885 research outputs found

    Group Communication Patterns for High Performance Computing in Scala

    Full text link
    We developed a Functional object-oriented Parallel framework (FooPar) for high-level high-performance computing in Scala. Central to this framework are Distributed Memory Parallel Data structures (DPDs), i.e., collections of data distributed in a shared nothing system together with parallel operations on these data. In this paper, we first present FooPar's architecture and the idea of DPDs and group communications. Then, we show how DPDs can be implemented elegantly and efficiently in Scala based on the Traversable/Builder pattern, unifying Functional and Object-Oriented Programming. We prove the correctness and safety of one communication algorithm and show how specification testing (via ScalaCheck) can be used to bridge the gap between proof and implementation. Furthermore, we show that the group communication operations of FooPar outperform those of the MPJ Express open source MPI-bindings for Java, both asymptotically and empirically. FooPar has already been shown to be capable of achieving close-to-optimal performance for dense matrix-matrix multiplication via JNI. In this article, we present results on a parallel implementation of the Floyd-Warshall algorithm in FooPar, achieving more than 94 % efficiency compared to the serial version on a cluster using 100 cores for matrices of dimension 38000 x 38000

    A performance focused, development friendly and model aided parallelization strategy for scientific applications

    Get PDF
    The amelioration of high performance computing platforms has provided unprecedented computing power with the evolution of multi-core CPUs, massively parallel architectures such as General Purpose Graphics Processing Units (GPGPUs) and Many Integrated Core (MIC) architectures such as Intel\u27s Xeon phi coprocessor. However, it is a great challenge to leverage capabilities of such advanced supercomputing hardware, as it requires efficient and effective parallelization of scientific applications. This task is difficult mainly due to complexity of scientific algorithms coupled with the variety of available hardware and disparate programming models. To address the aforementioned challenges, this thesis presents a parallelization strategy to accelerate scientific applications that maximizes the opportunities of achieving speedup while minimizing the development efforts. Parallelization is a three step process (1) choose a compatible combination of architecture and parallel programming language, (2) translate base code/algorithm to a parallel language and (3) optimize and tune the application. In this research, a quantitative comparison of run time for various implementations of k-means algorithm, is used to establish that native languages (OpenMP, MPI, CUDA) perform better on respective architectures as opposed to vendor-neutral languages such as OpenCL. A qualitative model is used to select an optimal architecture for a given application by aligning the capabilities of accelerators with characteristics of the application. Once the optimal architecture is chosen, the corresponding native language is employed. This approach provides the best performance with reasonable accuracy (78%) of predicting a fitting combination, while eliminating the need for exploring different architectures individually. It reduces the required development efforts considerably as the application need not be re-written in multiple languages. The focus can be solely on optimization and tuning to achieve the best performance on available architectures with minimized investment in terms of cost and efforts. To verify the prediction accuracy of the qualitative model, the OpenDwarfs benchmark suite, which implements the Berkeley\u27s dwarfs in OpenCL, is used. A dwarf is an algorithmic method that captures a pattern of computation and communication. For the purpose of this research, the focus is on 9 application from various algorithmic domains that cover the seven dwarfs of symbolic computation, which were identified by Phillip Colella, as omnipresent in scientific and engineering applications. To validate the parallelization strategy collectively, a case study is undertaken. This case study involves parallelization of the Lower Upper Decomposition for the Gaussian Elimination algorithm from the linear algebra domain, using conventional trial and error methods as well as the proposed \u27Architecture First, Language Later\u27\u27 strategy. The development efforts incurred are contrasted for both methods. The aforesaid proposed strategy is observed to reduce the development efforts by an average of 50%

    MPI+X: task-based parallelization and dynamic load balance of finite element assembly

    Get PDF
    The main computing tasks of a finite element code(FE) for solving partial differential equations (PDE's) are the algebraic system assembly and the iterative solver. This work focuses on the first task, in the context of a hybrid MPI+X paradigm. Although we will describe algorithms in the FE context, a similar strategy can be straightforwardly applied to other discretization methods, like the finite volume method. The matrix assembly consists of a loop over the elements of the MPI partition to compute element matrices and right-hand sides and their assemblies in the local system to each MPI partition. In a MPI+X hybrid parallelism context, X has consisted traditionally of loop parallelism using OpenMP. Several strategies have been proposed in the literature to implement this loop parallelism, like coloring or substructuring techniques to circumvent the race condition that appears when assembling the element system into the local system. The main drawback of the first technique is the decrease of the IPC due to bad spatial locality. The second technique avoids this issue but requires extensive changes in the implementation, which can be cumbersome when several element loops should be treated. We propose an alternative, based on the task parallelism of the element loop using some extensions to the OpenMP programming model. The taskification of the assembly solves both aforementioned problems. In addition, dynamic load balance will be applied using the DLB library, especially efficient in the presence of hybrid meshes, where the relative costs of the different elements is impossible to estimate a priori. This paper presents the proposed methodology, its implementation and its validation through the solution of large computational mechanics problems up to 16k cores

