24 research outputs found

    Entropy-based framework for combinatorial optimization problems and enabling the grid of the future

    Get PDF
    This thesis is divided into two parts. In the first part, I describe efficient meta-heuristic algorithms for a series of combinatorially complex optimization problems, while the second part is concerned with robust and scalable control architecture for a network of paralleled converter/inverter systems (DC/AC microgrids). Combinatorial optimization problems arise in many applications in various forms in seemingly unrelated areas such as data compression, pattern recognition, image segmentation, resource allocation, routing, and scheduling, graph aggregation, and graph partition problems. These optimization problems are characterized by a combinatorial number of configurations, where a cost value can be assigned to each configuration, and the goal is to find the configuration that minimizes the cost. Moreover, these optimization problems are largely non-convex, computationally complex and suffer from multiple local minima that riddle the cost surface. Most heuristics to these optimization problems are very sensitive to initial guess solutions, and efforts to make them robust to initializations typically come at significant computational costs such that the algorithms lose practicality in many applications. In our work, we are motivated by solutions that are employed by nature to similar combinatorial optimization problems; well described in terms of laws such as maximum entropy principle (MEP) in statistical physics literature. We propose to use MEP in solving a variety of combinatorial optimization problems. Our main current contributions are threefold - (i) First we provide a clustering or resource allocation viewpoint to several combinatorial optimization problems: (a) data clustering, (b) graph partitioning (such as clustering of power networks), (c) traveling salesman problem (TSP) and its variants, and (d) hard problems on graphs, such as multiway kk-cut. This viewpoint enables a unified approach to handle a broad class of problems, and therefore efficient MEP based heuristics can be leveraged to obtain high-quality solutions. (ii) Second, we explore MEP based ideas to clustering problems specified by pairwise distances. Many problems in graph theory are indeed specified in terms of the corresponding edge-weight matrices (and not in terms of the nodal locational coordinates). (iii) Finally, our framework allows for inclusion of several constraints in the clustering/resource allocation problems. These constraints may correspond to capacity constraints in case of resource allocations where capacity of each resource is limited, or minimum-tour length constraints in case of traveling salesman problems (TSPs) and its variants. In the second part of this thesis, we describe a novel distributed, robust and optimal control architecture for both DC as well as AC microgrids. Microgrids are grid systems that allow integration of local power sources, such as photovoltaics (PVs), wind, battery and other distributed energy resources (DERs) with local loads connected at the DC-link or the point of common coupling (PCC). Microgrids are hypothesized as viable alternatives to the traditional electric grid. In a microgrid, the main goals of the control design are to regulate voltage and frequency at the PCC and ensuring a prescribed sharing of power among different sources; for instance, economic considerations can dictate that power provided by the sources should be in a certain proportion or according to a prescribed priority. The main challenges arise from the uncertainties in the size and the schedules of loads, the complexity of a coupled multi-converter network, the uncertainties in the model parameters at each converter, and the adverse effects of interfacing DC power sources with AC loads, such as the 120120Hz ripple that must be provided by the DC sources. A systematic control design that addresses all the challenges and objectives for the multi-converter/inverter control is still lacking in the existing literature. The main contribution of the control architecture proposed by us is its capability to addresses all the primary objectives - a) voltage and frequency regulation at the PCC with guaranteed robustness margins, b) prescribed time-varying power sharing in a network of parallel converters, c) controlling the tradeoff between 120Hz ripple on the total current provided by the power sources and the ripple on the DC-link voltage. An important contribution of our work is that our control architecture allows for closed-loop analysis and robust control synthesis for the entire grid network. We introduce a structure in the control architecture, whereby, we show that analysis of the entire multi-component microgrid can be simplified to that of an equivalent {\em single-component} system. Besides analysis, this simplification facilitates using robust and optimal control tools for achieving multiple objectives simultaneously; in contrast in existing architectures, closed-loop analysis for entire networks is typically difficult, and posing optimal control and robustness objectives for the entire network practically untenable

