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Abstract

Feature selection is a crucial step nowadays in machine learning and data analytics to remove
irrelevant and redundant characteristics and thus to provide fast and reliable analyses. Many
research works have focused on developing new methods that increase the global relevance
of the subset of selected features while reducing the redundancy of information. However,
those methods that select features with high relevance and low redundancy are extremely
time-consuming when processing large datasets. In this work we present CUDA-JMI, a
tool based on Joint Mutual Information that accelerates feature selection by exploiting the
computational capabilities of modern heterogeneous systems that contain several CPU cores
and GPU devices. The experimental evaluation has been carried out in three systems with
different type and amount of CPUs and GPUs using five publicly available datasets from
different fields. These results show that CUDA-JMI is significantly faster than its original
sequential counterpart for all systems and input datasets. For instance, the runtime of
CUDA-JMI is up to 52 times faster than an existing sequential JMI-based implementation
in a machine with 24 CPU cores and two NVIDIA M60 boards (four GPUs). CUDA-JMI is
publicly available to download from https://sourceforge.net/projects/cuda-jmi.
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1. Introduction

Many scientific and research applications work over datasets that contain the values
of different features or characteristics concerning to several individuals or samples. Some
examples are bioinformatics or text analytics [1]. In the recent days we have seen a rapid and
extreme increase in the amount of stored data, especially the number of features per sample.
An example would be genetic datasets, that include the expression values (the degree to
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Figure 1: Example of feature selection in DNA microarray data

which an individual exhibits a trait or a genetic mutation) of thousand of genes for different
individuals (they are usually persons or any type of living beings). In this case, a DNA
microarray image containing expression values, is converted into a DNA microarray dataset
in which rows represent the genes (or features) and columns represent the individuals (or
samples), as depicted in Figure 1. Analyzing more features increases the average runtime
of the applications but it does not always implies obtaining more relevant information.
Common solutions to this problem consist in reducing the dimensionality of the dataset
discarding those features that do not provide relevant information through Feature Selection
(FS) or Feature Extraction (FE) methods. In Figure 1 we can see how by applying a feature
selection process, the number of rows (features or genes) is reduced, so a more compact
representation of the data is achieved.

FS [2, 3, 4] is a data mining approach used to detect the relevant features and discard
the irrelevant ones. Its main advantage over FE is that the selected features are not trans-
formed. A correct selection of the features can lead to an improvement of the related learner
or classifier, either in terms of learning speed, generalization capacity or simplicity of the
induced model. Furthermore, there are some other benefits associated with a smaller num-
ber of features such as a reduced measurement cost and hopefully a better understanding of
the domain. There are several scenarios that can benefit from FS, such as the presence of
irrelevant and redundant features, noise in the data or interaction between attributes. For
instance, the study of a large number of features in microarray analyses does not usually
lead to high-quality information as many of them are either irrelevant or redundant with
respect to the class concept [5, 6].

FEAST [7], a broad suite of FS methods implemented in C and Matlab was developed
in an attempt to facilitate the access to FS methods. It is highly-cited and widely-used
by researchers and scientists. Among the different alternatives present in this toolbox, its
method based on maximizing the Joint Mutual Information (JMI) [8] selects features with
high relevance and low redundancy [7, 9]. However, its quadratical runtime with the number
of features makes this method impractical for large datasets. Our work presents CUDA-JMI,
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a novel parallelization of the JMI-based method included in FEAST that accelerates FS by
exploiting the hardware resources of modern heterogeneous systems that include CPU cores
and NVIDIA GPU devices. It is implemented following a hybrid parallel approach that uses
CUDA and the multithreading support of C++11 so that: 1) it offers multi-GPU support;
and 2) not only the GPUs but also several CPU cores can collaborate for FS.

The rest of the paper is organized as follows. Section 2 summarizes the related work and
the state of the art. Section 3 presents as background some concepts about FS and parallel
computing that are necessary to understand the goal of the work and the implementation
of the method. Our parallel implementation is described in Section 4. Section 5 provides
the experimental evaluation in terms of runtime. Finally, conclusions and future work lines
are presented in Section 6.

2. Related Work

The exploitation of High Performance Computing (HPC) resources to accelerate FS
has been previously addressed. For instance, some of the FS algorithms included in the
WEKA [10] and MAST [11] toolkits support multithreading in order to exploit the sev-
eral CPU cores available in current processors. There also exist implementations designed
for larger infrastructures such as distributed-memory systems with several nodes connected
through a network. Some of them are based on the message-passing paradigm, as the
wrapper FS tool DWFS [12], with a parallel genetic algorithm, or an MPI version of on-
line FS [13]. Other alternatives use the MapReduce paradigm to accelerate ReliefF [14],
evolutionary algorithms [15], or positive approximation [16].

