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Abstract: Microarray has emerged as a powerful technology that enables biologists to 

study thousands of genes simultaneously, therefore, to obtain a better understanding 

of the gene interaction and regulation mechanisms. This paper is concerned with 

improving the processes involved in the analysis of microarray image data. The main 

focus is to clarify an image’s feature space in an unsupervised manner. In this paper, 

the Image Transformation Engine (ITE), combined with different filters, is 

investigated. The proposed methods are applied to a set of real-world cDNA images. 

The MatCNN toolbox is used during the segmentation process. Quantitative 

comparisons between different filters are carried out. It is shown that the CLD filter is 

the best one to be applied with the ITE. 
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1. Introduction 

 

DNA micro-array technology has enabled biologists to study all the genes within an 

entire organism to obtain a global view of the interaction and regulation of genes. 

This technology has great potential to obtain a deep understanding of the functional 

organisation of cells. Yet, it is still early in its developmental stages and needs 

improvements in all the main stages of the micro-array process. The emergence of this 

technology allows researchers to tackle difficult problems and reveal promising 

solutions in many fields, i.e., pharmaceutical industry (Cohen, 2005), because they 

allow researchers to study the genes’ functions in tissues that are subjected to a 

medication being tested. Moreover, drug companies are often interested in altering 

some protein to prevent faulty gene behaviour from causing a disease. 

DNA micro-array is a remarkably successful high throughput technology for 

functional genomics (Schena et al., 1995; Shalon et al., 1996). Micro-arrays allow 

researchers to analyse the expression level, in different cell types or conditions, of 

many thousands of genes in a single experiment (Alizadeh et al., 2000; Moore 2001). 

Basically, a DNA array (Stekel, 2003) can be defined as an orderly arrangement of 

tens to hundreds of thousands of unique DNA probes of known sequence. The source 

of the probes takes either of the two cases: 

 

• each probe is individually synthesised on a surface such as glass 

• pre-synthesised probes (such as PCR products) are attached to the array platform. 

 

The cDNA micro-array aims to detect the abundance of various mRNA molecules of 

a cell by using hybridisation (bind) of the fluorescent labelled samples to the DNA 

probes already existing on the array platform (Schena et al., 1995), which can provide 

information about the related protein (the expressed gene) (Gygi et al., 1999). The end 

product of a cDNA micro-array experiment is a scanned array image, see Figure 1, 

(Moore, 2001; Orengo et al., 2003). These images must then be analysed to identify 

the arrayed spots and to measure the relative fluorescence intensities for each feature. 

 

Although micro-array technology has been engineered to fine tolerances, there exists 

high signal variability through the surface of the micro-array image. Due to system 
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imperfections in the micro-array image generation process, the resulting images, in 

addition to background fluorescence, are contaminated by various types of noise, 

biological and systematic (Fraser et al., 2010; Zineddin et al., 2008). Simply using the 

raw image to identify gene spots could be inefficient. Pre-processing stages, therefore, 

should be introduced to produce multiple views of the image to get better 

performance from all the processing steps in terms of reproducibility and validity in 

computing gene expression levels (Yang et al., 2002; Blekas et al., 2003). 

 

 

 
Figure 1 Two-channel cDNA image sample 

 

Through the development of micro-array technology, many methods have been 

proposed to reduce the noise source; these include the use of clean glass slides and a 

higher laser power rather than a higher PMT voltage. However, these methods seem 

inadequate for the required image qualities and an enhanced software procedure 

embedded within the process is a much better alternative. Recently, Moghadam and 

Moradi (2007) proposed an algorithm for image sifting to remove objects with 

definite size from macro-array images. Daskalakis et al. (2007) applied unsupervised 

discrimination between spot and background pixels to spot image in order to assess 

the local noise, and then conducted adjustable wiener restoration by using an 

empirically determine degradation function. Although these studies emphasised 

superior quality of the enhanced images, there has been little investigation into 

whether these enhancements could lead to more accurate spot segmentation or further 

reduce the variability of the extracted gene expression levels. 

