677 research outputs found

    Image Restoration Based on Hybrid Ant Colony Algorithm

    Get PDF
    Image restoration is the process to eliminate or reduce the image quality degradation in the digital image formation, transmission and recording and its purpose is to process the observed degraded image to make the restored result approximate the un-degraded original image. This paper, based on the basic ant colony algorithm and integrating with the genetic algorithm, proposes an image restoration processing method based on hybrid ant colony algorithm. This method transforms the optimal population information of genetic algorithm into the original pheromone concentration matrix of ant colony algorithm and uses it to compute the parameters of degradation function so as to get a precise estimate of the original image. By analyzing and comparing the restoration results, the method of this paper can not only overcome the influence of noises, but it can also make the image smoother with no fringe effects in the edges and excellent visual effects, verifying its practicability

    Efficient parallelization on GPU of an image smoothing method based on a variational model

    Get PDF
    Medical imaging is fundamental for improvements in diagnostic accuracy. However, noise frequently corrupts the images acquired, and this can lead to erroneous diagnoses. Fortunately, image preprocessing algorithms can enhance corrupted images, particularly in noise smoothing and removal. In the medical field, time is always a very critical factor, and so there is a need for implementations which are fast and, if possible, in real time. This study presents and discusses an implementation of a highly efficient algorithm for image noise smoothing based on general purpose computing on graphics processing units techniques. The use of these techniques facilitates the quick and efficient smoothing of images corrupted by noise, even when performed on large-dimensional data sets. This is particularly relevant since GPU cards are becoming more affordable, powerful and common in medical environments

    Fast fluorescence microscopy for imaging the dynamics of embryonic development

    Get PDF
    Live imaging has gained a pivotal role in developmental biology since it increasingly allows real-time observation of cell behavior in intact organisms. Microscopes that can capture the dynamics of ever-faster biological events, fluorescent markers optimal for in vivo imaging, and, finally, adapted reconstruction and analysis programs to complete data flow all contribute to this success. Focusing on temporal resolution, we discuss how fast imaging can be achieved with minimal prejudice to spatial resolution, photon count, or to reliably and automatically analyze images. In particular, we show how integrated approaches to imaging that combine bright fluorescent probes, fast microscopes, and custom post-processing techniques can address the kinetics of biological systems at multiple scales. Finally, we discuss remaining challenges and opportunities for further advances in this field

    A multi-view approach to cDNA micro-array analysis

    Get PDF
    The official published version can be obtained from the link below.Microarray has emerged as a powerful technology that enables biologists to study thousands of genes simultaneously, therefore, to obtain a better understanding of the gene interaction and regulation mechanisms. This paper is concerned with improving the processes involved in the analysis of microarray image data. The main focus is to clarify an image's feature space in an unsupervised manner. In this paper, the Image Transformation Engine (ITE), combined with different filters, is investigated. The proposed methods are applied to a set of real-world cDNA images. The MatCNN toolbox is used during the segmentation process. Quantitative comparisons between different filters are carried out. It is shown that the CLD filter is the best one to be applied with the ITE.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the National Science Foundation of China under Innovative Grant 70621001, Chinese Academy of Sciences under Innovative Group Overseas Partnership Grant, the BHP Billiton Cooperation of Australia Grant, the International Science and Technology Cooperation Project of China under Grant 2009DFA32050 and the Alexander von Humboldt Foundation of Germany

    CUDA-JMI: Acceleration of feature selection on heterogeneous systems

    Get PDF
    ©2019 Elsevier B.V. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/bync-nd/4.0/. This version of the article has been accepted for publication in Future Generation Computer Systems. The Version of Record is available online at https://doi.org/10.1016/j.future.2019.08.031Versión final aceptada de: J. Gonzålez-Domínguez, R. R. Expósito, and V. Bolón-Canedo, "CUDA-JMI: Acceleration of feature selection on heterogeneous systemss", Future Generation Computer Systems, Vol. 102, pp. 426-436, Jan. 2020, https://doi.org/10.1016/j.future.2019.08.031[Abstract]: Feature selection is a crucial step nowadays in machine learning and data analytics to remove irrelevant and redundant characteristics and thus to provide fast and reliable analyses. Many research works have focused on developing new methods that increase the global relevance of the subset of selected features while reducing the redundancy of information. However, those methods that select features with high relevance and low redundancy are extremely time-consuming when processing large datasets. In this work we present CUDA-JMI, a tool based on Joint Mutual Information that accelerates feature selection by exploiting the computational capabilities of modern heterogeneous systems that contain several CPU cores and GPU devices. The experimental evaluation has been carried out in three systems with different type and amount of CPUs and GPUs using five publicly available datasets from different fields. These results show that CUDA-JMI is significantly faster than its original sequential counterpart for all systems and input datasets. For instance, the runtime of CUDA-JMI is up to 52 times faster than an existing sequential JMI-based implementation in a machine with 24 CPU cores and two NVIDIA M60 boards (four GPUs). CUDA-JMI is publicly available to download from https://sourceforge.net/projects/cuda-jmiThis research has been partially funded by projects TIN2016-75845-P and TIN-2015-65069-C2-1-R of the Ministry of Economy, Industry and Competitiveness of Spain, as well as by Xunta de Galicia, Spain projects ED431D R2016/045, ED431G/01 and GRC2014/035, all of them partially funded by FEDER, Spain funds of the European Union.Xunta de Galicia; ED431D R2016/045Xunta de Galicia; ED431G/01Xunta de Galicia; GRC2014/03

    Load-Balance and Fault-Tolerance for Massively Parallel Phylogenetic Inference

    Get PDF

    Distributed Deep Learning in the Cloud and Energy-efficient Real-time Image Processing at the Edge for Fish Segmentation in Underwater Videos Segmentation in Underwater Videos

    Get PDF
    Using big marine data to train deep learning models is not efficient, or sometimes even possible, on local computers. In this paper, we show how distributed learning in the cloud can help more efficiently process big data and train more accurate deep learning models. In addition, marine big data is usually communicated over wired networks, which if possible to deploy in the first place, are costly to maintain. Therefore, wireless communications dominantly conducted by acoustic waves in underwater sensor networks, may be considered. However, wireless communication is not feasible for big marine data due to the narrow frequency bandwidth of acoustic waves and the ambient noise. To address this problem, we propose an optimized deep learning design for low-energy and real-time image processing at the underwater edge. This leads to trading the need to transmit the large image data, for transmitting only the low-volume results that can be sent over wireless sensor networks. To demonstrate the benefits of our approaches in a real-world application, we perform fish segmentation in underwater videos and draw comparisons against conventional techniques. We show that, when underwater captured images are processed at the collection edge, 4 times speedup can be achieved compared to using a landside server. Furthermore, we demonstrate that deploying a compressed DNN at the edge can save 60% of power compared to a full DNN model. These results promise improved applications of affordable deep learning in underwater exploration, monitoring, navigation, tracking, disaster prevention, and scientific data collection projects
    • 

    corecore