
Clemson University
TigerPrints

All Theses Theses

12-2016

A performance focused, development friendly and
model aided parallelization strategy for scientific
applications
Anagha S. Joshi
Clemson University

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Joshi, Anagha S., "A performance focused, development friendly and model aided parallelization strategy for scientific applications"
(2016). All Theses. 2567.
https://tigerprints.clemson.edu/all_theses/2567

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2567&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2567&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2567&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2567&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/2567?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2567&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

A performance focused, development friendly and model
aided parallelization strategy for scientific applications

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Computer Engineering

by

Anagha S. Joshi

December 2016

Accepted by:

Dr. Melissa C. Smith, Committee Chair

Dr. Harlan B. Russell

Dr. Richard R. Brooks

Abstract

The amelioration of high performance computing platforms has provided unprece-

dented computing power with the evolution of multi-core CPUs, massively parallel architec-

tures such as General Purpose Graphics Processing Units (GPGPUs) and Many Integrated

Core (MIC) architectures such as Intel’s Xeon phi coprocessor. However, it is a great chal-

lenge to leverage capabilities of such advanced supercomputing hardware, as it requires

efficient and effective parallelization of scientific applications. This task is difficult mainly

due to complexity of scientific algorithms coupled with the variety of available hardware

and disparate programming models.

To address the aforementioned challenges, this thesis presents a parallelization

strategy to accelerate scientific applications that maximizes the opportunities of achieving

speedup while minimizing the development efforts. Parallelization is a three step process (1)

choose a compatible combination of architecture and parallel programming language, (2)

translate base code/algorithm to a parallel language and (3) optimize and tune the appli-

cation. In this research, a quantitative comparison of run time for various implementations

of k-means algorithm, is used to establish that native languages (OpenMP, MPI, CUDA)

perform better on respective architectures as opposed to vendor-neutral languages such as

OpenCL. A qualitative model is used to select an optimal architecture for a given applica-

tion by aligning the capabilities of accelerators with characteristics of the application. Once

the optimal architecture is chosen, the corresponding native language is employed. This

approach provides the best performance with reasonable accuracy (78%) of predicting a

fitting combination, while eliminating the need for exploring different architectures individ-

ii

ually. It reduces the required development efforts considerably as the application need not

be re-written in multiple languages. The focus can be solely on optimization and tuning

to achieve the best performance on available architectures with minimized investment in

terms of cost and efforts.

To verify the prediction accuracy of the qualitative model, the OpenDwarfs [1]

benchmark suite, which implements the Berkeley’s dwarfs in OpenCL, is used. A dwarf

is an algorithmic method that captures a pattern of computation and communication [2].

For the purpose of this research, the focus is on 9 application from various algorithmic

domains that cover the seven dwarfs of symbolic computation, which were identified by

Phillip Colella [3], as omnipresent in scientific and engineering applications. To validate the

parallelization strategy collectively, a case study is undertaken. This case study involves

parallelization of the Lower Upper Decomposition for the Gaussian Elimination algorithm

from the linear algebra domain, using conventional trial and error methods as well as the

proposed “Architecture First, Language Later” strategy. The development efforts incurred

are contrasted for both methods. The aforesaid proposed strategy is observed to reduce the

development efforts by an average of 50%.

iii

Dedication

I dedicate this thesis to my family for their constant support and encouragement.

iv

Acknowledgements

I would like to acknowledge the invaluable guidance and support of my advisor Dr.

Melissa C. Smith (who deserves all of the credit and none of the blame!). I thank my

committee members Dr. Harlan B. Russell and Dr. Richard Brooks for their review and

valuable comments on this thesis. I would also like to acknowledge the members of Future

Computing Technology Lab of Clemson University for their support and cooperation. My

gratitude towards my family, without them this thesis would not have been possible. Finally,

I would like to thank Clemson University for the excellent academic environment throughout

the program.

v

Table of Contents

Page

Title Page . i

Abstract . ii

Dedication . iv

Acknowledgments . v

List of Tables . viii

List of Figures . ix

1 Introduction . 1
1.1 Motivation . 1
1.2 Our Work . 2
1.3 Thesis Outline . 4

2 Related Work . 5
2.1 Review Of Performance Modelling Approaches 5
2.2 Parallel Architecture Studies . 7
2.3 Parallel Programming Models . 8
2.4 Summary Of Literature Review . 9

3 Background . 10
3.1 Parallel Programming Platforms . 10
3.2 Computational Accelerators . 14
3.3 Parallel Programming Models . 19
3.4 Portability Discussion . 21
3.5 Summary Of Background . 22

4 Experimental Design . 23
4.1 Hypothesis and Research Question . 23
4.2 Methodology . 24
4.3 Measures . 29
4.4 Setup . 31

vi

Page

4.5 Summary Of Experimental Design . 32

5 Case Study: Linear Algebra - Lower Upper Decomposition 33
5.1 Introduction to solving system of linear equations 33
5.2 Mathematical Background . 34
5.3 Important variation for LU Decomposition Algorithm 39
5.4 Parallel Implementation Methodology . 40
5.5 Summary Of Case Study: LU Decomposition Algorithm 42

6 Results and Analysis . 44
6.1 Optimal Language : Quantitative Comparison Results 44
6.2 Optimal Architecture: Verification of Qualitative Model 45
6.3 Case Study Observations : LU Decomposition 60
6.4 Summary Of Results and Analysis . 66

7 Conclusion and Future Work . 67
7.1 Summary . 67
7.2 Conclusion . 69
7.3 Future Work . 70

Bibliography . 72

vii

List of Tables

Table Page

4.1 List of Factors that Affect Performance . 27
4.2 Device Specifications . 31

6.1 Dense Linear Algebra : K-Means Algorithm run-time (sec), varying data sizes 47
6.2 Sparse Linear Algebra: Sparse Matrix Vector multiply (SPMV) run-time

(sec), varying data sizes . 48
6.3 Fast Fourier Transform (FFT) run-time (m-sec), varying data sizes 50
6.4 N-body Methods: GEM run-time (sec), varying data sizes 51
6.5 Structured Grids: SRAD run-time (sec), varying data sizes 53
6.6 Unstructured Grid: Computational Fluid Dynamics (CFD) run-time (sec),

varying data sizes . 54
6.7 Dynamic Programming: Needleman-Wunsch (NW) run-time (sec), varying

data sizes . 56
6.8 Graphical Models : Baum-Welch hidden Markov model (BW-HMM) run-

time (sec), varying data sizes . 57
6.9 Combinational Logic : Cyclic Redundancy Check (CRC) run-time (sec),

varying data sizes . 58
6.10 Qualitative model verification: Summary of results for 9 tests/applications . 60
6.11 LU Decomposition : Run Time comparison of implementations 63
6.12 Quantified parallelization efforts for trial and error methods 64
6.13 Quantified parallelization efforts for “Architecture First, Language Later”

parallelization strategy . 65

viii

List of Figures

Figure Page

1.1 Flowchart for Strategic Process of Parallelization. 3

3.1 Multicore vs Manycore . 11
3.2 Shared Memory - Uniform Memory Access (UMA) 12
3.3 Shared Memory - Non-Uniform Memory Access (NUMA) 13
3.4 Distributed Memory . 13
3.5 Multicore vs Manycore . 14
3.6 How GPU Acceleration Works [4] . 15
3.7 Simplified block diagram of the NVIDIA Tesla K20 GPU [5] 16
3.8 Diagram of a Streaming Processor of the Tesla K20 [5] 17
3.9 Diagram of Intel Xeon Phi Coprocessor [6] 18
3.10 Diagram of a Phi processor core [6] . 18

4.1 Mapping between Application, Architecture and Programming Model Domains 25
4.2 Example Mapping between xyz Application to Optimal Architecture and

Programming Model . 26

6.1 Performance Comparison for K-means Implementations 45
6.2 Dense Linear Algebra: K-Means Algorithm results, varying data sizes . . . 47
6.3 Sparse Linear Algebra: Sparse Matrix Vector multiply (SPMV) results, vary-

ing data sizes . 49
6.4 Spectral Methods: Fast Fourier Transform (FFT) results, varying data sizes 50
6.5 N-body Methods: GEM results, varying data sizes 52
6.6 Structured Grids: SRAD results, varying data sizes 53
6.7 Unstructured Grid: Computational Fluid Dynamics (CFD) results, varying

data sizes . 55
6.8 Dynamic Programming: Needleman-Wunsch (NW) results, varying data sizes 56
6.9 Graphical Models : Baum-Welch hidden Markov model (BW-HMM) results,

varying data sizes . 58
6.10 Combinational Logic : Cyclic Redundancy Check (CRC) results, varying

data sizes . 59
6.11 MPI Performance for LU . 61
6.12 CUDA Performance for LU . 62
6.13 Comparison of Performance for LU Implementation 63

ix

Chapter 1

Introduction

1.1 Motivation

As the parallel computing hardware is evolving, high performance computers are

assuming an increasingly central role in scientific research. High performance computing

has allowed scientist to reduce time to solution, enrich complexity of models, and enhance

realism of simulations. However, exploitation of these supercomputing capabilities is a chal-

lenge due to complexity of the scientific applications, lack of inherent parallelism and need

to be well aligned with the latest available hardware such as multi-core processors, GPGPUs

and Many Integrated Core architecture co-processors each having disparate programming

models. These new systems, although all parallel, have varying capabilities making one

more suitable for certain application than its counterparts. However, no straightforward

solution exists to answer the question - which of the available architecture would yield best

performance?

The state of practice approach in academia and industry is either trial and error

methods or selection based on parameters other than fitness. Trial and error methods are

costly in terms of time, resources and efforts, which is often limiting. Selection based on

factors such as cost, availability and/or programmability often hampers the achievable per-

formance for the given application. Thus, it is of great importance to define a strategy

1

for parallelization that would map the application to an architecture without any trial and

error methods. Architecture specific tools can then be used to translate and optimize the

given application to achieve best performance with the least amount of development efforts.

Having a qualitative model that predicts a suitable architecture for a given application with

reasonable accuracy is also valuable to assist a job scheduler in a heterogeneous cluster set-

tings. Mapping applications to matching architectures can yield considerable improvement

in performance and resource management. However, a complete solution for such a setting

would call for a more complex algorithm along with the predictive model for an efficient

and effective scheduling. It is out of scope for this research.

1.2 Our Work

This thesis presents a 3 step “Architecture First, Language Later” parallelization

strategy: (1) choose a compatible combination of architecture and parallel programming

language, (2) translate base code/algorithm to a parallel language and (3) optimize and

tune the application.

The K-means algorithm from the Linear Algebra domain is used as a an example to

compare the run times on different architectures in different languages for a fixed input size

and parameters. This example establishes the extent of performance variability between

each combination and suggests that a native language achieves best performance for any

given architecture. A qualitative model proposed in [7], uses four common parameters to

map applications to the architectures. The work in this thesis verifies the prediction accu-

racy of said model by using 9 applications from the OpenDwarfs Benchmark. The verified

model predicts the optimal architecture for the given application. Thus, the architecture

predicted by the qualitative model along with corresponding native language yields the op-

timal combination mentioned in step 1. Translation of code to a native language as the 2nd

step, involves usage of language specific standards and documentation. The details of the

optimization techniques suggested as step 3 are out of scope for this work.

2

Figure 1.1: Flowchart for Strategic Process of Parallelization.

3

Figure 1.1 depicts the steps for strategic parallelization using “Architecture First,

Language Later” strategy. The effectiveness of the aforesaid parallelization strategy is

investigated by a parallelization experiment for the Lower Upper Decomposition algorithm

from the Linear Algebra domain. This case study employs trial and error methods as well

as the proposed “Architecture First, Language Later” parallelization strategy.

The trial and error methods involve development of code in MPI, CUDA and

MPI+CUDA hybrid implementation. In comparison, parallelization using “Architecture

First, Language Later” strategy is used to approach the same problem, which provides

final results with code conversion for only the selected parallel programming model, as op-

posed to multiple models in trial and error method. The two methods are evaluated based

on achieved results; i.e. run time of implementations, parallelization efforts in terms of

man-hours for code conversion, amount of necessary accesses to hardware and degree of

knowledge and expertise required for the method. The overall results and efforts incurred

are contrasted for both methods.

1.3 Thesis Outline

Chapter 2 reviews the relevant literature. Chapter 3 provides details of popular par-

allel programming platforms and their corresponding programming models along with the

background information about benchmarks and algorithms used in this research study. This

chapter also discusses the challenges associated with portability among these architectures.

Chapter 4 explores experimental design and details the claims regarding the effectiveness of

the “Architecture First, Language Later” parallelization strategy. This chapter additionally

includes details of the methodology and measures defined to investigate these claims. Chap-

ter 5 describes the case study with contrasting approaches for parallelization. Chapter 6

presents the results for individual steps of the aforementioned parallelization strategy along

with observations from the case study. The thesis concludes in Chapter 7 with conclusions

and suggestions for future work.

