Vω | no request in ρ is unanswered with infinite cost} ={
v0v1v2 · · · ∈ Vω | ∀j ∈N. vj is answered or Ampl(vjvj+1vj+2 · · · ) ∈N

}
,

where we write “vj is answered” to denote that there exists some j′ ≥ j such that
Ω(vj′) ∈ Ans(Ω(vj)).

We now argue that the equality{
v0v1v2 · · · ∈ Vω | ∀j ∈N. vj is answered or Ampl(vjvj+1vj+2 · · · ) ∈N

}
=⋃

b∈N

{
v0v1v2 · · · ∈ Vω | ∀j ∈N. vj is answered or Ampl(vjvj+1vj+2 · · · ) ≤ b

}
holds true as well.

It is clear that the latter set is a subset of the former one. Thus, let ρ be an element
of the former set. If all requests in ρ are answered, then ρ is clearly in the latter set
as well. If, however, there exists an unanswered request in ρ let j be the position of
the earliest such request. We then have Ampl(vjvj+1vj+2 · · · ) = b < ∞. Thus, for
each position j′ of an unanswered request in ρ, we obtain that Ampl(vj′vj′+1vj′+2 · · · )
is bounded by 2b. Hence ρ is a member of the latter set as well.

A straightforward rewriting of the latter set yields

⋃
b∈N

{
v0v1v2 · · · ∈ Vω | ∀j ∈N. vj is answered or Ampl(vjvj+1vj+2 · · · ) ≤ b

}
=

⋃
b∈N

⋂
j∈N

{
v0v1v2 · · · ∈ Vω | vj is answered or Ampl(vjvj+1vj+2 · · · ) ≤ b

}
,
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Clearly, the set
{

v0v1v2 · · · ∈ Vω | vj is answered
}

is open. Moreover, we have{
v0v1v2 · · · ∈ Vω | Ampl(vjvj+1vj+2 · · · ) ≤ b

}
=

Vω \
{

v0v1v2 · · · ∈ Vω | ∃j′ ≥ j. Ampl(vj · · · vj′) > b
}

,

where
{

v0v1v2 · · · ∈ Vω | ∃j′ ≥ j. Ampl(vj · · · vj′) > b
}

again clearly is an open set.
Thus, the set Bnd is a Boolean combination of open and closed sets, i.e., it is Borel.

This implies the desired result due to Proposition 2.8.

We now show how to solve parity games with weights by repeatedly solving their
bounded variant. To this end, we apply the observation that the bounded parity
condition with weights strengthens its unbounded variant, i.e., that

BndWeightParity(Ω, Weight) ⊆WeightParity(Ω, Weight)

holds true. Moreover, we leverage that WeightParity(Ω, Weight) is 0-extendable.
Hence, if Player 0 has a strategy from a vertex v such that every consistent play

has a suffix that satisfies the bounded parity condition with weights, then each play
consistent with that strategy also satisfies the parity condition with weights.

Remark 3.7. Let A be an arena and let Ω and Weight be a coloring and a weighting of A,
respectively. We then have

Attr0(W0(A, BndWeightParity(Ω, Weight))) ⊆
W0(A, WeightParity(Ω, Weight)) .

In order to solve a parity game with weights, we repeatedly remove attractors of
winning regions of the bounded parity game with weights on the same arena with
identical coloring and weighting until the games thus obtained stabilize. Remark 3.7
then yields that the removed parts are subsets of Player 0’s winning region in the
parity game with weights.

It then remains to show that this procedure indeed computes the complete winning
region of Player 0. To this end, we use the following lemma to show that the remaining
vertices are a subset of Player 1’s winning region in the parity game with weights. The
proof is very similar to the corresponding one for finitary parity games and parity
games with costs [CHH09, FZ14].

Lemma 3.8. Given an arena A as well as a coloring Ω and a weighting Weight of A, let G =
(A, WeightParity(Ω, Weight)) and let G ′ = (A, BndWeightParity(Ω, Weight)). We
have that W0(G ′) = ∅ implies W0(G) = ∅.

Proof. Recall that Lemma 3.6 stated that bounded parity games with weights are de-
termined. Hence, W0(G ′) = ∅ implies that, for every vertex v of A, Player 1 has a
winning strategy τv from v in G ′.

We combine these strategies into a single strategy τ for Player 1 that is winning in
G from every vertex of A. This strategy is controlled by a vertex v∗ (initialized with
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v∗0 v∗1 v∗2v∗0 v∗1 v∗2v∗0 v∗1 v∗2

Cons. with τv∗0 ,
Ampl(· · · ) = 1

Cons. with τv∗1 ,
Ampl(· · · ) = 2

Cons. with τv∗2 ,
Ampl(· · · ) = 3

Cons. with τv∗2
Ampl(· · · ) = 3

Figure 3.5: Construction of the strategy τ for Player 1 in the proof of Lemma 3.8.

the initial vertex of the play) and a counter κ ranging over N (initialized with zero).
The strategy τ mimics the strategy τv∗ from v∗ until a request is followed by an infix
that does not answer that request and has amplitude exceeding κ. This implies that
the cost-of-response of this request is at least κ. If such a situation is encountered,
then v∗ is set to the current vertex of the play and κ is incremented. Furthermore, the
history of the play is discarded at this point in the play, and τ henceforth behaves like
τv∗ when starting at v∗. We illustrate this construction in Figure 3.5.

Let ρ be a play consistent with this strategy τ. If κ is updated infinitely often along ρ,
then ρ contains, for every b ∈ N, a request that is answered or unanswered with cost
greater than b. Hence, ρ violates the parity condition with weights.

If, however, κ is updated only finitely often along ρ, then ρ has a suffix ρ′ that starts
in some v and that is consistent with τv. As τv is winning for Player 1 from v in G ′,
the suffix ρ′ violates the bounded parity condition with weights. Also, as κ is updated
only finitely often during ρ′, the amplitude of every suffix of ρ′ that starts at a request
is bounded by κ. Hence, the only way for ρ′ to violate the bounded parity condition
with weights is to violate the parity condition. Since the parity condition is prefix-
independent, the full play ρ also violates the parity condition. This in turn implies
that ρ also violates the parity condition with weights, which strengthens the parity
condition.

Therefore, τ is indeed winning for Player 1 from every vertex in G, i.e., the winning
region of Player 1 in G encompasses all vertices of A. As the winning regions of the
players are disjoint, this implies the desired result.

We formalize our sketched algorithm for solving parity games with weights as Algo-
rithm 3.1. In that algorithm, we write Ak−1 \AttrAk−1

0 (Xk) to denote the arena resulting
from removing the 0-attractor of Xk (computed in the arena Ak−1) and all edges that
are adjacent to vertices in that attractor from Ak−1. Recall that, due to the definition
of attractors, each vertex in Ak−1 is either in the computed attractor, or it has at least
one outgoing edge leading to a vertex that is not in the attractor. Hence, the resulting
graph does not contain dead-end vertices, i.e., it is indeed an arena.

As part of Algorithm 3.1 we use an oracle for solving bounded parity games with
weights. We provide a suitable algorithm to implement such an oracle in Section 3.2.3.
Moreover, we illustrate the first two steps of the algorithm in Figure 3.6a.

Remark 3.7 together with Lemma 3.8 imply the correctness of Algorithm 3.1 for
solving parity games with weights using an oracle that solves their bounded variant.
The correctness proof is again similar to the corresponding one for finitary parity
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Algorithm 3.1 A fixed-point algorithm computing W0(A, WeightParity(Ω, Weight)).
Input: G = (A, WeightParity(Ω, Weight))

k = 0; Wk
0 = ∅; Ak = A

repeat
k = k + 1
Xk = W0(Ak−1, BndWeightParity(Ω, Weight))

/* Requires solving bounded parity game with weights */
Wk

0 = Wk−1
0 ∪AttrAk−1

0 (Xk)

Ak = Ak−1 \AttrAk−1
0 (Xk)

until Xk = ∅
return Wk

0
Output: W0(G)

games [CHH09] and for parity games with costs [FZ14].

Lemma 3.9. Algorithm 3.1 returns W0(A, WeightParity(Ω, Weight)).

Proof. Let G = (A, WeightParity(Ω, Weight)) and let k∗ be the value of k during the
final iteration of the main loop of the algorithm when running it on G, i.e., its output
is Wk∗

0 =
⋃

0<k<k∗ AttrAk−1
0 (Xk). During the execution of the algorithm, the arena is seg-

mented into the sets Xk and their attractors, since AttrAk−1
0 (Xk) is removed from Ak−1

to obtain Ak. All Xk are pairwise disjoint. This also holds true for the AttrAk
0 (Xk).

We illustrate this situation in Figure 3.6b. We now proceed to show Wk∗
0 = W0(G) by

showing the two set inclusions separately.
We first show Wk∗

0 ⊆ W0(G). Recall Wk∗
0 =

⋃
0<k<k∗ AttrAk−1

0 (Xk), i.e., every ver-
tex v ∈ Wk∗

0 is either a member of Xk or of AttrAk−1
0 (Xk) \ Xk for some unique k.

For every vertex v that is in some Xk, Player 0 has a strategy σv in the bounded
parity game with weights Gk = (Ak−1, BndWeightParity(Ω, Cost))) that is winning
from v. Furthermore, for every k, she has a positional attractor strategy σk towards Xk

from AttrAk−1
0 (Xk) in Ak. As both strategies are, however, computed in Ak which dif-

fers, in general, from A, Player 1 may have the opportunity to perform “unexpected”
moves by choosing to move to some vertex in Ak′ where k′ 6= k. We later see that such
moves may only lead “down” the hierarchy of arenas, i.e., that we always have k′ < k
in such a case.

We show Wk∗
0 ⊆W0(G) by constructing a strategy σ for Player 0 in A that is winning

for her from Wk∗
0 . To this end, we define σ by compositing the strategies σv and σk as

follows:

σ(v0 · · · vj) =


σk(vj) if vj ∈ AttrAk−1

0 (Xk) \ Xk ,

σvj′ (vj′ · · · vj)
if vj ∈ Xk, and

with j′ = min
{

j′ |
{

vj′ , . . . , vj
}
⊆ Xk

}
.

For the sake of readability, we omit the definition of σ for the irrelevant play prefixes
not matching either of the cases above. Since for each v ∈ Wk∗

0 there exists a unique k
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(a) The first two steps of the execution of the algorithm.
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(b) After the termination of the algorithm.

Figure 3.6: Illustration of Algorithm 3.1.

such that either v ∈ AttrAk−1
0 (Xk) \ Xk or such that v ∈ Xk, the strategy σ is well-

defined. In the first case of the definition, it suffices to consider the move prescribed
by σk when starting at vj, as the attractor strategies σk are positional by assumption.
In the second case of the definition, vj′ · · · vj is the longest suffix of v0 · · · vj that only
contains vertices from Xk = W0(Gk), i.e., from the set of vertices from which Player 0
has a winning strategy for Gk. It remains to show that σ is winning for Player 0
from Wk∗

0 .
To this end, consider a play ρ = v0v1v2 · · · in A that starts in Wk∗

0 and is consistent
with σ. For every j there is a unique k j in the range 0 < k j < k∗ such that vj ∈

Attr
Akj−1

0 (Xk j). As BndWeightParity(Ω, Weight) is 1-extendable, we obtain that each
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AttrAk−1
0 (Xk) is a trap for Player 1 in Ak−1: Otherwise, starting in AttrAk−1

0 (Xk), Player 1
could move to some vertex v /∈ AttrAk−1

0 (Xk) and subsequently play consistently with
a winning strategy for him from v. The resulting play would be winning for him due
to 1-extendability of the bounded parity condition with weights and thus contradict
the definition of AttrAk−1

0 (Xk).
Hence, we obtain k0 ≥ k1 ≥ k2 ≥ · · · . As the k j are bounded from below by

zero, the sequence eventually stabilizes, say at position j′. This implies that ρ has a
suffix ρ′ = vj′vj′+1vj′+2 · · · that is consistent with σvj′ .

Hence, due to σv′j
being a winning strategy for Player 0 in Gk from vj′ , we obtain

ρ′ ∈ BndWeightParity(Ω, Weight). Hence, ρ ∈ WeightParity(Ω, Weight) due to
the bounded parity condition with weights strengthening of the parity condition with
weights and due to 0-extendability of WeightParity(Ω, Weight). Hence, σ is indeed
winning from Wk∗

0 .
It remains to show W0(G) ⊆ Wk∗

0 . To this end, we consider Player 1 and show
V \Wk∗

0 ⊆ W1(G). Then, disjointness of winning regions yields Wk∗
0 = W0(G) and,

consequently, V \Wk∗
0 = W1(G).

Since Xk∗ = W0(Gk∗−1) is empty and since bounded parity games with weights
are determined due to Lemma 3.6, Player 1 wins the bounded parity game with
weights Gk∗ from every vertex. Hence, Lemma 3.8 implies that he also wins the parity
game with weights (Ak∗−1, WeightParity(Ω, Weight)) from every vertex in Ak∗−1. Fi-
nally, as V \Wk∗

0 = W1(Ak∗−1, WeightParity(Ω, Weight)) is a trap for Player 0 in A by
construction, Player 1 also wins G = (A, WeightParity(Ω, Weight)) from every vertex
in V \Wk∗

0 .

The loop of Algorithm 3.1 terminates after at most |A| iterations, as during each
iteration at least one vertex is removed from Ak−1 to obtain Ak. Moreover, the run-
time of each iteration is dominated by solving a bounded parity game with weights.
Hence Algorithm 3.1 indeed only induces a polynomial overhead on the runtime of
the underlying solver for bounded parity games with weights and requires at most
polynomially many calls to it.

Finally, we consider the memory size required to implement the winning strategy σ
constructed in the proof of Lemma 3.9. Since for each vertex v ∈ W0(G) there exists
a unique k with v ∈ AttrAk−1

0 (Xk), and since the vertices in Xk are never revisited
once left, the strategy σk to use is uniquely determined by the current vertex. Hence,
the winning strategy σ can be implemented by “reusing” the memory states of its
constituent strategies.

Corollary 3.10. Let G = (A, WeightParity(Ω, Weight)) be a parity game with weights,
let k∗ be the number of iterations of the main loop of Algorithm 3.1 when running on the
input G. Furthermore, for each k with 1 ≤ k ≤ k∗, let σk be a winning strategy for Player 0
from her winning region in (Ak−1, BndWeightParity(Ω, Weight)).

If the σk are finite-state strategies of size sk, then σ is of size at most maxk≤k∗ sk.
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3.2.2 Energy Parity Games

Our next goal is to solve bounded parity games with weights, thus providing the
oracle required by :Algorithm 3.1. To this end we employ a similar approach to that : Sec. 3.2, Page 42
for solving parity games with weights, i.e., we reduce the problem to that of iteratively
solving a number of conceptually simpler games, namely energy parity games in this
case [CD12].

An energy parity game G = (A, Ω, Weight) consists of an arena A with vertex Def. energy parity
gameset V and edge set E, a coloring Ω : V → N of V, and a weighting Weight : E → Z

of A. This definition is not compatible with the framework presented in : Section 2, as :Page 11
we have not (yet) defined the winner of the plays. This is because the winner depends
on an initial credit, which is existentially quantified in the definition of winning the
game G. Formally, the set of winning plays with initial credit cI ∈N is defined as Def. initial credit

EnergyParitycI(Ω, Weight) = Parity(Ω)∩{
v0v1v2 · · · ∈ Vω | ∀j ∈N. cI + Weight(v0 · · · vj) ≥ 0

}
.

Now, we say that Player 0 wins the energy parity game G = (A, Ω, Weight) from Def. winning an
energy parity gamesome vertex v ∈ V if there exists some initial credit cI ∈ N such that she wins GcI =

(A, EnergyParitycI(Ω, Weight)) from v (in the sense of the definitions in Section 2).
If this is not the case, i.e., if Player 1 wins every GcI from v, then we say that Player 1
wins G from v. In energy parity games, the initial credit is uniform for all plays.
This contrasts the bound on the cost-of-response in the parity condition with weights,
which may depend on the play.

Unravelling these definitions shows that Player 0 wins G from v if there is an initial
credit cI and a strategy σ, such that every play that starts in v and is consistent with σ
satisfies the parity condition and the accumulated weight over the play prefixes (the
energy level) never drops below −cI. We call such a strategy σ a winning strategy Def. winning strategy

for Player 0for Player 0 in G from v. Dually, Player 1 wins G from v if, for every initial credit cI,
there is a strategy τcI , such that every play that starts in v and is consistent with τcI

violates the parity condition or its energy level drops below −cI at least once. Hence,
as the notation suggests, Player 1 may be required to use different strategies τcI to win
depending on the initial credit cI. However, Chatterjee and Doyen [CD12] showed that
this is, in fact, not necessary for him: There is a uniform strategy τ for Player 1 that is
winning for him from v for every initial credit cI.

Proposition 3.11 ([CD12]). Let G be an energy parity game. If Player 1 wins G from v, then
he has a positional strategy that is winning from v in GcI for every cI.

We call such a strategy τ as in Proposition 3.11 a winning strategy for Player 1 Def. winning strategy
for Player 1from v. A play beginning in v that is consistent with τ either violates the parity

condition, or the energy levels of its prefixes diverge towards −∞, i.e., Player 1 is able
to unbound the energy from below in the latter case.

Furthermore, Chatterjee and Doyen showed an analogous result characterizing the
relevant space of strategies for Player 0: They obtained an upper bound on the initial
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credit necessary for Player 0 to win an energy parity game, as well as an upper bound
on the size of a corresponding finite-state winning strategy.

Proposition 3.12 ([CD12]). Let G be an energy parity game with n vertices, d colors, and
largest absolute weight W. Moreover, let v be a vertex of G.

If Player 0 wins G from v, then she wins G(n−1)W from v with a finite-state strategy with at
most ndW states.

This proposition yields that finite-state strategies of bounded size suffice for Player 0
to win, i.e., that they suffice for her to bound the energy level from below. A straight-
forward pumping argument yields the additional property that such strategies do not
admit long expensive descents. This property later on allows us to reason about the
structure of plays consistent with winning strategies for Player 0.

Lemma 3.13. Let G = (A, Ω, Weight) be an energy parity game with n vertices and largest
absolute weight W. Further, let σ be a finite-state strategy of size s, and let ρ be a play that
starts in some vertex from which σ is winning, and that is consistent with σ.

Every infix π of ρ satisfies Weight(π) > −Wns.

Proof. Let σ be implemented byM = (M, init, upd) and let ρ = v0v1v2 · · · . Towards a
contradiction assume that there is an infix π = vj · · · vj′ of ρ with Weight(π) ≤ −Wns.

Since W is the maximal absolute weight occurring in G, the infix π attains at least
ns + 1 different nonpositive energy levels. Hence, we obtain ns + 1 prefixes of π with
increasing length and with strictly decreasing nonpositive energy levels.

Thus, there are positions j0, j1 with j ≤ j0 < j1 ≤ j′ with vj0 = vj1 , upd+(v0 · · · vj0) =

upd+(v0 · · · vj1), and Weight(vj0 · · · vj1) < 0. Hence, the play v0 · · · vj0−1(vj0 · · · vj1−1)
ω

obtained by repeating the loop between vj0 and vj1 ad infinitum begins in a vertex from
which σ is winning and is consistent with σ. This play, however, violates the energy
parity condition, which in turn contradicts σ being winning from v0.

As a final result, Chatterjee and Doyen gave an upper bound on the complexity
of solving energy parity games. This bound was recently improved to pseudo-quasi-
polynomial time by Daviaud, Jurdziński, and Lazić [DJL18].

Proposition 3.14 ([CD12, DJL18]). The following problem is in NP∩ coNP:

“Given an energy parity game G with n vertices, d colors, and largest absolute
weight W, and a vertex v in G, does Player 0 win G from v?”

Moreover, the problem can be solved in time O(dnlog(d/ log n)(W + 1/n)).

No non-trivial lower bound on the complexity of solving energy parity games was
found since the initial presentation of the problem by Chatterjee and Doyen [CD12].
Thus, the problem belongs to a family of problems that are known to be in NP ∩
coNP, but for which no polynomial-time algorithm exists. It shares this property
with, e.g., mean-payoff parity games [CHJ05]. Furthermore, solving energy parity
games is polynomial-time equivalent to solving mean-payoff parity games [CD12].
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3.2.3 Solving Bounded Parity Games with Weights

Recall that in : Section 3.2.1 we have solved parity games with weights by iteratively :Page 38
solving bounded parity games with weights. In that section we used a solver for
the latter kind of games as a black box. We now show how to solve such games by
iteratively solving energy parity games.

For the remainder of this section, fix a bounded parity game with weights G =
(A, BndWeightParity(Ω, Weight)) with vertex set V and set E of edges. Without loss
of generality, we assume Ω(v) ≥ 2 for all v ∈ V.

As a first step towards solving G, for each vertex v∗ of A we construct an energy
parity game Gv∗ with the following property:

Player 1 wins Gv∗ from some designated vertex induced by v∗ if and
only if, when playing in G and starting from v∗, he is able to unbound the
amplitude for the request opened by the initial visit to v∗.

Solving the Gv∗ then forms the technical core of a fixed-point algorithm that solves
bounded parity games with weights via solving energy parity games. For each v∗

with even color, the constructed Gv∗ is trivial, as the visit to v∗ immediately answers
the opened request. For the remainder of this section, fix some vertex v∗ of G.

The main obstacle towards the construction of Gv∗ is that, in the bounded parity
game with weights G, Player 1 may win by unbounding the amplitude for a request
from above or from below, while he can only violate the energy condition of Gv∗ by
unbounding the costs from below. We model this in Gv∗ by constructing two copies
of A. In one of these copies the edge weights are inherited from G, while they are
negated in the other copy. We allow Player 1 to switch between these copies arbitrarily.
To compensate for Player 1’s power to switch, Player 0 may increase the energy level
in the resulting energy parity game during each switch, thus offsetting a previously
incurred negative energy level.

First, we define the set of polarities P = {+,−} as well as the complementa- Def. polarities

Def.
complementation of
polarities

tion of polarities + = − and − = +. Given a vertex v∗ of A, we then define the
“polarized” arena Av∗ = (V ′, V ′0, V ′1, E′) of A = (V, V0, V1, E), where

Def. polarized arena
• V ′ = (V × P) ∪ (E× P× {0, 1}),
• V ′i = (Vi × P) ∪ (E× P× {i}) for i ∈ {0, 1}, and
• E′ contains the following edges for every edge e = (v, v′) ∈ E with Ω(v) /∈

Ans(Ω(v∗)) and every polarity p ∈ P:
– ((v, p), (e, p, 1)): The player owning the vertex v picks a successor v′. The

edge e = (v, v′) is stored together with the current polarity p.
– ((e, p, 1), (v′, p)): Then, Player 1 can either keep the polarity p unchanged

and execute the move to v′, or
– ((e, p, 1), (e, p, 0)): He decides to change the polarity, and the play reaches

another auxiliary vertex belonging to Player 0.
– ((e, p, 0), (e, p, 0)): If the polarity is to be changed, then Player 0 is able to

use a self-loop to increase the energy level (see the definition of the weight
function for Av∗ below), before
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– ((e, p, 0), (v′, p)): She can eventually complete the polarity switch by mov-
ing to v′.

• Furthermore, for every vertex v with Ω(v) ∈ Ans(Ω(v∗)) and every polarity p ∈
P, E′ contains the self-loop ((v, p), (v, p)).

This definition of Av∗ introduces some terminal vertices, namely those of the form
((v, v′), p, i) with Ω(v) ∈ Ans(Ω(v∗)). However, these vertices also have no incoming
edges and thus are irrelevant for any play not starting in them. In the following,
we only consider plays starting in some vertex from V × P. Hence, to simplify the
definition, we just ignore these terminal vertices.

Intuitively, a play in Av∗ simulates a play in A until either
1. Player 0 stops the simulation by using the self-loop at a vertex of the form (e, p, 0)

ad infinitum, or
2. until an answer to Ω(v∗) is reached.

If neither condition holds true during a play inAv∗ , then that play simulates a complete
infinite play in A. We define the coloring and the weighting for Av∗ so that Player 0
loses if the first condition holds true, while she wins if the second condition holds true.
Furthermore, we define the coloring so that all simulating plays that are not stopped
induce the same color sequence as the simulated play (save for irrelevant colors on the
auxiliary vertices in E× P× {0, 1}). Following this intuition, we define

Ωv∗(v) =


Ω(v′) if v = (v′, p) with Ω(v′) /∈ Ans(Ω(v∗)) ,
0 if v = (v′, p) with Ω(v′) ∈ Ans(Ω(v∗)) ,
1 otherwise .

As desired, due to our assumption that Ω(v) ≥ 2 for all v ∈ V, the vertices from
E× P×{0, 1} do not influence the maximal color visited infinitely often during a play,
unless either Player 0 opts to remain in some (e, p, 0) ad infinitum, thereby violating
the parity condition induced by Ωv∗ , or an answer to the color of v∗ is reached, thereby
satisfying the parity condition induced by Ωv∗ .

Moreover, recall that our aim is to allow Player 1 to choose the polarity of edges by
switching between the two copies of A. Intuitively, Player 1 should opt for positive
polarity in order to unbound the costs incurred by the request posed by v∗ from above,
while he should opt for negative polarity in order to unbound these costs from below.
Since it is, broadly speaking, beneficial for Player 1 to move along edges of negative
weight in an energy parity game, we negate the weights of edges in the copy of A
with positive polarity. Thus, we provide an incentive for Player 1 to move along edges
of positive weight (in G) while the simulation has positive polarity. Following this
intuition, we define

Weightv∗(e) =


−Weight(v, v′) if e = ((v,+), ((v, v′),+, 1)) ,
Weight(v, v′) if e = ((v,−), ((v, v′),−, 1)) ,
1 if e = ((e′, p, 0), (e′, p, 0)) ,
0 otherwise .
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Figure 3.7: A bounded parity game with weights G.

This definition implies that the self-loops at vertices of the form (v, p) with Ω(v) ∈
Ans(Ω(v∗)) have weight zero. Since these vertices moreover have color zero, this
construction allows Player 0 to win Gv∗ by reaching such a vertex. Intuitively speak-
ing, Player 0 can win Gv∗ by answering the request posed at v∗. In particular, if
Ω(v∗) is even, then Player 0 trivially wins Gv∗ from (v∗, p), as we then have Ω(v∗) ∈
Ans(Ω(v∗)).

Combining all the parts defined above, we define the energy parity game Gv∗ =
(Av∗ , Ωv∗ , Weightv∗).

Example 3.15. Consider the bounded parity game with weights shown in Figure 3.7
and the polarized energy parity game Gv0 shown in Figure 3.8. All other Gv for v 6=
v0 are trivial in that each vertex (v, p) in such a game has even color and its only
outgoing edge is a self-loop. Hence, Player 0 trivially wins each of these games from
the respective designated initial vertex.

Player 1 wins G from v0, where a request for color five is opened, which is then
kept unanswered with infinite cost by using the self loop at v1 or v2 ad infinitum,
depending on which successor Player 0 picks.

We argue that Player 1 wins Gv0 from (v0,+): The outgoing edges of (v0,+) cor-
respond to Player 0 picking the successor v1 or v2 as in G. Before the move to the
successor that is thus picked is executed, however, Player 1 gets to pick the polarity of
the successor: He should pick + for v1 and − for v2, respectively. After Player 1 has
thus chosen the polarity going forward, Player 0 can use the self loop at her “tiny”
vertices arbitrarily often before she moves to (v1,+) or (v2,−). If she opts to use the
self loop ad infinitum, Player 1 wins the resulting play, as the “tiny” vertices have color
one. If she eventually leaves the self loop, the play reaches the vertex (v1,+) or (v2,−).
From both vertices, Player 1 can enforce a loop of negative weight, which allows him
to win by violating the energy condition. 4

We observe that the winning strategy for Player 1 for G from v is very similar to
that for him for Gv0 from (v0,+). We show that this intuition holds true in general: A
winning strategy for Player 1 for Gv from (v,+) can be transformed into one for him
in G from v.
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This observation does not, however, hold true for Player 0 in general, as shown in
the next example.

Example 3.16. Consider the bounded parity game with weights discussed in Exam-
ple 3.15, but with an added vertex v−1 of color three with a single edge to v0. Then,
vertices of the form (vi, p) with i ∈ {1, 2} in Gv−1 are winning sinks for Player 0.
Hence, she wins Gv−1 from (v−1) in spite of losing the bounded parity game with
weights from v−1. This is caused by Gv−1 only “considering” the request posed by
visiting v−1, but “disregarding” those made along the play. 4

As witnessed by Example 3.16, the initial request posed by visiting the vertex v∗

inducing Gv∗ plays a special role in the construction: It is this request that Player 1
aims to keep unanswered with infinite cost. To “stitch together” the solutions for the
individual Gv∗ and to complete our construction, we show a statement reminiscent
of :Lemma 3.8: If Player 0 wins Gv from (v,+) for every v, then she also wins G : Sec. 3.2, Page 40
from every vertex. With this relation at hand, one can again construct a fixed-point
algorithm solving bounded parity games with weights using an oracle for solving
energy parity games that is very similar to :Algorithm 3.1. : Sec. 3.2, Page 42

Lemma 3.17. Let G be a bounded parity game with weights with vertex set V.
1. Let v∗ ∈ V. If Player 1 wins Gv∗ from (v∗,+), then v∗ ∈W1(G).
2. If Player 0 wins Gv∗ from (v∗,+) for all v∗ ∈ V, then W1(G) = ∅.

Before proving this lemma, we first argue that it indeed provides us with an argu-
ment showing NP ∩ coNP-membership of the problem of solving parity games with
weights. To show this membership, we provide an algorithm that solves bounded
parity games with weights by repeatedly solving energy parity games, which is very
similar to Algorithm 3.1. Indeed, we just swap the roles of the players: We compute
1-attractors instead of 0-attractors and we change the definition of Xk, thus obtaining
Algorithm 3.2.

Algorithm 3.2
A fixed-point algorithm computing W1(A, BndWeightParity(Ω, Weight)).

k = 0; Wk
1 = ∅; Ak = A

repeat
k = k + 1
Xk = {v∗ | Player 1 wins the

energy parity game ((Ak−1)v∗ , Ωv∗ , Weightv∗) from (v∗,+) }
Wk

0 = Wk−1
0 ∪AttrAk−1

1 (Xk)

Ak = Ak−1 \AttrAk−1
1 (Xk)

until Xk = ∅
return Wk

1

In each iteration of its main loop Algorithm 3.2 solves one energy parity game for
each vertex in Ak−1. As in each iteration of this loop, save for the final one, at least
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one vertex of Ak−1 is slated for removal, the loop is iterated at most |A| times. Hence,
Algorithm 3.2 terminates after solving at most a quadratic (in the number of vertices
of G) number of energy parity games. Furthermore, the proof of correctness is analo-
gous to the one for Algorithm 3.1, relying on Lemma 3.17 instead of Lemma 3.8. We
again only require two further properties: The fact that the bounded parity condition
with weights is 1-extendable, and the assertion that AttrAk−1

1 (Xk) is a trap for Player 0
in Ak−1. We have discussed the former assertion in : Section 3.2.1. The latter one is:Page 38
easy to verify.

Plugging Algorithm 3.2 into :Algorithm 3.1 yields the main theorem of our chapter: Sec. 3.2, Page 42
due to :Proposition 3.14. This theorem provides an upper bound on the complexity: Sec. 3.2, Page 46
of solving parity games with weights.

Theorem 3.18. The following problem is in NP∩ coNP:

“Given a parity game with weights G with n vertices, d colors, and largest absolute
weight W, and a vertex v in G, does Player 0 win G from v?”

Furthermore, Daviaud, Jurdziński, and Lazić observed that, due to our reduction to
the problem of solving energy parity games, the problem stated in Theorem 3.18 can
be solved in time O(n2(d(n′)log(d/ log n′)+4.45(W + 1/n′))), where n′ ∈ O(n2) [DJL18].

NP ∩ coNP-membership of the problem follows from NP ∩ coNP-membership of
the problem of solving energy parity games due to Chatterjee and Doyen [CD12]. The
pseudo-quasi-polynomial runtime of the algorithm solving parity games with costs, on
the other hand, follows from a reduction of the problem of solving energy parity games
to that of solving mean-payoff parity games due to Chatterjee and Doyen [CD12]
and an algorithm solving the latter games in pseudo-quasi-polynomial time due to
Daviaud, Jurdziński, and Lazić [DJL18].

The remainder of this section is dedicated to showing Lemma 3.17. In order to do
so, we first introduce some notation. Recall that we fixed a bounded parity game with
weights G with vertex set V and set E of edges. Let v∗ ∈ V and consider Gv∗ with
vertex set V ′. We distinguish three types of plays in Gv∗ starting in (v∗, p):

Type -1: Plays that have a suffix (e, p, 0)ω for some e ∈ E and some p ∈ P.

Type 0: Plays that visit infinitely many vertices from both V × P and E× P× {0, 1}.

Type 1: Plays that have a suffix (v, p)ω. This implies Ω(v) ∈ Ans(Ω(v∗)).

Clearly, plays of type −1 are losing for Player 0 due to the coloring of G ′v∗ labeling
vertices of the form (e, p, 0) with the odd color one. Dually, plays of type 1 are losing
for Player 1, since Ω(v) ∈ Ans(Ω(v∗)) implies that both v and (v, p) carry an even
color. We formalize this observation in the following remark.

Remark 3.19. Let ρ′ be a play in Gv∗ that starts in (v∗, p).
1. If ρ′ is consistent with a winning strategy for Player 0 from (v∗, p), then ρ′ is not a play

of type −1.
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2. If ρ′ is consistent with a winning strategy for Player 1 from (v∗, p), then ρ′ is not a play
of type 1.

In order to remove the added vertices of the form E× P× {0, 1} from plays in Gv∗ ,
we define the homomorphism unpol : (V ′)∗ ∪ (V ′)ω → {ε} ∪ V∗ ∪ Vω induced by
unpol(v, p) = v and unpol(e, p, i) = ε for v ∈ V, e ∈ E, p ∈ P, and i ∈ {0, 1}.
Let ρ′ ∈ (V ′)∗ ∪ (V ′)ω. We call unpol(ρ′) the unpolarization of ρ′. Def. unpolarization

Remark 3.20. Let ρ′ be a play of type 0 in Gv∗ . We have ρ′ ∈ Parity(Ωv∗) if and only if
unpol(ρ′) ∈ Parity(Ω).

Proof of Lemma 3.17.1

We now show the first item of Lemma 3.17. Recall that this item states that if Player 1
wins Gv∗ from (v∗,+), then he wins G from v∗.

Let τv∗ be a positional winning strategy for Player 1 from (v∗,+) in Gv∗ such that
each play beginning in (v∗,+) and consistent with τv∗ either violates the parity con-
dition, or has the energy level along its prefixes diverge towards −∞. Such a strategy
exists for Player 1 if he wins Gv∗ from (v∗,+) due to :Proposition 3.11. We define a : Sec. 3.2, Page 45
winning strategy τ for Player 1 from v∗ in G that mimicks the moves made by τv∗ . To
this end, τ keeps track of a play prefix in Gv∗ . Formally, we define τ together with a
simulation function h that satisfies the following invariant:

If π is a non-empty play prefix in A beginning in v∗, is consistent with τ,
and ends in some v, then h(π) is a play prefix in Av∗ that starts in (v∗,+),
is consistent with τv∗ , and ends in some (v, p). Further, unpol(h(π)) = π.

If h satisfies the above invariant, then we, intuitively, construct the strategy τ as fol-
lows: Let π be some non-empty play prefix in A beginning in v∗ that is consistent
with τ and recall that τv∗(h(π)) prescribes a move to some vertex ((v, v′), p, 1). We
then define τ to move to v′ in G, thus mimicking the move made by the strategy τv∗ .

We define h and τ inductively and begin with h(v∗) = (v∗,+), which clearly satisfies
the invariant. Now let π = v0 · · · vj be some non-empty play prefix in A beginning
in v∗ and consistent with τ such that h(π) is defined. Due to the invariant, h(π) ends
in (vj, pj) for some pj ∈ P. We first determine a successor of vj, defining τ(π) along
the way if vj is a vertex of Player 1.

If vj ∈ V1, let vj+1 be the unique vertex of A such that h(π) · ((vj, vj+1), pj, 1) is
consistent with τv∗ and define τ(π) = vj+1. Such a vj+1 exists, because (vj, pj), the last
vertex of h(π), satisfies Ω(vj) /∈ Ans(Ω(v∗)) due to the invariant and Remark 3.19.2.
If, however, vj ∈ V0, then let vj+1 be an arbitrary successor of vj in A. In either case, it
remains to define h(π · vj+1).

Since we aim to have h(π · vj+1) simulate the move from vj to vj+1 in Av∗ , we first
move from (vj, pj) to ((vj, vj+1), pj, 1). Moreover, as π · vj+1 is consistent with τ, we
aim to simulate this play prefix such that h(π · vj+1) is consistent with τv∗ in order to
satisfy the invariant. The strategy τv∗ may either prescribe for Player 1 to preserve the
polarity pj, or it may prescribe to switch it during the simulated move from vj to vj+1.
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In the former case, i.e., if τv∗(h(π) · ((vj, vj+1), pj, 1)) = (vj+1, pj), we define

h(π · vj+1) = h(π) · ((vj, vj+1), pj, 1) · (vj+1, pj) .

In the latter case, i.e., if Player 1 opts to switch polarities, the simulated play proceeds
to ((vj, vj+1), pj, 0), where Player 0 gets an opportunity to recharge the energy by tak-
ing the self-loop of that vertex finitely often. Recall that if she remains in that vertex
ad infinitum, she loses the resulting play due to the coloring Ωv∗ assigning that vertex
the odd color one. We opt to let her recover the energy lost so far in the play prefix,
i.e., we pick

mj = max
{

0,−Weightv∗(h(π) · ((vj, vj+1), pj, 1) · ((vj, vj+1), pj, 0))
}

and define

h(π · vj+1) = h(π) · ((vj, vj+1), pj, 1) · ((vj, vj+1), pj, 0)mj+1 · (vj+1, pj)

in this case. In particular, since we traverse the self-loop of the vertex ((vj, vj+1), pj, 0) mj
times, we visit the vertex itself mj + 1 times. Since h(π · vj+1) is consistent with τv∗

whether or not Player 1 switches the polarity, this definition satisfies the invariant in
either case. This completes the definition of h.

It remains to show that τ is indeed winning for Player 1 from v∗ in G. To this end,
let ρ = v0v1v2 · · · be a play in A that starts in v∗ and is consistent with τ. We show ρ /∈
BndWeightParity(Ω, Weight) by examining the play ρ′ in Av∗ , which is the limit of
the h(π) for increasing prefixes π of ρ. Due to the invariant, ρ′ starts in (v∗,+) and
is consistent with τv∗ . Moreover, due to the construction of h, we obtain unpol(ρ′) =
ρ. Finally, we have that ρ′ is a play of type 0 in Gv∗ : Due to our definition of the
simulation function h, Player 0 never remains in a vertex of the form (e, p, 0)ω ad
infinitum, i.e., ρ′ is not of type −1. Dually, since each prefix of ρ′ is consistent with
the winning strategy τv∗ from v∗, the play never encounters a vertex of the form (v, p),
where Ω(v) ∈ Ans(Ω(v∗)), i.e., ρ is not of type 1. Hence, due to Remark 3.20, ρ
satisfies the parity condition if and only if ρ′ satisfies the parity condition.

As the play ρ′ is consistent with the positional winning strategy τv∗ for Player 1 in
the energy parity game Gv∗ , it either violates the parity condition or the energy levels
of its prefixes diverge towards −∞. In the former case ρ violates the parity condition
as well, as argued above, i.e., ρ is indeed winning for Player 1 in this case.

Hence assume that ρ′ violates the energy condition. Due to the structure of Av∗ and
the construction of h we have

ρ′ = Πj=0,1,2,...
[
(vj, pj) · ((vj, vj+1), pj, 1) · ((vj, vj+1), pj, 0)mj

]
for some mj ∈N. Since ρ′ violates the energy condition, we have

inf
j∈N

[
Weightv∗((v0, p0) · · · (vj, pj) · ((vj, vj+1), pj, 1))

]
= −∞ .

The restriction to play prefixes of this form suffices due to the structure of Av∗ and,
in turn, the structure of ρ′. Moreover, since Player 1 wins Gv∗ from (v∗,+), the initial
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vertices v∗ and (v∗,+) of ρ and ρ′, respectively, have the same odd color. Also, as ρ′

is a play of type 0, the request for the color Ω(v∗) = Ω(v∗,+) is never answered in ρ
nor ρ′. We show that the weight along the prefixes of ρ diverges, which implies that
the request for Ω(v∗) in ρ is unanswered with infinite cost and thus concludes the
proof of the first item of Lemma 3.17.

To this end, we split ρ′ into infixes in which Player 1 does not switch the polarity of
the simulation. Given a vertex v = (v′, p) or v = ((v′, v′′), p, i), we call p the polarity Def. polarity
of v. Let ρ′ = µ′0µ′1µ′2 · · · , where each µ′j is a maximal finite (or infinite) infix (or suffix)
of ρ′, such that all vertices in µ′j have the same polarity. We call an infix µ′j of ρ′ an
equipolar infix (EPI) of ρ′. Def. equipolar infix

(EPI)If vertices of the form (e, p, 0) occur at all, then they only appear at the end of such
an infix, since the polarity remains constant throughout each infix µ′j. Hence, Player 0
can only recover lost energy via repeatedly traversing a self-loop of a vertex in Av∗ at
the last vertex visited in µ′j, if at all. Thus, the weight accumulated along µ′j and the
energy level attained during unpol(µ′j) are closely related, as formally stated in the
following remark.

Remark 3.21. Let µ′ be an EPI beginning in (vj, pj) and let µ = unpol(µ′) = vjvj+1vj+2 · · ·
be the unpolarization of µ′. For each j′ with j ≤ j′ < j + |µ|, we have

∣∣Weight(vj · · · vj′)
∣∣ =∣∣Weightv∗((vj, pj) · · · (vj′ , pj′))

∣∣.
Since the amplitude of a play prefix π only depends on the absolute value of the

accumulated weights of the edges traversed during π, we obtain Ampl(unpol(µ′)) =
Ampl(µ′) for all EPIs µ′ of ρ′ due to Remark 3.21, the structure of Av∗ , and the defini-
tion of h. Thus, if there exist only finitely many EPIs of ρ′, let µ′ be the final EPI of ρ′,
which is of infinite length, let µ = unpol(µ′), and note that, due to Ampl(ρ′) = ∞,
we have Ampl(µ′) = ∞. As argued above, we obtain Ampl(µ) = ∞, which im-
plies Ampl(ρ) = ∞, as µ is a suffix of ρ. This concludes the proof in the case that there
are only finitely many EPIs of ρ′.

Now consider the case that there exist infinitely many EPIs of ρ′. By construction
of ρ′, the energy level is nonnegative at the end of each EPI. By assumption on ρ′,
for each bound b ∈ N there exists an EPI µ′ of ρ′ with a prefix of weight less than
than −b. We obtain Ampl(unpol(µ′)) > b via Remark 3.21.

As argued above, the initial vertex of ρ opens a request that is never answered
throughout ρ. Moreover, the weight accumulated along ρ diverges, i.e., the request
posed by visiting the initial vertex of ρ is unanswered with infinite cost. Hence, ρ is
winning for Player 1, which concludes the proof of the first item of Lemma 3.17 for
the case that there are infinitely many EPIs of ρ′.

Proof of Lemma 3.17.2

We now proceed to prove the second item of Lemma 3.17. Recall that this item asserts
that if, for all v ∈ V, Player 0 wins Gv from (v,+), then the winning region of Player 1
in G is empty. To prove this lemma, we construct a strategy σ for Player 0 in G that is
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v0/0 v1/0 v2/2 v3/1 v4/0 v5/1 v6/3 v7/1 v8/4 v9/0 v10/2 v11/1 v12/1 · · ·

ν0 ν1 ν2 ν3ν3

Figure 3.9: A play ρ, its induced color sequence, its most relevant requests, and the
ESIs of ρ.

winning for her from every vertex in G. As winning regions are disjoint, this implies
the desired result.

For each energy parity game Gv = (Av, Ωv, Weightv) we have n′v = |Av| ∈ O(|A|2)
as well as that d′v is the number of odd colors assigned by Ωv, which is bounded by
the number of odd colors assigned by Ω plus one (due to our assumption of Ω(v) ≥ 2
for all vertices v of G), and W ′v = max(Weight(E′v)) = max(Weight(E)∪ {1}), where E
and E′v are the sets of edges in A and the Av, respectively. We define n′, d′, and W ′

as the maximum of the n′v, d′v, and W ′v, respectively, and observe that n′, d′, and W ′

are bounded from above by polynomials of the corresponding values of A. Recall that
the assumption of the second item of Lemma 3.17 states that we have that Player 0
wins each Gv from (v,+). Hence, due to :Proposition 3.12, for each v ∈ V, there: Sec. 3.2, Page 46
exists a finite-state strategy σv with at most n′d′W ′ states that is winning for Player 0
from (v,+) in Gv.

We construct the winning strategy σ for Player 0 in G by “stitching together” the
individual σv. To this end, given a play prefix, we identify the request which should
be answered most urgently. Say this request was first opened by visiting vertex v. The
strategy σ then mimics the moves made by σv when starting in (v,+). Once the request
for Ω(v) is answered, σ prescribes arbitrary moves until a new request is opened, say
by visiting the vertex v′. The request for Ω(v′) becomes the new most relevant request
and the strategy σ mimicks the moves prescribed by σv′ when starting in (v′,+). As
Player 0 wins every Gv from (v,+), we can iterate this process ad infinitum.

Recall that, given a play prefix π = v0 · · · vj, we say that a request for color c is
open in π if there exists a position j′ with 0 ≤ j′ ≤ j such that Ω(vj′) = c and if forDef. open
all positions j′′ with j′ ≤ j′′ ≤ j, we have Ω(vj′′) /∈ Ans(Ω(v′j)). There is never an
open request for an even color. Intuitively, we define the position of the most relevant
request as the position of the earliest occurrence of the largest open request in π which
has not yet been answered.

If there is no open request in π, the position of the most relevant request isDef. posMRR
undefined and we write posMRR(π) = ⊥. Otherwise, let c be the maximal color for
which there is an open request in π. We define posMRR(π) as the smallest position j′

such that the request for color c is open in all prefixes of π of length at least j′.

Example 3.22. Consider the play prefix shown in Figure 3.9. We mark a position j
with solid background if we have posMRR(v0 · · · vj) = j and with dashed background
if we have posMRR(v0 · · · vj) = ⊥. Otherwise, i.e., if ⊥ 6= posMRR(v0 · · · vj) < j, we
leave j unmarked. For those positions, posMRR(v0 · · · vj) is equal to the largest (i.e.,
last visited) earlier position marked with solid background. 4
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We aim to define the strategy σ for Player 0 in G by simulating moves made by
the strategies σv in Gv. To this end, we need to simulate play prefixes in the former
game in the latter ones. For this, we use an approach reminiscent of that of the proof
of Lemma 3.17.1 and define σ together with a simulation function h mapping plays
in G that are consistent with σ to a sequence of vertices from V ′, i.e., from the set of
vertices shared by all Gv (but not necessarily to a play prefix in any Gv). We define the
simulation function h such that we are able to leverage the choices made by the σv in
order to define σ. Our aim is to define h such that it satisfies the following invariant:

Let π = v0 · · · vj be a play in A consistent with σ. Then h(π) ends
in some (vj, pj). Moreover, if posMRR(π) = j′ 6= ⊥, then h(π) has a
(unique) suffix (vj′ ,+) · · · (vj, pj) that is consistent with σvj′ and that satis-
fies unpol((vj′ ,+) · · · (vj, pj)) = vj′ · · · vj.

We define h and σ inductively and begin with h(v) = (v,+) for each v ∈ V, which
clearly satisfies the invariant. Now let π = v0 · · · vj be a nonempty play prefix in A
and consistent with σ such that h(π) is defined. We again first determine a successor
of vj, defining σ(π) along the way if vj is a vertex of Player 0.

If vj ∈ V1, let vj+1 be an arbitrary successor of vj in A. If, however, vj ∈ V0, we distin-
guish two cases based on whether or not posMRR(π) is defined. If posMRR(π) = ⊥,
again let vj+1 be an arbitrary successor of vj. If, however, posMRR(π) = j′ 6= ⊥, then
the invariant of h yields a suffix (vj′ ,+) · · · (vj, pj) of h(π) that is consistent with σvj′ .
Let vj+1 be the unique vertex such that (vj′ ,+) · · · (vj, pj) · ((vj, vj+1), pj, 1) is consistent
with σvj′ . Such a vertex vj+1 exists, because the request posed by visiting vj′ is open
in π due to posMRR(π) = j′ and since the color sequences induced by vj′ · · · vj and
(vj′ ,+) · · · (vj, pj) coincide, save for the irrelevant intermediate vertices of colors zero
and one. Hence, (vj, pj) is not an accepting sink in Gvj′ . Since vj ∈ V0, the vertex vj+1

is unique and we define σ(π) = vj+1. This concludes the definition of σ.
It remains to define h(π · vj+1) such that it satisfies the above invariant. To this

end, we use one of two operations. Firstly, we define the discontinuous extension Def. discontinuous
extensionof h(π) with vj+1 as h(π) · (vj+1,+). Recall that in none of the Av there exists an edge

between the final vertex of h(π) and (vj+1,+), since we omit the intermediate vertices
of the form (e, p, i). Thus, the resulting sequence of vertices is not a play infix in any
of the Av.

Secondly, we define a simulated extension of h(π) such that we obtain h(π · vj+1)
by simulating the move from vj to vj+1 in some Gv. Formally, the simulated exten- Def. simulated

extensionsion of h(π) with vj+1 and charge m is h(π) · ((vj, vj+1), pj, 1) · ((vj, vj+1), pj, 0)m ·
(vj+1, pj+1), where pj+1 = pj if m = 0 and pj+1 = pj otherwise. This ensures that a
suffix of the simulated extension is indeed a play infix in some Gv.