    A flexible integrated forward/reverse logistics model with random path

    Get PDF
    This dissertation focuses on the structure of a particular logistics network design problem, one that is a major strategic issue for supply chain design and management. Nowadays, the design of the supply chain network must allow for operation at the lowest cost, while providing the best customer service and accounting for environmental protection. Due to business and environmental issues, industrial players are under pressure to take back used products. Moreover, the significance of transportation costs and customer satisfaction spurs an interest in developing a flexible network design model. To this end, in this study, we attempt to include this reverse flow through an integrated design of a forward/reverse supply chain network design, that avoids the sub-optimal solutions derived from separated designs. We formulate a cyclic, seven-stage, logistics network problem as an NP-hard mixed integer linear programming (MILP) model. This integrated, multi-stage model is enriched by using a complete delivery graph in forward flow, which makes the problem more complex. As these kinds of problems belong to the category of NP-hard problems, traditional approaches fail to find an optimal solution in sufficiently short time. Furthermore, considering an integrated design and flexibility at the same time makes the logistics network problem even more complex, and makes it even less likely, if not impossible, for a traditional approach to provide solution within an acceptable time frame. Hence, researchers develop efficient non-traditional techniques for the large-term operation of the whole supply chain. These techniques provide near optimal solutions particularly for large scale test problems. In our case within this thesis, to find a near optimal solution, we apply a Memetic Algorithm with a neighborhood search mechanism and a novel chromosome representation called extended random path direct encoding method which includes two segments. Chromosome representation is one of the main issues that can affect the performance of a Memetic Algorithm. To illustrate the performance of the proposed Memetic Algorithm, LINGO optimization software as commercial package serves as a comparison for small size problems. We show that the proposed algorithm is able to efficiently find a good solution for the flexible, integrated, logistics network. Each algorithm has some parameters that need to be investigated to provide the best performance. In this regard, the effect of different parameters on the behavior of the proposed meta-heuristic algorithm is surveyed first. Then, the Taguchi method is adapted to identify the most important parameters and rank the latter. Additionally, Taguchi method is applied to identify the optimum operating condition of the proposed Memetic Algorithm to improve the results. In this study, four factors that are defined inputs of the proposed Memetic Algorithm, namely: population size, cross over rate, local search iteration, and number of iterations are considered. The analysis of the parameters and the improvement in results are both illustrated by a numerical case studies. Finally, to show the performance of the Memetic Algorithm, a Genetic Algorithm - as a second meta-heuristic algorithm option - is considered as regards large size cases

    Natural computing for vehicular networks

    Get PDF
    La presente tesis aborda el diseño inteligente de soluciones para el despliegue de redes vehiculares ad-hoc (vehicular ad hoc networks, VANETs). Estas son redes de comunicación inalámbrica formada principalmente por vehículos y elementos de infraestructura vial. Las VANETs ofrecen la oportunidad para desarrollar aplicaciones revolucionarias en el ámbito de la seguridad y eficiencia vial. Al ser un dominio tan novedoso, existe una serie de cuestiones abiertas, como el diseño de la infraestructura de estaciones base necesaria y el encaminamiento (routing) y difusión (broadcasting) de paquetes de datos, que todavía no han podido resolverse empleando estrategias clásicas. Es por tanto necesario crear y estudiar nuevas técnicas que permitan de forma eficiente, eficaz, robusta y flexible resolver dichos problemas. Este trabajo de tesis doctoral propone el uso de computación inspirada en la naturaleza o Computación Natural (CN) para tratar algunos de los problemas más importantes en el ámbito de las VANETs, porque representan una serie de algoritmos versátiles, flexibles y eficientes para resolver problemas complejos. Además de resolver los problemas VANET en los que nos enfocamos, se han realizado avances en el uso de estas técnicas para que traten estos problemas de forma más eficiente y eficaz. Por último, se han llevado a cabo pruebas reales de concepto empleando vehículos y dispositivos de comunicación reales en la ciudad de Málaga (España). La tesis se ha estructurado en cuatro grandes fases. En la primera fase, se han estudiado los principales fundamentos en los que se basa esta tesis. Para ello se hizo un estudio exhaustivo sobre las tecnologías que emplean las redes vehiculares, para así, identificar sus principales debilidades. A su vez, se ha profundizado en el análisis de la CN como herramienta eficiente para resolver problemas de optimización complejos, y de cómo utilizarla en la resolución de los problemas en VANETs. En la segunda fase, se han abordado cuatro problemas de optimización en redes vehiculares: la transferencia de archivos, el encaminamiento (routing) de paquetes, la difusión (broadcasting) de mensajes y el diseño de la infraestructura de estaciones base necesaria para desplegar redes vehiculares. Para la resolución de dichos problemas se han propuesto diferentes algoritmos CN que se clasifican en algoritmos evolutivos (evolutionary algorithms, EAs), métodos de inteligencia de enjambre (swarm intelligence, SI) y enfriamiento simulado (simulated annealing, SA). Los resultados obtenidos han proporcionado protocolos de han mejorado de forma significativa las comunicaciones en VANETs. En la tercera y última fase, se han realizado experimentos empleando vehículos reales circulando por las carreteras de Málaga y que se comunicaban entre sí. El principal objetivo de estas pruebas ha sido el validar las mejoras que presentan los protocolos que se han optimizado empleando CN. Los resultados obtenidos de las fases segunda y tercera confirman la hipótesis de trabajo, que la CN es una herramienta eficiente para tratar el diseño inteligente en redes vehiculares