4

Chapter 2

Related Work

The purpose of this chapter is to review some of the prominent literature related to

the performance-centric parallelization approaches and aspects of portability. Section 2.1

reviews results from various studies summarizing the performance modelling approaches

and factors affecting performance of parallel applications. Section 2.2 examines the ar-

chitecture studies conducted for multi-core CPUs, General Purpose GPUs (GPGPU) and

Many Integrated Core (MIC) architectures such as the Xeon Phi. Section 2.3 highlights the

diversity among parallel programming models. The chapter is concluded with a summary

in Section 2.4.

2.1 Review Of Performance Modelling Approaches

In the field of accelerator-based computing, there is an absence of a reliable reference

model for performance prediction and tuning. In [8], authors survey performance models

for parallel applications running on heterogeneous platforms, including the most popular

families of accelerators: General Purpose GPUs (GPGPUs) and Intel’s Xeon Phi. The

paper identifies three main approaches to modeling the performance of parallel systems:

analytical modeling, machine learning and simulation. It is concluded that no accurate

model exists that is valid for a wide set of architectures. There is a trade off between

5

accuracy and generality. Even though device-specific models are found to be more accurate,

they can become obsolete very quickly due to the fast pace at which manufacturers market

products with additional and improved features. Learning from these observations, this

research proposes a more generic yet reasonably accurate analytical hybrid approach for

performance modelling.

In [9], the author makes a significant effort toward developing a multi-suite perfor-

mance prediction model for heterogeneous systems. The most note-worthy is the definition,

reasoning and validation of a hybrid approach that combines quantitative and qualitative

modelling methods. By evaluating both methods for modelling GPGPU’s computation and

communication patterns, the author asserts that quantitative methods are more suitable for

less complex systems, which can be described using a small set of measurable parameters,

while qualitative methods are better suited for complex systems with reproducible character-

istics. Based on these assertions, the hybrid approach combined the subjective-analytical

model for GPGPU computations and objective-analytical models for communications to

perform adequately fruitful performance predictions. With prediction error rates less than

5%, this approach is validated for precise predictions.

Bhuiyan [10] introduced a Fitness performance model to predict the theoretical

best accelerator, or group of accelerators, for an application. The fitness model uses total

number of flops, device-to-device transfer, and host-to-device transfer sizes for application

characterization. In addition, characteristics of accelerators, such as time required for the

execution of floating point operations (SFLOP), device to device transfer (SDBT), and

host to device transfer (SHDT) are utilized. Theoretical run-time calculations, based on

the aforementioned size and time quantities, are then used to predict the ranks of the

accelerators for the given application. The model requires highly quantitative data, which

is difficult to obtain especially for new applications. Additionally, the dependency of the

model on the quantitative hardware characteristics makes the model highly susceptible to

variations in versions/models in the same architecture family. Thus, the qualitative model

used as the framework in this research aims to extend the basic idea of fitness model while

6

making it more generic and robust.

2.2 Parallel Architecture Studies

High Performance Computing (HPC) is now a multi/many-core world. The HPC

community seems to be divided when it comes to selecting either multi-core CPU, GPGPU

or MIC as the best performing architecture. Depending on the application characteristics,

the unique characteristics of the architecture results in varying degrees of achieved per-

formance. Thus there is no scale to rank the given architectures unless it is application

dependent.

Some literature seems to favour the relatively new MIC architecture introduced by

Intel, i.e. Intel Xeon Phi. In [11], authors have evaluated the performance of sparse matrix

multiplication kernels on the Intel Xeon Phi. Their results show that Xeon Phi’s sparse

kernel performance is very promising and even better than that of cutting-edge general

purpose processors and GPUs.They have attributed this success to Xeon Phi’s 60 cores,

wide registers and vectorization capabilities. Additionally the experiments suggested that

having a relatively small 512kB L2 cache per core is not a problem for Intel Xeon Phi.

However it is for a particular class of applications and thus this may not hold true for other

application domains.

In contrast to the paper mentioned above, Abdullah, kok Yong, Karuppiah and

Chong [12] have demonstrated that the GPU outperforms MIC for a Multi-Keyword Text

Search algorithm. For their comparison study, they have implemented different optimiza-

tions on both accelerators to fully utilize their architectural advantages such as vectorization

and branch divergence method on the MIC, and coalesced memory and shared memory ac-

cesses for the GPU. They have used use NVIDIA K20c and NVIDIA K40 for GPUs and

Intel® Xeon Phi™ 5100 for the MIC.

While accelerators have been fairly popular, in some cases multi-core CPUs tend

to be a more apt choice. One such instance is the paper titled ”Believe It or Not! Multi-

7

core CPUs can Match GPU Performance for a FLOP-Intensive Application!”[13]. The

authors evaluated performance of a real-world image processing application that uses a

cross-correlation algorithm to compare a given image with a reference one. They suggest

that in this particular scenario, the GPU suffered due to (1) a smaller shared memory, (2)

unaligned device memory access patterns, (3) expensive atomic operations, and (4) weaker

single-thread performance.

There are a large number of publications targeted to a specific architecture or ap-

plication domain. However, a comprehensive literature review covering a variety of popular

architecture families for a range of scientific applications is sparse. One prominent paper

[14], compares performance of CPUs, GPUs, and MICs for operations with different data

access patterns (regular and irregular), computation intensity, and types of parallelism,

from a class of applications with digital pathology as the primary application. The authors

have demonstrated that different types of co-processors are more appropriate for specific

data access patterns and types of parallelism through the experimental results.

2.3 Parallel Programming Models

The coding of a parallel application is generally strongly influenced by the choice

of parallel hardware, even though there exists platform independent solutions. The most

popular schemes employ either MPI[15], OpenMP[16], CUDA[17], OpenCL [18] or hybrid

approaches such as MPI + X where X is OpenMP or CUDA or OpenACC[19]. OpenCL

(Open Computing Language) is the open, royalty-free standard for cross-platform, parallel

programming and thus is supported by most architectures.

In [20] the authors compare CUDA and OpenCL implementations of a Monte Carlo

Chemistry application [20]. The paper showed OpenCL providing code portability but

not necessarily providing performance. Furthermore, they showed that platform-specific

languages often, but not always, outperformed OpenCL. Other studies [21], [22] also suggest

that OpenCL provides portability at the cost of partial performance degradation.

8

2.4 Summary Of Literature Review

In this chapter, we discussed some of the influential literature targeting perfor-

mance modeling approaches. Some key take-aways were the trade offs between accuracy

and generality, the idea of a fitness matching model and hybrid approach technique that

combines qualitative and quantitative models into one. Further, we explained that building

on these lessons this research proposes a more generic model with reasonable prediction

accuracy aided by a hybrid approach of qualitative modeling for fitness and quantitative

modeling for selecting programming methodology. Additionally, we discussed architecture

studies that demonstrate that a specific type of processor or co-processor/accelerator is

more appropriate for certain type of applications with unique set of computation and com-

munication patterns. The next chapter provides a detailed background information relevant

to this thesis.

9

Chapter 3

Background

This chapter will introduce parallel programming platforms such as multicore and

manycore processors and cover the details of computational accelerators in particular Nvidia

K20 GPU and Intel Xeon Phi. Some of the popular programming models such as the Com-

pute Unified Device Architecture (CUDA) by Nvidia, Open Computing Language (OpenCL)

and Message Passing Interface (MPI) are detailed in the section 3.3. This chapter also dis-

cusses the cost of code portability.

3.1 Parallel Programming Platforms

In [23], van der Steen and Dongarra have provided a regularly updated complete

performance overview of recent supercomputers. Although this thesis can not cover the

extensive overview of current parallel computer technology, key architecture concepts are

discussed in the following subsections 3.1.1, 3.1.2 and 3.1.3.

3.1.1 Flynn’s Taxonomy

A widely used taxonomy for describing concurrency and data streams in a given

parallel architecture was presented by Flynn [24]. Flynn’s taxonomy categorizes computers

depending on the number of instruction streams and data streams, where ’stream’ is a

10

sequence of instruction or data on which the computer performs operations. Out of the four

possibilities as seen in Figure 3.1 [25], Single Instruction multiple Data (SIMD) and Multiple

Instruction Multiple Data (MIMD) variants are more dominating concepts today.[26]

Figure 3.1: Multicore vs Manycore

Single Instruction Multiple Data SIMD: A single instruction stream concurrently

operates on multiple data streams to achieve parallel processing on whether single core or

multiple cores. Examples include vector processors, modern superscalar microprocessors,

and Graphics Processing Units (GPUs).

Multiple Instruction Multiple DataMIMD: Multiple instruction streams on multi-

ple processors process different data items in parallel resulting in parallelized operations.

Single Instruction Single Data (SISD): A single instruction stream operating on a

single data stream is the serial form of computation with no concurrency in operation.

Multiple Instruction Single Data (MISD): This format is not regarded as a useful

paradigm in practice.

11

3.1.2 Shared Memory vs Distributed Memory

Shared Memory: In shared memory organization, as the name suggests, all pro-

cessors share the memory modelled as a global address space. All processors can view the

changes made to a memory location by any other processor. Shared memory models are

further classified into Uniform Memory Access (UMA) and Non-Uniform Memory Access

(NUMA), based upon the time required to access the shared memory.[27]

Uniform Memory Access (UMA): As depicted by Figure 3.2[27], identical processors

are symmetrically, i.e. symmetrical multi-processors (SMP), connected to shared memory

with equal access rights and access times. Any update to a memory location by one of the

processors will be immediately available to all other processors. Thus, this configuration is

sometimes referred to as Cache Coherent UMA (CC-UMA).

Figure 3.2: Shared Memory - Uniform Memory Access (UMA)

Non-Uniform Memory Access (NUMA): This is a configuration where two or more

SMPs are physically linked as seen in Figure 3.3[27]. The access time varies depending on

the location of the memory and the processor accessing it and hence the name non-uniform.

12

Figure 3.3: Shared Memory - Non-Uniform Memory Access (NUMA)

The advantage of shared memory organization is that the global address space sim-

plifies the programmer’s view of memory, however, scaling is a challenging task as more

CPUs are added.

Distributed Memory: Distributed memory systems do not have a global memory

space. As observed in Figure 3.4 [27] utilizes a communication network to connect proces-

sors. Each processor has a private local memory. When a processor needs to access data

from another processor, it is the programmer’s responsibility to explicitly define data com-

munication via creating tasks and maintaining synchronization between tasks. The obvious

advantage of distributed memory organization is scalability as adding new processors to

the system is relatively easy. However, the programmer must bare the burden of memory

management.

Figure 3.4: Distributed Memory

13

3.1.3 Multicore vs Manycore

Parallel computers are computers with multiple processing units. These multiple

processing units can be in the form of multicore or manycore. A famous quote by Seymour

Cray states, “If you were plowing a field, which would you rather use: two strong oxen or

1,024 chickens?”. Two strong oxen refers to multicore processors which are designed for

latency and 1024 chickens refers to manycore processors that are designed for throughput

as depicted in Figure 3.5.

Figure 3.5: Multicore vs Manycore

3.2 Computational Accelerators

In High performance computing, the community is not satisfied with currently avail-

able compute power and thus there are a lot of initiatives other than using multiple proces-

sors for better performance. A class of such advances is hardware accelerators. An accel-

erator is a stand-alone device that is added to a general-purpose computer to help improve

performance. General Purpose Graphics Processing Units (GPGPUs), Field Programmable

Gate Arrays(FPGAs), Many Integrated Cores cards, etc. are examples of computational

accelerators.

Nvidia K20 GPU Graphics processing units (GPU) are intended to render graph-

14

ics. GPUs can also be used in conjunction with CPU to perform general purpose com-

putation which is traditionally handled by the central processing unit (CPU). Graphics

processing units (GPU) together with CPUs when used to achieve accelerated computation

via parallel programming, GPU is referred to as General Purpose Graphics Processing Unit

(GP-GPU). Significant performance gain is achieved by offloading compute-intensive oper-

ations to the GPU, while the remaining code still runs on the CPU as depicted in Figure

3.6.

Figure 3.6: How GPU Acceleration Works [4]

NVIDIA is a leading company in the GPU field. A simplified block diagram for Tesla

Kepler K20 GPU model is shown in Figure 3.7. There are 15 Streaming Multiprocessors

(SMXs) with 192 CUDA cores each. A diagram of an SMX with some internal detail is

given in figure 3.8 [23].

The hardware organization of a GPU can be explained as follows: 1 to 3 dimensional

thread blocks constitute a grid. Each individual thread block consists of 1-3 dimensional

group of threads. The CUDA work distributor assigns thread blocks to SMX units. The

SMX unit breaks thread blocks into warps. A warp is a groups of 32 threads. Each SMX unit

has warp schedulers that selects an eligible warp. Each thread has its own set of general

purpose registers and local memory. All threads can access the thread block resources

which include shared memory and barriers. All threads in a grid can access grid resources

including constant memory, texture bindings, and surface bindings. All threads can access

15

Figure 3.7: Simplified block diagram of the NVIDIA Tesla K20 GPU [5]

global memory. Parallelism is achieved by multiple CUDA cores executing multiple threads

concurrently. The massively parallel hardware architecture of General Purpose Graphics

Processing Units (GP-GPUs) make them well-suited to scientific computing. GP-GPUs do

especially well with floating point arithmetic.