In order to define h(π · vj+1) we again distinguish whether or not posMRR(π) is
defined. If posMRR(π) = ⊥, we define h(π · vj+1) to be the discontinuous extension
of h(π) with vj+1. This clearly satisfies the first condition of the invariant. Moreover,
the second condition of the invariant is satisfied as well: If posMRR(π · vj+1) = ⊥, this
condition holds true vacuously. Otherwise we obtain posMRR(π · vj+1) = j + 1 due to
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our assumption posMRR(π) = ⊥ and observe that the suffix (vj+1,+) of h(π · vj+1)
satisfies the second condition of the invariant.

If, however, posMRR(π) 6= ⊥, then let posMRR(π) = j′. By definition of posMRR
we have posMRR(π · vj+1) ∈ {⊥, j′, j + 1}. We distinguish two sub-cases and first
define h(π · vj+1) for the case that posMRR(π · vj+1) ∈ {⊥, j + 1}. In this case, the
move to vj+1 either answers the most relevant request in π, or the request posed by
visiting vj+1 is itself the most relevant request of π · vj+1: We have posMRR(π · vj+1) =
⊥ in the former case and posMRR(π · vj+1) = j + 1 in the latter one. In either case, we
define h(π · vj+1) to be the discontinuous extension of h(π) with vj+1 and observe that
the first condition of the invariant holds true. If posMRR(π · vj+1) = ⊥, the second
condition of the invariant holds true vacuously. If, however, posMRR(π · vj+1) = j + 1,
then the suffix (vj+1,+) witnesses that the second condition of the invariant holds
true.

Now assume that the move to vj+1 neither opens a new most relevant request,
nor answers the existing one, i.e., that we have posMRR(π · vj+1) = j′. In this
case, we extend the suffix of h(π) that is consistent with σvj′ by simulating the move
from vj to vj+1. Recall that we picked the vertex vj+1 such that (vj′ ,+) · · · (vj, pj) ·
((vj, vj+1), pj, 1) is consistent with σvj′ . As we can freely choose whether or not Player 1
switches the polarity in the simulation, we follow the intuition stated during the con-
struction of the polarized arena: Recall that both players currently play “with respect
to” the request for Ω(vj′) opened by visiting vj′ . Hence, we opt to let Player 1 move to
positive polarity if the cost of the request for Ω(vj′) so far is nonnegative, and let him
move to negative polarity otherwise. To this end, we use the sign function Sgn which
is defined as

Sgn(n) =

{
+ if n ≥ 0 ,
− otherwise .

If Sgn(Weight(vj′ · · · vj+1)) = pj, we define h(π · vj+1) to be the simulated exten-
sion of h(π) with vj+1 and charge 0, thus implementing the polarity switch as de-
scribed above. Otherwise, i.e., if Sgn(Weight(vj′ · · · vj+1)) = pj, let m ∈ N such
that (vj′ ,+) · · · (vj, pj) · ((vj, vj+1), pj, 1) · ((vj, vj+1), pj, 0)m · (vj+1, pj) is consistent with
σvj′ . Such an m exists, as otherwise the play (vj′ ,+) · · · (vj, pj) · ((vj, vj+1), pj, 1) ·
((vj, vj+1), pj, 0)ω of type −1 that starts in (vj′ ,+) would be consistent with the win-
ning strategy σvj′ from (vj′ ,+) for Player 0, contradicting :Remark 3.19.1. We de-: Sec. 3.2, Page 52

fine h(π · vj+1) to be the simulated extension of h(π) with vj+1 and charge m. Since we
have posMRR(v0 · · · vj+1) = j′ by assumption, either definition of h(π · vj+1) satisfies
the invariant. This completes the definition of h.

It remains to show that the strategy σ is indeed winning for Player 0 from every
vertex in G. To this end, fix some v∗ ∈ V as well as some play ρ = v0v1v2 · · · starting
in v∗ that is consistent with σ, and let ρ′ be the limit of the h(π) for increasing pre-
fixes π of ρ. By construction of h, we obtain unpol(ρ′) = ρ. Hence, the play ρ′ is of the
form (v0, p0) · · · (v1, p1) · · · (v2, p2) · · · . We call a position j of ρ a discontinuity of ρDef. discontinuity
if either j = 0 or if h(v0 · · · vj) is the discontinuous extension of h(v0 · · · vj−1) with vj.
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Let j and j′ be adjacent discontinuities of ρ with j < j′. We call the infix vj · · · vj′−1
of ρ an equistrategic infix (ESI) of ρ since it was constructed by mimicking the Def. equistrategic

infix (ESI)strategy σvj . Moreover, if there only exist finitely many discontinuities of ρ, let j∗ be its
final discontinuity. We call the suffix vj∗vj∗+1vj∗+2 · · · of ρ the terminal ESI of ρ. Def. terminal ESI

Remark 3.23. Let µ = vjvj+1vj+2 · · · be an ESI of ρ.
1. If µ is finite, then the infix µ′ of ρ′ starting at position

∣∣h(v0 · · · vj)
∣∣ − 1 and ending

at position
∣∣∣h(v0 · · · vj+|µ|−1)

∣∣∣ − 1 starts in (vj,+), is consistent with σvj , and ends
in (vj+|µ|−1, p) for some p ∈ P.

2. If µ is infinite, then the suffix µ′ of ρ′ starting at position
∣∣h(v0 · · · vj)

∣∣ − 1 is a play
in Av that starts in (vj,+) and is consistent with σvj .

For each position j of ρ we define ESI(j) = k if the k-th ESI of ρ contains j. Further-
more, if µ = vjvj+1vj+2 · · · is an ESI of ρ, then we call Ω(vj) the characteristic color Def. characteristic

colorof µ. By construction of h, if the characteristic color of an ESI µ is even, then µ consists
only of a single vertex. If, however, the characteristic color c of an ESI µ is odd, then
we have Ω(v) ≤ c for all vertices v in µ. Moreover, let c′ be the characteristic color of
the ESI succeeding µ, if µ is not the terminal ESI of ρ. If c is odd, then we have c′ > c
due to the construction of h. If c′ is even, this observation implies c′ ∈ Ans(Ω(v))
for all vertices v in µ. As the number of colors in G is finite, this in turn implies that
the number of ESIs between a request and its response (if a response exists at all) is
bounded.

Remark 3.24. Let j be some position in ρ and let k = ESI(j). Moreover, let d be the number
of odd colors in G.

1. If the request at position j is first answered at position j′, then ESI(j′) < k + d
2. If the request at position j is unanswered in ρ, then ρ contains less than k + d many

ESIs.

We now show that the play ρ satisfies the bounded parity condition with weights.
Recall that this condition requires

1. that the play ρ satisfies the parity condition, as well as
2. that the cost of almost all requests in ρ is bounded and that there exists no

unanswered request with infinite cost in ρ.
We first show that ρ satisfies the qualitative parity condition. In a second step, we then
show that there exists a bound on the cost of each (answered or unanswered) request
in ρ, which implies the latter condition. The former condition, i.e., that ρ satisfies the
parity condition, is in large parts implied by Remark 3.24.

Lemma 3.25. The play ρ satisfies the parity condition.

Proof. If ρ contains no unanswered requests, then it vacuously satisfies the parity
condition. Hence, let j be the position of an unanswered request in ρ. Due to Re-
mark 3.24, ρ contains only finitely many ESIs in ρ. Let µ = vj∗vj∗+1vj∗+2 · · · be the
terminal ESI of ρ. By construction of h, there exists a suffix µ′ of ρ′ with unpol(µ′) = µ.
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Due to Remark 3.23.2, the suffix µ′ is a play in Av∗j that begins in (vj∗ ,+) and is con-
sistent with the winning strategy σvj∗ for Player 0 from (vj∗ ,+) in Gvj∗ . Moreover, µ′ is
a play of type 0 due to being consistent with σvj∗ and due to construction of h. Hence,
we obtain that µ satisfies the parity condition via :Remark 3.20, which in turn implies: Sec. 3.2, Page 53
that ρ satisfies the parity condition.

It remains to show that the costs of requests in ρ are indeed bounded. Recall that
we defined n′ = |Av|, d′ as the number of odd colors in the Gv, and W ′ as the largest
absolute weight of an edge. We claim that the costs of the requests posed at the
beginning of the ESIs of ρ are bounded by (n′d′W ′)2. This implies that the cost of all
requests are bounded: Due to Remark 3.24 we obtain that the number of ESIs between
a request and its response, if one exists, is bounded by d. Hence, it suffices to show
that each ESI contributes at most a bounded amount to the cost of answering a request.

Lemma 3.26. Let µ = vjvj+1vj+2 · · · be an ESI of ρ. For each j′ with j ≤ j′ < j + |µ| we
have

∣∣Weight(vj · · · vj′)
∣∣ ≤ d′(n′W ′)2.

Proof. Towards a contradiction let j′ be a position with j ≤ j′ < j + |µ|, such that
we have

∣∣Weight(vj · · · vj′)
∣∣ > d′(n′W ′)2. We assume Weight(vj · · · vj′) > d′(n′W ′)2,

i.e., that the infix vj · · · vj′ violates the claimed upper bound. The other case is dual.
Since each traversed edge adds a cost of at most W ′, there exists a minimal posi-
tion j′′ such that, for all k with j′′ ≤ k ≤ j′, we have Weight(vj · · · vk) > 0. Let π′ =
(vj′′ , pj′′) · · · (vj′ , pj′) be an infix of ρ′ such that unpol(π′) = vj′′ · · · vj′ . The polar-
ity remains positive throughout π′ due to the construction of h. Furthermore, since
the weights of the edges in the copy of A with positive polarity are inverted, we
have Weightvj

(π′) < −d′(n′W ′)2. Finally, by definition of ESIs, the infix π′ is an infix
of a play in an energy parity game that starts in (vj,+) and is consistent with a winning
strategy σvj for Player 0 from (vj,+). This, however, contradicts :Lemma 3.13.: Sec. 3.2, Page 46

Due to Lemma 3.26, each ESI strictly in-between a request and its response con-
tributes at most d′(n′W ′)2 to the cost incurred by the request. Similarly, the ESIs
containing the request and its response also contribute at most d′(n′W ′)2 each to the
cost of answering the given request. Hence we obtain that each (answered or unan-
swered) request in ρ incurs a cost of at most (d′n′W ′)2 via Remark 3.24. We illustrate
this argument in Figure 3.10.

In that figure, the labels µj through µj+4 indicate the ESIs of the play ρ. The solid
black line denotes the weight accumulated by the play prefix starting at the initial
vertex of µj. Lemma 3.26 yields that during no ESI, that line can deviate from the
height at which it entered the current ESI by more than ∆ = d′(n′W ′)2, as indicated by
the bounds in Figure 3.10.

Hence, σ is a winning strategy for Player 0 from v∗ in G, as each play that starts in v∗

and is consistent with σ satisfies the parity condition due to Lemma 3.25 and because
no such play contains a request that is unanswered with infinite cost, which concludes
the proof of the second item of Lemma 3.17.
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Figure 3.10: Bounds on the amplitude of an infix following a request given by
Lemma 3.26. The µj denote the ESIs of ρ. The weight accumulated along
each ESI is bounded by ∆ = d′(n′W ′)2.

Before we conclude this section, we formalize the above observation about the win-
ning strategy for Player 0 uniformly bounding the costs of requests in the following
corollary.

Corollary 3.27. Let G be a bounded parity game with weights with n vertices, d odd colors, and
largest absolute weight W. There exists a strategy σ for Player 0 that is winning from W0(G),
such that in each play ρ that starts in W0(G) and is consistent with σ, each request is answered
or unanswered with cost at most ((d + 1)(2n + 4n2)(W + 1))2.

We later improve this bound in : Section 3.5 to ((d + 1)(6n)(W + 1))2. However, :Page 75
we require Corollary 3.27 in the following section to show that the above relation also
holds in the opposite direction, i.e., that we are able to solve energy parity games by
repeatedly solving parity games with weights.

3.3 Polynomial-Time Equivalence to Energy Parity Games

In the previous sections we have shown how to solve parity games with weights via
iteratively solving energy parity games with only a polynomial overhead. In this sec-
tion, we consider the reduction in the other direction, i.e., whether one can also solve
energy parity games by solving parity games with weights. We answer this question
affirmatively, which yields PTime-equivalence of the problem of solving energy parity
games and the problem of solving parity games with weights.

We first show how to transform an energy parity game into a bounded parity game
with weights such that solving the latter also solves the former in Section 3.3.1. Sub-
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v/c v′/c′
w

(a) An edge with weight w in the orig-
inal game G.

v/c (v,v′)/1 v′/c′
w

-1

0

(b) The associated split edge in G ′.

Figure 3.11: Splitting edges in G to obtain G ′.

sequently, in Section 3.3.2, we show how to solve bounded parity games with weights
by iteratively solving parity games with weights. Both constructions increase the size
of the arenas only linearly. Hence, all three types of games considered in this chapter
are interreducible with at most polynomial overhead, making the problems of solving
them polynomial-time equivalent.

3.3.1 Energy Parity Games to Bounded Parity Games with Weights

We begin by showing that the problem of solving energy parity games reduces to that
of iteratively solving bounded parity games with weights. Hence, for the remainder of
this section, fix some energy parity game G = (A, Ω, Weight) with A = (V, V0, V1, E).

Recall that, in an energy parity game, Player 0 wins if the energy increases without a
bound, as long as the energy level is bounded from below and as long as the resulting
play satisfies the parity condition. In a bounded parity game with weights, in contrast,
she has to ensure both an upper and a lower bound on the cost incurred by requests
of the play in addition to the parity condition.

Thus, we show in a first step how to modify G such that Player 0 still has to ensure a
lower bound on the energy while allowing her to “discard” unnecessary energy during
each transition. The resulting game is still an energy parity game. We then show that
if Player 0 wins the original game, she also wins in the modified game while ensuring
an upper bound on the energy level. The proof relies on :Lemma 3.13, which allows: Sec. 3.2, Page 46
us to identify when energy becomes “unnecessary” to ensure a lower bound.

Intuitively, we subdivide every edge of A and add a new vertex for Player 0, where
she can decrease the energy level. The odd color of the vertices thus added ensures
that she eventually leaves this vertex in order to satisfy the parity condition.

W.l.o.g. we assume that the minimal color occurring in G is strictly greater than one.
We define the energy parity game G ′ = (A′, Ω′, Weight′) with A = (V ′, V ′0, V ′1, E′),
where
• V ′ = V ∪ E, V ′0 = V0 ∪ E, and V ′1 = V1, and
• E′ = {(v, e), (e, e), (e, v′) | e = (v, v′) ∈ E}.

Moreover, we define the coloring Ω′ via Ω′(v) = Ω(v) and Ω′(e) = 1, as well
as the weighting Weight′ via Weight′(v, e) = Weight(e), Weight′(e, e) = −1, and
Weight(e, v′) = 0 for every e = (v, v′) ∈ E. We illustrate this construction in Fig-
ure 3.11.
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We say that a strategy σ for Player 0 in G ′ is corridor-winning for her from some Def.
corridor-winningvertex v ∈ V if there is a b ∈N such that every play ρ that starts in v and is consistent

with σ satisfies the parity condition and satisfies Ampl(ρ) ≤ b. Hence, instead of
just requiring Player 0 to ensure a lower bound on the energy level as is the case in
the energy parity condition, we also require her to ensure a uniform upper bound on
the energy level. W.l.o.g. we assume the upper and lower bound to coincide in the
remainder of this section.

Lemma 3.28. Let v ∈ V. Player 0 has a winning strategy in G from v if and only if she has a
corridor-winning strategy from v in G ′.

Proof. We first show the direction from left to right, i.e., that Player 0 having a win-
ning strategy in G implies her having a corridor-winning strategy in G ′. Since Player 0
wins G from v, she also has a finite-state winning strategy σ for G from v, due
to :Proposition 3.12. Let s be the size of σ. Furthermore, there exists an initial : Sec. 3.2, Page 46
credit cI such that every play prefix π that starts in v and is consistent with σ sat-
isfies Weight(π) ≥ −cI. Finally, define b = Wns, where n and W are the number of
states of G and the largest absolute weight occurring in G, respectively.

We define a strategy σ′ for Player 0 in G ′ that mimics the behavior of σ and addi-
tionally ensures that the energy level of a play prefix never exceeds b+W. To this end,
during the simulation of each move made by σ in G ′, σ′ discards energy exceeding b.
By definition of W, the move from some v to some vertex of the form (v, v′) in G ′ in-
curs an increase in energy of at most W. Hence, the energy level of any play consistent
with σ′ is bounded from above by b in vertices from V, while it is bounded from above
by b + W in vertices from E.

To formally define σ′, we first define the homomorphism f : (V ∪ E)∗ ∪ (V ∪ E)ω →
{ε} ∪V∗ ∪Vω that removes the additional vertices occurring in G ′ via f (v) = v for v ∈
V and f (e) = ε for e ∈ E. Now, let π′ be a play prefix in G ′. If π′ ends in some v′ ∈ V0,
then we define σ′(π) = (v′, σ( f (π))). If, however, π′ ends in some e = (v′, v′′) ∈ E,
then we define σ′(π′) = v′′ if Weight′(π′) ≤ b, and σ′(π′) = e otherwise. Thus, σ′

prescribes using the self loop of e until the energy level of the play prefix is at most b.
This implements the above intuition and completes the definition of σ′.

It remains to show that σ′ is indeed corridor-winning from v for Player 0. To this
end, let ρ′ be a play in G ′ that starts in v and is consistent with σ′. By definition of σ′,
the play ρ′ never remains in some self loop of an edge ad infinitum, but instead visits
infinitely many vertices from V. Hence, by construction of A, the play ρ = f (ρ′) is
a play in G that starts in v. Furthermore, ρ is consistent with σ, as σ′ mimics σ on
vertices from V. Thus, ρ satisfies the parity condition. As the vertices removed from ρ′

to obtain ρ all have color one, and as all colors occurring in G are greater than one by
assumption, we conclude that ρ′ satisfies the parity condition as well.

Recall that σ bounds the energy level along the play by −cI from below. We now
show that every prefix π′ of ρ′ satisfies −cI ≤Weight′(π′) ≤ b + W. This then implies
that σ′ is indeed corridor-winning from v and thus concludes the proof of this direction
of the claim. The upper bound b+W is satisfied by construction of σ′ as argued above.
To prove the lower bound of −cI on the energy level along ρ′, we consider two cases:
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Firstly, assume ρ′ has no prefix whose energy level exceeds b. Since σ′ mimicks the
moves made by σ without ever prescribing to take a self loop in this case, we obtain
Weight′(π′) = Weight( f (π′)) for every prefix π′ of ρ′ ending in a vertex from V. Since
edges of the form (e, v) have weight zero, since f (π) is consistent with σ as argued
above, and since σ provides a lower bound of −cI on the energy level attained during ρ
by assumption, this yields Weight′(π′) ≥ −cI.

Secondly, assume ρ′ has at least one prefix whose weight exceeds b. The energy
level of shorter prefixes is bounded from below by −cI as argued above. We show
that every longer prefix has nonnegative weight, which concludes the proof. Towards
a contradiction, assume there is a longer suffix with negative weight. Then, there also
is an infix π′ of ρ′ of weight strictly smaller than −b, during which Player 0 never
uses a self-loop in A′ to discard energy during π′. Hence, f (ρ) also has an infix with
weight strictly smaller than −b. As f (ρ) is consistent with σ, however, this contradicts
:Lemma 3.13 due to our choice of b = Wns, where s = |σ|, and thus concludes the: Sec. 3.2, Page 46
proof for this direction.

We now show the other direction of the claim, i.e., that Player 0 having a corridor-
winning strategy from some v in G ′ indeed implies her having a winning strategy
from v in G. To this end, let σ′ be such a corridor-winning strategy for Player 0 in G ′
from v. Further, let the homomorphism f : (V ∪ E)∗ ∪ (V ∪ E)ω → {ε} ∪ V∗ ∪ Vω be
defined as above.

We again define a strategy σ for Player 0 from v in G that is obtained by simulating
play prefixes in G ′. To this end, we use a simulation function h that satisfies the
following invariant:

Let v0 · · · vj be a play prefix in G that starts in v and is consistent with σ.
Then h(v0 · · · vj) is a play prefix in G ′ that starts in v, is consistent with σ′,
and ends in vj.

We define h inductively starting with h(v) = v. Now, assume we have a play pre-
fix π = v0 · · · vj in G that starts in v, is consistent with σ and such that π′ = h(π)
is defined. Due to the invariant, we obtain that the play prefix π′ in G ′ starts in v, is
consistent with σ′, and ends in vj. If vj ∈ V0 ⊆ V ′0, then let vj+1 ∈ V be the unique
vertex such that π′ · (vj, vj+1) is consistent with σ′. We define σ(π) = vj+1, which is a
legal move in A due to the construction of A′. This concludes the definition of σ. If
vj ∈ V1, however, then let vj+1 be an arbitrary successor of vj in A.

In both cases it remains to define h(π · vj+1). As σ′ is a corridor-winning strategy
for Player 0 from v = v0 in G ′ and due to our choice of vj+1, there exists a unique m
such that the play h(π) · (vj, vj+1)

m · vj+1 is consistent with σ′. We define

h(π · vj+1) = h(π) · (vj, vj+1)
m · vj+1 ,

which clearly satisfies the invariant and concludes the definition of h.
It remains to show that σ is indeed winning for Player 0 from v in G. To this end,

let ρ be a play in G that starts in v and is consistent with σ. Moreover, let b be the
uniform bound on the amplitude of plays in G ′ consistent with σ′ starting in v, i.e.,
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no such play has a prefix whose weight exceeds b nor −b. Furthermore, let ρ′ be the
limit of the h(π) for increasing prefixes of ρ. By construction of h, ρ′ starts in v as well
and is consistent with σ′. Hence, ρ′ does not remain in some self loop ad infinitum,
as this would contradict σ′ being corridor-winning for Player 0, but visits infinitely
many vertices from V. This in turn implies f (ρ′) = ρ. Hence, as ρ′ satisfies the parity
condition, ρ does so as well: The colors of the vertices from E removed by applying f
are inconsequential by assumption.

It remains to show that the energy level along ρ is bounded from below. To this end,
let πj be the prefix of length j of ρ. A straightforward induction shows that the energy
level of πj is bounded from below by that of h(πj), as the additional edges of the latter
only have nonpositive weight. Since the energy level of h(πj) is bounded from below
by b, we conclude that σ is winning for Player 0 in G from v with initial credit b.

As a second step, we now show how to use bounded parity games with weights
to determine whether or not Player 0 has a corridor-winning strategy in G ′. Recall
that in a bounded parity game with weights, the cost-of-response of requests has to
be bounded, but the overall energy level of the play may still diverge to −∞. To rule
this out, we construct the bounded parity game with weights such that every play
beginning in a designated vertex starts with an unanswerable request. Then, in order
to satisfy the bounded parity condition with costs, Player 0 has to ensure that this
request only incurs finite cost. If this is the case, then the accumulated weight along
the play is in a bounded corridor, i.e., we obtain a corridor-winning strategy.

Formally, let c∗ be some odd color larger than any color occurring in G ′. For
every vertex v ∈ V ′, we add a vertex v of color c∗ to A′. Thus, visiting v en-
sures that the play contains a request that can never be answered. Furthermore, v
has a single outgoing edge to v of weight zero, i.e., it is irrelevant whose turn it
is in that vertex. Hence, we arbitrarily give v to Player 1. We call the resulting
arena A′′, the resulting coloring Ω′′, and the resulting weighting Weight′′, and de-
fine G ′′ = (A′′, BndWeightParity(Ω′′, Weight′′)).

Lemma 3.29. Let v ∈ V. Player 0 has a corridor-winning strategy for G ′ from v if and only
if v ∈W0(G ′′).

Proof. We first show the direction from left to right, i.e., if Player 0 has a corridor-
winning strategy in G ′ from v, then she wins G ′′ from v. To this end, let σ′ be such
a corridor-winning strategy for her in G ′ from v. Further, let b be the corresponding
uniform bound on the amplitude of plays that start in v and are consistent with σ′.
We define a strategy σ′′ for Player 0 in G ′′ from v via σ′′(vπ) = σ′(π) for all play
prefixes π starting in v and ending in a vertex of Player 0.

Let vρ be a play that is consistent with σ′′. By construction of A′′ and σ′′, the play ρ
starts in v and is consistent with σ′. Hence, it satisfies the parity condition and its
amplitude is bounded by b. Thus, almost all requests in ρ are answered with cost
at most 2b and there is no unanswered request of infinite cost. This implies that vρ
satisfies the bounded parity condition with weights. Hence, σ′′ witnesses v ∈W0(G ′′).
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In order to show the direction from right to left, let σ′′ be a winning strategy for
Player 0 in G ′′ from v and let b ∈ N be a bound such that every request in a play
starting in v and consistent with σ′′ is answered or unanswered with cost at most b.
Due to :Corollary 3.27, such a strategy σ′′ and such a bound b exist. We define a: Sec. 3.2, Page 61
strategy σ′ for Player 0 from v in G ′ via σ′(π) = σ′′(vπ) for all play prefixes π starting
in v and ending in a vertex of Player 0.

Let ρ be a play starting in v that is consistent with σ′. By construction, vρ is consis-
tent with σ′′. Hence, vρ satisfies the parity condition and every request is answered
or unanswered with cost at most b. This holds true in particular for the unanswered
request posed by visiting v. Hence, the amplitude of vρ (and thus also that of ρ) is
bounded by b.

Thus, ρ satisfies the parity condition and the energy level of all its prefixes is
bounded by b from above and by −b from below. Hence, σ′ is corridor-winning
from v.

Together with the results from : Section 3.2.3, we obtain that the problem of solv-:Page 47
ing energy parity games and that of solving bounded parity games with weights are
polynomial-time equivalent. We now further show that the latter problem and that of
solving parity games with weights are polynomial-time equivalent as well.

3.3.2 Bounded Parity Games with Weights to Unbounded Ones

Next, we show how to solve bounded parity games with weights via repeatedly solv-
ing parity games with weights. This construction uses the same restarting mechanism
that underlies the proof of :Lemma 3.8: Starting with κ = 0, Player 1 plays according: Sec. 3.2, Page 40
to his winning strategy in the bounded parity game with weights until the cost in-
curred by some request exceeds κ. Subsequently, Player 1 may restart the play in order
to enforce a request of cost κ + 1 and he may repeat this process ad infinitum. The
overall structure of the algorithm, however, is different: Instead of iteratively solving
parity games with weights of decreasing size, we instead construct for each vertex v∗ of
the bounded parity game with weights G an unbounded parity game with weights G ′v∗
such that Player 1 wins G from v∗ if and only if he wins G ′v∗ from v∗.

To this end, we adapt the restart mechanic used in the proof of Lemma 3.8 such
that, instead of being able to restart the play at any vertex and continuing from that
vertex, Player 1 always returns to v∗ upon restarting the play in G ′v∗ . During a restart,
we moreover answer all requests in order to prevent Player 1 from using the reset to
prevent requests from being answered. Then, we subdivide every edge in the arena
of G ′v∗ in order to allow Player 1 to restart the play during each simulated move.

For the remainder of this section, fix a bounded parity game with weights G =
(A, BndWeightParity(Ω, Weight)) with A = (V, V0, V1, E) and a vertex v∗ ∈ V. We
define the parity game with weights G ′v∗ = (A′v∗ , WeightParity(Ωv∗ , Weightv∗)) with
A′v∗ = (V ′, V ′0, V ′1, E′v∗) where
• V ′ = V ∪ E ∪ {>}, V ′0 = V0, and V ′1 = V1 ∪ E ∪ {>}, as well as
• E′v∗ = {(v, e), (e,>), (e, v′) | e = (v, v′) ∈ E} ∪ {(>, v∗)}.
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(a) The overall construction ofA′v∗ fromA.
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(b) Splitting an edge in A′v∗ .

Figure 3.12: The construction of G ′v∗ from G. We write c′ = 2 max(Ω(V)).

Moreover, we define the coloring

Ωv∗(v) =


Ω(v) if v ∈ V ,
0 if v ∈ E ,
2 max(Ω(V)) if v = > ,

and the weight function

Weightv∗(e
′) =

{
Weight(e) if e′ = (v, e) ∈ V × E ,
0 otherwise .

We illustrate this construction in Figure 3.12. Figure 3.12a shows the adaptations
to the overall structure of the arena A of G, while Figure 3.12b details the splitting of
individual edges.

Lemma 3.30. We have v∗ ∈W0(G) if and only if v∗ ∈W0(G ′v∗).

Proof. We first show the direction from left to right, i.e., we show that v∗ ∈ W0(G) im-
plies v∗ ∈W0(G ′v∗). To this end, let σ be a strategy for Player 0 for G with the following
property: There exists a b ∈ N such that every request in a play that starts in v∗ and
is consistent with σ is answered or unanswered with cost at most b. Since v∗ ∈W0(G),
such a strategy σ exists due to :Corollary 3.27. : Sec. 3.2, Page 61

We define a winning strategy σ′ for Player 0 from v∗ in G ′v∗ as follows: Given a play
(prefix) π′ in A′v∗ that does not end in vertex >, let sfx(π′) be the longest suffix of π′

that does not contain >. Hence, if π′ starts in v∗, then sfx(π′) starts in v∗ as well, as
v∗ is the unique successor of >. Further, let f : (V ∪ E)∗ ∪ (V ∪ E)ω → V∗ ∪Vω be the
homomorphism induced by f (v) = v for v ∈ V and f (e) = ε for e ∈ E. Now, if π′

is a play (prefix) in A′v∗ that does not visit >, then f (π′) is a play (prefix) in A of the
same weight that induces the same sequence of colors (save for the occurrences of the
“irrelevant” minimal color zero at the vertices from E that are deleted by f ).
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Let π′ be a play prefix in A′v∗ that ends in a vertex v ∈ V ′0 = V0. We define σ′(π′) =
(v, σ( f (sfx(π′)))) and show that σ′ is winning for Player 0 in Gv∗ from v∗. To this end,
let ρ′ be a play in A′v∗ starting in v∗ that is consistent with σ′. We consider two cases,
depending on whether or not the play ρ′ visits the vertex > infinitely often.

If ρ′ visits > only finitely often, then sfx(ρ′) is an infinite play in G ′v∗ starting in v∗.
By definition of f and construction of σ′, the infinite play f (sfx(ρ′)) in A starts in v∗

and is consistent with σ. Hence, f (sfx(ρ′)) satisfies the bounded parity condition with
weights. Since this condition strengthens the parity condition with weights and since
the latter condition is 0-extendable, we conclude that f (ρ′) satisfies the parity condition
with weights as well. This, in turn, implies that the complete play ρ′ satisfies the parity
condition with weights due to the construction of A′v∗ .

Now, assume that the play ρ′ visits > infinitely often. Then, ρ′ is of the form
π′0>π′1>π′2> · · · , where none of the π′j visits >. Hence, by definition of A′v∗ , f , and σ′,
each play prefix f (π′j) in A starts in v∗ and is consistent with σ. Furthermore, every
request in each π′j is answered by the next visit to the vertex > at the latest, i.e., ρ′

satisfies the parity condition. Thus, it suffices to show that the cost-of-response of all
requests in ρ′ is bounded. This follows immediately from the fact that σ only admits
answered or unanswered requests of cost at most b when starting in v∗ and that each
f (π′j) starts in v∗ and is consistent with σ. This property is inherited by the π′j due to
the construction of A′v∗ . Thus, ρ′ satisfies the parity condition with weights, i.e., σ′ is
indeed winning for Player 0 from v∗.

It remains to show the other direction of the claim, i.e., that v∗ ∈ W0(G ′v∗) im-
plies v∗ ∈ W0(G). We proceed by contraposition. Due to determinacy of both G
and G ′v∗ , it suffices to show that v∗ ∈W1(G) implies v∗ ∈W1(G ′v∗). To this end, let τ be
a winning strategy for Player 1 in G from v∗. Furthermore, let sfx and f be defined as
above.

We construct a strategy τ′ for Player 1 from v∗ in G ′v∗ that is controlled by a counter κ,
which is initialized with zero, and which is incremented during a play every time the
costs of some request exceed the current value of κ. Every time κ is updated, the
strategy τ′ prescribes moving to > and subsequently to v∗, thus “restarting” the G ′v∗ .

Let π′ be a play prefix in A′v∗ that ends in a vertex of Player 1. In order to define
τ′(π′) we consider several cases depending on the last vertex of π′. If π′ ends in >,
we define τ′(π′) = v∗, which is the unique successor of >.

If π′ ends in v ∈ V1 ⊆ V ′1, then we define τ′(π′) = (v, τ( f (sfx(π′)))), i.e., we discard
the prefix up to and including the last occurrence of > and mimick the decision of τ
given the remaining suffix of π′. Finally, if π′ ends in e = (v, v′) ∈ E ⊆ V ′1, then we
consider two cases. Let κ be the current counter value. If sfx(π′) contains a request
such that the suffix of π′ that starts at this request has an amplitude exceeding κ, then
we define τ′(π′) = > and increment κ. Otherwise, we define τ′(π′) = v′ and leave κ
unchanged.

It remains to show that τ′ is winning in G ′v∗ from v∗. To this end, let ρ′ be a play
in G ′v∗ that starts in v∗ and that is consistent with τ′. If ρ′ visits > infinitely often, then
all requests in ρ′ are answered, but ρ′ contains, for every b ∈ N, a (different) request
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that is answered with cost at least b. Hence, the costs of responses along ρ′ diverge,
causing ρ′ to violate the parity condition with costs.

Finally, if ρ′ visits > only finitely often, then the counter κ is incremented only
finitely often. Similarly to the previous case, f (sfx(ρ′)) is a play in A that starts in
v∗ and is consistent with τ. Let b be the final value of κ. Every request in sfx(ρ′)
is answered or unanswered with cost at most b, as otherwise the strategy τ′ would
prescribe another move to >. As sfx(ρ′) and f (sfx(ρ′)) have essentially the same
evolution of the weights (save for the removed edges of weight zero) and the same
color sequence (save for the removed vertices of color zero), every request in f (sfx(ρ′))
is answered or unanswered with cost at most b. Since f (sfx(ρ′)) is, however, consistent
with τ, it violates the bounded parity condition with weights. As all requests are
answered or unanswered with cost at most b, this is only possible by violating the
parity condition. Hence f (sfx(ρ′)) violates the parity condition. This implies that
both sfx(ρ′) and ρ′ violate the parity condition as well due to construction of f and A′v∗
and the prefix-independence of that condition. Since the parity condition with weights
strengthens the parity condition, ρ′ violates the former condition as well.

In both cases, ρ′ is winning for Player 1, i.e., τ′ is indeed winning for Player 1 in G ′v∗
from v∗.

Thus, we have reduced the problem of solving energy parity games first to the
problem of solving bounded parity games with weights, which we have then further
reduced to the problem of solving parity games with weights. All these reductions
are polynomial. Combined with the results from : Section 3.2, we obtain that all three :Page 37
problems are polynomial-time equivalent.

Theorem 3.31. The following three decision problems are polynomial-time equivalent:

“Given a parity game with weights G and a vertex v of G, does Player 0 have a
winning strategy from v in G?”

“Given an energy parity game G and a vertex v of G, does Player 0 have a winning
strategy from v in G?”

“Given a bounded parity game with weights G and a vertex v of G, does Player 0
have a winning strategy from v in G?”

Proof. Polynomial-time equivalence of the first two problems follows directly from
the results presented in : Section 3.2.1, Lemma 3.28, and Lemma 3.29. Analogously, :Page 38
polynomial-time equivalence of the latter two problems follows from the results pre-
sented in : Section 3.2.3 and Lemma 3.30. :Page 47

Via the above theorem we moreover obtain that the problem of solving parity games
with weights is strongly connected to the problem of solving another important class
of games as well, so-called mean-payoff parity games as introduced by Chatterjee,
Henzinger, and Jurdziǹski [CHJ05].

69



CHAPTER 3. PARITY GAMES WITH WEIGHTS

A mean-payoff parity game is played on a colored arena with weights. In addition
to satisfying the parity condition induced by the coloring, it is furthermore the task
of Player 0 to ensure that the average weight of the traversed edges is nonnegative.
Formally, given an arena with vertex set V and set of edges E, a coloring Ω of V, and
a weight function Weight over E, the mean-payoff parity condition is defined asDef. mean-payoff

parity condition

MeanPayoffParity(Ω, Weight) ={
v0v1v2 · · · ∈ Vω | lim inf

j→∞

1
j
Weight(v0 · · · vj) ≥ 0

}
∩ Parity(Ω) .

A game (A, MeanPayoffParity(Ω, Weight)) is called a mean-payoff parity game.Def. mean-payoff
parity game Chatterjee and Doyen [CD12] showed that energy parity games and mean-payoff

parity games can be transformed into each other.

Proposition 3.32 ([CD12]). Let G = (A, MeanPayoffParity(Ω, Weight)) be a mean-
payoff parity game with n vertices and let G ′ = (A, EnergyParityΩ(Weight′)), where
Weight′(e) = Weight(e) + 1

1+n for all edges e of A. Then W0(G) = W0(G ′).

Due to Proposition 3.32, the problem of solving energy parity games and the prob-
lem of solving mean-payoff parity games are logarithmic-space-equivalent. Hence, we
can use the techniques underlying :Theorem 3.18 to reduce the problem of solving: Sec. 3.2, Page 52
parity games with weights to the problem of solving mean-payoff parity games. In
fact, it is Proposition 3.32 that allows us to leverage the pseudo-quasi-polynomial
algorithm for solving mean-payoff parity games due to Daviaud, Jurdziński, and
Lazić [DJL18] to solve parity games with weights in pseudo-quasi polynomial time.

Corollary 3.33. The following decision problems are polynomial-time equivalent:

“Given a parity game with weights G and a vertex v of G, does Player 0 have a
winning strategy from v in G?”

“Given a mean-payoff parity game G and a vertex v of G, does Player 0 have a
winning strategy from v in G?”

Solving parity games with weights by iteratively solving mean-payoff parity games
as sketched above, however, does not allow us to obtain the memory bounds from
:Theorem 3.34. This is due to Player 0, in general, requiring infinite memory in order: Sec. 3.4, Page 71
to win a mean-payoff parity game [CHJ05].

3.4 Memory Requirements

In the previous sections we have shown how to solve parity games with weights and
determined the computational complexity of this problem. We now turn our atten-
tion to the memory required by both players to implement their respective winning
strategies.
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vI/1 vII/0 vIII/2

Figure 3.13: Player 1 wins this finitary parity game from every vertex, but he has no
finite-state winning strategy from any vertex.

Recall that we use binary encoding to denote weights, i.e., the size of a game G only
grows logarithmically in the largest absolute weight W occurring in G. Moreover, recall
that we denote the number of vertices of G by n and the number of odd colors of G
by d. In this section we show polynomial bounds in n, d, and W on the necessary and
sufficient memory for Player 0 to win parity games with weights. Due to the binary
encoding of weights, these bounds are exponential in the size of the game. Player 1, in
contrast, requires infinite memory, since parity games with weights subsume finitary
parity games.

Theorem 3.34. Let G be a parity game with weights with n vertices, d odd colors, and largest
absolute weight W. Moreover, let v be a vertex of G.

1. Player 0 has a strategy σ that is winning from each vertex in W0(G) with |σ| ∈
O(nd2W).

2. Player 1 requires, in general, infinite memory to win from W1(G).
Furthermore, for each n > 0 and each W ≥ 0 there exists a parity game with weights Gn,W
with |Gn,W | ∈ O(n log W) such that Player 0 wins Gn,W from every vertex, but she requires a
strategy of size Ω(nW) to do so.

The proof of the second item of Theorem 3.34 follows directly from the necessity
of infinite memory for winning strategies of Player 1 in finitary parity games due to
Chatterjee and Henzinger [CH06], i.e., from :Proposition 2.25.2. Since parity games : Sec. 2.4, Page 23
with weights subsume finitary parity games, this result carries over to our setting.
The game shown in :Figure 2.6 witnesses this lower bound. We reprint that game in : Sec. 2.4, Page 22
Figure 3.13 for the sake of completeness.

Remark 3.35. There exists a parity game with weights G such that Player 1 has a winning
strategy from each vertex v in G, but he has no finite-state winning strategy from any v in G.

Having argued that no finite upper bound on the space requirements of winning
strategies for Player 1 exists, we now show that, in contrast, exponential memory is
sufficient, but also necessary, for Player 0 to implement a winning strategy. To this
end, we first prove that the winning strategy for her in a bounded parity game with
weights constructed in the proof of the second item of :Lemma 3.17 suffers at most a : Sec. 3.2, Page 51
linear blowup in comparison to his winning strategies in the underlying energy parity
games. The desired upper bound on the size of winning strategies for Player 0 in
parity games with weights then follows directly from this, since
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• Chatterjee and Doyen [CD12] showed that Player 0 has winning strategies of lin-
ear size in the number of vertices, the number of colors, and the largest absolute
weight in energy parity games (cf. :Proposition 3.12), and since: Sec. 3.2, Page 46
• we can reuse memory states in order to implement winning strategies in parity

games with weights, given winning strategies in the underlying bounded parity
games with weights (cf. :Corollary 3.10).: Sec. 3.2, Page 44

Lemma 3.36. Let G be a bounded parity game with weights with n vertices, d odd colors,
and largest absolute weight W. Player 0 has a finite-state strategy of size at most d(6n)(d +
2)(W + 1) that is winning from each vertex in W0(G).

Proof. Let V and E be the vertex set and the set of edges of G, respectively, and recall
that we have defined P = {+,−}. Recall that in the proof of Lemma 3.17 we have
constructed an energy parity game Gv with vertices (V× P)∪ (E× P×{0, 1}) for each
vertex v ∈ V. We have then constructed a winning strategy σ for Player 0 for G by
“stitching together” winning strategies for her in the Gv. As only one of the constituent
strategies is simulated at any given time, it is straightforward to implement σ via the
disjoint union of memory structures implementing the constituent strategies. Hence,
this approach yields an upper bound of n(2n + 4n2)(d + 2)(W + 1) on the size of σ
due to the upper bound on the size of winning strategies for Player 0 in energy parity
games stated in Proposition 3.12.

In the construction of the Gv, however, we only store the edges chosen by the players
in the vertices of the form E× P× {0, 1} for didactic purposes. In fact, it suffices to
store the target vertex of an edge instead, resulting in each Gv only containing 6n
vertices. Moreover, recall that the definition of the Gv only takes the color of v into
account: If two vertices v and v′ have the same color, then the games Gv and Gv′

are isomorphic. Further, Chatterjee and Doyen have shown that, if Player 0 wins an
energy parity game G ′ with n′ vertices, d′ colors, and largest absolute weight W ′,
then she has a uniform strategy of size n′d′W ′ that is winning from all vertices from
which she wins G ′ [CD12]. Hence, it suffices to combine at most d strategies, each of
size (6n)(d + 2)(W + 1), in order to obtain a winning strategy for Player 0 in G.

Having established an upper bound on the memory required by Player 0, we now
proceed to show a polynomial lower bound (in the number of vertices and the largest
absolute weight) on the memory required by Player 0 to implement a winning strategy.

Lemma 3.37. For each n > 0 and each W ≥ 0 there exists a parity game with weights Gn,W
with |Gn,W | ∈ O(n log W) such that Player 0 wins Gn,W from every vertex, but each winning
strategy for her is of size at least nW + 1.

Proof. We show the game Gn,W in Figure 3.14. This game has n + 4 vertices and the
largest absolute weight of an edge is W. Hence, we have |Gn,W | = (n + 4) log W ∈
O(n log W). Each vertex of Gn,W save for vdel ∈ V0 and V ′ans ∈ V1 only has a single
successor. Thus, the only choice of Player 0 in Gn,W consists in determining how often
to take the self-loop of vertex vdel upon each visit. Dually, the only choice of Player 1
consists of deciding whether or not to move from v′ans to v′req,1, or to continue to vans.
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vreq/3 v′req,1/1 v′req,n/1 vdel/1 v′ans/2 vans/4
0 W

· · ·
WW

· · ·
WW

· · ·
W W

−1

0 0

n vertices

0

0

Figure 3.14: A game of size O(n log W) in which Player 0 only wins with strategies of
size at least nW + 1.

Player 0 wins Gn,W from each vertex by taking the self-loop of vdel nW times upon
each visit to vdel and by subsequently moving to v′ans. Each request in each play that
is consistent with this strategy is answered or unanswered with cost at most nW,
independently of the choices of Player 1 in v′ans. Moreover, as the only way to visit vreq
is to move there from vans, the play visits vans infinitely often if and only if it visits vreq
infinitely often. Further, the play visits v′req,1 and v′ans infinitely often. Hence, almost
all requests are answered, i.e., this strategy is winning for Player 0 from all vertices.
This strategy can be implemented by a counter that counts the number of self-loops
of vdel taken so far, which is reset to zero upon leaving vdel. As this counter is bounded
by nW, the strategy is of size nW + 1.

It remains to show that each finite-state winning strategy for Player 0 has at least
nW + 1 memory states. Towards a contradiction, let σ be a winning strategy for
Player 0 from some vertex v with less than nW + 1 memory states and let ρ be a
play that starts in v and that is consistent with σ. We implement a strategy for Player 1
using a counter κ that is initialized with one if v = vreq and with zero otherwise. Upon
each visit to vreq we increment κ. After each visit to vreq, the strategy τ prescribes mov-
ing from v′ans to v′req,1 for the first κ visits to v′ans, and it prescribes moving from v′ans

to vans at the κ + 1-th visit to v′ans. Hence, after the κ + 1-th visit to v′ans, the vertex vreq
is visited again, κ is incremented and the behavior of τ described above repeats with
incremented κ.

Let ρ be a play consistent with σ and τ. Since σ is winning for Player 0, the play ρ
does not remain in vdel from some point onwards ad infinitum, as this would violate
the parity condition and thus contradict σ being winning from v for Player 0. Hence,
playing consistently with τ, Player 1 enforces a play that starts with a (possibly empty)
finite prefix that ends before the first visit to vreq and that continues with infinitely
many rounds, each starting in vreq. The j-th round is of the form

vreq ·Πk=0,...,j(v′req,1 · · · v′req,n · (vdel)
`j,k · v′ans) · vans .

We first show `j,k < nW + 1 for all j, k. Towards a contradiction, assume `j,k ≥
nW + 1 for some j, k ∈ N. Since σ is of size less than nW + 1, a straightforward
pumping argument shows that the play ρ′ consisting of the finite prefix of ρ ending
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before the first visit to vreq concatenated with the first j− 1 rounds of ρ, but ending
with the infinite suffix

vreq ·Πk′=0,...,k−1(v′req,1 · · · v′req,n · (vdel)
`j,k′ · v′ans) · v′req,1 · · · v′req,n · (vdel)

ω

is consistent with σ. This, however, contradicts σ being a winning strategy for Player 0
from v as vdel has the odd color one, i.e., as the resulting play violates the par-
ity condition. Hence, we obtain `j,k < nW + 1 for all j, k, which, in turn, yields
Weight((vdel)

`j,k) < −nW.
Since each edge (v′req,n′ , v′req,n′+1) for 1 ≤ n′ < n as well as the edge (v′req,n, v′del) has

weight W, we obtain

Weight(v′req,1 · · · v′req,n · (vdel)
`j,k · v′ans) > 0

for all j, k. This, in turn, implies

Weight(vreq ·Πk=0,...,j(v′req,1 · · · v′req,n · (vdel)
`j,k′ · v′ans)) ≥ j + 1

for each j. Since, as argued above, the play ρ consistent with σ consists of infinitely
many rounds, we obtain that for each b ∈ N there exist infinitely many requests in ρ
that are answered with cost at least b. Hence, the costs-of-requests along ρ diverge,
which contradicts σ being a winning strategy for Player 0.

This concludes the study of memory requirements for both players in parity games
with weights. For Player 0, the results from Theorem 3.34 also hold true for bounded
parity games with weights: Lemma 3.36 directly yields an upper bound on the mem-
ory required by Player 0 in order to win in bounded parity games with weights,
while it is easy to see that Player 0 also wins the games constructed in the proof
of Lemma 3.37 when interpreting them as bounded parity games with weights, but
only using a strategy of size nW + 1.

For Player 1, however, these results do not directly carry over, as he has, in fact, a
positional winning strategy for the game witnessing necessity of infinite memory for
him in parity games with weights shown in Figure 3.13. Recall that, in the proof of
the first item of :Lemma 3.17, for a given parity game with weights G, we construct a: Sec. 3.2, Page 51
strategy τ that is winning for Player 1 from a vertex v out of a winning strategy τv for
him in an induced energy parity game Gv from a designated vertex v′.

While τv can be assumed to be positional as shown by Chatterjee and Doyen [CD12]
(cf. :Proposition 3.11), the strategy τ keeps track of play prefixes in Gv and thus: Sec. 3.2, Page 45
requires potentially infinitely many memory states. In particular, in order to win Gv
from v′, recall that it may be necessary to switch between two copies of the arena of G.
Whether or not to perform this switch is governed by the accumulated weight of the
play prefix in G thus far.

Hence, our construction from the proof of that lemma does not directly allow us
to obtain positional or finite-state winning strategies for Player 1 in bounded parity
games with weights. It remains open whether Player 1 requires infinite memory to win
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in bounded parity games with weights. Since she, however, has finite-state winning
strategies in the special case of bounded parity games with costs as shown by Fijalkow
and Zimmermann [FZ14] we conjecture that she requires at most finite memory for
winning strategies in bounded parity games with weights as well.

We now turn our attention to the quantitative properties of this winning condition.
To this end, we provide tight bounds on the costs of requests that Player 0 can guar-
antee.

3.5 Bounds on Cost

We have shown in the previous section that finite-state strategies of exponential size
suffice for Player 0 to win parity games with weights, while Player 1 in general re-
quires infinite memory. As we are dealing with a quantitative winning condition,
however, we are not only interested in the size of winning strategies, but also in their
quality. More precisely, we are interested in an upper bound on the cost of requests
that Player 0 can ensure.

