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Chapter 1
Introduction

THIS volume is a technical summary of the work done in the previous years technically
aimed at incorporating new intelligent algorithms to the design of vehicular networks.
The scientific hypothesis has been that of proving that Natural Computing, and spe-

cially some metaheuristics, can lead to actual contributions to the domain of communicating
vehicles in hostile environments (high interference, intense mobility, low computational re-
sources, etc.).

This PhD thesis does so in addressing both, academic and industrial challenges in the in-
telligent algorithms side, as well as in the modern technologies needed to this end. After a
wide set of original proposals, complex simulations, and real tests in the city, we conclude that
our initial hypothesis does hold: bio-inspired optimization algorithms and related tools are a
net contribution to upgrade existing services in communicating with cars as well as they open
new lines of research, development, and innovation of international interest.

1.1 Motivation

The vast use of private cars causes today serious road traffic problems that have to be solved
in some way by our modern society. Recent estimates have shown that each year more than
1.2 million human lives pass away as the result of road traffic accidents. Besides this, traffic
jams bother the daily life of the population mainly because they cause longer trip times and
larger associated pollution, not to mention the economic losses due to the delays and other
transport issues. At last, the longstanding promise of deploying applications to improve effi-
ciency and safety in road transport is becoming a reality. A number of smart mobility solutions
based on intelligent transport systems (ITS) are hitting the market, e.g., Waze (Waze, 2009) or
TomTom (TomTom, 2003).

The main idea behind this technology consists in sharing with road users information about
the traffic conditions by using wireless communication (via FM radio broadcast or, more re-
cently, via cellular networks). A better informed driver may make better decisions about a
road journey, since the misjudgment of drivers is the major cause of accidents and traffic jams.
Even, a given intelligent system could automatically take these decisions more efficiently, and
then, inform the driver. A plethora of other applications for passengers is also possible be-
cause of vehicular communication networks. However, there are several drawbacks to most of
these previous services: i) they are centralized and based on a fixed and costly infrastructure,
e.g., over-roadway and in-roadway sensors; ii) such systems provide traffic information only
about the main roads in the city, otherwise, it could entail huge costs of installation; and iii)
the information updates are in the range of 20-50 minutes, far from ideal real-time awareness.

1
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To overcome such drawbacks, vehicular ad hoc networks (VANETs) emerge as spontaneous
networks of self organized vehicles and roadside infrastructure elements, which continually
exchange data with each other by using short range wireless communications. VANETs pro-
vide the possibility of using vehicles and roadside elements as sources of information (by using
their internal sensors) to monitor the actual (updated) traffic conditions. But also, they strive
to harness the power of ubiquitous communication for continuously keeping the vicinity of
vehicles aware about the current/future maneuvers. Thus, drivers/vehicles may anticipate
hazardous events and avoid wrong driving decisions.

The major stress in this new type of modern ad hoc networks is put onto providing this
ubiquitous computing technology without using any central manager entity. VANETs must be
capable to exchange information in real time, using the wireless medium efficiently, adapting
the communication protocols to the continuous changes in road traffic environments, etc.

VANETs have a set of hard constraints that need to be handled to obtain the mentioned
features. This results in new open challenges that can be formulated as unsolved (and hard to
solve) optimization problems, which cannot be efficiently tackled by using classic (exact) opti-
mization techniques. These problems present novel models, one or more opposing objectives,
limited computational resources, and constrained network capabilities. These computational
and network resources must be taken into account in two different terms: first, the optimiza-
tion process to address the problems has to be performed in a constrained time and by using
a limited computation platform; and second, the computed solutions must handle restricted
resources (wireless medium, energy, economic cost, etc.), in addition to the need of being ac-
curate and robust. As a consequence, there is a need of modern, new, and very advanced
methods to address all these challenges.

Bio-inspired inspired algorithms are a widely used Natural Computing (NC) methods for
tackling complex (hard-to-solve and NP) optimization problems. These algorithms gradually
perform improvements to near-optimal solutions in a timely fashion. NC in optimization is be-
coming more and more popular within the research community. Some of the main reasons for
this are: 1) they present a reduced computational complexity, 2) they are generic tools (do not
require full problem knowledge), and 3) they can be tailored in terms of numerical accuracy,
memory size, etc. All these features motivated us to apply NC to address optimization prob-
lems in the domain of vehicular networks. Thus, we establish as the main goal of this thesis
dissertation to show the feasibility of using NC for solving VANET optimization problems, as
well as to produce useful configurations of real software and hardware for VANETs. Accord-
ingly, we aim at identifying some relevant open optimization challenges in this domain, we
define their formulation, we engineer a set of NC algorithms to tackle them, we show their ef-
fectiveness through experimental evaluation (including statistical validation), and finally, we
test some of the obtained solutions throughout outdoor experiments (in vitro) by using real
vehicles and wireless devices.

As it can be seen, this thesis has a strong focus towards the applicability of the results
obtained, and this is the reason that this research work has been developed in connection to
several research projects aiming at deploying real world VANETs, such as EUREKA-CELTIC
CARLINK (CARLINK, 2006), DIRICOM (DIRICOM, 2008), roadME (roadME, 2011), CoMoSeF
(CoMoSeF, 2012), CellCar (CellCar, 2013), and MAXCT (MAXCT, 2014).

1.2 Objectives and Phases

This thesis focuses on the resolution of complex optimization problems in the domain of
VANETs by using NC. This general goal can be detailed into the following concrete objectives:
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• Identify the most important challenges that arise in the emerging field of vehicular net-
works. Select a subset of these problems to be tackled as optimization problems in this
thesis dissertation.

• Propose a formulation for each of the optimization problems selected.

• Describe the NC algorithms that will be used to address the problems.

• Define general optimization methodologies based in NC that lead to the resolution of the
specific problems addressed, but that can be used in new further optimization problems
in VANETs.

• Design novel strategies that enhance the performance of current NC techniques, either
from the perspective of the quality of the solutions produced, or from the perspective of
the computational effort required to reach them.

• Demonstrate the effectiveness of the NC based optimization tools and the solutions com-
puted by statistically assessed experimental evaluation.

• Validate the solutions computed in real world pilots.

For the research develop in this thesis, we follow the phases of the Scientific Method
(Dodig-Crnkovic, 2002). The first phase is observation, where we study the innovative field
of VANETs to detect the main challenges and target problems. We identify data dissemination
and roadside unit platform design as two groups of relevant problems, where it is possible
to make contributions. After that, we formulate the question about applying NC to efficiently
address the observed open issues in VANETs, which can be expressed as hard-to-solve opti-
mization problems. The general hypothesis of this dissertation is formulated as “NC is suitable
to efficiently address such VANET optimization problems, overcoming some limitations of traditional
methods”. Afterwards, we perform the experimentation phase. We review the literature about
VANET optimization problems, and proposed new variants. These problems are solved by
using different NC methods in order to evaluate their performance against the current state-
of-the-art methods. Experimenting with new technologies for communications is also a target
of the research. The next phase of the scientific method is the analysis of the results. We perform
an in-depth analysis for each target problem, in order to study different metrics to evaluate the
behavior of the proposed NC algorithms. Statistical tests are applied to validate the confidence
of the results. Finally, we draw the conclusions according to the experience extracted from the
research process. As the main conclusion, the obtained results support our working hypothesis
about the applicability of NC to efficiently solve relevant VANET optimization problems.

1.3 Thesis Contributions

The main contribution of this PhD thesis is the in depth analysis of the use of NC to address
specific vehicular communication problems, being our proposals in many cases the first ap-
proaches found in the literature (to the best knowledge) in this domain. This contribution is
summarized as the following outputs:

• A review of the state of the art in VANETs, paying special attention to routing data,
broadcasting beacons, and roadside unit deployment issues. Additionally, a literature
analysis of the different NC is performed.
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• An in depth study in off-line protocol optimization in VANETs. Different formulations
have been proposed according to the type of protocol (routing or file transfer) and the
main purpose of optimization (QoS and/or energy efficiency). Additionally, we have
also analyzed mono-objective and multi-objective models of these problems. Therewith,
we have defined a general off-line optimization tool, which couples a NC method (e.g.,
an evolutionary algorithm or a swarm intelligence method) with a VANET simulator,
that can be tailored to optimize any VANET protocol.

• An improvement of the efficiency and the efficacy of the NC algorithms used to solve
off-line optimization in VANETs by introducing parallel models and specific operators
(e.g., initialization, mutation, and crossover).

• A new formulation of the broadcasting optimization problem more in line with the spe-
cific features and requirements of the VANET’s has been defined. In this sense, four
different distributed dynamic broadcasting algorithms have been proposed to address
such optimization problem.

• A novel multi-objective optimization problem formulation of the roadside unit deploy-
ment in vehicular communications (RSU-DP problem), which takes into account real-
wold existing devices and road traffic information. In order to address this problem, a
large-sized instance with the main roads of Málaga (Spain) has been modeled with real
traffic data from the city council. Additionally, we have proposed a bio-inspired multi-
objective algorithm (with specific operators) to tackle RSU-DP in the city of Málaga. A
comparison with the last state-of-the-art algorithms has been provided.

• A large VANET simulation testbed defined based on real-world data of different neigh-
borhoods of Málaga has been created. The instances that incorporate this testbed com-
prise different area sizes, road traffic patterns, VANET applications, etc.

• A definition of a real-world outdoor testbed to evaluate different VANET solutions. Be-
sides this, we have analyzed the feasibility of expanding VANET technology with the
use of lightweight personal devices (smartphones, tablets, and laptops).

1.4 Dissertation Outline

This thesis work is highly oriented towards the problem domain, and this reflects into its struc-
ture as a document. Thus, this volume is divided into three parts, that follow this introduction.
In the first part we present the fundamentals and bases for the work: the vehicular networks
domain, NC as a global family of methods to solve optimization problems, and the VANET
optimization problems addressed in this work, including the literature review. The second part
(the principal one) is devoted to the whole experimental research work performed in this the-
sis. Full analysis of the optimization problems are analyzed here (routing, broadcasting, and
roadside infrastructure design). As most of them are pioneers in the current literature, full for-
mulation, models, and evaluation methods are detailed for each problem. Additionally, this
part includes the real-wold VANET experiments performed on the roads of Málaga. Finally,
the third and last part of the thesis regroups the main conclusions drawn throughout the work
and summarizes our findings. We detail the contents of the chapters below.
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• Part I: Fundamentals

Chapter 2 gives a general description of VANETs. It introduces some of the most im-
portant communication technologies, reviews the main VANET applications, provides
the main differences between VANETs and other mobile networks, and overviews the
different worldwide VANET-related projects and consortia. Finally, we discuss the main
current open challenges, which have been the main motivation to formulate the opti-
mization problems that are presented in the next chapter.

Chapter 3 gives an introduction to the research field of NC in optimization problems.
We put special attention on the algorithms utilized in the whole thesis. Besides this, it
introduces the VANET optimization problems analyzed and reviews the main related
literature. Finally, this chapter includes the methodology followed to evaluate the opti-
mization techniques applied in solving such problems.

• Part II: Optimization and Experimentation in Vehicular Networks

Chapter 4 presents our approach to solve off-line protocol tuning optimization prob-
lems for VANETs. Different VANET protocols (file transfer and routing) are optimized
in terms of quality-of-service (QoS) and/or energy consumption. For this reason, several
problem formulations are presented for the problem objectives. In our analysis, we in-
clude a representative set of well-known NC algorithms, which include mono-objective
and multi-objective solvers and sequential (one-thread) and parallel algorithms. Finally,
the efficacy of the optimized protocols are confirmed by performing a set of validation
experiments, which involve simulations over a number of realistic VANET scenarios.

In Chapter 5, we introduce the concept of fair (balanced) beacon broadcasting. Then, we
describe a series of distributed greedy algorithms for broadcasting beacons in VANET.
These methods, that are supposed to be running in each vehicle, dynamically (on-line)
optimize the balance and the VANET medium occupancy. Finally, a set of validation
experiments are performed in a number of highway VANET scenarios.

In Chapter 6, we present a novel explicit multi-objective formulation of the RSU-DP in
order to find a set of solutions that maximize the QoS and minimize the installation costs.
We devise a parallel evolutionary algorithm, which applies specific operators to improve
the efficacy of this optimization method, to solve the problem in an instance defined
with real data of Málaga. Finally, the results are compared against the last state-of-the-
art optimization algorithms proposed to address RSU-DP.

Chapter 7 describes a set of real-world VANET experiments that have been performed
in open roads of the city of Málaga. These outdoor testbeds are performed with two
main purposes: first, we compare the optimized and the standard parameterizations of
a file transfer protocol to confirm the results obtained in Chapter 4; and second, we ana-
lyze real vehicle-to-vehicle communications by using a set of widely available personal
portable devices (smartphones, tablets, and laptops) in order to evaluate their capabili-
ties to be used to deploy real VANETs.

• Part VI: Conclusions and Future Work

Chapter 8 contains a global review of this thesis dissertation, and regroups the main
conclusions drawn for the whole research work. The thesis objectives and main contri-
butions are discussed in view of the results obtained. Finally, the future lines of research
that can be pursued following the work presented here are briefly sketched and dis-
cussed.
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In summary, we have tried to give a new perspective to significant problems (in the domain
of VANETs), we have applied new solving techniques focusing on the applicability of the so-
lution, and we have analyzed how to make vehicular networks a reality. We have performed
innovative research to fill gaps of the literature in order to conclude a meaningful PhD thesis
in this competitive present world.



Any fool can know. The point is to understand.
ALBERT EINSTEIN

PART I:

FUNDAMENTALS

7





Chapter 2
Vehicular Networks: Opportunities and
Research Challenges

TODAY, the longstanding promise of deploying applications based on vehicular ad hoc net-
works (VANETs) to improve efficiency and safety in road transport is becoming a re-
ality. However, there are still some open questions to be carefully addressed before a

widespread deployment of this technology. The aim of this chapter is to introduce VANETs
as a case of success of the implementation of Natural Computing as a design tool. Thus, this
chapter introduces some of the most important VANET communication technologies, it re-
views the most salient applications that rely on these type of networks, it presents the main
differences between VANETs and other mobile networks, it overviews the different activities
(projects and consortia) carried out in this domain, and finally, it describes the most salient
current open challenges. Please notice that it does not intend to be a comprehensive analysis
of the state-of-the-art of vehicular communications since it is out of the scope of this thesis.

2.1 Introduction

Nowadays, the most widely used means of transport are cars and other private vehicles. The
huge increase in the volume of road traffic experienced during the last decades causes today
serious problems that have to be confronted by our modern society. Recent estimates have
shown that 1.24 million human lives are lost each year as a result of road traffic crashes (WHO,
2015). In addition, traffic jams, besides causing discomfort, limit the efficiency in transporta-
tion with vehicles because of the growth of the travel times, with the subsequent increase of
the energy consumption and the impact on the environment (affected by the large associate air
pollution).

As a global consequence, our present industry, academia, and governments worldwide
are devoting considerable resources to increase road safety and traffic efficiency. Information and
communication technologies (ICT) are the driving force behind some of the most important inno-
vations in dealing with this challenge. The use of mobile communication systems in vehicular
environments is a recent field that will provide modern intelligent transportation systems (ITS)
that will allow the development of the next generation smart mobility services. One of the
most promising solutions is the use of emerging vehicular communication networks known
as vehicular ad hoc networks (VANETs) (Hartenstein and Laberteaux, 2009; Campolo et al., 2015;
Yousefi et al., 2006; Morris et al., 2000). VANETs are composed by a collection of vehicles and
roadside elements connected with each other using infrastructure-less wireless technologies.
Although, many considerations are still in the air, like the open debate whether it is necessary

9
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or not to redefine the term in order to include infrastructure-based and cellular systems in
the vehicular communications (see Figure 2.1). VANETs offer the possibility of improving the
safety and efficiency of the road traffic through powerful cooperative applications based on a
continuous information sharing.

FIGURE 2.1: A schematic representation of a vehicular network.

2.2 VANET Communication Technologies

ITS applications have different and varied communication requirements in terms of band-
width, latency, coverage and other performance metrics, which have to be fulfilled by VANETs.
This section introduces the VANET’s architecture, the different communication domains, and
the main radio access technologies utilized in these vehicular environments.

2.2.1 Architecture

The three main components of the whole VANET system are the on-board, roadside, and ap-
plication units. They are described bellow:

• On-board unit (OBU): OBUs are hardware devices integrated in the vehicles in order
to provide them with processing and communication capabilities. Their main functions
are: i) gathering and processing the data collected from the sensors installed in the ve-
hicle (e.g., kinematics data) and ii) exchanging vehicular information with other VANET
nodes (OBUs or roadside units) via direct short range wireless communications (DSRC),
which are principally based on IEEE 802.11p radio technology (FCC, 1999). OBUs may
additionally include another network interfaces based on other radio access technologies
such IEEE 802.11a/b/g/n or WiMAX (IEEE 802.16). They also provide communication
services to the application units forwarding data on behalf of other OBUs in the network
(see Figure 2.2.a).

• Roadside unit (RSU): RSUs are devices that are usually installed on the roadside infras-
tructure elements, i.e., traffic lights or signals. In turn, they may be fixed along roadside
as specific dedicated VANET elements. They include a network interface to exchange
information with other VANET nodes through DSRC. They may also be equipped with
other network interfaces to connect to other networks or to the Internet (see Figure 2.2.b).
They perform three main functions (C2C-CC, 2007): i) acting as an information source
or receiver in safety applications, e.g., warning about of the existence of roadworks; ii)
extending the effective communication range by forwarding data to other VANET nodes
(OBUs or RSUs) through multi-hop communications; and iii) providing Internet connec-
tivity to the OBUs.
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• Application unit (AU): The AU may be either an external device connected to the OBU or
a device integrated into the OBU forming a single physical unit (see Figure 2.2.c). If it is
external device, it can be a dedicated device for VANET applications or a regular mobile
device, such as a smartphone or a personal digital assistant (PDA). The AU provides a user
interface to access the VANET applications, e.g, microphone or speakers. It is connected
to the OBU through wired or wireless connection, such as Bluetooth. The OBUs act as
network gateway that is used by the AUs to exchange information through the VANET
or to connect to the Internet.

a) OBU. b) RSU. c) AU.