Intel Xeon Phi Intel’s first many core product is called the Xeon Phi. The Xeon

Phi accelerator has its own memory and is connected to the host CPU via PCI3 Gen3 16x

[23].

Figure 3.9 shows a basic block diagram of the Intel Xeon Phi while Figure 3.10

lays out the diagram of a Phi processor core. Intel Xeon Phi has more than 50 cores

with each core capable of four hardware threads. Cores are interconnected by a high-speed

bidirectional ring. The co-processor is cache coherent. Each core has a local 512-KB L2

cache. [6].

16

Figure 3.8: Diagram of a Streaming Processor of the Tesla K20 [5]

17

Figure 3.9: Diagram of Intel Xeon Phi Coprocessor [6]

Figure 3.10: Diagram of a Phi processor core [6]

18

3.3 Parallel Programming Models

A parallel programming model is an abstraction of the computer system. As there

are many parallel architectures, there are many possible models for parallel computing.

Parallelization can be thought of as a process to speed up serial program by arranging mul-

tiple computations to happen simultaneously. Unfortunately, there is no universal process

to follow.

3.3.1 Message Passing Interface (MPI)

MPI is a standard/specification message passing library implemented by many ven-

dors and is used for programming systems with distributed memory. Each process has a

different address space and thus processes must explicitly communicate with each other.

MPI can also support distributed program execution on heterogeneous hardware. MPI

specifications have been defined for C, C++ and Fortran.

MPI follows a task channel model. The hardware is viewed as a set of processors,

each with its own local memory. Message passing between processors is facilitated by an

interconnect network. Since a processor can access data and instruction only in it’s local

memory, a processor must send a message to another processor to access the data in the

other processor’s memory indirectly. The number of concurrent processes are explicitly

specified by the programmer at the beginning of the program. Every process has a unique

ID number and executes the same program. A process performs computations on its local

variables and communicates with other processes as and when required. Processes use

message passing to communicate as well as to synchronize with each other.

3.3.2 Compute Unified Device Architecture (CUDA)

The CUDA programming model comprises of Host and Device hardware and code.

The Host is normally a traditional CPU dealing with complicated control flow where as the

Device is typically a massively parallel processor (e.g. GPU) equipped with a large number

19

of arithmetic execution units for data-level parallelism. A CUDA program consists of one or

more phases that are executed on either the host or a device. CUDA allows us to program

both CPUs and GPUs using one single program.

Part of the program is in traditional C and will run on Host/CPU and the other part

is also coded in C but with some extensions that CUDA provides to express parallelism,

which will run on the Device/GPU. The CUDA compiler (nvcc) is used to compile the

program, which splits the two parts accordingly and generates an executable for each CPU

and GPU.

CUDA assumes that the GPU is the co-processor to the CPU and it also assumes

that they both have their own separate memories where they store data. In this relationship,

the CPU is the in charge. It runs the main program and sends directions to the device. So

on a high level, the general outline of a CUDA code is as follows:

1. Allocating memory on GPU (CudaMalloc)

2. Moving Data from CPU to GPU (cudaMemcpyHostToDevice)

3. Launching the kernel on GPU

4. Moving the data back from GPU to CPU (cudaMemcpyDeviceToHost)

A CUDA kernel is launched as array of threads. Multiple threads execute the same

code on different data. The mapping of threads to CUDA cores is governed by GPU concepts

such as thread blocks, grid, warp and GPU hardware such as warp schedulers, CUDA cores

(streaming processors) and Streaming Multiprocessors (SMXs) as explained in section 3.2.

3.3.3 Open Computing Language (OpenCL)

OpenCL is a framework for heterogeneous computing that includes a language

OpenCL C, an API and libraries. The OpenCL standard is maintained by the Khronos

Group consortium.

The platform model for OpenCL is similar to CUDA and views the underlying

hardware as a host connected to one or more devices. An OpenCL program consists of a

host program that runs on the host and kernels that execute on the device. Devices can

20

be a GPU, a multi-core CPU or a many core device. OpenCL thus provides portability,

i.e. code written in OpenCL can be executed many kinds of devices irrespective of the

vendor and/or hardware architecture model. Any given device is assumed to have multiple

computing units. Each computing unit has processing elements and it’s own memory. A

computing unit executes a work-group, which is a set of work items. The work items in a

group share the memory of the compute device and use work-group barriers as means of

synchronization. Each work item is an instance of the kernel. The kernel executes over a

grid defined by the host code. Thus parallelism is achieved by multiple work items executed

concurrently by multiple processing elements of the compute units.

3.4 Portability Discussion

Almost all of the parallel programming models are too closely aligned to a particu-

lar parallel system, except OpenCL. Thus parallel programs are often non-portable across

various architectures due to the tight coupling between the programming model and the

hardware architecture. The non-portability of HPC applications results in higher cost, ef-

fort and time for development. This sometimes discourages HPC users from migrating to

newer architectures and thus restricts them from possible performance gains and benefits.

3.4.1 Benefits Of Portability

Portable code aids the application scientists to focus on algorithmic aspects of the

code as opposed to investing time in the implementation aspects. Portability of the appli-

cation allows them to experiment easily with different architectures as it needs minimal to

no changes in the code. In heterogeneous cluster environments, portability allows dynamic

allocations of the code depending on resource availability, which is advantageous as a large

portion of the community often shares the high performance computing clusters.

21

3.4.2 Costs Of Portability

Portability usually necessitates some degree of sacrifice in terms of performance.

Portability is achieved by abstracting some hardware details in order to perceive them as

similar and interchangeable. This commonality takes away some of the details which when

utilized could reduce the run time, i.e. improve the performance. In high performance com-

puting, performance is obviously the number one priority, which makes the choice between

better performing non-portable code vs. slightly less performing portable code even more

difficult.

3.5 Summary Of Background

This chapter provided details of a few key concepts in parallel programming such

as Flynn’s Taxonomy, Shared Vs. Distributed Memory and Manycore Vs. Multicore pro-

cessors. The hardware design details of the most prominent computing accelerators such as

General Purpose Graphics Processing Unit (GP-GPU) and Many Integrated Core (MIC)

architecture were also elaborated in this chapter. Additionally, various programming models

such as MPI, CUDA, OpenCL were detailed. This chapter demonstrated the great degree of

variability that exists in parallel architectures and parallel programming paradigms. Ben-

efits and costs of Code Portability were also analyzed in this chapter. The next chapter

discusses the design of the research experimentation and details the metrics for accessing

the results.

22

Chapter 4

Experimental Design

The purpose of this chapter is to explore experimental design of the research and

detail the claims regarding the effectiveness of the “Architecture First, Language Later” par-

allelization strategy. Section 4.1 examines the research question and proposed hypothesis.

Section 4.2 details the methodology for application to architecture mapping and program-

ming model selection. Section 4.3 highlights the measures used to quantify the outcome.

Section 4.4 reviews the hardware details for the setup for the experiment.

4.1 Hypothesis and Research Question

Research Question: Is there an effective way to parallelize scientific applications so

as to achieve best performance for comparatively minimal development efforts?

Hypothesis: If “Architecture First, Language Later” parallelization strategy is adopted,

the parallelized application would achieve best performance with minimal development ef-

forts. Since the aforementioned strategy predicts the best architecture by mapping architec-

ture’s capabilities to the needs of the application, best performance is ensured. Development

efforts are reduced significantly since it eliminates the need for trial and error methods to

obtain satisfactory performance as the architecture and it’s native language is chosen by

application characterization.

23

4.2 Methodology

Figure 4.1 below depicts the entire mapping between application to architecture

and architecture to programming model for the “Architecture First, Language Later” par-

allelization strategy.

4.2.1 Application to Architecture Mapping

As shown in Figure 4.1, the first step of application to architecture mapping is

application characterization. This involves ranking the application as high or low for four

parameters namely, Time complexity, FLOPs to Non-FLOPs Ratio, Dominant Memory Ac-

cess Ratio and Memory Access Frequency.The model then predicts an optimal architecture

based on these parameters.

For a given application, depending on high/low ratings on the aforementioned pa-

rameters, navigating the image following corresponding arrows yields a specific architecture

as an optimal architecture prediction. For example, for a given application xyz, Time Com-

plexity is high while all the other three parameters are low. Then navigating to the right

along with high arrow for Time Complexity, followed by moving forward along the direction

of low arrow for FLOPs to Non-FLOPs Ratio leads to a two dimensional square with two

options. Moving horizontally along the direction of low arrow for Dominant Memory Access

Ratio and travelling vertically in the direction of low arrow for Memory Access Frequency,

yields ’Xeon Phi’ as the architecture which is predicted to achieve best performance for the

given xyz application as depicted in Figure 4.2.

Table 4.1 summarizes different factors that impact performance of any given appli-

cation. As observed , characteristics are combined into a single parameter that accounts for

the effects of similar characteristics. Below is a description of how the parameter is defined,

ranked and linked to capabilities of the architecture. Multicore Intel CPU, Many Integrated

Core (MIC) Xeon Phi and General Purpose Nvidia GPU are the architectures considered

for the model. Details of each of these parameters are provided below.

24

Figure 4.1: Mapping between Application, Architecture and Programming Model Domains

25

Figure 4.2: Example Mapping between xyz Application to Optimal Architecture and Pro-
gramming Model

26

Characteristics Description Parameter

Computation Ratio
The amount of time required to perform
computation

Time Complexity

FLOPs
The amount of floating point computation
instructions FLOPs to Non-FLOPs Ratio

Non-FLOPS The amount of Non-floating point instructions

L1 cache Accesses L1 cache Hit and Miss Ratio
Dominant Memory Access RatioL2 cache Accesses L2 cache Hit and Miss Ratio

L3 / shared cache Accesses L3 cache Hit and Miss Ratio

Main Memory Accesses and Latency Time required to access main memory
Memory Access Frequency

Non-uniform Memory Accesses NUMA The amount of time required for NUMA

I/O Ratio
The amount of time required to perform I/O
operations Assumptions:

The algorithm has already performed
network communication And I/O

Communication Ratio
The amount of time required to perform
communication

Network Bandwidth and Latency
Characteristics of Network used for
communication

Network Congestion
The amount of wait time due to network congestion
in various runs

Table 4.1: List of Factors that Affect Performance

1. Time Complexity : Time complexity of an application is often represented using Big-

O-Notation. Time complexity of an algorithm summarizes how the scaling with input

size impacts performance. Asymptotic upper bounds reveal an algorithm’s fundamen-

tal limits. Although algorithmic complexity is a strong indicator of the performance,

it alone can not be used as a deterministic identifier. For application characterization,

time complexity parameter is categorized as low for complexity less than O(n log n)

and high if otherwise.

From the architecture perspective, different architectures use different techniques to

accomplish good performance for higher complexities. CPU has limited number of

threads but a higher core frequency. In addition to zero-overhead context switching,

GP-GPU has inherent latency hiding capabilities. Xeon Phis utilize higher core fre-

quency coupled with multi-threaded context switching but a limited thread launch.

Although one can not simply rank the architectures for any given complexity, other

parameters do play a role in achieving this ranking. For example, GP-GPU and Xeon

Phi are better choices for applications with higher time complexity. However, if the

memory transfers becomes an issue, CPU would outperform the former two.

2. FLOPs To Non-FLOPs Ratio:

27

FLOPs to Non-FLOPs ratio is a mathematical ratio of the number of FLOP instruc-

tions to the number of Non-Flop Instructions. In computational sense, an operation

is the effect of an operator on an expression. A floating-point operation is any math-

ematical operation (such as +, -, *, /) or assignment that involves floating-point

numbers. FLOPs refers to the number of FLOP instructions. (Note: This is different

from the term FLOPS which is generally used as an abbreviation for floating point

operations per second.) Branching and conditional control divergence operations are

considered examples of non-FLOP operations. Literature such as “Roofline: An In-

sightful Visual Performance Model for Multicore Architectures”[28] shows the impact

of FLOP operations on compute performance. From the application perspective, the

ratio is considered high if greater than 2, i.e. if the number of FLOP instructions is

at least twice the number of non-FLOP instructions and low otherwise.

CPU has lower performance in terms of FLOPS but it handles branching and diver-

gence in control sequence gracefully. While GP-GPU performs very well with FLOPs,

non-FLOPs such as branch divergence hamper the GP-GPU performance significantly.

Xeon Phi fairs well against the GP-GPU in terms of FLOPS with reduced negative

impact of branching, divergence and synchronization.