In this section, we show that if Player 0 wins a game with n vertices, d odd colors,
and largest absolute weight W, then she can ensure that almost all requests are an-
swered with at most polynomial cost in n, d, and W, i.e., exponential cost in the size
of the game. Moreover, we provide an example witnessing a polynomial bound in n
and W.

The dual question is vacuous: In order to win a parity game with costs, Player 1
may have to cause the costs-of-response to diverge. Hence, there does not exist, in
general, a finite lower bound on the costs-of-response of requests in plays consistent
with a winning strategy for Player 1.

Theorem 3.38. Let G be a parity game with weights with n vertices, d odd colors, and largest
absolute weight W.

There exists some b ∈ O((ndW)2) and a strategy σ for Player 0 such that, for all plays ρ
beginning in W0(G) and consistent with σ, we have Cost(ρ) ≤ b.

Furthermore, for each n > 0 and each W ≥ 0 there exists a parity game with weights Gn,W
with |Gn,W | ∈ O(n log W) such that Player 0 wins Gn,W from each vertex, but can only enforce
a cost of Ω(nW).

We first show that Player 0 can indeed ensure the upper bound as stated in Theo-
rem 3.38 from her winning region in parity games with weights. We obtain this bound
via a pumping argument leveraging the upper bound on the size of winning strategies
obtained in :Lemma 3.36. : Sec. 3.4, Page 72

Lemma 3.39. Let G, n, d, and W be as in the statement of Theorem 3.38 and define s =
d(6n)(d+ 1)(W + 1). Player 0 has a strategy σ such that, for each play ρ that starts in W0(G)
and is consistent with σ, we have Cost(ρ) ≤ nsW.

Proof. Let σ be a winning strategy for Player 0 in G from W0(G) of size at most s. Such
a strategy exists due to Lemma 3.36. Moreover, let ρ = v0v1v2 · · · be a play that starts
in W0(G) and is consistent with σ.
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We call a position j ∈ N of ρ sumptuous if nsW < Cor(ρ, j) < ∞. Each sumptuousDef. sumptuous
position j has some odd color c, and the request for c posed by visiting vj is eventually
answered due to Cor(ρ, j) < ∞.

We show that ρ only contains finitely many sumptuous positions. Since ρ is consis-
tent with the winning strategy σ for Player 0, almost all requests in ρ are eventually
answered, i.e., there exist only finitely many positions j with Cor(ρ, j) = ∞. Thus, ρ
containing only finitely many sumptuous positions directly implies the desired state-
ment.

Towards a contradiction, assume that there exist infinitely many sumptuous posi-
tions in ρ. We show that then there exists a play that is consistent with σ but which
has diverging costs-of-responses, contradicting σ being winning for Player 0. To this
end, we employ a pumping argument.

We define a sequence of positions that begins with the first sumptuous position j0.
Let j′0 be the minimal position that satisfies Ω(vj′0

) ∈ Ans(Ω(vj0)). This position exists
since Cor(ρ, j0) < ∞ due to the definition of sumptuous positions. We continue by
defining j1 as the smallest sumptuous position greater than j′0 and by defining j′1 as
the minimal position that satisfies Ω(vj′1

) ∈ Ans(Ω(vj1)). Continuing in this manner,
we obtain a sequence j0 < j′0 < j1 < j′1 < j2 < j′2 < · · · , where j0 is the first sumptuous
position of ρ, each j′k for k ≥ 0 is the minimal position that satisfies both j′k > jk
and Ω(vj′k

) ∈ Ans(Ω(vjk)), and each jk for k > 0 is the smallest sumptuous position
greater than j′k−1. Since there exist infinitely many sumptuous positions by assumption
and since each request posed at a sumptuous position is answered by definition, the
sequence j0 < j′0 < j1 < j′1 < j2 < j′2 < · · · is indeed infinite.

Due to the definition of sumptuous positions and the j′k, we have Ampl(vjk · · · vj′k
) >

nsW for each k ∈ N. Since ρ is consistent with the finite-state strategy σ of size s, we
claim that in each such vjk · · · vj′k

there exists an infix that can be repeated arbitrarily
often while retaining consistency with σ. To identify such infixes, we partition the
sumptuous positions jk: We call a position jk positively sumptuous if there existsDef. positively

sumptuous a j′ with jk ≤ j′ ≤ j′k such that Weight(vjk · · · vj′) > nsW and negatively sumptuous

Def. negatively
sumptuous

otherwise.
Let σ be implemented by the memory structure (M, init, upd). As each edge con-

tributes cost at most W to Ampl(vjk · · · vj′k
), for each k ∈ N there exist positions `k

and `′k with jk < `k < `′k < j′k such that
• v`k = v`′k ,
• upd+(init(v0), v0 · · · v`k) = upd+(init(v0), v0 · · · v`′k),
• Weight(v`k · · · v`′k−1) > 0, if jk is positively sumptuous, and such that
• Weight(v`k · · · v`′k−1) < 0, if jk is negatively sumptuous.

We illustrate the requirements towards the jk, the j′k, the `k, and the `′k in Figure 3.15.
The positions jk, `k, `′k, and j′k split ρ into infinitely many infixes

ρ = π ·Πk=0,1,2,...πk,I · πk,II · πk,III · πk,IV ,

where π is some prefix of ρ and πk,I, πk,II, πk,III, and πk,IV start at jk, `k, `′k, and j′k,
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Weight

ρj0 j′0

j1

j′1 j2 j′2

nsW

−nsW
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Figure 3.15: Sumptuous positions along some play ρ.

v1/1 v2/0 vn−1/0 vn/2
W W · · · WW · · · WW · · · W W

W

n vertices

Figure 3.16: The game Gn witnessing an exponential lower bound on the cost that
Player 0 can ensure.

respectively. Due to the definition of `k and `′k, the play

ρ′ = π ·Πk=0,1,2,...πk,I · (πk,II)
k · πk,III · πk,IV

is consistent with σ. The costs-of-response of the requests opened by visiting the vjk ,

however, diverge due to |Weight(πk,II)| =
∣∣∣Weight(v`k · · · v`′k−1)

∣∣∣ > 0. Hence, ρ′ begins
in the initial vertex of ρ and is consistent with σ, but violates the parity condition with
weights, which contradicts σ being a winning strategy from the initial vertex of ρ. This
yields the desired statement, as argued above.

Having thus shown that Player 0 can indeed ensure an upper bound on the incurred
cost that is polynomial in n, d, and W, i.e., exponential in the size of the game, we now
proceed to show a polynomial (in n and W) lower bound. This is witnessed by a
sequence of games Gn of size linear in both n and log W, in which Player 0 wins from
every vertex, but in which she cannot enforce a cost smaller than (n− 1)W.

Lemma 3.40. For each n > 0 and each W ≥ 0 there exists a parity game with weights Gn,W
with |Gn,W | ∈ O(n log W) containing a vertex v such that Player 0 wins Gn,W from v, but
for each winning strategy for Player 0 from v there exists a play ρ starting in v and consistent
with σ with Cost(ρ) ≥ (n− 1)W.

Proof. We show the game Gn,W in Figure 3.16. The arena of Gn,W is a cycle with n
vertices of Player 1, where each edge has weight W. Since the weights are encoded
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in binary, the game Gn,W is of linear size in both n and log W. Moreover, all vertices
are labeled with color zero, save for one (arbitrary) vertex of color two and its directly
succeeding vertex of color one.

Player 0 only has a single strategy in this game and there exist only n plays in Gn,W ,
each starting in a different vertex of Gn,W . In each play, each request for color one is
only answered after n− 1 steps, each contributing a cost of W. Hence, each request
incurs a cost of (n− 1)W. Moreover, as the request for color one is posed and answered
infinitely often in each play, we obtain the desired result.

While Player 0 is able to bound the costs from above by d(6n2)(d + 1)W(W + 1) ∈
O((ndW)2) due to Lemma 3.39, we only obtain a sequence of examples witnessing
a lower bound of (n − 1)W ∈ Θ(nW) use on these costs due to Lemma 3.40. Thus,
while both the upper and the lower bound are exponential in the size of the game,
there remains a polynomial gap between the two bounds.

The upper bound on the costs is due to a pumping argument leveraging the up-
per bound on the memory Player 0 requires to implement a winning strategy due to
:Lemma 3.36. We have a lower bound of (n− 4)W ∈ Θ(nW) on the memory required: Sec. 3.4, Page 72
by Player 0 to implement a winning strategy due to :Lemma 3.37. Thus, even if we: Sec. 3.4, Page 72
are able to improve the upper bounds on the memory requirements for Player 0, the
pumping argument leveraged in the proof of Lemma 3.39 can only improve the upper
bound on the cost incurred by Player 0 to d(n− 4)W2 ∈ O(ndW2). Hence, the proof
methods used in this section do not enable us to completely close this gap between
the upper and the lower bound on the cost Player 0 is able to enforce.

All bounds obtained in this section also hold for bounded parity games with weights:
The upper bound from Lemma 3.39 holds for bounded parity games with weights
since the bounded parity condition with weights strengthens its unbounded vari-
ant. Analogously, the games constructed for the proof of the lower bound on the
incurred cost in Lemma 3.40 yield the same lower bound for bounded parity games
with weights.

This concludes our study of parity games with weights and their properties for the
boundedness case, i.e., if we just require Player 0 to bound the costs-of-response from
above. We summarize our findings in the following section.

3.6 Summary of Results

In this chapter we have introduced parity games with weights, an extension of parity
games with costs [FZ14] that lifts the restriction to nonnegative costs and allows for in-
teger weights. After lifting this restriction, we have extended the concepts and notions
of parity games with costs to our setting in : Section 3.1 before showing that solving:Page 31
parity games with weights is in NP∩ coNP in : Section 3.2. Our proof of NP∩ coNP-:Page 37
membership of the problem also yields an algorithm for solving them in pseudo-
quasi-polynomial time due to Daviaud, Jurdziński, and Lazić [DJL18], as observed by
them. Subsequently, we have provided a lower bound of energy-parity-hardness on
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Complexity Mem. Pl. 0/Pl. 1 Bounds

Parity Games
UP∩ coUP

pos./pos. –
quasi-poly.

Energy Parity Games
NP∩ coNP O(ndW)/pos. O(nW)

pseudo-quasi-poly.

Finitary Parity Games PTime pos./inf. O(nW)

Parity Games UP∩ coUP
pos./inf. O(nW)

with Costs quasi-poly.

Parity Games NP∩ coNP O(nd2W)/inf. O((ndW)2)
with Weights pseudo-quasi-poly.

Table 3.17: Characteristic properties of variants of parity games.

the complexity of solving parity games with weights in : Section 3.3 and discussed :Page 61
the memory requirements of both players as well as the quality of plays that Player 0
can ensure in : Section 3.4 and : Section 3.5, respectively. We summarize our results :Page 70

:Page 75and compare them to the properties of existing quantitative variants of parity games
in Table 3.17.

Throughout this chapter, we have assumed the weighting to be given in binary
encoding, resulting in the size of a parity game with weights G being logarithmic in the
largest absolute weight occurring in G. All results obtained in this chapter, however,
still hold true if the weight is given in unary encoding. In this case, subdividing the
edges such that each edge has absolute weight at most one only incurs a polynomial
blowup in the size of the game. Hence, we are able to discuss the complexity of
solving parity games with weights given in unary encoding by discussing such games
in which the largest absolute weight is bounded by one.

We first recall that we stated in :Theorem 3.31 that solving parity games with : Sec. 3.3, Page 69
weights is polynomial-time equivalent to solving energy parity games. Furthermore,
recall that, as discussed in : Section 3.4, in order to solve a parity game with weights G :Page 70
with largest absolute weight W, we solve a polynomial number of energy parity games
with largest absolute weight max(1, W). Since the problem of solving energy parity
games can still only be solved in quasi-polynomial time even in this special case, we
do not obtain an improved runtime of Algorithm 3.2 due to the assumption of weights
given in unary encoding.

Remark 3.41. The following problem is in NP∩ coNP:

“Given a parity game with weights G with n vertices, d colors, and largest absolute
weight one, and a vertex v in G, does Player 0 win G from v?”

Furthermore, due to an observation by Daviaud, Jurdziński, and Lazić [DJL18], the
problem stated in the above remark can be solved in time O(dn2 log(d/ log n2)+4.45).
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Regarding the memory requirements of winning strategies in parity games with
weights, the results of :Theorem 3.34 cannot be further improved for the special case: Sec. 3.4, Page 71
of the weights being given in unary encoding. These results yield that Player 0 re-
quires O(nd2W) memory states to implement a winning strategy in parity games with
weights. Hence, if W = 1, then polynomial memory space suffices for Player 0 to
implement such strategies. Moreover, the games Gn,1 constructed in :Lemma 3.37: Sec. 3.4, Page 72
witness a polynomial lower bound. Player 1, in contrast, still requires infinite memory
to win even in this special case, as this lower bound already holds true for the case of
finitary parity games [CH06].

Remark 3.42. Let G be a parity game with weights with n vertices, d odd colors, and largest
absolute weight one. Moreover, let v be a vertex of G.

1. Player 0 has a strategy σ that is winning from each vertex in W0(G) with |σ| ∈ O(nd2).
2. Player 1 requires, in general, infinite memory to win from W1(G).

Furthermore, for each n > 0, there exists a parity game with weights Gn such that Player 0
wins Gn from every vertex, but she requires a strategy of size Ω(n) to do so.

Analogously, the results of :Theorem 3.38 can also not be further improved for the: Sec. 3.5, Page 75
special case of W = 1. In particular, if Player 0 wins a parity game with weights G, she
can still guarantee cost at most polynomial in the number of vertices and the number
of colors occurring in G. Moreover, the tightness of this bound is again witnessed by
the games Gn,1 constructed in :Lemma 3.40.: Sec. 3.5, Page 77

Remark 3.43. Let G be a parity game with weights with n vertices, d odd colors, and largest
absolute weight one.

There exists some b ∈ O((nd)2) and a strategy σ for Player 0 such that, for all plays ρ
beginning in W0(G) and consistent with σ, we have Cost(ρ) ≤ b.

Furthermore, for each n > 0, there exists a parity game with weights Gn with n vertices and
largest absolute weight one such that Player 0 wins Gn from each vertex, but can only enforce
a cost of Ω(n).

Finally, we remark that our definition of parity games with weights is not without
alternatives. Recall that we defined the amplitude of a play infix as the largest absolute
value of the accumulated weight attained along that infix, i.e., we defined

Ampl(π) = sup
j<|π|

∣∣Weight(v0 · · · vj)
∣∣ ∈N∞

Three possible variations of this definition would
• use a one-sided definition (instead of the absolute value) for the amplitude of a

play, i.e., define

Ampl(π) = sup
j<|π|

Weight(v0 · · · vj) ∈N∞ ,

• not allow Player 0 to “store” energy by letting the weight of a play infix below
zero, i.e., define

Weight(v0 · · · vj) = max
{

0, Weight(v0 · · · vj−1) + Weight(vj−1, vj)
}

,
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and
• cause Player 0 to lose the game once the cost of an unanswered request drops

below zero, i.e., declare all plays v0v1v2 · · · in which there exist positions j
and j′ such that the request for Ω(vj) is not answered in vj · · · vj′ and such
that Weight(vj · · · vj′) < 0 losing for Player 0,

respectively. We believe our definition, however, to be the most intuitive, straightfor-
ward, and practicable extension of the parity condition with costs to the setting of
integer bounds. We leave it open whether these alternative definitions yield more or
less complex decision problems.

Furthermore, Bruyère, Hautem, and Randour [BHR16] have studied a variant of
finitary parity games with multiple colorings, each of which induces a finitary par-
ity condition. Player 0 wins this multidimensional finitary parity game if she satis-
fies all induced finitary parity conditions. The authors have shown the boundedness
problem for this setting to be ExpTime-complete. One could also consider a variant
of parity games with weights that features multiple colorings, each with a respec-
tive weight function. Analogously to the multidimensional finitary parity games of
Bruyère, Hautem, and Randour, it would be the aim of Player 0 to satisfy all induced
parity conditions with weights. We leave the problem of solving such games open for
future work.

Instead, in the next section, we focus on the optimality problem for parity games
with weights. Recall that, in order to win a parity game with weights, Player 0 only has
to bound the costs incurred by the requests in the play. In the optimality problem, it is
our task to determine a minimal b such that Player 0 is able to enforce the cost of the
resulting play to not exceed b. We will show that this changes the characteristics of the
decision problems as well as of the strategies witnessing the solutions significantly.
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Playing Parity Games with Weights Optimally

In the previous section, we have defined parity games with weights as a generalization
of parity games with costs. While parity games with costs only allow for nonnegative
weights along their edges, parity games with weights drop this restriction and allow
arbitrary integer weights. Moreover, we have lifted the concept of the cost of response
from parity games with costs to parity games with weights. In the latter model, we
have defined the cost of response via the amplitude of the play infix starting at some
request and ending at its earliest answer. It is then the task of Player 0 to ensure a finite
upper bound on the cost-of-response of almost all requests. We have investigated the
properties of the problem of solving parity games with weights in the previous chapter.

In order to satisfy the parity condition with weights, however, Player 0 only has to
ensure some finite upper bound on the cost of the resulting play. This, however, may
not be sufficient for real-world applications: Recall that a major motivation for the
use of parity games with weights is their ability to model reactive systems with an
attached resource that may be charged or drained during the runtime of the system.
A winning strategy for Player 0 in a parity game with weights then implements a
controller for that system that provides an arbitrary upper bound on the fluctuation of
that resource in-between requests and responses. This controller, however, may let the
level of that resource fluctuate more than necessary, which is, in general, undesirable.

Instead, in order to obtain an “optimal” controller for the system, it is desirable
to ask for the optimal bound b such that the system can ensure that the level of the
resource fluctuates by at most b in-between requests and responses, as well as for a
controller witnessing this bound b. Speaking in terms of parity games with weights,
one asks for the minimal b such that Player 0 has a strategy of cost at most b from
some initial vertex. The following example shows that this additional strengthening
significantly changes the characteristics of the game, even in the special case of finitary
parity games.
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vI/1

/0

v′I/3

vII/1

vIII/2

/0

v′III/4

vIV/0

Figure 4.1: Example of a finitary parity game in which Player 0 has two strategies of
differing qualities [CF13].

Example 4.1. Consider the finitary parity game G shown in Figure 4.1, which is due to
Chatterjee and Fijalkow [CF13]. Clearly, Player 0 wins G from every vertex. As in all
finitary parity games (see :Proposition 2.25.1), she has a positional winning strategy σ: Sec. 2.4, Page 23
which has to prescribe moving towards v′III upon every visit to vII. In particular, the
play ρ = (vI · · · vII · · · v′IIIvIV)

ω is consistent with σ and has Cost(ρ) = 4.
Now assume we aim to find a strategy for Player 0 that allows her to bound the

cost of consistent plays by three. We define the strategy σ′ that prescribes moving
from vII to vIII if the preceding named vertex of vII is vI, and that prescribes moving
towards v′III, otherwise. Every play ρ consistent with σ′ has Cost(ρ) = 3. In order to
realize this lower cost, however, σ′ requires two memory states: In G, Player 0 only has
two positional strategies. Clearly, neither of these strategies has cost three or smaller.
Hence, every strategy that enforces a cost of consistent plays of at most three requires
at least two memory states. 4

Since finitary parity games are a special case of parity games with costs, which, in
turn, are a special case of parity games with weights, the above example witnesses
that even if Player 0 has a positional winning strategy in parity games with weights,
she may require memory in order to enforce cost below a given bound. Our main aim
in this chapter is to determine, given a parity game with weights G and a vertex v
of G, the minimal b such that Player 0 has a strategy σ with Costv(σ) = b, as well as a
strategy σ witnessing this bound.

We later show that, due to our results from :Chapter 3, it suffices to determine for:Page 29
a given bound b, whether Player 0 has a strategy σ with Costv(σ) ≤ b. Thus, our
main object of interest in this chapter is the following decision problem, the so-called
threshold problem:Def. threshold

problem
“Let G be a parity game with weights, let v be a vertex of G, and let b ∈N.
Does Player 0 have a strategy σ with Costv(σ) ≤ b?”

We show that this problem is ExpTime-complete for the general case of parity games
with weights, and that it is PSpace-complete for the special case of parity games with
costs as well as for the special case of finitary parity games.

Hence, the threshold problem for parity games with weights is harder than the
problem of solving them, which is known to be in NP ∩ coNP for parity games with
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weights due to :Theorem 3.18, in UP ∩ coUP for the special case of parity games : Sec. 3.2, Page 52
with costs due to :Proposition 2.33, and in PTime for the special case of finitary : Sec. 2.4, Page 26
parity games due to :Proposition 2.27. : Sec. 2.4, Page 24

Furthermore, we are interested in bounds on the memory required to implement
such a strategy σ and show that, in order to keep the costs below a bound b in a parity
game with weights with n vertices and with d odd colors, Player 0 requires memory
of size O(bd). This amount of memory furthermore suffices for her to keep the costs
below b, if she is able to do so at all. This contrasts the upper bound of O(nd2W) on
the memory required for her to win a parity game with weights (where W denotes
the largest absolute weight occurring in the game) due to :Theorem 3.34.1, as well as : Sec. 3.4, Page 71
the existence of positional winning strategies for her in parity games with costs and
finitary parity games due to :Proposition 2.34.1. Finally, we consider the memory : Sec. 2.4, Page 26
requirements of strategies for Player 1 that ensure the cost of consistent plays to exceed
a given b and show that he only requires O(nbd) memory states in order to enforce a
cost larger than b, which again contrasts his requirement for infinite memory in order
to win even finitary parity games (see :Proposition 2.25.2). : Sec. 2.4, Page 23

The remainder of this section is structured as follows: First, we reduce the threshold
problem for parity games with weights to that of solving parity games in Section 4.1.
In order to do so, we construct so-called threshold games. We use these threshold
games to show that we are able to solve the above problem in exponential time. Sub-
sequently, we show that we are able to lower this bound for the special case of parity
games with costs in Section 4.2: Here, we show that we can leverage the structure
of the threshold games to solve them in polynomial space (in the size of the parity
game with costs). Moreover, we argue that in both cases we can determine the opti-
mal bound in exponential time and polynomial space, respectively. In Section 4.3 we
then provide matching lower bounds on the complexity of the above problems, i.e.,
we show that the general problem for parity games with weights is ExpTime-hard and
that the problem is still PSpace-hard even for finitary parity games.

After having thus precisely determined the complexity of the threshold problem
for parity games with weights and their special cases, we turn our attention to the
memory requirements of both players. We show in Section 4.4 that both players require
exponential memory in order to ensure a given upper (in the case of Player 0) or lower
(in the case of Player 1) bound on the cost of responses, even for finitary parity games.

Finally, recall that in parity games with costs, it sufficed to consider the costs as
“abstract” values, i.e., to consider for a given edge whether it has costs zero, or greater
than zero (see :Remark 2.29). When requiring Player 0 to keep the costs below a given : Sec. 2.4, Page 26
bound, this is no longer the case. Thus, in Section 4.5, we discuss the influence of a
unary encoding of the weights on the results obtained in the preceding sections for
weights encoded in binary. We conclude this chapter in Section 4.6 with a summary
of the obtained results.

The results on parity games with costs in this chapter are based on work published
in LMCS [WZ17]. The results on parity games with weights constitute novel work.
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v0/5 v1/1 v2/6 v3/3 v4/3 v5/2 v6/3 v7/1
−3 0 +3 −2 0 −1 +1

Figure 4.2: The play prefix discussed in Example 4.2 illustrating that not all informa-
tion about all open requests needs to be stored.

4.1 Reduction to Threshold Games

As a first step in our analysis of the threshold problem, we reduce that problem to
that of solving classical qualitative parity games as introduced in : Section 2.3.2. To:Page 20
this end, for a given parity game with weights G and a bound b, we construct a parity
game Gb such that Player 0 has a strategy of cost at most b from v in G if and only if
she wins Gb from a designated vertex induced by v. Hence, for the remainder of this
section, fix some parity game with weights G with n vertices, d odd colors, and largest
absolute weight W as well as a bound b ∈N.

Recall that in parity games, positional strategies suffice for both players to win.
Hence, intuitively, upon reaching a vertex v in a parity game, neither player has any
information about the play that led to v, but they can only use their knowledge of
the current vertex in order to determine the next move. Thus, in order to construct a
parity game with the above property, we need to encode the information necessary to
determine the next move in G in the vertices of the resulting parity game. We show
that it suffices to store abstracted information about the requests that are currently
open, as well as the number of times that the bound b has already been exceeded.

4.1.1 Request Functions and Overflow Counters

First, we consider the information required about the open requests at the end of a play
prefix and observe that we do not require full information about all open requests and
their incurred costs. Instead it suffices to store, for each color c, the minimal and
maximal costs incurred by unanswered requests for c in the play prefix.

Example 4.2. Consider the play prefix shown in Figure 4.2. At the end of π there is
an open request for color 1, which has incurred cost 0. Moreover, there are three open
requests for color 3, which have incurred cost −2, cost 0 and cost 1, respectively. It is
unnecessary to store the request for color 3 with cost 0: If this request ever violates
some positive bound, then the request that has incurred cost 1 will have done so
previously. Dually, if the request for color 3 with cost 0 violates some negative bound,
then the request for color 3 that has incurred cost −2 will have done so before.

Finally, there is no open request for color 5, as this request has been answered by
visiting the color 6 in the third step. 4

We formalize the above observation via request functions, which, for each oddDef. request
functions color c for which there is an open request at the end of a play prefix store the maximal

and minimal cost incurred by unanswered requests for color c, up to and including
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Figure 4.3: The request function denoting the requests posed at the end of π from
Example 4.2.

the bound b. Towards the definition of request functions, we first define the set of
intervals

I = {(l, h) | −b ≤ l ≤ h ≤ b} .

Clearly, we have |I| = (2b + 1) + · · · + 1 = (2b + 1)(2b + 2)/2 = (4b2 + 4b + 2b +
2)/2 = 2b2 + 3b + 1. We denote the set of odd colors occurring in G by D. A b- Def. (b-bounded)

request functionbounded request function r : D → {⊥} ∪ I is a function mapping each odd color
of G either to
• ⊥, denoting that currently no request for color c is open, or to
• some (l, h) ∈ I, denoting that

– there exists an open request for color c that has accumulated weight l, that
– there exists an open request for color c that has accumulated weight h, and

that
– all requests for color c have accumulated weight at least l and at most h.

Given some request function r, we define the lower and upper residual request Def. r↓, r↑
functions r↓ and r↑ as r↓(c) = l and r↑(c) = h, if r(c) = (l, h), and as r↓(c) = r↑(c) =
⊥ if r(c) = ⊥.

Example 4.3. Consider again the play π defined in Example 4.2. This play prefix
induces the request function r defined as

r :


1 7→ (0, 0) ,
3 7→ (−2, 1) ,
5 7→ ⊥ .

We show a graphical representation of r in Figure 4.3. Moreover, we obtain

r↓(c) =


1 7→ 0 ,
3 7→ −2 ,
5 7→ ⊥ ,

and r↑(c) =


1 7→ 0 ,
3 7→ 1 ,
5 7→ ⊥

as the lower and upper residual request functions. 4
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We define R to be the set of all request functions. We have |R| = (|I| + 1)|D| =Def. R
(2b2 + 3b + 2)d, i.e., there exist exponentially many request functions when measured
in the size of the game G, but only polynomially many when measured in the bound b.

4.1.2 Threshold Games

Request functions provide an explicit view of the open requests at the end of some
play prefix. It is, however, insufficient to only track the request function along an
infinite play ρ in order to decide whether or not ρ is winning for Player 0, as she may
have to tolerate finitely many requests with costs greater than b. Hence, in order to
construct the parity game Gb we augment the vertices of G not only with a request
function, but also with a so-called overflow counter that is incremented each timeDef. overflow counter
some request incurs a cost greater than b.

We later show that it suffices for Player 1 to enforce requests with costs exceeding
the bound b n times in order to witness that he is able to do so infinitely often. Hence,
it suffices to have this counter bounded from above by the number of vertices of G. We
now define a memory structure that, together with the game G, induces the desired
parity game Gb.

Recall that we fixed some parity game with weights G with n vertices and d odd
colors as well as a bound b ∈ N. Using the set R of request functions defined in the
previous section, we define the set of memory states M = {0, . . . , n} × R. As we aim
to track the cost of open requests using the functions from R, we define the initial
memory element init(v) = (0, rv), where rv is defined asDef. rv

rv(c) =

{
(0, 0) if Ω(v) is odd and c = Ω(v), and
⊥ otherwise.

We define the update function upd : M× E → M implementing the above intuition.
Let m = (o, r) ∈ M and let e = (v, v′) ∈ E. This update function updates the memory
state via upd(m, e)) = (o′, r′) by performing the following steps in order:

Weight First, we resolve the effect of traversing the edge e with weight w by defining r′I
as

r′I(c) =

{
(r↓(c) + Weight(e), r↑(c) + Weight(e)) if r(c) 6= ⊥, and
⊥ otherwise.

Overflow In a second step, we check whether some request has violated the bound b
during the move to v′ and update the overflow counter if this is the case. Thus,
if there exists a color c such that either (r′I)↓(c) < −b or (r′I)↑(c) > b, then
we define r′II(c) = ⊥ for all c ∈ D and set o′ to the minimum of o + 1 and n.
Otherwise, we define r′II = r′I and o′ = o.
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Request Finally, we resolve the effect of moving to a vertex with color Ω(v′) as fol-
lows: If Ω(v′) is even, then we define

r′III(c) =

{
⊥ if c ≤ Ω(v′), and
r′II(c) otherwise.

If, however, Ω(v′) is odd, then we define

r′III(c) =


(min

{
(r′II)↓(Ω(v′)), 0

}
,

max
{
(r′II)↑(Ω(v′)), 0

}
)

if c = Ω(v′), and

r′II(c) otherwise,

where we use the convention min {⊥, 0} = max {⊥, 0} = 0.
In either case, we define r′ = r′III, which concludes the definition of m′ = (o′, r′). The

resulting o′ is at most n and the resulting function r′ is an element of R. We combine
these elements in the memory structureM = (M, init, upd).

Example 4.4. Let r be a request function defined as

r :


1 7→ (−1, 2) ,
3 7→ ⊥ ,
5 7→ (1, 3) .

We illustrate this request function in Figure 4.4a.
Now assume that some play prefix that induces the request function r traverses two

edges of weight −1 each, first reaching a vertex v of color 2 and subsequently reaching
a vertex v′ of color 3. Moreover, assume b > 3. Moving to v answers all requests for
color 1. Subsequently, moving to v′ opens a new request for color 3 which has not yet
incurred any costs. This extended play prefix induces the request function

r′ :


1 7→ ⊥ ,
3 7→ (0, 0) ,
5 7→ (−1, 1) .

We illustrate the request function r′ in Figure 4.4b. 4

Recall that throughout this section we fixed a parity game with weights G. Let G =
(A, WeightParity(Ω, Weight)). We define the (b-)threshold game of G Def. (b-)threshold

game
Gb = (A′, Parity(Ω′)) ,

with A′ = A×M and with

Ω′(v, o, r) =

{
Ω(v) if o < n, and
1 otherwise,

which concludes the definition of Gb. A straightforward induction shows that this
construction indeed allows us to reason about the open requests along a play prefix.
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(a) The request function r.
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(b) The request function r′.

Figure 4.4: Illustration of the update of request functions from Example 4.4.

Remark 4.5. Let ρ = v0 · · · vj be a play in the parity game with weights G and let ext(ρ) =
(v0, o0, r0) · · · (vj, oj, rj) be its unique extended play in the threshold game Gb with oj < n.
Moreover, let c ∈ D.

If rj(c) = (l, h) 6= ⊥, then there exist positions j↓ ≤ j and j↑ ≤ j such that
• Ω(vj↓) = Ω(vj↑) = c, such that
• the request for color c is not answered in the infix vj↓ · · · vj nor in the infix vj↑ · · · vj, and

such that
• Weight(vj↓ · · · vj) = l, and Weight(vj↑ · · · vj) = h.

Furthermore, if rj(c) = (l, h) 6= ⊥ let j′ ≤ j be a position with Ω(vj) = c such that the request
for color c is not answered in the infix vj′ · · · vj. We then obtain l ≤ Weight(vj′ · · · vj) ≤ h.

The implication of Remark 4.5 does not hold true in the other direction: Since the
request function is “reset” every time the costs of some request exceed the bound b, it
does not provide information on all open requests.

In Gb we cap the amount of times the costs of some request may exceed the bound b
by n: Due to the coloring of A′, every play that at some point encounters a vertex of
the form (v, n, r) is losing for Player 0.

Remark 4.6. Let ρ = (v0, o0, r0)(v1, o1, r1)(v2, o2, r2) · · · be a play in Gb. If there exists a
position j ∈N such that oj = n, then ρ violates the parity condition.

The threshold game Gb is a classical qualitative parity game and thus has no weight
function. In order to simplify notation, however, we lift this notion from the under-
lying game G to Gb and say that an edge ((v, m), (v′, m′)) of Gb has weight w if the
edge (v, v′) of G has weight w.

Furthermore, let ρ = (v0, o0, r0)(v1, o1, r1)(v2, o2, r2) · · · be a play or a play prefix
inA′. We say that a position j is an overflow position if either j = 0 or if oj = oj−1 + 1.Def. overflow

position Due to the construction of M we have rj = rvj for every overflow position j, i.e., the
request function is “reset” at each such position.
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As a final piece of notation, we say that the overflow counter along the play ρ has
saturated if there exists a position j with oj = n. Due to the construction of A′ this Def. saturated

overflow counterimplies oj′ = n for all j′ > j. Moreover, the overflow positions indeed denote positions
at which the costs of some request exceed the bound b.

Remark 4.7. Let ρ = v0v1v2 · · · be a play in the parity game with weights G and let ext(ρ) =
(v0, o0, r0)(v1, o1, r1)(v2, o2, r2) · · · be its unique extended play in the threshold game Gb.

1. Let j ∈ N such that b < Cor(ρ, j) < ∞. If oj < n, then there exists some j′ ≥ j such
that j′ is an overflow position.

2. Let j, j′ ∈N be two adjacent overflow positions. There exists a j′′ with j ≤ j′′ < j′ such
that Cor(ρ, j′′) > b.

Our aim in this section was to construct the parity game Gb such that we can reduce
the problem of solving G with respect to some bound b to solving Gb. We show that
this is indeed the case in the following section.

4.1.3 Correctness

In the previous section we constructed the threshold game Gb of G, which we obtained
by augmenting the parity game with weights G with the memory structure M =
(M, init, upd). Each vertex (v, o, r) of Gb consists of a vertex v from G, a counter value o
that counts the number of times the cost of some request has exceeded the bound b,
and a request function r : D → {⊥}∪ I that stores information about the open requests
and the costs they have incurred so far.

Moreover, we claimed that the threshold problem reduces to solving the constructed
parity game. In this section, we show that this is indeed the case, i.e., this section is
dedicated to showing the following theorem. Recall that, in : Section 3.1, we de- :Page 31
fined Costv∗(σ) = supρ Cost(ρ), where ρ ranges over all plays starting in v∗ and con-
sistent with σ.

Theorem 4.8. Let v∗ be a vertex in G. Player 0 has a strategy σ in G with Costv∗(σ) ≤ b if
and only if she wins Gb from (v∗, init(v∗)).

We split the proof into several lemmas. To this end, recall that we defined Gb =
(A′, Parity(Ω′)). Let A′ = (V ′, V ′0, V ′1, E′), i.e., in particular, let V ′ = V ×M and V ′i =
Vi ×M for i ∈ {0, 1}. Moreover, for the remainder of this section, fix some vertex v∗

of G.
The direction from right to left is relatively straightforward: Since Gb is a parity

game, if Player 0 wins Gb from (v∗, init(v∗)), then she does so with a positional strat-
egy σ′, due to :Proposition 2.18. This strategy assigns to each vertex (v, o, r) of Player 0 : Sec. 2.3, Page 20
in Gb a unique successor (v′, o′, r′), where the values of o′ and r′ are deterministic up-
dates of o and r via the update function upd. Hence, σ′ can be interpreted as picking
only a successor vertex v′ of v with respect to the current memory state (o, r). Thus,
the choices of σ′ can be mimicked in G.

Lemma 4.9. If Player 0 wins Gb from (v∗, init(v∗)), then she has a strategy σ in G with
Costv∗(σ) ≤ b.
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Proof. Let σ′ : V ′0 → V ′ be a positional winning strategy for Player 0 from (v∗, init(v∗))
in Gb. Since Gb is a classical parity game, such a strategy exists due to Proposition 2.18.
We define the finite-state strategy σ for Player 0 in G as the unique strategy induced
by the memory structureM and the next-move function nxt defined as nxt(v, m) = v′,
if σ′(v, m) = (v′, m′) for some m′. It remains to show Costv∗(σ) ≤ b.

Let ρ = v0v1v2 · · · be a play in G that begins in v∗ and that is consistent with σ. Let

ρ′ = ext(ρ) = (v0, o0, r0)(v1, o1, r1)(v2, o2, r2) · · ·

be the unique extended play in Gb.
A simple induction shows that ρ′ is consistent with σ′. As ρ′ moreover starts

in (v∗, init(v∗)) by definition, it is winning for Player 0, i.e., it satisfies the parity con-
dition. This in particular implies that the overflow counter along ρ′ never saturates,
i.e., that we have oj < n for all j ∈ N, due to Remark 4.6. Hence, the plays ρ and ρ′

coincide on their color sequences. Since ρ′ is winning for Player 0 in Gb, it satisfies the
parity condition, which in turn implies that ρ satisfies the parity condition. It remains
to show that almost all requests in ρ are answered with cost at most b.

As argued above, the overflow counter along ρ′ eventually stabilizes at some value
less than n. Moreover, since ρ satisfies the parity condition, after some finite prefix, all
requests are answered. Hence, there exists a position j such that oj′ = oj < n and such
that Cor(ρ, j′) < ∞ for every j′ > j. Assume towards a contradiction that there exists
some j′ ≥ j with b < Cor(ρ, j′) < ∞. Then, the play ρ′ contains some overflow position
at some point after j′ due to Remark 4.7.1. This, however, contradicts the choice of j.
Hence, we obtain that almost all requests in ρ are answered with cost at most b.

We now turn our attention to the other direction of the statement, i.e., we aim to
show that, if Player 0 has a strategy σ in G with Costv∗(σ) ≤ b, then she wins Gb
from (v∗, init(v∗)). We show this claim via contraposition: Assume that Player 0 does
not win Gb from (v∗, init(v∗)). Since Gb is a parity game, it is determined due to
:Proposition 2.18. Hence, Player 1 wins Gb from (v∗, init(v∗)), say with the positional: Sec. 2.3, Page 20
strategy τ′. We obtain that such a positional strategy for him exists due to Proposi-
tion 2.18. We construct a strategy τ for Player 1 in G that enforces Cost(ρ) > b for each
play ρ starting in v∗ and consistent with τ. Since this implies Costv∗(σ) > b for each
strategy σ of Player 0, this suffices to show the desired statement.

Recall that the overflow counter along each play starting in (v∗, init(v∗)) is mono-
tonically increasing and bounded from above by the number n of vertices in G. Hence,
the value of the overflow counter either stabilizes at some value less than n, or it even-
tually saturates at value n. In the former case, τ′ has to ensure that the resulting play
violates the parity condition. Hence, it suffices to mimic the moves made by τ′ in G
ad infinitum in this case, which results in a play with infinitely many unanswered
requests in G. In the latter case, however, mimicking τ′ does not yield a strategy in G
with the desired property, as τ′ does not necessarily prescribe “meaningful” moves
in Gb once the overflow counter saturates. In order to leverage τ′ even after saturation
of the overflow counter, we intervene whenever the overflow counter is incremented,
by resetting it to the smallest possible value from which τ′ is still winning.
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Formally, we define the set R that contains all vertices (v, o, r) that are visited by Def. R
some play that starts in (v∗, init(v∗)) and that is consistent with τ′. Recall that we
defined rv as the function denoting the requests opened by visiting the vertex v in
: Section 4.1.2. Given a vertex v, we then define ov = min({n} ∪ {o | (v, o, rv) ∈ R}). :Page 88
In particular, we have ov∗ = 0, since (v∗, init(v∗)) = (v∗, 0, rv) ∈ R.

Lemma 4.10. The strategy τ′ is winning for Player 1 from (v, ov, rv) in Gb for all v ∈ V.

Proof. If ov = n, then all plays starting in (v, ov, rv) violate the parity condition by
construction ofA′. Thus, for the remainder of this proof, assume ov < n. Let (v, ov, rv)ρ
be a play starting in (v, ov, rv) that is consistent with τ′. Moreover, let π be a play prefix
starting in (v∗, init(v∗)), consistent with τ′, and ending in (v, ov, rv). Such a play prefix
exists due to definition of ov and due to the assumption of ov < n.

Since τ′ is positional, the play πρ starts in (v∗, init(v∗)) and is consistent with τ′.
Thus, πρ violates the parity condition, which implies that ρ violates the parity condi-
tion due to prefix-independence.

We now define a new memory structure M′ implementing the strategy τ. Recall
that we defined the memory structure M = (M, init, upd) during the construction
of the threshold game Gb in : Section 4.1.2. Using the components of that memory :Page 88
structure, we define M′ = M = [n + 1]× R, init′ = init, and

upd′((o, r), (v, v′)) =

{
(o, r′) if upd((o, r), (v, v′)) = (o, r′), and
(ov′ , r′) if upd((o, r), (v, v′)) = (o + 1, r′).

and combine these elements into the memory structureM′ = (M′, init′, upd′).
In the second case of the definition of upd′, we have r′ = rv′ by definition of upd.

Finally, we define the next-move function nxt′ via nxt′(v, m) = v′, if τ′(v, m) = (v′, m′)
for some m′ ∈ M and let τ be the finite-state strategy implemented byM′ and nxt. We
claim that for each play ρ starting in v∗ that is consistent with τ we have Cost(ρ) > b.

To show this claim, let ρ = v0v1v2 · · · be some play in G that starts in v∗ and that is
consistent with τ. Moreover, let

ρ′ = extM′(ρ) = (v0, o0, r0)(v1, o1, r1)(v2, o2, r2) · · ·

be the extended play of ρ with respect toM′. We say that j is a reset position if j = 0 Def. reset position
or if

upd((oj−1, rj−1), (vj−1, vj)) = (oj−1 + 1, rj) ,

i.e., if the second case in the definition of upd′ is applied.
The play ρ′ is not necessarily a play in Gb, since Gb is defined with respect to M

instead ofM′, but every infix of ρ′ that starts at a reset position and does not contain
another one, is a play infix in Gb that is consistent with τ′. At every reset position,
instead of incrementing the overflow counter, we set it to ov.
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Our first aim is to show oj < n for all j by analyzing the structure of ρ′. Intuitively,
this then implies that the strategy τ always uses “meaningful” moves of τ′ for its
choice of move and thus allows us to subsequently argue that τ is indeed winning for
Player 1.

To this end, we first show that, even though ρ′ is, in general, not a play in Gb, every
vertex (vj, oj, rj) of ρ′ is in R. This implies that, intuitively, the positional strategy τ′

prescribes a “useful” move from every (vj, oj, rj) in V ′1.

Lemma 4.11. For each j ∈N we have oj < n.

Proof. We first show that for each j ∈ N we have (vj, oj, rj) ∈ R by induction over j.
For j = 0, this is clear, as we obtain (v0, o0, r0) = (v∗, init(v∗)) ∈ R due to the definition
of R.

For j > 0, the induction hypothesis yields v′j−1 = (vj−1, oj−1, rj−1) ∈ R. Thus,
by definition of R, there exists a play prefix π starting in (v∗, init(v∗)) = (v0, o0, r0),
consistent with τ′ and ending in v′j−1. If v′j−1 ∈ V ′0, then π · (vj, o, rj) is consistent
with τ′ for some o ∈ {0, . . . , n}, which implies (vj, o, rj) ∈ R. If o = oj, then (vj, oj, rj) ∈
R clearly holds true. If o 6= oj, however, then oj = ovj and rj = rvj , i.e., (vj, oj, rj) ∈ R
by definition of ovj . Otherwise, i.e., if v′j−1 ∈ V ′1, then we have τ(π) = (vj, o, rj) for
some o ∈ {0, . . . , n}. Similar reasoning as in the previous case yields (vj, oj, rj) ∈ R in
this case as well.

In a second step, we show that we do not “skip” values of the overflow counter
usingM′, i.e., we show oj+1 ≤ oj + 1 for all j ∈N. To this end, let j ∈N and, towards
a contradiction, assume oj+1 > oj + 1. Since oj+1 6= oj, the second case in the definition
of upd′ is applied, which implies
• oj+1 = ovj+1 , as well as
• upd((oj, rj), (vj, vj+1)) = (oj + 1, rvj+1).

We show (vj+1, oj + 1, rvj+1) ∈ R, which implies oj+1 = ovj+1 ≤ oj + 1, i.e., the desired
contradiction, due to definition of ovj+1 .

Recall that we showed (vj, oj, rj) ∈ R above. If (vj, oj, rj) is a vertex of Player 0, then
we directly obtain (vj+1, oj + 1, rvj+1) ∈ R due to upd((oj, rj), (vj, vj+1)) = (oj + 1, rvj+1),
which implies that there is an edge leading from (vj, oj, rj) to (vj+1, oj + 1, rvj+1) in A′.

If, however, the vertex (vj, oj, rj) belongs to Player 1, then we have τ(vj, oj, rj) =
(vj+1, oj+1, rj+1). By definition of τ, this yields τ′(vj, oj, rj) = (vj+1, o, r) for some o ∈N

and some request function r. By definition of the arena A′ = A×M we have (o, r) =
upd((oj, rj), (vj, vj+1)) = (oj + 1, rvj+1). Thus, we obtain (vj+1, oj + 1, rvj+1) ∈ R, which
yields the desired contradiction as argued above. This concludes the proof of oj+1 ≤
oj + 1 for all j ∈N.

Finally, we prove the claim of this lemma by showing the following property by
induction over j:

If oj = k, then for every k′ ≤ k there is a reset position jk′ ≤ j with
ojk′ = k′.

Let us first argue that this indeed implies oj < n for all j ∈N. Towards a contradiction,
assume oj = n for some j ∈ N. Then, there are n + 1 reset positions, one for each
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value k in the range 0 ≤ k ≤ n for the overflow counter. Thus, two such positions j′, j′′

share the same vertex vj′ = vj′′ , but have differing values of the overflow counter oj′ 6=
oj′′ . By construction of M′, however, we obtain oj′ = ovj′ = ovj′′ = oj′′ , i.e., the desired
contradiction. It remains to show that the property above indeed holds true.

For the induction start, we have o0 = 0 and pick j0 = 0, which is a reset position.
Now, let j > 0 and let oj = k. If k ≤ oj−1, then the induction hypothesis yields the
necessary positions. Hence, assume we have k > oj−1, which implies k = oj−1 + 1 due
to oj+1 ≤ oj + 1, which we showed above. Then, j is a reset position. Hence, we define
jk = j and obtain the remaining jk′ for k′ < k via the induction hypothesis.

It remains to show that we indeed have Cost(ρ) > b. As argued above, this then
directly implies that for each strategy σ of Player 0 we have Costv∗(σ) > b, concluding
the proof of the direction from left to right of Theorem 4.8.

Proof of Theorem 4.8. The direction from right to left is encapsulated in Lemma 4.9.
For the direction from left to right, recall that we defined a strategy τ for Player 1,

that we picked ρ beginning in v∗ and consistent with τ arbitrarily and that we de-
fined ρ′ = extM′(ρ) = (v0, o0, r0)(v1, o1, r1)(v2, o2, r2) · · · . First assume that the over-
flow counter of ρ′ eventually stabilizes, i.e., there exists some j ∈ N such that oj′ = oj
for all j′ > j. Then, there exists a suffix of ρ′ that is consistent with τ′, which there-
fore violates the parity condition. Hence, it suffices to note that the color sequences
induced by ρ′ and by ρ coincide in this case due to Lemma 4.11 and due to the con-
struction of Gb, in which vertices of the form (v, o, r) inherit the coloring of the vertex v
for o < n. Thus, ρ violates the parity condition and, in turn, also the parity condition
with weights with respect to any bound.

Now assume that the overflow counter of ρ′ does not stabilize. Then, there are
infinitely many reset positions in ρ′. We obtain that there exist a request that incurs
cost greater than b between any two adjacent such positions as a direct consequence
of :Remark 4.7.2. Hence, we obtain Cost(ρ) > b, which concludes this direction of : Sec. 4.1, Page 91
the proof.

Having thus reduced the threshold problem for parity games with weights to that
of solving classical parity games, we discuss the implications of this reduction on the
complexity of the former problem in the following section.

4.1.4 Complexity of Solving Parity Games with Weights Optimally

In the previous sections we have first defined threshold games and subsequently
shown that solving these games suffices to solve the threshold problem for parity
games with weights and encapsulated this argument in Theorem 4.8. Thus, we obtain
an algorithm for solving the latter problem via a reduction to solving threshold games,
which we formalize as Algorithm 4.1.

We argue that this algorithm requires at most exponential time. To this end, recall
that parity games can be solved in polynomial time in the number of vertices and in
exponential time in the logarithm of the number of odd colors (cf. :Proposition 2.20). : Sec. 2.3, Page 20
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Algorithm 4.1
Input: Parity game with weights G with n vertices, d odd colors, and largest absolute

weight W, vertex v of G, bound b ∈N.
1: if b ≥ nd(6n)(d + 1)(W + 1)W then
2: return v ∈W0(G) /* Requires solving G, e.g. via Algorithm 3.1 */
3: else
4: Gb = b-threshold game of G /* Gb is explicitly constructed */
5: return (v, 0, rv) ∈W0(Gb) /* Requires solving Gb */
6: end if

Output: True if Player 0 has a strategy σ in G with Costv(σ) ≤ b, False otherwise.