FIGURE 2.2: Main elements of the VANET architecture (QMIC, 2015).

2.2.2 Communication Domains

Vehicular communication systems include of three types of communication domains (Olariu
and Weigle, 2009):

• In-vehicle domain: This domain refers to the network composed by the devices inside
the vehicle (i.e, the sensors, the OBU, and one or multiple AUs). Thus, the OBU is able
to use the network links to gather the information from the sensors and share it with
the AUs. The communication can be implemented with wired or wireless links. Some
example of the used wireless technologies in this domain are the Bluetooth, the wireless
universal serial bus (WUSB), and the ultra-wide band (UWB) (Jogi and Choudhary, 2009).

• Ad hoc domain: The ad hoc domain is composed by OBUs (mobile devices) and RSUs
forming a mobile ad hoc network (MANET). These nodes exchange information in a fully
distributed manner without using any centralized coordination entity through DSRC.
In this domain, the communicating nodes are either just vehicles (OBUs) exchanging

information with each other through vehicle-to-vehicle (V2V) communication or vehi-
cles communicating with RSUs via vehicle-to-infrastructure (V2I) communication (see
Figure 2.3). The performance of the communications in the ad hoc domain is highly de-
pendent on the routing and broadcasting protocols utilized to forward the data from the
source to the destination nodes.

• Infrastructural domain: Extending VANETs by including links to Internet provider
agents, may increase the power of the VANET applications. Thus, RSUs can be attached
to this kind of networks in order to act as gateway for OBUs allowing the vehicles to
access services that are provided by infrastructure networks. In turn, OBUs may be
equipped with cellular radio network interfaces, such as long term evolution (LTE), to per-
form vehicle-to-broadband cloud (V2B) communication to directly access infrastructure
networks (see Figure 2.3) (Hossain et al., 2010).
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FIGURE 2.3: A representation of the ad hoc and the infrastructural communication domains.

In spite of the raising of different radio access technologies of cellular networks that may
provide infrastructural domain vehicular communications (V2B), most research is addressed
in proposing an ad hoc communication platform to allow reliable V2V and V2I communica-
tions (Hartenstein and Laberteaux, 2009).

2.2.3 Wireless Access Technologies for VANETs

Vehicular networks can be deployed by using several of the numerous access technologies
available today (Hossain et al., 2010). The radio access technologies (RATs) applied in vehicular
environments, such as wireless local area networks (WLAN based on IEEE 802.11a/b/g/n/p
standards), WiMAX (IEEE 802.16 a/e standards), Bluetooth (IEEE 802.15.1 standard), and last
generations of cellular networks (3G and LTE), provide communications with different quality-
of-service (QoS) which determine the communication latency, bandwidth, coverage, etc. The
most salient RATs applied in V2V, V2I, and V2B communications are the following ones:

• WLAN: The family of IEEE 802.11 wireless standards (Cooklev, 2004), which have
achieved a great acceptance in the market, support short-range relatively high-speed
data transmission. IEEE 802.11 standard defines over-the-air protocols necessary to sup-
port networking in a local area and it specifies physical (PHY) and medium access control
(MAC) layers. There are several specifications in the IEEE 802.11 family which extend
the original one (IEEE 802.11). The most extended ones are the IEEE 802.11b and IEEE
802.11g standards, that provide 11 Mbps and 54 Mbps transmission in the 2.4 GHz band
with a maximum range of 500 m, respectively. IEEE 802.11a is an extension to 802.11 that
provides up to 54 Mbps in the 5 GHz band using the orthogonal frequency division multi-
plexing (OFDM) encoding scheme. Transfer rates increased with IEEE 802.11n standard
with a bandwidth up to 500 Mbps. In addition, there are a number of other 802.11 WG
activities that define inter access point protocol (IEEE 802.11f), MAC enhancements for
security (IEEE 802.11i), MAC enhancements for QoS (IEEE 802.11e), etc. WLAN radio
access technologies enable V2V and V2I communications.

• DSRC: In 1999, the U.S. Federal Communication Commission allocated 75 MHz of DSRC
spectrum at 5.9 GHz to be used exclusively for vehicular ad hoc communications (FCC,
1999). DSRC technology allows high speed communications between VANET nodes that
might be separated up to 1000 meters. There exist differences in the frequency allocation
between North America and Europe, but the intention is to be able to use the same an-
tenna and transmitter/receiver. Different organizations like the Institute of Electrical and
Electronic Engineers (IEEE), International Standard Organization (ISO) or Car-to-Car Com-
munication Consortium (C2C-CC) are working on developing an architecture for VANETs.
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There is no agreement between the different organizations on which of the different
proposals is more convenient for vehicular networks, thus, each of them is working on
their own proposal: wireless access in vehicular environment (WAVE) by IEEE (Uzcategui
and Acosta-Marum, 2009), communication access for land mobiles (CALM) by ISO (CALM,
2015), and Car-to-Car Network (C2CNet) by C2C-CC (C2C-CC, 2007).

Nowadays, the most utilized architecture to provide DSRC (V2V and V2I communica-
tions) is based on the IEEE 802.11p standard (ETSI, 2010), which is specifically designed
for supporting WAVE ITS applications. The IEEE 802.11p was firstly adopted by IEEE
and American Society for Testing and Materials (ASTM) (ASTM, 2003) and specifies the
PHY and MAC layers. WAVE protocol stack is completed by the IEEE 1609 standards
family (Guerrero-Ibáñez et al., 2013) at the upper layers.

• WiMAX: WiMax is a standard developed by IEEE, the IEEE 802.16 (Nuaymi, 2007). It
was defined to provide wireless broadband access over long distances (up to 50 Km).
WiMAX can operate with bandwidths up to 70 Mbps. However, when the distance be-
tween the nodes grows the bit error rate (BER) critically increases, and therefore, the ef-
fective bandwidth is reduced (Ghosh et al., 2005). In 2005, Mobile WiMAX (originally
based on 802.16e-2005) was deployed in many countries to provide mobile nodes with
WiMAX radio access. WiMAX has been proposed to improve the performance of V2I
communications (Shrivastava et al., 2012).

• LTE: Long term evolution (LTE), also known as Evolved Universal Terrestrial Access Network
(E-UTRAN), is a standard for cellular wireless communication that has been developed
by the Third Generation Partnership Project (3GPP) 3GPP, 2010. The main idea that moti-
vated LTE was to improve the Universal Mobile Telecommunications System (UMTS), which
is the third generation (3G) of mobile cellular systems for networks based on the Global
System for Mobile (GSM) standard. LTE provides high spectral efficiency by a combi-
nation of advanced multi-antenna techniques, and orthogonal frequency-division multiple
access (OFDMA) in the downlink (DL) and single-carrier frequency-division multiple access
(SC-FDMA) in the uplink (UL). Thus, it improves significantly the data rates, with the
potential for 300 Mbps downstream and 75 Mbps upstream, while reducing the com-
munication latency. In addition, it offers scalable bandwidth capacity and backwards
compatibility with existing GSM and UMTS technologies. Some authors have included
this RAT to be used in vehicular communications because some of these features are ideal
for ITS applications (Benslimane et al., 2011; Mosyagin, 2010).

Since ITS applications request services with different communication requirements in terms
of latency, bandwidth, error rate, coverage area, etc., recently, several studies urged to combine
different RATs into a unified hybrid vehicular networking (HVN) or V2X-Communication archi-
tecture (Hameed Mir and Filali, 2014; Park et al., 2014; Vinel, 2012). For example, ISO proposed
CALM M5 by incorporating a set of wireless technologies including UMTS-3G, infrared com-
munication, and wireless systems adapted to IEEE 802.11p (Olariu and Weigle, 2009).

2.3 VANET Applications

Vehicular networks allow the development of a large set of powerful applications that will
improve the road transportation experience for both, drivers and passengers. Typically, the
associated literature categorizes these applications in two different main groups: safety and
non-safety applications. The first ones utilize VANETs to exchange information to improve
road safety and avoid road accidents. Non-safety applications represent a hodgepodge of
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different applications that include the enhancement of the traffic efficiency and the improve-
ment of the passengers’ comfort and entertainment, among others. Nevertheless, these groups
cannot be seen completely orthogonal. Thus, an application designed to prevent car crashes
and hazardous situations improves the efficiency because it avoids the traffic jams that the
accidents may cause. Following, we summarize the most salient traffic safety, efficiency, and
comfort applications and their main network QoS requirements.

2.3.1 VANET Safety Applications

Road accidents may involve loss of human lives, injuries, cost of hospitalization, and damage
to the property and vehicles. These are some of the reasons that urge governmental institutions
to thoughtfully address road safety. Thus, future VANET safety related applications may help
to reduce the number of hazardous situations that road users may suffer.

These applications gather real-time information from diverse sources (through vehicle’s
sensors, received from other nodes or both), process it, and disseminate it to the other nodes
in the form of safety messages or beacons. Most of these applications rely on periodic message
broadcasting, also known as beaconing. The frequency of these messages depends on the nature
of the application and ranges from one to tens of hertz depending on the update frequency of
the required information. These applications can be classified into five main categories (Al-
Sultan et al., 2014):

1. Cooperative driving: Continuously sharing information with/from other vehicles about
kinematics (direction, velocity or acceleration), future maneuvers, etc. reduces the un-
certainty about the behavior of other vehicles, and therefore, reduces the probability of
hazardous situations. Thus, cooperative driving applications aim at improving safety by
exchanging information with the other VANET nodes through V2V and V2I communi-
cations. The information used by these applications can be gathered by the OBU through
the sensors and received from other nodes in the neighborhood. Designing applications
and protocols that support these kind of applications receive a lot interest from the re-
search community and industry (Van Arem et al., 2006; Santamaria et al., 2015). This
category includes a great number of possible applications, some of those are: cooperative
collision warning, road condition warning, emergency electronic brake lights, lane change warn-
ing, pre-crash sensing, highway merge warning, and cooperative adaptive cruise control (vehicle
platooning).

2. Intersection collision avoidance: An important number of hazardous situations occur at
crossroads and intersections. Therefore, improving the classic intersection collisions sys-
tem (traffic lights and signs) will help preventing many road accidents. These appli-
cations are based on the idea of gathering information about the vehicles close to the
intersection through road sensors and OBUs. Thus, if the system infers that there is a
possibility of existence of a dangerous situation or an accident, a warning message is
sent to the OBUs in order to alert the drivers so that they can take the appropriate actions
to avoid it. Some examples of these applications are (Al-Sultan et al., 2014): intersection
collision warning, warn about violating stop sign, left turn assistant (see Figure 2.4.a), and
pedestrian crossing.

3. Public safety: The main tasks of public safety applications are: i) to warn other drivers
about that an accident has occurred to avoid new dangerous situations, and ii), to sup-
port emergency teams by minimizing their travel time and by providing information
about the accident situation. Two proposed applications in this category are: post crash
warning and approaching emergency vehicle warning (see Figure 2.4.b).
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4. Vehicle diagnostics and maintenance: This category of applications aim to evaluate the state
of the vehicle, to notify the driver about safety defects, and to remind inattentive drivers
about the time to go for vehicle maintenance. In addition, they allow drivers to download
personalized vehicle settings better adapted to their driving profile. Some examples of
vehicle diagnostics and maintenance applications are: safety recall notice and just-in-time
repair notification.

5. Sign extension: These applications improve classic roadside traffic signs by advertising
the approaching vehicles in order to reduce the potential danger due to inattention of
the drivers. Also, sign extension applications may adapt the provided information to the
driver profile or to some specific situation. For example, the speed limit signs may further
restrict the speed during rainy times. Work zone warning (see Figure 2.4.c), wrong way
driver warning, curve speed warning, and low bridge warning, among others, are included in
sign extension applications.

2.3.2 VANET Traffic Efficiency Applications

Most of the classical ITS services deployed by authorities and institutions regarding traffic
improvement are based on two main ideas: i) analyzing the information gathered by installed
sensors on fixed spots on the road network and ii) informing the driver about the traffic status
and possible route alternatives via roadside information panels, or publishing this information
periodically on the mass media (radio or television).

However, the core idea of VANET traffic efficiency applications is to use vehicles as mobile
sensors which monitor useful traffic data such as traffic density, road weather conditions and
parking occupancy. Thus, vehicles automatically use the collected information to detect the
local traffic status and send this information to the authorities. Besides, the information is dis-
tributed to the OBUs of other vehicles where it can be used for tasks such as route optimization
or other adaptations of driving behavior.

VANET-based traffic information systems have received a lot of attention over recent years
(Hartenstein and Laberteaux, 2009; Katsaros et al., 2011). Therefore, a number of applications
have been analyzed in the literature, e.g., enhanced route guidance and navigation, congested road
notification, green light optimal speed advisory, and parking availability notification.

In terms of data dissemination, most of these applications require V2V and V2I commu-
nications to exchange messages periodically: usually, every second data is forwarded (data
exchange frequency of 1 Hz) (Al-Sultan et al., 2014). Even though, there are applications that
include also V2B in order to transport the information to the authorities and governmental
institutions (Gerla and Kleinrock, 2011).

The VANET traffic efficiency applications offer a set of important powerful benefits over
the classical systems. The most salient advantages are the following ones:

• The information used by the system is collected along the entire road network (if the
vehicles travel on the road), not just at certain limited points.

• OBUs always have updated information about the status of the traffic (region-wide, city-
wide, etc.) and they are warned by their neighbor nodes of any incidents in real time.

• The driver may be personally warned just if it is necessary according to its profile and the
travel destination, reducing possible unnecessary distractions by useless notifications.
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a) Left turn assistant VANET application.

b) Approaching emergency vehicle warning VANET application.

c) Work zone warning VANET application.

FIGURE 2.4: Examples of VANET safety applications (C2C-CC, 2015).

2.3.3 VANET Comfort and Entertainment Applications

Finally, vehicular networks can be used to deploy applications and services to improve the
comfort and the entertainment of the drivers and the passengers. These applications consist of
quite a diverse set of services (Al-Sultan et al., 2014): Internet access for the passengers of the
vehicle; automatic payment applications, such as automatic tooling or parking payment; specific
geo-located services, such as point-of-interest notification or geo-located service announcements
(e.g., deals of the day of a close shop, cinema showtime, etc.); entertainment and interactive mul-
timedia services, such as downloading contents (e.g., music, radio programs, movies, etc.) or
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playing online games; to name a few. The CARLINK project proposed multiplayer games
for the car passengers of different vehicles via V2V in order to ease the uncomfortable expe-
rience of being stuck in traffic jams by means of entertaining the road users (excluding the
drivers) (CARLINK, 2006).

Due to the diversity of applications in this category, a requirement analysis must be done
on a case-by-case basis. It is noticeable that the fault tolerance and communication delays
requirements of these applications are less strict than the ones of safety and traffic efficiency
applications. Moreover, the network load generated by comfort and entertainment applica-
tions should not limit the proper operation of the other ones.

2.3.4 Summary of the Main QoS Requirements

Table 2.1 summarizes the main QoS requirements of the three different application classes pre-
sented above. These requirements are evaluated in terms of throughput, reliability or delivery
ration (in terms of successful and in-time message transmission), and latency (in terms of total
transmission delays).

TABLE 2.1: Overview of the main QoS requirements of the studied VANET application classes.

Application class Main requirements Connectivity type

Safety High reliability, low latency (between 10 ms to 1 s) V2V and V2I
Traffic efficiency Medium-to-high reliability V2V, V2I, and V2B
Comfort and infotaintment High throughput, medium-to-low latency V2V, V2I, and V2B

2.4 Unique VANET Features

VANETs have typically been seen as a special case of MANETs (particularly at their begin-
nings) in which the nodes are basically vehicles (OBUs) and road-side elements (RSU). How-
ever they behave fundamentally different principally due to the high mobility of the VANET
nodes compared to MANETs and the strict requirements of the ITS applications (Campolo et
al., 2015). Specifically, the major unique characteristics of VANETs are presented here:

• Highly dynamic topology: VANET topology is continuously changing due to limited com-
munication range of the VANET nodes (hundreds of meters) and the high relative speed
between the cars. The life time of the link between vehicles moving in opposite directions
is very short in comparison with the case of nodes moving in the same direction. This
makes packets forwarding very hard because the network routing paths are very fre-
quently changing (Dua et al., 2014; Chen et al., 2011). Besides that, the VANET topology
of the network may be affected by the response to the drivers after receiving messages.
For example, a vehicle could stop following a fellow car because it has received a mes-
sage about the need to refill up the tank just before arriving a gas station, and therefore,
the communication link between the two vehicles is broken.

• Frequent disconnected network: VANET nodes are subject to continual loss of network con-
nection because the high speed of movement. The likelihood of disconnection increases
as the network density decreases. This issue must be addressed in order to deploy ser-
vices that require ubiquitous connectivity, a probable solution is to increase the density
of installed RSUs (Silva et al., 2015) or to use V2B communications (Hossain et al., 2010).

• Predictable mobility: Vehicular networks differ from MANETs in which the nodes may
move in a random way, because the movement of vehicles is limited. The vehicular mo-
bility is constrained by the road layout and topology, by the need of interacting correctly
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with other vehicles, and by the obligation to follow traffic rules. Thus, having this com-
plete information it is possible to predict and to model the mobility of the nodes. Some
authors have used this mobility modeling and prediction to design robust VANET com-
munication protocols (Menouar et al., 2007; Lai et al., 2009).