3. Dominant Memory Access Ratio: Dominant Memory Access Ratio is a mathematical

ratio of dominant access in Memory Hierarchy, i.e. on-chip to off-chip. The access

time for the on-chip cache memory accesses is eminently less than that for an off-chip

non-cache memory access. The cost of access time has a direct impact on the total

execution time and thus the compute performance. For an application, dominant

memory access ratio is categorized as high if greater than 1, i.e. if the number of

on-chip accesses exceeds the number of off-chip accesses. For higher ratio, GP-GPU

with very fast local memory and Xeon Phi with dual memory bank rings achieve good

performance. Off-chip access usually affect the co-processor’s performance as the

memory transfers from host to device and device to host constrain the performance.

28

CPUs with traditional architecture see minimal benefit from higher on-chip access

while not suffering significantly by off-chip accesses.

4. Memory Access Frequency : The effect of memory access behaviour depends on the

frequency of access. The ratio of dominant memory access can have varying degrees

of impact depending on the frequency of these applications. Applications with low

memory access frequency may not be significantly affected by higher off-chip memory

access behavior. The characterization of application for memory access frequency is

determined as high or low by evaluating the number of memory accesses against the

total number of operations. If the memory operations constitute more than 25% of

total operations, the memory access frequency is said to be high and low otherwise.

4.2.2 Programming Model Selection

Programming models discussed in Section 3.3 not only differ in terms of the program-

ming effort required, but application performance also varies significantly for different ar-

chitectures. Thus a thorough investigation is required to correlate application performance

with a combination of architecture and programming model. A methodology adopted in this

research is to utilize a representative algorithm for scientific applications and to compare

measured run time for implementations of the same with a variety of popular programming

models on available architectures.

4.3 Measures

This Section explains the measures used in this research to quantify different char-

acteristics involved in the experimentation. In order to validate the hypothesis explained

in Section 4.2, this research uses the following measures:

(1) To validate the architecture to application mapping model used to select the

appropriate architecture, the model is tested for applications from a benchmark suite con-

sisting of different computation/communication idioms, i.e. dwarfs called OpenDwarfs.

29

OpeenDwarfs is implemented in OpenCL, which is a portable language and thus will not

favor any architecture in particular. The model is used to predict a matching architec-

ture, given the application characteristics. The prediction is then verified by comparing

actual run time by running the code on different architectures. The accuracy is judged

based on whether the model predicted the best architecture for the given application. The

applications chosen belong to following algorithmic domains/classes:

1. Dense Linear Algebra

2. Sparse Linear Algebra

3. Spectral Methods

4. N-Body Methods

5. Structured Grid

6. Unstructured Grid

7. Dynamic Programming

8. Graphical Models

9. Combinational Logic

(2) To verify the programming model selection strategy of using the native language

for the architecture of choice, a representative application (k-means algorithm) is run on

multiple architectures in native languages as well as in portable language to see the effect

of language variability for a given application.

(3) To establish the effectiveness of the parallelization strategy, a representative algo-

rithm from scientific computing (Lower-Upper decomposition) is selected and is approached

with two methodologies, trial and error methods as well as the “Architecture First, Lan-

guage Later” parallelization strategy. The two methods are quantified based on achieved

results, i.e run time of implementations, parallelization efforts in terms of man-hours for

30

code conversion, amount of necessary accesses to hardware and degree of knowledge and

expertise required for the method. The overall results and efforts incurred are contrasted

for both methods.

4.4 Setup

Table 4.2, lists the different architectures used in this study for experimentation

with different implementations. The architectures include NVIDIA Tesla K20 GPU, Intel

Xeon Phi 5110P many core co-processor and Intel Xeon E5-2680 multi-core single node

CPU. The table lists the specification hardware characteristics that significantly affects the

performance of an application running on the architecture. Each architecture has its own

advantages and disadvantages making it more suitable for a particular type of computa-

tion/communication pattern. The impact and suitability of hardware capabilities of a given

architecture is very complex and thus can not be judged based on specific numbers alone.

Device Tesla K20 Intel Xeon Phi 5110P Intel Xeon E5-2680

Single Precision (Gflops/s) 3520 2021.76 665.6

Double Precision (Gflops/s) 1170 1010.88 332.8

Cores (*) 2496 60 8

Memory Bandwidth (GB/s) 208 320 51.2

Memory Size (GB) 5 8 32

Table 4.2: Device Specifications

Intel Xeon-Phi E5110P: The current generation of Xeon-Phi Coprocessors are

located on the PCI Express (PCIe2) with 60 processor cores each running at 1.238Ghz and

interconnected via a bi-directional ring with a theoretical peak of 330GB/s using 8 memory

controllers each with 2 channels of 5.5GT/s. Each core has 32KB Instruction and 32KB

Data L1 cache; 512KB shared cache and 8GB DDR5 global Memory. In off-load mode,

MPI processes are executed on one of the architectures: either the coprocessors or the host

processors. Off-load mode has the benefit of targeting specific computation onto dedicated

architectures using the available off-load directives. Furthermore, the compiler manages the

31

data movement and parallelism with hints from the developer. In the symmetric mode, MPI

processes uniformly span the domains of both the host and the coprocessor architectures.

The developer must explicitly manage parallelism across the different architectures but with

more control over how the application executes. The coprocessor-only mode is a subset of

symmetric mode, with all MPI processes being confined to the Xeon-Phi architecture alone.

Nvidia K20 GPU: The Nvidia K20 are Kepler Series GPUs also accessible via the PCIe2

bus with 2496 cores and a core clock speed of 732 MHz. The K20 architecture has 5GB

DDR5 global memory available at 208GB/s bandwidth. Each core has L1 cache and L2

data cache available in 3 configurations (16KB L1/48KB L2, 32KB L1/32KB L2, and 48KB

L1/16KB L2).

Intel Xeon E5-2680: Intel E5-2680 processors are multi-core, Intel Hyper-Threading

Technology (HT) enabled designs. Each socket has eight cores running at 2.6Ghz each,

which share a last level cache (L3 CACHE) and, a local integrated memory controller con-

nected via an Intel Quick Path interconnect. The cores share 32GB DDR3 global memory

with 32KB data and instruction L1 cache, a 256 KB unied L2 cache, and 8 MB L3 Cache.

4.5 Summary Of Experimental Design

This chapter provided details of the model used for application to architecture map-

ping via application characterisation and programming model selection via native language

mapping to selected architecture. Additionally, the four parameters namely, Time Com-

plexity, FLOPs to Non-FLOPs ratio, Dominant Memory Access Ratio and Memory Access

Frequency were also described. This chapter also outlined the validation metrics used to

determine the effectiveness of the parallelization strategy proposed in this thesis. The next

chapter discusses the details of the mathematical background as well as implementation of

Lower Upper Decomposition Algorithm as the case study.

32

Chapter 5

Case Study: Linear Algebra -

Lower Upper Decomposition

In this chapter, we provide background on the Lower Upper Decomposition algo-

rithm as an enhanced Gaussian Elimination technique to solve a system of linear equations.

The chapter is structured as follows. Section 5.1 describes the basics of solving linear

equation and details the related work in this area. Section 5.2 provides mathematical back-

ground for the Gaussian Elimination and Lower Upper (LU) Decomposition. The design

modifications are articulated in Section 5.3. The chapter is concluded in Section 5.4 with

detailed parallel implementation methodology for trial and error methods as well as the

‘Architecture First, Language Later” parallelization strategy.

5.1 Introduction to solving system of linear equations

Given a system Ax = b, a solution can be derived via a variety of different meth-

ods.Gaussian elimination is usually selected when a unique solution is known to exist, and

the coefficient matrix is not sparse. There are several papers that employ various parallel

approaches to solving a linear system with Gaussian Elimination [29, 30]. This case study

examines the performance of different variations of Lower Upper Decomposition of Gaus-

33

sian Elimination algorithm when parallelized for multi-core CPU, GPU and CPU+GPU

environments with C, MPI, CUDA and MPI+CUDA hybrid implementations. Some work

has been done on a parallel algorithm for Gaussian Elimination by S. F. McGinn and R.

E. Shaw [29] which implements it in a shared memory environment using OpenMP, and in

a distributed memory environment using MPI. Popular Benchmarks such as the Rodinia

Benchmark Suite includes a CUDA and OPENCL Implementation of the näıve Gaussian

Elimination [30]. The most efficient implementations of Gaussian Elimination are designed

using the Basic Linear Algebra (BLAS) package [31] of primitive functions or using numeri-

cal libraries Linear Algebra Package (LAPACK) [32], Numerical Algorithms Group (NAG)

[33], Math Kernel Library (MKL) [34], or MATLAB [35]. But none of the efforts cater to

a heterogeneous environment and also fail to evaluate LU decomposition variation of the

algorithm with storage modifications for minimized memory footprint.

5.2 Mathematical Background

5.2.1 Gaussian Elimination

The Gaussian elimination approach is applied to solve a general set of n equations

and n unknowns as shown in Equation 5.1

a11x1 + a12x2 + a13x3 + ... + a1nxn = b1

a21x1 + a22x2 + a23x3 + ... + a2nxn = b2

...

an1x1 + an2x2 + an3x3 + ... + annxn = bn

(5.1)

Gaussian elimination consists of two steps :

1. Forward Elimination of Unknowns: In this step, the unknown is eliminated in each

equation, one at a time. The end goal of this step is to have the equations reduced in

such a way that we have an equation with only one unknown variable.

34

2. Back Substitution: In this step, we find the value for the unknown in the last equation

result of forward elimination. Once this value is found, it is substituted in the equation

with two unknowns so as to reduce that equation into one with only one unknown.

In each step, one equation is solved. The end result of this step is the solution for all

unknowns.

There are pitfalls of the above-mentioned näıve Gauss Elimination Method:

1. Division by zero: It is possible for a divide by zero condition to occur during the steps

of forward elimination or back substitution as the algorithm in itself does not have

any checks against these possibilities. One way to avoid this is to use partial pivoting

to swap two rows of coefficients as needed.

2. Round-off error: The näıve Gauss elimination method is prone to round-off errors.

As we solve equation by equation, the round-off value errors propagate to the next

equation. This condition is mainly significant when same equations have large coeffi-

cients and others have very small coefficients. Scaling can be employed in such cases

to lower the impact of round-off errors.

Example : Consider the system of linear equations given in Equation 5.2

x− 3y + z = 4

2x− 8y + 8z = −2

−6x + 3y − 15z = 9

(5.2)

First, we eliminate x from the second equation by subtracting 2 times the first equation

from the second. This yields the equivalent system given in Equation 5.3

x− 3y + z = 4

−2y + 6z = −10

−6x + 3y − 15z = 9

(5.3)

35

Next, we add 6 times the first equation to the third, to eliminate x from the third equation

as well, yielding the system in Equation 5.4

x− 3y + z = 4

−2y + 6z = −10

−15y − 9z = 33

(5.4)

Then, we eliminate y from the third equation by subtracting 15/2 times the second equation

from it, which yields the system in Equation 5.5

x− 3y + z = 4

−2y + 6z = −10

−54z = 108

(5.5)

This system is in upper-triangular form, because the third equation depends only on

z, and the second equation depends on y and z. This reduction using row operations is called

as forward elimination. Because the third equation is a linear equation in z, it can easily be

solved to obtain z= -2. Then, we can substitute this value into the second equation, which

yields -2y - 12 = -10. This equation only depends on y, so we can easily solve it to obtain

y = -1. Finally, we substitute the values of y and z into the first equation to obtain x = 3.

This process of computing the unknowns from a system that is in upper-triangular form is

called back substitution [36].

5.2.2 Lower-Upper Decomposition

To solve several linear systems with the same A with different b would involve

repetitions of steps when using Gaussian elimination for each linear system. A more efficient

and accurate way to solve such systems is LU-decomposition, which in effect records the

steps of Gaussian elimination. LU decomposition essentially decouples the factorization

phase, which is usually compute-intensive, from the actual solving phase. Factorization of

36

A is done only once and then this factorized A is used with every new vector b for actual

solving. Thus the factorization efforts need not be duplicated for every new b.

Given a matrix A, the aim is to build a lower triangular matrix L and an upper

triangular matrix U which has the following property: diagonal elements of L are unity

and A=LU. Let A be n x n matrix. LU factorization is a process for decomposing A into

a product of a lower triangular matrix L (diagonal elements of L are unity) and an upper

triangular matrix U such as A = LU as given in Equation 5.6.

L =

1

l21 1

...
...

. . .

ln1 ln2 . . . 1

U =

u11 u12 . . . u1n

u22 . . . u2n

. . . un−1,n

unn

(5.6)

For the resolution of linear system : Ax = b, the system becomes as in Equation 5.7:

LUx = b⇔

Ly = b (1)

Ux = y (2)

 (5.7)

We solve the system (1) to find the vector y, then the system (2) to find the vector x. The

triangular shape of the matrices facilitates the resolution [37].