Feature detection in cDNA micro-array image analysis is the process that categorises 

the pixels in the image into spots or background pixels by using either manual, semi-

automated geometric techniques or complex methods that are computationally 

expensive (Lukac et al., 2004). It should be pointed out that the large number of spots 

(usually in thousands) as well as the shape and position irregularities (Lukac et al., 

2005; Wang et al., 2003a) can propagate processing errors through subsequent 

analysis steps (Eisen and Brown, 1999; Lukac et al., 2004; Wang et al., 2003b). 

Furthermore, the time-consuming manual processing of the micro-arrays has led to 

the recent interest in using a fully automated procedure to accomplish the task 

(Bajcsy, 2004; Jain et al., 2002, Katzer et al., 2003). Although recognition of spots in 

either control or experimental channels seems to be straightforward, the task is indeed 

complicated and challenging. 

In terms of feature detection for cDNA micro-array image processing, Bozinov and 

Rahnenfuhrer (2002) proposed processing of the full image area in one step, but this 

might not be computationally feasible with the current processing power. To 

overcome such a computational issue, an abstraction of the k-means clustering 



4 

 

technique was proposed in Bozinov (2003). Other methods such as the applications of 

wavelets (Wang et al., 2003b) and Markov random fields (Katzer et al., 2003) showed 

great promise. Lawrence et al. (2003) presented a Bayesian approach to processing 

images produced by these arrays that seeks posterior distributions over the size and 

positions of the spots. Blekas et al. proposed a micro-array image analysis framework 

in Blekas et al. (2003) that provided a method automatically addressing each spot area 

in the image. More recently, Fraser et al. (2004) presented a Copasetic analysis 

framework that attempts to improve the full workflow processing of micro-array 

image analysis employing traditional clustering techniques. Blekas et al. (2005) 

exploited the Gaussian Mixture Model (GMM) to analyse individual spot images, and 

Lukac et al. (2004) utilised the multi-channel nature of the cDNA image data. In 

particular, Arena et al. (2002) showed the promising application of Cellular Neural 

Networks (CNNs) for analysing cDNA micro-array images, where CNNs’ parallelism 

characteristic makes them an ideal computational platform for kernel-based 

algorithms and image processing (Chua, 1997).  

Since their introduction in 1988 (Chua and Yang, 1988a, 1988b), CNNs have been 

applied in numerous applications. In particular, the acceptance of the CNN approach 

as a computational paradigm (Chua and Roska, 1993), and the design of the hardware 

architecture, the CNN Universal Machine (CNN-UM) (Chua and Roska 1992), 

resulted in complex image analysis applications. The CNN-UM is the first parallel, 

stored program analogic and visual array micro-processor that can be fabricated on a 

single chip (Cruz and Chua 1998; Dominguez-Castro et al., 1994, 1997; Linan et al., 

2003). These devices are programmed by analogic algorithms (Csapodi and Roska 

1996; Rekeczky et al., 1995, 1999; Rekeczky and Chua 1999; Zarandy et al., 1996), 

i.e., using analogue operations in sequence combined with local logic at the cell level. 

 

To summarise the discussions made so far, we have the following conclusions: 

 

• Image processing for analysis of micro-array images is an important yet challenging 

problem since imperfections and fabrication artefacts often spoil our ability to 

accurately measure the parameters of interest in the images. 

• Rather than using the raw micro-array image, it makes much more sense to produce 

multiple views of the image data so that emphasis can be placed on certain 

frequencies or regions of interest.  

• Although many approaches have been proposed in the literature, there has been little 

progress on developing efficient and effective algorithms to, automatically, clarify an 

image’s feature space by using up-to-date techniques such as Image Transformation 

Engine (ITE) (Zineddin et al., 2008; Fraser et al., 2010), filtering and CNNs.  

 

It is, therefore, the aim of this paper to investigate the multi-view analysis by 

implementing filtering techniques to micro-array images to reduce the artefacts’ noise 

and, at the same time, enhance the position of gene spots.  