• Different communication conditions: VANETs may be deployed in different kinds of envi-
ronments, such as urban areas or highways. At cities, the existence of buildings, trees,
and other obstacles limit the signal propagation of the wireless signal, and therefore,
the QoS of the network. However, at highways there are better conditions for wireless
communication since they are typically built at open areas (here the problem is the high
speed of the vehicles). Additionally, the road traffic depends on the moment of the day,
e.g., during peak hours at morning the traffic density at the entrances to industrial ar-
eas is heavier than at noon. Thus, VANETs must be designed to provide a competitive
performance over different conditions that are principally defined by the environment,
where they are deployed, and by traffic density (Chen et al., 2011).

• Infrastructure access: VANET architecture includes roadside infrastructure elements in-
stalled along the roads, i.e., RSUs. This fixed infrastructure is used to provide specific
services via V2I or V2X communications, e.g., sign extension applications, or to extend
network connectivity, such as allowing connection to the Internet (Campolo et al., 2015).
Classic MANETs do not consider this solution.

• Hard delay and delivery constraints: As it has been already discussed in Section 2.3, VANET
safety applications, which are necessary in preventing hazardous situations and acci-
dents, have high requirements with respect to real-time functionality and reliability. In-
formation included in the safety messages is only meaningful during few tens of mil-
liseconds. Moreover, loss of messages may increment the uncertainty in the system, and
therefore, endanger human life of the road users.

• Data locality: For a large number of VANET applications, the data produced by vehicles
is usually relevant to a certain geographical region of the road network. In general, these
applications rely on a broadcast distribution of data where the destination nodes are
typically those located close to the source node (Al-Sultan et al., 2014).

All these characteristics cause the classic solutions utilized in MANETs, such as routing
and broadcasting protocols, are not be able to be directly applied to vehicular environments.
Thus, the research community is facing the impressive challenge of designing, developing, and
deploying new approaches to deal with vehicular communications by using VANETs.

2.5 Research Projects and Consortia

The high benefit of having a platform for vehicular communications to deploy ITS motivate the
development of many different projects, in which the main aim is the design, deployment, and
analysis of such communication networks. These projects have been conducted by govern-
mental institutions in Europe, United States, and Asia. In addition they have involved many
car producing companies like BMW, Ford, Volvo, etc. and other type of industrial partners.

The most known pioneering vehicular communication activities for each geographical area
are: C2C-CC project in Europe (C2C-CC, 2007), VSC (Vehicle Safety Communication) is a project
in the USA (VSC, 2005), and ASV (Advance Safety Vehicle Program) project in Japan (Mashita,
2003). Figure 2.5 illustrates a representative set of projects (Zeadally et al., 2012; NEO, 2015).
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FIGURE 2.5: A representative example of VANET projects and consortia.

2.6 Open Challenges
The projects presented above put much effort into overcoming the challenges that deploying
an efficient and reliable vehicular communication platform presents. The main key challenge
is that no communication coordinator (central entity) can be assumed. Although some appli-
cations involve infrastructure (e.g., traffic signal violation warning or toll collection), most of
applications are expected to operate over reliable ad hoc direct communications. This is the
essence of the challenges that VANET pose to the research community and industry. Let us
introduce now the main research challenges addressed in this domain at world level:

• Data routing: Many of VANET applications require to forward data packets from a single
source node to a single or multiple destination nodes, e.g., the enhanced route guidance
and navigation application. Routing in VANETs has been widely investigated in the past
few years (Lee et al., 2010; Chen et al., 2011). Initially, commonly used MANET routing
protocols were evaluated for use in VANETs due to the similarities between these two
kinds of ad hoc networks. However, some of the specific characteristics of VANETs, such
as the highly dynamic topology, the frequent disconnected network or the variability of
the network density, make the use of conventional MANET routing protocols inadequate
for vehicular environments. Thus, much research effort has been devoted to design more
suitable routing strategies for VANETs (Toutouh et al., 2012b; Patil and Dhage, 2013).
Figure 2.6 summarizes the a widely used taxonomy in VANET routing (Dua et al., 2014).

• Beacon broadcasting: Vehicles in a VANET periodically broadcast short data packets with
their location and different kind of kinematic information (geographic location, veloc-
ity, etc). These packets are known as beacons and they are used as information source
for most cooperative driving applications, also known as cooperative vehicle safety (CVS)
(Sengupta et al., 2007). For this reason, the performance of periodic beacon broadcast-
ing in terms of reliability and latency is a big concern in VANET research, since this
exchange of information is one of the keys to improve safety in the road transport. How-
ever, this approach is limited because the probability of suffer from network congestion
problems increase with the road traffic density which lowers the correct beacon deliv-
ery and increases the message delivery times (Fallah et al., 2010). This increment in the
communication delays is an important concern in VANETs because beacons have a lim-
ited lifetime. The vehicle’s status information stored in a beacon is only useful until the
next beacon is generated, in order to maintain updated the information received by the
nearby vehicles for traffic safety. In the recent literature specific broadcasting methods
for vehicular communications are proposed (Chen et al., 2010; Sattari et al., 2012).
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FIGURE 2.6: Some examples of VANET routing algorithms analyzed in Dua et al. (2014).

• Heterogeneous connectivity: VANETs originally emerged taking into account just IEEE
802.11 based technologies to exchange data via ad hoc networking, i.e., by using V2V
and V2I communications (Hartenstein and Laberteaux, 2009). However, the increasing
number of wireless communication technologies and standards have brought immense
opportunities and challenges to provide seamless connectivity in vehicular networks.
Thus, researchers defined advanced heterogeneous vehicular networks (AHVNs), also known
as hybrid vehicular networks (HVNs), as vehicular networks that use multiple RATs (DSRC,
WiMAX, LTE, ...) in a collaborative manner (Hossain et al., 2010). The main challenge
in designing AHVNs is to efficiently decide which RAT to select to send a given packet,
due to sheer number of use cases and applications with diverse and stringent QoS per-
formance requirements and different communication conditions (Mir et al., 2015). For
example, Benslimane et al. (2011) proposed a cluster-based strategy to deploy heteroge-
neous vehicular networks over Wi-Fi and 3G access technologies.

• Hardware platform deployment: Vehicular communications may suffer from very frequent
network disconnection during low density road traffic situations, i.e., in sparse VANETs.
This can critically limit the network performance, and therefore, it adversely affect the
proper operation of the VANET safety applications. The deployment of a fixed infrastruc-
ture along the roads composed by RSUs, that act as VANET base stations, may greatly
improve the communications by increasing the overall coverage of the network (Reis et
al., 2014). However, the deployment of the RSU infrastructure is a hard-to-solve (NP-
hard) problem (Trullols et al., 2010) because the designers have to decide about the lo-
cation of the RSUs and the utilized hardware for each RSU, while not incurring to high
deploying costs. There are different research lines to deal with this problem, e.g., some
authors have model RSU deployment problem as a weighted approach for the traditional
Maximum Coverage Problem (MCP) (Silva et al., 2015).
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• Security and privacy: In VANET safety applications, drivers may take life-critical deci-
sions and actions based on the information received from other nodes. Therefore, any
malicious entity could cause disruption of traffic, dangerous situations, and accidents by
modifying and replying the disseminated messages with fake information. In contrast,
users are very conservative about sharing their privacy-related information, e.g., having
their driving routes unconditionally accessed by the public. Thus, it is imperative that
the VANET system must be able to determine the reliability of the users (drivers) and
the messages while still maintaining their privacy and anonymity. In the literature, there
are many studies dealing with this concern (Mejri et al., 2014). For example, Molina-Gil
et al. (2014) proposed a new data aggregation protocol for vehicular networks, which
uses probabilistic verification to detect malicious behavior of users. At the present time,
the IEEE 1609.2 standard addresses the issues of securing WAVE messages against the
possible malicious attacks and it is positioned for providing secure services for WAVE
communications (Lin et al., 2008).

• Network performance evaluation: The evaluation of the different implemented approaches
(radio technologies, protocols, and network models) to deploy vehicular networks is a
major concern in the field of VANETs. Outdoor testbeds can be undertaken to accomplish
this task. These experiments may be carried out in real world environments offering
close-to-real or real performance (in vitro versus in silico), as well as revealing behavioral
issues (Santa et al., 2008). However, there is a lack of scientific articles that use out-
door experiments in the field of VANETs. The main reasons for this may be the unavail-
ability and the cost of resources (high number of vehicles and road equipment). Thus,
simulation and emulation tools are widely used to overcome the limitations of outdoor
experiments in vehicular networks (Martinez et al., 2011). Authors have used three dif-
ferent types of strategies to simulate VANETs (Alba et al., 2008): utilizing a well-known
network simulator, such as ns-2/ns-3 (NS2, 2015; Riley and Henderson, 2010; Issariyakul
and Hossain, 2008) or OPNET (Sethi and Hnatyshin, 2012), that allows users to define the
movement of the nodes by generating realistic VANET traces with transportation simu-
lators, such as (Härri et al., 2011), SUMO (Krajzewicz et al., 2012) or VISSIM (Lownes and
Machemehl, 2006); coupling vehicular traffic and wireless network in a single simulator,
e.g., GrooveNet (Mangharam et al., 2006); and the most promising approach, synchro-
nizing the existing and validated traffic and network simulators by using some specific
bridge software, such as iTetris (Rondinone et al., 2013) and Veins (Sommer et al., 2011).
Even if the simulators have achieved a high degree of realism and they obtain quite ac-
curate results, the real world simplifications that they apply could limit their reliability.

As it can be inferred from the previous list, this domain still comprises a heterogeneous
set of open questions that have to be resolved in order to provide a body of knowledge to
advance in vehicular communications. This PhD thesis aims at analyzing the application of
Natural Computing (NC) in addressing a subset of these open challenges (see Section 3.3).
Thus, the following chapters present the NC techniques utilized and how they are applied
in dealing with data routing, beacon broadcasting, and designing the roadside infrastruc-
ture challenges. In addition, real world VANET/ITS applications and demonstrations are
described. The idea is to make a journey from fundamental to more practical aspects related
with vehicular communications, that have been selected because we thought that they are in
the center of the worries in the whole domain.





Chapter 3
Natural Computing and Optimization
Challenges in VANETs

NATURAL computing (NC) encompasses different classes of methods inspired in na-
ture. Among others, it includes a novel methodology of complex problem solving
techniques (e.g., evolutionary algorithms or swarm intelligence). In this thesis, we

focus on the use of these techniques to address different VANETs questions. This chapter
summarizes the basics about optimization problem solving, presents the NC algorithms uti-
lized here, and introduces the reader to the different VANETs problems analyzed, including
the most salient related works. Finally, it illustrates the process performed to evaluate NC in
solving VANET optimization problems.

3.1 Introduction

Natural phenomena, e.g., processes, organisms, etc., have long inspired and driven people
to mimic, design, and develop systems and products. Natural Computing (NC) is the com-
putational process of developing artificial (computational) systems by extracting ideas from
nature or by using natural media (such as molecules). NC are generally divided in three main
branches (De Castro, 2006): computing inspired by nature, the simulation and emulation of nature
by means of computing, and computing with natural materials.

In this thesis we focus on the first branch, computing inspired by nature, which globally
takes the inspiration from nature (natural patterns, behaviors, and organisms) to design algo-
rithms for the solution of complex problems. The computational techniques developed under
this umbrella can also be termed as bio-inspired computing (Mange and Tomassini, 1998) or com-
puting with biological metaphors (Paton, 1994).

The landmark in the bio-inspired computing was the paper by McCulloch and Pitts (1943),
which laid the foundations of artificial neural networks by introducing the first mathematical
model of a neuron. Afterwards, another computation approaches emerged inspired by na-
ture. These other techniques are grouped in three main types: 1) evolutionary computing, which
uses the ideas from evolutionary biology to design evolutionary algorithms (EAs); 2) swarm in-
telligence, in which a set of simple agents mimic the behavior of social organisms in a given
algorithm; and 3) artificial immune systems (AIS), which extract ideas from the models followed
by immune systems to develop computational tools, cover one of the last groups to appear. In
addition, several emerging bio-inspired algorithms can be found in the literature that specifi-
cally do not belong to any of the previous types, e.g., simulated annealing (SA).

23
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This thesis aims at addressing a set of the main challenges that limit the VANETs deploy-
ment (see Section 2.6). These challenges may be tackled as hard to solve optimization problems,
which can be solved by utilizing NC. Specifically, in our research we have focus on the use
of EAs, swarm intelligence, and SA in solving VANETs optimization problems. Now let us
introduce some essential concepts about optimization problems.

3.1.1 Overview of Optimization Problems

There exist a large number of real-life problems that are complex and difficult to solve. Exact
algorithms are not appropriate or require large amount of resources (e.g. memory or computa-
tional cost) for using them. Therefore, approximate algorithms are needed. Among approxi-
mate algorithms, one can find two types: heuristics and metaheuristics. Heuristics can in turn be
divided between constructive heuristics and local search methods. We focus this chapter on meta-
heuristics. Figure 3.1 shows a simple classification of optimization methods used throughout
the history of computer science.

Metaheuristics are approximate algorithms that emerged as efficient (stochastic) optimiza-
tion tools that are able to provide good solutions for complex optimization problems (Glover
and Kochenberger, 2003; Blum and Roli, 2003). In general, metaheuristics make no assump-
tions about the problem to solve, as generic tools they only use appropriate solution repre-
sentations, quality or fitness functions, and (specific) operators to guide the solution towards
better solutions (Osman and Kelly, 2012). Many metaheuristics are inspired by nature, such as
EAs, swarm intelligence, and SA (Figure 3.1) (Yang, 2010). Before detailing these NC methods
we will introduce some essential concepts about optimization.

FIGURE 3.1: General classification of the optimization techniques.

We shall begin with a formal definition of optimization. Assuming, without loss of general-
ity, a minimization case, the definition of an optimization problem is as follows:

Definition 1. Optimization problem An optimization problem is defined as a pair (S, f) ,
where S 6= ∅ is called the solution space (or search space) of the problem, while f is a quality
criterion named objective function or fitness function, defined as:

f : S −→ R (3.1)
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In this case where a single criterion f is optimized, known as mono-objective or single-objective
optimization, the objective is to find a global optimum element s∗ ∈ S such that:

f(s∗) ≤ f(s) ∀s ∈ S (3.2)

Depending on the domain where S belongs, we can speak of binary (S ⊆ B∗) , integer (S ⊆ N∗),
continuous (S ⊆ R∗) or heterogeneous (S ⊆ (B ∪ N ∪ R)∗) optimization problems.

Note that assuming either maximization or minimization does not restrict the generality of
the results, since an equivalence can be made between the two cases in the following manner
(Goldberg, 1989):

max{f(s) | s ∈ S} ≡ min{−f(s) | s ∈ S} (3.3)

This definition is utilized when the optimization problem focus on a single objective (mono-
objective). Nevertheless, many the real-world problems deal with different objectives that are
usually in conflict with each other (e.g. maximizing the coverage of the VANET infrastructure
elements but while minimizing the cost of the installed infrastructure). This other types of
problems are known as multi-objective optimization (Deb, 2001). The main difference between
mono-objective and multi-objective optimization is that for the second ones there is not a single
optimal solution that satisfies all the objectives but a set.

A general multi-objective optimization problem (MOP) is to find vectors ~s∗ = [s∗1, s
∗
2, ..., s

∗
n]

that are optimizing the vector of functions ~f(~s) = [f1(~s), f2(~s), ..., fk(~s)]. Each fi(~s) is a mono-
objective optimization problem, and it is considered one of the objectives to optimize in our
MOP. The different objectives must be in conflict with the others, meaning that an increase in
the quality of one of them will lead to a decrease in the values of (some of) the others. If the
objectives were not in conflict, then we could reformulate the problem as a mono-objective
one. More formally multi-objective minimization problem is defined as:

Definition 2. Multi-objective minimization Find a vector ~s∗ = [s∗1, s
∗
2, ..., s

∗
n] which satisfies

the m inequality constraints gi(~s) ≥ 0, i = 1, 2, ...,m, the p equality constraints hj(~s) = 0,
j = 1, 2, ..., p, and minimizes the vector function ~f(~s) = [f1(~s), f2(~s), ..., fk(~s)]

T , where ~s =
[s1, s2, ..., sn]T is the vector of decision variables.

In MOP, to decide whether a given solution is better than other is utilized the concept
of dominance. A solution w dominates a solution v if w is strictly better than v in at least one
objective and better or equal to v in the rest of objectives (see Figure 3.2.a). A set of solutions are
said to be non-dominated if none dominates the others. Therefore, the goal of multi-objective
optimization is to find the optimal set of non-dominated solutions to the problem, which is
named Pareto optimal set (see Figure 3.2.b). The projection of the Pareto optimal set in the
objectives domain is called the Pareto optimal front (Coello et al., 2007).

a) The w solution dominates u and v. b) Non-dominated solutions.

FIGURE 3.2: Dominance in multi-objective optimization.

After these definitions let us presenting the NC algorithms applied in this thesis.
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3.2 NC Applied in VANETs
The bio-inspired algorithms applied in this research are categorized into EAs, swarm intelli-
gence, and SA. Evolutionary algorithms are based on the Darwinian theory of evolution (Fogel
et al., 1966; Holland, 1975). Darwin proposed that a population of individuals capable of re-
producing and subjected to (genetic) variation followed by selection result in new populations
of individuals increasingly more fit to their environment (De Castro, 2006). These simple nat-
ural processes when applied in computation result in a number of different algorithms, such
as: genetic algorithms (GA) (Goldberg, 1989), evolution strategies (ES) (Beyer and Schwefel, 2002),
evolutionary programming (EP) (Fogel, 1999), and genetic programming (GP) (Koza, 1992).