There are three factorization methods:

1. Crout Method: diagonal (U) = 1;

2. Doolittle Method: diagonal (L) = 1;

3. Choleski Method: diagonal (U) = diagonal (L) =1

The cost of factorizing the matrix A into LU is O(N3). After A is factorized,

the cost of solving i.e. the cost of solving LUx = b is O(N2), since the cost of solving a

triangular system scales as O(N2). (Note that to solve LUx = b, Ly=b is solved first and

then Ux=y. Solving Ly=b and Ux=y each costs O(N2).) Hence, if you have ’r’ right

37

hand side vectors b1,b2,...,br, once you have the LU factorization of the matrix A, the

total cost to solve Ax1=b1,Ax2=b2,...,Axr=br scales as O(N3 + rN2). On the other

hand, the total cost for repeating Gauss elimination for each right hand side vector b scales

as O(rN3) as each Gauss elimination independently costs O(N3).

Example: Consider the system of linear equations (same as in Subsection 5.2.1

Equation 5.2)

x− 3y + z = 4

2x− 8y + 8z = −2

−6x + 3y − 15z = 9

(5.8)

This can be represented as given in Equation 5.9:

1 −3 1

2 −8 8

−6 3 −15

x

y

z

 =

4

−2

9

 (5.9)

First, we decompose the A matrix into a product of two matrices L and U where L

is a lower triangular matrix and U is an upper triangular matrix. This yields the equivalent

system given by Equation 5.10:

A =

1 0 0

2 1 0

−6 −15/2 1

1 −3 1

0 −2 6

0 0 −54

 = LU

 (5.10)

LUx =b can be represented as given in Equation 5.11:

1 0 0

2 1 0

−6 −15/2 1

1 −3 1

0 −2 6

0 0 −54

x

y

z

 =

4

−2

9

 (5.11)

38

Y =

Y 1

Y 2

Y 3

 =

1 −3 1

0 −2 6

−6 −15/2 1

x

y

z

 (5.12)

Next,We solve the system in Equation 5.7 (1) LY=b to find the vector Y as given by

Equation 5.13.
1 0 0

2 1 0

−6 −15/2 1

Y 1

Y 2

Y 3

 =

4

−2

9

Y 1

Y 2

Y 3

 =

4

−10

108

 (5.13)

Then,we solve the system given in Equation 5.7 (2) Ux=y to find the vector x.

1 −3 1

0 −2 6

0 0 −54

x

y

z

 =

4

−10

108

This yields the system given by Equation 5.14,

x

y

z

 =

3

−1

−2

 (5.14)

5.3 Important variation for LU Decomposition Algorithm

A design decision was made to change the storage structure for the said L and

U matrices but the Doolittle method’s conventions were followed to denote the two said

matrices. Since the diagonal elements of L are 1’s and it is assumed to be a known fact,

39

this information becomes redundant. Additionally, to take advantage of the two triangular

matrix structures, the two matrices were appended to form one matrix, which has the same

size as matrix A i.e. nxn. This variation reduces the memory and communication needs

by half as opposed to having two different matrices. A serial C code was developed to

transform matrix A to LU and then solving Ly=b followed by Ux=y using forward and

backward substitution respectively.

5.4 Parallel Implementation Methodology

The parallelization involves taking the serial code for the LU decomposition algo-

rithm and transforming it into a parallel code (MPI or CUDA or MPI+CUDA) capable of

running on a parallel platform Multicore CPU, GP-GPU or XEON PHI.

5.4.1 Trial and Error Method

Trial and error methods involve experimenting with a variety of combinations of

parallel platforms and programming model until an optimal performance is achieved. The

following algorithm serves as a guideline for these efforts.

40

Result: Parallel code with optimal performance/speedup

Given: Serial Code

Combo[(parallel programming model, parallel platform)]:

[(MPI,CPU),(CUDA,GPU),(MPI+CUDA, CPU+GPU)]

i ← 0 BestTime ← SerialTime choice ← -1

while i < 3 do

Combination for experiment ← combo[i]

Convert code to parallel code for selected programming model

Run the code on the selected parallel platform

Measure run time (ParallelRunTime) and calculate speedup

if CalculatedRunTime < BestTime then

BestTime = ParallelRunTime

choice = i

end

i ++;

end

Algorithm 1: Trial and Error Methods For Optimal Parallelization

As observed in the Algorithm 1, trial and error methods involve development of

code in MPI, CUDA and MPI+CUDA hybrid. It also necessitate the access to a Multi-core

CPU as well as a GPU platform. In order to successfully conduct this experimentation

the programmer/scientist must have knowledge of different programming models and have

expertise in coding in the aforementioned languages. Thus trial and error methods can be

considered as a resource intensive methodology.

5.4.2 “Architecture First, Language Later” parallelization strategy

The 3 step “Architecture First, Language Later” parallelization strategy is imple-

mented as follows for LU Decomposition:

41

Step (1) choose a compatible combination of architecture and parallel programming lan-

guage using the Figure 4.1. Application characterization of LU Decomposition is as follows:

Time complexity : High

FLOPs To NonFLOPs Ratio: Low

Dominant Memory Access Ratio: High

Memory Access Frequency: High

Predicted optimal combination: (CUDA,GP-GPU) by using the Figure 4.1 as explained in

Subsection 4.2.1.

Step (2) translate base code/algorithm to a parallel language i.e. transform serial LU

Decomposition code into CUDA code

Step (3) optimize and tune the code for GP-GPU using basic GP-GPU optimization

techniques such as Memory Optimization, Execution Configuration Optimization, and In-

struction Optimization.

As observed in step 2, the “Architecture First, Language Later” parallelization

strategy involves converting code to just one language and needs access to one platform as

opposed to multiple combinations in trial and error methods. Thus the “Architecture First,

Language Later” parallelization strategy can be termed as a resource effective strategy that

provides comparable results with significantly reduced parallelization efforts in terms of

development, access to hardware and knowledge and expertise.

5.5 Summary Of Case Study: LU Decomposition Algorithm

This chapter explained the mathematical concepts involved in the Lower Upper

Decomposi- tion algorithm as an enhanced Gaussian Elimination technique to solve a system

of linear equations, along with a numerical example including solution. This chapter also

42

included guidelines for implementing Trial and Error methods as well as the “Architec- ture

First, Language Later” parallelization strategy.

43

Chapter 6

Results and Analysis

This chapter presents the results for individual steps of the propsed “Architecture

First, Language Later” parallelization strategy along with observations from the case study.

Section 6.1 details the results for the quantitative comparison of run-times for K-means

Algorithm implemented on a variety of architectures in different programming languages.

Section 6.2 discusses the accuracy of optimal architecture prediction using the qualitative

model for 9 test applications from the OpenDwarfs suite. Section 6.3 presents the case

study observations for LU Decomposition algorithm implemented in MPI, CUDA and a

hybrid MPI+CUDA. This chapter is concluded with summary in Section 6.4.

6.1 Optimal Language : Quantitative Comparison Results

Figure 6.1 shows performance comparison of different implementations on different

parallel platforms for K-means algorithm with 1638400 items and 20 clusters. The Figure 6.1

illustrates that strong performance gain can be obtained by using dedicated programming

models. However, the relative performance for architecture remains the same even for

various programming models. It is evident that native languages provide significantly better

performance for any given architecture. Thus this quantitative comparison demonstrates

that once an architecture is selected, the native language is the most appropriate selection

44

Figure 6.1: Performance Comparison for K-means Implementations

to obtain best achievable performance.

6.2 Optimal Architecture: Verification of Qualitative Model

To verify the accuracy of the qualitative model depicted in Figure 4.1, dwarfs are

used instead of traditional benchmarks. A dwarf is an algorithmic method that captures

a pattern of computation and communication [2] that are most common in scientific ap-

plications. A benchmarking suite, called OpenDwarfs, implements 13 dwarfs in OpenCL

language. This benchmark is well suited to evaluate the qualitative model for application

to architecture mapping, since the dwarfs represent the most common patterns found in

scientific algorithms and thus these results can be extrapolated to real life scientific HPC

applications. Additionally, since the benchmark is implemented in OpenCL, it does not fa-

vor any architecture resulting in a fair comparison. OpenDwarfs includes applications from

many different algorithmic classes such as linear algebra, divide and conquer, combinational

45

logic, grid, spectral methods etc. Each application is characterized and rated as high or low

on the four parameters as mentioned in Section 4.1. The qualitative model is then used to

predict the most suitable architecture. This section verifies the accuracy of this prediction

by comparing the actual run times. For the purpose of this research, the focus is on seven

numerical methods identified by Phillip Colella [3].

1. Dense Linear Algebra : K-Means Algorithm - Dense linear algebra involves

dense matrix and vector operations. Applications such as data mining use a variety

of linear algebra algorithms such as the K-means clustering algorithm. K-means clus-

tering aims to partition a collection of data objects into a finite number of clusters

resulting in the data space into clusters containing similar samples. Any data point

is classified as a member of the cluster when the distance between the center and the

data point is less than center of any other cluster.

Application Characterization - Time complexity for Lloyds algorithm for K-means

clustering is often given as O(n*K*I*d) where n is number of data points, K rep-

resents the number of clusters, I is number of iterations, and d stands for number

of attributes [38]. As the product of the number of clusters and their dimensions is

comparable to number of data points, it can be termed as High. As the algorithm has

a high ratio of computation to communication operations, the FLOPS to non-FLOPs

ratio is considered high. The algorithm involves a lot of data dependency among

threads, thus a high ranking on memory access ratio as well as the memory access

frequency.

Architecture Prediction - All high ranking in application characterization, leads to

prediction to be GP-GPU, as depicted in Figure 4.1.

Prediction Verification - As observed in the following Table 6.1 and Figure 6.2, GP-

46

K-means,Data Size Single Node Single Phi Single-GPU

500k 88.388174 69.873352 61.45915767

1000k 252 187 145

1500k 488 332 250

2000k 799 542 382

Table 6.1: Dense Linear Algebra : K-Means Algorithm run-time (sec), varying data sizes

Figure 6.2: Dense Linear Algebra: K-Means Algorithm results, varying data sizes

GPU achieves best performance with the lowest run-time for all data sizes. For smaller

data sizes, the algorithm converges quickly and thus all architectures perform compa-

rable but as the algorithm scales, the difference in run-time becomes significant.

2. Sparse Linear Algebra: Sparse Matrix Vector multiply (SPMV) - Sparse

linear algebra involves similar matrix vector operations such as dense linear algebra

but with a matrix with very few non-zero elements. SPMV involves multiplication of

sparse matrix [A]and a vector [x], resulting in a vector [y]. As most elements of a

sparse matrix are zero, a variety of formats exist for memory/space efficient represen-

tation of a sparse matrix. One such format is Compressed Sparse Row (CSR), that

47

represents the sparse matrix using three dense one dimensional vectors. These vectors

contain all non-zero elements, their column indices and pointers to elements in the

first array that starts each row [39]. Application kernels such as partial differential

solvers and finite element analysis use SPMV as part of standard computation.

Application Characterization - Sparse matrices have very few non-zero elements. SPMV

problems are significantly different from dense linear algebra in terms of memory ac-

cess patterns. Sparse algebra involves a lot of indirect and irregular memory access

pattern. Although the SPMV classifies as highly intensive as per time complexity

and FLOPs-to-Non-FLOPs ratio, the dominant access ratio is low as opposed to the

K-means algorithm. The memory access frequency is observed to be high.

Architecture Prediction - Low ranking on Dominant memory access ratio with high

rankings on rest of the three parameters in application characterization, results in the

GP-GPU being predicted as the most optimal choice, as depicted in Figure 4.1.

SPMV, Data Size Single Node Single Phi Single-GPU

16384 7.447 50.997 5.47

32768 29.739 127.442 18.207

65536 115.856 355.33 69.586

131072 454.111 1246.57 268.913

Table 6.2: Sparse Linear Algebra: Sparse Matrix Vector multiply (SPMV) run-time (sec),
varying data sizes

Prediction Verification - Table 6.2 and Figure 6.3, demonstrates the run-times on dif-

ferent architectures. One distinct variation from the SPMV results is that Single node

performs better than Xeon Phi. This can be attributed to higher demands fpr syn-

chronization needed in threads for the Xeon Phi as per this implementation of SPMV

algorithm. GP-GPU out performs due to less intensive bandwidth requirements of

this algorithm.

48

Figure 6.3: Sparse Linear Algebra: Sparse Matrix Vector multiply (SPMV) results, varying
data sizes

3. Spectral Methods: Fast Fourier Transform (FFT) - Spectral methods are tech-

niques used to numerically solve certain partial equations, which involves transforma-

tion of spatial/temporal data. The execution is generally multi-stage in nature, with

dependencies between stages forming a butterfly pattern of computation. These meth-

ods are used in quantum mechanics and fluid dynamics application. A fast Fourier

transform (FFT) algorithm transforms the signal from spatial/temporal domain to a

representation in the frequency domain and vice versa.