Moreover, recall that the (b-)threshold game Gb has O(n2b2d) many vertices, where n
and d are the number of vertices and the number of odd colors in G, respectively. As
we are able to bound the value of b from above by a polynomial in n, d, and the largest
absolute weight W of G due to :Theorem 3.38, we obtain that we are able to solve Gb: Sec. 3.5, Page 75
in exponential time.

Theorem 4.12. The following problem is in ExpTime:

“Given a parity game with weights G, a vertex v of G, and a bound b ∈ N, does
Player 0 have a strategy σ with Costv(σ) ≤ b?”

Proof. We claim that Algorithm 4.1 witnesses the claimed membership in ExpTime. The
correctness of this algorithm follows directly from :Lemma 3.39 and :Theorem 4.8.: Sec. 3.5, Page 75

: Sec. 4.1, Page 91 It remains to show that Algorithm 4.1 terminates in exponential time. Let n be the
number of vertices of G, let d be the number of odd colors of G, and let W be the
largest absolute weight in G.

If b ≥ nd(6n)(d + 1)(W + 1)W, then the dominating factor for the runtime of Algo-
rithm 4.1 is the call to a solver for parity games with weights in Line 2. This solver
only has to solve the given parity game with weights as discussed in :Chapter 3. Due:Page 29
to :Theorem 3.18, the problem of solving these games is in NP ∩ coNP. Since NP ⊆: Sec. 3.2, Page 52
ExpTime, we obtain the desired runtime in this case.

If, however, b < nd(6n)(d + 2)(W + 1)W, Algorithm 4.1 constructs and solves the b-
threshold game Gb of G in Line 4 and Line 5, respectively. Let n′ be the number of
vertices of Gb. By construction of Gb we obtain

n′ = n |{0, . . . n} × R| = n(n + 1)(2b2 + 3b + 2)d ∈ O(n2(2b)2d) ,

where R denotes the set of request functions as defined in : Section 4.1.2.:Page 88
Due to our case analysis based on the cardinality of b in Line 1, we furthermore

obtain b ∈ O((ndW)2), which in turn implies

n′ ∈ O(n2(2(ndW)2)2d) = O(n222d(ndW)4d) .

As we assume weights to be given in binary encoding, we additionally obtain W ∈
O(2|G|), which finally implies

n′ ∈ O(n222d(nd2|G|)4d) = O(n2+4d22dd4d24d|G|) = O(n2+4d22d+4d|G|d4d) ,
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i.e., Gb contains only exponentially many vertices and d′ = max {1, d} ∈ O(d) many
colors in terms of |G|. Recall that parity games can be solved in polynomial time in the
number of vertices and in exponential time in the logarithm of the number of colors
due to :Proposition 2.20. Hence, Gb can indeed be solved in exponential time in |G|, : Sec. 2.3, Page 20
which implies membership of the above problem in ExpTime.

The above algorithm solving the threshold problem yields an algorithm determin-
ing the optimal b such that Player 0 has a strategy of cost at most b from a given v:
Given a parity game with weights G with n vertices, d odd colors, and largest ab-
solute weight W, and a vertex v of G, we first solve G and determine whether or
not v ∈ W0(G). If this is not the case, then no such bound b exists. Otherwise, the
minimal b with the above property can be determined with a binary search over the
range 0, . . . , nd(6n)(d+ 1)(W + 1)W. This binary search solves at most log(nd(6n)(d+
1)(W + 1)W), i.e., polynomially many instances of the threshold problem, each of
which can be solved in exponential time. Hence, the optimal b such that Player 0 has
a strategy of cost at most b can be determined in exponential time in the size of G.

At this point, there is a gap in the classification of the complexity of the threshold
problem: We know the problem to be in ExpTime due to Theorem 4.12. On the other
hand, we only know the problem to be at least as hard as the problem of solving energy
parity games: The latter problem can be reduced to that of solving parity games with
weights due to :Theorem 3.31. That problem can, in turn, be reduced to the problem : Sec. 3.3, Page 69
of solving parity games with weights optimally due to :Lemma 3.39. : Sec. 3.5, Page 75

Our aim for the following sections is to close this gap by providing tight bounds
on the complexity of this problem. To this end, we proceed in two directions. Firstly,
we show the threshold problem for the special case of parity games with costs is in
PSpace. Secondly, we provide lower bounds on the complexity of the problem by
showing that even the threshold problem for finitary parity games is PSpace-hard,
while the threshold problem for parity games with weights is ExpTime-hard.

These results complete the picture of the complexity of optimal play in parity games
with weights: Playing optimally in finitary parity games or parity games with costs is
PSpace-complete, while playing optimally in parity games with weights is ExpTime-
complete.

4.2 Playing Parity Games with Costs Optimally in Polynomial
Space

In the previous section we have reduced the threshold problem for parity games with
weights to solving the b-threshold game Gb. Moreover, we have argued that the former
problem can be solved in exponential time.

In this section, we show that this upper bound on the complexity of solving parity
games with weights optimally can be reduced to polynomial space in the special case
of parity games with costs, i.e., in the case of parity games with weights in which
all weights are nonnegative. Hence, for the remainder of this section, fix some parity
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game with costs G with n vertices, d odd colors, and largest weight W, as well as some
bound b ∈ N. If b ≥ nW, then the problem of solving G with respect to b reduces to
that of solving G due to :Proposition 2.35. As the latter problem is in NP ∩ coNP,: Sec. 2.4, Page 27
and since both complexity classes are subsumed by PSpace, the problem of solving G
with respect to b can clearly be solved in polynomial space if b ≥ nW. Hence, for the
remainder of this section, we assume b < nW. Finally, let Gb be the b-threshold game
of G.

Recall that Gb is a classical parity game, albeit one of exponential size in d. We aim
to solve Gb in polynomial space (in |G| and b) by reducing it to a finite variant, i.e., by
declaring the winner of a play after only finitely many moves.

It is easy to see that the existence of positional winning strategies for both players in
parity games allows to declare the winner of a play in a parity game after only poly-
nomially many moves when measured in the size of A′: When playing consistently
with a positional winning strategy, neither player may “allow” traversing a cycle with
odd (in the case of Player 0), or even (in the case of Player 1) maximal color, respec-
tively: Repeating such a cycle would be consistent with the currently played positional
strategy, but losing for the respective player. Hence, one can solve a parity game by
solving a stricter variant in which the polarity of the first traversed cycle determines
the winner of the play.

Furthermore, that stricter variant can easily be solved using an alternating Turing
machine, where the existential and universal vertices take the roles of Player 0 and
Player 1, respectively. Each infinite sequence of configurations of such a Turing ma-
chine then corresponds to a play of the parity game.

Thus, one can construct the alternating Turing machine above such that it accepts
a run if and only if the first closed cycle has even maximal color. The Turing ma-
chine thus solves the parity game by simulating it for at most as many steps as the
game contains vertices. Since APTime = PSpace due to results by Chandra, Kozen,
and Stockmeyer [CKS81], one can solve parity games in polynomial space using this
approach.

However, although we have reduced the problem of solving the threshold problem
of G to that of solving the threshold game Gb, the latter game is of exponential size in
the size of the bound. Hence, using the above approach as a black box would yield
a solution to the threshold problem using exponential space. Thus, in this section
we show how to leverage the structure of Gb in order to declare a winner after only
polynomially many moves.

To this end, we retain the general idea behind the above approach: We play Gb until
one player is able to prove that they are able to enforce a cycle in G that is clearly
beneficial to them. Thus, we first define in Section 4.2.1 what it means for a play infix
in Gb to be beneficial for one player.

At that point, however, such an infix may yet be of exponential size in G, as it may
be necessary to traverse a smaller cycle exponentially often in order to prove that it
is indeed beneficial. Hence, in Section 4.2.2, we identify so-called shortcuts in plays
in Gb that allow players to provide a beneficial cycle faster and formally define the
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finite variant G f
b of Gb.

We subsequently show in Section 4.2.3 that this shortcut mechanism indeed allows
for players to win G f

b quickly, i.e., after at most polynomially many moves. We more-
over show that either player wins Gb if and only if they are able to traverse a beneficial
cycle in G f

b .
Finally, we argue in Section 4.2.4 that solving G f

b not only is equivalent to solving Gb,
but also that we are able to solve G f

b using an alternating Turing machine whose
runtime is polynomially bounded in the size of G. Thus, we obtain the desired PSpace

upper bound on the complexity of playing parity games with costs optimally.

4.2.1 Dominating Cycles

We begin by defining what it means for either player to prove that they are able to
enforce a beneficial cycle in G via a play infix in Gb. To this end, recall that we distilled
the information about the open requests in a play prefix and the costs these requests
have incurred into request functions in : Section 4.1.1. :Page 86

Recall that in the special case of parity games with costs, we only have nonnegative
weights. Thus, the weight along a play prefix is monotonically increasing. Hence, we
first observe that not all open requests are “relevant” for the remainder of the play:
If there are open requests for colors c and c′ with c < c′ such that r↑(c) ≤ r↑(c′),
then every play infix that causes the cost incurred by the request for color c to violate
the upper bound b has a prefix that causes the cost incurred by the request for c′ to
violate the upper bound. Moreover, as G is a parity game with costs, no edge in G has
negative weight. Thus, the costs incurred by the requests for color c never violate the
lower bound of −b. Hence, the request for color c is irrelevant for both players and
can be ignored in this case.

This observation allows us to simplify our notation for the remainder in this section,
as we only need to consider upper residual request functions. Hence, for the remain-
der of this section, a request function is a function r : D → {⊥, 0, . . . , b}, where D Def. request function
denotes the set of odd colors of G. The threshold game Gb of G is defined analogously
to the more general case of parity games with weights, where we replace every request
function r in that earlier definition with its upper residual request function r↑. Since
the update rule used for the construction of Gb updates the upper and lower bounds
stored by the request functions independently, it can easily be restricted to operate
only on the upper bound, yielding the restricted update function used in this section.

Thus, we obtain the arena of the threshold game Gb by augmenting the arena of G
with memory states that record the maximal cost incurred by open requests so far as
well as the number of times some request has violated that bound. Each such memory
element is of the form (o, r), where o ∈ {0, . . . , n} is the overflow counter and r is a
request function.

As we aim to determine the situations in which either player was able to improve
their situation by enforcing a cycle in G, we first define a preorder w on these memory
elements such that m w m′ if m is “better” for Player 1 than m′. As the overflow counter
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Figure 4.5: A visual representation of the request function r from Example 4.13.

is only incremented during a play and since each increment brings the play closer to
the winning sink for Player 1, we directly obtain that increasing the overflow counter
is beneficial for Player 1. It remains to define a preorder on the request functions.

To this end, let r be a request function. Recall that we observed that not all open
requests are relevant for the players. We now formalize this observation.

Formally, we say that a request for color c is relevant in r if for all c′ ≥ c weDef. relevant
have r(c′) < r(c), where we use ⊥ < n for all n ∈ {0, . . . , b}. We write RelReq(r) toDef. RelReq(r)
denote the set of relevant requests of r.

Example 4.13. Let r be the request function defined as r(1) = 2, r(3) = 4, r(5) = ⊥,
r(7) = 3, and r(9) = 1. We illustrate this request function in Figure 4.5. The set
of relevant requests of r is RelReq(r) = {3, 7, 9}. This illustration demonstrates the
intuitive characterization of relevant requests as those requests for which there exists
no request for a larger color that has incurred higher cost. 4

Intuitively, Player 1 can improve his situation by either opening new relevant re-
quests, or by increasing the cost incurred by already opened relevant requests. For-
mally, let r and r′ be two request functions. We say that r is dominated by r′ if forDef. is dominated by
each c ∈ RelReq(r) there exists some c′ ≥ c such that r′(c′) ≥ r(c). If r′ is dominated
by r, we write r′ v r. If r′ v r and r′ w r both hold true, we write r ≈ r′.Def. v

Remark 4.14.
1. The relation v is reflexive.
2. The relation v is transitive.
3. If a vertex (v, o, r) of Gb has incoming edges, then rv v r.

The requirement for incoming edges in the third item of the above remark follows
from our definition of Gb: For the sake of simplicity, the game Gb contains, e.g., ver-
tices (v, o, r), where v carries an odd color, but r maps all colors to ⊥. Such vertices
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Figure 4.6: A visual representation of the request function r′ from Example 4.15.

are, however, not reachable, as each play prefix beginning in some vertex (v, init(v))
and ending in a vertex of odd color has an open request for that color.

Example 4.15. Let r be the request function as defined in Example 4.13 and let r′ be
the request function defined as r′(1) = 1, r′(3) = 4, r′(5) = 2, r′(7) = 3, and r′(9) = 2.
We illustrate the function r′ in Figure 4.6.

Although the requests for color 3 have incurred lower cost in r′ than they have in r,
there are open requests for color 5 that have incurred as much cost as the requests for
color 3 in r. Moreover, the costs for requests for color 9 in r′ exceed those for the same
color in r. Hence, we obtain r v r′. 4

Following the above intuition, we extend the definition of the relation w to memory
elements: The memory element (o, r) dominates (o′, r′) if either o > o′, or if o = o′

and r w r′. Similarly, we extend the notation of ≈ such that (o, r) ≈ (o′, r′) if and only
if both (o, r) v (o′, r′) and (o, r) w (o′, r′) hold true.

We first show that the relation w over memory states is preserved under concatena-
tion of vertices from A and the deterministic memory update defining the arena A′ of
the threshold game.

Lemma 4.16. Let (v, o1, r1), (v, o2, r2) be vertices in Gb, let (v, v′) ∈ E, and, for j ∈ {1, 2},
let upd((oj, rj), (v, v′)) = (o′j, r′j). If (o1, r1) v (o2, r2) and o2 < n, then (o′1, r′1) v (o′2, r′2).

Proof. First assume o1 < o2. Due to the construction of Gb, this implies o′1 ≤ o′2.
If o′1 < o′2, the statement clearly holds true. If o′1 = o′2, however, then r′1 = rv′ and
thus (o′1, r′1) v (o′2, r′2), due to Remark 4.14.3.

Now, assume o1 = o2 and r1 v r2 for the remainder of this proof. First, we consider
the case o′1 = o1 + 1 and show that this assumption implies o′2 = o2 + 1. This then
implies r′1 = r′2 = rv′ and hence, (o′1, r′1) = (o′2, r′2), which suffices due to Remark 4.14.1.
Since the move from v to v′ causes an overflow when starting in (v, o1, r1), i.e., since we
have o′1 = o1 + 1, we have Weight(v, v′) = w > 0. Let c1 be some color that causes the
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vI/1 vII/1 vIII/0W
W 0

1
0

Figure 4.7: A parity game with costs witnessing necessity of shortcuts.

overflow in r1, i.e., let c1 ∈ {c | r1(c) > b− w}. Since r2 w r1, there exists a color c2 ≥ c1
with r2(c2) ≥ r1(c1).

Furthermore, since the range of r2 is bounded by b from above, this implies b ≥
r2(c2) > b − w. Hence, the move from v to v′ also causes an overflow in r2, i.e., we
have o′2 = o2 + 1. This completes the proof in the case o′1 = o1 + 1 as argued above.

Now consider the case o′1 = o1. We distinguish two subcases: If o′2 = o2 + 1,
then o′1 < o′2 due to the assumption o1 = o2 and hence, (o′1, r′1) v (o′2, r′2). On the
other hand, if o′2 = o2, then let c1 be a relevant request in r′1, i.e., pick c1 ∈ RelReq(r′1)
arbitrarily. We show that there exists a color c2 ≥ c1 with r′2(c2) ≥ r′1(c1), which con-
cludes the proof: If c2 /∈ RelReq(r′2), then, by the definition of relevant requests, there
exists some color c3 ∈ RelReq(r′2) such that c3 > c2 and such that r′2(c3) ≥ r′2(c2),
which in turn implies r′2(c3) ≥ r′1(c1). Since this holds true for all relevant requests
of r′1, this then concludes the proof.

First assume that a request for c1 was already open in r1, i.e., assume that r1(c1) 6= ⊥.
Let c2 ≥ c1 such that r2(c2) ≥ r1(c1). Such a color c2 exists due to r2 w r1. Since the
request for c1 was not answered during the move to v′, and since o2 = o′2 < n, neither
was the request for c2 during the same move. Hence, we have r′2(c2) ≥ r′1(c1). If,
however, a request for c1 was not already open in r1, then the request for c1 was
opened by moving to v′, i.e., we have Ω(v′) = c1. Thus, we directly obtain r′1(c1) = 0
and r′2(c1) ≥ 0. Picking c2 = c1 concludes the proof in this case.

We now leverage the preorder v in order to define what it means for either player
to enforce a witness of a beneficial cycle (in A) by playing in A′. To this end, let
π = (v0, o0, r0) · · · (vj, oj, rj) be a sequence of vertices in Gb. We say π is a dominatingDef. dominating cycle
cycle if v0 = vj, o0 = oj < n, and either
• the maximal color occurring on π′ is even and r0 w rj, or
• the maximal color occurring on π′ is odd and r0 v rj.

We call the former and latter type of dominating cycles even and odd, respectively. A
dominating cycle is only a cycle when projected to a play in A, i.e., it is a cycle in the
original parity game with costs G.

We aim to define the finite variant G f
b of Gb such that the goal of Player 0 is to

enforce an even dominating cycle, while Player 1 aims to enforce an odd dominating
cycle. Even if both players play consistently with positional strategies, however, it may
take exponentially many moves until such a cycle is closed.

Example 4.17. For some W ∈ N, let GW be the parity game with costs shown in
Figure 4.7 and let b ∈ N. Player 1 wins GW from vII with respect to b: If Player 0 at
some point opts to move to vI, then Player 1 wins, as the resulting play violates the
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parity condition. If Player 0, however, always moves to vIII from vII, then Player 1 can
take the self-loop of vIII b + 1 often, thus enforcing costs of answering the requests for
color one posed when visiting vertex vII to exceed b.

For 0 ≤ j ≤ b define rj as the unique request function that satisfies rj(1) = j
and consider the play prefix (vII, r0)(vIII, r0)(vIII, r1) · · · (vIII, rb)(vII, b) in the threshold
game Gb,W . This play starts in (vII, init(vII)), is consistent with a positional strategy
for Player 1 in Gb,W , comprises an odd dominating cycle of length b + 3, but con-
tains no dominating cycle of length less than b + 3. As b is only bounded from above
by O(W), this dominating cycle may be exponential in the size of the problem de-
scription. Hence, even playing consistently with positional strategies, Player 1 may
take exponentially many moves in Gb,W before producing a dominating cycle, i.e., a
witness of him winning GW from vII with respect to b. 4

In order to allow both players to produce dominating cycles in alternating polyno-
mial time, in the next section we develop a way to skip over long infixes in Gb whose
projection to the arena of G is a cycle.

4.2.2 Taking Shortcuts in Threshold Games

In the previous section we have defined even and odd dominating cycles and infor-
mally argued that traversing an even dominating cycle is beneficial for Player 0, while
traversing an odd such cycle is beneficial for Player 1. Hence, intuitively, Player 0
wins Gb if she is able to enforce traversing an even dominating cycle before an odd
such cycle is traversed. We have, however, also seen in Example 4.17 that enforcing a
dominating cycle may require exponentially many steps.

Recall that it is, in contrast, our aim to witness dominating cycles in at most poly-
nomially many steps. Thus, we now define a finite variant G f

b of Gb that skips infixes
during which the costs incurred by the relevant requests increase, but the set of these
requests is stable. We show that this enforces dominating cycles to occur after at most
polynomially many steps. Moreover, the game ends once a dominating cycle occurs
and the player for whom that cycle is beneficial is declared the winner. Thus, the win-
ner of a play in G f

b is determined after polynomially many steps, which allows us to
solve it in polynomial space.

Formally, we say that a sequence of vertices π = (v0, o0, r0) · · · (vj, oj, rj) in A′ satis-
fies the shortcut criterion if Def. shortcut

criterion• v0 = vj, if
• o0 = oj, if
• RelReq(r0) = RelReq(rj′) 6= ∅ for all j′ with 0 ≤ j′ ≤ j, if
• Weight(π) > 0, and if
• rj(c∗) + Weight(π) ≤ b for c∗ = arg maxc rj(c).

Since the overflow counter remains constant during π, we have that the condition
rj(c∗) + Weight(π) ≤ b is equivalent to Weight(π) ≤ b−r0(c∗)

2 : Intuitively, we demand
that traversing π does not “close more than half the distance” between the cost in-
curred by the request for the color that has incurred the largest cost at the end of π
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and the upper bound b.
For the sake of readability, we refrain from defining the arena underlying G f

b for-
mally. We rather define the set of play prefixes of G f

b inductively, which are subse-
quences of plays in A′. In particular, the vertices in G f

b inherit the coloring from Gb.
First, for each vertex v of A, the play prefix of length one (v, init(v)) = (v, 0, rv) is a
play prefix of G f

b . Now, let

π = (v0, o0, r0) · · · (vj, oj, rj)

be a play prefix of G f
b and let (v′, o′, r′) be a successor of (vj, oj, rj) in A′. If there exists

no j′ such that the infix

π′ = (vj′ , oj′ , rj′) · · · (vj, oj, rj) · (v′, o′, r′)

of π satisfies the shortcut criterion, then π · (v′, o′, r′) is a play prefix of G f
b . If, however,

such a j′ exists, let it be the maximal one, let
• c∗ = arg maxc r′(c), let
• s = Weight(π′), and let
• t = max {t′ > 0 | r′(c∗) + s · t′ ≤ b}.

The set used in the definition of t is not empty due to the fifth condition in the def-
inition of the shortcut condition. Hence, we have t ≥ 1. We then define the request
function r∗ via

r∗(c) =

{
r′(c) + s · t if r′(c) 6= ⊥, and
⊥ otherwise.

Then, the sequence of vertices from A′

(v0, o0, r0) · · · (vj, oj, rj)(v′, o′, r∗)

is a play prefix of G f
b . Intuitively, moving from (vj, oj, rj) directly to (v′, o′, r∗) in-

stead of (v′, o′, r′) summarizes t traversals of the cycle vj · · · v′, each of which incurs
weight s. Hence, we define the weight of the transition from (vj, oj, rj) to (v′, o′, r∗)
as Weight(vj, v′) + s · t in G f

b . Furthermore, we redefine the notion of the weight of a
play prefix accordingly such that we obtain uniform notation.

Example 4.18. Let b = 5 and consider the play prefix shown in Figure 4.8a. We show
the corresponding play prefix in Gb in Figure 4.8b, where the request functions r1
through r4 are defined as

r1 = (1 7→ ⊥, 3 7→ 0) r2 = (1 7→ 0, 3 7→ 1)
r3 = (1 7→ 1, 3 7→ 2) r′4 = (1 7→ 1, 3 7→ 2) .

The infix (v2, 0, r2), (v3, 0, r3), (v2, 0, r4) of π′ satisfies the shortcut condition. Thus,
the play prefix in G f

b corresponding to the play prefix π in G is the one shown in
Figure 4.8c, where

r′4 = (1 7→ 4, 3 7→ 5) . 4
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v1/3 v2/1 v3/0 v2/1
+1 +1 0

(a) The play prefix π in G.

(v1,0,r1)/3 (v2,0,r2)/1 (v3,0,r3)/0 (v2,0,r4)/1
+1 +1 0

(b) The play prefix π′ corresponding to π in Gb.

(v1,0,r1)/3 (v2,0,r2)/1 (v3,0,r3)/0 (v2,0,r′4)/1
+1 +1 0

(c) The play prefix π′f corresponding to π′ in G f
b .

Figure 4.8: The play prefixes discussed in Example 4.18.

When talking about plays in G f
b , in order to concisely talk about the influence of the

shortcuts in the construction of the play, we use the following notions:
• The transition from (vj, oj, rj) to (v′, o′, r∗) is a shortcut. Def. shortcut
• The infix (vj′ , oj′ , rj′) · · · (vj, oj, rj)(v′, o′, r∗) is a shortcut cycle, with the desti- Def. shortcut cycle

Def. destinationnation (v′, o′, r∗).
• The infix (vj′ , oj′ , rj′) · · · (vj, oj, rj)(v′, o′, r′) is the detour corresponding to the Def. detour

shortcut cycle, with destination (v′, o′, r′). Def. destination
Similarly to dominating cycles, a shortcut cycle is only a cycle when projected to its

first component, i.e., when projected to the arena A of the original parity game with
costs G.

Example 4.19. Consider again the play prefixes π′ and π′f shown in Example 4.18.
The transition from (v3, 0, r3) to (v4, 0, r′4) is a shortcut. Furthermore, the play in-
fix (v2, 0, r2)(v3, 0, r3)(v2, 0, r′4) is a shortcut cycle with destination (v4, 0, r′4), while the
play infix (v2, 0, r2)(v3, 0, r3)(v2, 0, r4) is the detour corresponding to the above shortcut
cycle and has destination (v2, 0, r4). 4

As taking a shortcut only increases the costs of already open requests, doing so does
not influence the relevant requests. Moreover, intuitively, taking a shortcut is beneficial
for Player 1.

Remark 4.20. Let (vj, oj, rj)(v′, o′, r∗) be a shortcut with (v′, o′, r′) as the destination of its
corresponding detour. Then, we have

1. RelReq(r′) = RelReq(r∗), as well as
2. r′ v r∗.
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Moreover, if c∗ is the open request that has incurred the highest cost in rj′ , taking
this shortcut “closes at least half the distance” between rj′(c∗), i.e., the largest cost
incurred by any open request at the beginning of the shortcut cycle, and b. Formally,
we have

r∗(c∗) ≥ rj′(c∗) +
b− rj′(c∗)

2
.

Hence, no infix π containing a shortcut π′ satisfies the shortcut criterion, as the cost
of π′ is already larger than half the cost that would cause an overflow. Thus, π violates
the fifth condition in the definition of the shortcut criterion.

While a shortcut may thus not be part of another shortcut, it may, however, be part
of a dominating cycle. In fact, if the maximal color along the detour associated with
some shortcut is odd, then the shortcut cycle is an odd dominating cycle.

Having thus defined the play prefixes occurring in G f
b , it remains to define its win-

ning condition: To this end, let ρ = (v0, o0, r0)(v1, o1, r1)(v2, o2, r2) · · · . We say that ρ is
settled if either oj = n for some position j ∈N, or if there exist some j ≤ j′ such thatDef. settled
(vj, oj, rj) · · · (vj′ , oj′ , rj′) is a dominating cycle. As argued before, this dominating cycle
may include shortcuts.

Intuitively, both players aim to settle the play in G f
b : Player 0 aims to settle the play

due to an even dominating cycle, while Player 1 aims to either saturate the overflow
counter, or to traverse an odd dominating cycle. In order to formally define the win-
ning condition of G f

b , we first show in the next section that every play in G f
b is settled

after at most polynomially many moves.

4.2.3 Settling Plays in Polynomial Time

We now show that there exists a polynomial upper bound on the length of unsettled
play prefixes in G f

b . Recall that we defined n and W as the number of vertices of G and
as the largest absolute weight occurring in G. Moreover, fix ` = (log(nW) + 1)(n + 1)6

and note that the value of ` is polynomial in the size of G.

Lemma 4.21. Let π be a play prefix of G f
b . If |π| > `, then π is settled.

Proof. Let π = (v0, o0, r0) · · · (vj, oj, rj) be an unsettled play prefix of G f
b . We show

|π| ≤ `, which implies the given statement. First, recall that the relation v is reflexive,
hence a vertex repetition in π implies that π contains a dominating cycle. As the
occurrence of such a cycle causes π to be settled, we obtain that π does not contain a
vertex repetition.

We sketch the structure of our argument in Figure 4.9, where we draw the following
vertices of interest in gray: We recall the definition of overflow positions, define debt-
free, request-adding, relevance-reducing, and halving positions, and show

1. that there are at most n overflow positions in π,
2. that there are at most n debt-free positions between any two adjacent overflow

positions,
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3. that there are at most d request-adding positions between any two adjacent debt-
free positions, where d is the number of odd colors occurring in G,

4. that there are at most d relevance-reducing positions between any two adjacent
request-adding positions,

5. that there are at most log(nW) halving positions between any two adjacent
relevance-reducing positions,

6. that there are at most n edges of nonzero weight between any two adjacent
halving positions, and

7. that there are at most n vertices between two such edges of nonzero weight.
First, recall that an overflow position of π is a k with k = 0 or with ok = ok−1 + 1.

As π is unsettled and the ok are non-decreasing, π has at most n overflow positions,
n − 1 real increments and the initial position. Hence, by splitting π at the overflow
positions we obtain at most n non-empty infixes of π, each without overflow positions.
We say such an infix has type 1.

Fix a non-empty type 1 infix π1. A debt-free position of π is a k with rk = rvk , i.e.,Def. debt-free
position a position that has no other costs than those incurred by visiting vk. As all vertices

of π1 share the same overflow counter value, there are at most n debt-free positions
in π1: n + 1 such positions would induce a vertex repetition, which we have ruled
out above. Hence, by splitting π1 at the debt-free positions we obtain at most n + 1
non-empty infixes of π1, each without debt-free and overflow positions. We say such
an infix has type 2.

Fix a non-empty type 2 infix π2. A request-adding position of π is a k withDef. request-adding
position odd Ω(vk) such that rk−1(c) = ⊥ for all c ≥ Ω(vk). Recall that we defined d as the

number of odd colors assigned by Ω. We claim that there are at most d request-adding
positions in π2. Assume towards a contradiction there are d + 1 such positions. Then,
two request-adding positions k < k′ share a color, call it c. As k′ is request-adding,
only requests strictly smaller than c are open at position k′ − 1, i.e., c and all larger
requests have to be answered in between k and k′. Hence, there is a debt-free position
between k and k′, which contradicts π2 being of type 2. Hence, by splitting π2 at
the request-adding positions we obtain at most d + 1 non-empty infixes of π2, each
without request-adding, debt-free, and overflow positions. We say such an infix has
type 3.

Fix a non-empty type 3 infix π3. A relevance-reducing position of π is a k suchDef.
relevance-reducing
position

that RelReq(rk−1) ⊃ RelReq(rk). We show that π3 contains at most d relevance-
reducing positions. To this end, we first argue that there is at least one request that is
open throughout π3. We first observe that some request must be open at the beginning
of π3, as otherwise the first vertex of π3 would be at a debt-free position, which do
not occur in π3. Let c∗ be the maximal color for which there is an open request at
the beginning of π3. Due to π3 not containing debt-free nor request-adding positions,
all colors c visited during π3 satisfy c ≤ c∗. Hence, the request for c∗ remains open
throughout π3. We now show that the sets of relevant requests along π3 form a
descending chain in the subset-relation. Assume towards a contradiction that an infix
(v, o, r) · (v′, o′, r′) of π3 and a color c exist such that c /∈ RelReq(r), but c ∈ RelReq(r′).
This directly implies Ω(v′) = c. Then, c > c∗, i.e., there exists a request-adding
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position in π3, a contradiction. Hence, the sets of relevant requests indeed form a
descending chain. Since at the beginning of π3 at most d requests are relevant, there are
at most d relevance-reducing positions. Thus, by splitting π3 at its relevance-reducing
positions, we obtain at most d+ 1 non-empty infixes, each without relevance-reducing,
request-adding, debt-free, and overflow positions. We say such an infix has type 4.

Fix a non-empty type 4 infix π4 and recall that there is at least one request continu-
ously open throughout π4, as each type 4 infix is also of type 3. Let c∗ be the request
that has incurred the largest cost at the beginning of π4 and observe that the request
for c∗ is relevant. Hence, that request is continuously open throughout π4, as π4
contains no relevance-reducing positions. We denote the cost incurred by the request
for c∗ at the beginning of π4 by s and define the first halving position as the minimal Def. halving position
position k where rk(c∗) ≥ s + b−s

2 holds true, if such a position exists at all. Induc-
tively, if k is a halving position, then the minimal k′ > k with rk′(c∗) ≥ rk(c∗) +

b−rk(c∗)
2

is a halving position as well, if it exists. Since at each halving position the difference
between the currently incurred cost of c∗ and the bound b has been halved when com-
pared to the previous halving position, there exist at most log(b) ≤ log(nW) many
such positions. Hence, splitting π4 at its halving positions yields at most log(nW) + 1
many infixes without overflow, debt-free, request-adding, relevance-reducing or halv-
ing positions. We say such an infix has type 5.

Fix a non-empty type 5 infix π5. We show that π5 contains at most n edges of
nonzero weight. Towards a contradiction assume that it contains n + 1 such edges and
let c∗ be a request that has incurred the largest cost s at the beginning of π5. Since
some request must be open at the beginning of π5 due to similar reasoning as above,
such a color c∗ exists. Since there exist more than n edges of nonzero weight, there
exist two such edges leading to the vertices (vk, ok, rk) and (vk′ , ok′ , rk′) with vk = vk′

and k < k′. If the weight of the infix (vk, ok, rk) · · · (vk′ , ok′ , rk′) is at least b−s
2 , then π5

contains a halving position, which yields the desired contradiction. If the weight
is lower, however, then this infix satisfies the shortcut condition, since π4′ does not
contain overflow positions, the relevant requests are stable throughout π4′ , and since
the edge leading to (vk′ , ok′ , rk′) has nonzero weight. Hence, the vertex (vk′ , ok′ , rk′) is
the destination of a shortcut cycle, which contradicts the infix (vk, ok, rk) · · · (vk′ , ok′ , rk′)
having a weight of less than b−s

2 . Thus, π5 contains at most n edges of nonzero weight
and, by splitting π5 at these edges, we obtain a decomposition of π5 into at most n + 1
infixes, each without edges of nonzero weight and without halving, request-adding,
debt-free, and overflow positions. We say such an infix has type 6.

Fix a non-empty type 6 infix π6. We show that π6 is of length at most n. Assume
towards a contradiction that π6 contains at least n + 1 vertices. Then there exists an
infix π′ = (v, o, r) · · · (v, o, r′) of π6, since π6 does not contain overflow positions. As π6
is of type 6, it does not contain request-adding nor relevance-reducing positions, hence
we have RelReq(r) = RelReq(r′) as argued above. Moreover, as π6 only contains
edges of weight zero, we furthermore obtain r ≈ r′. Thus, π′ is a dominating cycle,
which contradicts π being unsettled. Hence, π6 is of length at most n.

Aggregating all these bounds yields an upper bound of (log(nW) + 1)(n + 1)6 on

109



CHAPTER 4. PLAYING PARITY GAMES WITH WEIGHTS OPTIMALLY

(vj′e , oj′e , rj′e) (vj′o , oj′o , rj′o) (vj, oj, rj)(vj′e , oj′e , rj′e) (vj′o , oj′o , rj′o) (vj, oj, rj)(vj′e , oj′e , rj′e) (vj′o , oj′o , rj′o) (vj, oj, rj)
π

odd dominating cycle π′o

even dominating cycle π′e

Figure 4.10: The situation occurring in the proof of Lemma 4.22.

the length of the unsettled play prefix π, as we have d ≤ n.

Due to Lemma 4.21 every infinite play in G f
b is settled. Thus, we can now formally

define the winning condition Win f of G f
b . Let ρ = (v0, o0, r0)(v1, o1, r1)(v2, o2, r2) · · · be

a play of G f
b and let j be the minimal position such that π = (v0, o0, r0) · · · (vj, oj, rj) is

settled. Then π is either settled due to oj = n, or because it ends in an even or odd
dominating cycle. These three cases are mutually exclusive.

Lemma 4.22. Exactly one of the following holds true:
1. We have oj = n,
2. there exists j′ < j such that (vj′ , oj′ , rj′) · · · (vj, oj, rj) is an odd dominating cycle, or
3. there exists j′ < j such that (vj′ , oj′ , rj′) · · · (vj, oj, rj) is an even dominating cycle.

Proof. As π is the minimal settled prefix of ρ, clearly at least one of the above condi-
tions holds true. It remains to show that at most one of the conditions holds true.

To this end, we first observe that the first condition holding true implies that neither
the second nor the third condition hold true. This is due to the fact that oj = n and π
being the minimal settled prefix of ρ, we obtain oj′ < n for all j′ < n. Hence, π does
not contain a dominating cycle, as this would contradict its minimality.

As a second step, we now show that the conjunction of the second and the third
condition cannot hold true, which concludes the proof. Towards a contradiction, as-
sume that both the second and the third condition hold true and let j′e and j′o be
positions such that π′e = (vj′e , oj′e , rj′e) · · · (vj, oj, rj) is an even dominating cycle and such
that π′o = (vj′o , oj′o , rj′o) · · · (vj, oj, rj) is an odd dominating cycle. Clearly, we have j′e 6= j′o.
Assume j′e < j′o. The other case, i.e., j′e > j′o, is dual. We illustrate this situation in
Figure 4.10.

Since π′e and π′o are even and odd dominating cycles, respectively, we obtain rj′e w rj
and rj′o v rj. As the relation v is transitive due to :Remark 4.14.1, this implies rj′e w rj′o .: Sec. 4.2, Page 100
We show that the largest color in the infix (vj′e , oj′e , rj′e) · · · (vj′o , oj′o , rj′o) is even, which im-
plies that this infix is an even dominating cycle and thus contradicts π being minimally
settled.

Let jce and jco with j′e ≤ jce ≤ j and j′o ≤ jco ≤ j be positions of vertices that carry the
largest color in π′e and π′o, respectively. By assumption, Ω(vjce

) = ce and Ω(vjco
) = co

are even and odd, respectively. Towards a contradiction, assume jce ≥ j′o, i.e., assume
that there exists a vertex in π′o that carries the largest (even) color in π′e. If ce > co, then
the largest color in π′o is even, which contradicts π′o being an odd dominating cycle.
If, however, ce < co, then the color co is odd and larger than the largest even color
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occurring in π′e. As π′o is a suffix of π′e, this contradicts π′e being an even dominating
cycle.

Thus, we obtain jce ≤ j′o, i.e. the largest color in the infix (vj′e , oj′e , rj′e) · · · (vj′o , oj′o , rj′o)
is even. Hence, this infix is an even dominating cycle, as argued above, which contra-
dicts π being the minimal settled prefix of ρ and concludes the proof.

If π is settled due to ending in an even dominating cycle, we proclaim ρ to be
winning for Player 0 in G f

b . Otherwise, i.e., if π is settled due to saturating the overflow
counter or due to ending in an odd dominating cycle, then we proclaim ρ to be winning
for Player 1 in G f

b . This concludes the definition of G f
b .

Due to Lemma 4.21 the winner in G f
b is decided after at most ` many moves.

Hence G f
b is indeed a game of finite duration. This directly implies that G f

b is de-
termined due to Zermelo [Zer13].

Corollary 4.23. The game G f
b is determined.

Having thus defined G f
b , it remains to show that solving G f

b is indeed equivalent to
solving Gb and that we can solve G f

b using only polynomial space in the size of G. We
do so in the following section.

4.2.4 Solving Threshold Games in Polynomial Space

In this section we conclude the proof of PSpace-membership of the threshold problem
for parity games with costs. To this end, we first show that solving Gb is indeed
equivalent to solving G f

b . Subsequently, we show how to solve G f
b on-the-fly given

only G and b, i.e., without explicitly constructing it. This on-the-fly technique requires
only polynomial space in the size of G and thus yields the desired result.

To show equivalence between Gb and G f
b , we employ a technique similar to that

used in the proof of :Theorem 4.8: We provide strategies for both players in Gb by : Sec. 4.1, Page 91

simulating play prefixes in G f
b . As strategies in the latter game, however, only prescribe

“useful” moves as long as the play prefix is not settled, we ensure that the play prefixes
in G f

b remain unsettled.
We again split the proof of equivalence between Gb and G f

b into two lemmas. First, in
Lemma 4.24, we show that Player 0 winning G f

b from some designated vertex implies
her winning Gb from the same vertex. We then show the analogous result for Player 1
in Lemma 4.25. This suffices due to determinacy of G f

b .

Lemma 4.24. Let v∗ be a vertex of G. If Player 0 wins G f
b from (v∗, init(v∗)), then she wins Gb

from (v∗, init(v∗)).

Proof. Let σf be a winning strategy for Player 0 in G f
b from (v∗, init(v∗)). We construct

a winning strategy σ for her from (v∗, init(v∗)) in Gb by mimicking the moves made
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in Gb in G f
b using a simulation function h mapping play prefixes in Gb to play prefixes

in G f
b . We construct h to satisfy the following invariant:

Let π be consistent with σ and end in (v, o, r). Then, h(π) is consistent
with σf , is unsettled, and ends in (v, o f , r f ) with (o, r) v (o f , r f ).

To this end, recall that Gb and G f
b share the set of vertices V ′. We define h and σ

inductively and simultaneously, starting with h(v∗, init(v∗)) = (v∗, init(v∗)), which
clearly satisfies the invariant. Now let π be a play prefix of Gb consistent with σ, ending
in (v, o, r) such that h(π) is defined. If (v, o, r) is a vertex of Player 1, then let (v∗, o∗, r∗)
be an arbitrary successor of (v, o, r) in A′. Otherwise, i.e., if (v, o, r) is a vertex of
Player 0, then, due to the invariant, h(π) ends in some (v, o f , r f ) with (o, r) v (o f , r f ).
Let (v∗, o∗f , r∗f ) be the unique vertex such that h(π) · (v∗, o∗f , r∗f ) is consistent with σf

and define σ(π) = (v∗, o∗, r∗), where (o∗, r∗) = upd((o, r), (v, v∗)). This concludes the
definition of σ. In either case, let π∗ = π · (v∗, o∗, r∗). It remains to define h(π∗).

To this end, let (o∗f , r∗f ) be the unique memory state such that π∗f = h(π) · (v∗, o∗f , r∗f )

is a play prefix of G f
b . If π∗f is unsettled, we define h(π∗) = π∗f . This choice satisfies the

invariant: If the vertex (v∗, o∗f , r∗f ) is the destination of a shortcut, then let (v∗, o∗→, r∗→)
be the destination of its corresponding detour. We obtain (o∗f , r∗f ) w (o∗→, r∗→) w (o∗, r∗)
due to :Lemma 4.16 and due to :Remark 4.20.1. Otherwise, i.e., if (v∗, o∗f , r∗f ) is not: Sec. 4.2, Page 101

: Sec. 4.2, Page 105 the destination of a shortcut, then Lemma 4.16 yields the invariant directly.
Now consider the case that π∗f is settled. Then it is settled due to containing an

even dominating cycle as a suffix, due to the invariant and due to π∗f being consistent
with the winning strategy σf for Player 0. We define h(π∗) by removing the settling
dominating cycle as follows: Since h(π) is not settled, the dominating cycle is a suffix
of π∗f . Thus, the cycle starts in a vertex (vj′ , oj′ , rj′) with vj′ = v∗ and rj′ w r∗f . We define

h(π · (v∗, o∗, r∗)) = (v0, o0, r0) · · · (vj′ , oj′ , rj′) ,

which satisfies the invariant due to transitivity of v, as stated in :Remark 4.14.2.: Sec. 4.2, Page 100
It remains to show that σ is winning for Player 0 from (v∗, init(v∗)) in Gb. To this

end, consider a play ρ starting in (v∗, init(v∗)) and consistent with σ and let πj+1 be
the prefix of length j of ρ.

As all πj start in (v0, o0, r0) and are consistent with σ, all h(πj) are consistent with σf

due to the invariant of h. Since σf is winning for Player 0 from (v0, o0, r0) in G f
b , this

implies that the overflow counter of the h(πj) never reaches n. Thus, again due to the
invariant of h, neither does the overflow counter of the πj. Hence, the colors of the last
vertices of πj and h(πj) coincide for all j ∈N.

Towards a contradiction, assume that the maximal color occurring infinitely often
along ρ is odd, call it c. After some finite prefix, c cannot occur on even dominating
cycles in the h(πj) anymore, since each occurrence on such a cycle implies at least
one occurrence of an even higher even color in ρ. Hence, after this prefix, each time
a vertex of color c is visited, say at the end of the prefix πj, a vertex of the same
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color is appended to the simulated play h(πj). Moreover, this vertex is never removed
from the simulated play, since only vertices occurring on even dominating cycles are
removed from the simulated play. Hence, the simulated play becomes longer with
each visit to a vertex of color c after a finite prefix. This contradicts the h(πj) being
unsettled, as every play of length ` + 1 is settled due to :Lemma 4.21. Thus, the : Sec. 4.2, Page 106
maximal color occurring infinitely often in ρ is even, i.e., σ is winning for Player 0
in Gb from (v∗, init(v∗)).

Having shown that Player 0 can leverage a winning strategy from (v, init(v)) in G f
b

in order to obtain a winning strategy from the same vertex in Gb, we now show the
analogous statement for Player 1. This then implies equivalence of G f

b and Gb due to
determinacy of G f

b (cf. Corollary 4.23).

Lemma 4.25. Let v∗ be a vertex of G. If Player 1 wins G f
b from (v∗, init(v∗)), then he wins Gb

from (v∗, init(v∗)).

Proof. Let τf be a winning strategy from (v∗, init(v∗)) for Player 1 in G f
b . We construct

a winning strategy τ for him from (v∗, init(v∗)) in Gb by simulating play prefixes in Gb

by unsettled prefixes in G f
b from which we remove shortcut- and dominating cycles.

We again define a simulation function h that maintains the following invariant:

Let π be consistent with τ and end in (v, o, r) with o < n. Then, h(π) is
consistent with τf , is unsettled, and ends in (v, o f , r f ) with (o f , r f ) v (o, r).

We define h and τ inductively and simultaneously, starting with h((v∗, init(v∗))) =
(v∗, init(v∗)), which clearly satisfies the invariant. Now let π be a play prefix of Gb con-
sistent with τ and ending in (v, o, r). If (v, o, r) is a vertex of Player 0 then let (v∗, o∗, r∗)
be an arbitrary successor of (v, o, r) in A′. Otherwise, if (v, o, r) is a vertex of Player 1,
then, due to the invariant, h(π) = π′ ends in some (v, o f , r f ) with (o f , r f ) v (o, r).
Let (v∗, o∗f , r∗f ) be the unique vertex such that h(π) · (v∗, o∗f , r∗f ) is consistent with τf

and define τ(π) = (v∗, o∗, r∗), where (o∗, r∗) = upd((o, r), (v, v∗)). This concludes the
definition of τ.

It remains to define the simulation function h. To this end, let π∗ = π · (v∗, o∗, r∗) and
let (o∗f , r∗f ) be the unique memory state such that π∗f = h(π) · (v∗, o∗f , r∗f ) is a play prefix

of G f
b . First consider the case that π∗f is unsettled. If (v∗, o∗f , r∗f ) is not the destination of

a shortcut, we define h(π∗) = π∗f , which satisfies the invariant due to :Lemma 4.16. If, : Sec. 4.2, Page 101

however, (v∗, o∗f , r∗f ) is the destination of a shortcut, let (v∗, o∗→, r∗→) be the destination
of the corresponding detour. We differentiate whether taking the shortcut to (v∗, o∗f , r∗f )
merely allows Player 1 to “catch up” to the play prefix constructed in Gb, or whether
it is more advantageous for him than the position (v∗, o∗, r∗) actually reached in Gb.
In the former case, i.e., if (o∗, r∗) w (o∗f , r∗f ), we define h(π∗) = π∗f , which satisfies the
invariant by assumption. In the latter case, however, i.e., if (o∗, r∗) w (o∗f , r∗f ) does not
hold true, we remove the shortcut cycle similarly to the removal of a settling domi-
nating cycle in the proof of Lemma 4.24, obtaining π f , and define h(π∗f ) = π f . This
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satisfies the invariant due to (o∗, r∗) w (o∗→, r∗→), which we obtain via :Lemma 4.16: Sec. 4.2, Page 101
and :Remark 4.14.2.: Sec. 4.2, Page 100

Now consider the case that π∗f is settled. In this case, we distinguish two cases: If π∗f
is settled due to o∗f = n, then, due to the invariant and Lemma 4.16, we obtain o∗ = n.
Thus, the invariant of h is vacuously true and we define h(π∗) arbitrarily. If, how-
ever, π∗f is settled due to reaching a dominating cycle, we remove this cycle from π∗f
similarly to the removal of dominating cycles in the proof of Lemma 4.24.

It remains to show that τ is indeed winning for Player 1 from (v∗, init(v∗)) in Gb. To
this end, consider a play ρ consistent with τ and let πj be the prefix of length j+ 1 of ρ.
If the overflow counter along ρ eventually saturates, ρ is clearly winning for Player 1.
Hence, assume that the overflow counter along ρ does not saturate. Then, due to the
invariant of h, the colors of the last vertices of πj and h(πj) coincide for all j ∈N.

Let c be the largest color occurring infinitely often along ρ and assume towards a
contradiction that c is even. Similarly to the argument in the proof of Lemma 4.24,
after some finite prefix, the color c may only occur on odd dominating cycles and
on removed shortcuts, as these are the only play infixes that are removed from the
simulation: If this is not the case, then a vertex with color c would be appended to
the h(πj) without ever being removed from the simulation. As the h(πj) are unsettled
due to the invariant of h, this unbounded growth contradicts the bounded length of
unsettled play prefixes due to Lemma 4.21. Moreover, again analogously to the proof
of Lemma 4.24, the color c can only occur finitely often on odd dominating cycles,
as each such occurrence implies one occurrence of some larger, odd color. Hence, it
remains to show that the color c does not occur infinitely often on removed shortcut
cycles.

Towards a contradiction, assume that the color c occurs infinitely often on removed
shortcut cycles. Since, by assumption, the overflow counter along ρ never saturates,
none of the h(πj) contains a saturated overflow counter either due to the invariant
of h. Moreover, as both the removal of an odd dominating cycle and that of a shortcut
retain the value of the overflow counter, the values of the overflow counter of the h(πj)
eventually stabilize. For all j ∈N let

πj = (v0, o0, r0) · · · (vj, oj, rj) as well as h(πj) = (vj
0, oj

0, rj
0) · · · (v

j
k j

, oj
k j

, rj
k j
) .

Furthermore, pick the position p such that the overflow counter in both the play ρ
as well as in the simulations h(πj) has stabilized and such that no color larger than c
occurs after position p. Formally, we pick p such that for all j > p we have op = oj

and op
kp

= oj
k j

and such that c is the largest color occurring on the suffix of ρ starting at
position p.