In this paper, the focus is on several efficient and effective algorithms that have been 

proposed to automatically clarify the micro-array image’s features by using up-to-date 

techniques such as ITE, filtering and CNN, and the best filter has been found to be 

applied with the ITE by quantitative comparisons among different filters in terms of 

the Peak Signal-to-Noise Ratio (PSNR). The ITE, combined with Median, Top-hat 

and Complex Diffusion (CLD) filters is investigated. The proposed image processing 

methods are applied to a set of real-world cDNA images. It is shown that the CLD 

filter is the best one to be applied with the ITE. In particular, a fully automated 
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segmentation algorithm, based on the CNNs (Chua and Yang, 1988a, 1988b), is 

implemented in this paper as an integrated part of the proposed framework. The 

proposed algorithms, which can be applied on CNN-UM (Chua and Roska, 1992), 

offer a view of parallel computation, which remains reasonably efficient even when 

applied on Graphics Processing Unit (GPU) simulators (Dolan and DeSouza, 2009; 

Ho et al., 2008; Soos et al., 2008). 

 

2. Background 

 

In this section, a brief introduction of the cDNA micro-array technology is presented. 

The illustration of basics of the CNN is highlighted, followed by the proposed 

algorithms and analysis. The results from these algorithms are validated on real-world 

micro-array images and compared with the commercially available software 

GenePix
®
. 

 

2.1. Micro-array 

 

In the cDNA micro-array experiment (DeRisi et al., 1996, 1997; Eisen and Brown, 

1999; Jain et al., 2002; Yang et al., 2002), Ribonucleic Acid (RNA) is first isolated 

from both control and experimental samples of the cells and tissues of interest, and 

then converted into cDNAs by the so-called reverse transcription process 

(Whitchurch, 2002). Those two RNA populations are labelled with fluorescent dyes 

such as Cy3 and Cy5. The two samples to be compared are hybridised simultaneously 

to a glass slide. The hybridised micro-array is excited by a laser and scanned at 

wavelengths suitable for the detection of applied fluorescent dyes. The amount of 

fluorescence emitted upon laser excitation corresponds to the amount of cDNA 

hybridised to each spot. The end product of a comparative hybridisation experiment 

(Moore, 2001; Orengo et al., 2003) is a scanned array image, where the measured 

intensities from the two fluorescent reporters have been coloured red (R) and green 

(G) and overlaid. This array image is structured with intensity spots located on a grid 

and must be scanned to determine the amount of probes that bound to the spots when 

stimulated by a laser. Yellow spots have roughly equal amounts of bound cDNA from 

each sample and so have equal intensity in the R and G channels (red green yellow). 

Genes’ expression data derived from arrays measure spots quantitatively and can be 

used further for several analyses (Alizadeh et al., 2000; Mata et al., 2002). 

In a micro-array image, the spots, which constitute the foreground of micro-array 

images, occupy a small fraction of the image area and contain the essential 

information for micro-array image analysis and gene expression tasks. Thus, their 

localisation and isolation from the image background are essential prior to the 

estimation of its mean intensity. Generally, there are many stages in image analysis. 

Filtering, as a low-level image cleaning procedure, can be used to remove the very 

small contribution of artefacts. It is also a term used to describe robust ways of 

removing the background trend (Wit and McClure 2004). The ’spotting’ stage comes 

after filtering, which is frequently referred to as gridding. A variety of micro-array 

gridding methods have been previously suggested in the literature such as the 

Bayesian approach proposed by Hartelius and Carstensen (2003) and genetic 

algorithm approach (Morris, 2008) dividing the imagery into manageable areas. Then, 

segmentation stage (Cheriet et al., 1998) classifies pixels in a region immediately 

surrounding a gene as belonging to either the foreground or background domains. 

Finally, each spot is analysed to determine the corresponding gene expression level. 
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There have been many previous techniques proposed for dealing with the problem of 

segmentation. In ScanAlyse (Eisen, 2010) and GenePix (Anonymous, 1999) 

softwares, fixed and adaptive circle segmentation methods have been used. In these 

methods, all spots are assumed to be circular with a fixed or adaptive radius. 