Application Characterization - FFT has time complexity of O(nlogn) where n is the

data size, thus it is termed as low on time complexity parameter. FLOPs to Non-

FLOPs ratio is high for FFT due to computational component of the algorithm.

Dominant memory access ratio is relatively low with low frequent access.

49

Architecture Prediction - With high FLOPs to Non-FLOPs ratio, coupled with low

rating on other three parameters, Xeon Phi is deemed as the most suitable architec-

ture for FFT application as per the model in Figure 4.1.

FFT, Data Points, Data Size Single Node Single Phi Single-GPU

65536 0.973729 0.919067 0.463484

524288 9.60265 6.11975 3.43868

6291456 144.348 115.651 39.8

16777216 388.722 301.879 106

Table 6.3: Fast Fourier Transform (FFT) run-time (m-sec), varying data sizes

Figure 6.4: Spectral Methods: Fast Fourier Transform (FFT) results, varying data sizes

Prediction Verification - GP-GPU takes approximately half the time for execution as

compared to other two architectures, as observed in the Table 6.3 and Figure 6.4.

Thus the prediction on Xeon Phi is inaccurate.

4. N-body Methods: GEM - Interactions among many discrete points are processed

using N-body methods. This processing involves a large numbers of independent cal-

50

culations at each step, followed by all-to-all communications between steps. This

GEM package implementation of N-body methods calculates the charge at each point

resulting from the effect of surrounding atoms along the surface of a molecule [40].

Application Characterization - The GEM implementation has O(M ∗ N) complexity

where N is number of atoms and M is number of points along the surface. Hence,

this is termed as high time complexity. The FLOPs to Non-FLOPs ratio, is also high

as the algorithm is compute intensive. The Dominant memory access ratio is low, as

most access are off chip. The memory access frequency is high.

Architecture Prediction - With low ratings on dominant memory access ratio, while

high ratings on time complexity and FLOPs to Non-FLOPs ratio as well as memory

access frequency, the Xeon Phi is predicted to be the most optimal choice for GEM

as observed in Figure 4.1.

GEM, Data Points, Data Size Single Node Single Phi Single-GPU

24, 382 0.302023 1.176967 1.342539

91, 1441 0.412428 1.227809 1.398127

1268, 25086 17.1301 6.480024 3.784541

30780, 476040 662.28605 191.8663 55.54715

Table 6.4: N-body Methods: GEM run-time (sec), varying data sizes

Prediction Verification - Table 6.4 and Figure 6.5 depict that the prediction holds

true upto a pivotal data size. Once the algorithm scales beyond this point, the GP-

GPU architecture performs better due to its capacity for coalesced memory access of

large size. Thus in this case the prediction of the qualitative model is only partially

applicable and thus inaccurate.

5. Structured Grid: Speckle Reducing Anisotropic Diffusion (SRAD) - SRAD

51

Figure 6.5: N-body Methods: GEM results, varying data sizes

is a diffusion method based on partial differential equations (PDEs). It is commonly

used in ultrasonic and radar imaging applications. SRAD aims to filter out the noise,

known as speckles, without loosing important image details. SRAD involves various

stages such as image extraction, continuous iterations over the image, and image com-

pression [41].

Application Characterization - As the processing occurs at each pixel in the image,

SRAD has high time complexity. The FLOPs to non-FLOPS ratio is high. The dom-

inant memory access ratio is also high. The memory access frequency is low since

although stages depends on the output of previous stage and the individual pixels can

be processed independently.

Architecture Prediction - With low memory access frequency and high ratings on the

other three factors, the GP-GPU is predicted as the optimal architecture as observed

in Figure 4.1.

52

SRAD, Data Points, Data Size Single Node Single Phi Single-GPU

1024 1.370475 2.297683 1.658712

2048 4.559999 5.662703 2.559021

4096 18.831808 18.087546 6.566177

8192 72.423335 66.062827 22.687956

12288 163.464418 140.300742 49.911433

Table 6.5: Structured Grids: SRAD run-time (sec), varying data sizes

Figure 6.6: Structured Grids: SRAD results, varying data sizes

Prediction Verification - Table 6.5 and Figure 6.6 show that the prediction of the

GP-GPU is valid. This algorithm seems to benefit from the coalesced memory ac-

cesses utilized in GP-GPU, which aligns perfectly with the data needs of the algorithm.

6. Unstructured Grid: Computational Fluid Dynamics (CFD) - Unstructured

grids are often used in finite element analysis when the input to be analyzed has an

irregular shape. Unlike structured grids, unstructured grids require a list of the con-

nectivity, which specifies the way a given set of data points are arranged to represent

53

the individual elements. Computation Fluid Dynamics solver applications are based

on 3-Dimensional (3D) Euler equations for compressible flow [42].

Application Characterization - The time complexity of this algorithm is high as each

results depends on its neighbouring data points. The FLOPs to non-FLOPs ratio is

low. As the access of unstructured data is random, the dominant memory access ratio

is low. The frequency of memory access is high due to its dependency on adjacent

data points.

Architecture Prediction - The CPU is predicted as the most suitable architecture as

per the evaluation of the four parameters as explained in Figure 4.1.

CFD, Input Data Sizes Single Node Single Phi Single-GPU

fvcorr.097k 6.786569 8.572833 7.138944

fvcorr.193k 13.330695 14.585241 13.00784

missile.0.2M 15.717012 17.572076 15.56318

Table 6.6: Unstructured Grid: Computational Fluid Dynamics (CFD) run-time (sec), vary-
ing data sizes

Prediction Verification - Table 6.6 and Figure 6.7 demonstrate that CPU and GP-

GPU performance is comparable with CPU run time being the lowest for all data

sizes. Additional computing powers of the GP-GPU and Xeon Phi is not advanta-

geous since the communication overhead is high due to unstructured data storage and

dependency. The prediction of the CPU is correct.

7. Dynamic Programming: Needleman-Wunsch (NW) - Needleman-Wunsch is

an optimal matching algorithm or an algorithm that employs the global alignment

technique to align two Deoxyribonucleic acid (DNA) sequences. This algorithm in-

volves three steps: Initialization of a 2 dimensional matrix, scoring the alignment and

54

Figure 6.7: Unstructured Grid: Computational Fluid Dynamics (CFD) results, varying
data sizes

filling it in the matrix and, backtracking through the array to return optimal align-

ment [43].

Application Characterization - The time complexity for NW algorithm is O(m*n)

where m and n represent the length of the two sequences which leads to a high rating

for this parameter [44]. The FLOPs to non-FLOPs ratio is also high. Due to the na-

ture of the algorithm, the dominant memory access ratio is low with a low frequency

of memory access.

Architecture Prediction - NW has high ratings on time complexity coupled with low

rating on the FLOPs to non-FLOPs ratio. The dominant memory access ratio is low

with high frequency memory. Thus the CPU is predicted as the most optimal archi-

tecture as depicted in Figure 4.1.

55

NW, Sample Sizes Single Node Single Phi Single-GPU

1024 0.349833 0.887091 1.32914

2048 0.441113 1.039292 1.42353

4096 0.846273 1.582725 1.729119

8192 2.241366 3.920679 2.734046

16384 8.211932 12.625132 6.834454

Table 6.7: Dynamic Programming: Needleman-Wunsch (NW) run-time (sec), varying data
sizes

Figure 6.8: Dynamic Programming: Needleman-Wunsch (NW) results, varying data sizes

Prediction Verification - Table 6.7 and Figure 6.8, demonstrate that the CPU achieves

the fastest run time except for the highest data size. Thus the prediction can be termed

as mostly accurate.

8. Graphical Models : Baum-Welch hidden Markov model (BW-HMM) - The

Hidden Markov Model (HMM) is a tool for representing probability distribution over

sequence of observation in the form of a Bayesian network. The Baum-Welch al-

gorithm employs a forward-backward approach to find the unknown parameters of

an HMM model [45]. This algorithm has many applications in the areas of bio-

56

informatics, cryptanalysis and speech recognition.

Application Characterization - The time complexity for this parallel forward-backward

algorithm is O(nlogn) and thus can be termed as low. Flops-to-Non-FLOPs ratio is

high. The dominant memory access ratio is low with high memory access frequency.

Architecture Prediction - As per the ratings described in the application characteris-

tics for this algorithm and Figure 4.1, the Xeon Phi is predicted as the architecture

that aligns the best with the needs of the BW-HMM algorithm.

BW-HMM , Sample Sizes Single Node Single Phi Single-GPU

250 1.19276 1.0022858 1.596556

500 2.56302 1.5832326 2.143096

1000 6.401591 2.188918 4.023842

2000 18.505463 3.1340927 11.10542

4000 56.569929 23.281245 43.842075

Table 6.8: Graphical Models : Baum-Welch hidden Markov model (BW-HMM) run-time
(sec), varying data sizes

Prediction Verification - Table 6.8 and Figure 6.9 depicts that the Xeon Phi achieves

the best run-time at every data size and scales better than the other architectures.

This performance gain can be attributed to its bi-directional memory ring that allows

it to guard compute performance against the negative effects of the bad memory access

pattern with more frequent access .

9. Combinational Logic: Cyclic Redundancy Check (CRC) - CRC is based on

cyclic error-correcting codes. A redundancy is introduced in the message for the sole

purpose of checking the correctness of the data, i.e. to detect the data corruption

while transmission. This redundant value is the remainder of polynomial division on

the data stream with a predetermined CRC polynomial. At the receiving end, a zero-

remainder signals loss-less transmission [46].

57

Figure 6.9: Graphical Models : Baum-Welch hidden Markov model (BW-HMM) results,
varying data sizes

Application Characterization - The time complexity as well as FLOPs to non-FLOPs

ratio is low for the CRC slice by 8 algorithm in this implementation. The dominant

Memory access ratio is high with lower frequency of access.

Architecture Prediction - With high dominant memory access ratio with low ratings

on other three parameters, as per mapping in Figure 4.1, the CPU is predicted as the

most suitable architecture.

CRC, Sample Sizes Single Node Single Phi Single-GPU

64 0.415 27.162 1.985

512 1.187 132.326 14.327

1024 2.271 283.636 28.4

2048 9.38 610.038 56.659

Table 6.9: Combinational Logic : Cyclic Redundancy Check (CRC) run-time (sec), varying
data sizes

58

Figure 6.10: Combinational Logic : Cyclic Redundancy Check (CRC) results, varying data
sizes

Prediction Verification - Table 6.9 as well as Figure 6.10 validates the prediction that

the CPU achieves best performance for among all architectures.

Table 6.10 below summarizes the applications characterized in this study along with their

prediction and the observed optimal architecture matches. As observed, optimal architec-

tures for 7 out of 9 applications are predicted accurately, yielding 78% accuracy for the

qualitative model proposed in Figure 4.1.

Rows 3 and 4 show that both of the inaccurate predictions incorrectly selected the

Xeon Phi whereas the experimental results suggested the GP-GPU. This inaccuracy is due

to two main reasons, (1) similarity of OpenCL with CUDA and (2) unfamiliarity with

MIC programming techniques as compared to GP-GPU. Even though the application is

developed in OpenCL which is a neutral language and it is very similar to CUDA, the

developer’s implementation has an unconscious bias that favors the GP-GPU architecture.

(Note: the application developer in this case was the author of OpenDwarfs).

Rows 6 and 7 demonstrate that when two architectures achieve similar performance,

the model favors the CPU over the GP-GPU. This is more logical as, the GP-GPU is an

59

accelerator and hence always needs a CPU to work with. For cost, availability and data

transfer reasons, the CPU over the GP-GPU is a favourable choice unless CPU has other

additional tasks.

No. Algorithmic Domain Application Prediction Observation result

1 Dense Linear Algebra K-Means Algorithm GPU GPU 3

2 Sparse Linear Algebra Sparse Matrix Vector multiply (SPMV) GPU GPU 3

3 Spectral Methods Fast Fourier Transform (FFT) Xeon Phi GPU 5

4 N-body Methods GEM Xeon Phi GPU 5

5 Structured Grid Speckle Reducing Anisotropic Diffusion(SRAD) GPU GPU 3

6 Unstructured Grid Computational Fluid Dynamics (CFD) CPU CPU, GPU 3

7 Dynamic Programming Needleman-Wunsch(NW) CPU CPU, GPU 3

8 Graphical Models Baum-Welch hidden Markov model (BW-HMM) Xeon Phi Xeon Phi 3

9 Combinational Logic Cyclic Redundancy Check (CRC) CPU CPU 3

Table 6.10: Qualitative model verification: Summary of results for 9 tests/applications

6.3 Case Study Observations : LU Decomposition

In an MPI-only implementation, the rows of this combined LU matrix were dis-

tributed across processes using the similar Row Interleaved Decomposition method. Each

process then helps solve Ly = b to get the values of vector y. These values are broad-

casted so that at the end of this forward substitution stage, each process now has a copy

of the entire y vector. The next stage involves the back substitution stage to solve Ux =

y to finally get the x vector. This method is a fairly näıve approach to achieve parallelism

for given sub tasks. This approach does result in better performance as compared to the

serial implementation owing to the fact that the rows were divided and thus simultaneously

processed. Figure 6.11 demonstrates the scaling of the algorithm with increasing data sizes

with the number of processes.