We show op
kp

= op by contradiction, i.e., we assume op
kp
6= op. Due to the invariant,

we obtain op
kp
≤ op, i.e., op

kp
< op. We claim that op

kp
< op implies that h(πj) results

from h(πj−1) by removing a shortcut cycle only finitely often. In fact, after the posi-
tion p, no shortcut cycle is removed anymore in this case: If, for some j > p a shortcut
is used in the move from h(πj−1) to h(πj), then (oj, rj) w (oj

k j
, rj

k j
), i.e., the shortcut
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cycle is not removed. Hence, only finitely many shortcut cycles are removed, which
contradicts the assumption of c occurring on infinitely many such cycles. Since we
have op

kp
≤ op due to the invariant of h, we obtain op

kp
= op, which implies rp

kp
v rp,

again due to the invariant of h. In particular, for each j > p, for each relevant request
for some color c′ that is open in rj

k j
, a request for some color c′′ ≥ c′ is open in rj.

Whenever c occurs on a removed shortcut cycle, then c must be smaller than the
smallest relevant request that is open during that cycle: Otherwise it would answer
that relevant request, due to c being even and thus cause the detour corresponding
to the infix to violate the shortcut condition. While there may be some requests for
colors c′ < c in the infix corresponding to the shortcut cycle in ρ, visiting c does
not answer all relevant requests in that corresponding infix in ρ, as argued above.
This implies that traversing the shortcut cycle increases the cost of some request in ρ.
Furthermore, since c is the maximal color visited in the considered suffix, one such
request eventually causes an overflow after traversing at most b + 1 many edges of
nonzero weight. This contradicts the choice of p such that no overflows occur after πp.
If less than b + 1 edges of nonzero weight occur during the remainder of the play,
then also at most b + 1 shortcuts occur, since each shortcut requires the traversal of at
least one such edge. This in turn contradicts c occurring on infinitely many removed
shortcut cycles.

Hence, we conclude that vertices of color c occur only finitely often on odd domi-
nating cycles and on removed shortcut cycles. As these cycles are the only cycles that
are removed from the simulation, almost all visited vertices of color c are added to
the simulated play and are never removed. Thus, the h(πj) grow increasingly longer.
Such unbounded growth contradicts them being unsettled due to Lemma 4.21. This,
in turn, contradicts the invariant of h.

Thus, the maximal color visited infinitely often during ρ is odd. Hence, ρ is winning
for Player 1, i.e., τ′ is winning for him in Gb from (v∗, init(v∗)).

The combination of the above two lemmas together with determinacy of G f
b due to

:Corollary 4.23 yields the desired equivalence of Gb and G f
b . Moreover, as the win- : Sec. 4.2, Page 111

ner of a play in G f
b is determined after at most polynomially many moves, G f

b can
easily be solved by simulating it on an alternating Turing machine whose runtime is
polynomially bounded. As such machines can be simulated using deterministic Tur-
ing machines with polynomially bounded space due to Chandra, Kozen, and Stock-
meyer [CKS81], this yields PSpace membership of the threshold problem for parity
games with costs.

Theorem 4.26. The following problem is in PSpace:

“Given a parity game with costs G, a vertex v of G, and a bound b ∈ N, does
Player 0 have a strategy σ with Costv(σ) ≤ b?”

Proof. Let n be the number of vertices of G and let W be the largest weight occurring
in G. First, recall that if b ≥ nW, then :Proposition 2.35 yields that the problem : Sec. 2.4, Page 27
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reduces to solving G. As the problem of solving parity games with costs is in UP ∩
coUP due to :Proposition 2.33, and since PSpace subsumes both UP and coUP, this: Sec. 2.4, Page 26
concludes the proof for the case b ≥ nW.

If, however, b < nW, we show how to simulate the finite-duration game G f
b on

an alternating Turing machine using the game semantics of such machines, i.e., two
players construct a single path of a run of the machine. The existential and universal
player take the roles of Player 0 and Player 1, respectively. The Turing machine keeps
track of the complete prefix of the simulated play of G f

b .
Every vertex of the underlying arena of G f

b can be represented in polynomial size.
Moreover, the length of the play is bounded from above by (log(nW) + 1)(n + 1)6

due to :Lemma 4.21. Thus, the Turing machine can keep track of the play prefix: Sec. 4.2, Page 106
constructed thus far explicitly and check whether a vertex picked by either player
is a valid continuation of the play prefix of G f

b constructed thus far. Moreover, the
Turing machine can check whether a dominating cycle has occurred after each step in
polynomial time. If the play is settled due to an even dominating cycle, the machine
accepts, if it is settled otherwise, the machine rejects.

This algorithm involves neither the explicit construction of Gb nor that of G f
b . Due to

this construction, the Turing machine accepts G and b if and only if Player 0 wins G f
b

and, due to Lemma 4.21, this machine terminates after polynomially many steps. Since
polynomially time-bounded alternating Turing machines are equivalent to polyno-
mially space-bounded classical Turing machines due to Chandra, Kozen and Stock-
meyer [CKS81], we obtain the desired result.

This concludes our work on upper bounds on the complexity of the threshold prob-
lem for parity games with weights. We have argued that the general case is in ExpTime

in :Theorem 4.12 and we have shown that its complexity drops to PSpace when only: Sec. 4.1, Page 96
considering parity games with costs in Theorem 4.26. In the following section, we
provide matching lower bounds.

4.3 Hardness of Playing Optimally

In the previous section we have shown that the threshold problem for parity games
with costs is in PSpace, while the more general threshold problem for parity games
with weights is in ExpTime. In this section, we show that these bounds are tight.

In fact, we first show in Section 4.3.1 that the threshold problem for finitary parity
games already is PSpace-hard. As parity games with costs subsume finitary parity
games, this yields PSpace-completeness for both the threshold problem for finitary
parity games, as well as for the threshold problem for parity games with costs.

Subsequently, we show that the threshold problem for parity games with weights is
ExpTime-hard in Section 4.3.2. This then implies ExpTime-completeness of the prob-
lem.
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4.3.1 Playing Finitary Parity Games Optimally is PSpace-hard

In this section we show that the threshold problem for finitary parity games is PSpace-
hard. To this end, we reduce the problem of evaluating a quantified Boolean formula
to the threshold problem for finitary parity games. As the former problem is known
to be PSpace-hard, this yields the desired lower bound on the complexity of the latter
problem.

We first define the problem of evaluating a quantified Boolean formula formally. A
quantified Boolean formula (QBF) is of the form

ϕ = Q1x1Q2x2 . . . Qnxnψ ,

where Qj ∈ {∃, ∀} for all j with 1 ≤ j ≤ n, and where ψ is a Boolean formula over the
variables x1 through xn. Similarly to the satisfiability problem for propositional logic
for the complexity class NP, the problem of deciding whether a given QBF evaluates
to true is the canonical PSpace-hard problem.

Proposition 4.27 ([SM73]). The following problem is PSpace-complete:

“Given a QBF ϕ, does ϕ evaluate to true?”

For the remainder of this section fix some quantified Boolean formula

ϕ = Q1x1Q2x2 . . . Qnxnψ .

We assume w.l.o.g. that ψ is in conjunctive normal form, i.e., that it consists of a
top-level conjunction and that every conjunct is a disjunction over three literals. Thus,
we obtain

ψ =
m∧

j=1

(`j,1 ∨ `j,2 ∨ `j,3) ,

where every `j,k is either x or x for some x ∈ {x1, . . . , xn}. We call each `j,k for
k ∈ {1, 2, 3} a literal and each conjunct of three literals a clause. Furthermore, Def. literal

Def. clausewe assume w.l.o.g. that the quantifiers Qj are alternating with Q1 = Qn = ∃. We
construct a finitary parity game Gϕ containing a designated vertex v such that Player 0
has a strategy σ for Gϕ with Costv(σ) = 3n + 5 if and only if the formula ϕ evaluates
to true, which implies PSpace-hardness of the problem of playing optimally in finitary
parity games due to Proposition 4.27.

This construction uses the standard framework for reducing QBF to infinite two-
player games of polynomial size: Player 0 implements existential choices, i.e., existen-
tial quantification and disjunctions. Dually, Player 1 implements universal quantifi-
cation and conjunctions. Intuitively, the players pick truth values for the variables in
the order of their appearance in the quantifier prefix. Then, Player 1 picks a clause,
followed by Player 0 picking a literal from that clause. Player 0 wins if and only if the
literal evaluates to true under the assignment constructed earlier.
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aj/0

xj/0

xj/4j+1

/4j+3

/0

aj+1/0aj+1/0

(a) Gadget for existentially quantified vari-
ables. If j = n, then aj+1 = ψ.

aj/0

xj/0

xj/4j+1

/4j+3

/0

aj+1/0

(b) Gadget for universally quantified vari-
ables.

Figure 4.11: The gadgets for assigning truth values to xj.

Since, in order to obtain a polynomial-time reduction, the state space of the con-
structed game must be polynomially bounded, we are unable to store the assignment
constructed during a play in the state space. Consequently, we encode the above
requirement using the winning condition of the constructed game. We begin by con-
structing the arena Aϕ of Gϕ together with its coloring. As described above, Aϕ con-
sists of three types of gadgets that implement constructing a variable assignment,
picking a literal, and asserting satisfaction of that literal, respectively.

Constructing the Assignment Recall that we reduce to the threshold problem for
finitary parity games, i.e., we do not only have to construct a finitary parity game,
but also some bound. To encode the above intuition, we encode assigning a truth
value to a variable by opening requests: We model setting xj to false by requesting
color 4j + 1 and setting it to true by requesting color 4j + 3. Crucially, only one of the
two colors can be requested. In a classical, qualitative parity game, Player 0 always
prefers requesting color 4j + 1 over requesting 4j + 3, and vice versa for Player 1. In
order to offset this monotonicity, we construct Aϕ such that requesting the smaller
color 4j + 1 incurs a larger cost before leaving the gadget than requesting the larger
color 4j + 3.

We show the gadgets that assign a truth value to variable xj in Figure 4.11. The
vertex aj belongs to Player 0 if xj is existentially quantified, and to Player 1 if xj is
universally quantified. Otherwise, the two gadgets are identical. The dashed edges
indicate the connections to the pre- and succeeding gadget, respectively. We construct
the first part of Aϕ out of n copies of this gadget. Moreover, the vertex a1 has an
incoming edge from the “end” of Aϕ, in order to enable infinite plays. Furthermore,
the gadget assigning a truth value to xn has an outgoing edge to the next part of the
arena, in which a literal is picked. In the remainder of this section, let cxj = 4j + 3 and
cxj = 4j + 1 be the colors associated with assigning true or false to xj, respectively.

Picking a Literal The second part of the arena starts with a vertex ψ belonging to
Player 1, from which he picks a clause by moving to a vertex Cj belonging to Player 0.
Each vertex Cj is connected to three gadgets, one for each of the three literals contained
in Cj. We show this construction in Figure 4.12. As both paths through each gadget
from the first part of the arena have uniform length, moving from the unique vertex
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Cm/0

`1,1?/0

`1,2?/0

`1,3?/0

`m,1?/0

`m,2?/0

`m,3?/0

...

...

...

...

...

...

...

Figure 4.12: The gadget for the middle part of the arena.

a1/0

Ck/0 xj?/4j xj,1!/4j xj,2!/4j+4 xj,3!/4(n+1)
3j+1

Ck′/0 xj?/4j xj,1!/4j+2 xj,2!/4j+2 xj,3!/4(n+1)
3j+1

Figure 4.13: Gadgets checking the assignment of true to xj (top) or to xj (bottom).

of color cxj or of color cxj to the vertex ψ takes 3(n − j) + 1 and 3(n − j) + 2 steps,
respectively. Upon leaving this middle gadget, the players have chosen some literal `.

Satisfaction of the Literal We check whether or not the literal ` is satisfied by the as-
signment constructed in the former part of the arena by answering the corresponding
request, e.g., if ` = xj, then the color 4j + 2 occurs, and if ` = xj, then the color 4j + 4
occurs. Again due to monotonicity, moving to a vertex of color 4j + 4 answers both
the request corresponding to setting xj to false and the one setting it to true. Similarly
to our previous construction, however, we construct the game such that moving to a
vertex of color 4j + 4 incurs greater cost than moving to a vertex of color 4j + 2.

Following this intuition, the last part of the arena consists of one gadget for each
literal x1, x1 through xn, xn occurring in ϕ. In these gadgets, neither player has a
non-trivial choice of the next vertex. Thus, the play “automatically” proceeds by first
answering requests for all colors cxj′ and cxj′ for j′ < j with cost 3(n− j′) + 3 and cost
3(n− j′)+ 4 respectively. Thus, all such requests are answered with cost less than 3n+
5. It then either grants the request for color cxj after 3j + 2 steps, or the request for
color cxj after 3j + 1 steps, both counted from the vertices xj? and xj?, respectively.
Before leaving the gadget for the literal xj or xj, all requests for the colors cxj′ and cxj′
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for j′ > j are answered after 3j + 3 steps, measured from the vertices xj? and xj?,
respectively. Since these requests have incurred cost 3(n − j′) + 3 and 3(n − j′) + 4
upon visiting those vertices, they are answered with cost at most 3(n− j′) + 4 + 3j +
3 < 3(n− 1) + 7 < 3n + 5.

We show these gadgets in Figure 4.13, which concludes the construction of Aϕ. In
that drawing, we denote weights along the edges of the gadget in spite of the game
under construction being a finitary parity game. These edges can easily be subdivided
into edges of weight one with only a linear blowup and thus only serve as shorthands.

Example 4.28. Let ϕ = ∀x1∃x2(x1 ∨ x2) ∧ (x1 ∨ x2). In order to ease presentation, we
disregard the assumption of Qn = ∀ as well as that each clause shall contain three
literals. It is, however, trivial to extend this example to satisfy these assumption by
adding an unused universally quantified variable x3 and by repeating some literal in
each close.

We show the arena Aϕ encoding the evaluation of ϕ in Figure 4.14. We have cx1 =
5, cx1 = 7, cx2 = 9, and cx2 = 11. 4

The arena Aϕ is of polynomial size in |ϕ|: The first part consists of one constant-size
gadget per variable, while the second part is of linear size in the number of clauses in
ϕ. The final part contains a gadget of size O(n) for each literal occurring in ϕ.

Remark 4.29. The arena Aϕ is of size O(n2 + m).

It remains to argue that this construction indeed implements our intuition, i.e., that
a strategy σ for Player 0 in Gϕ with Costa1(σ) ≤ 3n + 5 indeed witnesses ϕ evaluating
to true. Before we do so, however, we first observe that Player 0 is able to satisfy the
classical parity condition from each vertex in the constructed arena: Before returning
to the vertex a1, each play visits a vertex xj,3! or xj,3! for some j with 1 ≤ j ≤ n, that
is colored with the even color 4(n + 1), which is also the largest color occurring in
the game. Hence, every strategy for Player 0 is winning for her with respect to the
classical parity condition due to the structure of the constructed arena.

By carefully choosing the bound 3n + 5, however, we force Player 0 to witness the
evaluation of ϕ to true in order to satisfy the finitary parity condition with respect to
that bound. The construction ofAϕ causes the request for cxj or cxj to be answered only
after its associated costs have violated that bound if the vertex xj or xj, respectively,
has been visited beforehand: Since traversing the middle part of the arena incurs a
constant cost of two, a request for color cxj has incurred a cost of 3(n− j) + 3 upon
reaching xj? and xj?, respectively, while a request for color cxj has incurred a cost
of 3(n − j) + 4 at these vertices. Hence, the total cost incurred by the request for
color cxj is (3(n− j) + 3) + (3j + 2) = 3n + 5 in the gadget corresponding to xj, and
(3(n− j)+ 3)+ (3j+ 3) = 3n+ 6 in the gadget corresponding to xj. The dual reasoning
holds true for requests for color cxj . Hence, the bound of 3n + 5 is only achieved if the
request corresponding to the chosen literal was posed in the initial part of the arena.

Thus, the construction relies heavily on the bound on the cost that Player 0 has to
enforce in order to break the monotonicity of the underlying parity condition. This
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explains the increase in complexity from UP∩ coUP and NP∩ coNP to PSpace when
compared to both the classical parity condition and the parity condition with weights
if the bound is quantified existentially.

Lemma 4.30. Player 0 has a strategy σ with Costa1(σ) = 3n + 5 in Gϕ if and only if ϕ
evaluates to true.

Proof. In order to reason about the assignment of truth values to variables constructed
during a play, we first introduce some notation. Let ψ be a quantifier-free Boolean
formula over variables x1 through xn. Moreover, let α :

{
x1, . . . , xj

}
99K {true, false}

be a partial assignment of truth values to the variables from ψ. We denote the formula
resulting from replacing the variables in the domain of α with their respective truth
values by α(ψ). Moreover, given some partial mapping α, we write α[xj 7→ t] to denoteDef. α(ψ)

the mapping α augmented by the assignment xj 7→ t.
For the remainder of this proof, we only consider a finite play infix π that starts

in a1 and does not visit that vertex again. This suffices as all plays start in a1, visit a1
infinitely often, and all requests are answered before moving back to a1.

First assume that ϕ evaluates to true. We construct a strategy σ for Player 0 with the
properties given in the statement of the lemma inductively from assignments of truth
variables to the existentially quantified variables of ϕ. Since the induction start and
the induction step use similar constructions, we argue about both in parallel.

Due to the structure of the arena, we only need to define σ for play prefixes ending
in vertices aj where Qj = ∃ and for play prefixes ending in one of the Cj as those
are the only vertices of Player 0. Hence, first let j such that 1 ≤ j ≤ n and such
that Qj = ∃ and let π be a play prefix starting in a1, consistent with σ and ending in aj.
By analyzing π we construct the partial mapping α :

{
x1, . . . , xj−1

}
99K {true, false},

where
• αj−1(xk) = true if π′ visits xk, and
• αj−1(xk) = false if π′ visits xk.

Due to the structure of the arena, exactly one of these cases holds true, hence αj−1 is
well-defined.

The induction hypothesis yields that, due to our construction of σ, the quantified
Boolean formula ∃xj · · ·Qnxnαj−1(ψ) evaluates to true. Hence, there exists some t ∈
{true, false} such that ∀xj+1 · · ·Qnxn(αj−1[xj 7→ t])(ψ) evaluates to true as well. We
define σ(π) = xj if t = true, and σ(π) = xj otherwise.

When the play eventually reaches the vertex ψ, Player 1 chooses to move to some Cj.
Hence, let π be some play prefix starting in a1, consistent with σ, and ending in
some Cj. The analysis of π yields an assignment α : {x1, . . . , xn} → {true, false}, such
that α(ψ) evaluates to true. Since α(ψ) evaluates to true, there exists a k ∈ {1, 2, 3}
such that α(`j,k) = true. We define σ(π) = `j,k?, which concludes the definition of σ.
It remains to show Costa1(σ) ≤ 3n + 5.

To this end, let π be some play prefix starting in a1, consistent with σ, and ending
in a1 without visiting a1 in-between. We show that all requests in π are answered with
cost at most 3n + 5.
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Upon reaching vertex ψ, there exist n open requests. By analyzing the prefix of π
up to and including ψ, we construct an assignment α as above: If that prefix contains
the vertex xj, then we define α(xj) = true. Otherwise, i.e., if that prefix contains the
vertex xj, then we define α(xj) = false. As previously argued, for all j with 1 ≤ j ≤ n
we have that if α(xj) = true, then upon reaching ψ there is an open request for cxj with
cost 3(n− j) + 1. Otherwise, there is an open request for cxj with cost 3(n− j) + 2 at
that point.

Pick ` ∈
{

xj, xj | 1 ≤ j ≤ n
}

as the unique literal such that π visits the vertex `?. We
then have ` = x or ` = x for some variable x. If ` = x, then α(x) = true and hence,
there is an open request for cx. As argued previously, this request is then answered
with cost 3n + 5, since we picked the gadget corresponding to x. Similarly, if ` = x,
then α(x) = false and thus there is an open request for cx, which is answered with
cost 3n + 5 as well. All other open requests are answered with cost at most 3n + 5,
as argued previously during the construction of Gϕ, which concludes the proof of this
direction of the lemma.

Now assume that ϕ evaluates to false. Then, irrespective of the choices made by
Player 0 when constructing α in the first part of the arena, Player 1 can pick truth
values for the universally quantified variables such that α(ψ) = false and subsequently
pick a clause Cj such that α(Cj) evaluates to false. Since we have Cj = `j,1 ∨ `j,2 ∨ `j,3,
Player 0 has to move to some `j,k with α(`j,k) = false. If `j,k = xl , then there is an
open request for cxj at xl,1!, which is answered with cost 3n + 6. Similarly, if `j,k = xl ,
then α(xl) = true, hence there is an open request for cxl , which is also answered with
cost 3n + 6. Thus, in each round Player 1 can open a request that is only answered
with cost at least 3n + 6, i.e., Player 0 has no strategy with cost 3n + 5.

The above lemma shows that the construction of Gϕ indeed captures our intuition:
A strategy σ for Player 0 in Gϕ with Costa1(σ) ≤ 3n + 5 witnesses ϕ evaluating to true.
It is easy to see that the correctness of this statement heavily relies on our choice of
the bound 3n + 5. In fact, in addition to the above observation that every play in Gϕ

satisfies the classical parity condition, we furthermore obtain that each strategy σ for
her has Costv(σ) ≤ 3n + 7 for all vertices v of Gϕ.

Due to Lemma 4.30, PSpace-hardness of the threshold problem for finitary parity
games then follows directly from PSpace-hardness of evaluating quantified Boolean
formulas.

Theorem 4.31. The following problem is PSpace-hard:

“Given a finitary parity game G, some vertex v of G, and a bound b ∈ N, does
Player 0 have a strategy σ with Costv(σ) ≤ b?”

Proof. Let ϕ = Q1x1Q2x2 . . . Qnxnψ be some quantified Boolean formula. We construct
the finitary parity game Gϕ as described above and obtain that Player 0 has a strategy σ
with Costa1(σ) ≤ 3n + 5 in Gϕ if and only if ϕ evaluates to true due to Lemma 4.30.
Since the problem of evaluating quantified Boolean formulas is PSpace-hard due to
Proposition 4.27 and since the reduction to the above problem is indeed polynomial
due to Remark 4.29, we obtain the desired result.
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Recall that in Section 4.2 we have shown that the threshold problem for parity games
with costs to be in PSpace. As parity games with costs subsume finitary parity games,
we obtain tight complexity bounds on the two problems.

Theorem 4.32. The following problems are PSpace-complete:

“Given a finitary parity game G, some vertex v of G, and a bound b ∈ N, does
Player 0 have a strategy σ with Costv(σ) ≤ b?”

“Given a parity game with costs G, some vertex v of G, and a bound b ∈ N, does
Player 0 have a strategy σ with Costv(σ) ≤ b?”

4.3.2 Playing Parity Games with Weights Optimally is ExpTime-hard

In the previous section we have shown that the threshold problems for finitary par-
ity games and for parity games with costs are PSpace-complete. Since parity games
with weights subsume both finitary parity games and parity games with weights,
this implies PSpace-hardness of the threshold problem for parity games with weights.
Furthermore, in Section 4.1.4 we have shown ExpTime-membership of the threshold
problem for parity games with weights.

In this section we close the remaining gap in the picture by showing that the latter
problem is ExpTime-complete. To this end, we reduce the ExpTime-hard problem of
solving countdown games to the threshold problem for parity games with weights.
Countdown games were introduced by Jurdziǹski, Laroussinie, and Sproston [JLS08].

In a countdown game, some initial credit is fixed at the beginning of a play. Both
players then move in alternation in an arena that only contains nonpositive weights.
In each turn, first Player 0 announces some weight, before Player 1 has to move along
some edge of that weight, reducing the initial credit by the weight of the traversed
edge. If the credit at some point reaches zero, Player 0 wins. If, however, the credit at
some point turns negative, Player 1 wins. Since each edge has strictly negative weight,
each play is won by either player after finitely many moves.

When formulated in our framework of arenas and winning conditions, a count-Def. countdown
game down game G = (A, Countdown(Weight, cI)) [JLS08] consists of an arena A =

(V, V0, V1, E), a weighting Weight of A, and some initial credit cI ∈ N, which satisfy
the following conditions:

1. There exists a designated sink vertex v⊥ ∈ V1,
2. we have

• E ⊆ (V0 ×V1) ∪ (V1 ×V0) ∪ ({v⊥} × {v⊥}),
• V0 × {v⊥} ⊆ E, and
• (v⊥, v⊥) ∈ E,

3. for each e1 = (v, v′1), e2 = (v, v′2) ∈ E, with v ∈ V0 we have that e1 6= e2 implies
Weight(e1) 6= Weight(e2),

4. for each e ∈ E ∩ (V0 ×V) we have Weight(e)

{
= 0 if e ∈ (V0 × {v⊥}), and
< 0 otherwise, and
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Figure 4.15: An example of the arena and the weighting of a countdown game.

5. for each e ∈ E ∩ (V1 ×V) we have Weight(e) = 0.
As discussed above, a countdown game is played in turns. Each turn starts at a

vertex v of Player 0, from where Player 0 first picks some outgoing edge e leading to
vertex v′ of Player 1. That edge has unique weight among the outgoing edges of v due
to the third requirement. Moreover, if Player 0 does not opt to end the play by moving
to v⊥, the weight of the edge is negative due to the fourth condition. Subsequently,
Player 1 picks a successor of v′ and moves to that successor along an edge of weight
zero due to the fifth requirement, where the next turn of the play starts.

The countdown condition is defined as Def. countdown
condition

Countdown(Weight, cI) ={
ρ = v0v1v2 · · · ∈ Vω | ∃j. vj = v⊥ and cI + Weight(v0 · · · vj) = 0

}
.

Our definition of countdown games differs from the one given by Jurdziǹski, La-
roussinie, and Sproston [JLS08], as we adapted it to fit our framework of games intro-
duced in : Section 2. It is, however, easy to see that our definition and the one given :Page 11
by the authors are equivalent.

Example 4.33. We show the arena of a countdown game together with a weighting in
Figure 4.15. Player 0 wins this game from the vertex vI if and only if the initial credit cI
is divisible by three: If cI = 0, then Player 0 can move directly to v⊥. Otherwise, she
moves to the only other successor vertex of vI, from where Player 1 moves to either v↑
or to v↓. In either case, Player 0 can force the play to move between the vertices v↑
and v′↑, or v↓ and v′↓, respectively, incurring a weight of −3 in each iteration. Once the
initial credit has been depleted, Player 0 can move to v⊥, thus winning the play.

If, however, cI is not divisible by three, first assume that cI = 3j + 1 for some j ∈ N.
If Player 0 moves to v⊥ from vI, she immediately loses. Thus, Player 1 can move to v↓,
from where the only credit values occurring along the play are of the form 3j′ − 1
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(upon visiting v′↓) and 3j′− 2 (upon visiting v↓). Hence, whenever Player 0 opts to end
the play by moving to v⊥, the remaining credit is either greater or smaller than 0, i.e.,
she loses the resulting play. The argument for cI = 3j + 2 is analogous with Player 1
moving to v↑ at the beginning of the play. 4

As countdown games are of finite duration, we obtain that they are determined due
to Zermelo [Zer13].

Remark 4.34. Countdown games are determined.

Jurdziǹski, Laroussinie, and Sproston showed that solving countdown games is Ex-
pTime-hard via a reduction from the word problem for Turing machines with an expo-
nential time bound. The authors prove this via a reduction from the word problem for
alternating Turing machines with polynomially bounded space. In order to concisely
encode the exponential number of configurations attainable by the Turing machine
during its run on the input word and the transitions between these configurations,
this reduction requires the weights along the edges of the countdown game as well as
the initial credit cI to be given in binary encoding. Encoding the resulting countdown
game in unary would entail an exponential blowup, i.e., the reduction would not be
computable in polynomial time.

Proposition 4.35 ([JLS08]). The following problem is ExpTime-hard:

“Let G be a countdown game and let v be a vertex of G. Does Player 0 have a
winning strategy from v in G?”

We reduce the problem of solving countdown games to the threshold problem for
parity games with weights. To this end, for the remainder of this section, fix some
countdown game G = (A, Countdown(Weight, cI)) where A = (V, V0, V1, E), as well
as some initial vertex vI ∈ V.

Intuitively, we construct the parity game with weights G ′ such that at the beginning
of the play a single request is opened, which is only answered upon visiting v⊥. After
visiting v⊥, the play returns to the initial vertex vI after reopening the unique request
of G ′, enforcing infinitely many requests.

In a countdown game, only Player 0 may decide to move to v⊥. Since she should,
intuitively, only do so after traversing a play prefix of weight −cI, we equip the edges
leading from her vertices to v⊥ with weight 2cI. Thus, she can enforce “tallying the
score” by moving to v⊥.

In order to afford Player 1 the same possibility, we add edges that allow him to move
from his vertices to v⊥. Furthermore, in order to incentivize him to only take these
edges once he has exceeded the lower bound of −cI, these edges have weight zero. All
remaining weights remain unchanged, thus the costs incurred by the unique request
in G ′ model the remaining credit in the corresponding play in G.

Formally, let v> be some vertex not occurring in V. We define the parity game with
weights G ′ = (A′, WeightParity(Ω, Weight′)), where A′ = (V ′, V ′0, V ′1, E′), with
• V ′ = V ∪ {v>}, V ′0 = V0 ∪ {v>}, V ′1 = V1, and
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• E′ = (E \ {(v⊥, v⊥)}) ∪ (V1 × {v⊥}) ∪ {(v⊥, v>), (v>, vI)}.
Since there exists a unique outgoing edge of v⊥ leading back to the initial vertex vI of
the countdown game via v>, the play is restarted after visiting the sink vertex.

Furthermore, we define the weight function

Weight′(e) =


Weight(e) if (v, v′) ∈ E \ (V0 × {v⊥})
2cI if e ∈ V0 × {v⊥}
0 otherwise

as well as the coloring

Ω′(v) =


1 if v = v>,
2 if v = v⊥,
0 otherwise

and claim that Player 0 has a strategy σ with Costv>(σ) ≤ cI if and only if she wins G
from vI. We illustrate this construction in Figure 4.16.

Example 4.36. Let A and Weight be the arena and the weight function from Exam-
ple 4.33. Furthermore, let cI = 5. We show the energy parity game G ′ resulting from
the reduction above for G = (A, Countdown(Ω, cI)) in Figure 4.17. 4

We claim that this construction implements our intuition, i.e., that solving G ′ with
respect to the bound cI is indeed equivalent to solving G.

Lemma 4.37. Player 0 wins G from vI if and only if she has a strategy σ with Costv>(σ) ≤ cI
in G ′.

Proof. We first show the direction from left to right. To this end, let σ be a winning
strategy for Player 0 in G from vI. Moreover, let π = v0 · · · vj be a play prefix in G ′
starting in v> and let j′ be the largest position in π with vj′ = v>. We define the
strategy σ′ for Player 0 in G ′ via σ′(π) = σ(vj′+1 · · · vj) as well as σ′(πv⊥) = v> and
claim Costv>(σ

′) ≤ b.
To prove this claim, let ρ′ = v0v1v2 · · · be a play in G ′ starting in v> that is consistent

with σ′. First assume towards a contradiction that ρ′ only visits v> finitely often. Then,
due to the structure of the arena, ρ′ only visits v⊥ finitely often. By construction of σ′,
this implies that ρ′ contains a suffix that begins in vI, is consistent with σ, but never
visits v⊥. This contradicts σ being a winning strategy for her in G from vI. Hence, ρ′

visits v⊥ infinitely often.
Thus, ρ′ is of the form

ρ′ = v>π0v⊥ · v>π1v⊥ · v>π2v⊥ · · · ,

where each πj starts in vI and is consistent with σ. We first argue that, if πj ends in
a vertex of Player 1, then we have 0 ≥ Weight′(πj) ≥ −cI: All weights in G ′ except
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v>/1 vI/0

/0

/0

v⊥/2· · ·

A

0
2cI

0

0

Figure 4.16: Construction of the parity game with weights G ′ from a given countdown
game G. We omit unchanged weights for the sake of readability.
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Figure 4.17: The parity game with weights corresponding to the arena and the weight-
ing from Figure 4.15 for cI = 5.
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for those from V0 × {v⊥} are nonpositive. Hence, 0 ≥ Weight′(πj) follows directly
from the construction of G ′. Moreover, Weight′(πj) < −cI would contradict πj being
consistent with the winning strategy σ for Player 0 in G, since she would be unable to
continue the play prefix πj such that the resulting play is winning for her. Hence, we
have 0 ≥ Weight′(πj) ≥ −cI. Moreover, since all edges leading from v> and all edges
leading to v⊥ have weight zero, and since Weight′(π) is decreasing for increasing
prefixes π of πj due to construction of G ′, we obtain Ampl(v>πjv⊥) < cI.

If, however, πj ends in a vertex of Player 0, then we have Weight′(πj) = −cI
and Ampl(v>πjv⊥) = cI, as πj is consistent with the winning strategy σ for Player 0
in G. In either case, we obtain that the unique request in v>πjv⊥ posed by visiting v>
is answered with cost at most cI. Hence, ρ′ has cost at most cI, which concludes this
direction of the proof.

We show the other direction of the statement via contraposition: Assume Player 0
does not win G from vI. Since G is determined due to Remark 4.34, Player 1 wins G
from vI, say with strategy τ. We define a strategy τ′ for Player 1 in G ′ that is winning
for him from v> via mimicking moves made by τ until the initial credit is used up. At
that point, τ′ prescribes moving to v⊥ in order to witness exceeding the initial credit
and to restart the play.

Formally, let π′ = v0 · · · vj be a play prefix in G ′ that starts in v> and ends in some
vertex of Player 1. Moreover, let j′ ≤ j be the largest position such that vj′ = v>.
If Weight(vj′ · · · vj) ≥ −cI, we define τ′(π′) = τ(vj′+1 · · · vj). Otherwise, we define
τ′(π′) = v⊥. It remains to show Costv>(τ

′) > cI.
To this end, let ρ′ be a play in G ′ starting in v> consistent with τ′. Due to the

structure of A′, every infix of ρ′ that does not visit v> nor v⊥ traverses edges of weight
zero and negative weight in alternation. Moreover, since τ′ prescribes moving to v⊥
once the play infix since the last visit to v> has incurred weight exceeding −cI, the
play ρ′ is of the form

ρ′ = v>π0v⊥ · v>π1v⊥ · v>π2v⊥ · · · ,

where each πj starts in vI and is consistent with τ.
We aim to show Ampl(v>πjv⊥) > cI for all j, which implies Cost(ρ′) > cI due to

the construction of G ′ and thus suffices to show the desired statement. To this end,
fix some j ∈ N and first consider the case that πj ends in a vertex of Player 1. Then
we obtain Weight(πj) < −cI by definition of τ′. This directly implies the desired
statement.

Now consider the case that πj ends in a vertex of Player 0. We first argue that
Weight′(πj) 6= −cI holds true. Towards a contradiction, assume Weight′(πj) = −cI
and recall that πj starts in vI and is consistent with the winning strategy τ for Player 1
from vI. Thus the play πj(v⊥)ω in G is consistent with τ. Hence, Weight′(πj) = −cI
contradicts τ being a winning strategy for Player 1 from vI.

It remains to show Ampl(v>πjv⊥) > cI for the case that πj ends in a vertex of
Player 0. If Weight′(πj) < −cI, we directly obtain Ampl(v>πjv⊥) > cI. If, however,
Weight′(πj) > −cI, we have Weight′(πjv⊥) > cI, since we defined Weight′(v, v⊥) = 2cI
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for each vertex v of Player 0. Thus, we obtain Ampl(v>πjv⊥) > cI for each infix v>πjv⊥
of ρ′. Hence, the unique request posed by visiting v> is answered with cost greater
than cI, i.e., we obtain Cost(ρ′) > cI.

Due to Lemma 4.37 we obtain a polynomial reduction from the problem of solving
countdown games to the threshold problem for parity games with weights. As the for-
mer problem is ExpTime-hard due to Proposition 4.35, this implies ExpTime-hardness
of the latter problem.

Theorem 4.38. The following decision problem is ExpTime-hard:

“Given a parity game with weights G, some vertex vI of G, and a bound b ∈ N,
does Player 0 have a strategy σ with CostvI(σ) ≤ b in G?”

Proof. We reduce the problem of solving countdown games to the given problem. To
this end, let G = (A, Countdown(Weight, cI)) be a countdown game and let vI be
a vertex of A. We construct the parity game with weights G ′ as described above.
Due to Lemma 4.37, Player 0 wins G from vI if and only if she has a strategy σ with
Costv> ≤ cI. Moreover, as the problem of solving countdown games is known to be
ExpTime-hard due to Proposition 4.35, this implies the desired result.

The result of Theorem 4.38 closes the remaining gap in the characterization of the
complexity of the threshold problem for parity games with weights, parity games with
costs, and finitary parity games. Having thus settled the computational complexity of
these problems, we now turn our attention to the memory requirements of playing
with respect to a fixed bound in these games. In the following section we consider the
memory requirements of both players when playing optimally.

4.4 Memory Requirements of Playing Optimally

If Player 0 just aims to win a finitary parity game or a parity game with costs,
she can do so using a positional winning strategy, due to :Proposition 2.25 and: Sec. 2.4, Page 23
:Proposition 2.34. In parity games with weights, however, she requires linear memory: Sec. 2.4, Page 26
in the number of vertices and in the largest absolute weight occurring in the game, as
well as quadratic memory in the number of odd colors, due to :Theorem 3.34. Dually,: Sec. 3.4, Page 71
in all such games, Player 1 requires, in general, infinite memory in order to implement
a winning strategy for him, due to the propositions and the theorem referenced above.

In this section we show that positional strategies no longer suffice for Player 0 in
order to play optimally even in finitary parity games, but that she requires exponential
memory in the number of odd colors occurring in the game. Dually, as Player 1 is no
longer required to let the costs of the play diverge when playing optimally, exponential
strategies suffice for him to win with respect to a fixed bound. Furthermore, we show
that these bounds are tight for both players.

As the upper bounds on the memory required by both players result from the proof
of :Theorem 4.8, we provide both upper bounds in Section 4.4.1. Subsequently, we: Sec. 4.1, Page 91
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prove the lower bound for Player 0 in Section 4.4.2, while we prove the lower bound
for Player 1 in Section 4.4.3.

4.4.1 Exponential Memory Suffices for both Players

We first argue that exponential memory indeed suffices for both players to play op-
timally in parity games with weights. As such games subsume parity games with
costs and finitary parity games, this implies the same result for the two latter kinds of
games as well.

To this end, fix some parity game with weights G with n vertices, d odd colors, and
largest absolute W as well as some bound b ∈N. Moreover, recall that in : Section 4.1 :Page 86
we defined the b-threshold game Gb of G. This threshold game is a classical parity
game whose arena consists of the arena of G augmented with request functions and
an overflow counter that is bounded from above by n.

Furthermore recall that in the proof of :Theorem 4.8 we showed how to leverage : Sec. 4.1, Page 91
a winning strategy for either player in Gb in order to construct a winning strategy
for them in G. To this end, we implemented the strategy for Player 0 in G using the
set {0, . . . , n} × R as memory states, where the set {0, . . . , n} implements the overflow
counter and where R denotes the set of request functions.

The first component of that memory structure is, however, irrelevant: Player 0 can
always play assuming the largest possible value of that counter that still allows her to
win.

Lemma 4.39. Let G be a parity game with weights containing d odd colors and let b ∈ N.
Moreover, let v∗ be a vertex of G. If Player 0 has a strategy σ in G with Costv∗(σ) = b, then
she also has a strategy σ′ with Costv∗(σ′) ≤ b and |σ′| = (2b2 + 3b + 2)d.

Proof. Recall that we showed in the proof of :Theorem 4.8 that if Player 0 has a strat- : Sec. 4.1, Page 91
egy σ in G with Costv∗(σ) ≤ b, then she also has a winning strategy from (v∗, init(v∗))
in the threshold game Gb as defined in : Section 4.1.2. Since Player 0 wins Gb from :Page 88
(v∗, init(v∗)), and since Gb is a parity game, there exists a positional strategy that is
winning for her from that vertex due to :Proposition 2.18. Let σb be such a strategy. : Sec. 2.3, Page 20

Let R be the set of vertices reached by plays starting in (v∗, init(v∗)) and consis-
tent with σb. Note that, since σb is positional, that strategy is winning from all ver-
tices in R. Furthermore, for each vertex v and each request function r, let ov,r =
max({0} ∪ {o | (v, o, r) ∈ R}), i.e., ov,r is the maximal value such that Player 0 wins Gb
from (v, ov,r, r) using σb, or zero, if no such value exists.

We now define a strategy σ′ for Player 0 in G that only uses the set of request func-
tions as memory states. To this end, recall that we defined the memory structureM =
(M, init, upd) for the construction of Gb, where M = {0, . . . , n} × R, and where R is the
set of request functions. We define M′ = R, the update function upd′(r, (v, v′)) = r′,
if upd((ov,r, r), (v, v′)) = (o′, r′), as well as the initialization function init′(v) = init(v).
Finally, we define the next-move function nxt′(v, r) = v′, where v′ is the unique ver-
tex that satisfies σb(v, ov,r, r) = (v′, o′, r′), and claim that the strategy σ′ implemented
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by M′ = (M′, init′, upd′) and nxt′ has Costv∗(σ′) ≤ b, which suffices to show the
desired statement.

To prove this claim, let ρ = v0v1v2 · · · be a play starting in v∗ and consistent with σ′

and let extM′(ρ) = (v0, r0)(v1, r1)(v2, r2) · · · be the extension of ρ with respect to the
memory structureM′.

A straightforward induction yields (vj, ovj,rj , rj) ∈ R for all j ∈N. We first argue that
we have ovj,rj ≤ ovj+1,rj+1 for all j ∈ N. To this end, let (o, r) = upd((ovj,rj , rj), (vj, vj+1)).
By construction of A′ we have o ≥ ovj,rj and r = rj+1. Moreover, since (vj, ovj,rj , rj) ∈ R
and due to our definition of σ′, we obtain (vj+1, o, r) = (vj+1, o, rj+1) ∈ R. Hence, o ≤
ovj+1,rj+1 , which implies ovj+1,rj+1 ≥ ovj,rj .

Thus, the ovj,rj are monotonically increasing. Furthermore, we easily obtain ovj,rj < n
due to all (vj, ovj,rj , rj) being in R, the definition of R, and due to σb being winning
for Player 0 from (v∗, init(v∗)). Hence, the sequence of ovj,rj eventually stabilizes, i.e.,
there exists a j ∈N such that ovj′ ,rj′ = ovj,rj for all j′ ≥ j.

We argue that the play (vj, ovj,rj , rj)(vj+1, ovj+1,rj+1 , rj+1)(vj+2, ovj+2,rj+2 , rj+2) · · · is con-
sistent with σb: Let j′ ≥ j such that (vj′ , ovj′ ,rj′ , rj′) ∈ V ′0 and let σb(vj′ , ovj′ ,rj′ , rj′) =

(vj′+1, o, rj′+1). We then clearly obtain o ≤ ovj′+1,rj′+1
by definition of the latter. Further-

more, we have ovj′ ,rj′ ≤ o due to the construction of A′, which yields o = ovj′+1,rj′+1
due

to our assumption ovj′ ,rj′ = ovj′+1,rj′+1
.

Thus, the play (vj, ovj,rj , rj)(vj+1, ovj+1,rj+1 , rj+1)(vj+2, ovj+2,rj+2 , rj+2) · · · starts in a ver-
tex from R, is consistent with σb, and shares a color sequence with a suffix of ρ due
to oj ≤ ovj,rj < n. The strategy σb being winning for Player 0 from (v∗, init(v∗)), the
construction of Gb and prefix-independence of the parity condition with weights then
yield Cost(ρ) ≤ b.

For Player 1, in contrast, it is open whether one can omit the overflow counter when
implementing a strategy with cost at least b. Hence, we have to include it in the
resulting memory structure. The following upper bound thus results directly from the
proof of Theorem 4.8.

Corollary 4.40. Let G be a parity game with weights with n vertices and d odd colors and
let b ∈N. Moreover, let v∗ be a vertex of G. If Player 1 has a strategy τ in G with Costv∗(τ) =
b, then he also has a strategy τ′ with Costv∗(τ′) ≥ b and |τ′| = n(2b2 + 3b + 2)d.

The factor of 2b2 + 3b + 2 in the upper bounds for both players stems from the
construction of Gb, which is of polynomial size in the number of request functions. We
have, however, argued in Section 4.2 that in the special case of parity games with costs
we are able to simplify the definition of request functions: While in parity games with
weights we have to store an interval of costs incurred by open requests, it suffices to
store the upper bound of that interval in parity games with costs. Thus, in that special
case we only obtain (b + 2)d request functions, which yields the following improved
upper bounds on memory requirements for both players.

Corollary 4.41. Let G be a parity game with costs with n vertices and d odd colors and
let b ∈N. Moreover, let v∗ be a vertex of G.
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1. If Player 0 has a strategy σ in G with Costv∗(σ) = b, then she also has a strategy σ′

with Costv∗(σ′) ≤ b and |σ′| = (b + 2)d.
2. If Player 1 has a strategy τ in G with Costv∗(τ) = b, then he also has a strategy τ′

with Costv∗(τ′) ≥ b and |τ′| = n(b + 2)d.

Having argued that exponential memory suffices for both players to implement
optimal strategies, we now turn our attention to providing matching lower bounds.
Again, our matching lower bounds already hold for finitary parity games. These
proofs rely on ideas that we already used to show :Theorem 4.31: We leverage the : Sec. 4.3, Page 123
fact that fixing some bound requires a player, in the worst case, to store all open
requests in order to answer them within the given bound or to exceed that bound.

4.4.2 Player 0 Requires Exponential Memory

We now show that Player 0 requires exponential memory to play optimally even in
the special case of finitary parity games. To this end, we construct for each d ≥ 1
a finitary parity game Gd that is of polynomial size in d and fix a bound b that is
polynomial in d. We subsequently show that, for a designated vertex vI of Gd, Player 0
has a strategy σd with CostvI(σd) = b and that she has no strategy with smaller cost
from that vertex. Furthermore, we show that the strategy σd is of size 2d−1 and that
there exists no strategy of smaller size that witnesses the bound b.

Thus, in order to play optimally in Gd, Player 0 indeed requires exponential mem-
ory. Since Gd is a finitary parity game, this stands in stark contrast to the situation
in which Player 0 merely aims to win Gd, i.e., provide some finite upper bound on
the cost along the play. In that situation, Chatterjee and Henzinger [CH06] showed
that positional strategies, i.e., strategies of constant size one suffice for Player 0 (cf.
:Proposition 2.25.1). : Sec. 2.4, Page 23

For the remainder of this section, fix some d ≥ 1. We begin by constructing the
parity game with costs Gd. To this end, we generalize a construction by Chatterjee
and Fijalkow [CF13]. While the construction by Chatterjee and Fijalkow yields a linear
lower bound, our generalization indeed realizes the claimed exponential lower bound.

The game Gd is played in rounds. In each round, which starts at the designated
vertex vI, Player 1 poses d requests for odd colors in the range 1 through 2d − 1.
Subsequently, Player 0 gives d answers using even colors in the range 2 through 2d.
If she recalls the choices made by Player 1 in the first part of the round, she is able
to answer each request with respect to the fixed bound b. Otherwise, we show that
Player 1 can exploit her insufficient memory in order to force requests that are only
answered with cost greater than b. After each round, the play returns to the initial
vertex vI in order to allow for infinite plays.

The arenaAd of Gd consists of gadgets G1
j for Player 1 and gadgets G0

j that each allow
exactly one request (for Player 1) or response (for Player 0) to be made. Moreover,
each path through a gadget has the same length d + 2, including the edge connecting
a gadget to its successor. However, low-priority requests and responses are made
earlier than high-priority ones when traversing such a gadget, due to its structure. We
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Figure 4.18: The gadgets constituting the arena of Gd.
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Figure 4.19: The finitary parity game Gd witnessing exponential memory requirements
for Player 0.
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show both gadgets in Figure 4.18. The dashed lines denote the edges to the pre- and
succeeding gadget and the edge between the final and the initial gadget.

More precisely, the arena Ad comprises d repetitions of the gadget G1
j for Player 1,

followed by d repetitions of the gadget G0
j for Player 0. We designate the top-left

vertex of the initial gadget for Player 1 as the initial vertex vI. Moreover, the final
gadget of Player 0 has a single back-edge to the initial vertex. We illustrate the overall
construction of the arena Ad in Figure 4.19.

As Ad consists of 2d gadgets, each of which contains 3d vertices, the arena Ad is
of polynomial size in d. The largest odd color occurring in Ad is 2d− 1. Hence, Ad
contains only d odd colors.

Remark 4.42. The game Gd contains 6d2 many vertices and d odd colors.

We now show that exponential memory is both necessary and sufficient for Player 0
to play optimally in Gd. To this end, for the remainder of this section, fix b = d2 + 2d.
We first construct a strategy σd of size 2d−1 such that CostvI(σd) = b. To this end, we
define a memory structure together with a next-move-function that implements our
strategy.

To construct such a strategy, it suffices to consider finite plays infixes similarly to
the proof of :Lemma 4.30. Even though the requests are not necessarily all answered : Sec. 4.3, Page 122
after each round, we argue that Player 0 can always do so while playing optimally.

Recall that, in parity games with costs, and thus also in finitary parity games, we call
a request relevant if either there exists no request for a larger color that has incurred
greater cost. We gave a formal definition of this notion in : Section 4.2.1. :Page 99

Intuitively, in order to play optimally, Player 0 tracks the requests made by Player 1
in the first part of each round. Instead of tracking each request precisely, however, it
suffices to store the relevant ones. As we are dealing with finitary parity games, and
due to the structure of the arena, relevant requests can only be opened by visiting some
larger color than all currently open requests. In order to use memory efficiently, we
do not initialize our memory structure with the empty sequence of relevant requests,
but rather with the “worst-case assumption”, i.e., with the memory element encoding
that in each gadget of Player 1 a new relevant request was opened.

