60 research outputs found

    Fast simulation of crowd collision avoidance

    Get PDF
    Real-time large-scale crowd simulations with realistic behavior, are important for many application areas. On CPUs, the ORCA pedestrian steering model is often used for agent-based pedestrian simulations. This paper introduces a technique for running the ORCA pedestrian steering model on the GPU. Performance improvements of up to 30 times greater than a multi-core CPU model are demonstrated. This improvement is achieved through a specialized linear program solver on the GPU and spatial partitioning of information sharing. This allows over 100,000 people to be simulated in real time (60 frames per second)

    Rapid Parallelization by Collaboration

    Get PDF
    The widespread adoption of Chip Multiprocessors has renewed the emphasis on the use of parallelism to improve performance. The present and growing diversity in hardware architectures and software environments, however, continues to pose difficulties in the effective use of parallelism thus delaying a quick and smooth transition to the concurrency era. In this document, we describe the research being conducted at the Computer Science Department at Columbia University on a system called COMPASS that aims to simplify this transition by providing advice to programmers considering parallelizing their code. The advice proffered to the programmer is based on the wisdom collected from programmers who have already parallelized some code. The utility of COMPASS rests, not only on its ability to collect the wisdom unintrusively but also on its ability to automatically seek, find and synthesize this wisdom into advice that is tailored to the code the user is considering parallelizing and to the environment in which the optimized program will execute in. COMPASS provides a platform and an extensible framework for sharing human expertise about code parallelization -- widely and on diverse hardware and software. By leveraging the "Wisdom of Crowds" model which has been conjunctured to scale exponentially and which has successfully worked for Wikis, COMPASS aims to enable rapid parallelization of code and thus continue to extend the benefits for Moore's law scaling to science and society

    Parallelized Egocentric Fields for Autonomous Navigation

    Get PDF
    In this paper, we propose a general framework for local path-planning and steering that can be easily extended to perform high-level behaviors. Our framework is based on the concept of affordances: the possible ways an agent can interact with its environment. Each agent perceives the environment through a set of vector and scalar fields that are represented in the agent’s local space. This egocentric property allows us to efficiently compute a local space-time plan and has better parallel scalability than a global fields approach. We then use these perception fields to compute a fitness measure for every possible action, defined as an affordance field. The action that has the optimal value in the affordance field is the agent’s steering decision. We propose an extension to a linear space-time prediction model for dynamic collision avoidance and present our parallelization results on multicore systems. We analyze and evaluate our framework using a comprehensive suite of test cases provided in SteerBench and demonstrate autonomous virtual pedestrians that perform steering and path planning in unknown environments along with the emergence of high-level responses to never seen before situations

    Motion planning for geometric models in data visualization

    Get PDF
    Interaktivní geometrické modely pro simulaci přírodních jevů (LH11006)Pokročilé grafické a počítačové systémy (SGS-2016-013)A finding of path is an important task in many research areas and it is a common problem solved in a wide range of applications. New problems of finding path appear and complex problems persist, such as a real-time plan- ning of paths for huge crowds in dynamic environments, where the properties according to which the cost of a path is evaluated as well as the topology of paths may change. The task of finding a path can be divided into path planning and motion planning, which implicitly respects the collision with surroundings in the environment. Within the first group this thesis focuses on path planning on graphs for crowds. The main idea is to group members of the crowd by their common initial and target positions and then plan the path for one representative member of each group. These representative members can be navigated by classic approaches and the rest of the group will follow them. If the crowd can be divided into a few groups this way, the proposed approach will save a huge amount of computational and memory demands in dynamic environments. In the second area, motion planning, we are dealing with another problem. The task is to navigate the ligand through the protein or into the protein, which turns out to be a challenging problem because it needs to be solved in 3D with the collision detection

    Real-time crowd simulation in virtual urban environments using adaptive grids

    Get PDF
    Ankara : The Department of Computer Engineering and the Institute of Engineering and Science of Bilkent University, 2010.Thesis (Master's) -- Bilkent University, 2010.Includes bibliographical references leaves 90-101.Crowd simulation is a relatively new research area, attracting increasing attention from both academia and industry. This thesis proposes Adaptive Grids, a novel hybrid approach for controlling the behavior of agents in a virtual crowd. In this approach, the motion of each agent within the crowd is planned considering both global and local path planning strategies. For global path planning, a cellular adaptive grid is constructed from a regular navigation map that represents the 2-D topology of the simulation terrain. A navigation graph with efficient size is then pre-computed from the adaptive grid for each possible agent goal. Finally, the navigation graph is used to generate a potential field on the adaptive grid by using the connectivity information of the irregular cells. Global path planning per agent has constant time complexity. For local path planning, Helbing Traffic-Flow model is used to avoid obstacles and agents. Potential forces are then applied on each agent considering the local and global decisions of the agent, while providing each agent the freedom to act independently.Akaydın, AteşM.S

    A GPU-accelerated immersive audio-visual framework for interaction with molecular dynamics using consumer depth sensors

    Get PDF
    © the Partner Organisations 2014. With advances in computational power, the rapidly growing role of computational/simulation methodologies in the physical sciences, and the development of new human-computer interaction technologies, the field of interactive molecular dynamics seems destined to expand. In this paper, we describe and benchmark the software algorithms and hardware setup for carrying out interactive molecular dynamics utilizing an array of consumer depth sensors. The system works by interpreting the human form as an energy landscape, and superimposing this landscape on a molecular dynamics simulation to chaperone the motion of the simulated atoms, affecting both graphics and sonified simulation data. GPU acceleration has been key to achieving our target of 60 frames per second (FPS), giving an extremely fluid interactive experience. GPU acceleration has also allowed us to scale the system for use in immersive 360° spaces with an array of up to ten depth sensors, allowing several users to simultaneously chaperone the dynamics. The flexibility of our platform for carrying out molecular dynamics simulations has been considerably enhanced by wrappers that facilitate fast communication with a portable selection of GPU-accelerated molecular force evaluation routines. In this paper, we describe a 360°atmospheric molecular dynamics simulation we have run in a chemistry/physics education context. We also describe initial tests in which users have been able to chaperone the dynamics of 10-alanine peptide embedded in an explicit water solvent. Using this system, both expert and novice users have been able to accelerate peptide rare event dynamics by 3-4 orders of magnitude. This journal i

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte

    Analyzing the Wikisphere: Tools and Methods for Wiki Research

    Get PDF
    We present tools and techniques that facilitate wiki research and an analysis of wikis found on the internet. We developed WikiCrawler, a tool that downloads and analyzes wikis. With this tool, we built a corpus of 151 Mediawiki wikis. We also developed a wiki analysis toolkit in R, which, among other tasks, fits probability distributions to discrete data, and uses a Monte Carlo method to test the fit. From the corpus we determined that, like Wikipedia, most wikis were authored collaboratively, but users contributed at unequal rates. We proposed a distribution-based method for measuring wiki inequality and compared it to the Gini coefficient. We also analyzed distributions of edits across pages and users, producing data which can motivate or verify future mathematical models of behavior on wikis. Future research could also analyze user behavior and establish measurement baselines, facilitating evaluation, or generalize Wikipedia research by testing hypotheses across many wikis
    corecore