    Future Smart Grid Systems

    Get PDF
    This book focuses on the analysis, design and implementation of future smart grid systems. This book contains eleven chapters, which were originally published after rigorous peer-review as a Special Issue in the International Journal of Energies (Basel). The chapters cover a range of work from authors across the globe and present both the state-of-the-art and emerging paradigms across a range of topics including sustainability planning, regulations and policy, estimation and situational awareness, energy forecasting, control and optimization and decentralisation. This book will be of interest to researchers, practitioners and scholars working in areas related to future smart grid systems

    Fuelling the zero-emissions road freight of the future: routing of mobile fuellers

    Get PDF
    The future of zero-emissions road freight is closely tied to the sufficient availability of new and clean fuel options such as electricity and Hydrogen. In goods distribution using Electric Commercial Vehicles (ECVs) and Hydrogen Fuel Cell Vehicles (HFCVs) a major challenge in the transition period would pertain to their limited autonomy and scarce and unevenly distributed refuelling stations. One viable solution to facilitate and speed up the adoption of ECVs/HFCVs by logistics, however, is to get the fuel to the point where it is needed (instead of diverting the route of delivery vehicles to refuelling stations) using "Mobile Fuellers (MFs)". These are mobile battery swapping/recharging vans or mobile Hydrogen fuellers that can travel to a running ECV/HFCV to provide the fuel they require to complete their delivery routes at a rendezvous time and space. In this presentation, new vehicle routing models will be presented for a third party company that provides MF services. In the proposed problem variant, the MF provider company receives routing plans of multiple customer companies and has to design routes for a fleet of capacitated MFs that have to synchronise their routes with the running vehicles to deliver the required amount of fuel on-the-fly. This presentation will discuss and compare several mathematical models based on different business models and collaborative logistics scenarios

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    Resource Management in Mobile Edge Computing for Compute-intensive Application

    Full text link
    With current and future mobile applications (e.g., healthcare, connected vehicles, and smart grids) becoming increasingly compute-intensive for many mission-critical use cases, the energy and computing capacities of embedded mobile devices are proving to be insufficient to handle all in-device computation. To address the energy and computing shortages of mobile devices, mobile edge computing (MEC) has emerged as a major distributed computing paradigm. Compared to traditional cloud-based computing, MEC integrates network control, distributed computing, and storage to customizable, fast, reliable, and secure edge services that are closer to the user and data sites. However, the diversity of applications and a variety of user specified requirements (viz., latency, scalability, availability, and reliability) add additional complications to the system and application optimization problems in terms of resource management. In this thesis dissertation, we aim to develop customized and intelligent placement and provisioning strategies that are needed to handle edge resource management problems for different challenging use cases: i) Firstly, we propose an energy-efficient framework to address the resource allocation problem of generic compute-intensive applications, such as Directed Acyclic Graph (DAG) based applications. We design partial task offloading and server selection strategies with the purpose of minimizing the transmission cost. Our experiment and simulation results indicate that partial task offloading provides considerable energy savings, especially for resource-constrained edge systems. ii) Secondly, to address the dynamism edge environments, we propose solutions that integrate Dynamic Spectrum Access (DSA) and Cooperative Spectrum Sensing (CSS) with fine-grained task offloading schemes. Similarly, we show the high efficiency of the proposed strategy in capturing dynamic channel states and enforcing intelligent channel sensing and task offloading decisions. iii) Finally, application-specific long-term optimization frameworks are proposed for two representative applications: a) multi-view 3D reconstruction and b) Deep Neural Network (DNN) inference. Here, in order to eliminate redundant and unnecessary reconstruction processing, we introduce key-frame and resolution selection incorporated with task assignment, quality prediction, and pipeline parallelization. The proposed framework is able to provide a flexible balance between reconstruction time and quality satisfaction. As for DNN inference, a joint resource allocation and DNN partitioning framework is proposed. The outcomes of this research seek to benefit the future distributed computing, smart applications, and data-intensive science communities to build effective, efficient, and robust MEC environments

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Design and Control of Power Converters 2019

    Get PDF
    In this book, 20 papers focused on different fields of power electronics are gathered. Approximately half of the papers are focused on different control issues and techniques, ranging from the computer-aided design of digital compensators to more specific approaches such as fuzzy or sliding control techniques. The rest of the papers are focused on the design of novel topologies. The fields in which these controls and topologies are applied are varied: MMCs, photovoltaic systems, supercapacitors and traction systems, LEDs, wireless power transfer, etc

    Faculty Publications & Presentations, 2008-2009

    Get PDF
    corecore