However, the spots in the micro-array image vary in size and shape and are not 

printed as precisely as would be ideally desired and, hence, assuming otherwise is the 

main drawback of these methods. In the ImaGene (Anonymous, 2008) software, the 

histogram-based segmentation method has been used. This technique utilises the 

peaks in the histogram in order to specify a threshold for the discrimination between 

the gene spot and the background regions. But, this assumption could lead to incorrect 

observations. In particular, in noisy images there could be no peaks (valleys) that can 

be used to infer a threshold (the range of intensities very small). Therefore, it is 

almost impossible to find a threshold value or a set of threshold values that will result 

in a single connected region that will match the set of spot pixels that a biologist 

would determine to be the spot pixels. In the Spot (Buckley, 2000) software, Seeded 

Region Growing (SRG) (Adams and Bischof, 1994). SRG methods are perhaps the 

most powerful with respect to shape identification, but they rely on a seed growing 

methodology, as well as the selection of the initial seeds (Tran et al., 2004). 

Yang et al. (2002) showed that the background correction is an important task for 

micro-array image analysis, whose aim is to remove the contribution in intensity, 

which is not due to the hybridisation of the cDNA samples to the spotted DNA. Due 

to system imperfections and the micro-array image generation process, the resulting 

images, in addition to background fluorescence, are contaminated by various types of 

noise, biological and systematic (Fraser, 2006). Biological noise is intrinsic, and 

includes hybridisation noise and washing noise. Systematic noise includes hardware 

and random noises as well as artefacts caused by dust on the glass (Lukac et al., 

2005). These types of noises affect micro-array images, which are corrupted by 

irregularities in the shape, size and position of the spots, and are dominated by 

spatially inhomogeneous noise (Balagurunathan et al., 2004). Therefore, the 

correction of such artefacts is crucial for making accurate expression measurements 

because, unlike background fluorescence, their spatial location is unknown and can 

lead to errors propagated to all subsequent stages of the analysis (Blekas et al., 2003). 

Also, the large number of spots (usually in thousands) as well as their shape and 

position irregularities (Lukac and Smolka, 2003; Wang et al., 2003a) can propagate 

processing errors through subsequent analysis steps (Eisen and Brown, 1999; Lukac et 

al., 2004; Wang et al., 2003b). 

All the issues addressed above, in addition to the large amount of time that has to be 

spent on manually processing the micro-arrays, have stirred a great deal of research 

interest in using a fully automated procedure to accomplish the task (Bajcsy, 2004; 

Jain et al., 2002; Katzer et al., 2003). The main purpose of this paper is to follow the 

same trend by investigating the multi-view analysis and implement filtering  

techniques to micro-array images to reduce the artefacts’ noise and, at the same time, 

enhance the position of gene spots. 

 

2.2. Cellular Neural Networks 

 

A Cellular Neural/Nonlinear Network is defined by two mathematical constructs 

(Chua and Yang, 1988a, 1988b):  
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• a spatially discrete collection of continuous non-linear dynamical systems called 

cells, where information can be encrypted into each cell via three independent 

variables called input, threshold, and initial state  

• a coupling law relating one or more relevant variables of each cell to all 

neighbouring cells located within a prescribed sphere of influence Nr(ij) of radius r 

centred at ij. 

 

The analogue circuit has played a very important role in the development of modern 

electronic technology. Even in our digital computer era, analogue circuits still 

dominate such fields as communications, power, automatic control, audio and video 

electronics because of their real-time signal processing capabilities. 

Conventional digital computation methods have run into a serious speed bottleneck 

due to their serial nature. To overcome this problem, a new computation model called 

‘neural networks’ has been proposed, which is based on some aspects of neurobiology 

and adapted to integrated circuits. The key features of the neural networks are 

asynchronous parallel processing, continuous-time dynamics, and global interaction 

of network elements. Some encouraging, if not impressive, applications of neural 

networks have been proposed for various fields such as optimisation, linear and non-

linear programming, associative memory, pattern recognition and computer vision. 