Another popular HPC platform is the GPU, with a relatively low price and good en-
ergy efficiency that provides computing power that can be equivalent to a medium-sized
supercomputer, which is orders of magnitude more costly and thus less accessible to many
researchers or scientists. The use of GPUs has already proven itself to be enormously useful
to deal with big datasets [17, 18, 19, 20]. In fact, GPUs have been extensively employed
to accelerate data mining algorithms such as association rule mining [21, 22], classification
decision trees [23, 24], or biclustering [25, 26].

Although several previous works have addressed the GPU parallelization of different
FS algorithms [27, 28, 29, 30, 31], fast-mRMR [32] is the only publicly available GPU-
based implementation of a FS algorithm, up to our knowledge. It is a CUDA version of
a greedy optimization of the popular minimum-Redundancy-Maximum-Relevance (mRMR)
method that maintains the original performance in selecting the adequate features but sig-
nificantly improving the computational times requirements. From this tool we take the idea
of distributing the features (and not the samples) among threads, as well as discarding the
parallelization of the loop that selects the features due to dependencies among iterations (as
will be explained later). Nevertheless, CUDA-JMI presents the following advantages over
fast-mRMR:

• The FS is based on maximizing JMI, which has been demonstrated to obtain better
trade-off between relevance and redundancy than those based on Mutual Information
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(MI) as mRMR and fast-mRMR. In fact, Brown et al. [7] studied the behavior of
several information theoretic based feature selection methods and concluded that JMI
was the best option to use, since it has the best trade-off of accuracy and stability.

• Our tool includes two different CUDA kernels that perform the main computation and
automatically selects the best one at execution time depending on the characteristics
of the GPU and/or the input dataset.

• While fast-mRMR only uses one GPU for speeding up the computation, CUDA-JMI
is able to work simultaneously on several CPU cores and multiple GPU devices, being
especially suitable for modern heterogeneous systems.

• The performance improvement obtained by CUDA-JMI is much higher than that of
fast-mRMR, as will be shown in the experimental evaluation section.

Additionally, GPU implementations of FS algorithms using a non-parametric evaluation
criterion or the delta test have been presented in [33] and [34] , respectively, but their code
is not available to the scientific community.

3. Background

This section introduces concepts that are necessary to understand our proposal, such as
FS, the FEAST library, the JMI measure, and parallel programming with CUDA.

3.1. Feature Selection

FS is a data mining technique commonly used in machine learning to reduce the dimen-
sionality of datasets by selecting only those features that provide interesting information.
FS methods can be classified into individual or subset evaluations. On the one hand, in-
dividual evaluation is the most simple approach, where each feature has a weight or score
assigned according only to its degrees of relevance. The main drawback of this approach is
that it is incapable of removing redundant features because they are likely to have similar
rankings. On the other hand, in subset evaluations each candidate subset is assessed by a
certain evaluation measure and compared with the previous best ones with respect to this
measure. Subset evaluation approach can handle feature redundancy with feature relevance.
However, these methods are computationally expensive due to searching through all feature
subsets.

Additionally, FS methods can also be classified into three classes according to the rela-
tionship between a FS algorithm and the inductive learning method used to infer a model:

• Filters. They are applied as a preprocessing step independent of the induction algo-
rithm and define a score used to measure the potential usefulness of a feature when
used in a classifier. They are the most commonly employed approaches thanks to its
relatively low computational cost and good generalization ability.
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• Wrappers. They use a learning algorithm as a black box and consist of using its
prediction performance to assess the relative usefulness of subsets of variables.

• Embedded methods. They perform FS in the process of classification and are usually
specific to given learning machines.

3.2. FEAST: A Feature Selection Toolbox for C and Matlab

FEAST is a toolbox for feature selection written in C and Matlab by researchers of
the University of Manchester to complement their work in which they presented a unifying
framework for information theoretic feature selection [7].

FEAST provides the implementation of several popular MI-based feature selection al-
gorithms, as well as an implementation of ReliefF, for the sake of completeness. Thanks
to this toolbox, it is easy to perform experiments and check the similarities between these
algorithms. The algorithms included are all from the family of filters, and can be seen in
Table 1. More details about the algorithms can be found in [7] and the toolbox is available
online for downloading1.