    NASA high performance computing and communications program

    Get PDF
    The National Aeronautics and Space Administration's HPCC program is part of a new Presidential initiative aimed at producing a 1000-fold increase in supercomputing speed and a 100-fold improvement in available communications capability by 1997. As more advanced technologies are developed under the HPCC program, they will be used to solve NASA's 'Grand Challenge' problems, which include improving the design and simulation of advanced aerospace vehicles, allowing people at remote locations to communicate more effectively and share information, increasing scientist's abilities to model the Earth's climate and forecast global environmental trends, and improving the development of advanced spacecraft. NASA's HPCC program is organized into three projects which are unique to the agency's mission: the Computational Aerosciences (CAS) project, the Earth and Space Sciences (ESS) project, and the Remote Exploration and Experimentation (REE) project. An additional project, the Basic Research and Human Resources (BRHR) project exists to promote long term research in computer science and engineering and to increase the pool of trained personnel in a variety of scientific disciplines. This document presents an overview of the objectives and organization of these projects as well as summaries of individual research and development programs within each project

    Enabling Ada and OpenMP runtimes interoperability through template-based execution

    Get PDF
    The growing trend to support parallel computation to enable the performance gains of the recent hardware architectures is increasingly present in more conservative domains, such as safety-critical systems. Applications such as autonomous driving require levels of performance only achievable by fully leveraging the potential parallelism in these architectures. To address this requirement, the Ada language, designed for safety and robustness, is considering to support parallel features in the next revision of the standard (Ada 202X). Recent works have motivated the use of OpenMP, a de facto standard in high-performance computing, to enable parallelism in Ada, showing the compatibility of the two models, and proposing static analysis to enhance reliability. This paper summarizes these previous efforts towards the integration of OpenMP into Ada to exploit its benefits in terms of portability, programmability and performance, while providing the safety benefits of Ada in terms of correctness. The paper extends those works proposing and evaluating an application transformation that enables the OpenMP and the Ada runtimes to operate (under certain restrictions) as they were integrated. The objective is to allow Ada programmers to (naturally) experiment and evaluate the benefits of parallelizing concurrent Ada tasks with OpenMP while ensuring the compliance with both specifications.This work was supported by the Spanish Ministry of Science and Innovation under contract TIN2015-65316-P, by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreements no. 611016 and No 780622, and by the FCT (Portuguese Foundation for Science and Technology) within the CISTER Research Unit (CEC/04234).Peer ReviewedPostprint (published version

    Enhancing speed and scalability of the ParFlow simulation code

    Full text link
    Regional hydrology studies are often supported by high resolution simulations of subsurface flow that require expensive and extensive computations. Efficient usage of the latest high performance parallel computing systems becomes a necessity. The simulation software ParFlow has been demonstrated to meet this requirement and shown to have excellent solver scalability for up to 16,384 processes. In the present work we show that the code requires further enhancements in order to fully take advantage of current petascale machines. We identify ParFlow's way of parallelization of the computational mesh as a central bottleneck. We propose to reorganize this subsystem using fast mesh partition algorithms provided by the parallel adaptive mesh refinement library p4est. We realize this in a minimally invasive manner by modifying selected parts of the code to reinterpret the existing mesh data structures. We evaluate the scaling performance of the modified version of ParFlow, demonstrating good weak and strong scaling up to 458k cores of the Juqueen supercomputer, and test an example application at large scale.Comment: The final publication is available at link.springer.co

    PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code Generation

    Full text link
    High-performance computing has recently seen a surge of interest in heterogeneous systems, with an emphasis on modern Graphics Processing Units (GPUs). These devices offer tremendous potential for performance and efficiency in important large-scale applications of computational science. However, exploiting this potential can be challenging, as one must adapt to the specialized and rapidly evolving computing environment currently exhibited by GPUs. One way of addressing this challenge is to embrace better techniques and develop tools tailored to their needs. This article presents one simple technique, GPU run-time code generation (RTCG), along with PyCUDA and PyOpenCL, two open-source toolkits that support this technique. In introducing PyCUDA and PyOpenCL, this article proposes the combination of a dynamic, high-level scripting language with the massive performance of a GPU as a compelling two-tiered computing platform, potentially offering significant performance and productivity advantages over conventional single-tier, static systems. The concept of RTCG is simple and easily implemented using existing, robust infrastructure. Nonetheless it is powerful enough to support (and encourage) the creation of custom application-specific tools by its users. The premise of the paper is illustrated by a wide range of examples where the technique has been applied with considerable success.Comment: Submitted to Parallel Computing, Elsevie

    Semiannual final report, 1 October 1991 - 31 March 1992

    Get PDF
    A summary of research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period 1 Oct. 1991 through 31 Mar. 1992 is presented
    • …
    corecore