The basic circuit unit of CNNs is called a cell, see Figures 2 and 3. It contains linear 

and non-linear circuit elements, which are typically linear capacitors, linear resistors, 

linear and non-linear controlled sources, and independent sources. The structure of 

CNNs is similar to that found in cellular automata; namely, any cell in a CNN is 

connected only to its neighbour cells. The adjacent cells can interact directly with 

each other. Cells not directly connected together may affect each other indirectly 

because of the propagation effects of the continuous-time dynamics of CNNs. 

 

 
 

Figure 2 A 2-dimensional CNN defined on a squared grid. The ijth cell of the array is coloured by 

black, cells that falls within the sphere of influence of neighbourhood radius r = 1 (the nearest 

neighbours) by grey. 
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Figure 3 CNN base cell 

 

As the basic framework, let us consider a two-dimensional M × N CNN array in 

which the cell dynamics is described by the following non-linear ordinary differential 

equation with linear and nonlinear terms: 

                 
 

Where 

 
 

where xij, uij and yij are the state, input and output voltages of the specific CNN cell, 

respectively. The state and output vary in time, the input is static (time-independent), 

ij refers to grid point associated with a cell on a 2D grid, and kl ∈ Nr is a grid point in 

the neighbourhood within a radius r of the cell ij. Term Aij, kl represents the linear 

feedback, Bij, kl is the linear control, while zij is the cell current (also referred to as 

bias or threshold) which could be space and time variant. The time constant of a CNN 

cell is determined by the linear capacitor (C) and the linear resistor (R), and it can be 

expressed as τ = RC. A CNN cloning template, the program of the CNN array, is 

given with the linear and non-linear terms completed by the cell current. 

The bias (also referred to as the bias map) of a CNN layer is a grey-scale image. The 

bias map can be viewed as the space variant part of the cell current. Using pre-

calculated bias maps the linear spatial adaptivity can be added to the templates in 

CNN algorithms. If the bias map is not specified it is assumed to be zero.  

 

3. The algorithm 

 

As the algorithm to be developed is concerned with rough gridding information, the 

segmentation method has to be robust. To get the preliminary coordinates of the spots, 

the robust gridding algorithm proposed by Morris (2008) has been used. When the 

girdding information is ready, each region of interest is put to the two-stage process. 

First, the multi-view analysis is carried out by applying the ITE function (Fraser et al., 

2010; Zineddin et al., 2008). Ideally, the output of this stage would be the best 
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candidate as input for the segmentation stage. However, analysing the performance of 

different ITE functions in terms of the combinations of the parameters α and β has led 

to some conclusion and future recommendations, to be discussed later. The 

intermediate output is fed into the segmentation stage. A novel CNN algorithm is then 

proposed and performed using MatCNN MATLAB toolbox from AnaLogic 

Computers Kft. The algorithm could be applied on CNN-UM or GPU. 

 

3.1. Multi-view analysis of cDNA micro-array 

 

Figure 4 illustrates the multi-view analysis process, which is called the Image 

Transformation Engine (ITE), and applied to a dual channel micro-array image. After 

various testing stages are carried out (Fraser et al., 2010; Zineddin et al., 2008) to 

determine relative performance and speed of execution, a good compromise for the 

ITE function can be found that gives the elements of the square root and inverse 

transforms, see equation (2). Ideally, such a hybrid function needs to harness the gene 

spot intensity ranges as calculated by the square root function while, at the same time, 

taking a higher percentage of the gene spot with similar background intensities from  

the inverse function. 

 

                               
 

where x is the 16-bit intensity value that is converted into 8-bits. 

 

 
 

Figure 4 Pipeline of ITE feature response curve generation  

 

Applying a smoothing operator before the actual re-scaling process takes place will be 

of additional benefit as this smoothing process can remove small region high intensity 

pixels that are of no value in a gene spot identification context. In the basic ITE 

process, the two channels of the input image are first smoothed by two different 

Median filters before the actual ITE filter itself is applied. The first Median filter 

simply parses the red and green channel surface’s independently with a sampling 

window of 5 × 5 pixels centred on each pixel in turn. This centre pixel is thus 

calculated as the median of all the pixels in the 5 × 5 region. The 5 × 5 region of the 

Median filter process effectively removes any local high-intensity pixels with the 

minimum amount of disruption passed on to the surrounding regions. 