Swarm intelligence was introduced to refer to cellular robotic (multi-agent) systems in
which a collection of simple agents in an environment interact based on local rules (Bonabeau
et al., 1999). Currently, this term is used to describe the design of algorithms or problem-
solving devices inspired by the collective behavior of social organisms. Some swarm intel-
ligence algorithms used to address hard to solve optimization problems are: particle swarm
optimization (PSO) (Eberhart and Kennedy, 1995), ant colony optimization (ACO) (Dorigo et al.,
1996), and artificial bee colony algorithm (ABC) (Karaboga and Basturk, 2007).

Finally, simulated annealing (SA) is one of the oldest bio-inspired algorithms and it is
based on the annealing process of metal and crystal (Kirkpatrick et al., 1983). It is considered
as the first method with an explicit strategy for escaping local optima.

These natural inspired algorithms can be classified as trajectory based algorithms and popu-
lation based or swarm based ones (see Figure 3.1). Those of the first type handle a single element
of the search space at a time (one solution), e.g. SA; while those of the latter work on a set of
elements (named population or swarm), the EAs and swarm intelligence algorithms utilized in
this thesis belong this group. We will now describe the NC algorithms applied in our research.

3.2.1 Evolutionary Algorithms
Four different EAs have been utilized in this thesis: three mono-objective algorithms, i.e., GA,
ES, and differential evolution (DE), and one multi-objective EA (MOEA), the non-dominated sort-
ing genetic algorithm-II (NSGA-II). They are detailed in the following subsections.

Genetic Algorithm (GA)

Genetic Algorithm (Goldberg, 1989) is the most popular EA. It iterates a process in which a set
of solutions (parents) are selected from the whole population with a given selection criterion,
they are then recombined (crossover operation), the obtained offsprings are mutated, and finally
they are evaluated and inserted back into the population following a given criterion (fitness
function). The mutation process is carried out by randomly (uniformly) selecting one of the
elements in the solution, and assigning (randomly) a new value in a specific range. In this
research work, we use a polynomial crossover defined for continuous variables and two point
crossover (Goldberg, 1989) as the recombination operator. In addition, specific mutation op-
erators have been designed for the problems addressed here. Algorithm 1 summarizes the
operations of a canonical GA.

There are two main versions of GA: steady state GA (ssGA) and generational GA (genGA).
The difference between the ssGA and the genGA is the way in which the population is updated
with the new individuals generated during the evolution. In the first one, new individuals are
directly inserted into the current population. In the case of the genGA, a new auxiliary pop-
ulation is built with the obtained offsprings and then, once this auxiliary population is full, it
completely replaces the current population. Thus, in ssGAs the population is asynchronously
being updated with the newly generated individuals, while in the case of genGAs all the new
individuals are updated at the same time, in a synchronous way.
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Algorithm 1 Pseudocode of GA

g← 0
Pg ← initializePopulation() // P = population
while not stopCondition() do

parents←selection(P ) // Select parents
offspring ←recombination(parents) // Generate offspring by recombination
offspring ←mutation(offspring) // Generate offspring by mutation
evaluate(offspring)
Pg+1← select(offspring) // New population generation
g ← g + 1

end while

Evolutionary Strategy (ES)

Evolutionary Strategy (Beyer and Schwefel, 2002) is an EA also based on the ideas of adapta-
tion and evolution. As common with EAs, the mutation and selection operators are applied
to the solutions (individuals) through a given number of generations. The selection in evolu-
tionary strategies is deterministic and only based on the fitness rankings. In ES, we use the same
mutation operator than the GA.

Algorithm 2 Pseudocode of ES

1: g← 0
2: parent0← initializeParent()
3: while not stopCondition() do
4: offspringg ←mutate(parentg)
5: evaluate(offspringg)
6: if f(offspringg) is better than f(parentg) then
7: parentg ← offspringg
8: end if
9: g ← g + 1

10: end while

The canonical ES (Algorithm 2) operates on a population of size two: the current individual
(parentg) and the result of its mutation (offspringg). After the parent initialization (Line 2), ES
starts the evolutionary process by generating a mutated offspring (Line 4) which is evaluated
(Line 5). Only if the offspring has a better fitness than the parent, it becomes the parent of
the next generation (lines 6-8). Otherwise the offspring is ignored. This is version of ES is
called (1 + 1)−ES. More generally, in (1 + λ)-ES, a population with more than one offsprings
(λ) can be generated for being compared with the same parent. In a (1, λ)-ES the best offspring
becomes the parent of the next generation while the current parent is always ignored. The most
generalized version, (µ+/, λ)-ES, often uses a population of parents (µ) and also recombination
as an additional operator.

Differential Evolution (DE)

Differential Evolution (Price et al., 2005) is also a stochastic population based algorithm de-
signed to solve optimization problems in continuous domains. The main difference in the
evolutionary model with the other EAs is that the fittest of an offspring competes one-to-one
with that of corresponding parent.
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The population consists of a set of individuals (vectors) which evolve simultaneously
through the search space of the problem. The task of generating new individuals is performed
by differential operators such as the differential mutation and differential crossover. A mutant
individual wig+1 is generated by the following Equation 3.4:

wig+1 ← vr1g + µ · (vr2g − vr3g ) (3.4)

where r1, r2, r3 ∈ {1, 2, . . . , i − 1, i + 1, . . . , N} are random integers mutually different, and
also different from the index i. The mutation constant µ > 0 stands for the amplification of
the difference between the individuals vr2g and vr3g , and it avoids the stagnation of the search
process. In order to increase even more the diversity in the population, each mutated indi-
vidual undergoes a crossover operation with the target individual vig, by means of which a trial
individual uig+1 is generated. A randomly chosen vector component is taken from the mutant
individual to prevent that the trial individual replicates the target individual.

uig+1(j)←

{
wig+1(j) if r(j) ≤ C or j = jr,

vig(j) otherwise.
(3.5)

As shown in Equation 3.5, for each component j of the trial individual uig+1, the crossover
operator chooses both, a random integer value jr and a random real number r(j) ∈ (0, 1),
uniformly distributed. Then, the crossover probability C and r(j) are compared just like j and
jr. If r is less than or equal than C or j is equal to jr, then we select the jth element of the
mutant individual to be allocated in the jth element of the trial individual uig+1. Otherwise, the
jth element of the target individual vig becomes the jth element of the trial individual. Finally,
a selection operator decides the acceptance of the trial individual for the next generation if and
only if it yields a reduction (assuming minimization) in the value of the fitness function f , as
shown in Equation 3.6:

vig+1 ←

{
uig+1 if f(uig+1) ≤ f(vig),

vig(j) otherwise.
(3.6)

Algorithm 3 Pseudocode of DE

1: g← 0
2: P0← initializePopulation() // P = Population
3: while not stopCondition() do
4: for each individual vig in P do
5: chooseMutuallyDifferent(r1, r2, r3)
6: wig+1 ← differentialMutation(vr1g , vr2g , vr3g , µ) // Equation 3.4
7: uig+1 ← differentialCrossover(vig, wig+1, C) // Equation 3.5
8: evaluate(uig+1)
9: vig+1 ← selection(vig, uig+1) // Equation 3.6

10: end for
11: g ← g + 1
12: end while

Algorithm 3 shows the pseudocode of DE. After initializing the population, the individu-
als evolve while stop condition is not reached. Each individual is then mutated (Line 6) and
recombined (Line 7). The new individual is selected (or not) following the operation of Equa-
tion 3.6 (lines 8 and 9).
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Non-dominated Sorting Genetic Algorithm-II (NSGA-II)

NSGA-II is a multi-objective evolutionary algorithm (MOEA) version of the GA presented in Deb
et al. (2002). It emerged to solve the main drawbacks of its prior version, NSGA, that are: the
computational complexity, the lack of elitism, and the need of choosing the optimal parameter
value for sharing parameter σshare. Nowadays, NSGA-II is one of the reference algorithms to
solve multi-objective problems. Therefore, we have selected it as a baseline for the research
work carried out in this thesis.

Its pseudocode is presented in Algorithm 4. NSGA-II makes use of a population (Pg) of solu-
tions. In each generation, it creates new individuals (offspring) after applying genetic operators
to Pg (recombination and mutation) to create a new population Q (lines 6 to 8). Then, both the
current (Pg) and the new population (Q) are merged; the resulting population, R, is ordered
according to a ranking procedure and a density estimator known as crowding distance (Line 13)
(Deb et al., 2002). Finally, the population Pg is updated with the best individuals in R (Line
14). These steps are repeated until the termination condition is fulfilled.

Algorithm 4 Pseudocode of NSGA-II.
1: g ← 0
2: P0← initializePopulation() // Pg = population
3: while not stopCondition() do
4: Q← ∅ // Q = auxiliary population
5: for i← 1 to (Pg .popSize / 2) do
6: parents←selection(Pg)
7: offspring ←recombination(parents)
8: offspring ←mutation(offspring)
9: evaluate_solution(offspring)

10: insert(offspring,Q)
11: end for
12: R← Pg ∪ Q // R = auxiliary resulting population
13: rankingCrowding(R)
14: Pg+1← selectBestIndividuals(R) // Applying elitism
15: g ← g + 1
16: end while

3.2.2 Swarm Intelligence

Regarding swarm intelligence algorithms, in this PhD thesis we have applied two different
methods: PSO to tackle mono-objective problems and speed-constrained multi-objective particle
swarm optimization (SMPSO) to address MOPs (Nebro et al., 2009). Let us to describe these two
algorithms.

Particle Swarm Optimization (PSO)

Particle swarm optimization (Eberhart and Kennedy, 1995) is a NC method inspired in the
social behavior of bird flocking or fish schooling. It was initially designed for continuous
optimization problems. Each potential solution to the problem is called particle and the set of
particles is called a swarm (hence the name of the algorithm). In this algorithm, each particle
position pig is updated each generation g by means of the Equation 3.7:

pig+1 ← pig + vig+1, (3.7)

where the term vig+1 is the velocity of the particle, given by the next expression:
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vig+1 ← w · vig + ϕ1 · U+ · (bpig − pig) + ϕ2 · U+ · (bg − pig) (3.8)

In Equation 3.8, bpig is the best solution that the particle i has stored so far, bg is the best par-
ticle (also known as the leader) that the entire swarm has ever created, andw is the inertia weight
of the particle which controls the trade-off between exploitation and exploration. Finally, ϕ1

and ϕ2 are specific parameters which control the relative effect of the personal and global best
particles (typically, ϕ1=ϕ2=2). U+ is a uniform random value ∈ (0, 1).

Algorithm 5 Pseudocode of PSO

1: g ← 0
2: initializeSwarm(S)
3: b0 ←locateLeader(S)
4: while not stopCondition() do
5: for each particle xig in S do
6: updateVelocity(vig) // Equation 3.8
7: updatePosition(pig) // Equation 3.7
8: evaluate(pig)
9: update(bpig)

10: end for
11: bg+1 ←updateLeader(S)
12: g ← g + 1
13: end while

Algorithm 5 describes the pseudocode of general PSO. It starts by initializing the swarm S
(Line 2), which includes the positions, velocities, and corresponding bpi of each particle. Then,
the leader b0 is also initialized (Line 3). During iteration and while the stop condition is not
reached, each particle flies through the search space updating its velocity and position (lines 6
and 7), it is then evaluated (Line 8), and its bpi is also calculated (Line 9). At the end of each
iteration, the leader bg is updated (Line 11).

Speed-constrained Multi-objective Particle Swarm Optimization (SMPSO)

MOAs inspired on PSO quickly became very popular because of their competitive perfor-
mance in solving continuous problems. However, the early approaches were unable to solve
multi-frontal problems satisfactorily due to the swarm explosion problem, whereby velocity of
the particles becomes too high resulting in erratic particle movements. SMPSO applies a ve-
locity constriction method to mitigate this problem (Nebro et al., 2009).

The SMPSO pseudocode is presented in Algorithm 6. As in PSO, the operations are per-
formed over particles (pi) of a swarm (S). The non-dominated solutions are stored in the leaders
archive (Lg), which is initialized in Line 3 and updated in Line 11 by using crowding distance. A
loop over all particles of the swarm defines the main operations to be carried out. The turbu-
lence operator is a mutation applied after updating the particles speed and position (lines 6-8)
(Nebro et al., 2009). Then, the particles are evaluated (Line 9). Finally, the memory of each
particle is updated (Line 12).
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Algorithm 6 Pseudocode of SMPSO.
1: g ← 0
2: initializeSwarm(S) // S = swarm
3: initializeLeadersArchive(L0) // L = leaders
4: while not stopCondition() do
5: for each particle pi in S do
6: computeSpeed(pi)
7: updatePosition(pi)
8: mutation(pi)
9: evaluateSolution(pi)

10: end for
11: Lg+1←updateLeadersArchive()
12: updateParticlesMemory()
13: g ← g + 1
14: end while

3.2.3 Simulated Annealing

SA was first proposed by Kirkpatrick et al. (1983). It is inspired in the industrial processes
of annealing, and basically lies in a local search method with a mechanism that eventually
promotes solutions of worse quality than the current ones (uphill moves) in order to escape from
local minima. It is a fairly commonly used algorithm that provides good results and constitutes
an interesting method to compare to other optimizing methods because of its simplicity. The
pseudocode for this algorithm is shown in Algorithm 7.

Algorithm 7 Pseudocode of SA

1: initialize(T ,s)
2: evaluate(s)
3: while not stopCondition() do
4: while not coolingCondition(g) do
5: s′← chooseNeighbor(s) // Generate new solution
6: evaluate(s′)
7: if accept(s,s′,T ) then // Acceptance criterion
8: s← s′

9: end if
10: end while
11: coolDown(T ) // E.g. T = T × 0.999
12: end while

The whole process starts by generating an initial solution s and starting the temperature
parameter (T ). The algorithm works keeping a single tentative solution s at any time, and
therefore, it is a trajectory based method. In every iteration, a new solution s′ is generated from
the previous one (Line 5), and either replaces it or not depending on an acceptance criterion
(lines 7-9). The acceptance criterion works depending on the fitness values (f(s) and f(s′)) and
temperature T . The new solution, s′, replaces s if s′ has better quality, otherwise s′ replaces s
according to the probability prob (see Equation 3.9). This probability depends on the difference
between their quality (f(s′) − f(s)) values and T (Line 9). This acceptance criterion provides
the way of escaping from local optima.

prob(T, s, s′) =
2

1 + e
f(s′)−f(s)

T

(3.9)
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As iterations go on, the value of the temperature (T ) is reduced following a cooling sched-
ule (Line 11), thus biasing SA towards accepting only better solutions. In this thesis, we employ
the geometric rule T (n+ 1) = α · T (n), where 0 < α < 1, and the cooling is performed every k
iterations (k is the Markov chain length).

3.2.4 Parallel NC algorithms

As it will be seen in Chapter 4, one of the main issue when solving off-line VANET optimiza-
tion problems is that solution evaluations (fitness computations) require VANETs simulations,
which are computationally expensive. This limits the effectiveness of NC in finding competi-
tive solutions in reasonable execution times. Therefore, we have analyzed the use of parallel
NC algorithms in order to address this issue.

The relatively inexpensive cost of parallel computing platforms leads researchers to uti-
lize parallel and distributed processing to deal with the time/resources limitation problems.
Parallel implementations of bio-inspired algorithms became popular in the last decade as an
effort to improve their efficiency. By splitting the population/swarm or the fitness function
evaluation into several processing elements, parallel NC allow reaching high quality results in
a reasonable execution time even for hard-to-solve optimization problems (Alba, 2005). The
parallel NC algorithms proposed here are categorized within the master-slave model according
the classification by Alba and Tomassini (2002).

The master-slave model follows a classic functional decomposition of the EA, i.e., parallel
EA (pEA) or swarm intelligence algorithms, where different stages of the iterative process
are performed in several computing resources. The evaluation of the fitness function is the
main candidate to perform in parallel, since it usually requires larger computing time than the
application of the variation operators. Thus, as it is illustrated in Figure 3.3, our master-slave
parallel NC algorithms are organized in a hierarchic structure: a master process performs the
main operators of the search process and controls a group of slave processes that evaluate the
fitness function.

FIGURE 3.3: Master-slave model for parallel NC utilized in this thesis.

3.3 Challenges Tackled in VANETs Using NC

Bio-inspired computation has been applied in many different areas (Chiong, 2009), such as
smart mobility (Stolfi and Alba, 2013), telecommunications (Yang et al., 2015), civil engineering
(Zavala et al., 2014) or medicine (Dybowski et al., 1996). After the analysis of the different
challenges arising from VANETs (see Section 2.6), we suggest NC as an efficient tool to address
these complex challenges. Specifically, we have analyzed the application of NC in: data routing,
beacon broadcasting, and hardware platform deployment.
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3.3.1 Natural Computing for VANET Data Routing

As presented in Section 2.4, some of the main characteristics of the VANETs are: a) the high
dynamism in topology changes, b) the frequent disconnections suffered by the nodes, and c)
the hard QoS (delay and delivery) constraints. These characteristics critically difficult the data
routing in such kind of networks. Therefore, a number of specific routing approaches have
been proposed in the last years (Chen et al., 2011; Dua et al., 2014; Lee et al., 2010; Santa et al.,
2009; Ding et al., 2011; Chauhan and Dahiya, 2012; Campolo et al., 2015).

Recently, bio-inspired methods have been utilized to address the VANET routing problem
with the aim of ensuring an optimized QoS (S. Bitam, 2014). The strength of this approach is
principally related with the potential of NC in terms of scalability, self-organization, and ro-
bustness. For this reason it has been already applied in other types of networks (Dressler and
Akan, 2010; Villalba et al., 2010; Dorronsoro et al., 2014). There are two main approaches in us-
ing NC in VANET routing: on-line optimization and off-line optimization. On-line optimization
applies NC directly in the protocol operation, hence resulting on the design of bio-inspired
routing algorithms. The main motivation behind this approach stems from the supposed
similarity between the VANET communication scenarios and the natural communication of
species. However, these proposals are very difficult to use in real world networks because they
require intensive computation and/or some extra infrastructure networks elements (Bitam et
al., 2015). Off-line optimization, which have been analyzed in-depth in Chapter 4, consists in
using the power of NC in solving hard search-based optimization problems to find optimized
configurations of software routing protocols. The optimized configurations improve the QoS,
while preventing high resources consumption in data routing. The main advantage of this
approach is that it can be applied to any kind of routing protocol, even to on-line optimized
protocols.