In the CUDA-only implementation, the entire original matrix A along with vector

b is copied to the GP-GPU. A conversion kernel is invoked on this data to transform the

matrix A into a combined LU matrix. A forward substitution kernel operates on this newly

formed matrix and generates the necessary y vector. A backward substitution kernel is then

60

Figure 6.11: MPI Performance for LU

used to calculate the final results. As evident from this algorithm, there is a dependency

among the kernels however operations within each individual kernel are highly parallelizable

and thus we see a great benefit with reduced computation times for this implementation.

Figure 6.12 shows the scaling of the algorithm with increasing data sizes as we vary the

block sizes for the algorithm.

In a hybrid MPI+CUDA implementation, the aim is to leverage the heterogeneity

and efficiently divide the work between the CPU and GP-GPU so as to achieve a balance

and thus get a better performance. The design decisions are fairly intuitive as the possible

combinations are limited. As per the structure of the chosen LU decomposition method,

the two decoupled sections are the decomposition/transformation of A to combined LU

form and the substitution to solve the equations. The decomposition or transformation

part was handled by individual processes and the transformed matrix was copied to the

GP-GPU memory row by row. Then the CUDA kernels work on the substitution part

forward followed by back operation to achieve the results. The performance in hybrid

implementation is mainly impaired by the fact that these stages must wait on the earlier

stage to finish. It is important to note that achieving a good balance of both block size and

number of processes is essential. The behavior of MPI-only code is different than that of

61

Figure 6.12: CUDA Performance for LU

the MPI part of hybrid code due to reduced computation.

Comparing the performances for all of the LU implementations as depicted in Figure

6.13, we see that CUDA performs the best i.e GP-GPU is the most optimal architecture.

However, the MPI-only code is slower by just a minuscule scale. Thus Multicore CPU

running MPI or symmetric configuration of CPU and a XEON PHI might have been a

comparable optimal choice for this application. Although one would expect utilization of

both CPU+GP-GPU concurrently should improve the performance when a CPU running

MPI alone or a GP-GPU running CUDA alone achieves good speedup, the hybrid code that

combines MPI and CUDA performed just as bad as the serial version. This degradation of

performance corresponds to the added overheads of communication involved between CPU

and the GP-GPU as well as the dependencies on each other. A better division of labor with

larger data sizes might see some benefits from the hybrid approach, but is beyond the scope

of this work.

62

Figure 6.13: Comparison of Performance for LU Implementation

6.3.1 Trial and Error methods - parallelization efforts

As observed in the section 6.3 , the LU Decomposition application had three different

implementations, MPI, CUDA and MPI+CUDA Hybrid. The best experimental results are

for the ’CUDA 16 block size’ implementation as noted in in Table 6.11.

Matrix Sizes 512 1024 2048 4096 8192

Serial Only 0.23 1.87 15.1633333 118.69 982.16

MPI 16 nodes 0.10211 0.438825 2.566645 18.362238 126.051864

CUDA 16 block size 0.033682495 0.12594397 0.839140686 6.440961914 58.81563672

Hybrid MPI + CUDA 4.749216 8.964449 22.677378 133.456077 970.861978

Table 6.11: LU Decomposition : Run Time comparison of implementations

It is observed that CUDA on the GP-GPU is the combination that achieved the

best performance out of all those tried. It is important to note that there is no defined end

point for this type of experimentation. The experiment is usually aborted by one of the

following scenarios:

(a) Exhausted resources - hardware/software expertise

(b) Time deadline for completion

63

(c) Reasonable/acceptable amount of speedup achieved

Thus, trial and error methods do not necessarily guarantee best achievable perfor-

mance, which is a major disadvantage of this approach. Specially for a scientists with limited

HPC experience, the resource intensity of the trial and error methods can be daunting.

To quantify the parallelization efforts, the following assumptions are made:

1. Man hours for one code conversion is constant.

2. Cost of access any given type of hardware is constant

3. Efforts involved in acquiring the knowledge and expertise in a particular programming

model for a given architecture type are constant.

The best achieved results are for the ’CUDA 16 block size’ in Table 6.11. Here the

run-times for the 8192 matrix size is selected for comparison. The parallelization efforts

are summarized in Table 6.12. The man-hours for code conversion are counted as 1x for

MPI, 1x for CUDA, and 0.5x for combining the two approaches in hybrid code. Similarly,

the required amount of necessary accesses to hardware is quantified as 1x for multi-core

CPU and 1x for GPU. The degree of knowledge and expertise required is also 2x for the

programming models used, MPI and CUDA. The overall assessment of trial and error

methods can be summarized as a summation of all the other factors. Thus this approach

is 6.5x effort for achieving the run time of 58.815637 seconds for matrix size of 8192 x 8192

as shown in Table 6.12.

Best Run Time achieved 58 seconds for 8192x8192 matrix

Man-hours for code conversion 2.5 x

Amount of necessary H/W access 2x

Degree of knowledge and expertise required 2x

Table 6.12: Quantified parallelization efforts for trial and error methods

64

6.3.2 “Architecture First, Language Later” parallelization strategy - par-

allelization efforts

The main advantage of the “Architecture First, Language Later” parallelization

strategy as explained in Section 4.2 is that one combination of architecture and pro-

gramming model is selected based on the qualitative model’s projection using the appli-

cation/algorithm characterization. This selection lessens the code conversion efforts as one

has to convert just once as opposed to multiple times in the trial and error approach.

The man hours for code conversion as well as degree of knowledge and expertise

required is assessed to be 1x each since this approach involves parallelization of code into

one programming model for one particular type of architecture e.g., CUDA code for the GP-

GPU in case of the LU Decomposition algorithm. Since the GP-GPU acts as a co-processor,

and it requires a host CPU, therefore the hardware factor is estimated as 1.25 x. The CPU

is not counted as 1x since the CPU need not be a powerful multi-core CPU as in the case of

considering a multi-core CPU as the only parallel architecture. The best run time achieved is

considered to be the same as the CUDA implementation, i.e. 58.815637 seconds for a matrix

size of 8192 x 8192. This determination of equivalent performance is based on an assumption

that the program implementation is considered fully optimized. This size selection is a

conscious decision made for the purpose of easier comparison between two approaches. It is

possible to choose the investment in development efforts as a constant, where the remaining

3.25x can be considered to be an investment in fine tuning and optimization of the CUDA

code, which will reduce the run-time further, achieving higher speedup as an outcome. As

outlined in Table 6.13, the overall parallelization effort is summarized as 3.25x.

Best Run Time achieved 58 seconds for 8192x8192 matrix

Man-hours for code conversion 1 x

Amount of necessary H/W access 1.25 x

Degree of knowledge and expertise required 1x

Table 6.13: Quantified parallelization efforts for “Architecture First, Language Later” par-
allelization strategy

65

6.4 Summary Of Results and Analysis

To verify the programming model selection strategy of using the native language for

the architecture of choice, a representative application (k- means algorithm) was executed

on multiple architectures in the native language as well as in portable language(s) to see

the effect of language variability for a given application. Results for the K-means algorithm

with 1,638,400 items and 20 clusters demonstrated that a certain architecture yields fastest

performance for native as well as portable implementation. It also exhibited that native

language achieved superior computer performance as compared to the portable language.

In this chapter, the architecture to application mapping model used to select the

appropriate architecture was also validated. The model was tested for 9 applications from

OpenDwarfs suite consisting of different computation/communication idioms, i.e. dwarfs.

The accuracy was validated to be 78 %, with 7 out of 9 applications yielding correct pre-

dictions. The 2 incorrect predictions were attributed to two main reasons: (1) similarity of

OpenCL with CUDA and (2) unfamiliarity with MIC programming techniques as compared

to GPU.

To establish the effectiveness of the parallelization strategy, a representative algo-

rithm from scientific computing (Lower-Upper decomposition) was selected and approached

with the two methodologies, trial and error methods as well as the “Architecture First, Lan-

guage Later” parallelization strategy. The development efforts incurred are contrasted for

both methods. As part of the trial and error approach, the algorithm was parallelized and

implemented in MPI, CUDA and a hybrid version using MPI+CUDA. The trial and error

development required 6.5x effort and achieved the best performance, i.e. 58 seconds for

8192x8192 matrix. The “Architecture First, Language Later” achieved comparable perfor-

mance at 58 seconds with only 3.5x worth of development effort and thus was proven to

achieve 50 % reduction in efforts to achieve similar performance.

The next chapter summarizes the research work and draws conclusions. This chapter

also provides suggestions for future work.

66

Chapter 7

Conclusion and Future Work

7.1 Summary

This thesis presents a novel three step “Architecture First, Language Later” paral-

lelization strategy to accelerate scientific applications, that maximizes the opportunities of

achieving speedup while minimizing the development efforts. As mentioned in Chapter 1,

development of this strategy was motivated by the limitations and wastage of resources and

efforts incurred in trial and error, a methodology commonly employed by scientist when

attempting to leverage High Performance Computing to achieve speedup.

Chapter 2 reviewed some of the prominent literature targeting performance mod-

eling approaches. Additionally, it also discussed the trade offs between accuracy and gen-

erality, the idea of a fitness matching model and hybrid approach technique that combines

qualitative and quantitative models into one. This thesis research extends the the hy-

brid approach of qualitative modeling for fitness and quantitative modeling for selecting

programming methodology, and enhances its generality and robustness while maintaining

reasonable accuracy. A few architecture studies that demonstrate that a specific type of

processor or co-processor/accelerator is more appropriate for certain type of applications

with unique set of computation and communication patterns, were also elaborated.

Chapter 3 provided the necessary background for this thesis including the details

67

of a few key concepts in parallel programming such as Flynn’s Taxonomy, Shared Vs.

Distributed Memory and Manycore Vs. Multicore processors. This chapter also introduced

the computing accelerators namely, General Purpose Graphics Processing Unit (GP-GPU)

and Many Integrated Core (MIC) architecture. Additionally, various programming models

such as MPI, CUDA, OpenCL were detailed. Benefits and costs of Code Portability was

also analyzed in the 3rd Chapter.

Chapter 4 detailed the experimental design and the claims regarding the effectiveness

of the “Architecture First, Language Later” parallelization strategy. A qualitative model

used for application-to-architecture mapping was explained in detail. This model is based on

four parameters namely, Time Complexity, FLOPs to Non-FLOPs ratio, Dominant Memory

Access Ratio and Memory Access Frequency. The chapter also outlines the programming

model selection using a quantitative model based on experimental benchmarks. This chapter

also outlines the validation metrics used to determine the effectiveness of the parallelization

strategy proposed in this thesis.

In Chapter 5, the mathematical concepts involved in the Lower Upper Decomposi-

tion algorithm as an enhanced Gaussian Elimination technique to solve a system of linear

equations was explained along with a numerical example including solution. This chapter

also includes guidelines for implementing Trial and Error methods as well as the “Architec-

ture First, Language Later” parallelization strategy.

As mentioned in Chapter 6, to verify the programming model selection strategy of

using the native language for the architecture of choice, a representative application (k-

means algorithm) was executed on multiple architectures in the native language as well

as in portable language(s) to see the effect of language variability for a given application.

Results for the K-means algorithm with 1,638,400 items and 20 clusters demonstrates two

key things:

1. On a given architecture, the native language achieves the fastest run-time, i.e. CUDA

on GPU implementation takes less time than OpenCL on GPU

68

2. For a given application, a specific architecture achieves better performance for the

same portable implementation, i.e. OpenCL implementation runs fastest on GPU as

compared to CPU and Xeon Phi.

Chapter 6 also validated the architecture to application mapping model used to se-

lect the appropriate architecture. The model was tested for applications from a benchmark

suite consisting of different computation/communication idioms, i.e. dwarfs called OpenD-

warfs. The prediction was then verified by comparing actual run-time by running the code

on different architectures. As observed, the accuracy was validated to be 78 %, with 7 out

of 9 applications yielding correct predictions. The 2 incorrect predictions were attributed

to two main reasons: (1) similarity of OpenCL with CUDA and (2) unfamiliarity with MIC

programming techniques as compared to GPU. Thus this can be further improved by better

understanding the Xeon Phi architecture in more depth in order to achieve better alignment

of software structure with hardware blocks and to develop a less biased portable program

with OpenCL despite its similarities with CUDA.

To establish the effectiveness of the parallelization strategy, a representative algo-

rithm from scientific computing (Lower-Upper decomposition) was selected and approached

with the two methodologies, trial and error methods as well as the “Architecture First, Lan-

guage Later” parallelization strategy. As part of the trial and error approach, the algorithm

was parallelized and implemented in MPI, CUDA and a hybrid version using MPI+CUDA.