Table 1: Feature selection methods implemented in FEAST

Acronym Full name
MIM Mutual Information Maximization
mRMR Minimum Redudancy Maximum Relevance
MIFS Mutual Information Feature Selection
CMIM Conditional Mutual Info Maximization
JMI Joint Mutual Information
DISR Double Input Symmetrical Relevance
CIFE Conditional Infomax Feature Extraction
ICAP Interaction Capping
CONDRED Conditional Redundancy
CMI Conditional Mutual Information
ReliefF —
FCBF Fast Correlation Based Filter
Betagamma —

3.3. Joint Mutual Information for Feature Selection

As previously mentioned, filters are the most commonly employed FS approach as they
allow to separate the process of FS and classification (FS is a previous step). Many of
those filters use MI as score, assuming that the most relevant features according to their
MI value (features with strongest correlation between them and the class) should imply
a greater predictive ability when are used in a classifier. However, MI does not consider

1http://www.cs.man.ac.uk/~gbrown/fstoolbox/
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any dependency among features and thus the results of these methods are not good in the
common case of having interdependent features.

When dependency among features arises (for instance, among genes in microarrays) we
should not only focus on maximizing the relevance of the selected features, but also on
minimizing the redundancy of information provided by them. JMI was presented in [8] as a
score able to measure the complementary information among features:

JMI(Fi) =
∑
jεS

MI(Fi, Fj;Y ) (1)

where Fi is the feature considered for selection, S is the subset of features already selected,
and Y is the class. Fi, Fj is a joint random variable defined by pairing Fi and Fj.

As mentioned in Section 3.2, the FEAST suite provides a method for FS that maximizes
the JMI. This is a subset evaluation method whose pseudo-code is presented in Algorithm 1.
The first feature is selected as the one with the highest MI with respect to the class (Lines
4 to 6). Then, for every feature to select (outer loop starting at Line 7), FEAST calculates
the JMI score of every candidate (inner loop starting at Line 8). This score is the sum of the
JMIs joining the candidate and all the features already included in S. The selected feature
for each iteration is the one with the highest accumulated score (Line 14).

In FEAST and CUDA-JMI the JMI calculation is divided into two steps (Lines 12 and
13, respectively):

1. Calculate the vector J with the information of the joint variable between the current
and the last selected features. J is a vector with the same length as the feature vectors
(i.e. the number of individuals M). J stores states (i.e. different combination of joint
values for Fi and Fj) so that, for every pair of individuals (x,y), the states J [x] and
J [y] are equal if and only if Fi[x] == Fj[x] and Fi[y] == Fj[y]. Algorithm 2 shows the
pseudo-code for a function that calculates the joint vector of two features. It uses a
state map that saves the value applied to each possible combination. If the combination
has appeared before, the state is obtained from the map (Line 15). Otherwise, a new
state is assigned (Line 11), it is saved in the map (Line 12) and the state count is
incremented (Line 13).

2. Compute the MI of J and the class Y . MI is defined as:

MI(J ;Y ) = H(J) + H(Y ) −H(J, Y ) (2)

where H(J) and H(Y ) are the marginal entropies and H(J, Y ) is the joint entropy of
J and Y . They are calculated as:
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1 Input: Dataset with M individuals, N features, and one class Y ; Number of features to
select NS

2 Output: Subset S with the NS features selected
3 Initialize S to empty
4 for every feature Fi with 0 ≤ i < N do
5 Calculate MI(Fi;Y )

end
6 Insert in S the Fh with the highest MI
7 for every k with 0 < k < NS do
8 for every feature Fi with 0 ≤ i < N do
9 if Fi is not in S then

10 Score = 0
11 for every feature Fj already included in S do
12 Create J as the joint of Fi and Fj
13 Score = Score + MI(J ;Y )

end

end

end
14 Insert in S the Fh with the highest Score

end

Algorithm 1: Pseudo-code of the sequential FS method based on maximizing JMI
provided by FEAST.

H(J) = −
∑
jεJ

p(j) · log(p(j)) (3)

H(Y ) = −
∑
yεY

p(y) · log(p(y)) (4)

H(J, Y ) = −
∑

jεJ,yεY

p(j, y) · log(p(j, y)) (5)

with p(j) representing the probability of the states in J taking the value j, p(y) the
probability of the class Y taking the value y, and p(x, y) the joint probability of both
events.

3.4. CUDA and GPU Technology

CUDA [35] is an architecture for parallel programming on NVIDIA GPUs that extends
the general programming languages with a set of abstractions to express parallelism. A
CUDA program is comprised of code for the host CPU and kernels for the GPU devices. A
kernel is a program launched over a set of lightweight parallel threads on GPUs, where the
threads are organized into a grid of blocks. All threads in a block are split for execution
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1 Input: Vectors Fi and Fj of length M with the information of each feature.
2 Output: Joint vector J of length M .
3 maxi = Max(Fi)
4 maxj = Max(Fj)
5 Initialize states of size [maxi][maxj ] to zero
6 iterSt = 1
7 for every sample s: 0 ≤ s < M do
8 st = states[Fi[s]][Fi[s]]
9 if st == 0 then

10 // First time of the combination
11 J [s] = iterSt
12 states[Fi[s]][Fi[s]] = iterSt
13 iterSt = iterSt + 1

else
14 // Same state as samples with the same combination
15 J [s] = st

end

end

Algorithm 2: Pseudo-code of the joint vector calculation.

into small groups of 32 parallel threads, called warps. These warps are scheduled in a single
instruction, multiple thread fashion. Full efficiency and performance can be obtained when
all threads in a warp execute the same instruction.