 

The second Median filter is essentially the same as the first in that the second filter 

uses a larger window region and sampling ratio. In this case, the window measures 57 

× 57 pixels, with the sampling or centred pixel set to every forth pixel in turn. This 

second filter sampling process results in a simple estimation of the image’s 



10 

 

background features (if the median value is subtracted from every pixel in the image). 

Such smoothing operators have two positive effects on the image data: 

 

• low-level background noise is either reduced substantially or removed altogether 

from the image 

• large-scale artefacts have their internal structure removed from the image data.  

 

3.1.1. Median filter 

 

A typical micro-array image contains several kinds of artefact noises (hair, scratches 

and fingerprints, for example). If the operator of traditional micro-array image 

analysis software is to be removed from the analysis process, the input images must 

be cleaned (have noise artefacts removed). However, this cleaning process should not 

affect the gene spot intensities themselves as later stages will use such information to 

help in determining the gene spot locations. Applying a smoothing operator as the 

initial stage will be of additional benefit as this smoothing process can remove small 

region high intensity pixels that are of no value in a gene spot identification context. 

The first Median filter simply parses the red and green channel surface’s 

independently with a sampling window of 5 × 5 pixels centred on each pixel in turn. 

This centre pixel is thus calculated as the median of all the pixels in the 5 × 5 region. 

The 5 × 5 region of the Median filter process effectively removes the small artefacts 

on the array. Since a hybridised spot is much larger than the smoothing window, the 

filter will not affect the overall structure of the spot.  

 

3.1.2. Top-hat filter 

 

The Top-hat filter can be used to remove the background trend, as proposed in Yang 

et al. (2002). The background trend is estimated using the morphological opening, 

which is obtained by, first, replacing each pixel by the minimum local intensity and 

then performing a similar operation on the resulting image via the local maximum. 

For a region, we use a square of size (2m + 1) × (2m + 1) centred on each pixel, where 

m is a non-negative integer used to specify the size of the Top-hat filter. 

Mathematically, the pixels oi in the opened image are given by  

 

           
 

where pk = minj Ik+j (for | j1|, | j2| ≤ m) with I again denoting the original pixel values. 

If m is set to a very large value (i.e., m = ∞), then oi ≡ Ii and the filter has no effect. If 

the Top-hat filter is applied, then by using a structuring element obtained through 

hauto-correlation on horizontal and vertical axes mean value vectors, only the pixels 

in the spots will be substantially changed from Ii to oi. In this case, by subtracting o 

from  I,these spots will be made more distinct. 

 

3.1.3. Complex Diffusion filter 

 

It is generally accepted that images contain structures at different scales. Practically, 

in many cases, there is no clear idea about the right scale to obtain the desired 

information. Therefore, it is beneficial to have an image representation at multiple 

scales (Alvarez et al., 1993). So, a multi-scale representation of an image is an  
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ordered set of derived images intended to represent the original image at various 

levels of scale (Bovik, 2000). Having these structures eases the image’s processing in 

later stages. Originally, the Gaussian representation introduced a scale dimension by 

convolving the original image with a Gaussian function as a standard deviation σ = 

√2t. This is analogous to solving the linear diffusion equation: 

 

         
 

with a constant diffusion coefficient c = 1, I0 is the original image, It are the derived 

images (at time t) and ∇ is the gradient. 

A major breakthrough came from Perona and Malik (1990), who proposed anisotropic 

diffusion for adaptive smoothing to formulate the problem in terms of the nonlinear 

heat equation. The main benefit of anisotropic diffusion is ’edge preservation’ through 

the image processing by introducing diffusion coefficient function c(x) (Weickert, 

1998). This function encourages intra-regional smoothing over inter-regional 

smoothing (Bovik, 2000). Hence, if c(x) is allowed to vary according to the local 

image gradient, we have anisotropic diffusion. A basic anisotropic diffusion PDE is: 

 

                   
 

with c(|∇It|) is the diffusion function, I0 = I (Bovik, 2000), I0 is the original image, It 

the derived images (at time t), div is the divergence operator and ∇ is the gradient. 