Some of the most outstanding examples of bio-inspired routing algorithms (on-line opti-
mization) in the literature use the strength of the pheromone-based exchange of information
utilized in ACO. For instance, the Mobility-aware Ant colony optimization Routing DYMO (MAR-
DYMO) designed by Correia et al. (2011), in which ACO is applied to the DYMO (Dynamic
MANET On-demand) protocol (C. Perkins, 2013) to predict the mobility of the vehicles in terms
of speed and position, in order to find efficient routing paths (optimized lifetime). It includes
pheromone information in the routing table. MAR-DYMO outperforms DYMO, but at the ex-
pense of increasing routing overhead. More ACO-based VANET routing algorithms can be
found in the current state-of-the-art, such as the Vehicular routing protocol based on Ant Colony
Optimization (VACO) (Li and Boukhatem, 2013), HOPNET (Wang et al., 2009), and the Mobil-
ity Aware Zone based Ant Colony Optimization Routing for VANET (MAZACORNET)(Rana et al.,
2013). Besides, other swarm intelligence techniques have also been applied, such as ABC or
PSO. For instance, the Quality of Service Bee Swarm routing protocol for VANET (QoSBeeVANET)
(S. Bitam, 2011) and the Hybrid Bee swarm Routing (HyBR) designed by Bitam et al. (2013).

Genetic algorithms have been also utilized for the same purpose. The Adaptive Message
Routing (AMR) proposed by Saleet et al. (2009), which utilizes GA for searching routing paths
that minimize (end-to-end) communication delays. The main issues of AMR are: 1) the incre-
ment of the complexity (computation time) of finding optimized routing paths, 2) the applica-
tion of crossover and mutation operators may rise to longer routes than the actual ones, and 3)
it assumes the existence of a fixed RSU in the center of each intersection. The Intersection-based
Geographical Routing Protocol (IGRP) presented in Saleet et al. (2011) utilizes GA to optimize
the QoS in terms of delay, bandwidth, and error rate for communications from vehicles to In-
ternet through RSUs. As AMR, one of the main drawbacks of this routing algorithm is the
requirement of a preinstalled infrastructure of RSUs.
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Regarding to off-line optimization, a similar idea of using NC has been applied in opti-
mizing in MANETs (Dorronsoro et al., 2014; Cheng and Yang, 2010; Ruiz, 2011). If we focus
exclusively on the use of NC to optimize VANET routing, just a few studies can be found in
the literature. Most of them evaluate the QoS improvement in terms of reliability (packet de-
livery), communication delay, and routing overhead. Mono-objective optimization has been
applied to find optimized configuration parameters of OLSR by using sequential (one-thread)
PSO (Zukarnain et al., 2014). Similar analysis was carried out by García-Nieto and Alba (2010)
to optimize AODV. In this preliminary study, the authors evaluated the use of a set of NC al-
gorithms in addressing VANET routing optimization. In addition, Said and Nakamura (2014)
proposed an asynchronous pEA based on hybridization of GA to deal with the optimization of
AODV as well. The reduced number of studies in the literature (S. Bitam, 2014) and the quite
possible benefits of apply NC in VANET routing off-line optimization motivate us to perform
the in depth study that can be found in Chapter 4.

3.3.2 Natural Computing for VANET Beacon Broadcasting

Most of safety related applications presented in Section 2.3 rely on an efficient beacon broad-
casting (Hartenstein and Laberteaux, 2009; Campolo et al., 2015). However, VANETs suffer
from network congestion (e.g., broadcasting storm problem) when the number of nodes increases
(Wisitpongphan et al., 2007). Thus, congestion control is a critical research issue that aims at
providing reliable environments in modern network communications (Lochert et al., 2007).
The reliability of safety applications, that could be the difference between of saving lives or
not, is highly dependent on the packet loss and the communication delays. Congestion, which
occurs when the network load exceeds the capacity of the network links, generally leads to an
increase of both, the packet loss and the communication delays.

Several strategies have been proposed to avoid congestion problems in vehicular commu-
nications, while keeping the communication capabilities of the nodes over a given QoS thresh-
old. Most of them can be included in the following basic schemes (Sattari et al., 2012): i)
adapting the transmission range of transmission channels (Artimy et al., 2005; Mittag et al.,
2008; Torrent-Moreno et al., 2009), ii) adjusting the data rate generation of applications and
services (Xu and Barth, 2004; Schmidt et al., 2010; Rezaei et al., 2007), iii) hybrid methods by
combining the two previous schemes (Djahel and Ghamri-Doudane, 2012; Tielert et al., 2013),
and iv) scheduling data packets in various channels based on their priorities, resources, etc
(Olariu and Weigle, 2009; Park et al., 2014; Vinel, 2012). These strategies can be studied as
(off-line and on-line) optimization problems as well.

Taking into account just on-line broadcasting optimization methods, there are some stud-
ies that have introduced the use of (non bio-inspired) metaheuristics to define hybrid con-
gestion control methods. In this sense, they utilized Tabu Search (TS) (Glover, 1989) to find
optimized parameterizations (values for transmission range and transmission rate), after con-
gestion situation is detected. Taherkhani and Pierre (2012) proposed the use of mono-objective
TS to minimize just the communication delay. Later, the same authors utilized a multi-objective
TS to minimize the communication delay and the jitter (Taherkhani and Pierre, 2015). The main
issue of these approaches is the relatively high computation complexity (run times) that has to
be considered as an additional time of the final communication delays.

Most work related with off-line broadcasting optimization has been applied in urban
MANETs (Dorronsoro et al., 2014), which can be seen the root of the current VANETs. One
of the most outstanding contributions in the early literature in this domain is Alba et al. (2005),
who proposed the optimization of the Delayed Flooding Cumulative Neighborhood broadcasting
protocol (Hogie et al., 2004). This study applied a specialized cellular multi-objective GA to op-
timize the coverage, the network use, and the broadcasting time. Later, other studies analyzed



Chapter 3. Natural Computing and Optimization Challenges in VANETs 35

different multi-objective optimization techniques (EAs and swarm intelligence) in addressing
the optimization of the same protocol (Alba et al., 2007a; Alba et al., 2007b). Some other authors
have improved the search of optimized DFCN parameterizations by applying parallel NC al-
gorithms (Durillo et al., 2008; Segura et al., 2009). All these studies faced the optimization of
the reliability, while reducing the network utilization and the delay of the operation.

Probabilistic broadcasting has been also analyzed to be optimized by using multi-objective
NC. The study by Abdou et al. (2011) evaluated two multi-objective EAs to optimize commu-
nication parameters according to a given node density in the MANET. Later, the same author
proposed the Autonomic Dissemination Method (ADM) specifically designed for VANETs, which
takes into account both, the network density and the priority of the beacons to be broadcasted.

In Chapter 5 of our thesis, we have defined specific adaptive beacon broadcasting protocols
for vehicular communications with efficient congestion control. These algorithms are based on
different distributed greedy algorithms.

3.3.3 Natural Computing for Hardware Platform Deployment

Important agents of the VANET architecture are the RSUs. As Section 2.2.1 described, they
have two main functions: 1) acting as information sources for some applications and 2) ex-
tending the VANET connectivity. Thus, in the current literature different studies are address-
ing the design of such a infrastructure as an optimization problem, the roadside deployment
problem (RSU-DP). The RSU-DP consist in placing a set of RSUs along (the roads of) a given
area, maximizing the network capabilities and minimizing the deployment costs

Most of these works analyze RSU-DP as a extended version of the Radio Network Design
(RND) problem (Vega et al., 2007). However, as most nodes in VANETs are vehicles, the design
of the roadside platform prioritizes locations taking into account road traffic information as
speed of the vehicles, traffic density, etc. Exact methods, heuristics, and some metaheuristics
have been utilized to solve the RSU-DP and related problems in the literature.

Aslam et al. (2012) applied the Balloon Expansion Heuristic (BEH) and Binary Integer Pro-
gramming (BIP) to minimize the reporting time installing a fix number of RSUs in Miami,
USA. They utilized information relative to the speed, traffic density, and likelihood of inci-
dents for the computations. BEH performed better than BIP in the reported experiments. A
Voronoi-based algorithm was applied to optimize packet loss, communications delays, and
network coverage, while minimizing the number of RSUs required in Nashville, USA (Patil
and Gokhale, 2013). This approach used information about the speed of vehicles and the traf-
fic density to evaluate the solutions. Trullols et al. (2010) defined the Maximum Coverage with
Time Threshold Problem (MCTTP) to maximize the number of vehicles that get in contact with
the RSUs for a giving amount of time over the considered area and given a number of RSUs.
Three different greedy algorithms with different knowledge of the road topology and identity
of the vehicles are proposed. These approaches were applied taking into account real road
and mobility data from Zurich, Switzerland. The results showed that knowledge of vehicular
mobility is the main factor in achieving an optimal roadside deployment. Finally, Ben Brahim
et al. (2014) applied specific versions of the PageRank (Langville and Meyer, 2011) and of the
0-1 Knapsack problem solvers to select the optimal set of RSU positions within the cost range
in Doha (Qatar). The algorithms took into account real traffic information data (that include
traffic density, probability of hazardous situations, etc.) to compute the importance of poten-
tial locations. Knapsack algorithm showed better performance when the available budget is
not highly restricted.

Just few studies have analyzed NC to deal with this optimization problem. They have
been utilized to obtain accurate solutions within reasonable computational costs. An early
approach joined GA and a VANET simulator to optimize the QoS of the communications in a
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given area of Brunswick, Germany (Lochert et al., 2008). Other two studies applied the same
NC algorithm to optimize the coverage. Cavalcante et al. (2012) compared GA against the
greedy approach proposed in Trullols et al. (2010), showing that the GA solutions obtained
better vehicle coverage than those given by the greedy approach. Cheng et al. (2013) used just
geometry-based coverage information about the roads (without vehicles mobility related data)
of Yukon Territory (Canada). In this study, GA outperformed the α–coverage algorithm, which
consists in placing the RSUs in the center of the junctions.

All this research analyzed a problem that is essentially multi-objective (maximizing QoS
while minimizing deployment cost) by using mono-objective NC algorithms. This drove us
to accomplish the study presented in Chapter 6, which address RSU-DP applying an explicit
multi-objective formulation. In this manner, the VANET designers may have a set of accurate
solutions, which present different trade-off between QoS and cost, to efficiently decide the
design to be deployed.

3.4 Evaluation of the Results

In this research work, we have addressed real-world problems related to vehicular networks.
Therefore, the desirable manner to evaluate the results is to validate them in real-world envi-
ronments (by performing outdoor testbeds or realistic VANET simulations), which has been
one of the regular practices carried out in here. Nevertheless, we have also wanted to evaluate
NC in addressing such kind of problems, in order to provide a powerful base tool to be used
in further VANET optimization problems. Thus, in this section we specify how we carried out
the NC evaluation.

The natural inspired methods applied in this thesis are non-deterministic, hence different
executions of the same algorithm over the same problem instance can produce different re-
sults. This can cause inconveniences to researchers when evaluating those results, and in the
comparison of different algorithms. Besides, in the domain of optimization problems with
non-deterministic algorithms is commonly adopted the comparisons on the basis of empirical
data. For these reasons, some methodology based on well defined indicators should be estab-
lished. In this sense, there are two types of indicators: the ones to evaluate the quality of the
computed solutions and those used to measure the performance in terms of required compu-
tation time or the amount of resources they use. There are different specific quality indicators
depending on whether the problem is mono-objective or multi-objective. Let us to describe
them, afterwards we will present the performance metrics used as well as the statistical analy-
sis procedure adopted in this thesis.

3.4.1 Quality Indicators

The optimization problems treated in this PhD thesis have not a known the optimum value
beforehand (as most of real-world problems), and therefore, we cannot use hit rate metric (the
ratio of times that the optimum is obtained). Thus, a most commonly adopted approach is to
finish the algorithms after a given computational effort has been spent (like visiting a maxi-
mum number of points of the search space or running for a given time), and then, evaluate the
quality of the solutions obtained.

In mono-objective optimization, different metrics about the final fitness computed are
used, such as average, standard deviation, median, maximum, minimum values obtained after a
given number of independent runs. It is commonly adopted the use of 30 executions as the
minimum accepted number of runs, though higher values (such as 100) are recommended
(this is very dependent on the run time of the algorithms).
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Multi-objective optimization algorithms compute an approximation set to the optimal
Pareto front (see Section 3.1.1), which stores a set of non-dominated solutions that presents
different trade-offs between the objectives. In general, two properties are usually evaluated in
MOP: convergence and a uniform diversity. In this thesis the three major performance used
metrics are utilized to evaluate the multi-objective NC approaches:

• Hypervolume (IHV ) (Zitzler and Thiele, 1999): This indicator calculates the volume, in the
objective space, covered by members of a non-dominated set of solutions Q. Formally,
for each solution i ∈ Q, a hypercube vi is constructed with a reference point W and the
solution i as its diagonal corners. The reference point can simply be found by construct-
ing a vector of worst objective function values. Thereafter, a union of all hypercubes is
found and its IHV is calculated:

IHV = volume

 |Q|⋃
i=1

vi

 (3.10)

• Epsilon (Iε) (Knowles et al., 2006): This indicator measures the smallest distance one
would need to to translate every solution in a given front A so that it dominates
the optimal Pareto front of the problem. Mathematically, given ~z1 =

(
z1

1 , ..., z
1
n

)
and

~z2 =
(
z2

1 , ..., z
2
n

)
, where n is the number of objectives:

I1
ε+(A) = inf

{
ε ∈ R | ∀~z2 ∈ PF ∗∃~z1 ∈ A : ~z1 ≺ε ~z2

}
(3.11)

where ~z1 ≺ε ~z2 if and only if ∀1 ≤ i ≤ n : ~z1 < ε~z2.

• Spread (I∆) (Deb, 2001): This metric evaluates the extent of spread by the set of computed
solutions and it is defined as:

I∆ =
df + dl +

∑N−1
i=1

∣∣di − d̄∣∣
df + dl + (N − 1)d̄

(3.12)

where di is the Euclidean distance between consecutive solutions, d̄ is the average of these
distances, and df and dl are the Euclidean distances to the extreme solutions of the op-
timal Pareto front in the objective space. This indicator takes a zero value for an ideal
distribution, pointing out a perfect spread of the solutions in the Pareto front.

• Generational Distance (GD): This metric measures how far the elements in the computed
front are from those in the optimal Pareto (Veldhuizen and Lamont, 1998) and it is de-
fined as:

GD =

√∑N
i=1 d

2
i

N
(3.13)

where N is the number of solutions in the approximated front and di is the Euclidean
distance (measured in objective space) between each of these solutions and the nearest
member in the optimal Pareto front. A value of GD=0 indicates that all the generated
elements are in the Pareto front.

After presenting the quality indicators for both, mono-objective and multi-objective opti-
mization, we will define the performance indicators utilized to asses our algorithms.
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3.4.2 Performance Indicators

The performance evaluation is carried out by measuring the amount of computational re-
sources used by the algorithm (computational effort), which are generally calculated as the
computation time or as the number of solutions visited in the search space. It is widespread among
the research community the combined use of both metrics in order to obtain realistic picture of
the computational effort. Therefore, we have followed this advice in our research.

We discuss here the main indicators used in the literature to evaluate the performance of
parallel algorithms because this thesis includes studies applying parallel bio-inspired methods.
Among all the metrics used, the most common ones used by the research community are the
speedup and the efficiency.

The speedup evaluates how much faster a parallel algorithm is than its corresponding se-
quential version. It is computed as the ratio of the execution times of the sequential algo-
rithm (T1) and the parallel version executed on m computing elements (Tm) (Equation 3.14).
When applied to non-deterministic algorithms, such as the NC ones applied in our works, the
speedup should compare the mean values of the sequential and parallel execution times (Equa-
tion 3.15) (Alba and Tomassini, 2002). The ideal case for a parallel algorithm is to achieve linear
speedup (Sm = m), but the most common situation is to achieve sublinear speedup (Sm < m),
mainly due to the times required to communicate and synchronize the parallel processes.

The efficiency is the normalized value of the speedup, regarding the number of computing
elements used to execute a parallel algorithm (Equation 3.16). This metric allows the com-
parison of algorithms eventually executed in non-identical computing platforms. The linear
speedup corresponds to em = 1, and in the most usual situations em < 1.

Sm =
T1

Tm
(3.14) Sm =

E[T1]

E[Tm]
(3.15) em =

Sm
m

(3.16)

3.4.3 Statistical Analysis of the Results

After the definition of the indicators of quality and performance, we now present the statistical
analysis performed here to extract correct conclusions from the results. In this sense, a number
of independent runs are carried out to obtain a set of values for each indicator. From the statis-
tics viewpoint, these data can be considered as a sample from a probability density function,
and therefore, they can be compared by means of statistical tests (Demšar, 2006; Sheskin, 2007),
which are used to validate and to provide confidence to our empirical analysis .