CUDA-enabled GPUs have evolved into highly parallel many-core processors with tremen-
dous compute power and very high memory bandwidth. They are especially well-suited
to address computational problems with high data parallelism and arithmetic density. A
CUDA-enabled GPU can be conceptualized as a fully configurable array of Scalar Processors
(SPs). These SPs are further organized into a set of Streaming Multiprocessors (SMs). The
total amount of SMs depends on the GPU model, while the number of SPs per SM can vary
depending on the underlying GPU microarchitecture. For instance, GPUs of the Kepler and
Maxwell generations are used in the experimental evaluation, whose SMs contain 192 and
128 SPs, respectively.

Figure 2 shows the overall structure and memory hierarchy of the GPU architecture.
Remark that the GPU contains several kinds of memories with different characteristics.
Global memory is relatively large (in the order of GBs) but has lower bandwidth and higher
latency than shared memory, with only tens of KBs. As can be seen in Figure 2, this
memory is only shared among the SPs within the same SM. Read-only memories with
similar bandwidth and latency as shared memory and also only tens of KBs are available
(constant and texture memories).
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Figure 2: GPU architecture and memory hierarchy.

4. CUDA-JMI Implementation

CUDA-JMI is a command-line tool that receives as input argument a file with the data,
supporting different file formats. At the moment of writing this manuscript CUDA-JMI can
work with arff, csv and libsvm file formats, but it is expected to increase the number of
supported file extensions if required by the users. The data is stored in a N × M matrix,
being N the number of features and M the number of samples. In the case of microarrays
the rows and columns represent the genes and individuals, respectively. The class value for
each individual is also read from the input file and stored in an array. Remark that MI and
JMI work only with discrete values. In case of datasets with continuous values a two-step
discretization procedure is performed when reading the input:

1. The continuous range is partitioned into segments or bins of equal size.

2. Each continuous value is assigned to the bin representing the segment covering it.

The input file, the number of bins, the number of features to select, and other configu-
ration parameters are specified in the command line. An explanation of all the arguments,
as well as installation instructions, are included in the reference manual available with the
tool.

4.1. Conceptual Parallelization Logic

Algorithm 3 illustrates the general pseudo-code of the parallel FS method implemented in
CUDA-JMI. Before working on the parallelization, an optimization of the general approach
to avoid repeating several calculations was performed. Concretely, the loop of Line 11 in
Algorithm 1 was removed by using an array Score that accumulates the JMI of each feature
with all the features inserted in S. Therefore, instead of repeating the calculation of the
JMI to all the subset on every iteration k, only the JMI with the last inserted feature must
be calculated (Lines 12 and 13 in Algorithm 3).

The nested loops included in Algorithm 3 were analyzed when looking for parallelization
opportunities. One iteration of the outer loop (Line 8) includes all the computation neces-
sary to determine the next feature to select. Each iteration explores the whole input dataset
and the loop continues while more features must be included in the output. It was discarded
for parallelization due to the dependency among its iterations: iteration k + 1 must wait
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1 Input: Dataset with M individuals, N features, and one class Y ; Number of features to
select NS

2 Output: Subset S with the NS features selected
3 Initialize S to empty
4 for every feature Fi with 0 ≤ i < N do
5 Calculate MI(Fi;Y )

end
6 Insert in S the Fh with the highest MI
7 Initialize an array Score[N ] to zero
8 for every k with 0 < k < NS do
9 // Start the parallel region

10 for every feature Fi with 0 ≤ i < N do
11 if Fi is not in S then
12 Create J as the joint of Fi and Fh
13 Score[i] = Score[i] + MI(J ;Y )

end

end
14 // End of the parallel region
15 Insert in S the Fh with the highest Score

end

Algorithm 3: Pseudo-code of the parallel FS method based on maximizing JMI pro-
vided by CUDA-JMI.

until iteration k has selected its feature, in order to calculate the appropriate joints. The
parallelization is focused on the inner loop (Line 10), whose iterations are completely inde-
pendent. Features are assigned to different hardware (horizontal partitioning of the input
dataset) so that their JMI values with respect to the last selected feature are calculated in
parallel (see Figure 3). For instance, in the case of genetic data, the genes (features) are
distributed among the hardware, while the expression values of all individuals for a certain
gene would be assigned to the same thread/process. This procedure is repeated for every
iteration of the outer loop.