Recently, Gilboa et al. (2001) generalised the linear and non-linear scale spaces to the 

Complex Diffusion processes by combining the diffusion and the free Schrödinger 

equation. In this paper, we incorporate the Complex Diffusion process (‘CLD’: 

complex valued – ramp preserving (6)) and ITE to enhance the image quality for 

further processing. The real part can be considered as filtered image and imaginary 

part can be regarded as a smoothed second derivative, by time, when the Complex 

Diffusion coefficient approaches the real axes (Gaussian and Laplacian pyramids of 

the real part). 

 

              
 

where K is a threshold parameter, Im is the imaginary part of a complex number, I is  

the image (at any given time). The phase angle θ should be small (θ << 1). 

 

3.2. Segmentation 

 

In order to qualify the different filtering combinations, we use a modified version of 

the method proposed by Rekeczky et al. (1998), where Rekeczky used both local 

threshold estimation and locally adaptive segmentation.  
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3.2.1. Local threshold estimation 

 

In the case of using Median filter or Top-hat filter, Figure 5, the threshold estimation 

is carried out by scaling the mean and standard deviation in the local neighbourhood  

window 3 × 3 in our case) and adding up to create the bias map of the adaptive 

segmentation. The result, therefore, defines a space variant threshold level as a linear 

combination of the first and second order local statistics (see Sezgin and Sankur, 

2004; Venkateswarlu and Boyle 1995). 

 

 
Figure 5 Locally adaptive segmentation, with Median and Top-hat filters 

 

 

Since the imaginary part of the Complex Diffusion filter’s output is a smoothed 

second derivative, we use the imaginary part to create the bias map of the adaptive 

segmentation, see Figure 6.  
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Figure 6 Locally adaptive segmentation, with Complex Diffusion filter 

 

 

3.2.2. Locally adaptive segmentation  

 

The segmentation process performs the following mapping (7) (grey-scale to binary): 

 

Y′ = Sr (Y, Θ)               (7) 

 

where Y is the ITE image, Θ is the space-variant threshold level (local threshold 

estimation) and Y′ is the binary output of the mapping. Sr compares the image to the 

threshold in the local neighbourhood Nr and specifies the binary output. The Cellular 

Neural Network (CNN) used to carry out the adaptive segmentation with a single 

template operation ADTHRES in equation (8) gives the binary segmentation output 

(Rekeczky, 2002). 
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4. Main results 

 

Although the ITE is proven to be efficient in Fraser et al. (2010) and Zineddin et al. 

(2008), there is still much room for further improvements. Fraser (2006) showed that 

the median average operators help to reduce small artefacts. However, there is a 

negative aspect associated with these operators. For instance, by applying the second 

level median associated with sampling of the background elements slightly more than 

the sampling of the foreground, there could be a negative effect of reducing the 

internal gene spot regions intensities.  

In this paper, the second median average operator has been replaced by either the 

morphological Top-hat filter or Complex Diffusion filter. First, the Top-hat filter is a 

good tool to estimate the background of the image, and therefore, it is important to 

test how much it preserves the edge. Remember that enhancing the spot location 

would have a positive impact when applying hybrid equation (2). Second, Complex 

Diffusion is suitable for reducing the noise and enhancing the spots’ edge, which 

would be advantageous in integrating with the ITE process as a whole. 

 

Remark 1: In this paper, a Set of 18 micro-array images have been used. Every 

image consists of 24 blocks with 32 columns and 12 rows. The first row of each block 

consists of the same 32 control genes and should be the same across each slide. The 

remaining 11 rows of each odd numbered block make up the 4224 observed genes 

which are repeated in each corresponding even numbered block. The data set is in the 

Database of the Centre of Intelligent Data Analysis (CIDA), Brunel University. The 

quantitative comparison has been done between the proposed algorithms and 

GenePix
®
 results, that have been used in Pollara et al. (2005). 