The trial and error development required 6.5x effort and achieved the best performance,

i.e. 58 seconds for 8192x8192 matrix. The “Architecture First, Language Later” achieved

comparable performance at 58 seconds with only 3.5x worth of development effort and thus

was proven to achieve 50 % reduction in efforts to achieve similar performance.

7.2 Conclusion

We draw the following conclusions:

1. For any given scientific application, one architecture performs better than other avail-

69

able architectures, even for a common portable application.

2. For a given architecture, the same algorithm has varying run-times for implementa-

tions in different languages.

3. For a given algorithm coupled with a given architecture, the implementation in its

native language generally achieves the best performance.

4. A qualitative model used in this thesis predicts an optimal architecture for a given

application from scientific domain with 78 % accuracy.

5. The proposed “Architecture First, Language Later” parallelization strategy achieves

50 % reduction in development efforts while achieving results comparable to that of

the trial and error methods.

Thus, it is concluded that the proposed “Architecture First, Language Later” par-

allelization strategy achieves best performance with least development efforts with the help

of a hybrid combination of quantitative model for programming model/language selection

coupled with a qualitative model for optimal architecture prediction. Hence, the proposed

strategy is a performance focused, development friendly and model aided parallelization

strategy.

7.3 Future Work

This thesis presents a parallelization strategy to accelerate scientific applications

that maximizes the opportunity to achieve speedup while minimizing the development ef-

forts. This strategy has been validated using one end-to-end case study scenario and 9

application tests. Additional case studies with other scientific algorithms and full applica-

tions should be carried out employing the “Architecture First, Language Later” strategy,

which will help understand the applicability for a wider domain. Such observations can also

be helpful in designing iterations for the underlying application to architecture model.

70

The qualitative model used in this thesis, can be further extended to include more

parallel architectures such as FPGAs, in addition to the three architectures - CPU, GPU

and Xeon Phi. Additionally, run-times should be measured again on the second generation

Xeon Phi known as Knights Landing and the more advanced version of NVIDIA GPU

Tesla K40. These results will help understand the differences between the capacities of two

architectures. The architectures like CPU and Xeon Phi, can run MPI as well OpenMP,

and both can be considered native. The current model can be further enhanced to include

characterization for multiple ”native” programming languages in such scenarios.

The proposed “Architecture First, Language Later” strategy is based on a model

with 78 % accuracy. As explained in the summary and in Chapter 6, the accuracy can be

further improved by studying the Xeon Phi architecture in more depth an fine tuning the

model to take this enhanced knowledge into consideration.

This thesis pioneers the way for qualitative characterization of application, which

when mapped to hardware capabilities, yields optimal match and thus best performance.

A quantitative characterization and application to architecture mapping would be the next

logical step in the right direction necessary to further this research. The application char-

acterization can be automated by developing a code scanner which could take away the

burden on the user to characterize and thus make it more user friendly. Such tool would

allow the naive users to adapt this parallelization strategy with ease.

Additionally, this thesis involved a hybrid approach of using MPI + CUDA im-

plementation of LU Decomposition to utilize CPU as well as accelerator GP-GPU. This

implementation was motivated by a line of thought that utilizing host CPU for not only

control but for compute work means more compute resources and thus likely will result

in an increase in performance. However, the hybrid code did not achieve the desired gain

in performance. This unexpected result is attributed to the fact that data communication

slows the code down. There are no defined patterns of data or task decompositions for the

hybrid approach. The hybrid approach needs to be further investigated in order to unlock

the possible benefits of utilizing CPU along with the accelerator for computation.

71

Bibliography

[1] K. Krommydas, W.-c. Feng, C. D. Antonopoulos, and N. Bellas, “Opendwarfs: Char-
acterization of dwarf-based benchmarks on fixed and reconfigurable architectures,”
Journal of Signal Processing Systems, pp. 1–20, 2015.

[2] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A.
Patterson, W. L. Plishker, J. Shalf, S. W. Williams et al., “The landscape of parallel
computing research: A view from berkeley,” Technical Report UCB/EECS-2006-183,
EECS Department, University of California, Berkeley, Tech. Rep., 2006.

[3] P. Colella, “Defining software requirements for scientific computing,” 2004.

[4] What is gpu computing? [Online]. Available: http://www.nvidia.com/object/
what-is-gpu-computing.html

[5] NVIDIA’s Next Generation CUDA Compute Architecture: Kepler
GK110/210. [Online]. Available: http://images.nvidia.com/content/pdf/tesla/
NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf

[6] J. Reinders, “An overview of programming for intel xeon processors and intel xeon phi
coprocessors,” 2012.

[7] K. Sapra, “Framework for lifecycle enrichment of hpc applications on exascale hetero-
geneous architecture.”

[8] U. Lopez-Novoa, A. Mendiburu, and J. Miguel-Alonso, “A survey of performance
modeling and simulation techniques for accelerator-based computing,” Parallel and
Distributed Systems, IEEE Transactions on, vol. 26, no. 1, pp. 272–281, 2015.

[9] V. V. Pallipuram Krishnamani, “Exploring multiple levels of performance modeling for
heterogeneous systems,” Ph.D. dissertation, Clemson University, 2013.

[10] M. Bhuiyan, “Performance analysis and fitness of gpgpu and multicore architectures
for scientific applications,” Ph.D. dissertation, Clemson University, 2011.

[11] E. Saule, K. Kaya, and Ü. V. Çatalyürek, “Performance evaluation of sparse matrix
multiplication kernels on intel xeon phi,” in Parallel Processing and Applied Mathe-
matics. Springer, 2013, pp. 559–570.

72

http://www.nvidia.com/object/what-is-gpu-computing.html
http://www.nvidia.com/object/what-is-gpu-computing.html
http://images.nvidia.com/content/pdf/tesla/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
http://images.nvidia.com/content/pdf/tesla/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf

[12] A. Abdullah, K. kok Yong, E. K. Karuppiah, and P. K. Chong, “Multi keyword range
search in gpu and mic: A comparison study,” in Open Systems (ICOS), 2014 IEEE
Conference on. IEEE, 2014, pp. 117–122.

[13] R. Bordawekar, U. Bondhugula, and R. Rao, “Believe it or not!: mult-core cpus can
match gpu performance for a flop-intensive application!” in Proceedings of the 19th
international conference on Parallel architectures and compilation techniques. ACM,
2010, pp. 537–538.

[14] G. Teodoro, T. Kurc, J. Kong, L. Cooper, and J. Saltz, “Comparative performance
analysis of intel xeon phi, gpu, and cpu,” arXiv preprint arXiv:1311.0378, 2013.

[15] M. Snir, MPI–the Complete Reference: The MPI core. MIT press, 1998, vol. 1.

[16] L. Dagum and R. Enon, “Openmp: an industry standard api for shared-memory pro-
gramming,” Computational Science & Engineering, IEEE, vol. 5, no. 1, pp. 46–55,
1998.

[17] NVIDIA Corporation, NVIDIA CUDA Compute Unified Device Architecture Program-
ming Guide. NVIDIA Corporation, 2015.

[18] K. O. W. Group et al., “The opencl specification, version 1.2, 15 november 2011,”
Cited on pages, vol. 18, no. 7, p. 30.

[19] M. Wolfe, “The openacc application programming interface,” 2013.

[20] R. Weber, A. Gothandaraman, R. J. Hinde, and G. D. Peterson, “Comparing hardware
accelerators in scientific applications: A case study,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 22, no. 1, pp. 58–68, 2011.

[21] R. Dolbeau, F. Bodin, and G. C. de Verdiere, “One opencl to rule them all?” in Multi-
/Many-core Computing Systems (MuCoCoS), 2013 IEEE 6th International Workshop
on. IEEE, 2013, pp. 1–6.

[22] K. Karimi, N. G. Dickson, and F. Hamze, “A performance comparison of cuda and
opencl,” arXiv preprint arXiv:1005.2581, 2010.

[23] A. J. Van der Steen, Overview of recent supercomputers. Citeseer.

[24] M. J. Flynn, “Some computer organizations and their effectiveness,” IEEE transactions
on computers, vol. 100, no. 9, pp. 948–960, 1972.

[25] M. Ilg, J. Rogers, and M. Costello, “Projectile monte-carlo trajectory analysis using
a graphics processing unit,” in 2011 AIAA Atmospheric Flight Mechanics Conference,
Portland, OR, Aug, 2011, pp. 7–10.

[26] G. Hager and G. Wellein, Introduction to high performance computing for scientists
and engineers. CRC Press, 2010.

[27] B. Barney, “Introduction to parallel computing. lawrence livermore national labora-
tory,” Available on https://computing. llnl. gov/tutorials/parallel comp, 2012.

73

[28] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful visual perfor-
mance model for multicore architectures,” Communications of the ACM, vol. 52, no. 4,
pp. 65–76, 2009.

[29] S. McGinn and R. E. Shaw, “Parallel gaussian elimination using openmp and mpi,” in
null. IEEE, 2002, p. 169.

[30] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S. Lee, and K. Skadron, “Rodinia:
Accelerating compute-intensive applications with accelerators.” IISWC, 2009.

[31] L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley, J. Demmel, J. Don-
garra, I. Duff, S. Hammarling, G. Henry et al., “An updated set of basic linear algebra
subprograms (blas),” ACM Transactions on Mathematical Software, vol. 28, no. 2, pp.
135–151, 2002.

[32] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ guide. Siam, 1999,
vol. 9.

[33] J. Phillips, The NAG library. Clarendon Press, 1986.

[34] M. Intel, “Intel math kernel library,” 2007.

[35] M. U. Guide, “The mathworks,” Inc., Natick, MA, vol. 5, p. 333, 1998.

[36] J. Lambers, “Summer session 2009-10 lecture 4 notes mat610,” Lecture Notes, 2009-10.

[37] J. F. Grcar, “Mathematicians of gaussian elimination,” Notices of the AMS, vol. 58,
no. 6, pp. 782–792, 2011.

[38] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y.
Wu, “An efficient k-means clustering algorithm: Analysis and implementation,” IEEE
transactions on pattern analysis and machine intelligence, vol. 24, no. 7, pp. 881–892,
2002.

[39] E. F. D’Azevedo, M. R. Fahey, and R. T. Mills, “Vectorized sparse matrix multiply
for compressed row storage format,” in International Conference on Computational
Science. Springer, 2005, pp. 99–106.

[40] W.-c. Feng, H. Lin, T. Scogland, and J. Zhang, “Opencl and the 13 dwarfs: a work in
progress,” in Proceedings of the 3rd ACM/SPEC International Conference on Perfor-
mance Engineering. ACM, 2012, pp. 291–294.

[41] Y. Yu and S. T. Acton, “Speckle reducing anisotropic diffusion,” IEEE Transactions
on image processing, vol. 11, no. 11, pp. 1260–1270, 2002.

[42] A. Corrigan, F. Camelli, R. Löhner, and J. Wallin, “Running unstructured grid based
cfd solvers on modern graphics hardware,” AIAA paper, vol. 4001, p. 2009, 2009.

74

[43] S. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, “Accelerating compute-intensive
applications with gpus and fpgas,” in Application Specific Processors, 2008. SASP
2008. Symposium on. IEEE, 2008, pp. 101–107.

[44] M. Fatimah Noni, “Reducing the search space and time complexity of needleman-
wunsch algorithm (global alignment) and smith waterman algorithm (local alignment)
for dna sequence alignment,” Ph.D. dissertation, Universiti Malaysia Perlis (UniMAP),
2011.

[45] L. R. Welch, “Hidden markov models and the baum-welch algorithm,” IEEE Informa-
tion Theory Society Newsletter, vol. 53, no. 4, pp. 10–13, 2003.

[46] G. Campobello, G. Patane, and M. Russo, “Parallel crc realization,” IEEE Transac-
tions on Computers, vol. 52, no. 10, pp. 1312–1319, 2003.

75

	Clemson University
	TigerPrints
	12-2016

	A performance focused, development friendly and model aided parallelization strategy for scientific applications
	Anagha S. Joshi
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Motivation
	Our Work
	Thesis Outline

	Related Work
	Review Of Performance Modelling Approaches
	Parallel Architecture Studies
	Parallel Programming Models
	Summary Of Literature Review

	Background
	Parallel Programming Platforms
	Computational Accelerators
	Parallel Programming Models
	Portability Discussion
	Summary Of Background

	Experimental Design
	Hypothesis and Research Question
	Methodology
	Measures
	Setup
	Summary Of Experimental Design

	Case Study: Linear Algebra - Lower Upper Decomposition
	Introduction to solving system of linear equations
	Mathematical Background
	Important variation for LU Decomposition Algorithm
	Parallel Implementation Methodology
	Summary Of Case Study: LU Decomposition Algorithm

	Results and Analysis
	Optimal Language : Quantitative Comparison Results
	Optimal Architecture: Verification of Qualitative Model
	Case Study Observations : LU Decomposition
	Summary Of Results and Analysis

	Conclusion and Future Work
	Summary
	Conclusion
	Future Work

	Bibliography