4.2. GPU Kernels to Calculate Mutual Information

In order to exploit the computational capabilities of heterogeneous platforms, each step
of the JMI calculation is assigned to different hardware: the joint vector calculation is
performed by the CPU cores, while the MI computation by the GPUs. This workload
distribution has been chosen because the vector joint would obtain poor performance on
GPUs due to many random memory accesses to a map large enough to not fit in the shared
memory of the GPU (see Algorithm 2). The features are divided into batches so that the
CPU hardware can work over some features at the same time that the GPUs calculate the
MI of the previous ones. Figure 4 illustrates this concept. For instance, in genetic scenarios
the genes would be divided into different batches, and the CPU cores would analyze a group
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N x M matrix

M (samples)

N (features)

Horizontal partitioning

HW-PU0

HW-PU1

For each feature:

1. Joint vectors creation

2. MI calculation

HW-PU = Hardware Processing Unit (e.g. CPU core)

Figure 3: Conceptual parallelization logic of the input dataset (N ×M matrix)

Figure 4: Overlapping between CPU and GPU work. The CPUs join features while the GPUs calculate the
MI of the previous batch.

of genes while the GPU analyzes the previous one. The overlapping of computation between
CPUs and GPUs is achieved thanks to the proper use of asynchronous CUDA functions
to transfer the joint vectors of each batch. Remark that CUDA-JMI provides support to
perform the joints of the features within a batch in parallel on several CPU cores thanks to
the use of C++ threads [36], as will be explained later. The number of batches is dynamically
and automatically defined by the aplication (transparently to the user), looking for a number
high enough to allow CPU-GPU overlapping, but not too high to create so small batches
that are not able to exploit all the resources of the GPU.

The calculation of the MI values between a batch of joint vectors and the class is per-
formed by GPUs. Algorithm 4 summarizes the behavior of the kernel for each batch. Remark
that the term batch represents a completely different concept from the already explained
CUDA block. A batch groups a subset of features that are computed together, first by the
CPU and later by the GPU. Once the batch arrives to the GPU, its computation is divided
into CUDA threads, which are grouped into blocks (a CUDA concept), so that each one is
in charge of different joint vectors. Each block i starts working over the i − th vector and
then continues iterating on the batch with a stride of gridDim.x (i.e. distributes the joint
vectors in a round-robin or cyclic fashion as specified in Line 3 of Algorithm 4). The number
of threads per block is predefined by the user.

As previously explained, it is necessary to calculate the joint probability of each state in
J and class Y in order to calculate the entropies and the MI. This is performed through a
map that counts the number of appearances of each combination. The threads of the block
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1 Input: bxM array J , where b is the number of joint vectors in the batch and M the number
of individuals; Vector Y with the class of the individuals; maxSt and maxY with the
maximum state and class, respectively

2 Output: Array Score with the MI of the features in the batch
3 for i = blockIdx.x; i < b; i = i + gridDim.x do
4 for pos = threadIdx.x; pos < maxY ∗maxSt; pos = pos + blockDim.x do
5 Initialize position pos in the map as zero

end
6 Synchronize threads of the CUDA block
7 for s = threadIdx.x; s < M ; s = s + blockDim.x do
8 atomicAdd of one to position J [i][s] of the map

end
9 Synchronize threads of the CUDA block

10 myMI = 0
11 for pos = threadIdx.x; pos < maxY ∗maxSt; pos = pos + blockDim.x do
12 myMI− = Entropy with position pos of the map
13 Reduce the myMI values of the block into Score[i]

end

end

Algorithm 4: Pseudo-code of the MI kernel for a batch of joint vectors.

collaborate during the calculation of the MI of each joint vector during the three steps of
the kernel, resulting in a two level parallelization:

1. Initializing the map to zero (Lines 4-5).

2. Counting the number of appearances of each combination and storing them in the
map (Lines 7-8). An atomic operation is used in order to avoid race conditions when
several threads need to update the same position of the map.

3. Calculating the MI taking into account the values of the map (Lines 11-13). This
step needs to reduce the partial results of all threads, which is also performed through
atomic operations.