Following this intuition, we define the set of strictly increasing odd sequences

IncSeqd = {(c1, . . . , cd) | 1 ≤ c1 ≤ · · · ≤ cd = 2d− 1,
cj 6= 2d− 1 implies cj < cj+1, all cj are odd}

and use them as the set of memory states Md = IncSeqd. We observe |Md| = 2d−1, as
each increasing sequence is isomorphic to a subset of {1, 3, 5, . . . , 2d− 3}. We moreover
define the initialization function

initd(v) = (1, 3, . . . , 2d− 3, 2d− 1) for all vertices v in Ad,

which suffices as we are later only interested in plays starting in the designated initial
vertex vI.
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It remains to define updd. To this end, let m ∈ Md and let e = (v, v′) be an edge
of Ad. If v′ = vI, then we define updd(m, e) = init(vI). If, however, v′ 6= vI, but v′

is of even color, we define updd(m, e) = m. It remains to define updd(m, e) for the
case that v′ has odd color. In this case we have v′ = vj,c for some j with 1 ≤ j ≤ d.
Hence, v′ is the unique vertex of odd color c in the j-th gadget of Player 1. In this case,
let m = (c1, . . . , cd). We differentiate two cases: If the j-th entry of m denotes some
color that is at least as large than the currently visited one, i.e., if cj ≥ c, then we keep
the memory state unaltered and define updd(m, e) = m. Otherwise, we store the newly
visited color in the memory state and define

updd(m, e) = (c1, . . . , cj−1, c, c + 2, c + 4, . . . , 2d− 1, 2d− 1, . . . , 2d− 1) .

Since updd only alters the memory state upon visiting either the initial vertex vI or
some vertex of odd color, the memory state
• is fixed once a partial play leaves the gadgets of Player 1,
• remains unchanged throughout the traversal of the gadgets of Player 0,
• and is only reset upon moving to the initial vertex of Gd.

Towards the definition of σd, we define the next-move function nxtd such that, if the
play leaves the gadgets of Player 1 with memory state m = (c1, . . . , cd), then Player 0
moves to color cj + 1 in her j-th gadget. Finally, we define the strategy σd as the
strategy implemented byMd = (Md, updd, initd) and nxtd.

Lemma 4.43. We have CostvI(σd) = d2 + 2d.

Proof. Let ρ be a play starting in vI and consistent with σd. Moreover, consider the
request for color c made by Player 1 in his initial visit to his j-th gadget. Due to the
definition of σd, this request is answered before the next turn of the play, i.e., before
the next visit to vI: The final element of the memory state is fixed to be 2d − 1, i.e.,
Player 0 will move to visit the maximal even color 2d during her move through her
final gadget.

Assume that Player 0 answers the request for color c in her j′-th gadget. The costs
of answering this request for color c consists of three components: First, the play has
to leave Player 1’s j-th gadget, traversing d− (c + 1)/2+ 2 many edges. Then, the play
passes through d− j + j′ many gadgets, traversing d + 2 many edges in each. Finally,
upon moving to color c + 1 in Player 0’s j′-th gadget again traverses (c + 1)/2 many
edges. Thus, this request is answered after traversing

d− c + 1
2

+ 2 + (d− j + j′)(d + 2) +
c + 1

2
= d + 2 + (d− j + j′)(d + 2)

many edges. Due to the construction of σd, we obtain (d− j + j′) ≤ d− 1, which yields
a maximal total cost of answering the request for color c of

d + 2 + (d− 1)(d + 2) = d2 + 2d .

Thus, we obtain CostvI(σd) ≤ d2 + 2d. It remains to argue CostvI(σd) ≥ d2 + 2d. To
this end, however, it suffices to note that the play in which Player 1 requests color 2d− 1
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in his first gadget witnesses this lower bound: Player 0 answers this request in her first
gadget by moving to v1,2d which takes d2 + 2d moves. Thus, we obtain Cost(ρ) ≥
d2 + 2d via the above reasoning.

From the proof of Lemma 4.43 we furthermore obtain that each play in which
Player 1 repeatedly requests color 2d− 1 in his first gadget has cost at least d2 + 2d.
Thus, the strategy σd indeed witnesses the optimal bound with respect to which
Player 0 wins Gd from vI.

Corollary 4.44. There exists no strategy σ for Player 0 with CostvI(σ) < d2 + 2d.

It remains to argue that σd is indeed a minimal strategy for Player 0 from vI that
witnesses this lower bound on the cost for her.

Lemma 4.45. For each strategy σ for Player 0 we have that CostvI(σ) ≤ d2 + 2d implies |σ| ≥
2d−1.

Proof. In order to simplify notation, we associate with each memory element m ∈ Md
a play prefix which starts in the initial vertex vI, where Player 1 requests the colors
occurring in m in order. We denote this partial play by req(m). Clearly, for any two
memory elements m, m′ ∈ Md, we have that m 6= m′ implies req(m) 6= req(m′).

Let σ be a finite-state strategy for Player 0 that is implemented by a memory struc-
ture (M, init, upd) with |M| < 2d−1. We inductively construct a play that starts in vI
and that is consistent with σ, but that has cost greater than d2 + 2d. To this end, we
start with the play π = vI, which is clearly consistent with σ.

Now let π = v0 · · · vj with v0 = vj = vI be the play constructed so far and let m be the
memory element attained after traversing π, i.e., let m = upd+(init(v0), v0 · · · vj). Due
to the pigeon-hole principle, there exist m′1 6= m′2 ∈ Md, such that upd+(m, req(m′1)) =
upd+(m, req(m′2)), i.e., Player 0 cannot differentiate between the play infixes req(m′1)
and req(m′2) when starting in memory state m. Moreover, since req(m′1) 6= req(m′2),
as argued above, there exists a gadget of Player 1 in which the requests posed during
req(m′1) and req(m′2) differ. Pick k as the minimal index of such a gadget and assume
that in his k-th gadget, Player 1 requests color c during req(m′1), and color c′ during
req(m′2), where, w.l.o.g., c < c′.

If, upon reacting to req(m′1) and req(m′2), Player 0 has already answered the request
for c′ upon entering her k-th gadget, then some earlier request is not answered op-
timally when reacting to req(m′2), as requests are posed in strictly increasing order
in req(m′2). Thus, we extend the play π by req(m′2) and continue consistently with σ
until we encounter vI again.

If, on the other hand, Player 0 does not answer the request for color c′ upon entering
her k-th gadget, then first assume that she visits some color c′′ < c′ in this gadget.
Then she will only answer c′ in some later gadget, thereby incurring a cost greater
than d(d + 2) = d2 + 2d when reacting to req(m′2). We again extend π by req(m′2) and
its continuation consistent with σ up to and including the next visit to vI.

If she instead visits some color c′′ ≥ c′, then she does not answer the request for c
optimally, thus incurring a cost of at least d2 + 2d+ (c′− c)/2 > d2 + 2d when reacting
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to req(m′1). Thus, we extend π by req(m′1) and by playing consistently with σ until the
next encounter with vI.

The resulting play ρ starts in vI and is, by construction, consistent with σ. Moreover,
in each round of ρ, Player 1 opens a request that is answered with cost greater than d2 +
2d, i.e., we obtain Cost(ρ) > d2 + 2d.

Combining the lemmas proved in this section shows that Player 0 indeed requires
exponential memory in order to play optimally. We summarize our findings from this
section in the following theorem.

Theorem 4.46. For every d ≥ 1 there exists a finitary parity game Gd with a vertex vI such
that
• Gd has d odd colors and |Gd| ∈ O(d2),
• Player 0 has a strategy σ in Gd with CostvI(σ) = d2 + 2d,
• there exists no strategy σ′ for Player 0 with CostvI(σ

′) < d2 + 2d, and
• for every strategy σ for Player 0 in Gd, CostvI(σ) ≤ d2 + 2d implies |σ| ≥ 2d−1.

Proof. The first item of the theorem is encapsulated in Remark 4.42, while the sec-
ond and third item follow directly from Lemma 4.43 and Corollary 4.44, respectively.
Finally, the last item of the theorem is encapsulated in Lemma 4.45.

We have thus shown that Player 0 requires exponential memory to play optimally in
finitary parity games. This contrasts the existence of positional winning strategies for
her due to :Proposition 2.25.1. Since parity games with costs subsume finitary parity: Sec. 2.4, Page 23
games, and since Player 0 still has positional winning strategies in the former games
(see :Proposition 2.34.1), the same result holds true for such games as well.: Sec. 2.4, Page 26

For parity games with weights, however, we do not obtain such a large gap be-
tween the memory required by winning strategies and that required by optimal ones,
since Player 0 already requires exponential memory in parity games with weights (cf.
:Theorem 3.34). Here, however, the characteristics of the upper bound change as: Sec. 3.4, Page 71
follows. Recall that she requires polynomial memory in the number of vertices, the
number of odd colors, and the largest absolute weights occurring in a parity game
with weights in order to win, where the latter value is, in general, exponential in the
size of the game due to binary encoding. In order to keep the costs below a given
bound b, however, she requires memory that is polynomial in b (for a fixed number of
odd colors) and exponential in the number of odd colors (for a fixed bound b).

Having thus shown that Player 0 indeed requires exponential memory in order to
play optimally even in finitary parity games, we now show an analogous result for
Player 1.

4.4.3 Player 1 Requires Exponential Memory

To show that Player 1 requires exponential memory to exceed a given lower bound
on the incurred cost in a finitary parity game, we use a similar idea to the proof
of the analogous result for Player 0 in the previous section: For each d > 1 we first
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/0 /0 /4j−3 /0 /0

/0 /0 /4j−1 /0 /0

(a) The j-th gadget G0
j for Player 0. If j = 1, then the top left vertex has label vI and color 4d.

If j = d, then the bottom right vertex has label c1 and color zero.

cj/4j /0 /4j−2 /0 /0

/0 /4j−2 /4j vI/4d

(b) The j-th gadget G1
j for Player 1.

Figure 4.20: The gadgets constituting the arena Ad of Gd,W .

construct a finitary parity game Gd with polynomially many vertices in d together with
a bound b that is polynomial in d. We subsequently show that Player 1 can enforce
cost b from some designated vertex vI in Gd, but that he cannot enforce any larger
bound. Furthermore, we show that he requires memory exponential in d in order to
implement a strategy witnessing this fact.

Recall that the aim of Player 1 is dual to that of Player 0, i.e., Player 1 aims to ensure
that the resulting play has infinite cost. Thus, Player 1 winning Gd with respect to the
bound b amounts to him enforcing a cost of the resulting play exceeding b.

For the remainder of this section, fix some d > 1. Similarly to the previous proof, we
construct the arena Ad using two kinds of gadgets, one for each player, each of which
occurs d times. In Ad, first Player 0 opens d requests and subsequently picks one of
these requests to be answered. If Player 1 recalls the requests, then he can cause the
request to be answered with cost b = 5(d− 1) + 7. Otherwise, Player 0 can construct
a sequence of requests that is answered with cost less than 5(d− 1) + 7.

We show the gadgets in Figure 4.20 together with their coloring, and call them G0
j

and G1
j for the j-th gadget of Player 0 and Player 1, respectively. The gadget G0

j contains
the colors 0, 4j− 3, and 4j− 1, while the gadget G1

j contains the colors 0, 4j− 2, and 4j.
Moreover, we show the complete arena Ad in Figure 4.21. In that figure, we label
some edges with weight five for the sake of readability. These edges can, however, be
subdivided into five edges each, thus obtaining a finitary parity game with only linear
blowup. We fix the initial vertex vI to be the vertex drawn in the top-left corner of
Figure 4.21. Furthermore, we observe that Ad consists of 2d gadgets, each of which
contains eight vertices (counting the vertices cj towards the gadgets of Player 1) plus
an initial vertex, and that the largest odd color occurring in Gd is 4d− 1.

Remark 4.47. The game Gd contains 20d− 3 vertices, and 2d odd colors.
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vI/4d G0
1 G0

2 G0
3 G0

d· · ·

c1/0

G1
1

c2/4

G1
2

5
c3/8

G1
3

5
cd/4(d−1)

G1
d

5 · · · 55 · · · 55 · · · 5

Figure 4.21: The arena Ad witnessing exponential memory requirements for Player 1.

The game Gd is played in rounds. Each such round starts and ends in the initial
vertex vI that answers every request. Thus, the rounds are independent of each other
and it suffices to analyze them in isolation: In each round, Player 0 first poses d
requests, one in each of her gadgets. She may use her j-th request to either request
the color 4j − 3 and traverse three edges before leaving G0

j , or she may request the
color 4j− 1 and traverse one edge before leaving G0

j . After posing d requests, Player 0
then picks some j with 1 ≤ j ≤ d and moves to the j-th gadget G1

j of Player 1 while
answering all requests for colors c ≤ 4(j− 1) with cost less than 5(d− 1) + 7 along the
way.

In his j-th gadget G1
j , Player 1 then answers the request posed in the j-th gadget G0

j
of Player 0. To this end, he either opts to answer the request for color 4j− 3 and 4j− 1
after taking two transitions and after three transitions, respectively, or after taking one
transition and four transitions, respectively. After he has done so, all requests are reset
and the next round begins by moving to vI.

The cost for a request posed in G0
j′ for j′ < j consist of the cost of leaving that gadget,

traversing d− j′ gadgets of Player 0, and moving to cj′ . Thus, this request incurs a cost
of at most

4 + (d− j′)5 + (j′ − 1)5 = 5(d− 1) + 4 < 5(d− 1) + 7 .

Similarly, all requests posed in G0
j′ for j′ > j are answered with cost at most

4 + 5(d− j′) + 5(j− 1) + 5W = 4 + 5d + 5(j′ − j) < 5d− 1 < 5(d− 1) + 7

immediately after leaving G1
j . We first show that by recalling all requests, which

requires 2d many memory states, Player 1 can ensure that one request is only answered
with cost 5(d− 1) + 7.

To this end, we define the strategy τd for Player 1 as follows: During Player 0’s
part of the round, Player 1 stores the requests that she makes using 2d memory states.
Assume that Player 0 then opts to move to G1

j . If Player 0 requested color 4j − 3 in
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her j-th gadget during her part of the round, Player 1 picks the upper branch shown in
Figure 4.20b, while he chooses the lower branch in case Player 0 requested color 4j− 1.

Lemma 4.48. We have CostvI(τd) = 5(d− 1) + 7.

Proof. Consider a play prefix that starts in vI, is consistent with τd, ends in vI and
pick j such that the play has moved through G1

j in the last turn. We first show that all
requests for colors c < 4j− 3 and for colors c > 4j− 1 posed during the last turn have
been answered with cost less than 5(d − 1) + 7 before showing that the request for
either color 4j− 3 or for color 4j− 1 has been answered with cost 5(d− 1) + 7. Since
this holds true for all play prefixes starting and ending in vI and consistent with τd, we
then obtain Cost(ρ) = 5(d− 1) + 7 for all plays starting in vI and consistent with τd,
which suffices to obtain the desired result.

Before moving through G1
j during the last turn, the play has passed through the

vertex cj due to the construction of Gd. All requests for colors c < 4j− 3 have already
been answered by a visit to some vertex cj′ with j′ < j due to the structure of the arena.
As argued above, these requests have incurred cost at most 5(d− 1) + 4.

Moreover, again as argued above, all requests for colors c > 4j− 1 are unanswered
and have incurred a cost of at most 5(d− 1)− 1. These requests are answered upon
visiting the vertex vI, which is reached by traversing at most five edges from cj, i.e.,
they are answered with cost at most 5(d− 1) + 4.

It remains to show that either the request for color 4j − 3 or that for color 4j − 1
was answered with cost 5(d− 1) + 7. By construction of Gd, only one of these requests
is open upon reaching cj. First consider the case that there is an open request for
color 4j− 3 upon entering gadget G1

j . Then, according to τd, Player 1 moves through
the lower branch of his gadget, answering this request with cost 5(d− 1) + 7. If there
is, however, an open request for color 4j − 1 upon entering G1

j , then the strategy τd

prescribes for Player 1 to move through the upper branch of his gadget, answering the
open request with cost 5(d− 1) + 7 as well.

Similarly to the proof of the analogous result for Player 0, we again observe that in
the proof of Lemma 4.48 we argue that Player 0 can enforce costs of at most 5(d− 1)+ 7
regardless of the choices made by Player 1.

Corollary 4.49. There exists no strategy τ for Player 1 with CostvI(τ) > 5(d− 1) + 7.

The above corollary shows that the strategy τd for Player 1 is indeed optimal for
him. In order to conclude this section, we show that the strategy τd is not only optimal
for Player 1, but also minimal.

Lemma 4.50. For each strategy τ for Player 1 we have that CostvI(τ) ≥ 5(d− 1) + 7 im-
plies |τ| ≥ 2d.

Proof. Towards a contradiction, let τ be a finite-state strategy for Player 1 that is im-
plemented by a memory structure (M, mI, upd), where |M| < 2d and that satisfies
CostvI(τ) ≥ 5(d− 1) + 7 . We again inductively construct a play ρ consistent with τ
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such that Cost(ρ) < 5(d− 1) + 7 and begin with the play prefix vI. Now assume we
have already defined a prefix π of ρ that starts in vI, is consistent with τ, and ends in
the initial vertex vI. We determine a sequence of d requests and a choice of 1 ≤ j ≤ d
and prolong π by letting Player 0 first pick the sequence of requests and then move
into some gadget G1

j . Then, Player 1 applies his strategy, which leads back to the initial
vertex vI.

To this end, let m = upd+(init(vI), π). Since |M| < 2d, and since there exist 2d play
infixes leading from the unique successor of vI to c1, there exist two such infixes π1
and π2, such that upd+(m, π1) = upd+(m, π2). Let j be minimal such that the choices
made in G0

j by Player 0 differ in π1 and π2, and w.l.o.g. assume that Player 0 poses
a request for color 4j− 3 when playing π1, while she poses a request for color 4j− 1
when playing π2.

Now consider the response of Player 1 consistent with τ if Player 0 moves to G1
j after

the play prefix ππ1 and observe that this response is the same as the one to the play
prefix ππ2 due to upd+(m, π1) = upd+(m, π2). If Player 1 traverses the upper branch
of his gadget G1

j after witnessing ππ1 or ππ2, then he answers the request for 4j− 3
posed during the traversal of π1 with cost 5(d− 1) + 6. If he, however, traverses the
lower branch of G1

j after witnessing ππ1 or ππ2, then he answers the request for 4j− 1
posed during π2 with cost 5(d− 1) + 6. In the former case, we continue π by letting
Player 0 play according to π1, while in the latter case we continue π by letting her play
according to π2. In either case, we move to G1

j afterwards. In G1
j , Player 1 then plays

consistently with τ.
In both cases all requests posed in gadgets G0

j′ for j′ < j are answered after at most
5(d − 1) + 5 steps, namely upon reaching the vertex cj′+1. Also, the request posed
in G0

j is answered after 5(d − 1) + 6 steps. Finally, all requests posed in gadgets G0
j′

for j′ > j are answered after at most 5(d− 1) + 5 steps upon reaching the vertex vI.
Since all requests are answered when reaching vI, we extend the play prefix π as

discussed above, obtaining an extension of π that again ends in the vertex vI. By
applying this construction inductively and since the reasoning above holds true for
any memory state m reached at the end of any π as above, the play ρ thus resulting
has Cost(ρ) ≤ 5(d− 1) + 6. Since ρ is consistent with τ, this contradicts CostvI(τ) ≥
5(d− 1) + 7.

We again summarize the results obtained in this section in the following theorem.

Theorem 4.51. For every d ≥ 1 there exists a finitary parity game Gd with a vertex vI such
that
• Gd has O(d) many vertices and 2d odd colors,
• Player 1 has a strategy τ in Gd with CostvI(τ) = 5(d− 1) + 7,
• there exists no strategy τ′ for Player 1 with CostvI(τ

′) > 5(d− 1) + 7, and
• every strategy τ for Player 0 in Gd with CostvI(τ) ≥ 5(d− 1) + 7 has size at least 2d.

Proof. The first item of the theorem is encapsulated in Remark 4.47, while the sec-
ond and third item follow directly from Lemma 4.48 and Corollary 4.49, respectively.
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Finally, the last item of the theorem is encapsulated in Lemma 4.50.

Similarly to the case for Player 0, these results also hold true for the cases of parity
games with costs and parity games with weights.

This concludes our investigation of the memory bounds for both players in parity
games with weights. In the following section we discuss the influence of the encoding
of the weight function on the complexity results obtained in this chapter.

4.5 Discussion: Unary Encoding of Weights

Similarly to the previous chapter, we have assumed the weighting to be given in binary
encoding. Thus, the size of a parity game with weights G grows only logarithmically
in the value of its largest absolute weight W: We have |G| ∈ O(n log W), where n is
the number of vertices of G. In this section, we discuss the implications of encoding
the weights in unary. Hence, for the remainder of this section, we fix W = 1, i.e., all
weights are in {−1, 0, 1}.

Since we showed ExpTime-membership of the threshold problem for parity games
with weights in :Theorem 4.12, we directly obtain ExpTime-membership of the same : Sec. 4.1, Page 96
problem for parity games with weights given in unary encoding. Analogously, PSpace-
hardness of the latter problem follows directly from our proof of PSpace-hardness of
the problem of solving finitary parity games optimally, i.e., from :Theorem 4.31. : Sec. 4.3, Page 123

Remark 4.52. The following decision problem is in ExpTime and PSpace-hard:

“Given a parity game with weights G with largest absolute weight 1, some ver-
tex v∗ of G, and a bound b ∈N, does Player 0 have a strategy σ with Costv∗(σ) ≤
b in G?”

Recall that we showed ExpTime-hardness via a reduction from the problem of solv-
ing countdown games. The problem of solving countdown games is, in turn, known
to be ExpTime-hard due to a reduction from the word problem for alternating Tur-
ing machines that use at most polynomial space (see :Proposition 4.35). In order to : Sec. 4.3, Page 126
obtain a polynomial reduction, however, the authors require the weights of the count-
down game as well as its initial credit to be given in binary encoding. As argued in
: Section 4.3.2, encoding the weights in unary would entail an exponential blowup of :Page 124
the resulting countdown game. Thus, this approach cannot easily be adapted to show
ExpTime-hardness of the threshold problem for parity games with weights given in
unary encoding.

The techniques used for showing PSpace-membership of the analogous problem for
parity games with costs, on the other hand, also do not translate to this more general
problem: Recall that for the proof of PSpace-membership in : Section 4.2.1 for that :Page 99
problem we defined dominating cycles for Player 0 and Player 1, which we called even
and odd dominating cycles in the threshold game Gb, respectively.

This definition was based on the intuition that traversing a dominating cycle for
Player i ad infinitum causes Player i to win the resulting play. We then showed that the
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vI/1 vII/0 vIII/0 vIV/2
0

+1

-1 -1

0

Figure 4.22: A parity game with weights witnessing traversal of edges of positive
weight to be beneficial for Player 0.

game in which Player 0 is required to enforce an even dominating cycle before an odd
one occurs has the same winning regions as the original threshold game. Furthermore,
we defined a shortcut mechanism in : Section 4.2.2 that allowed dominating cycles to:Page 103
be reached in at most polynomially many steps.

In parity games with weights, however, our formalization of the notion of “benefi-
cial” cycles does not capture the intuitively required properties anymore. On a basic
level, our definition of beneficial cycles relied on the fact that it is in general beneficial
for Player 1 to traverse edges of positive weight, while it is detrimental for Player 0 to
do so. This does not hold true in parity games with weights anymore.

Example 4.53. Consider the parity game with weights shown in Figure 4.22. Player 0
has a strategy σ with CostvI(σ) = 1 that prescribes moving from vI to vII and iterating
the self-loop of vII once before continuing to vIII. Furthermore, it can easily be verified
that this is the unique strategy with cost one from vI. 4

Furthermore, beneficial cycles may not be witnessed using at most polynomially
many steps even in the restricted setting of weights given in unary encoding, even if
we only use the intuitive definition given above.

Example 4.54. Fix some n ≥ 1. We construct a parity game with weights Gn with O(n)
vertices and largest absolute weight n as well as a bound bn such that Player 0 wins Gn
from some designated vertex vI with respect to the bound bn, but such that she is only
able to close a “beneficial cycle” after visiting exponentially many vertices. We only
use weights whose absolute value is larger than one for the sake of readability. The
resulting game can easily be transformed into one with largest absolute weight one
with only a polynomial blowup.

Intuitively, we use n colors to implement a n-bit binary counter, which is initialized
to 2n − 1. In each turn of Gn, Player 0 can decrement the counter. We set up Gn such
that each such decrement is, in isolation, beneficial for Player 1, as the largest color
seen during such a decrement is odd and since the accumulated weight incurred by
executing the decrement is zero. Once the counter has, however, reached zero, we in-
centivize Player 0 to restart the game. Thus, the play prefix consisting of exponentially
many decrement-operations is beneficial for Player 0, while none of its subsequences
is beneficial for her.

To encode the counter, we again employ a construction similar to the proof of
PSpace-hardness of solving parity games with costs optimally in Theorem 4.31 and
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ensure that requests for smaller colors incur larger cost than request for larger ones in
order to force both players to keep track of all open requests. Following this intuition,
for j ∈ {1, . . . , n} an open request for color 4j − 3 with cost n − j + 1 denotes that
the j-th bit of the counter is set to one, while the absence of such a request denotes
that bit being set to zero. Thus, we fix bn = n. We use the “unused” colors 4j− 1 as
the odd colors making each individual decrement-operation beneficial for Player 1.

In order to allow Player 0 to decrement the counter, the arena of Gn contains a central
vertex c that belongs to Player 0 and that is connected to n gadgets Gj. We show the
construction of the j-th gadget Gj in Figure 4.23a. First, Player 1 may move to reset
the play at vertex gj,→. If, upon visiting that vertex, a request for some color 4j′ − 3
with j′ < j is open, it is open with cost n− j′ + 1 = bn − j′ + 1. Hence, moving along
the edge with weight j causes that request to be answered with cost exceeding bn.

If Player 1 does not reset the play at vertex gj,→, the play proceeds through the gad-
get automatically. First, the request for color 4j− 3 and all smaller colors is answered
at vertex aj. Subsequently, the requests for all colors 4j′ − 3 for j′ < j are reopened
with the “correct” costs as stated above.

Finally, the play visits a vertex of color 4j− 1, which serves as a guard against re-
peated visits to Gj: The presence of this large odd color forces Player 0 to eventually
reset the (j + 1)-th bit instead of repeating a sequence of gadgets with highest gad-
get Gj ad infinitum.

We arrange the gadgets around a single vertex c as described above and show the
overall construction of the game Gn in Figure 4.23b. From the vertex c, there is also an
edge of weight n = bn leading to the vertex r, which answers all requests and restarts
the game. The vertex c is the only vertex belonging to Player 0, i.e., the only agency
she has is that of choosing to either restart the game or to move to one of the Gj. Due
to the construction of the arena, however, all requests except for the repetition guards
have cost at least one whenever the play encounters the vertex c. Hence, Player 0 can
only reset the game once she has decreased the counter to zero and there are no open
requests anymore, i.e., after 2n − 1 visits to the gadgets.

A strategy for Player 0 in Gn now essentially consists of assigning to each counter
value in the range 0, . . . , 2n − 1 a gadget G1, . . . , Gn or choosing to reset the game. A
strategy prescribing moving to the gadget j′, where j′ is the lowest bit that is set to
one in the counter value represented by the open requests answers all requests with
cost at most bn, as described above. Otherwise, Player 1 may move to vertex r from
some vertex gj,→, causing some requests to be answered with cost exceeding bn, and
restarting the game. Hence, the resulting play consists of visiting the gadgets in the
sequence

G1c · G2cG1c · G3cG1cG2cG1c · G4cG1cG2cG1cG3cG1cG2cG1c · · ·G1c · r ,

which visits 2n − 1 gadgets.
Now let π = Gj0 c · · ·Gjk c be a sequence of less than 2n − 1 gadgets that does not

visit the vertex r and assume that there are open requests for all colors 4j − 3 with
cost n− j + 1 for all j with 1 ≤ j ≤ n at the beginning of π. If π at some point visits
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Figure 4.23: Construction of Gn.
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a Gj although there is an open request for some color 4j′ − 3 with j′ < j, then that
request has incurred cost n− j′ + 1 upon visiting the entry guard gj,→ of Gj. Hence,
Player 1 can opt to move to the vertex r at the entry guard of Gj, causing the request
for color 4j′ − 3 to be answered with cost n− j′ + 1 + j− 1 > n = bn. Thus, in order to
bound the costs of the resulting play by bn when starting in r, Player 0 indeed has to
traverse the gadgets in the order described above, only moving to r after visiting 2n− 1
gadgets.

Moreover, in each such sequence π that starts and ends in c, but that does not visit r,
the largest visited color is odd due to the repetition guards contained in each gadget.
Thus, repeating any such sequence ad infinitum would be losing for Player 0. The
only cycle that can be considered “beneficial” for her is one that starts and ends in
vertex r and visits 2n gadgets in-between. 4

The above example illustrates that our approach used for showing membership of
the threshold problem for parity games with costs in PSpace is unlikely to yield the
same result for parity games with weights with unary encoding. It remains open
whether the problem of solving parity games with weights is ExpTime-hard or in
PSpace when the weights are given in unary encoding.

The results on the upper and lower bounds on the memory states required by either
player to implement winning strategies given in : Section 4.4, however, still hold true :Page 130
if the weights are given in unary encoding. The upper bounds follow directly from
the construction of threshold games presented in section : Section 4.1, which treats :Page 86
the more general case of parity games with weights given in binary encoding. The
lower bounds, on the other hand, are witnessed by finitary parity games.

Remark 4.55. Let G be a parity game with weights containing d odd colors with largest
absolute weight one and let b ∈N.

1. If Player 0 has a strategy σ in G with Cost(σ) = b, then she also has a strategy σ′

with Cost(σ′) ≤ b and |σ′| ∈ O(bd). This bound is tight.
2. If Player 1 has a strategy τ in G with Cost(τ) = b, then he also has a strategy τ′

with Cost(τ′) ≥ b and |τ′| ∈ O(nbd). This bound is tight.

Having thus discussed the implications of the encoding of weights on the results
obtained in this chapter, we now give a brief summary of these results.

4.6 Summary of Results

In this section we have investigated the threshold problem for parity games with
weights and their special cases of parity games with costs and finitary parity games.
We summarize our results in Table 4.24. First, we have reduced this problem to that
of solving classical qualitative parity games of exponential size in : Section 4.1 before :Page 86
showing that we can solve the resulting parity games using only polynomial space in
the special case of parity games with costs in : Section 4.2. These two results place the :Page 97
problem in the complexity class ExpTime for the general case and in the complexity
class PSpace for the special case of parity games with weights.
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Complexity Mem. Pl. 0/Pl. 1

Finitary Parity Games PSpace-c. exp./exp.

Parity Games with Costs PSpace-c. exp./exp.

Parity Games with Weights ExpTime-c. exp./exp.

Table 4.24: Characteristic properties of solving parity games with weights and their
special cases optimally.

Subsequently, we have provided lower bounds in the form of hardness results for
these decision problems in : Section 4.3, showing the two problems to be complete:Page 116
for their respective complexity classes. In fact, we have shown the lower bound of
PSpace-hardness even for the case of finitary parity games, thus also showing PSpace-
completeness of the latter problem.

Having thus settled the complexity of this problem we have investigated the mem-
ory required by either player to implement a strategy that enforces a given upper (in
the case of Player 0) or lower (in the case of Player 1) bound on the cost of the resulting
play in : Section 4.4. We have shown that both players require exponential memory in:Page 130
this setting even in the special case of finitary parity games, but also that exponential
memory suffices even for parity games with weights.

The upper bound given by these results, however, increases with the bound b. In-
tuitively, however, the larger the bound b, the easier it should become for Player 0 to
ensure cost below that bound. We later show in : Section 6.1 that this is indeed the:Page 174
case.

Finally, we have discussed the implications of the encoding of the weights on the
results obtained in this chapter in : Section 4.5. We have shown that all results still:Page 143
hold true for the special case of parity games with costs, but that there remains a gap
in the characterization of the complexity of the problem of solving parity games with
weights with respect to a given bound if the weights are given in unary encoding: This
problem is in ExpTime, but it is only known to be PSpace-hard. The above results on
the memory required by either player to implement a strategy that enforces a given
bound, however, still remain valid, irrespective of the encoding of the weights.

Recall that for the special case of finitary parity conditions, Bruyère, Hautem, and
Randour [BHR16] also considered the setting of multiple colorings, each of which
induces a finitary parity condition. It is then the goal of Player 0 to satisfy all in-
duced conditions. The authors have shown the threshold problem for this setting to
be ExpTime-complete. It remains for future work, however, to extend their model to
the setting of parity games with costs or parity games with weights. Moreover, analo-
gously to the case of the boundedness problem, one could consider the case of not only
multiple colorings inducing parity conditions with weights, but also that of multiple
weight functions for a single coloring function, as well as the combination of multiple
coloring functions, each of which is associated with its respective weight function.
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Games with Disturbances

Recall that in : Section 1.1 we have described how infinite games in general and parity :Page 2
games in particular are used routinely in the verification and synthesis of embedded
systems: A wide range of specification languages for such systems can be compiled
down into parity games such that solving the resulting game yields a strategy that can
be turned into a controller for the system that satisfies the specification. Büchi and
Landweber [BL69] showed that such games are determined, while Mostowski [Mos91]
as well as Emerson and Jutla [EJ91] showed that positional strategies suffice for both
players to win parity games. Thus, we obtain a solution to the synthesis problem as
formulated by Church [Chu57] for the model of parity games.

In : Section 1.3, we have argued that the canonical model of infinite games underly- :Page 8
ing both parity games as well as their quantitative extensions presented in the previous
chapters implicitly induces an overly optimistic world view: Recall that, intuitively, in
an infinite game modeling a reactive system, the vertices of the game denote possible
states of the system and its environment. Moreover, each outgoing edge of a vertex for
Player 0 represents an action that is available to the system in the corresponding state.

Thus, modeling a reactive system as an infinite game presumes not only that the
designer of the game has complete knowledge about the interactions between the
system and its environment, but also that an action taken by the system always has the
intended effect. In real-world systems, however, this need not always be the case. The
controller may prescribe taking an action, but the expected result does not manifest,
e.g., due to a malfunctioning actuator or a bit flip, as illustrated in Section 1.3. Since
embedded systems are often deployed in safety-critical roles it is paramount to have
formal methods for the development and analysis of such systems.

Dallal, Neider, and Tabuada [DNT16] formalized the concept of unintended behav-
ior under the name of “games with unmodeled intermittent disturbances”. Following
their notion, we summarize all events that introduce uncertainty about the results of

149



CHAPTER 5. GAMES WITH DISTURBANCES

the actions of Player 0 under the generic term “disturbance.” These disturbances man-
ifest themselves in the framework of infinite games as special edges that are not under
the control of either player, but that are traversed nondeterministically: Whenever it
is the turn of Player 0, after she has picked an outgoing edge of the current vertex, a
disturbance may occur. This causes her original move to be overridden and the token
to move along a disturbance edge instead of the edge chosen by Player 0.

Such disturbances are rare events that do not occur antagonistically nor stochasti-
cally: If we assumed disturbances to be antagonistic, it would, in general, be impossi-
ble for Player 0 to satisfy the winning conditions. Moreover, as disturbances only occur
rarely, there is, in general, not enough information to develop a stochastic model of
their occurrence. Thus, it does not realistically model the system to give control over
these edges to Player 1 or to a stochastic third player.

In their work, Dallal, Neider and Tabuada investigated the problem of constructing
winning strategies that are still winning even under the occurrence of disturbances
only for the special case of safety games, i.e., for a very restrictive winning condition.
They showed that this problem is as complex as solving safety games without taking
disturbances into account and that the resulting strategies are still positional. Hence,
in safety games, the construction of strategies that are resilient against disturbances
comes for free, both in terms of the complexity of computing such strategies, as well
as in terms of the size of the resulting strategies.

In this chapter, we first extend the model of Dallal, Neider, and Tabuada to the
variants of parity games discussed in this thesis, i.e., to parity games, finitary parity
games, parity games with costs, and parity games with weights in Section 5.1. The
extension of this model to the setting of parity games and their variants introduces
a novel phenomenon: In safety games as considered by Dallal, Neider, and Tabuada,
the authors showed that Player 0 can either win the game from a given vertex even
if infinitely many disturbances occur, or the occurrence of less than n disturbances
cause her to lose the game, where n denotes the number of vertices of the game. In
parity games, in contrast, there exists a third possibility: There exist parity games
with disturbances in which Player 0 can win as long as there are only finitely many
disturbances, but she cannot win anymore if infinitely many disturbances occur.

We show a parity game witnessing this behavior in Figure 5.1, where the dotted
edge indicates a disturbance edge. Here, each occurrence of a disturbance incurs a
visit to a vertex of color one and, if no disturbance occurs, a vertex of color zero is
visited. Hence, Player 0 wins a play from either vertex if and only if the number of
disturbances is finite.

After having lifted the notion of disturbances and resiliences to the extended setting
of parity games with weights, we subsequently show how to compute the maximal
number of disturbances that still allow Player 0 to win in Section 5.2. In order to
compute this value, we significantly generalize the approach of Dallal, Neider, and
Tabuada to constructing resilient strategies for safety games with disturbances. Their
solution was tailored specifically to safety games, as they adapted the standard at-
tractor construction commonly used for solving safety games such that it also takes
disturbances into account.
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vI/0 vII/1

Figure 5.1: A parity game in which Player 0 wins from each vertex as long as only
finitely many disturbances occur, but loses if infinitely many disturbances
occur.

In this work, in contrast, we develop an approach to computing the resilience of
vertices that is independent of the concrete method used to solve the underlying game
without disturbances. Instead, our approach uses an algorithm solving the underly-
ing games without disturbances as a blackbox. Using this approach, we are able to
disentangle handling the disturbances occurring in the game from the actual winning
condition of the underlying game.

Finally, still in Section 5.2, we show how to leverage our approach from the preced-
ing section to compute strategies witnessing the maximal number of disturbances that
still allows Player 0 to win the resulting play. To this end, we show that our algorithm
computing the resilience of vertices can easily be adapted to yield such strategies as a
by-product. We conclude this chapter by summarizing our results in Section 5.3.

This chapter is based on work published at CSL 2018 [NWZ18b].

5.1 Definitions

Throughout this work, we have defined the natural numbers N via their intuitive
meaning. Moreover, we have used the special symbol ∞ with the property ∞ > n for
all n ∈ N. In this chapter, however, it is prudent to employ ordinal notation, i.e., to
define the natural numbers via set inclusion for notational convenience.

To this end, we inductively define the nonnegative natural numbers as 0 = ∅ and
n + 1 = n ∪ {n}. Now, the first limit ordinal is ω = {0, 1, 2, . . .}, i.e., the set of the Def. ω

nonnegative integers. The next two successor ordinals are ω + 1 = ω ∪ {ω} and Def. ω + 1, ω + 2
ω + 2 = ω + 1 ∪ {ω + 1}. These ordinals are ordered by set inclusion, i.e., we have
0 < 1 < 2 < · · · < ω < ω + 1 < ω + 2. Furthermore, we also denote the cardinality of
ω by ω.

Following the intuition given in the introduction to this chapter, we first formalize
the notion of disturbances in infinite games in Section 5.1.1. Subsequently, we define
how we measure the resilience of strategies against such disturbances in Section 5.1.2.

5.1.1 Arenas and Games with Unmodeled Disturbances

As described above, we augment arenas with additional edges describing the possible
disturbances. An arena with (unmodeled) disturbances A = (V, V0, V1, E, D) con- Def. arena with

(unmodeled)
disturbances

sists of an arena (V, V0, V1, E), and a set of disturbance edges D ⊆ V0 ×V. Since we

Def. disturbance
edges

are only interested in the response of Player 0 to the occurrence of disturbances, we
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vI/1

vII/1

vIII/0vIV/1

vV/2vVI/1

v′I/0 v′II/1

v′′I /0 v′′II/0

Figure 5.2: An arena with disturbances A and a coloring of A. Disturbance edges are
drawn as dotted arrows.

only allow outgoing disturbance edges from vertices of Player 0. This is, however, not
an actual restriction, since outgoing disturbance edges from the vertices of Player 1
can easily be modeled by adding vertices of Player 0 that have only a single outgoing
non-disturbance edge. In figures, we draw disturbance edges as dotted arrows.

Example 5.1. Consider the arena shown in Figure 5.2 and ignore the indicated color-
ing for the time being. This arena contains four disturbance edges, namely (vV, vVI),
(vIII, vIV), (v′I, v′II), and (v′′I , v′′II). Furthermore, it satisfies the general requirement to-
wards arenas that even without the disturbance edges there exists no vertex without
outgoing edges. 4

Since plays in arenas with disturbances may now also traverse disturbance edges,
we extend the notion of a play to denote whether a disturbance edge or a classical one
has been traversed. A play in A is an infinite sequence ρ = (v0, b0)(v1, b1)(v2, b2) · · · ∈Def. play
(V × {0, 1})ω such that b0 = 0 and such that for all j > 0 we have that
• bj = 0 implies (vj−1, vj) ∈ E, and
• bj = 1 implies (vj−1, vj) ∈ D.

Thus, the additional bits bj for j > 0 denote whether a standard or a disturbance edge
has been taken to move from vj−1 to vj.

Example 5.2. Consider again the arena A discussed in Example 5.1. The infinite
sequences over V × {0, 1} ρ1 = (vI, 0)(vIII, 0)(vIV, 1)(vV, 0)(vV, 0)ω as well as ρ2 =
(vI, 0)((v′I, 0)(v′II, 1))ω are plays in A. The infinite sequence of pairs of vertices and bits
(vI, 0)(v′I, 0)(v′II, 0)((v′I, 0)(v′II, 1))ω, however, is not a play, since the third bit wrongly
indicates that no disturbance edge was taken for the move from v′I to v′II, which con-
tradicts the structure of A. 4

We count the number of disturbances in a play ρ = (v0, b0)(v1, b1)(v2, b2) · · · by
defining #D(ρ) =

∣∣{j ∈ ω | bj = 1
}∣∣, which is either some k ∈ ω if there are finitelyDef. #D(ρ)

many disturbances, namely k, or it is equal to ω if there are infinitely many distur-
bances. We say that a play ρ is disturbance-free, if #D(ρ) = 0.Def. disturbance-free

Example 5.3. Let ρ1 and ρ2 be the two plays defined in Example 5.2. We have #D(ρ1) =
1 and #D(ρ2) = ω. 4
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A game with (intermittent unmodeled) disturbances G = (A, Win) consists of Def. game with
(intermittent
unmodeled)
disturbances

an arena with unmodeled disturbances A = (V, V0, V1, E, D) and a winning condi-
tion Win ⊆ Vω. A play ρ = (v0, b0)(v1, b1)(v2, b2) · · · in A is winning for Player 0, if

Def. winning playv0v1v2 · · · ∈ Win, otherwise it is winning for Player 1. Thus, winning is oblivious to
occurrences of disturbances.

Example 5.4. Consider the arena with disturbances A and the coloring Ω shown in
Figure 5.2. The game G = (A, Parity(Ω)) is a parity game with disturbances. More-
over, the play ρ1 from Example 5.2 is winning for Player 0 in G. Dually, the play ρ2
from Example 5.2 is winning for Player 1 in G. 4

A strategy σ for Player i ∈ {0, 1} in an arena with disturbances (V, V0, V1, E, D) Def. strategy
is a strategy for that player in the arena without disturbances (V, V0, V1, E). Thus, in
arenas with disturbances, strategies for neither player may prescribe moving along
a disturbance edge, i.e., neither player controls the occurrence of disturbances. A
play (v0, b0)(v1, b1)(v2, b2) · · · is consistent with σ, if vj+1 = σ(v0 · · · vj) for every j ∈ Def. consistent
ω that satisfies both vj ∈ Vi and bj+1 = 0. Intuitively, a play is consistent with a
strategy σ if the next vertex is the one prescribed by σ unless a disturbance occurs.

We lift the notions of winning strategies to the setting of games with disturbances by
saying that σ is winning for Player i from v in a game with disturbances G = (A, Win) Def. winning strategy
if each disturbance-free play ρ starting in v and consistent with σ is winning for
Player i. In particular, a winning strategy is only winning if no disturbances occur:
We make no assumptions on the behavior of the strategy as soon as a single distur-
bance occurs. Furthermore, we say that Player i wins G from v if she has a winning
strategy from v in A and we define Wi(G) as the set of vertices from which Player i
wins G.

Example 5.5. Consider again the parity game with disturbances G discussed in Exam-
ple 5.4. Player 0 only has two positional strategies, σ1 and σ2, which differ in the move
prescribed from vII. Let σ1(vII) = vV and let σ2(vII) = vII, where both strategies are
defined by prescribing to move to the unique successor of the current vertex for all
other vertices of Player 0.

No strategy for either player may prescribe moving from, e.g., vV to vVI, as doing
so would prescribe taking a disturbance edge, which we have excluded above. Both
plays ρ1 and ρ2 from Example 5.2 are consistent with both σ1 and σ2. 4

Due to this definition, strategies do not have access to the additional bits occurring
in plays in arenas with disturbances that denote whether or not an error occurred. This
does not, however, restrict the “power” of strategies, as these bits can be reconstructed:
Let (v0, b0)(v1, b1)(v2, b2) · · · be a play and let j > 0 such that bj = 1, i.e., let j be a
vertex that was reached via traversing a disturbance edge. We say that this disturbance
is consequential (w.r.t. σ), if vj 6= σ(v0 · · · vj−1), i.e., if the disturbance edge (vj−1, vj) Def. consequential

disturbancetraversed by the play indeed leads to a different vertex than the one prescribed by σ.
Such consequential disturbances can be detected by comparing the actual vertex vj
to σ’s output σ(v0 · · · vj−1). On the other hand, inconsequential disturbances can just
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be ignored by σ. In particular, the number of consequential disturbances is always
bounded from above by the number of disturbances.

5.1.2 Resilience of Strategies against Disturbances

Let G be a game with disturbances with vertex set V and let α ∈ ω + 2, i.e., α is
either a natural number, it is ω, or it is ω + 1. A strategy σ for Player 0 in G is α-Def. α-resilience
resilient from v ∈ V if every play ρ that starts in v, that is consistent with σ, and that
satisfies #D(ρ) < α, is winning for Player 0. Thus, a k-resilient strategy with k ∈ ω is
winning even if k − 1 disturbances (or less) occur, an ω-resilient strategy is winning
even if an arbitrary, but finite number of disturbances occurs, and an (ω + 1)-resilient
strategy is winning even if infinitely many disturbances occur.

Since we demand the number of disturbances to be strictly less than α, the notion of
resilience degenerates for α = 0.

Remark 5.6. Every strategy is 0-resilient.

Furthermore, since setting α to one implies that we only consider plays without dis-
turbances, we recover the classical definition of winning strategies for games without
disturbances for this value of α.

Remark 5.7. A strategy for Player 0 is 1-resilient from v if and only if it is winning for
Player 0 from v.

Finally, from the definition of resilience it directly follows that the property of be-
ing α-resilient is downwards-closed.

Remark 5.8. Let G be a game with disturbances with vertex set V, let α, α′ ∈ ω + 2 with α ≥
α′ and let σ be a strategy for Player 0. If σ is α-resilient from v, then σ is α′-resilient from v.

Example 5.9. Consider again the strategies σ1 and σ2 defined in Example 5.5.
The strategy σ1 is 2-resilient from vIII, as every play ρ that starts in vIII, is con-

sistent with σ1, and satisfies #D(ρ) ≤ 1 either remains in vIII or in vV ad infinitum.
Both these vertices have even color, i.e., the play is winning for Player 0. The play
(vIII, 0)(vIV, 1)(vV, 0)(vVI, 1)(vVI, 0)ω, however, begins in vIII, is consistent with σ1, has
two disturbances, but is not winning for Player 0. Thus, this play witnesses that σ1 has
resilience at most 2 from vIII.

Both the strategy σ1 and σ2 have resilience ω from v′I: Any play that starts in v′I
and that has only finitely many disturbances eventually remains in vertex v′I ad infini-
tum and thus is winning for Player 0. If, however, such a play has infinitely many
disturbances, it infinitely often visits vertex v′II and thus is losing for Player 0.

Finally, every strategy is ω + 1-resilient from v′′I , as even a play with infinitely many
disturbances only visits vertices of color zero, hence it is winning for Player 0. 4

We define the resilience of a vertex v of G asDef. resilience of a
vertex

rG(v) = sup {α ∈ ω + 2 | Player 0 has an α-resilient strategy for G from v} .
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Example 5.10. Consider again the parity game with disturbances discussed in Exam-
ple 5.4. The vertices v′′I , and v′′II have resilience ω + 1, while the vertices v′I and v′II
have resilience ω. Furthermore, the vertex vIII has resilience two, while the ver-
tices vI vII, vIV, and vV have resilience one. Finally, the vertex vVI has resilience
zero. 4

Following our intuition of treating disturbances as rare events instead of antagonistic
ones, this definition is not antagonistic, i.e., it is not defined via strategies of Player 1.
Nevertheless, due to Remark 5.7, resilient strategies generalize winning strategies.
Analogously, the notion of resilience of vertices generalizes the notion of winning
regions.

Remark 5.11. For each vertex v of G we have rG(v) = 0 if and only if v ∈W1(G).

A strategy σ for Player 0 is optimally resilient, if it is rG(v)-resilient from every Def. optimally
resilientvertex v. Every such strategy is a uniform winning strategy for Player 0, i.e., a strategy

that is winning from every vertex in her winning region. Hence, positional optimally
resilient strategies can only exist in games which have uniform positional winning
strategies for Player 0. Our goal in this chapter is to, for a given game G, determine
the mapping rG and to compute an optimally resilient strategy.

This concludes the formalization of disturbances in our existing framework of infi-
nite games. In the following section, we show how to compute the resilience of the
vertices of a game together with strategies witnessing this resilience.