To test the methods proposed, the images in the data set are divided into many 

regions-of-interest and then processed using the selected methods with the whole 

range of α and β values, see equation (2). Figure 7 shows the percentage of each 

method getting the best output. Note that the Complex Diffusion filter gives the best 

performance for most cases (37%). 

 

 
Figure 7 The percentage of accuracy for different filters 

 

The best values for α and β specified for each method are listed in Table 1. We note 

that the best outputs for Median and Top-hat filters are with the maximum value of α. 

Although it gives a good filtering performance, the high value of α means removing a 

lot of information (e.g., spots’ intensities) which might be important. On the contrary, 
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Complex Diffusion gets the best output on the middle range of α and β, and therefore, 

keeps much more information, which might be useful in the later processing. 

 

Filter 0.5-0.5 0.6-0.4 0.7-0.3 0.8-0.2 0.9-0.1 

Median 1.04 1.04 4.16 9.37 84.37 

Top-Hat 0.0 10.41 15.62 10.41 63.54 

CDiff 28.12 29.16 16.66 10.41 13.54 
Table 1 The best α, β values (percent) (see equation (2) 

 

 

In order to quantify the performance of different filtering methods, a quality measure 

is required that allows the judgement of how well the calculated template fits the 

genes’ spot position. Note that all the methods produce a mask that classifies the 

pixels as belonging to either signal (the gene spots) or noise (the local background). 

For this purpose, an image quality measurement, known as the Peak Signal-to-Noise 

Ratio (PSNR) (Fraser et al., 2004), is used and the rational is justified as follows. 

The Mean Square Error (MSE) and the PSNR are the two error metrics frequently 

used to compare image compression quality. The MSE represents the cumulative 

squared error between the compressed and the original image, whereas PSNR 

represents a measure of the peak error. The lower the value of MSE, the lower is the 

error. The PSNR is most commonly used as a measure of quality of reconstruction of 

lossy compression codecs (e.g., for image compression). The signal in this case is the 

original data, and the noise is the error introduced by compression. Though a higher 

PSNR would normally indicate that the reconstruction is of higher quality, in some 

cases one reconstruction with a lower PSNR may appear to be closer to the original 

than another.  

To compute the PSNR, the block first calculates the mean-squared error using the 

following equation: 

 

       
 

where M and N are the numbers of rows and columns in the input images, 

respectively. Then we obtain the PSNR using the following equation: 

 

                
 

where R is the maximum fluctuation in the input image data type. For example, if the 

input image has a double-precision floating-point data type, then R is 1. If it has an 8 

– bit unsigned integer data type, R is 255, etc. Based on the above discussion, the 

three methods are applied on a set of raw images to produce masks, which are then 

scored by using the criterion of PSNR. Figure 8, as an example of the scoring outputs, 

shows how promising the complex filter performs when combined with the multi-

view process. From Figure 8, we directly compare PSNR values determined by the 

commercial software GenePix
®
 and our algorithm (CLD) for the individual images. 

CLD has shown a marked 2–12 dB improvement. essentially, the CLD process has 
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consistently outperformed the human expert using GenePix in terms of gene spot 

identification. 

 

 
Figure 8 PSNR for the dataset 

 

 

5. Conclusions 

 

This paper has dealt with the problem of how to improve the processes involved in the 

analysis of micro-array image data. The main focus is to clarify an image’s feature 

space in an unsupervised manner. Rather than using the raw micro-array image, it has 

been suggested that producing multiple views of the image data such that emphasis is 

placed on certain frequencies or regions of interest would not only be advantageous, 

but more effective in terms of the overall goal. Different combinations of filtering 

methods incorporated as a component of multi-view analysis process have been 

investigated by applying them a set of real-world cDNA micro-array images. Both 

Median and Top-hat filters have shown good performance over data-set images. 

Although the best optimisation parameters (α and β) could have negative effects on 

the segmentation process by reducing gene spot regions intensities, using the 

Complex Diffusion filter has proven to be the best among the tested filters. 
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