Accesses to the map, with and without atomic operations, are present on the three steps
and thus have significant impact on the performance of the kernel. CUDA-JMI tries to store
the map in the shared memory of the GPU in order to reduce the performance degradation
due to the irregular accesses to it necessary for the second step. However, sometimes the use
of shared memory is not possible or not advisable. On the one hand, the space necessary
for the map can be too large to fit in the shared memory. The map requires maxY ∗maxSt
integers, being maxSt and maxY the maximum state of the joint vector J and the maximum
value of the class Y , respectively. Moreover, each integer must be represented with 32 bits
so that the atomics can work efficiently. On the other hand, support for efficient atomic
operations over shared memory has been included in CUDA only after version 5.0 (Maxwell).
Therefore, CUDA-JMI includes two kernels: one with the map stored in global memory, used
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either when the map does not fit in shared memory or the architecture of the GPU is lower
than 5.0; and another one with the map stored in shared memory that is used otherwise.
The suitability of this approach to select the best kernel on each scenario will be assessed
in Section 5.1.

Among other optimizations included in the CUDA-JMI code to improve its performance
we should remark:

• The joint vectors in CUDA-JMI are based on 16-bit integers instead of the 32-bit ones
used by FEAST. This reduces the cost of the memory transfers between CPU and
GPU while still being large enough to represent all the state combinations.

• The probabilities of the classes necessary to calculate their entropy (see Formula 4) are
the same for all MI calculations. Thus, they are calculated only once at the beginning
of the CUDA-JMI execution and stored in the constant memory of the GPU.

• The calculation of the probabilities of the states of the joint vector need a division by
the number of samples M . The kernel starts calculating once the value 1

M
and then

multiplies to this value which is faster than directly dividing by M .

• Accesses to the array J in Line 8 of Algorithm 4 are coalesced as threads within each
block work over different samples with a round-robin/cyclic distribution.

• As previously mentioned, the CPU-GPU transfers of the joint vectors are carried out
with asynchronous CUDA copies, which allows to overlap the computation of CPU
and GPU hardware.

4.3. Exploitation of Multiple CPUs and GPUs

It has already been explained how a CPU and a GPU can collaborate to complete the
FS method of CUDA-JMI, with each hardware associated to a different part of the algo-
rithm. However, many computing platforms contain several CPU cores and GPU devices.
Therefore, CUDA-JMI applies another level of parallelism using C++ threads [36] so that
each phase can be performed on parallel by multiple CPU cores and/or GPU devices.

The number of CPU threads nt for the first phase (creation of the joint vectors) can
be indicated as an input argument through command line. CUDA-JMI then applies a pure
block distribution that assigns b

nt
consecutive features to each thread, being b the number

of features per batch. Remark that a distribution of the workload by features is the only
advisable solution, as determining the state for certain individual depends on the values of
the map generated by the previous ones (see Algorithm 2).

Regarding the multi-GPU implementation of the second phase (MI calculation), one
C++ thread per GPU is created. Each thread is mapped into a different CPU core, being in
charge of transferring the data to and from its assigned GPU. Again, a pure block distribution
that divides the joint vector evenly among the GPUs, and with consecutive vectors associated
to the same GPU, is applied.

An example of a CUDA-JMI execution in a machine with several CPU cores and GPUs
is presented in Figure 5. This approach is designed for systems where all the GPUs have the
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Figure 5: An example of CUDA-JMI execution in a platform with three CPU cores and two GPUs.

same performance, which is the most common scenario in current HPC platforms. In this
case, the workload per GPU is completely balanced (i.e. they work over the same number
of features).

5. Experimental Evaluation

The experimental evaluation of our work is focused on performance in terms of execution
time, as the features selected by CUDA-JMI are identical to those provided by the JMI-
based method included in FEAST, which is extensively used by researchers. Three systems
were used for this evaluation:

• Sys1: A multicore system with two octa-core Intel Xeon E5-2660 Sandy Bridge-EP
processors (in total, 16 CPU cores at 2.20GHz) that contains three NVIDIA Tesla
Kepler K20m GPUs. CUDA-JMI was compiled with the GNU suite v4.8.2 and the
CUDA toolkit v8.0.61.

• Sys2: This system provides the same CPU model and compilers as Sys1 but has one
NVIDIA Tesla Kepler K40c GPU.

• Sys3: A shared-memory machine with 24 cores (two 12-core Intel Xeon E5-2690
v3 Haswell-EP processors at 2.60GHz). This machine contains two NVIDIA Tesla
Maxwell M60 boards, each one providing two GPUs. The compilers used for the
evaluation were the GNU suite v4.8.5 and the CUDA toolkit v9.1.85.3.

More information about the characteristics of the GPUs are shown in Table 2. Five
publicly available datasets with different characteristics (summarized in Table 3) have been
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Table 2: Characteristics of the GPU boards (*these values are for each GPU of the board).