5.2 Computing Resilience in Games with Disturbances

In this section, we show how to compute the resilience of the games discussed in this
thesis in the presence of disturbances. In order to obtain a uniform approach handling
all variants of the parity condition discussed previously, we only leverage very general
properties of the winning conditions.

In fact, for a given game with disturbances G = (A, Win), we only require that
1. the winning condition is prefix-independent, and that
2. for all V ′ ⊆ V, the game (A, Win∩ Safety(V ′)) is determined.

Recall that Safety(V ′) contains those plays that never visit a vertex from V ′, i.e., the
argument of the safety condition denotes those vertices that are “unsafe”. These two
conditions are satisfied by the parity condition with weights and thus also by the
parity condition with costs, the finitary parity condition, and the parity condition.

Our aim in this section is to compute
1. the value rG(v) for each vertex v of G and
2. a strategy σ that witnesses rG(v) for all vertices v of G.

To this end, recall that by definition we have rG(v) ∈ ω + 2 = ω ∪ {ω, ω + 1}. Hence,
to determine rG(v), we proceed in three steps. First, we determine those vertices v
with rG(v) ∈ ω as well as their exact resilience in Section 5.2.1. Subsequently, we
determine the vertices with resilience ω + 1 in Section 5.2.2.
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We then directly obtain that the vertices of G that were characterized in neither
Section 5.2.1 nor Section 5.2.2 have resilience ω. We conclude in Section 5.2.3 by
showing how to effectively compute optimally resilient strategies, i.e., strategies that
from every vertex v witness its resilience rG(v).

5.2.1 Characterizing Finite Resilience

Our goal in this subsection is to characterize vertices with finite resilience in a game G.
Recall that, by definition, a vertex v has resilience k ∈ ω if and only if Player 0 can win
from v even under k − 1 disturbances, but she cannot win if k or more disturbances
occur.

We first illustrate our approach using the game shown in Figure 5.2 in the following
example.

Example 5.12. Recall that we stated in Example 5.10 that the vertices vI through vVI
have finite resilience, while all other vertices either have resilience ω or ω + 1.

First, we observe that the winning region of Player 1 in that game consists only of
the vertex vVI. Thus, due to Remark 5.7 and Remark 5.8, the vertex vVI is the only
vertex with resilience zero: All other vertices have larger resilience.

Now, consider the vertex vV, which has a disturbance edge leading into the win-
ning region of Player 1, i.e., to vVI. Due to this edge, vV has resilience one, as a
single disturbance can cause the resulting play to be losing for Player 0. The unique
disturbance-free play starting in vVI is consistent with every strategy for Player 0 and
violates the winning condition. Due to prefix-independence, prepending the vertex vV
does not change the winner and consistency with every strategy for Player 0. Hence,
this play witnesses that vV has resilience at most one, while vV being in Player 0’s
winning region yields the matching lower bound. However, vV is the only vertex to
which this reasoning applies. Now, consider vIV: From here, Player 1 can force a play
to visit vV using a standard edge. Thus, vIV has resilience one as well. Again, this is
the only vertex to which this reasoning is applicable.

In particular, from vII, Player 0 can avoid reaching the vertices for which we have
determined the resilience by using the self loop. However, this comes at a steep price
for her: Doing so results in a losing play, as the color of vII is odd. Thus, if she wants to
have a chance at winning, she has to take a risk by moving to vV, from which she has
a 1-resilient strategy, i.e., one that is only winning if no more disturbances occur. For
this reason, vII has resilience one as well. Similar reasoning applies to vI: Player 1 can
force the play to proceed to vII and from there Player 0 has to take a risk by moving
to vV.

The vertices vV, vII, and vI share the property that Player 1 can either enforce a
play violating the winning condition or reach a vertex with already determined finite
resilience. These three vertices are the only ones currently satisfying this property.
They all have resilience one since Player 1 can enforce to reach a vertex of resilience
one, but he cannot enforce reaching a vertex of resilience zero. Now, we can also
determine the resilience of vIII: The disturbance edge from vIII to vIV witnesses it
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being two.
Afterwards, these two arguments no longer apply to new vertices: No disturbance

edge leads from a v ∈ {v′I, v′II, v′′I , v′′II} to some vertex whose resilience is already deter-
mined and Player 0 has a winning strategy from each v that additionally avoids ver-
tices whose resilience is already determined. Thus, our reasoning cannot determine
their resilience. This is consistent with our goal, as all four vertices have non-finite
resilience: v′I and v′II have resilience ω and v′′I and v′′II have resilience ω + 1, as stated in
Example 5.10. Our reasoning here cannot distinguish these two values. We solve this
problem later in Section 5.2.2. 4

We now formalize the reasoning used in Example 5.12: Starting from the vertices
in Player 1’s winning region having resilience zero, we use so-called disturbance up-
dates and risk updates of partial rankings r : V 99K ω that assign a rank to a subset
of the vertices of G to determine all vertices of finite resilience. A disturbance update
computes the resilience of vertices having a disturbance edge to a vertex whose re-
silience is already known (such as vertices vV and vIII in the example of Figure 5.2). A
risk update, on the other hand, determines the resilience of vertices from which either
Player 1 can force a visit to a vertex with known resilience (such as vertices vI and
vIII) or Player 0 needs to move to such a vertex in order to avoid losing (such as vertex
vII). To simplify our proofs, we describe both as monotone operators updating partial
rankings mapping vertices to ω, which might update already defined values. Since we
are only interested in vertices with finite resilience in this section, this domain suffices
for the ranking. We show that applying these updates in alternation eventually yields
a stable ranking that indeed characterizes the vertices of finite resilience.

As argued above, we aim to find a method for the computation of resilience that
allows us to handle all winning conditions considered in this work. Thus, in order to
obtain the most general approach possible, fix a game G = (A, Win) with disturbances,
where A = (V, V0, V1, E, D), and where Win is prefix-independent.

A ranking for G is a partial mapping r : V 99K ω. The domain of r is denoted by Def. ranking
dom(r), its image by im(r). Let r and r′ be two rankings. We say that r′ refines r if Def. dom(r)

Def. im(r)

Def. refinement

dom(r′) ⊇ dom(r) and if r′(v) ≤ r(v) for all v ∈ dom(r). A ranking r is sound, if for

Def. soundness

all vertices v, we have r(v) = 0 if and only if v ∈ W1(G), i.e., if r is consistent with
Remark 5.7.

Let r be a ranking for G. We define the disturbance update of r as the ranking r′ Def. disturbance
updatedefined via

r′(v) = min
(
{r(v)} ∪

{
r(v′) + 1 | v′ ∈ dom(r) and (v, v′) ∈ D

})
,

where {r(v)} = ∅ if v /∈ dom(r), and where min ∅ is undefined (causing r′(v) to be
undefined).

Lemma 5.13. The disturbance update r′ of a sound ranking r is sound and refines r.

Proof. As the minimization defining r′(v) ranges over a superset of {r(v)}, we have
r′(v) ≤ r(v) for every v ∈ dom(r). This immediately implies refinement.
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Furthermore, since r is sound, we have r(v) = 0 for all v ∈ W1(G). The inequal-
ity r′(v) ≤ r(v) then yields r′(v) = 0 for all v ∈ W1(G). It remains to show r′(v) > 0
for all v /∈W1(G).

Let v ∈ W0(G). We directly obtain r′(v) > 0, since both r(v) and r(v′) + 1 are
greater than zero. This suffices since we have v ∈ W0(G) if and only if v /∈ W1(G) due
to determinacy of Win. Altogether, r′ is sound as well.

The disturbance update formalizes the step in our intuitive determination of the
resilience of the vertices vV and vIII in Example 5.12. It remains to formalize the
update that assigns resilience values to vII and vIV.

Again, let r be a ranking for G. Furthermore, for every k ∈ im(r), define Uk =
{v ∈ dom(r) | r(v) ≤ k}, Gk = (A, Win ∩ Safety(Uk)), and Ak = W1(Gk). Intuitively,
in Gk, Player 1 wins by either reaching a vertex v with r(v) ≤ k or by violating the
original winning condition. Now, define r′(v) = min {k | v ∈ Ak}, where min ∅ is
again undefined. We call r′ the risk update of r.Def. risk update

Lemma 5.14. The risk update r′ of a sound ranking r is sound and refines r.

Proof. We will first show r′(v) ≤ r(v) for every v ∈ dom(r), which implies both
refinement and r′(v) = 0 for every v ∈W1(G), as argued in the proof of Lemma 5.13.

To this end, let v ∈ dom(r) and let r(v) = k. Trivially, v ∈ Uk. Thus, Player 1 wins
the game Gk from v by violating the safety condition right away. Hence, v ∈ Ak and
thus r′(v) ≤ k = r(v).

To complete the proof of soundness of r′, we just have to show r′(v) > 0 for every v ∈
W0(G), again due to determinacy of Win. Towards a contradiction, assume r′(v) = 0,
i.e., v ∈ A0. Thus, Player 1 has a strategy τ from v that ensures that either the winning
condition is violated or that a vertex v′ with r(v′) = 0 is reached, i.e., v′ ∈ W1(G) by
soundness of r. Hence, Player 1 has a winning strategy τv′ for G from v′. This implies
that he also has a winning strategy from v: Play according to τ until a vertex v′ with
r(v′) = 0 is reached, if such a vertex is reached at all. From there, mimic τv′ when
starting from v′. Every resulting disturbance-free play has a suffix that violates Win.
Thus, by prefix-independence of Win, the whole play violates Win as well, i.e., it is
winning for Player 1. Thus, v ∈ W1(G), which yields the desired contradiction, as
winning regions are always disjoint.

Having formally defined the disturbance update and the risk update, we now de-
scribe how to interleave them and show that this interleaving indeed results in a char-
acterization of vertices of finite resilience. Let r0 be the unique sound ranking with
domain W1(G). Starting with r0, we inductively define a sequence of rankings (rj)j∈ωDef. rj

such that
• for all odd j > 0, rj is the disturbance update of rj−1, and
• for all even j > 0, rj is the risk update of rj−1,

i.e., we construct (rj)j∈ω by alternating disturbance updates and risk updates.
Due to refinement, the rj eventually stabilize, i.e., there is some j0 such that rj = rj0

for all j ≥ j0. Define r∗ = rj0 . Due to r0 being sound and by Lemma 5.13 andDef. r∗
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Lemma 5.14, each rj, and, in particular, r∗ is sound. If v ∈ dom(r∗), let jv be the mini-Def. jv
mal j with v ∈ dom(rj), otherwise, jv is undefined. We show that, for all v ∈ dom(r∗),
once a rank is assigned to v during the iterative application of the two updates, it is
never updated.

Lemma 5.15. If v ∈ dom(r∗), then rjv(v) = rj(v) for all j ≥ jv.

Proof. We show the following stronger result for every v ∈ dom(r∗):
• If jv is odd, then rj(v) =

jv+1
2 for every j ≥ jv.

• If jv is even, then rj(v) =
jv
2 for every j ≥ jv.

Intuitively, this property not only states that once a vertex is assigned a rank, it is not
updated anymore in subsequent rounds, but also that in each round, only a single
rank is assigned, namely rank j+1

2 in odd rounds j, and rank j
2 in even rounds j.

We first observe that the disturbance update increases the maximal rank by at most
one and that the risk update does not increase the maximal rank at all. Furthermore,
due to refinement, the rank of v is set and then only decreases. Hence, we obtain
rj(v) ≤ jv+1

2 and rj(v) ≤ jv
2 for odd and even jv, respectively. It remains to show a

matching lower bound, which we do in the remainder of this proof.
We say that a vertex v is updated to k ∈ ω in rj if rj(v) = k and either v /∈ dom(rj−1)

or both v ∈ dom(rj−1) and rj−1(v) 6= k (here, r−1 is the unique ranking with empty
domain). Now, we show the following by induction over j, which implies the matching
lower bound.
• If j is odd, then no v is updated in rj to some k < j+1

2 .
• If j is even, then no v is updated in rj to some k < j

2 .
For j = 0, we have j

2 = 0, and clearly, no vertex is assigned a negative rank by r0.

For j = 1 and j′ = 2, we obtain j+1
2 = j′

2 = 1. As r0, r1, and r2 are sound, neither r1
nor r2 update any v to zero, which concludes the induction start.

Now let j > 2 and first consider the case where j is odd. Towards a contradiction,
assume that v ∈ V is updated in rj to some value strictly less than j+1

2 . Since j is
odd, rj is the disturbance update of rj−1. Further, as v is updated in rj, there exists
some disturbance edge (v, v′) ∈ D such that rj(v) = rj−1(v′) + 1. Thus, rj−1(v′) <

rj(v) <
j+1

2 , i.e., rj−1(v′) ≤ j+1
2 − 2 = j−3

2 . First, we show rj−3(v′) = rj−2(v′) = rj−1(v′),
i.e., that the rank of v′ is stable during the last two updates.

First assume towards a contradiction rj−2(v′) 6= rj−1(v′). Then, v′ is updated in rj−1

to some rank of at most j−3
2 , which is in turn smaller than j−1

2 , violating the induction
hypothesis for j − 1. Hence, rj−2(v′) = rj−1(v′). The same reasoning yields a con-
tradiction to the assumption rj−3(v′) 6= rj−2(v′). Thus, we indeed obtain rj−3(v′) =
rj−2(v′) = rj−1(v′).

Since rj−2 is the disturbance update of rj−3, we obtain rj−2(v) ≤ rj−3(v′) + 1 =
rj−1(v′) + 1 = rj(v). Due to refinement, we obtain rj−2(v) ≥ rj(v), i.e., altogether
rj−2(v) = rj−1(v) = rj(v). The latter equality contradicts our initial assumption,
namely v being updated in rj to rj(v).
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Now consider the case where j is even. Again, assume towards a contradiction
that v ∈ V is updated in rj to some value less than j

2 . Since j is even, rj is the risk
update of rj−1. Further, as v is updated in rj, Player 1 wins the game (A, Win ∩
Safety(U)) from v, where U =

{
v′ ∈ dom(rj−1) | rj−1(v′) ≤ rj(v)

}
. Hence, he has a

strategy τ such that every play starting in v and consistent with τ either violates Win
or eventually visits some vertex v′ with rj−1(v′) ≤ rj(v). We claim rj−2(v′) = rj−1(v′)
for all v′ ∈ U.

Towards a contradiction, assume rj−2(v′) 6= rj−1(v′) for some v′ ∈ U. Note that we
have rj−1(v′) ≤ rj(v) < j

2 due to the definition of U. Thus, v′ is updated in rj−1 to
some value strictly less than j

2 , which contradicts the induction hypothesis for j− 1.
Hence, we indeed obtain rj−2(v′) = rj−1(v′) for all v′ ∈ U.

Thus, there are two types of vertices v′ in U:
1. Those for which rj−3(v′) is defined, which implies rj−3(v′) = rj−1(v′) due to the

induction hypothesis and refinement, and
2. those where rj−3(v′) is undefined, which implies rj−2(v′) = rj−1(v′) due to the

claim above.
We claim that Player 1 wins (A, Win∩ Safety(

{
v′′ ∈ dom(rj−3) | rj−3(v′′) ≤ rj(v)

}
))

from v, which implies rj−2(v) = rj(v). This then contradicts v being updated in rj, our
initial assumption.

To this end, we construct a strategy τ′ for Player 1 from v that either violates Win
or reaches a vertex v′′ with rj−3(v′′) ≤ rj(v) as follows: From v, τ′ mimics τ until a
vertex v′ in U is reached, if such a vertex is reached at all. If v′ is of the first type, then
we have rj−3(v′) = rj−1(v′) ≤ rj(v). If v′ is of the second type, then v′ is updated in
rj−2 to some rank rj−2(v′) = rj−1(v′) ≤ rj(v). As rj−2 is the risk update of rj−3, Player 1
has a strategy τv′ from v′ such that all plays starting in v′ and consistent with τv′ either
violate Win or encounter a vertex v′′ with rj−3(v′′) ≤ rj−2(v′) ≤ rj(v). Thus, restarting
in v′, τ′ mimics τv′ from v′ until such a vertex is reached (if it is reached at all). Thus,
every play that starts in v and is consistent with τ′ either violates Win (due to prefix-
independence of Win) or reaches a vertex v′′ with rj−3(v′′) ≤ rj(v), which proves our
claim.

From the proof of Lemma 5.15, we obtain that the maximal rank assigned by r∗ is
bounded from above by the number of vertices of G. This in turn implies that the rj
stabilize quickly, as rj = rj+1 = rj+2 implies rj = r∗.

Corollary 5.16. We have im(r∗) = {0, 1, . . . , n} for some n < |V| and r∗ = r2|V|.

The main result of this section shows that each vertex ranked by r∗ indeed has the
resilience indicated by r∗.

Lemma 5.17. Let r∗ be defined for G as above, and let v ∈ V. If v ∈ dom(r∗), then
rG(v) = r∗(v).

Proof. Let v ∈ dom(r∗). We prove rG(v) ≤ r∗(v) and rG(v) ≥ r∗(v) separately.
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First, we show rG(v) ≤ r∗(v): Recall that the resilience-property is downwards-
closed due to Remark 5.8, i.e., that an α-resilient strategy from v is also α′-resilient
from v for every α′ ≤ α. Thus, to prove

rG(v) = sup {α ∈ ω + 2 | Player 0 has an α-resilient strategy for G from v} ≤ r∗(v)

we just have to show that Player 0 has no (r∗(v) + 1)-resilient strategy from v. By
definition of resilience, for every strategy σ for Player 0, we have to show that there is
a play ρ in G starting in v and consistent with σ that has at most r∗(v) disturbances
and is winning for Player 1. So, fix an arbitrary strategy σ for Player 0.

We define a play with the desired properties by constructing longer and longer finite
prefixes before finally appending an infinite suffix. During the construction, we ensure
that each such prefix ends in a vertex from dom(r∗) in order to be able to proceed with
our construction.

The first prefix just contains (v, 0), i.e., the prefix does indeed end in dom(r∗). Now,
assume we have produced a prefix π(v′, b′) ending in some vertex v′ ∈ dom(r∗), which
implies that jv′ is defined. We consider three cases:
• If jv′ = 0, then v′ ∈ W1(G) by soundness of r∗, i.e., Player 1 has a winning

strategy τ from v′. Thus, we extend π(v′, b′) by the unique disturbance-free play
that starts in v′ and is consistent with σ and τ, without its first vertex. In that
case, the construction of the infinite play is complete.
• If jv′ > 0 is odd, then v′ received its rank r∗(v′) during a disturbance up-

date. Hence, there is some v′′ such that (v′, v′′) ∈ D with r∗(v′)− 1 = r∗(v′′).
In this case, we extend π(v′, b′) by such a vertex v′′ to obtain the new pre-
fix π(v′, b′)(v′′, 1), which satisfies the invariant, as v′′ is in dom(r∗). Further,
we have jv′′ < jv′ as the rank of v′′ had to be defined in order to be considered
during the disturbance update assigning a rank to v′.
• If jv′ > 0 is even, then v′ received its rank r∗(v′) during a risk update. We claim

that Player 1 has a strategy τv′ that guarantees one of the following outcomes
from v′: Either the resulting play violates Win or it encounters a vertex v′′ 6= v′

that satisfies r∗(v′′) ≤ r∗(v′) and jv′′ < jv′ .
First assume that this claim indeed does hold true and consider the unique
disturbance-free play ρ′ that starts in v′ and is consistent with σ and the strat-
egy τv′ as above. If ρ′ violates Win, then we extend π(v′, b′) by ρ′ without its first
vertex. In that case, the construction of the infinite play is complete.
If ρ′, however, does not violate Win, then we extend π(v′, b′) by the prefix of ρ′

without its first vertex and up to and including the first occurrence of a vertex v′′

in ρ′ satisfying the properties described above. This again satisfies the invariant.
It remains to argue our claim: v′ was assigned its rank r∗(v′) = rjv′ (v

′) because
it is in Player 1’s winning region in the game with winning condition Win ∩
Safety(U), for

U =
{

v′′ ∈ dom(rjv′−1) | rjv′−1(v′′) ≤ rjv′ (v
′)
}

.

Hence, from v′, Player 1 has a strategy to either violate the winning condition
or to reach U. Thus, rjv′−1(v′′) = r∗(v′′) for every v′′ ∈ dom(rjv′−1) due to

161



CHAPTER 5. GAMES WITH DISTURBANCES

Lemma 5.15 yields r∗(v′′) ≤ r∗(v′). Finally, we have jv′′ < jv′ , as the rank of v′

was assigned due to the vertices in U already having ranks.
Note that only in two cases, we extend the prefix to an infinite play. In the other two

cases, we just extend the prefix to a longer finite one. Thus, we first show that this con-
struction always results in an infinite play. To this end, let π0(v0, b0) and π1(v1, b1) be
two prefixes constructed above such that π0(v0, b0) is a prefix of π1(v1, b1). A straight-
forward induction proves jv0 > jv1 . Hence, as the value can only decrease finitely
often, at some point an infinite suffix is added. Thus, we at some point encounter the
first case in the construction of the play and hence, we indeed construct an infinite
play.

Finally, we have to show that the resulting play ρ has the desired properties, i.e.,
that it starts in v, is consistent with σ, has at most r∗(v) disturbances and is winning
for Player 1 The first two properties are clear by construction of ρ. Furthermore, by
construction, it has a disturbance-free suffix that violates Win. Thus, due to prefix-
independence of Win, the whole play also violates Win. It remains to show that it has
at most r∗(v) disturbances. To this end, let π0(v0, b0) and π1(v1, b1) be two prefixes
of ρ such that π1(v1, b1) is obtained by extending π0(v0, b0) once. If the extension
consists of taking the disturbance edge (v0, v1) ∈ D, then we have r∗(v1) = r∗(v0) + 1,
again, due to construction of ρ. The only other possibility is the extension consisting
of a finite disturbance-free play prefix that is consistent with the strategy τv0 . Then, by
construction, we obtain r∗(v1) ≤ r∗(v0).

Thus, there are at most r∗(v) many disturbances in ρ. Moreover, the current rank
decreases with every disturbance edge and does not increase with the other type of
extension. Furthermore, the current rank is always nonnegative. Hence, ρ witnesses
the resilience of σ from v being at most r∗(v). Since we picked σ arbitrarily, we ob-
tain rG(v) ≤ r∗(v).

It remains to show rG(v) ≥ r∗(v). To this end, we construct a uniform strategy σf
for Player 0 that is r∗(v)-resilient from every v ∈ dom(r∗). In other words, from every
v ∈ dom(r∗), the strategy σf has to be winning even under r∗(v)− 1 disturbances. As
every strategy is 0-resilient, we only have to consider those v with r∗(v) > 0.

The proof is based on the fact that r∗ is both stable under the disturbance and under
the risk update, i.e., the disturbance update and the risk update of r∗ yield again r∗.
Due to this, we obtain the following properties:
• Firstly, let (v, v′) ∈ D be a disturbance edge such that r∗(v) > 0. Then, we have

r∗(v′) ≥ r∗(v)− 1.
• Secondly, for every vertex v with v ∈ dom(r∗) that satisfies r∗(v) > 0, Player 0

has a strategy σv that is winning for her from v in the game Gv = (A, Win ∩
Safety({v′ ∈ dom(r∗) | r∗(v′) < r∗(v)})).

This latter property follows via determinacy of the game Gv, as the risk update is
formulated in terms of the winning region of Player 1. In particular, note that the set
of unsafe vertices in the latter property is defined using a strict inequality.

Now, we define σf as follows: It always mimics a strategy σv∗ for some v∗ ∈ dom(r∗),
which is initialized by the starting vertex. The strategy σv∗ is mimicked until a con-
sequential (w.r.t. σv∗) disturbance edge is taken, say by reaching the vertex v′. In that
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case, the strategy σf discards the history of the play constructed so far, updates v∗ to v′,
and begins mimicking σv′ . This is repeated ad infinitum.

Now, consider a play ρ that starts in dom(r∗), is consistent with σf , and has less
than r∗(v) disturbances. The part up to the first consequential disturbance edge
(if it exists at all) is consistent with σv. Now, let (v0, v′0) be that disturbance edge.
Then, we have r∗(v0) ≥ r∗(v), since σv never visits vertices with a rank smaller
than r∗(v), due to it being a winning strategy for the safety condition. Thus, we con-
clude r∗(v′0) ≥ r∗(v0)− 1 ≥ r∗(v)− 1. Similarly, the part between the first and the sec-
ond consequential disturbance edge (if it exists at all) is consistent with σv′0

. Again, if
(v1, v′1) is the traversed disturbance edge, then we have r∗(v′1) ≥ r∗(v1)− 1 ≥ r∗(v)− 2.

Continuing this reasoning shows that ρ eventually encounters a vertex v′ such that
r∗(v′) > 0, and such that the suffix starting in this vertex is disturbance-free and
consistent with σv′ . The former property holds true, since ρ contains strictly less than
r∗(v) disturbances and as the rank is decreased by at most one for every disturbance
edge. The latter two properties hold true by assumption on ρ.

Hence, the suffix satisfies Win, i.e., by prefix-independence, the complete play satis-
fies Win as well. As we picked ρ starting in some vertex from dom(r∗) and consistent
with σf arbitrarily, σf is indeed r∗(v)-resilient from every v ∈ dom(r∗).

We furthermore obtain that r∗ indeed only assigns a rank to vertices of finite re-
silience.

Lemma 5.18. Let r∗ be defined for G as above, and let v ∈ V. If v /∈ dom(r∗), then
rG(v) ∈ {ω, ω + 1}.

Proof. Let X = V \ dom(r∗). The disturbance update of r∗ being r∗ implies that every
disturbance edge starting in X leads back to X. Similarly, the risk update of r∗ being r∗

implies X = W0(GX) for GX = (A, Win ∩ Safety(V \ X)). Thus, from every v ∈ X,
Player 0 has a strategy σv such that every disturbance-free play that starts in v and
is consistent with σv satisfies the winning condition Win and never leaves X. Using
these properties, we construct a strategy σω that is ω-resilient from every v ∈ X, which
implies rG(v) ∈ {ω, ω + 1}.

The definition of the strategy σω here is similar to the one constructed in the proof
of Lemma 5.17 yielding the lower bound on the resilience. Again, σω always mimics
a strategy σv∗ for some v∗ ∈ X, which is initialized by the starting vertex. The strat-
egy σv∗ is mimicked until a consequential (w.r.t. σv∗) disturbance edge is taken, say by
reaching the vertex v′. In that case, the strategy σω discards the history of the play
constructed so far, updates v∗ to v′, and begins mimicking σv′ . This is repeated ad
infinitum.

Due to the properties of the disturbance edges and the strategies σv, such a play
never leaves X, even if disturbances occur. Furthermore, if only finitely many distur-
bances occur, then the resulting play has a disturbance-free suffix that starts in some
v∗ ∈ X and is consistent with σv∗ . As σv∗ is winning from v∗ in GX, this suffix satis-
fies Win. Hence, by prefix-independence of Win, the complete play also satisfies Win.
Thus, σω is indeed an ω-resilient strategy from every v ∈ X.
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W1

W0

vI/1

vII/1vII/1

vIII/0

vIII/0

vIV/1

vV/2

vV/2

vVI/1

v′I/0 v′I/0 v′II/1

v′′I /0 v′′I /0 v′′II/0

Figure 5.3: The rigged game obtained for the game shown in Figure 5.2.

Having thus shown that r∗ indeed ranks all vertices of finite resilience with their
resilience, we obtain the following upper bound on the resilience of vertices via Corol-
lary 5.16, Lemma 5.17, and Lemma 5.18.

Corollary 5.19. We have rG(V) ∩ω = {0, 1, . . . , n} for some n < |V|.

We have thus shown how to determine the vertices of finite resilience together with
their resilience. In the following section we furthermore show how to determine the
vertices with resilience ω + 1.

5.2.2 Characterizing Resilience ω and ω + 1

Our goal in this subsection is to determine the vertices of resilience ω and ω + 1,
i.e., those from which Player 0 can win even under an unbounded, but finite number
of disturbances, and under an infinite number of disturbances, respectively. We first
show how to determine vertices of resilience ω + 1.

Recall that, by definition, the resilience of a vertex is in ω + 2. Moreover recall that
we have determined the vertices with resilience less than ω in the previous section.
Hence, by determining those vertices with resilience ω + 1, we obtain that those ver-
tices not determined to have finite resilience in the previous section, nor determined to
have resilience ω + 1 in this section, have resilience ω. Thus, we have then determined
the resilience of all vertices.

Intuitively, recall that a vertex has resilience ω + 1 if and only if Player 0 can win
the game from that vertex even if infinitely many disturbances occur. Thus, we give
Player 1 control over the disturbance edges, as there cannot be more than infinitely
many disturbances during a play.

Example 5.20. Consider again the parity game with disturbances from :Figure 5.2.: Sec. 5.1, Page 152
Intuitively, in order to give Player 1 control over the occurrence of disturbances, for
each vertex v of Player 0, we add a vertex v, which belongs to Player 0, and we give
the original vertex v to Player 1. Upon entering vertex v, Player 1 may then choose to
traverse an outgoing disturbance edge of v, or he may decide to give control to Player 0
by moving to vertex v. From v, Player 0 can then pick a non-disturbance edge of v to
continue along.
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We show the game without disturbances resulting from giving control over the dis-
turbances to Player 1 in Figure 5.3. We observe that the winning region of Player 0
corresponds to the vertices of resilience ω + 1 in the game of Figure 5.2. Dually, the
winning region of Player 1 corresponds to the vertices of resilience at most ω, i.e.,
the vertices vI through vVI with finite resilience identified in :Example 5.12 and the : Sec. 5.2, Page 156
vertices v′I and v′II with resilience ω.

From v′′I , Player 0 wins even if Player 1 controls whether the disturbance edge is
traversed from v′′I , as both v′′I and v′′II have color zero. On the other hand, giving
Player 1 control over the disturbance edges lets him win from v′I, as he can use the
disturbance edge incident to v′I infinitely often to move to v′II, which has color one. 4

In the following, we prove this intuition of handing control over the disturbance to
Player 1 to be correct for determining the vertices of resilience ω + 1. To this end, we
transform the arena of the game so that at a vertex of Player 0, first Player 1 gets to
chose whether he wants to take one of the disturbance edges and, if not, gives control
to Player 0, who is then able to use a standard edge. The resulting game is a game
without disturbances: Since all disturbances are now under the control of Player 1, the
corresponding disturbance edges are normal edges in the resulting game.

Again, since we want to obtain a uniform approach to characterizing vertices of
resilience ω + 1 that works for all winning conditions discussed in this work, we
consider an arbitrary game with disturbances (A, Win).

Given a game with disturbances G = (A, Win) with A = (V, V0, V1, E, D), we de-
fine the rigged game Grig = (A′, Win′) with A′ = (V ′, V ′0, V ′1, E′) such that V ′0 = Def. rigged game
{v | v ∈ V0}, V ′1 = V, and V ′ = V ′0 ∪ V ′1. The set E′ of edges is the union of the
following sets:
• D: Player 1 uses a disturbance edge.
• {(v, v) | v ∈ V0}: Player 1 does not use a disturbance edge and yields control to

Player 0.
• {(v, v′) | (v, v′) ∈ E and v ∈ V0}: Player 0 has control and picks a standard edge.
• {(v, v′) | (v, v′) ∈ E and v ∈ V1}: Player 1 takes a standard edge.

Further, Win′ = {ρ ∈ (V ′)ω | h(ρ) ∈Win} where h : (V ′)ω → Vω is the homomor-
phism induced by h(v) = v and h(v) = ε for every v ∈ V. In particular, we con-
struct Grig to be a game without disturbances. Hence, plays in Grig do not contain
additional vertices denoting whether or not a disturbance edge has been taken.

We illustrate the construction of the rigged game from the parity game with dis-
turbances shown in :Figure 5.2 in Figure 5.3. The following lemma generalizes and : Sec. 5.1, Page 152
formalizes the observation of Example 5.20 that W0(Grig) characterizes the vertices of
resilience ω + 1 in G.

Lemma 5.21. Let v be a vertex of a game G. We have v ∈ W0(Grig) if and only if rG(v) =
ω + 1.

Proof. We first show the implication from left to right. Let Player 0 win Grig from v, say
with winning strategy σ′. In order to construct a strategy σ witnessing rG(v) = ω + 1,
we inductively translate play prefixes w in G into play prefixes t′(w) in Grig satisfying
the following invariant:
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t′((v0, b0) · · · (vj, bj)) starts in v0 and ends in vj

We begin by defining t′(v0, b0) = v0. To define t′((v0, b0) · · · (vj, bj) · (vj+1, bj+1)), we
consider several cases:
• If bj+1 = 1, then the play traverses the disturbance edge (vj, vj+1), i.e., we have
(vj, vj+1) ∈ D. We mimick this move by defining

t′((v0, b0) · · · (vj, bj) · (vj+1, bj+1)) = t′((v0, b0) · · · (vj, bj)) · vj+1 .

• If bj+1 = 0 and vj ∈ V0, then we have (vj, vj+1) ∈ E, i.e., the play did not
traverse a disturbance edge and instead allowed Player 0 to pick the standard
edge (vj, vj+1) to traverse. We mimick this move by defining

t′((v0, b0) · · · (vj, bj) · (vj+1, bj+1)) = t′((v0, b0) · · · (vj, bj)) · vj · vj+1 .

• If bj+1 = 0 and vj ∈ V1, then the play traversed the standard edge (vj, vj+1) ∈ E.
We mimick this move by defining

t′((v0, b0) · · · (vj, bj) · (vj+1, bj+1)) = t′((v0, b0) · · · (vj, bj)) · vj+1 .

It is easy to see that the invariant is satisfied in any case. Also, we lift t′ to infinite
plays by taking limits as usual.

Using this translation, we define a strategy σ for Player 0 in G via

σ(v0 · · · vj) = σ′(t′((v0, b0) · · · (vj, bj)) · vj) ,

where b0 = 0 and where for every j′ > 0, bj′ = 1 if and only if vj′ 6= σ(v0 · · · vj′−1),
i.e., we reconstruct the consequential disturbances as described in : Section 5.1.1. A:Page 151
straightforward induction shows that for every play ρ = (v0, b0)(v1, b1)(v2, b2) · · · in G
that is consistent with σ, the play t′(ρ) is consistent with σ′. Hence, t′(ρ) ∈ Win′ for
every ρ starting in v. Furthermore, we have h(t′(ρ)) = v0v1v2 · · · ∈ Win, as t′(ρ) ∈
Win′. Thus, ρ = (v0, b0)(v1, b1)(v2, b2) · · · is winning for Player 0. As we have no
restriction on the number of disturbances in ρ, the strategy σ is (ω+ 1)-resilient from v.
Hence, rG(v) = ω + 1, which concludes the proof of the implication from left to right.

It remains to show the implication from right to left. To this end, let rG(v) = ω + 1,
i.e., Player 0 has an (ω + 1)-resilient strategy σ from v in G. We define a winning
strategy σ′ for Player 0 from v in Grig. This time, we inductively define a translation t
of play prefixes in Grig into play prefixes in G. Since all vertices in G correspond to
vertices of Player 1 in Grig, it suffices to consider those prefixes that start and end in
V ′1. For these, we construct t to satisfy the following invariant:

If π starts in v0 and ends in vj, then t(π) starts in v0 and ends in vj as
well.

Recall that Grig is a game without disturbances. Thus, plays in Grig do not contain
bits indicating whether a disturbance edge has been traversed and we have to recon-
struct them from the traversal of the vertices v and v. We define t(v0) = (v0, 0) and
consider several cases for the inductive step:
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• First, assume we have a prefix of the form v0 · · · vj · vj+1 for some vj ∈ V0 ⊆ V ′1,
i.e., the move of Player 1 simulates traversing the disturbance edge (vj, vj+1) ∈ D.
Then, we define

t(v0 · · · vj · vj+1) = t(v0 · · · vj) · (vj+1, 1) .

• Next, assume we have a prefix of the form v0 · · · vj · vj+1 for some vj ∈ V1 ⊆ V ′1,
i.e., the move of Player 1 simulates traversing the standard edge (vj, vj+1) ∈ E.
Then, we define

t(v0 · · · vj · vj+1) = t(v0 · · · vj) · (vj+1, 0) .

• Finally, the last case is a prefix of the form v0 · · · vjvj · vj+1 for some vj ∈ V ′0, i.e.,
the move of Player 0 simulates traversing the standard edge (vj, vj+1) ∈ E. Then,
we define

t(v0 · · · vjvj · vj+1) = t(v0 · · · vj) · (vj+1, 0) .

The invariant is satisfied in any case. Also, we again lift t to infinite plays via limits.
Now, we define a strategy σ′ for Player 0 in Grig via

σ′(v0 · · · vjvj) = σ(t(v0 · · · vj)) ,

where, for the sake of notational convenience, we assume that σ ignores the bits indi-
cating whether or not a disturbance edge was taken present in t(v0 · · · vj).

The restriction to play prefixes ending in a vertex of the form v suffices, as these
are the only vertices of Player 0 in Grig. A straightforward induction shows that for
every play ρ that is consistent with σ′, the play t(ρ) is consistent with σ. Hence, t(ρ)
satisfies the winning condition if ρ starts in v, as σ is (ω + 1)-resilient from v. Let
t(ρ) = (v0, b0)(v1, b1)(v2, b2) · · · . Then, v0v1v2 · · · ∈ Win. Now, h(ρ) = v0v1v2 · · ·
implies ρ ∈ Win′. Thus, σ′ is a winning strategy for Player 0 from v, which concludes
the implication from right to left.

In the proof of Lemma 5.21 we construct an ω + 1-resilient strategy for Player 0 in G
from a winning strategy for her in Grig. It is easy to see that this construction preserves
positionality, which gives rise to the following corollary.

Corollary 5.22. If Player 0 has a positional winning strategy that is winning for her from all
vertices in W0(Grig), then she has a positional strategy that is ω + 1-resilient from all vertices v
in G with rG(v) = ω + 1.

At this point, we are able to compute the resilience of those vertices v with rG(v) ∈ ω
due to Lemma 5.17 and Lemma 5.18. Furthermore, we can identify the vertices v
with rG(v) = ω + 1 due to Lemma 5.21. Since, for each vertex v, we have rG(v) ∈
ω∪{ω, ω + 1}, all vertices not characterized by the statements above have resilience ω.

Thus, we have shown how to determine the resilience of all vertices in G and how
to construct strategies witnessing the respective resilience out of winning strategies
for variants of the underlying game without disturbances. In the following section,
we show how to combine these results to effectively compute an optimally resilient
strategy for Player 0 in G.
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5.2.3 Computing Optimally Resilient Strategies

To conclude our investigation of games with disturbances, we now show how to effec-
tively compute the resilience of vertices and optimally resilient strategies for Player 0.
Here, we focus on positional and finite-state strategies, which are sufficient for the
winning conditions discussed in this work. It is, however, easy to see that the re-
sults from this section can be lifted to games with infinite-state winning strategies for
Player 0 as well. Thus, we also provide approaches for effectively computing (finitely
representable) optimally resilient infinite-state strategies.

In the proof of :Lemma 5.17, we construct a strategy σf that is rG(v)-resilient from: Sec. 5.2, Page 160
every v with rG(v) ∈ ω. Furthermore, in the proof of :Lemma 5.18, we construct a: Sec. 5.2, Page 163
strategy σω that is ω-resilient from every v with rG(v) ≥ ω. Finally, in :Lemma 5.21: Sec. 5.2, Page 165
we construct a strategy σω+1 that is ω + 1 resilient from every v with rG(v) = ω + 1.

We obtain the former two strategies by combining winning strategies for the games
GU = (A, Win ∩ Safety(U)) with vertex set V where U ⊆ V, and the latter strategy
by solving the game Grig. However, even if these winning strategies are positional, the
strategies σf and σω are in general not positional. Nonetheless, we show in the proof
of Theorem Theorem 5.23 that such positional winning strategies and a positional one
for Grig can be combined into a single positional optimally resilient strategy.

In order to effectively compute this optimally resilient strategy, we need to assume
that we are able to effectively compute the underlying strategies. More precisely, we
have to assume that the games GU as well as the rigged game Grig are effectively
solvable. This is indeed the case for all winning conditions discussed in this work.

Theorem 5.23. Let G be a prefix-independent game with disturbances such that each GU
and Grig is determined and can be effectively solved. Moreover, for each GU and Grig, let
Player 0 have a positional strategy that is winning from all vertices in her respective winning
region.

Then, the resilience of the vertices of G and a positional optimally resilient strategy can be
effectively computed.

Proof. The effective computability of the resilience follows directly from the effective-
ness requirements on G: To compute the ranking r∗, it suffices to compute the distur-
bance and risk updates in alternation as discussed in : Section 5.2.1. The former are:Page 156
trivially effective while the effectiveness of the latter ones follows from our assump-
tion. Lemma 5.17 shows that r∗ correctly determines the resilience of all vertices with
finite resilience. Finally, by solving the rigged game, we also correctly determine the
resilience of the remaining vertices, as shown in Lemma 5.21. Again, this game can be
effectively solved due to our assumption.

Thus, it remains to show how to compute a positional optimally resilient strategy.
To this end we first construct for every vertex v of G a positional strategy σv satisfying
the following properties.
• For every v ∈ V with rG(v) ∈ ω \ {0}, the strategy σv is winning for Player 0

from v for the game (A, Win∩ Safety({v′ ∈ V | rG(v′) < rG(v)})). The existence
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of such a strategy has been shown in the proof of Lemma 5.17. It is effectively
computable by assumption.
• For every v ∈ V with rG(v) = ω, the strategy σv is winning for Player 0 from v

for the game (A, Win ∩ Safety({v′ ∈ V | rG(v′) ∈ ω})). The existence of such a
strategy has been shown in the proof of Lemma 5.18. It is effectively computable
by assumption.
• For every v ∈ V with rG(v) = ω + 1, the strategy σv is (ω + 1)-resilient from v.

The existence of such a strategy follows from Corollary 5.22, as we assume
Player 0 to win Grig with positional strategies. It is effectively computable by
assumption.
• Finally, for every v ∈ V with rG(v) = 0, we fix an arbitrary positional strategy σv

for Player 0.
Furthermore, we fix a strict linear order ≺ on the vertices of G such that v ≺ v′

implies rG(v) ≤ rG(v′), i.e., we order the vertices by ascending resilience. We denote
the non-strict variant of ≺ by �. For a vertex v with rG(v) 6= ω + 1, let Rv be the
set of vertices reachable via disturbance-free plays that start in v and are consistent
with σv. On the other hand, for a vertex v with with rG(v) = ω + 1, let Rv be the set of
vertices reachable via plays with arbitrarily many disturbances that start in v and are
consistent with σv.

We claim Rv ⊆ {v′ ∈ V | rG(v′) ≥ rG(v)} for every v ∈ V (∗). For v with rG(v) 6=
ω + 1 this follows immediately from the choice of σv. Thus, let us argue the claim for v
with rG(v) = ω + 1. Assume towards a contradiction that there exists a play starting
in v and consistent with σv that reaches a vertex v′ of resilience rG(v′) 6= ω + 1. Then,
there exists a play ρ′ starting in v′ that is consistent with σv, has rG(v′) ∈ ω many
disturbances and is losing for Player 0. Thus the play obtained by first taking the play
prefix to v′ and then appending ρ′ without its first vertex yields a play starting in v,
consistent with σv, but losing for Player 0. The existence of this play implies that σv is
not (ω + 1)-resilient from v, which yields the desired contradiction.

Let m : V → V be given as m(v) = min≺ {v′ ∈ V | v ∈ Rv′} and define the positional
strategy σ as σ(v) = σm(v)(v). By our assumptions, σ can be effectively computed. It
remains to show that it is indeed optimally resilient.

To this end, we apply the following two properties of edges (v, v′) that may be
traversed during a play that is consistent with σ, i.e., we either have (v, v′) ∈ E, or
(v, v′) ∈ D, which implies v ∈ V0:

1. If (v, v′) ∈ E, then we have rG(v) ≤ rG(v′) and m(v) � m(v′). The former
property follows from minimality of m(v) and (∗) while the latter one follows
from the definition of Rv.

2. If (v, v′) ∈ D, then we have to distinguish several subcases, which all follow
immediately from the definition of resilience:
• If rG(v) ∈ ω, then rG(v′) ≥ rG(v)− 1.
• If rG(v) = ω, then rG(v′) = ω, and
• If rG(v) = ω + 1, then rG(v′) = ω + 1 and m(v) ≥ m(v′) (here, the second

property follows from the definition of Rv for v with rG(v) = ω + 1, which
allows for the occurrence of disturbance edges).
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Now, consider a play ρ = (v0, b0)(v1, b1)(v2, b2) · · · that is consistent with σ. First,
assume rG(v0) ∈ ω. We have to show that if ρ has less than rG(v0) disturbances, then
it is winning for Player 0. If rG(v0) = 0, then this claim vacuously holds true. Thus,
assume rG(v0) > 0. An inductive application of the above properties shows that in that
case the last disturbance edge leads to a vertex of non-zero resilience. Furthermore, as
the values m(vj) are only decreasing afterwards, they have to stabilize at some later
point. Hence, there is some disturbance-free suffix of ρ that starts in some v′ with non-
zero resilience and that is consistent with the strategy σv′ . Thus, the suffix is winning
for Player 0 by the choice of σv′ and prefix-independence implies that ρ is winning for
her as well.

Next, assume rG(v0) = ω. We have to show that if ρ has a finite number of distur-
bances, then it is winning for Player 0. Again, an inductive application of the above
properties shows that in that case the last disturbance edge leads to a vertex of re-
silience ω or ω + 1. Afterwards, the values m(vj) stabilize again. Hence, there is
some suffix of ρ that starts in some v′ with non-zero resilience and that is consistent
with the strategy σv′ . Thus, the suffix is winning for Player 0 by the choice of σv′ and
prefix-independence implies that ρ is winning for her as well.

Finally, assume rG(v0) = ω + 1. Then, the above properties imply that ρ only visits
vertices with resilience ω + 1 and that the values m(vj) eventually stabilize. Hence,
there is a suffix of ρ starting in some v′ that is consistent with the (ω + 1)-resilient
strategy σv′ . Thus, the suffix is winning for Player 0, no matter how many disturbances
occurred. This again implies that ρ is winning for her as well.

Next, we analyze the complexity of the algorithm sketched above in some more
detail. The inductive definition of the rj can be turned into an algorithm computing r∗,
using the results of Lemma 5.15 to optimize the naive implementation, which has to
solve O(|V|) many games (and compute winning strategies for some of them) with
winning condition Win ∩ Safety(U). Furthermore, the rigged game Grig, which is of
size O(|G|), has to be solved and winning strategies have to be determined. Thus, the
overall complexity is in general dominated by the complexity of solving these tasks.

Using similar arguments, one can also analyze games where positional strategies do
not suffice. As above, assume G satisfies the same assumptions on determinacy and
effectiveness, but only require that Player 0 has finite-state winning strategies for each
game with winning condition (A, Win ∩ Safety(U)) and for the rigged game Grig.
Then, one can show that she has a finite-state optimally resilient strategy. In fact, by
reusing memory states, one can construct an optimally resilient strategy that it is not
larger than any constituent strategy.

Corollary 5.24. Let G be a prefix-independent game with disturbances such that each GU
and Grig is determined and can be effectively solved. Moreover, let Player 0 have a winning
strategy σU from her winning region in each GU and σrig in Grig.

If the σU are finite-state strategies of size sU and if σrig is a finite-state strategy of size srig then
an optimally resilient strategy of size at most max({sU | U ⊆ V} ∪

{
srig
}
) can be effectively

computed.
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In the following section, we summarize the results obtained in this chapter and
explicitly instantiate the results for the winning conditions discussed in this work.

5.3 Summary of Results

In this chapter we have first recalled the definition of games with intermittent un-
modeled disturbances first introduced by Dallal, Neider, and Tabuada [DNT16] and
defined the notion of optimally-resilient strategies, i.e., strategies that are still win-
ning for Player 0 even if the maximal number of disturbances occur that allow her to
win. Furthermore, we have shown how to compute optimally-resilient strategies for
all games considered in this work by developing a general approach that relies only
on very weak assumptions on the winning conditions.

We explicitly state the instantiation of our results from this chapter for parity games
and their variants discussed in this work in the following corollary. The first, second,
and third item of that corollary follow directly from Theorem 5.23, :Proposition 2.20, : Sec. 2.3, Page 20
:Proposition 2.27, and :Proposition 2.33. Recall that these propositions state that : Sec. 2.4, Page 24

: Sec. 2.4, Page 26parity games with n vertices and d odd colors can be solved in time O(nlog d+6), that
finitary parity games with n vertices can be solved in time O(n4), and that parity
games with costs with n vertices and d odd colors can be solved in time O(dn22log(d)),
respectively. Similarly, the fourth item of that corollary follows from Theorem 5.23
and :Theorem 3.18. Recall that as a direct consequence of the proof of Theorem 3.18 : Sec. 3.2, Page 52
we furthermore obtain that parity games with weights with n vertices, d odd colors,
and largest absolute weight W can be solved in time O(n2(d(n′)log(d/ log n′)+4.45(W +
1/n′))), where n′ ∈ O(n2) due to Daviaud, Jurdziński, and Lazić [DJL18].

Corollary 5.25. Let G be a game with disturbances.
1. If G is a parity game with n vertices and d odd colors, then Player 0 has a positional

optimally-resilient strategy in G that can be computed in time O(nlog d+7).
2. If G is a finitary parity game with n vertices, then Player 0 has a positional optimally-

resilient strategy in G that can be computed in time O(n5).
3. If G is a parity game with costs with n vertices and d odd colors, then Player 0 has a posi-

tional optimally-resilient strategy in G that can be computed in time O(n(n4d)log d+6).
4. If G is a parity game with weights with n vertices, d odd colors, and largest weight W,

then Player 0 has a finite-state optimally-resilient strategy in G that can be computed in
time O(n(n2(d(n′)log(d/ log n′)+4.45(W + 1/n′)))), where n′ ∈ O(n2).