The procedure adopted in our research work is as follows (see Figure 3.4). First, a
Kolmogorov-Smirnov statistical test is carried out to check whether the samples are normally
distributed (Gaussian) or not. For normal distributions, the homoskedasticity (i.e., equality
of variances) is checked using the Levene test. If the Levene test returns a positive value, an
ANOVA test is performed; otherwise a Welch test is performed. For non-normal distributions,
non-parametric test are performed,i.e., Kruskal-Wallis or Wilcoxon test (to compare two distri-
butions) or Friedman Rank statistical test (to compare/rank more than two distributions). If
Friedman test returns the rank with statistical confidence, post hoc statistical test can be per-
formed by using Wilcoxon or Holm test to confirm the Friedman results.
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FIGURE 3.4: Statistical validation analysis process of the experimental results.
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Chapter 4
Off-line Optimization of Vehicular
Communications

THIS chapter analyzes the use of NC to automatically search for high-quality parameter
settings of VANET protocols previous to its deployment. The search is performed by
an off-line optimization process that couples NC with a VANET simulation procedure.

This methodology is applied to improve the QoS of a file transfer and two routing protocols, as
well as we analyze the optimization process of the routing energy-efficiency. In addition, we
study different variations of the optimization algorithms to improve the performance of NC in
solving off-line protocol optimization: extending the basic operators and devising new ones,
parallelizing the used techniques, and defining multi-objective models of the problem.

4.1 Introduction

VANETs present a set of special characteristics that negatively affect the quality of the com-
munications (see Section 2.4), and therefore, that limit the accuracy of their applications. This
could expose road users to hazardous situations (Benslimane, 2004). Thus, data dissemination
in vehicular environments is a critical issue in today’s research. Hence, the research commu-
nity is very active with hot topics, creating new protocols and improving the existent ones
(Chen et al., 2011; Ding et al., 2011; Dua et al., 2014; Lee et al., 2010; Santa et al., 2009).

A promising research line proposes the modification of competitive MANET communica-
tion protocols to adapt them to the special case of VANETs. One way to modify the protocols
operation is by changing the values of the configuration parameters that govern them (timers,
counters, etc.). This approach basically keeps the base same protocols but adapts them to new
working environments. In this chapter, we propose the idea of improving the protocols soft-
ware operation in VANETs by optimizing their configuration parameters.

The protocol’s configuration parameters have a strongly non-linear relationship with each
other and a complex influence on the final performance. In fact, they represent a mix of dis-
crete plus continuous variables which makes it a hard challenge to find the best configuration
in a real world vehicular environments. The performance evaluation of each protocol con-
figuration requires a high number of VANET simulations that take in order of minutes each
one. Thus, exact and enumerative methods are not applicable for solving the underlying op-
timization problem of finding the best configuration of a given protocol, because they require
critically long execution times to perform the search, and because we are far from having a
traditional analytic equation representing the protocol (to later optimize it). In this context NC
is a promising approach to find accurate efficient protocol configurations in reasonable times.
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Specifically, in this PhD thesis we propose a methodology to optimize VANET protocols by
using NC. The procedure adopted in our analysis is summarized as follows:

1. analyzing the protocol operation and performance in VANETs in order to study the con-
figuration parameters to be improved,

2. defining an optimization problem to automatically tune the protocol parameters accord-
ing to all the possible feasible parameter configurations (search space) and a given set of
performance metrics (e.g., QoS) to define the objective (fitness) function,

3. selecting the NC algorithms (as efficient search engines) that better fit the requirements
of the defined optimization problem,

4. generating realistic VANET instances to evaluate the computed solutions/protocol con-
figurations (simulating them and obtaining the performance metric values),

5. running the NC algorithms to compute accurate VANET protocol configurations that
improve its performance in vehicular environments,

6. and comparing the parameterizations computed by NC against the state-of-the-art ones.
Focusing on the optimization part, NC techniques are coupled with a a realistic VANET

simulator, which is utilized to accurately evaluate the solutions (protocol parameterizations)
computed by the NC algorithm. As shown in Figure 4.1, during the protocol optimization
the NC algorithm performs the search operations and invokes the simulation process (VANET
evaluation). After the simulation, the results are used to compute the fitness function that
guides the search.

FIGURE 4.1: Optimization strategy to optimize VANET protocols.

Currently, OBUs are not highly energy constrained because they benefit from the vehicle’s
electricity. Nevertheless, VANETs can involve other wireless devices such as smartphones,
roadside units, and sensors, that are fed with batteries or other energy sources. Limiting the
energy consumption in vehicular communications may help the use of green renewable energy
sources as solar cells installed in the used wireless devices.

A similar strategy utilized to improve the QoS of the VANET communication has been
applied to reduce their energy consumption, thus finding energy-efficient protocol configu-
rations. Therefore, in this chapter we address two main important issues in vehicular com-
munications: the optimization of the QoS and the reduction of the energy consumption of
the protocols. In other systems, this is an improvement or a twist for efficiency; however, in
VANETs it is a mandatory step to get the communications actually working.

In short, this chapter analyzes the optimization of the QoS of a file transfer and two types
of routing protocols. We have selected two different types of routing protocols (a proactive
one and a reactive one), which represent two different ways of operating, in order to show the
robustness of the use of NC in this filed. In addition, it studies the energy-efficiency optimiza-
tion of a routing protocol.
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The chapter is organized as follows: Section 4.2 applies NC to the optimization of the QoS
a file transfer protocol. Section 4.3 analyzes the use of NC on the optimization of a proactive
routing software. Section 4.4 concentrates in how to reduce the energy consumption routing
data by using a parallel NC algorithm. Section 4.5 improves the QoS of a reactive routing
protocol by applying parallel multi-objective NC techniques. Finally, Section 4.6 offers a global
vision on applying off-line optimization in VANETs. We now turn to present the common
definitions required for all subsequent work of this chapter.

4.1.1 Instances for the Evaluation of VANET Communications

The evaluation of vehicular communications is a major concern as it has already been dis-
cussed in Section 2.6. In this thesis it has been made a great effort to defined realistic VANET
simulations in order to obtain accurate results, i.e., as close as possible to the real world com-
munications.

The simulation of communications used in our studies comprises the utilization of a widely
used network simulator, the Network Simulator (two versions are used ns-2 and ns-3). This
network simulator is combined with one of the following two road traffic simulators (mobility
models generators) to define the movement of the nodes as real vehicles: the VanetMobiSim
(Härri et al., 2011) and the Simulation of Urban MObility (SUMO) (Krajzewicz et al., 2012). The
main advantage of employing traffic simulators is that they can be used to generate realistic
VANET environments by automatically selecting real areas from freely available digital maps,
e.g., OpenStreetMap (Haklay and Weber, 2008), taking into account real road directions, traffic
lights and signs, etc.

This section introduces the main characteristics of the road VANET instances used in the
simulations performed in the studies presented in chapter. The off-line optimization take into
account both, urban (metropolitan) and highway areas, because the vehicular communications
behave quite differently in this two types of roads.

For the urban scenarios, three different geographical area sizes have been selected from the
downtown of Málaga, in Spain, to study the scalability of the approaches proposed. The three
urban areas are the U1, the U2, and the U3 that cover areas of 120,000 m2, 240,000 m2, and
360,000 m2, respectively (see Figure 4.2). Additionally, the analysis is extended by studying
how do various road traffic densities affect the protocols’ performance.

a) U1 area. b) U2 area. c) U3 area.
FIGURE 4.2: Road maps used to define the urban VANET instance.

The highway instance covers a stretch of road of one kilometer with four lanes and two di-
rections (two lanes per direction) without buildings and semaphores. In this case, the absence
of obstacles is made up for the handicap of the high speed of vehicles, which also interferes
the communication among vehicles.
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4.1.2 Metrics Used to Evaluate VANET Protocols

Our off-line protocol optimization targets at optimizing the QoS (performance of the protocol)
and/or the energy-efficiency of a given software protocol. Therefore, the solutions have to be
evaluated in terms of these objectives.

The QoS Metrics Evaluated

Two different types of protocols will be optimized in terms of QoS (file transfer and routing
protocols), and therefore, the evaluation of the QoS is performed differently depending on the
type of protocol evaluated.

The QoS of a file transfer protocol is measured according to four metrics (García-Nieto et
al., 2010):
• Transmission time: Differences of the times between request and complete reception of a

file.
• Number of lost packets: Number of the data segments or chunks generated by the file

transfer protocol which have been lost during the file transfer.
• Total data transferred: Amount of units of data, such as bits or bytes, transferred from a

source node and correctly received by a destination node.
• Effective data rate: Amount of units of data transferred per unit time from a source node

and correctly received by a destination node.
The QoS of the routing protocols can be evaluated by taking into account these four met-

rics (Das et al., 2000):
• Packet delivery ratio (PDR): Fraction of the data packets originated by an application that

the routing protocol delivers correctly to the destination node.
• Normalized routing load (NRL): Ratio of administrative routing packet transmissions to

packets delivered.
• End-to-end delay (E2ED): Difference between the time the data packet is originated by an

application and the time this packet is received at its destination.
• Routing path length (RPL): Number of hops packets take to reach their sink nodes.

Power Consumption Evaluation

The energy required for each device to perform the communications depends on its commu-
nication mode, which are: a) idle, the default state of wireless interfaces in ad hoc networks,
in which nodes keep listening and the interface can change the state and start transmitting or
receiving packets; b) transmit and c) receive states, when the nodes are sending and receiving
data through the medium, respectively; and d) sleep state is when the node radio is turned
off, and thus the node is not capable of detecting any signal. The studies carried out in this
thesis deal with the optimization of the power consumption of the two operational states that
act during the packet exchange: transmit and receive states, the most expensive ones in terms
of energy consumption. Therefore, we consider the per-packet power consumption by Cano and
Manzoni (2000).

The energy is computed according to the power requirements in transmitting (Psend) and
receiving (Precv) states, and the time needed to transmit the packets (time). These values are
obtained by using the network interface card (NIC) characteristics of electric current (Isend,
Irecv) and power supply (Vsend, Vrecv) in each state, the size of the packets (PacketSize), and
the bandwidth (Bandwidth). Equations 4.1 and 4.2 represent the energy required for packet
transmission (Esend) and for packet reception (Erecv).

Esend = Psend × time = (Isend × Vsend)×
PacketSize

Bandwidth
(4.1)
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Erecv = Precv × time = (Irecv × Vrecv)×
PacketSize

Bandwidth
(4.2)

In order to compute realist results in the simulations carried out to evaluate the commu-
nications, the real IEEE 802.11p Unex DCMA-86P2 NIC (Unex, 2015) is modeled as wireless
interface of the VANET nodes. According to the specification of this transceiver, the power
consumption is from 440 milliamperes (mA) in transmitting mode, and from 260 mA in receiv-
ing mode, and it is fed with 5.0 Volts. This NIC uses a 6 Mbps bandwidth implementation of
the standard IEEE 802.11p. Thus, the power consumption in transmitting (Esend) and receiving
states (Erecv), in Joules, are given by Equations 4.3 and 4.4, respectively, where the packet size
is given in bits.

Esend = (440× 5)× PacketSize

6× 106
(4.3) Erecv = (260× 5)× PacketSize

6× 106
(4.4)

The total power consumption for a packet transmission is the sum of the costs incurred by
the sending node and all receivers, whether they are the destination nodes or not. Equation 4.5
computes the total power consumption per packet (Etotal) when there are r receiver nodes in
the communication range of the sender.

Etotal = Esend +
r∑
i=1

Erecv (4.5)

The energy gap (GAPenergy) is computed to represent the percentage of energy saved by
using some parameter configuration (c) regarding the energy consumption of standard RFC
(see Equation 4.6).

GAPenergy(c) =
Etotal(RFC)− Etotal(c)

Etotal(RFC)
× 100 (4.6)

4.1.3 Specific NC Operators for VANET Protocol Optimization

The NC algorithms applied in García-Nieto et al. (2010) and in Toutouh et al. (2012b) offered
very competitive results in off-line protocol optimization. However, the algorithms, which uti-
lized canonical operators, suffered from low population diversity and early stagnation and
from the generation of pointless solutions. For this reason, we have defined initialization,
crossover, and mutation operators by introducing problem-related information, which have
been used in different studies carried out in this thesis. Following, the diagonal uniform initial-
ization, the functional OLSR crossover, the OLSR-µ and AODV-µ mutation operators are defined.

Diagonal Uniform Initialization

The diagonal uniform initialization defined in our thesis distributes the solutions of the solu-
tion set over different areas of the search space (Toutouh and Alba, 2012c). The initialization
operator splits the search space into solset_size (solution set size) diagonal subspaces, and it
locates each solution in each subspace. Equation 4.7 summarizes the procedure.

s
(0)
k,i = z(i,MIN) + ρk i ∈ [0, n_par − 1], k ∈ [0, solset_size− 1] (4.7)

In Equation (4.7), s(0)
k,i is the initial value for each component (protocol parameter) i in the

solution vector of the k-th solution, set according to a seed z(i,MIN), and a randomly distributed
value ρk computed by using the diagonal subspaces limits and a random value α ∈ [0, 1] (see
Equation 4.8). The z(i,MAX) and z(i,MIN) are the upper and lower range values for the i-th
parameter of the optimized protocol that has n_par configuration parameters, respectively.
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ρk =

(
k + α

solset_size

)
× (z(i,MAX) − z(i,MIN)) (4.8)

OLSR-µ Mutation Operator

After analyzing the algorithm of the OLSR protocol (Clausen and Jacquet, 2003), a new muta-
tion operator is defined in Toutouh et al. (2013). This mutation modifies simultaneously just the
genes that encode OLSR related parameters, i.e., the parameters that together control a given
protocol procedure, but using different policies and following the OLSR optimization problem
specifications. According to this idea, the mutation operator offers 22 different movements in
the solution space. For example, HELLO_INTERVAL (x(g)

p,0) and NEIGHB_HOLD_TIME (x(g)
p,4)

parameters are mutated at the same time by applying Equation 4.9.

x
(g+1)
p,0 = β0 × (z(0,MAX) − z(0,MIN)) β0 ∈ [0, 1]

x
(g+1)
p,4 = β4 × (z(4,MAX) − z(4,MIN)) β4 ∈ [0, 1] (4.9)

AODV-µ Mutation Operator

The AODV-µ mutation operator is introduced in Toutouh and Alba (2015c) This mutation
keeps the solutions in the values of correct operation of the AODV protocol (Perkins et al.,
2003). The movements are limited by the lower and the upper values of the parameter ranges.

The mutation operator introduces new randomly generated information, and therefore,
diversity to the population/swarm of the pMOAs. However, the AODV-µ mutation val-
ues are limited by the lower and upper values of the parameter ranges (see Equation 4.11).
Equation 4.10 defines the values that depend on a uniform randomly distributed value
βi ∈ [−0.5, 0.5] and on the range of values of the i-th parameter of AODV.

new_sk,i = s
(g)
k,i + βi × (z(i,MAX) − z(i,MIN)) (4.10)

In Equation 4.11, s(g+1)
k,i is the new value computed for a mutated parameter i of the k-

th solution set to new_sk,i according to Equation 4.10. If the movement does not fulfill the
range restrictions, then the i-th parameter is set to the upper value of its range (z(i,MAX)) if
new_sk,i > z(i,MAX) or to the lower value (z(i,MIN)) if new_sk,i < z(i,MIN).

s
(g+1)
k,i =


new_sk,i, if new_sk,i ∈ [z(i,MAX), z(i,MIN)]

z(i,MAX), if new_sk,i > z(i,MAX)

z(i,MIN), if new_sk,i < z(i,MIN)

(4.11)

Functional OLSR Crossover Operator

The functional OLSR crossover operator was introduced in Toutouh and Alba (2012b) and it is
a modified version of N-point crossover operator for real-valued problem encoding. It defines a
linear combination of two chromosomes (Parent A and Parent B) to generate two new individ-
uals (Offspring A and Offspring B). In this operator, we include problem-related information to
avoid pointless configurations.

Thus, we define the concept of related-genes to refer to those genes that represent OLSR
parameters which have relation between their values according to the description of OLSR in
the RFC 3626 (Clausen and Jacquet, 2003). The functional OLSR crossover operator performs
the exchange of three pair of related-genes (HELLO_INTERVAL and NEIGHB_HOLD_TIME;
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MID_INTERVAL and MID_HOLD_TIME; and TC_INTERVAL and TOP_HOLD_TIME) and
two individual-genes (WILLINGNESS and the DUP_HOLD_TIME). Thus, we have defined
five different possible gene exchanges (see Figure 4.3): the related-genes (Crossover-1 to
Crossover-3), the WILLINGNESS (Crossover-4), and the DUP_HOLD_TIME (Crossover-5). Each
time that the recombination operator is called three of these five genes exchanges are randomly
applied to create the final offspring.

FIGURE 4.3: Different gene exchanges of the functional OLSR crossover operator.

4.2 Data Transfer Between Vehicles with Optimized QoS

File transferring is always an essential service in every communication network since their ul-
timate purpose is the exchange of information among the nodes, and vehicular networks are
not an exception. Thus, different specific file transfer protocols have been proposed, for exam-
ple: the Vehicular Data Transfer Protocol (VDTP) (Luna S., 2008) proposed by CARLINK Euro-
pean EUREKA-CELTIC European consortium (CARLINK, 2006), the CarTorrent and the CodeTor-
rent (Lee et al., 2008) designed at UCLA (University of California, Los Angeles), and the Vehic-
ular Information Transfer Protocol (VITP) introduced in Dikaiakos et al. (2005). The operation of
these protocols follows the same idea of splitting the files into several data blocks or chunks
to be sent individually through the network. In this manner, the file transfer may be paused if
there is any connection problem and it may be resumed if the nodes reconnect again.

In spite of the aforementioned protocols were specifically designed to be deployed in
VANETs, their performance is limited due to the special characteristics of this kind of net-
works, that provoke frequent connection loss (see Section 2.4). Thus, it is desirable to optimize
such protocols to provide the applications with the best file transfer service possible. Following
this idea, in this thesis the file transfer configuration (FTC) optimization problem is defined
for the first time. It consists in finding the configuration of the main parameters of a given file
transferring protocol software that optimizes the VANET performance. More specifically, this
section presents a study focused on applying the FTC to the VDTP protocol. For this purpose,
a set of NC techniques have been analyzed in tackling this problem.
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4.2.1 Vehicular Data Transfer Protocol

VDTP is a connectionless oriented protocol which operates in the application layer (Luna S.,
2008). In VDTP, the communication process is carried out by two nodes, a file petitioner, which
tries to download a given file, and a file owner, which initially stores the file. This transfer
protocol operates by using four control packets: FIRQ (File Information Request), FIRP (File
Information Reply), DRQ (Data Request), and DRP (Data Reply).