K20m K40c M60
Microarchitecture Kepler Kepler Maxwell

GPU chip GK110 GK110B GM204
Number of GPUs 1 1 2

Compute capability 3.5 3.5 5.2
Number of SMs 13 15 16*
Number of cores 2,496 2,880 2,048*

Core frequency (MHz) 706 745 899
Memory size (GB) 5 12 8*

Shared memory (KB) 64 64 64*
Memory bandwidth (GB/s) 208 288 320

Power consumption (W) 225 235 300

Table 3: Characteristics of the datasets.
Features Samples Classes

BreastCancer 24,481 97 2
ECML 27,679 90 43

rcv1train 47,236 20,242 2
news20 62,061 15,935 20
SVHN 3,072 531,131 10

evaluated. BreastCancer is a microarray used for genetic experiments [37], which usually
present a higher number of features (genes) than samples (individuals). A similar proportion
of features/samples but with multiple classes is followed by the ECML dataset, which was
prepared by downloading and processing various information from the SAGEmap website
as of December 2002 (http://eps.upo.es/bigs/datasets.html). The last three datasets
were obtained from the LibSVM collection [38]. While recv1train and news20 are respectively
biclass and multiclass examples of datasets with tens of thousands of features and samples,
SVHN is used as an example of dataset with a much higher amount of individuals than
features. All the experiments shown in this manuscript have been obtained after applying
a discretization with 64 bins. Although additional experiments with 128 and 256 bins were
run, they are not included in this section for simplicity as the conclusions obtained from
them are similar.

The number of selected features has also been fixed to 200. This number is high enough
to show the impact of discarding the selected features from the candidates list, and not
too large to avoid selecting an extremely high number of features, which will never be the
case in a real scenario. Additionally, the speedup between the original FEAST implemen-
tation and CUDA-JMI does not depend on the number of selected features as the parallel
approach is repeated for every feature selected (every iteration of the loop in Lines 7 and 8
of Algorithms 1 and 3, respectively).
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Figure 6: Runtime of the kernels to calculate MI on three different GPUs when selecting 200 features.

5.1. Best Kernel Configuration

CUDA-JMI includes two kernels for MI calculations, depending on the type of memory
(global or shared) used to store the maps. As mentioned in Section 4.2, the kernel choice
not only depends on the memory requirements of the map but also on the characteristics of
the GPU. The experimental evaluation starts checking which kernel is the most appropriate
for each available GPU.

Figure 6 shows the runtime of the two kernels executed by the three different GPUs over
four datasets. The SVHN dataset is not present in this analysis as it is the only one whose
map does not fit in shared memory. Consequently, the global-memory-based kernel must
be always used and this comparison does not make sense for this dataset. Remark that the
runtime shown for the M60 board was obtained with only one GPU.

The results show that the use of shared memory to store the map is only beneficial on
the GPU of the M60 board, which provides CUDA computational capability higher than 5.0
and hardware support for atomics on shared memory. Shared-memory atomics on the K20m
and K40c GPUs are implemented in software, being significantly slower. Consequently,
the already explained protocol to choose the best kernel for computation is correct: the
shared-memory-based kernel is only selected when: 1) the map fits in it and 2) the GPU
provides support for hardware shared-memory atomics (computational capability higher
than 5.0). CUDA-JMI automatically checks at execution time if both conditions are fulfilled.
Otherwise, the global-memory-based kernel is selected.
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Table 4: Runtime (in seconds) of the MI calculation in several K20m GPUs and acceleration compared to
the single-GPU runtime.

Datasets
2 GPUs 3 GPUs

time acc. time acc.
BreastCancer 0.78 1.68 0.56 2.35

ECML 5.63 1.97 3.82 2.91
rcv1train 142.94 1.99 95.53 2.98
news20 141.43 1.99 94.29 2.99
SVHN 531.32 2.0 348.21 3.0

Table 5: Runtime (in seconds) of the MI calculation in several M60 boards and acceleration compared to
the single-GPU runtime.

Datasets
2 GPUs 4 GPUs

Same board Diff. board
time acc. time acc. time acc.

BreastCancer 0.30 1.37 0.22 1.83 0.17 2.45
ECML 1.39 1.40 1.21 1.61 0.79 2.48

rcv1train 69.55 1.12 39.17 1.98 35.01 2.22
news20 69.23 1.08 37.78 1.98 34.83 2.15
SVHN 544.10 1.65 490.53 1.82 277.95 3.22

5.2. Evaluation for Multiple GPUs

Table 4 shows the runtime of the MI calculation using several K20m GPUs in Sys1, as
well as the corresponding acceleration compared to the single-GPU execution. Remark that
CUDA-JMI selects the global-memory-based kernel in all cases as these GPUs do not provide
support for efficient hardware memory atomics. The multi-GPU execution of CUDA-JMI is
advantageous in this system, with a performance improvement almost linear with the number
of GPUs (excepting the smallest dataset whose runtime with only one GPU is already very
low).