The notion of resilience introduces a new metric for strategies: Strategies can be
ordered by their resilience, i.e., a larger resilience against intermittent disturbances is
better than a smaller one. This ordering is independent of the ordering induced by
the cost of strategies in parity games with costs and parity games with weights, which
we discussed in :Chapter 4. In the following section, we investigate the interplay :Page 83
between these two metrics, i.e., we investigate the relationship between the resilience
of a strategy and the cost it realizes in quantitative parity games. Furthermore, we
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discuss the memory requirements of strategies that are both resilient and enforce a
certain cost of the resulting play.
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CHAPTER 6

Tradeoffs

At this point, we have identified three metrics of strategies of Player 0 in finitary parity
games and, by extension, in parity games with weights. Firstly, each strategy for her
has a size, i.e., the amount of memory used to implement that strategy. Here, in
general, smaller strategies are more desirable. Secondly, each strategy σ in a finitary
parity game has an associated cost as discussed :Chapter 3 in :Chapter 4, defined :Page 29

:Page 83as the upper bound on the cost of plays that are consistent with σ. Here, again, a
smaller cost is more desirable. Thirdly, when playing on an arena with disturbances,
each strategy for Player 0 is resilient against a number of disturbances, i.e., there exists
a maximal number of disturbances which still allow her to win the resulting play. We
discussed this setting in :Chapter 5. In contrast to the previous two characteristics of :Page 149
strategies, a larger resilience is more desirable.

In this section, we study the interplay between the three characteristics of size, cost,
and resilience of strategies. To this end, we consider all possible pairings of these three
characteristics and investigate the tradeoff between these metrics.

First, recall that we already stated in :Corollary 5.24 that optimally resilient strate- : Sec. 5.2, Page 170
gies have the same size as arbitrary winning strategies for Player 0 in the underlying
game. Hence, there exists no tradeoff between these two metrics, as resilience comes,
in a sense, for free in terms of memory.

Second, we consider the tradeoff between the cost of a strategy and the memory
required to implement it. Recall that in a finitary parity game G with n vertices and d
odd colors Player 0 has a positional winning strategy from her winning region due
to :Proposition 2.25.1. If she, however, aims to bound the cost of the resulting plays : Sec. 2.4, Page 23
from above by b, then she requires a strategy of size in O(bd) due to :Lemma 4.39. : Sec. 4.4, Page 131
In Section 6.1 we investigate whether this tradeoff is abrupt, i.e., whether there ex-
ists some bound b0 such that Player 0 has a positional strategy that guarantees some
bound b with b0 < b < ∞ and such that she requires memory in O(bd) in order to
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enforce a bound b ≤ b0. We show that this is not the case and that this tradeoff may,
in general, be gradual, i.e., Player 0 may require more and more memory in order to
decrease the bound.

Third, we discuss the tradeoff between the cost of a strategy and its resilience in
Section 6.2. Here, we show how to compute, for a fixed b, the maximal number of
disturbances under which Player 0 can still enforce the cost of a play of at most b. Vice
versa, we also show how to compute for a given number of disturbances r the minimal
bound on the cost of the resulting play that Player 0 can ensure under the assumption
that there are at most r disturbances. Furthermore, we argue that strategies witnessing
these respective optimal values are effectively constructible and that computing them
does not have a greater complexity in terms of runtime than solving the underlying
parity game with weights optimally, as discussed in Chapter 4.

The results shown in Section 6.1 are based on work published in LMCS [WZ17]. The
results shown in Section 6.2 constitute novel work.

6.1 Trading Memory for Optimality

In :Chapter 4 we have investigated the problem of deciding the winner in parity:Page 83
games with weights and their special cases with respect to some given bound. There,
we have shown that, in order to ensure an upper bound of b on the cost of the resulting
play in a finitary parity game with d odd colors, (b + 2)d memory states suffice (see
:Lemma 4.39).: Sec. 4.4, Page 131

This upper bound, however, increases together with b, which is counterintuitive:
Intuitively, increasing the bound b that Player 0 has to satisfy should make it easier for
her to satisfy that bound, since more and more plays become winning for her. Thus,
the size of strategies should decrease with increasing b. We illustrate the space of
strategies for Player 0 in finitary parity games in Figure 6.1: For each finitary parity
game G and each vertex v of G, if Player 0 wins G from v, then there exists a mini-
mal b0 ∈N such that Player 0 has a strategy σ0 with Cost(σ0) ≤ b0. Due to Lemma 4.39
we obtain |σ0| ≤ (b + 2)d. We indicate this upper bound by the dashed line in Fig-
ure 6.1. Since Cost(σ0) ≤ b′ for all b′ ≥ b0, the size of σ0 is an upper bound on the size
of strategies that realize some cost greater than b0, as indicated by the solid line in Fig-
ure 6.1. Furthermore, for b′ ≥ b1 = n we obtain that Player 0 has a positional strategy
realizing cost at most b′ if she has a winning strategy at all, due to :Proposition 2.25.1.: Sec. 2.4, Page 23
This is indicated by the steep dropoff of the solid line at b1 = n in Figure 6.1. Finally,
we indicate the set of pairs b and s such that Player 0 is known to have a strategy of
cost at most b and size s by shading it in gray in Figure 6.1.

Before showing that this intuition in fact holds true, i.e., that there exist games
in which it becomes “easier” to win for Player 0 with increasing bound b, we first
argue that such a steep dropoff as illustrated in Figure 6.1 may actually occur. To
this end, recall the construction of a finitary parity game from quantified Boolean
formulas used to show PSpace-hardness of the threshold problem for finitary parity
games in : Section 4.3.1. In that section, we constructed, given a quantified Boolean:Page 117
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Cost(σ)

|σ|

(b + 2)d

b0 b1 = n

s0

s1 = 1

Figure 6.1: The structure of the space of strategies in finitary parity games for Player 0.

formula ϕ, a finitary parity game Gϕ together with a designated vertex v of Gϕ and
a bound bϕ such that Player 0 has a strategy σ with Costv(σ) ≤ bϕ in Gϕ if and
only if ϕ evaluates to true. Intuitively, the strategy σ prescribes truth values for the
existentially quantified variables of ϕ depending on the values assigned to earlier
universally quantified variables.

For some fixed n ∈N, consider the quantified Boolean formula

ϕ = ∀x1 · · · ∀xn∃y1 · · · ∃yn.
∧

j∈{1,...,n}
(xj ↔ yj) ,

where we use the shorthand x ↔ y to denote the formula (¬x∨ y)∧ (¬y∨ x), i.e., x ↔
y denotes that the two variables x and y carry the same truth value. Although this
formula is not given in the normal form assumed in Section 4.3.1 it is straightforward
to rewrite it in that form by introducing additional, unused variables.

Clearly, ϕ evaluates to true, as witnessed by assigning each variable yi the (pre-
viously chosen) value of xi. A strategy σ for Player 0 in Gϕ with Costv(σ) ≤ bϕ,
however, clearly requires exponential memory, as it is required to store the choices
made by Player 1 when choosing truth values for the variables x1 through xn. In
contrast, we have argued in Section 4.3.1 that every strategy σ′ for Player 0 in Gϕ

has Costv(σ′) ≤ bϕ + 2. In particular, this holds true for all positional strategies for
her. This observation gives rise to the following corollary.

Corollary 6.1. For each n ∈ N there exists a finitary parity game Gn with O(n) vertices, a
bound bn ∈ O(n), and a designated vertex v∗ of Gn such that

1. there exists a strategy σ of size O(2n) for Player 0 such that Costv∗(σ) ≤ bn, such that
2. for all strategies σ′ for Player 0 we have that Costv∗(σ′) ≤ bn implies |σ′| ≥ |σ|, and

such that
3. there exists a positional strategy σ′′ for Player 0 such that Costv∗(σ′′) ≤ bn + 2.

The above corollary witnesses that there indeed exist games for which the space of
strategies for Player 0 is structured as in Figure 6.1, i.e., in which that space features
a sharp dropoff in terms of memory required in order to satisfy a given bound on the
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(a) The j-th gadget G1
j for Player 1.
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/0

/0
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/0

· · ·

· · ·

/0
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(b) The j-th gadget G0
j for Player 0.

Figure 6.2: The gadgets constituting the arena of Gd.

incurred costs. In these games, there exists some bound b such that Player 0 requires
exponential memory in order to enforce cost at most b, but she has a positional strategy
that enforces bound b + 2.

We now show that there also exist games witnessing a contrasting situation: There
exist finitary parity games in which, the larger the bound b is (in the interval b0 ≤ b <
b1), the smaller the minimal strategies enforcing cost of at most b are.

Theorem 6.2. For each d ≥ 1 there exists a finitary parity game Gd with O(d2) vertices that
contains a designated vertex vI such that for every j with 1 ≤ j ≤ d there exists a strategy σj
for Player 0 in Gd such that
• d2 + 3d− 1 = CostvI(σ1) > CostvI(σ2) > · · · > CostvI(σd) = d2 + 2d, and
• 1 = |σ1| < |σ2| < · · · < |σd| = 2d−1.

Also, for every strategy σ′ for Player 0 in Gd with Cost(σ′) ≤ Cost(σj) we have |σ′| ≥
∣∣σj
∣∣.

Proof. We define Gd as the game from the proof of necessity of exponential memory
for optimal strategies for Player 0 in finitary parity games, i.e., from the proof in
: Section 4.4.2. Recall that this game consists of d gadgets for each player, each of:Page 133
which contains 3d vertices. We reprint the gadgets G1

j and G0
j for Player 1 and Player 0,

respectively, in Figure 6.2 and the overall construction of the arena of Gd in Figure 6.3
for the sake of completeness. Moreover, we again define vI as the top-left vertex of the
first gadget G1

1 for Player 1.
Furthermore recall that, in Section 4.4.2, we defined the set of strictly increasing
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G1
1 G1

2 G1
d

G0
1 G0

2 G0
d

· · ·

· · ·

Figure 6.3: The finitary parity game Gd witnessing the existence of gradual tradeoffs
for Player 0.

sequences of odd integers IncSeqd and showed that we can implement an optimal
strategy σ with cost at most d2 + 2d when starting from vI using the set IncSeqd as
memory states.

Intuitively, the strategy σ stores up to d− 1 requests made by Player 1 in his part of
each round, as the final element of each increasing sequence is fixed to be 2d− 1. The
idea behind the construction of the strategies σj for 1 ≤ j ≤ d is to restrict the memory
of Player 0 such that she can only store up to j− 1 requests. In the extremal cases of
j = 1 and j = d this implements a positional strategy that always moves to the vertex
of color 2d, and the strategy σ as above, respectively.

We implement σj via a memory structure Mj
d = (Mj

d, initj
d, updj

d), which we define
in the following. We again use strictly increasing odd sequences as the memory states
of Mj

d, but now restrict the maximal number of entries that differ from the maximal
value of 2d− 1: Thus, we implement the above intuition that Player 0 stores at most
j− 1 requests.

To this end, we define the length-restricted set of strictly increasing odd sequences

IncSeqj
d = IncSeqd ∩

{
s = (c1, . . . , cj−1, 2d− 1, . . . , 2d− 1) | s ∈Nd

}
,

where Nd denotes the tuples of length d over the natural numbers, and pick Mj
d =

IncSeqj
d. Note that Md

d = Md as defined in Section 4.4.2 and that M1
d is a singleton

set containing only the sequence (2d− 1, . . . , 2d− 1) of length d. Clearly, the second
claim of the theorem holds true, since IncSeqj−1

d ⊂ IncSeqj
d for each d ≥ 1 and each j

with 1 ≤ j ≤ d and since we have already argued |Md| = 2d−1 in Section 4.4.2. In fact,
we have

∣∣∣IncSeqj
d

∣∣∣ = Σ0≤j′<j(
d−1

j′ ), since each sequence in IncSeqj
d is isomorphic to a

subset of the odd numbers up to 2d− 3 containing at most j− 1 elements.
We define the initialization function

initj
d(v) = (1, 3, . . . , 2j− 3, 2d− 1, . . . , 2d− 1)

for all vertices v of Gd, since we are only interested in plays starting in vI in the
following. Furthermore, we adapt the update function from Section 4.4.2 such that
it only stores the first j relevant requests, obtaining the update function updj

d, which
concludes the definition ofMj

d.
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Finally, we define the next-move function nxtj
d to be identical to the next-move func-

tion nxtd from Section 4.4.2 and define σ
j
d as the strategy implemented byMj

d and nxtj
d.

It remains to show CostvI(σj) = d2 + 3d− j and that σj is a minimal strategy realizing
that cost. To this end, we fix some j with 1 ≤ j ≤ d for the remainder of this proof.

First, we show that, starting in vI, Player 1 can enforce a cost of d2 + 3d− j if Player 0
plays consistently with σj. Intuitively, Player 1 fills the memory of Player 0 as quickly
as possible, and requests the minimal color that has not yet been requested afterwards.
Thus, he maximizes the gap between the smallest request that Player 0 was not able to
store usingMj

d and the “default” answer of 2d.
More precisely, in each turn Player 1 requests the colors

1, 3, . . . , 2j− 3, 2j− 1, 2j− 1, . . . , 2j− 1 .

Playing consistently with σj, Player 0 then answers these requests with the sequence
of colors

2, 4, . . . , 2j− 2, 2d, 2d, . . . , 2d .

Hence, the cost of the resulting play is that incurred by answering a request for
2j − 1 in the j-th gadget of Player 1 with 2d in the j-th gadget of Player 0. Using
arguments analogous to those from Section 4.4.2, the cost incurred by such a request-
response-pair amounts to

d− 2j− 1 + 1
2

+ 2 + (d− j + j− 1)(d + 2) +
2d
2

=

d− j + 2 + (d− 1)(d + 2) + d = d2 + 3d− j .

Since playing consistently with σ
j
d, Player 0 answers each request in every turn,

the game restarts after the turn of Player 0, and hence Player 1 can enforce this cost
infinitely often. Consequently, we obtain CostvI(σj) ≥ d2 + 3d− j.

Note that the requests posed by Player 1 after visiting his j-th gadget in the above
sequence are irrelevant for the cost of the play. Up to and including the request for
color 2j− 1, however, this sequence of requests is indeed optimal for Player 1, i.e., he
cannot enforce a higher cost, as we show in the following. Assume that Player 1 does
not pose requests as specified above, but instead poses requests for the colors c1, . . . , cj
in his gadgets. Then, either Player 1 reorders the requests for the colors specified
above, or he requests larger colors than specified above. Formally, either

1. there exist some k and k′ with k < k′ ≤ j, such that ck ≥ ck′ , or
2. there exists a k ≤ j with 2j− 1 < ck ≤ 2d− 1.

In the first case, let k be minimal such that such a k′ exists. Player 0 answers the
first k − 1 requests optimally before answering all remaining requests with costs at
most (d− 1)(d + 2), as she “ignores” the request for ck′ . In the second case, Player 0
again answers all requests up to the first request as described above optimally. Af-
terwards, she answers all succeeding requests with cost at most d2 + 2d + (2d − 1−
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Figure 6.4: The structure of the space of strategies for Player 0 in the game Gd from
Theorem 6.2.

ck)/2 ≤ d2 + 3d− j. Hence, there exists no play ρ starting in vI and consistent with σj
that satisfies Cost(ρ) > d2 + 3d− j.

To conclude the proof, we observe that there exists no strategy σ′ with |σ′| <
∣∣σj
∣∣ and

Cost(σ′) ≤ Cost(σj). The argument is nearly identical to the argument of minimality
of the strategy constructed in the proof of :Lemma 4.45 and can in fact be obtained : Sec. 4.4, Page 137
by replacing all occurrences of 2d−1 and d2 + 2d by

∣∣σj
∣∣ and d2 + 3d− j, respectively.

Hence, the strategies σj are minimal for their respective cost.

The above theorem shows that, in general, Player 0 may be able to trade an im-
provement in the realized bound for a larger memory requirement of the witnessing
strategy in finitary parity games. The strategies σj witnessing the increased bounds on
the incurred cost differ from those constructed in :Chapter 4 in that they do not store :Page 83
the costs incurred by the requests, but only the order in which the requests are made.
Due to the structure of the arena, the costs these requests have incurred can then be
reconstructed. We show the structure of the space of strategies for Player 0 in Gd in
Figure 6.4. The black solid line denotes the size of the strategies σj constructed in the
proof of Theorem 6.2.

Thus, this theorem shows that the strategies obtained in Chapter 4 are not minimal
for the bound they realize. For a given finitary parity game G with d odd colors, a given
vertex v∗ of G, and a given bound b ∈ N, a minimal strategy σ with Costv∗(σ) ≤ b
may be found by enumerating all strategies for Player 0 of size at most (b + 2)d and
checking whether they have cost at most b. However, we conjecture that this approach
is far from optimal. While clearly decidable, it remains open to determine an algorithm
with optimal complexity of solving the following problem:

“Given a finitary parity game G, a vertex v of G, and a bound b ∈ N,
compute a minimal strategy σ with Cost(σ) ≤ b.”

We furthermore conjecture that a more efficient algorithm solving the above prob-
lem may be found by using the approach of bounded synthesis [FS13]. Using this
approach, the problem of finding a strategy of size at most s is reduced to solving a
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satisfiability problem, for which there exist efficient solvers. Completeness of this ap-
proach follows from the existence of an upper bound on the size of winning strategies.
Since we have such an upper bound of (b + 2)d, we conjecture that minimal strategies
realizing a given cost can be constructed efficiently using bounded synthesis.

Up to this point, we have only considered the structure of the space of strategies for
Player 0. We now turn our attention to Player 1. Intuitively, the smaller the bound
becomes, the “easier” (with respect to the memory required) it should be for Player 1
to win with respect to that bound. In fact, the following theorem shows that the games
constructed for showing necessity of exponential memory for Player 1 in : Section 4.4.3:Page 138
already witness that this intuition does indeed hold true.

Theorem 6.3. For each d ≥ 1 there exists a finitary parity game Gd with O(d2) vertices that
contains a designated vertex vI, such that for every j with 1 ≤ j ≤ d, there exists a strategy τj
for Player 1 in Gd such that
• 7 = CostvI(τ1) < CostvI(τ2) < · · · < CostvI(τd) = 5(d− 1) + 7, and
• 2 = |τ1| < |τ2| < · · · < |τd| = 2d.

Also, for every strategy τ′ for Player 1 with CostvI(τ
′) ≥ CostvI(τj), we have |τ′| ≥

∣∣τj
∣∣.

Proof. We construct the game Gd out of the games Gd constructed in the proof of ne-
cessity of exponential memory for Player 1 in finitary parity games, i.e., from those
games constructed in Section 4.4.3. For each j with 1 ≤ j ≤ d let G ′j be the game Gd

constructed in Section 4.4.3.
We construct Gd such that it contains a designated initial vertex vI, from which

Player 1 may choose to move to the initial vertex of any of the G ′j . Once the play ρ has
moved into some G ′j , it never leaves that part of the arena, i.e., the suffix starting at the
second position of ρ is a play of G ′j starting in the initial vertex of that game.

For each j, the strategy τj defined in Section 4.4.3, augmented by a single move
from vI to the sub-game G ′j , satisfies the properties above. Moreover, as the sub-
games G ′j are isolated from each other, each strategy τ′ for Player 1 in Gd can be trivially
transformed into a strategy for him in the subgame G ′j that τ′ chooses at the beginning
of Gd. Hence, every strategy τj is of minimal size for the cost that it realizes.

We illustrate the space of strategies for Player 1 in Figure 6.5. Again, the solid black
line indicates the size of the strategies τj for Player 1 as constructed in the proof of
Theorem 6.3, while the shaded area indicates the set of pairs of b and s such that
Player 1 has a strategy of size at most s with cost exceeding b. Since Player 0 can
enforce a cost of the play of at most b0 = 5(d − 1) + 8, Player 1 has no strategy τ
with CostvI(τ) > b0.

We conclude this section by noting that the above results also hold true for parity
games with costs, since they subsume finitary parity games and Player 0 still has po-
sitional winning strategies (cf. :Proposition 2.34.1). Since parity games with weights: Sec. 2.4, Page 26
further generalize parity games with costs, the games constructed in the proofs of
Theorem 6.2 and Theorem 6.3 also witness the existence of gradual tradeoffs in parity
games with weights. Here, however, the dropoff between the size of strategies that
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Cost(τ)

|τ|

n(b + 2)d

b0

Figure 6.5: The structure of the space of strategies for Player 1 in the game Gd from
Theorem 6.3.

are winning with respect to some bound and general winning strategies for Player 0
is not necessarily as steep as in the special cases considered previously, since Player 0
already requires exponential memory to win in such games (cf. :Theorem 3.34). : Sec. 3.4, Page 71

This concludes our discussion of tradeoffs between the quality of strategies and their
memory requirements. In the following section we investigate the tradeoff between
the resilience of a strategy and the cost of consistent plays that it guarantees.

6.2 Trading Resilience for Optimality

We now investigate the relationship between resilience and optimality, i.e., we con-
sider the problem of playing optimally in parity games with weights in arenas with
disturbances as defined in :Chapter 5. For the sake of readability, we assume that :Page 149
all arenas used in this chapter are arenas with disturbances, i.e., all games are games
with disturbances. Otherwise, i.e., if the underlying arenas do not contain disturbance
edges, the problems considered in this section trivially reduce to solving parity games
with weights optimally as discussed in :Chapter 4. :Page 83

Our aim in this section is to answer the following question:

“Given a parity game with weights G, some vertex v∗ of G, some r ∈
ω + 2 and some b ∈ N, does Player 0 have a strategy σ such that for
all plays ρ starting in v∗ and consistent with σ we have that #D(ρ) < r
implies Cost(ρ) ≤ b?”

This question thus combines the quantitative properties investigated in Chapter 4 and
Chapter 5.

Recall that, intuitively, disturbances serve to describe real-world scenarios in which
the action prescribed by a strategy for Player 0 differs from the action that is actually
taken. Formally, an arena with disturbances is equipped with a set of disturbance
edges, each of which is an outgoing edge of a vertex of Player 0. Whenever the token
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(b) The marked positions denote
the pairs (r, b) ∈ TrOffv∗(G),
where G is the game shown
in Figure 6.6a.

Figure 6.6: A parity game with weights and disturbances G and the set TrOffv∗(G).

is at a vertex v of Player 0, it may then occur that instead of moving along her chosen
edge, the token moves along some disturbance edge attached to v.

In order to answer this question, we first introduce some notation. For the remainder
of this section, fix some parity game with weights G = (A, WeightParity(Ω, Weight))
with vertex set V containing n vertices, d odd colors, and largest absolute weight W.
Furthermore, fix some vertex v∗ ∈ V.

Now, let σ be a strategy for Player 0 in G and let v∗ be a vertex of G. We define the
tradeoffs of σ (with respect to v∗) TrOffv∗(σ) as a subset of (ω + 2)×N as follows:Def. TrOffv∗ (σ)

(r, b) ∈ TrOffv∗(σ) if and only if for all plays ρ starting in v∗ and consistent with σ
we have that #D(ρ) < r implies Cost(ρ) ≤ b. It follows directly from the definition
of TrOffv∗(σ) that it is downwards-closed in the first component and upwards-closed
in the second one.

Remark 6.4. Let σ be a strategy for Player 0 in G, let r ∈ ω + 2, and let b ∈ N such that
(r, b) ∈ TrOffv∗(σ). Then, for all r′ ∈ ω + 2 with r′ ≤ r and for all b′ ∈ N with b′ ≥ b we
have (r′, b′) ∈ TrOffv∗(σ).

So far, the notion of tradeoffs only considers the tradeoffs of a single strategy. We
lift this notion to games by defining TrOffv∗(G) = ∪σTrOffv∗(σ), where σ ranges overDef. TrOffv∗ (G)
all strategies for Player 0.

Example 6.5. Let G be the parity game with weights and disturbances shown in Fig-
ure 6.6a. In G, there exists only a single strategy for Player 0.

182



6.2. TRADING RESILIENCE FOR OPTIMALITY

Each disturbance-free play starting in v∗ has cost one, while each play with one
disturbance has cost three. Moreover, each play with two disturbances has cost five.
Furthermore, each play with three disturbances is losing for Player 0. We illustrate the
set TrOffv∗(G) in Figure 6.6b. 4

We now answer the above question by computing the set TrOffv∗(G). Even though
this set is, in general, infinite, we show that it can be finitely represented. For the
remainder of this section, we use the notion of computing TrOffv∗(G) interchangeably
with computing its finite representation.

Towards computing TrOffv∗(G), we first remark that due to monotonicity, for each
bound b ∈ N there exists a maximal number of disturbances rb ∈ ω + 2 such that Def. rb

Player 0 can enforce cost b from v∗ if and only if less than rb disturbances occur. This
follows directly from downwards-closure of TrOffv∗(G) in the first component, i.e.,
from Remark 6.4.

Remark 6.6. For each b ∈N there exists a rb ∈ ω + 2 such that
1. for all r ∈ ω + 2 with r ≤ rb we have (r, b) ∈ TrOffv∗(G), and such that
2. for all r ∈ ω + 2 with r > rb we have (r, b) /∈ TrOffv∗(G).

Furthermore, again due to Remark 6.4, it suffices to compute rb for all b ∈ N to
determine TrOffv∗(G). It is, however, not clear a priori that this sequence eventually
converges. Hence, at this point we have to show not only that each rb is effectively
computable, but also that we only need to compute a finite number of the rb in order
to determine TrOffv∗(G).

We first show that each rb is effectively computable. To this end, we define the
parity condition with weights with respect to the bound b as Def. parity condition

with weights with
respect to the bound bWeightParityb(Ω, Weight) = {ρ ∈ Vω | Cost(ρ) ≤ b} .

Recall that we fixed the game G = (A, WeightParity(Ω, Weight)). For each b ∈ N

we then define the game Def. Gb

Gb = (A, WeightParityb(Ω, Weight)) .

Via unraveling the definitions of rb and TrOffv∗(G), we obtain a strong connection
between the elements of TrOffv∗(G) and the resilience of v∗ in the Gb.

Remark 6.7. Let r ∈ ω + 2, and let b ∈ N. We have (r, b) ∈ TrOffv∗(G) if and only
if rGb(v

∗) ≥ r.

This observation allows us to compute rb via computing the resilience of v∗ in Gb.

Corollary 6.8. We have rb = rGb(v
∗).

It remains to argue that we can effectively compute rGb(v
∗). This follows from our

results of Chapter 5 together with the following simple properties of the winning
conditions of the Gb.
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Remark 6.9. For each b ∈N we have that
1. WeightParityb(Ω, Weight) is prefix-independent, and that
2. WeightParityb(Ω, Weight) ∩ Safety(V ′) is determined for all V ′ ⊆ V.

Due to these properties, each game Gb satisfies the preconditions leveraged in the
proofs from Chapter 5, which yields the following result.

Lemma 6.10. For each b ∈N the value rb can be computed in exponential time.

Proof. Recall that we defined V as the vertex set of G with cardinality n. Due to Re-
mark 6.9 and the arguments from : Section 5.2 we can compute rGb(v

∗) by solving at:Page 155
most n games of the form (A, WeightParityb(Ω, Weight) ∩ Safety(V ′)), where V ′ ⊆
V, and by solving the rigged game of Gb. Since solving each of these games can eas-
ily be reduced to solving a parity game with weights with respect to some b, and as
such games can be solved in exponential time due to :Theorem 4.12, we can com-: Sec. 4.1, Page 96
pute rGb(v

∗) in exponential time. This suffices to compute rb due to Corollary 6.8.

As usual throughout this work exponential time in the statement of Lemma 6.10
refers to the description length of the input: Since the input here only consists of a
single number, which we assume to be given in binary encoding, the value rb can even
be computed in polynomial time when measured in the value of b instead of the size
of its encoding.

Thus, we have shown that the values rb are effectively computable. It remains to
argue that we only need to compute a finite number of these values in order to ob-
tain TrOffv∗(G). To this end, we show that the sequence r0, r1, r2,. . . stabilizes after a
bounded number of steps.

Lemma 6.11. Let b0 = d(6n2)(d + 1)W(W + 1). For all b ≥ b0 we have rb = rb0 .

Proof. We show that for all b ≥ b0 we have (r, b) ∈ TrOffv∗(G) if and only if (r, b0) ∈
TrOffv∗(G). This directly yields the desired result. The direction from right to left
follows directly due to Remark 6.4. Hence, it remains to show the implication from
left to right.

To this end, let b ≥ b0 and assume (r, b) ∈ TrOffv∗(G). We show (r, b0) ∈ TrOffv∗(G).
Let σ be a strategy for Player 0 such that (r, b) ∈ TrOffv∗(σ). Such a strategy exists due
to definition of TrOffv∗(G).

Since every play ρ starting in v∗ that is consistent with σ and that satisfies #D(ρ) < r
furthermore satisfies Cost(ρ) ≤ b0, the strategy σ is winning from v∗ for Player 0 even
if less than r disturbances occur. Thus, we have rG(v∗) ≥ r.

Since G clearly satisfies the preconditions of :Theorem 5.23, we can effectively com-: Sec. 5.2, Page 168
pute an optimally resilient strategy σ′ for Player 0 in G. Recall that optimally resilient
strategies are not larger than winning strategies for Player 0 in the underlying game
due to :Corollary 5.24. Hence, we can assume that σ′ is a finite-state strategy of size: Sec. 5.2, Page 170
at most d(6n)(d + 1)(W + 1) = s due to :Lemma 3.36.: Sec. 3.4, Page 72
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Now, let ρ be a play starting in v∗ that is consistent with σ′ with #D(ρ) < r.
Since σ′ is optimally resilient and since we have rG(v∗) ≥ r, we obtain that ρ is win-
ning for Player 0. Furthermore, due to the same arguments underlying the proof of
:Lemma 3.39, we obtain Cost(ρ) ≤ nWs = b0. : Sec. 3.5, Page 75

A lower bound for the stabilization of the sequence r0, r1, r2, . . . follows directly from
the lower bound on the cost that Player 0 can ensure given in :Lemma 3.40. : Sec. 3.5, Page 77

Corollary 6.12. For each n > 0 and each W ≥ 0 there exists a parity game with weights Gn,W
with |Gn,W | ∈ O(n log W) containing a vertex v such that for each b ∈N and each r ∈ ω we
have (b, r) ∈ TrOffv∗(G) if and only if either r = 0 or if b ≥ (n− 1)W.

Due to the Lemma 6.11 and as argued above, it suffices to compute rb for exponen-
tially many values b in order to determine TrOffv∗(G). Each of these computations
requires exponential time due to Lemma 6.10, which yields the following result.

Theorem 6.13. The following problem can be solved in exponential time:

“Given a parity game with weights G and a vertex v∗ of G, compute TrOffv∗(G).”

Proof. We have argued above that, in order to obtain TrOffv∗(G), it suffices to compute
the values rb for b ∈

{
0, . . . , d(6n2)(d + 1)W(W + 1)

}
. Each such rb can be computed

in exponential time due to Lemma 6.10. Thus, we compute TrOffv∗(G) by computing
exponentially many rb, each of which can be computed in exponential time.

We now show that in the special case of parity games with costs, we are even able
to compute the set TrOffv∗(G) in polynomial space. Hence, for the remainder of this
section, assume that G is a parity game with costs.

To compute TrOffv∗(G) in polynomial space, we first observe that the exponential
runtime of computing rb stated in Lemma 6.10 results from the ExpTime-membership
of the threshold problem for parity games with weights due to Theorem 4.12. As we
are, however, able to solve the threshold problem for parity games with costs in poly-
nomial space due to :Theorem 4.26, we obtain the following corollary of Lemma 6.10. : Sec. 4.2, Page 115

Corollary 6.14. If G is a parity game with costs, then for each b ∈ N the value rb can be
computed in polynomial space.

Secondly, we note that we can decrease the number of values rb computed in the
proof of Theorem 6.13. To this end, we observe that in that proof we compute rb for
each b ∈

{
0, . . . , d(6n2)(d + 1)W(W + 1)

}
, which suffices to compute TrOffv∗(G) due

to Lemma 6.11. In the proof of that lemma, however, we only leverage an upper bound
of s = d(6n)(d + 1)(W + 1) on the size of winning strategies for Player 0 in parity
games with weights due to Lemma 3.36. In the special case of parity games with costs,
in contrast, positional strategies suffice for Player 0 to win due to :Proposition 2.34.1. : Sec. 2.4, Page 26
Hence, analogous reasoning to the proof of Lemma 6.11 yields the following result.

Corollary 6.15. Let b0 = nW. If G is a parity game with costs, then for all b ≥ b0 we
have rb = rb0 .
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Recall that we directly obtain a lower bound matching the upper bound given in
Corollary 6.15 from Corollary 6.12

Plugging Corollary 6.14 and Corollary 6.15 into the proof of Theorem 6.13, however,
does not yield the desired algorithm computing TrOffv∗(G) in polynomial space: We
still compute the value rb for each b ∈ {0, . . . , nW}, i.e., we compute an exponential
number of such rb.

We now show that it indeed suffices to compute polynomially many such values in
order to obtain TrOffv∗(G). To this end, we first remark that the domain of the rb is
bounded due to the boundedness of the resilience as shown in :Corollary 5.19, and: Sec. 5.2, Page 164
due to Corollary 6.8.

Remark 6.16. For each b ∈N we have rb ∈ {0, . . . , n− 1, ω, ω + 1}.

Moreover, for each r ∈ {0, . . . , n− 1, ω, ω + 1}, we can determine the minimal b such
that rb = r via a binary search over the range b ∈ {0, . . . , nW} due to monotonicity
of TrOffv∗(G) in the second component as stated in Remark 6.4. This binary search
determines the minimal such b via computing at most log(nW) many values rb, each
of which can be computed in polynomial time due to Corollary 6.14.

Furthermore, again due to Remark 6.4, computing the minimal b for each r ∈
{0, . . . , n− 1, ω, ω + 1} suffices to obtain TrOffv∗(G) due to similar reasoning as for
the proof of Theorem 6.13. Hence, we obtain TrOffv∗(G) by performing polynomi-
ally many binary searches, each of which requires polynomial space. This yields the
following result.

Theorem 6.17. The following problem can be solved in polynomial space:

“Given a parity game with costs G and a vertex v∗ of G, compute TrOffv∗(G).”

The problem of computing TrOffv∗(G) subsumes solving the threshold game for any
given bound b for G. As we have already shown the threshold game for parity games
with costs to be PSpace-hard in :Theorem 4.31, Theorem 6.17 settles the complexity of: Sec. 4.3, Page 123
computing TrOffv∗(G): The decision problem associated with computing that optimal
bound is ExpTime-hard for parity games with weights due to :Theorem 4.38, while it: Sec. 4.3, Page 130
is PSpace-hard for the special case of parity games with costs due to :Theorem 4.31.: Sec. 4.3, Page 123

To conclude this section, we turn our attention to computing strategies witnessing
membership of a given (b, r) ∈ TrOffv∗(G) in that set of tradeoffs. To this end, recall
that, for each b ∈ N, we defined Gb = (A, WeightParityb(Ω, Weight)). Furthermore,
due to Corollary 6.8 we obtain that for an optimally resilient strategy σ for Player 0
in Gb we have

TrOffv∗(σ) ∩ ((ω + 2)× {b}) = TrOffv∗(G) ∩ ((ω + 2)× {b}) ,

i.e., the strategy σb witnesses (r, b) ∈ TrOffv∗(G). Since each Gb satisfies the precondi-
tions required for effectively computing optimally resilient strategies in : Section 5.2.3,:Page 168
we are thus able to effectively compute a strategy witnessing (r, b) ∈ TrOffv∗(G).
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Remark 6.18. Let (r, b) ∈ TrOffv∗(G). A strategy σ for Player 0 such that (r, b) ∈ TrOffv∗(σ)
is effectively computable

1. in polynomial space, if G is a parity game with costs, and
2. in exponential time, otherwise.

Furthermore, the strategy σ is at most of exponential size in |G|.

This concludes our investigation of the tradeoff between optimality and resilience
in parity games with weights and their special cases. We have defined the notion of
a tradeoff between optimality and resilience in a parity game with weights and we
have shown how to determine the tradeoffs of such a given game. Moreover, we have
shown how to construct strategies witnessing the existence of a given tradeoff. In the
following section, we summarize the results obtained in this chapter.

6.3 Summary of Results

In this section we have investigated tradeoffs between the quantitative metrics of
strategies for Player 0 in parity games with weights, namely the size of the strategy,
the cost it guarantees as discussed in Chapter 4, and its resilience against unmodeled
intermittent disturbances as discussed in Chapter 5. To this end, we have investigated
the tradeoff between the memory required to implement a strategy and the bound on
the cost that strategy guarantees in a parity game with weights in Section 6.1 as well as
the tradeoff between that bound on the cost and the resilience of a strategy against dis-
turbances in Section 6.2. We have not investigated the tradeoff between the the amount
of memory required in order to implement a strategy and the resilience of that strat-
egy against intermittent disturbances, since we have already shown in :Corollary 5.24 : Sec. 5.2, Page 170
that constructing optimally resilient strategies comes “for free” in terms of memory
requirements.

First, we have shown in :Theorem 6.2 that Player 0 may, in general, relax the bound : Sec. 6.1, Page 176
she guarantees on the cost of the play in exchange for smaller strategies realizing this
increased bound on the cost. Dually, we have shown in :Theorem 6.3 that Player 1 : Sec. 6.1, Page 180
has, in general, a similar choice: By gradually decreasing the bound on the cost that
he has to violate, the memory required to implement such strategies decreases as well.
We have, however, only shown that such tradeoffs are possible in general by providing
and analyzing a sequence of parity games with weights exhibiting such tradeoffs. It
remains open for future work how to determine the existence of such tradeoffs for a
given parity game with weights.

Second, we have shown in Section 6.2 how to determine the possible tradeoffs be-
tween the cost of a play and the resilience of the strategy guaranteeing that cost in a
parity game with weights. We have shown that computing these possible tradeoffs is
as hard as solving the underlying game optimally, i.e., it is possible in exponential time
for parity games with weights due to :Theorem 6.13, and it is possible in polynomial : Sec. 6.2, Page 185
space for the special case of parity games with costs due to :Theorem 6.17. Further- : Sec. 6.2, Page 186
more, we have argued that strategies witnessing the above tradeoffs can be effectively
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computed in exponential time for parity games with weights and in polynomial space
for parity games with costs in :Remark 6.18.: Sec. 6.2, Page 187

In the following chapter, we summarize the results obtained in this thesis and dis-
cuss the problems left open for future work as well as possible extensions of this
work.
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CHAPTER 7

Conclusion and Outlook

In this chapter, we summarize the results obtained in this thesis, discuss their contri-
bution, and give an overview over open problems and possible future work.

We have begun this work in :Chapter 3 by generalizing the model of parity games :Page 29
with costs to parity games with weights in : Section 3.1. While the existing model :Page 31
was quite restrictive with respect to its cost model, in that it only allowed nonnegative
weights, parity games with weights allow arbitrary integer weights. Thus, they allow
to model, e.g., charging and draining some resource attached to the modeled system.
Hence, this novel model allows for modeling more complex systems than previous
ones: The model of parity games with weights features greatly increased expressive-
ness when compared with the previously existing model of parity games with costs.

Following these basic definitions we have shown that the problem of solving parity
games with weights is in NP∩ coNP in :Theorem 3.18 and that it is polynomial-time : Sec. 3.2, Page 52
equivalent to the problem of solving energy parity games in :Theorem 3.31. We have : Sec. 3.3, Page 69
moreover shown that exponential memory suffices for Player 0 to implement a win-
ning strategy in parity games with weights in :Theorem 3.34.1, but also that exponen- : Sec. 3.4, Page 71
tial memory is, in general, necessary for her to do so. For Player 1, the requirement
of infinite memory for winning strategies for him follows from parity games with
weights generalizing finitary parity games. Finally, we proved that if Player 0 wins a
parity game with weights from some vertex v, then she has a strategy with at most
exponential cost from v in :Theorem 3.38. That theorem moreover shows that there : Sec. 3.5, Page 75
exists an asymptotically matching lower bound on the cost that Player 0 can ensure.
We have summarized the results on parity games with weights and compare them
with the special cases of parity games, finitary parity games, and parity games with
costs in :Table 3.17 which we partially reprint as Table 7.1 for the sake of complete- : Sec. 3.6, Page 79
ness.

In addition to greatly increasing the expressiveness of parity games and their vari-
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Complexity Mem. Pl. 0/Pl. 1 Bounds

Parity Games
UP∩ coUP

pos./pos. –
quasi-poly.

Finitary Parity Games PTime pos./inf. O(nW)

Parity Games UP∩ coUP
pos./inf. O(nW)

with Costs quasi-poly.

Parity Games NP∩ coNP O(nd2W)/inf. O((ndW)2)
with Weights pseudo-quasi-poly.

Table 7.1: Properties of the boundedness problem for variants of parity games.

ants, the parity condition with weights also allows ordering plays by the cost that they
incur. So far, we have only considered the boundedness problem, i.e., the question
whether, given some parity game with weights G and a vertex v of G whether there
exists a strategy with finite cost from v. Such a strategy, however, does not necessarily
suffice if one wants to determine, say, the minimal amount of some costly resource
required to satisfy a specification. Thus, we have investigated the threshold problem
for parity games with weights, i.e., the problem whether, given some parity game with
weights G, a vertex v of G, and a bound b ∈N, Player 0 has a strategy of cost at most b
from v.

In :Chapter 4 we have shown the threshold problem to be ExpTime-complete for:Page 83
parity games with weights in :Theorem 4.12 and :Theorem 4.38, and we have shown: Sec. 4.1, Page 96

: Sec. 4.3, Page 130 the problem to be PSpace-complete for the special cases of parity games with costs
and finitary parity games in :Theorem 4.26 and :Theorem 4.31. From the proof of: Sec. 4.2, Page 115

: Sec. 4.3, Page 123
ExpTime-membership, it moreover follows that Player 0, if she has a strategy of cost
at most b from some vertex in a parity game with weights G with n vertices and
with d odd colors, then she also has one of size in O((b2 + b)d) (see :Lemma 4.39).: Sec. 4.4, Page 131
Dually, if Player 1 has a strategy of cost greater than b in G, then he has a strategy of
size in O(n(b2 + b)d) (see :Corollary 4.40). We have summarized our results on the: Sec. 4.4, Page 132
threshold problem for parity games with weights and its special cases in :Table 4.24: Sec. 4.6, Page 148
which we reprint as Table 7.2 for the sake of completeness.

Thus, our results show that solving the threshold problem is harder than solving
the boundedness problem. Moreover, for parity games with costs and finitary par-
ity games, Player 0 requires exponential memory in order to play optimally, while
positional strategies suffice for her to win. Thus, playing optimally comes at a price
even in finitary parity games. As a consequence, when modeling a system as a parity
game with weights, one should consider the implications of asking for optimal strate-
gies: Depending on the scenario at hand, the benefits of a smaller strategy that can
be computed faster may outweigh the benefits of a strategy that minimizes the cost of
consistent plays.

After having thus enabled modeling of resources in the model of parity games, we
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Complexity Mem. Pl. 0/Pl. 1

Finitary Parity Games PSpace-c. exp./exp.

Parity Games with Costs PSpace-c. exp./exp.

Parity Games with Weights ExpTime-c. exp./exp.

Table 7.2: Properties of the threshold problem for variants of parity games.

subsequently turned our attention to modeling disturbances that may occur when the
modeled system is deployed in the real world in :Chapter 5. Here, we follow the ap- :Page 149
proach of Dallal, Neider, and Tabuada [DNT16], and model disturbances as additional
edges in infinite games, obtaining infinite games with disturbances. These disturbance
edges are controlled by neither player, but are instead assumed to be rare events that
occur nondeterministically. Their inclusion in the model of infinite games alleviates
the burden on the designer of a game in that they allow modeling uncertainty about
the result of actions, e.g., due to malfunctioning actuators, as discussed in Chapter 5.

In games with disturbances, the question of solving a game is generalized: Instead
of determining whether Player 0 has a winning strategy from some vertex, one instead
asks for the maximal number of disturbances r that may occur while still allowing
Player 0 to win the resulting play. We have shown that computing r is as hard as solv-
ing the underlying game without disturbances in :Theorem 5.23. Moreover, we have : Sec. 5.2, Page 168
argued in the proof of that theorem that an optimally resilient strategy witnessing that
Player 0 can win even under r disturbances can be computed effectively together with
the computation of r and that such a strategy is not larger than a winning strategy
in the underlying game without disturbances. Thus, resilience against intermittent
disturbances can be obtained for free. Hence, if there exists a reasonable model of
disturbances that may occur during the deployment of the system, there is no down-
side to computing strategies that are aware of such disturbances and that are resilient
against the maximal number of them.

The models introduced in this work induce different metrics of quality for strategies,
namely, its size, the cost of consistent plays that it guarantees, and its resilience. In
:Chapter 6 we have considered the tradeoffs between these different measures of :Page 173
quality. We have shown that, in general, Player 0 can trade memory for optimality
in :Theorem 6.2. That theorem shows that there exists a gradual tradeoff for her : Sec. 6.1, Page 176
between the achieved upper bound b on the cost of a play and the amount of memory
required to implement a strategy witnessing b. Moreover, we have shown that Player 0
can trade resilience for optimality and that computing the possible tradeoffs for her is
as hard as solving the threshold problem for the underlying game in :Theorem 6.17. : Sec. 6.2, Page 186

Open Problems and Future Work

In this work, we have extended the standard model of parity games with quantita-
tive features that allow, e.g., to model charging and draining some resource, and with
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capabilities for dealing with malfunctioning actuators and other disturbances during
deployment. While we have studied the decision and optimization problems associ-
ated with these models exhaustively, there remain some technical open problems. We
detail and discuss these problems in the following.

Definition of Cost in Parity Games with Weights After extending the model of par-
ity games with costs to parity games with weights by allowing negative weights,
we lifted the definition of the cost-of-response of a request for some color to the
extended setting in : Section 3.1. To this end, we defined the cost-of-response:Page 31
as the amplitude of the shortest infix of the play starting at the given request
and ending at an answer to that request. While, in our opinion, this definition
naturally extends the cost-of-response to the setting of integer weights, other
definitions of this notion are feasible. Such variations include, e.g., only consid-
ering the accumulated cost at the end of the shortest infix ending at an answer
to the request, or by disallowing Player 0 to accumulate negative weight. We
have detailed these alternatives in : Section 3.6. It remains open how to solve:Page 78
the associated decision problems for these alternative definitions.

Lower Bound on Solving Parity Games with Weights We have shown the bounded-
ness problem for parity games with weights to be a member of NP ∩ coNP in
:Theorem 3.18 and we have shown that it is as hard as the problem of solving: Sec. 3.2, Page 52
energy parity games in :Theorem 3.31. There have been a number of decision: Sec. 3.3, Page 69
problems that were only known to be in NP∩ coNP for a long time, before being
shown to in fact be in PTime. Thus, we conjecture the boundedness problem for
parity games with weights to be in PTime as well.

Multidimensional Parity Games with Weights In this work we have only considered
games with a single coloring and a single weight function. In contrast, Bruyère,
Hautem, and Randour [BHR16] have shown the boundedness problem for fini-
tary parity games with multiple colorings to be ExpTime-complete. It remains
for future work to extend our results on the boundedness problem and for the
threshold problem for parity games with costs to the extended setting with mul-
tiple coloring and multiple weight functions.

Threshold Problem for Parity Games with Weights with Unary Encoding Unless in-
dicated otherwise, we have assumed the weight functions to be given in binary
encoding in this work. Describing these functions in unary encoding induces
an exponential blowup in the size of the game and could thus potentially de-
crease the complexity of the associated decision problems. We have argued in
: Section 3.6 that unary encoding does not change our results on the complexity:Page 78
of the boundedness problem. Furthermore, we have shown in : Section 4.5 that:Page 143
the complexity of the threshold problem remains unchanged for parity games
with costs whether the games are given in unary or binary encoding. For par-
ity games with weights, however, there exists a gap: If the weights are given
in unary encoding, :Theorem 4.12 yields ExpTime-membership of the threshold: Sec. 4.1, Page 96
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problem, while our strongest lower bound is PSpace-hardness of the problem
due to :Theorem 4.31. It remains open whether this problem is ExpTime-hard : Sec. 4.3, Page 123
or in PSpace.

Minimal Strategies for Threshold Problem We have shown in :Theorem 6.2 that, in : Sec. 6.1, Page 176
general, there exists a gradual tradeoff between cost and memory for Player 0
even in finitary parity games, i.e., Player 0 may decrease the amount of memory
required for her to implement a strategy by allowing for costlier plays consistent
with that strategy. Thus far, however, the only approach to finding a minimal
strategy with a given cost from a given vertex consists of brute force, which has
a prohibitive complexity that we conjecture to be far from optimal. It remains
open to find an optimal approach to the problem of computing such a strategy. A
starting point may be the approach of bounded synthesis [FS13], which reduces
the problem to that of satisfiability for some underlying logic, and has shown to
be applicable and feasible in practice for a wide range of benchmarks.

Infinite Arenas We have exclusively discussed the setting of finite arenas in this work.
There does, however, also exist work of games of infinite duration played on
infinite arenas [CF13], e.g., on arenas that are induced by a pushdown sys-
tem [Wal01, LMS04, FZ12, Fri13, CH18]. It remains a problem for future work
to investigate the problems of solving parity games with weights or games with
disturbances on infinite arenas.

In this work we have exhaustively studied quantitative extensions of parity games.
These extensions allow modeling resources that may be charged and drained and
they allow taking disturbances, such as malfunctions of actuators, into account when
modeling reactive systems. We have moreover investigated and discussed the tradeoffs
occurring between the different metrics of quality of strategies in such games.

Classical qualitative parity games form the technical core for a multitude of tech-
niques that have been successfully applied in the fields of program analysis and pro-
gram synthesis. Thus, we hope that our work paves the way for practically applicable
methods in those fields that allow not only to express functional requirements, but that
also support modeling resources and other quantitative aspects of a system, and that
are aware of malfunctions and other disturbances that may occur during deployment
of the system.
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polynomial algorithm for mean-payoff parity games. In Anuj Dawar and
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