The file transfer begins when when the file petitioner sends an FIRQ to the file owner stores
the file to be downloaded. The file owner replies with an FIRP, that encapsulates metadata
about the file (see Figure 4.4.a). This metadata includes the information about the size of the
requested file. When the file petitioner receives the FIRP, it computes the number of chunks
n in which the file will be split, dividing the file size by a given block size defined in the
chunk size protocol parameter. Then, the petitioner starts the transfer by sending the DRQ(1)
packet asking for the first chunk; later, it waits for the first chunk sent in the DRP(1) packet
by the owner. This operation is repeated by both, petitioner and owner, for successive chunks
(exchange of DRQ(i) and DRP(i)), until the file petitioner receives the last data block in the
DRP(n) packet.

FIGURE 4.4: VDTP operation: (a) a complete file exchange is done; (b) timeout expiration and retrans-
mission; and (c) communication refused.

Packet delivery is likely to fail during the communication process. In this sense, VDTP
provides a mechanism based on timers and counters to deal with such issue. The timers control
the timeout (retransmission time) for receiving data after sending a request packet (FIRQ or
DRQ). After this timeout, the packet requested is resent to the file owner (see Figure 4.4.b).
Additionally, the counters are used to control the number of times a given packet request is
carried out. When the same FIRQ or DRQ packet has been repeated for a maximum number
of times (max attempts), the file transfer is aborted (see Figure 4.4.c).

4.2.2 File Transfer Optimization Problem for VDTP

As it can be inferred from the VDTP operation, the main parameters that govern the protocol
are three: the chunk size, the retransmission time, and the max attempts. Therefore, solving the
FTC optimization problem for VDTP is finding the best configuration of the aforementioned
parameters that optimizes the provided QoS. According to the CARLINK consortium experts,
the possible values for the VDTP parameters to fulfill the requirements of VANET applications
are the following ones (Luna S., 2008):
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• chunk size is an integer value in the range of [128 524, 288] that represents the maximum
quantity of data in a chuck in terms of bytes (524,288 bytes = 512 kilobytes),

• retransmission time (in seconds) is a real value in the range of [1 10],
• and max attempts is an integer value in the range of [1 250].
In this study, the QoS of VDTP is evaluated using three different metrics: the transmission

time or communication delay, the number of lost packets, and the amount of data correctly ex-
changed between the nodes (see Section 4.1.2). The first metric is important because most of
VANET applications have hard requirements of communication delays (see Section 2.3). The
last two metrics are useful to evaluate the reliability of the protocol. Thus, solving FTC problem
for VDTP consists in computing the values for each VDTP parameter that minimize both, the
transmission time and the number of lost packets, while maximizing the amount of data transferred.

4.2.3 Implementation Details

As the FTC optimization problem on VDTP has not been analyzed in the literature, there are
no previous results for comparisons. At the time of the study described here, only manually
computed configurations proposed by CARLINK experts were made so far. Therefore, five
NC algorithms are analyzed: four swarm/evolutionary based methods (PSO, DE, GA and ES)
and a trajectory search technique (SA). These techniques are selected because they constitute
a representative subset of well-known NC techniques, with suitable operators for real param-
eter optimization, and with heterogeneous schemes of solution set topology and evolution.
This way, a set of initial results is provided in order to allow future comparisons with other
optimization techniques.

Figure 4.5 illustrates the main strategy utilized in this analysis. When a given NC algorithm
generates a new solution s it is immediately used for configuring the VDTP in a VANET simu-
lation. This simulation evaluates the quality of the given solution by using the received VDTP
configuration (the values of chunk size, retransmission time, and total number of attempts). After a
(usually very high) simulation time, ns-2 returns the global information about the transmission
time, the number of lost packets, and the amount of data transferred. This information is used to
compute the fitness function.

FIGURE 4.5: Optimization strategy to address FTC on VDTP.

The NC algorithms utilize the canonical operators. The problem encoding is summarized
and the fitness function utilized to evaluate the solutions is below.

Problem Encoding

The VDTP protocol is governed by three configuration parameters. For this reason, each
solution s is encoded as a vector of three components, each one for each parameter, i.e.,
s = [chunk_size, retransmission_time,max_attempts]. The valid ranges for each one of the
parameter values have already been presented in Section 4.2.2).
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Fitness Function

The simulator evaluates the communications of a VANET scenario and returns the values for
each QoS metric. As the vehicular communications depend on several external elements, e.g.,
distance between the vehicles, it is important to evaluate each solution averaging the results
of different file transfers in order to provide the most accurate fitness value possible. In this
study, each solution requires 10 different file transfers of the same VDTP parameterization
(N = 10). The fitness value for each solution is defined as an aggregate function taking into
account the three metrics (transmission_time, lost_packets, and data_transferred), as it is
shown in Equation 4.12:

fitness(s) =
1

N

N∑
i=1

transmission_timei + lost_packetsi
log(data_transferredi +K)

(4.12)

In this equation, i ∈ [1, 10] is the number of the file transfer. The data transferred is pre-
sented in logarithmic scale in order to make up for the difference in the range of values. The
factor K = 2 avoids division by negative values or zero, preventing a possible error in the
fitness calculation. Thus, the analyzed NC algorithms minimize the fitness defined in Equa-
tion 4.12 to solve the FTC optimization problem.

4.2.4 Experimental Results

This section presents the experiments carried out to solve FTC optimization problem on VDTP
and discusses the main results. The NC algorithms used to optimize the QoS of VDTP are
implemented using the C++ MALLBA framework (Alba et al., 2006).

Instances: VANET Scenarios

The FTC optimization problem analyzed here takes into account two different vehicular sce-
narios: an urban area and a highway road. Thus, we can analyze in both scenarios the behavior
and performance of the compared algorithms.

The Urban and the Highway instances utilized in this study are defined by the U1 urban area
and H highway road, respectively (see Section 4.1.1). In both instances 30 vehicles are circulat-
ing with appropriate speeds according to the road and 20 of them are trying to send or receive
files of 1024 kilobytes (KB). The communication devices of the utilized vehicles are configured
using IEEE 802.11b, DSR, and UDP protocols for the PHY/MAC, routing, and transportation
layers, respectively. García-Nieto et al. (2010) describes further details of the analyzed VANET
instances.

Parameter Settings of the Algorithms

The five studied algorithms are configured to perform 1,000 solution evaluations per run. The
swarm/population based NC techniques (PSO, DE, GA, and (µ, λ)-ES) are configured with
20 particles/individuals, performing 50 generational steps; and SA iterates 1,000 times. Ta-
ble 4.1 summarizes the remaining parameters specific to each algorithm.

These parameters are selected as the most accurate after a set of initial tuning experiments.
In those, a number of five combinations of parameters per algorithm and VANET instance
are tested performing only 10 independent runs per combination, hence resulting in a num-
ber of 500 additional executions. However, later for the actual study we use 30 independent
runs since it is the minimum to compute meaningful statistical results. Preliminary results of
parameters tuning are available in Table B.1 (see Appendix B).
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TABLE 4.1: Parameterization of the optimization algorithms to address FTC problem.

Algorithm Parameter Symbol Value

Local Coefficient ϕ1 2.0
PSO Social Coefficient ϕ2 2.0

Inertia Weigh w 0.5

DE Crossover Probability Cr 0.9
Mutation Factor µ 0.1

GA Crossover Probability Pcros 0.8
Mutation Probability Pmut 0.2

ES Crossover Probability Pcros 0.9
Mutation Probability Pmut 0.1

SA Temperature Decay T 0.8

Numerical Analysis

This section discusses the results obtained by the five studied algorithms when solving the op-
timal FTC problem on VDTP. Table 4.2 shows the resulting fitness values regarding the Urban
and Highway scenarios in terms of the average, the normalized standard deviation, the min-
imum (best fitness), the median, and the maximum (worst fitness) found in 30 independent
runs of every algorithm.

TABLE 4.2: Final fitness values of FTC optimization for the Urban and Highway scenarios.

Instance Algorithm Average ± Stdev. Minimum Median Maximum

PSO 1.6346 ± 17.74 % 0.9077 1.7809 1.8918
DE 1.7423 ± 21.33 % 0.7389 1.8658 2.0228

Urban GA 1.9086 ± 11.84 % 0.8799 1.9731 2.1614
ES 2.1517 ± 5.88 % 1.8862 2.1222 2.4246
SA 2.7850 ± 31.30 % 0.8730 2.1663 3.8025

PSO 4.1761 ± 6.12 % 3.3301 4.2513 4.4554
DE 4.6631 ± 20.01 % 2.7145 4.2272 7.0531

Highway GA 4.3805 ± 19.85 % 2.5345 4.1918 5.8608
ES 5.7833 ± 16.78 % 3.8836 6.1347 6.9421
SA 4.4246 ± 16.73 % 3.1498 4.0855 5.7922

For the Urban scenario, Table 4.2 shows that PSO obtains the best result in terms of the
average, median, and maximum fitness values. This result leads us to believe that using the
PSO the resulting VDTP ends in an efficient communication which is fast and accurate between
vehicles. Howeverm the very best VDTP configuration (minimum fitness) is found for Urban
is reached by DE, so if the robustness is not an issue we could use DE instead PSO. ES provides
the smallest deviation (5.88 %) since the results obtained are close each other, but they are far
from the best obtained ones by the other NC techniques. Similar results are observed for the
Highway scenario, in which PSO obtains the best average fitness value again. In terms of
the minimum fitness, GA obtains the best VDTP configurations for the Highway scenario. For
this instance the least competitive NC technique is ES, i.e., it computes the highest (undesired)
average, minimum, and median fitness values.

In order to provide such comparison with statistical confidence, the Friedman and the
Wilcoxon Signed Rank non-parametric statistical tests (Sheskin, 2007) are performed because
the distributions violate the condition of normality required to apply parametric tests. For Ur-
ban instance, the algorithm that significantly obtains the best results is PSO according to Fried-
man and Wilcoxon tests. The second and third ranked algorithms by Friedman are DE and GA,
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respectively. For Highway instance, there is not a clear trend about which one is statistically the
algorithm that performs the best since Friedman ranked SA, GA, and PSO as first, second, and
third best algorithms, but these three algorithms do not show statistical differences with each
other. These statistical results lead us to think that, in spite of the global (robust, predicable)
competitive behavior of PSO, the different requirements implicit to both instances implies that
each algorithm can show quite different results depending on the VANET scenario on which
it operates. The results of these statistical tests are detailed in tables B.3, B.4, and B.5 (see
Appendix B).

Algorithms Performance Analysis

This section basically lies in analyzing the quality of solutions during the whole evolution
process of a given NC technique. Figure 4.6 illustrates the graphs of the best fitness values
obtained through the median execution in Urban and Highway instances.

FIGURE 4.6: Best fitness evolution for the median run when solving FTC problem.

In both figures PSO and DE tend to converge in the same range of solution evaluations, and
they could improve their fitness even in the final steps of the evolution process. GA shows a
similar trend but it is subjected to an early stagnation. Finally, the high variability behaviors
observed in ES, and specifically in SA, for both instances confirm us the high dependency of
such algorithms to each different VANET scenarios (they do not seem robust in this applica-
tion).

Execution Time Analysis

Concerning the run time each algorithm spends in the experiments, Table 4.3 shows both the
average time in which the best solution is found Tbest, and the total average execution time per
run Trun. In general, SA shows the shortest times to find its best solution for the two VANET
instances. This is mainly due to SA quickly falls in local optima hence obtaining weak results
in Urban scenario. Nevertheless, this behavior can be an advantage for Highway scenario where
SA obtained accurate solutions with a fast performance. Besides this algorithm requires less
internal operations. As expected in PSO and DE, they spent close executions times for the
two VANET instances since they have similar internal operations. This resemblance is also
registered in the two evolutionary algorithms, GA and ES.

As a summary, the algorithms use between 80 and 150 minutes for the Urban scenario, and
between 23 and 60 minutes for Highway scenario. This global low effort in the protocol design
is completely justified by the subsequent benefits obtained in the global data transmission time
and loss of packets.
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TABLE 4.3: Average execution times (seconds) per independent run of each algorithm in solving FTC.

Instance Algorithm Tbest (seconds) Trun (seconds)

PSO 4.68E+03 7.95E+03
DE 4.37E+03 7.12E+03

Urban GA 3.48E+03 6.68E+03
ES 5.46E+03 9.00E+03
SA 2.18E+03 4.76E+03

PSO 1.39E+03 2.19E+03
DE 9.82E+02 2.10E+03

Highway GA 8.83E+02 1.56E+03
ES 9.84E+02 1.47E+03
SA 5.85E+02 8.45E+02

Scalability Analysis

In order to analyze how do various network sizes affect the performance of the NC techniques,
they are executed over unseen two urban VANET instances: U2 and U3 (see Section 4.1.1) with
40 and 50 vehicles, respectively. Table B.2 in Appendix B presents the results of the whole
scalability analysis out of 30 independent runs.

From the point of view of the fitness obtained by each algorithm, PSO keeps the best per-
formance for the two new instances. Additionally, one of the most interesting results can be
observed in GA, which arises as the second best algorithm in improving its behavior with the
VANET size. Concerning to the execution time, as expected, the run times always increase
with the network size.

4.2.5 Efficient VDTP Validation

After the optimization process, the configurations obtained by the NC algorithms are analyzed
in terms of the QoS indicators (transmission time, number of lost packets, and amount of
data transferred). Table 4.4 shows the results after simulating the best solutions found by the
studied algorithms during the median run. In addition, the last row of this table contains
the results of simulating the configuration of VDTP that has been used in the scope of the
CARLINK project. The amount of data transferred is not shown because all the file transfers
finished successfully, and therefore, for all the simulations the average data exchanged for each
file transfer is 1,024 KB.

TABLE 4.4: Comparison among different VDTP configurations (improved and CARLINK experts).

Instance Algorithm
VDTP Configuration Simulation Results

chunk size retrans. time max. attempts trans. time (secs.) lost packets

PSO 41,358 10.00 3 3.41 0.27
DE 28,278 6.00 9 3.59 0.63

Urban GA 31,196 3.83 9 3.61 0.27
ES 23,433 10.00 8 3.50 0.27
SA 19,756 6.43 3 4.22 0.36

CARLINK 25,600 8.00 8 4.24 1.60

PSO 29,257 6.42 9 24.67 3.18
DE 19,810 6.91 8 27.66 3.45

Highway GA 34,542 9.54 10 26.96 2.72
ES 38,490 8.15 12 33.99 3.36
SA 32,002 8.21 4 25.43 2.54

CARLINK 25,600 10.00 10 33.08 3.27
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FIGURE 4.7: Final effective data rate (KB/s) of the analized VDTP configurations.

For the Urban scenario, the VDTP configuration obtained by PSO achieves the best per-
formance in terms of transmission time and average number of lost packets. Specifically, in
comparison to the human experts configuration of CARLINK, PSO produces a reduction in
the transmission time of 0.83 seconds (19.5%) registering also a lower number of lost packets.
Nevertheless, it is in the Highway scenario where PSO obtains the higher time reduction of
8.41 seconds (25%) regarding the human experts configuration (from 33.08 s to 24.67 s). It is
noticeable that, in spite that PSO achieves a higher reduction in the transmission time than SA
and GA, the fact of losing more packets (3.18 in PSO, 2.71 in GA, and 2.54 in SA) in the global
transference leads SA and GA to calculate a better fitness value (as shown in Table 4.2).

A final analysis is done concerning the effective transmission data rate achieved. As we can
see in Figure 4.7, the VDTP configuration obtained by practically all algorithms in the two
VANET scenarios obtained higher effective data rates than the human configured VDTP. This
clearly claims for the utilization of NC to help network designers. The actual correction of
effective data rates between cars are in the order of tens of KB per second, so our savings (58.79
KB/s in Urban and 10.5 KB/s in Highway) are truly meaningful in current real applications.

As a final comment, concerning to the effective transmission data rate observed in Figure 4.7,
practically all the configurations obtained by the NC algorithms in the two VANET scenarios
outperform the human configured VDTP. This clearly claims for the utilization of NC to help
network designers. The actual correction of effective data rates are in the order of tenths of KB
per second, which are truly meaningful in current real VANET applications.

4.2.6 General Discussion on File Transfer QoS Optimization

This study demonstrates that the use of NC is a promising tool for the off-line optimization of
the file transfer protocols in VANETs. PSO and GA provide competitive performance in finding
accurate VDTP parameterizations for both, metropolitan and highway roads. These results
keep competitive even when the simulated VANET grows, i.e., increasing the complexity of
the vehicular environment.

From the point of view of its real world utilization, PSO computed VDTP parameterizations
reduce 19% of the transmission time in urban and 25.43% in highway with regards to human
expert configuration of CARLINK, while transmitting the same amount of data. The highest
effective data rates are obtained by PSO, which are 300.39 kBytes/s in urban VANETs and
41.50 kBytes/s in highway roads in comparison with 241.5 kBytes/s and 30.95 kBytes/s of
human experts. The results lead us to advise the final use of our automatic design NC tool.
These improvements in the protocol performance have been later confirmed in real world
experiments by using real vehicles in an open road presented in Toutouh and Alba (2011c)
(see Section 7.2).
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4.3 Optimization of the QoS of Proactive Routing

As it is introduced in Section 2.4, designing efficient routing protocols for VANETs is a serious
challenge due to their unique and difficult features like decentralization, high mobility, and
hard delay requirements. Thus, after dealing with the optimization of a file transfer protocol
in the previous section, this study analyzes the use of NC algorithms to improve the QoS of
the routing protocols used to perform vehicular communications.