Table 5 shows similar results using up to the four GPUs available in Sys3. In this
system CUDA-JMI uses shared memory to store the maps during the experiments with
BreastCancer, ECML, rcv1train and news20, while global memory for SVHN as its map does
not fit in shared memory. Two different results using two GPUs are provided, distinguishing
when the MI calculation is executed on the two GPUs of the same M60 board or selecting
one GPU of each board. The runtime is reduced almost to half of the single-GPU execution
when only one GPU per board is used. Nevertheless, the speedup is significantly reduced
when CUDA-JMI tries to exploit one whole board, probably because the two CPU threads
associated to the GPUs share the link between CPU and GPU. This fact also penalizes the
performance of the four-GPU execution as both GPUs of the two boards are used.
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Table 6: Speedup of CUDA-JMI over the JMI-based sequential method of FEAST when selecting 200
features.

Datasets Sys1 Sys2 Sys3
BreastCancer 42.95 36.35 45.94

ECML 20.06 10.09 52.26
rcv1train 13.15 12.41 33.00
news20 13.03 12.90 32.23
SVHN 10.53 5.74 13.57

5.3. Evaluation in Heterogeneous Systems

The experimental evaluation finishes comparing the JMI-based FS method of FEAST
(the most commonly used sequential counterpart) with CUDA-JMI on the three systems,
with the CPU cores joining the vectors while the GPUs calculate the MI of the vectors
joint in the previous batch (see Figure 4). Figure 7 shows the runtime of both approaches,
with CUDA-JMI fully exploiting the systems (using all the available CPU cores and GPU
devices). I/O times are not included as they are identical for FEAST and CUDA-JMI and
they hardly depend on the file format of the input dataset. Table 6 shows the speedups of
CUDA-JMI over FEAST for each dataset and system.

These results prove that CUDA-JMI is able to significantly reduce the time needed to
complete FS. The magnitude of the acceleration depends on the hardware available in the
system (amount and computational capability of CPU cores and GPU devices) as well as on
the characteristics of the datasets (amount of features, samples and classes). As expected,
the fastest runtime and the highest speedup for each dataset has been obtained in Sys3, as
this system does not only provide more CPU and GPU resources than the other ones, but
also at the highest clock frequencies. Comparing the datasets, the speedups are on average
higher for those scenarios with not many samples (very common on biological studies). The
lowest acceleration is achieved for SVHN as the map is too large to fit in shared memory.
Finally, remark that the use of CUDA-JMI is beneficial for all combinations of datasets
and systems, reaching an impressive speedup of more than 50x when analyzing ECML in
Sys3. A comparison to the GPU implementation of fast-mRMR [32] has not been included
in this paper as the underlying FS method is different. Nevertheless, their authors reflect a
maximum speedup over a sequential implementation of only 5x, which is significantly lower
than the speedups obtained by CUDA-JMI.

6. Conclusions

FS is a data mining technique that is nowadays a common and extremely important step
in machine learning, especially with the continuous increase of the average dataset sizes on
different fields such as text mining, genetics or bioinformatics. Among the many methods
existing for FS, those based on JMI have been proved to provide a set of features with more
complementary information than those based on pure MI. However, the quadratic complexity
of these methods with the number of features prevents their use over large datasets.
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Figure 7: Runtime of CUDA-JMI and the JMI-based sequential method of FEAST when selecting 200
features.
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This work has presented CUDA-JMI, a high-performance C++-based FS tool for hetero-
geneous systems with several CPU cores and NVIDIA GPU devices. Taking as basis a fast
JMI implementation available in the FEAST toolkit, CUDA-JMI is able to efficiently exploit
all the computing resources of modern shared-memory platforms and thus processing large
datasets in a reasonable period of time. The computation is divided into two main steps and
each one is processed simultaneously by the most suitable hardware: joint of candidate fea-
tures with the last selected one by the CPU cores while MI calculation for the joint vectors
by the GPU devices. The scalability has been tested on three heterogeneous shared-memory
systems using five public datasets, all of them with different characteristics. CUDA-JMI
obtains high speedups (up to 50x) compared to the state-of-the-art toolkit FEAST.

As future work we aim to adapt our parallel approach to other FS methods with the goal
of providing a broad suite where the future users can choose the parallel algorithms that
better adapts to their data and analyses. Once several FS methods have been parallelized,
another future step would be the development of parallel ensembled methods, where several
FS algorithms are executed at the same time and the final output is a conjunction of the
partial results. The input formats accepted by CUDA-JMI are also expected to be extended
after feedback with the users. Finally, we will also try to include a dynamic distribution
of the joint vectors in order to improve the performance of CUDA-JMI in platforms with
different types of GPUs.
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