A new optimization problem is here defined to find efficient parameterizations of a proac-
tive (table driven and link-state) routing protocol. Proactive protocols can be recognized be-
cause they maintain routing information even before they need this information. Each node
stores paths to every node in the network. This information is generally kept in a number of
routing tables and is periodically updated (with a given frequency or when a given destination
node cannot be reached). Proactive protocols are applied in vehicular environments because
they present a series of features that make them well-suited for VANETs (Huhtonen, 2004):
they exhibit very competitive transmission delays (which is an important feature for VANET
applications) and they adapt well to the continuous topology changes.

The main drawback of such protocols is the need of maintaining the routing tables. This
process is carried out by periodically broadcasting control packets to update routing tables.
This drawback is negligible for scenarios with a few nodes, but for large networks the overhead
of control messages could provoke network congestion. This constraints the scalability of this
type of protocols. Thus, the QoS significantly depends on the selection of its parameters, what
determine the protocol operation. For example, the detection of topological changes and the
network load generated by the protocol can be adjusted by changing the time interval for
broadcasting HELLO messages.

In the present work, we aim at defining and solving an off-line optimization problem to
efficiently and automatically tune OLSR (Clausen and Jacquet, 2003), a widely used mobile
ad hoc network proactive routing protocol, in order to optimize its QoS when it is used in
vehicular environments. As shown in the results presented in (Gómez et al., 2005; Huang
et al., 2006; Härri et al., 2006) and in the present study, OLSR admits a wide range of QoS
improvement by changing the configuration parameters.

4.3.1 OLSR Routing Protocol for VANETs

OLSR is a proactive routing protocol designed for mobile ad hoc networks which show low
bandwidth and high mobility. It is a version of classical link-state routing protocol, which
relies in employing an efficient periodic flooding of control information using special nodes
that act as multipoint relays (MPRs) (Nguyen and Minet, 2007). OLSR daemons running on
every node of the network periodically exchange different messages in order to maintain the
topology information of the entire network in the presence of mobility and failures. The core
functionality is performed mainly by using three different types of messages: HELLO, TC
(topology control), and MID (multiple interface declaration) messages.
• HELLO messages are exchanged between neighbors nodes (1-hop distance). They are

employed to accommodate for link sensing, neighborhood detection, and MPR selec-
tion. These messages are generated periodically, containing information about the links
between neighbor nodes.

• TC messages are generated periodically by MPRs to indicate which other nodes have
selected it as their MPR. This information is stored in the topology information base of each
network node which is used for routing table calculations.
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• MID messages are sent by the nodes to report information about their network interfaces
employed to participate in the network. Such information is needed since the nodes may
have multiple interfaces with distinct addresses.

The OLSR mechanisms are regulated by a set of parameters predefined in the OLSR
RFC 3626 (Clausen and Jacquet, 2003) (see Table 4.5). These parameters have been already
tuned by different authors without using any automatic tool in (Gómez et al., 2005; Huang
et al., 2006) and they are: the timeouts before resending HELLO, MID, and TC messages
(HELLO_INTERVAL, REFRESH_INTERVAL, and TC_INTERVAL, respectively); the “validity
time” of the information received via these message types, which are: NEIGHB_HOLD_TIME
(HELLO), MID_HOLD_TIME (MID), and TOP_HOLD_ TIME (TC); the WILLINGNESS of a
node to act as a MPR (to carry and forward traffic to other nodes); and DUP_HOLD_TIME, that
represents the time during which the MPRs record information about the forwarded packets.

TABLE 4.5: Main OLSR parameters and RFC 3626 specified values.

Parameter Type Range Standard configuration

HELLO_INTERVAL R [1.0, 30.0] 2.0 s
REFRESH_INTERVAL R [1.0, 30.0] 2.0 s
TC_INTERVAL R [1.0, 30.0] 5.0 s
WILLINGNESS Z [0, 7] 3
NEIGHB_HOLD_TIME R [3.0, 100.0] 3× HELLO_INTERVAL
TOP_HOLD_TIME R [3.0, 100.0] 3× TC_INTERVAL
MID_HOLD_TIME R [3.0, 100.0] 3× TC_INTERVAL
DUP_HOLD_TIME R [3.0, 100.0] 30.0 s

4.3.2 OLSR QoS optimization in VANETs

The standard configuration of OLSR offers a moderate performance when used in
VANETs (Santa et al., 2009). Because of this high impact of parameters in the QoS of the pro-
tocol, an optimization problem is defined in order to discover the best protocol configuration.
The standard OLSR parameters are defined without clear values for their ranges. The range of
values each parameter can take has been defined here by following OLSR restrictions with the
aim of avoiding pointless configurations.

According to that, we can use the OLSR parameters to define a solution vector of mixed
integer and real variables, each one representing a given OLSR parameter. This way, the solu-
tion vector can be fine-tuned automatically by using NC with the aim of obtaining QoS efficient
OLSR parameters configurations for VANETs hopefully outperforming the standard one de-
fined in the RFC 3626. The OLSR QoS optimization problem analyzed here takes into account
three metrics that evaluate the communication cost: PDR, NRL, and E2ED. Thus, the problem
consist in finding the OLSR configuration that maximizes PDR and minimizes both, NRL and
E2ED.

4.3.3 Implementation Details

As it happened with the precedent FTC problem, there are not previous results of optimizing
the QoS of OLSR for comparisons. Therefore, four NC algorithms are analyzed: PSO, DE,
GA, and SA. These techniques are selected because they craft operators for real parameter
optimization and represent a subset with heterogeneous schemes for search. In addition, a
random search algorithm (RAND) is studied for comparison purposes.

The main strategy used in this analysis is summarized in Figure 4.8. The NC algorithm
iteratively computes solutions of (hopefully) larger QoS. The simulator evaluates the commu-
nication costs of the received OLSR parameterization (tentative solution) by using ns-2. After
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the simulation procedure ns-2 returns the values of PDR, NRL, and E2ED to compute the fitness
value, and then, the algorithms can go for a new improvement iteration.

FIGURE 4.8: Strategy to address OLSR QoS optimization.

Our NC algorithms will use standard operations. Let us now explain the problem encoding
and the fitness function utilized to evaluate the solutions.

Problem Encoding

As OLSR is governed by eight configuration parameters, thus the solution is encoded as a
vector of eight components. The type and valid ranges for the parameter values are presented
in Table 4.5. Figure 4.9 shows a representation of of this vector.

FIGURE 4.9: Solution encoding for the QoS OLSR tuning optimization problem.

Fitness Function

The simulator evaluates the communications of a given VANET under the circumstances de-
fined by the OLSR routing parameters generated by the optimization algorithm. After the
simulation, ns-2 returns information about the PDR, NRL, and E2ED of the whole VANET.
This information is used in turn to compute the fitness value of the current solution as follows:

fitness(s) = w2 ·NRL(s) + w3 · E2ED(s)− w1 · PDR(s) (4.13)

As previously set, the objective here consists in maximizing PDR, and minimizing both,
NRL and E2ED. As expressed in Equation 4.13, an aggregative minimizing function is used,
and for this reason PDR is formulated with a negative sign. In this equation, factors w1, w2,
and w3 are in the range [0,1] and must sum up to 1.0, with actual values 0.5, 0.2, and 0.3,
respectively, in our forthcoming experimental analysis. This way, routing effectiveness (PDR)
takes priority over the communication efficiency (NRL and E2ED).
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4.3.4 Experimental Results

This section presents and analyzes the experiments carried out to solve optimization problem
on OLSR to improve its QoS in VANETs. The NC algorithms applied to tackle the OLSR QoS
optimization problem (PSO, DE, GA, and SA) are implemented in the C++ MALLBA frame-
work.

VANET Instance for Fitness Computations

The VANET instance evaluated to compute the fitness function of the tentative OLSR configu-
rations is defined over the previously defined U1 urban area. This scenario contains 30 vehicles
moving through the roads during three minutes. The vehicles exchange data created by a con-
stant bit rate data generator (CBR) application. Toutouh et al. (2012b) describes all the details
of the used VANET.

Parameter Settings of the Algorithms

The studied five optimization algorithms are executed to reach the same stop condition
(1,000 fitness function evaluations) in order to compare them. SA and RAND performs 1,000 it-
eration steps, and population/swarm based algorithms perform 100 generations with popu-
lations of 10 individuals/particles (100×10=1,000) each one of them. The main parameters of
these algorithms are summarized in Table 4.6.

TABLE 4.6: Parameterization of the optimization algorithms to address OLSR QoS tuning problem.

Algorithm Parameter Symbol Value

Local Coefficient ϕ1 2.00
PSO Social Coefficient ϕ2 2.00

Inertia Weigh w 0.50

DE Crossover Probability Cr 0.90
Mutation Factor µ 0.10

GA Crossover Probability Pcros 0.80
Mutation Probability Pmut 0.01

SA Temperature Decay T 0.80

Numerical Analysis

This section discusses the results obtained by the five studied algorithms when solving the QoS
OLSR optimization problem. Table 4.7 shows the average and the normalized standard devi-
ation of the fitness values obtained (out of 30 independent executions). The best (minimum),
median, and worst (maximum) values are also provided.

TABLE 4.7: Results obtained in the OLSR QoS optimization.

Algorithm Average ± Stdev. Minimum Median Maximum Friedman rank. KW (p-value)

SA -0.450297±5.32% -0.478242 -0.457451 -0.406932 1.40 3.0591E-6
DE -0.436897±6.86% -0.480030 -0.435264 -0.392578 2.10 3.0660E-6
PSO -0.432240±7.93% -0.482343 -0.419734 -0.392503 2.50 3.0669E-6
GA -0.350837±6.55% -0.437241 -0.344612 -0.327281 4.33 3.1592E-6
RAND -0.329878±15.16% -0.410131 -0.329792 -0.217024 4.50 3.3579E-6

SA outperforms all other algorithms in terms of average, median, and worst fitness values.
According to these measures, SA is followed by DE, PSO, and GA, respectively. Nevertheless,
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the best (minimum) fitness is computed by the PSO which is the algorithm that obtained the
best performance in optimizing VDTP (see Section 4.2.2). Finally, as expected, the random
search algorithm is the least competitive one.

With the aim of providing these comparisons with statistical confidence, the Friedman and
the Kruskal-Wallis tests (Sheskin, 2007) are applied to the distributions of the results. These
non-parametric tests are utilized since the resulting distributions often violate the conditions
of equality of variances (heteroskedasticity) several times. The confidence level is set to 99%
(p-value=0.01).

In effect, confirming the previous observations, the results of Friedman test ranked SA as
the algorithm with the best global performance followed by DE, PSO, and GA, respectively
(see sixth column of Table 4.7). Moreover, the multicompare test of Kruskal-Wallis resulted in
p-values � 0.01 (see last column of Table 4.7). Therefore, we can claim that all the compared
algorithms obtained statistically different results.

Algorithms Performance Analysis

This section presents the evolution of the quality of the solutions during the optimization pro-
cess. Figure 4.10 plots the best fitness value tracked throughout the best run for each algorithm.
As the figure illustrates, DE, PSO, and SA converge into the same range of solutions. But their
evolution is different. SA, the best ranked algorithm, performs several gradual improvements
of its solution during the whole execution.

FIGURE 4.10: Best fitness evolution solving the QoS OLSR optimization problem.

Execution Time Analysis

Concerning the run time that each algorithm spent in the experiments, Table 4.8 shows the
average time in which the best solution is found Tbest and the average total run time Trun,
which is between 12.11 and 32.66 hours. GA shows the shortest time (2.04E+04 s) to find its
best solutions. It seems that this algorithm quickly falls in local optima, hence obtaining weak
results (see Table 4.7). PSO needs the second shortest time (3.05E+04 s) to compute its optima.
Finally, SA takes the longest time (5.78E+04 s) to find its best solutions because it performs
fitness improvements during the whole execution, as Figure 4.10 illustrates. Regarding total
run time (Trun), random search takes shorter times (4.36E+04 s) than the other algorithms since
it has less internal operations. PSO is the NC technique that spends shortest mean running time
(5.38E+04 s) followed by DE, SA, and GA, respectively.
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TABLE 4.8: Average execution times per run of each algorithm for solving QoS OLSR optimization.

Algorithm Tbest (seconds) Trun (seconds)

PSO 3.05E+04 5.38E+04
DE 4.29E+04 7.95E+04
GA 2.04E+04 1.18E+05
SA 5.78E+04 1.04E+05
RAND 3.73E+04 4.36E+04

4.3.5 QoS Efficient OLSR Validation

The best configurations obtained by each algorithm are compared in terms of the selected
QoS indicators (PDR, NRL, and E2ED). First, they are compared with each other and with the
standard proposed in RFC 3626 and the ones proposed by Gómez et al. (2005) in the VANET
scenario utilized during the optimization process (Table B.6 in Appendix B shows all these
configurations). Second, a further validation is performed by simulating a set of 54 different
VANET scenarios applying the computed configurations. Toutouh et al. (2012b) further details
the VANET instances and the experimental results.

Comparison in the VANET Used During the Optimization

Table 4.9 presents the results of simulating the urban VANET scenario used during the opti-
mization process (U1 urban area with 30 vehicles). Columns two to four contain three human
expert configurations (#1, #2, and #3) proposed by Gómez et al. (2005); column five contains
the standard OLSR RFC one; and the columns six to ten show the best OLSR configurations
obtained by each one of the five optimization algorithms: RAND, DE, PSO, GA, and SA.

TABLE 4.9: QoS comparisons of considered OLSR configurations.

Metric
Human experts OLSR Optimized configurations

#1 #2 #3 RFC RAND DE PSO GA SA

PDR (%) 71.43 87.50 93.34 91.67 94.12 100.00 100.00 100.00 100.00
NRL (%) 89.54 32.48 14.13 9.52 6.93 2.71 2.90 13.12 4.84
E2ED (ms) 5.41 5.03 7.19 6.29 6.57 15.60 11.31 19.17 4.73

Examining the PDR indicator, the four NC algorithms obtain a 100% in contrast to the
random search algorithm, which achieved a 94.12%. The other analyzed parameterizations
perform worst. This is an important issue in highly dynamic VANETs, since a low packet
delivery ratio directly implies a higher packet loss (lower reliability).

Concerning the NRL, similar results can be observed. That is, almost all the OLSR config-
urations computed by NC show better routing loads than the other proposals. Only GA (the
worst ranked metaheuristic) obtains a NRL (13.12%) worse than the two ones obtained by the
standard configuration (9.52%), although better than the three human expert configurations
(#1 with 89.54%, #2 with 32.48%, and #3 with 14.13%). Reducing the routing load is important
since this is a way to reduce the possibility of network failures related to congestion problem
in VANETs (Wischhof and Rohling, 2005).

Finally, in terms of the E2ED, SA spends the shortest times (4.73 ms), followed by human
experts configurations, standard RFC 3626, and RAND. In this case, the remaining NC algo-
rithms (PSO, DE, and GA) show a moderate performance. Evidently, the low routing load
experimented in these configurations limits the routing management operations, hence mak-
ing the average E2ED worse than other configurations showing high routing load. However, it
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is remarkable that all the optimized OLSR parameter settings analyzed here deliver the pack-
ets within a delay shorter than 20 ms, which is the highest allowed latency for co-operative
safety applications (CAMP, 2005).

Further Validation Experiments

A set of validation experiments including 54 different urban VANET scenarios are performed
with the aim of validating the optimized parameters on different conditions of traffic density,
network use, and area dimension. The results are evaluated in terms of four routing QoS
metrics: PDR, NRL, E2ED, and RPL. Table B.7 presents the whole experimentation results
computed in the simulations performed over the 54 different VANET scenarios. It has been
included in the Appendix B because of the space constraints. Below, Table 4.10 summarizes
these results by showing the median values for each metric and each OLSR parameterization.
The best values are marked in bold.

TABLE 4.10: Median results of the validation experiments (QoS OLSR optimized configurations).

Configurations PDR NRL E2ED RPL

SA 84.76% 14.56% 4.04 ms 1.35
DE 84.29% 11.98% 10.24 ms 1.34
GA 87.85% 16.32% 4.36 ms 1.34
PSO 86.73% 12.73% 8.12 ms 1.46
RAND 88.93% 19.21% 17.16 ms 1.38
RFC 89.56% 23.15% 6.06 ms 1.09

Regarding PDR, the number of packets delivered is generally reduced with the size of the
scenario. GA and SA configurations obtain the best PDR in the U1 scenario (99.95%), PSO in
the U2 scenario (86%), and RFC in the U3 scenario (86.71%). Globally, the differences between
the performance of all configurations in terms of this metric is just between 1% and 5%.

In terms of the routing workload generated by the protocol (NRL), the best performance
is obtained by the configurations obtained by SA and DE, so they can even decrease the NRL
along with the scenario size. In particular, scenario U2 seems to be a source of high routing
loads since practically for all solutions (excepting the ones of SA and DE) this indicator is in-
creased. In general, optimized OLSR configurations improve the NRL. The RFC configuration
shows the highest routing load value (overall NRL=23.15%) and it is twice the one obtained
by DE, which is the (smallest) best one (11.98%).

The E2ED is higher with the scenario area dimension. The OLSR configuration computed
by GA required the shortest average E2ED in U1 and U2 scenarios with 2.10 ms and 3.81 ms,
respectively. In scenario U3, DE obtained the best E2ED (19.19 ms). Globally speaking, the
shortest median E2ED is obtained by SA with 4.04 ms.

Regarding the computed routing paths (RPL), GA obtained the shortest paths in the U1
scenario, and RFC configuration used the shortest paths in scenarios U2 and U3. In general,
median path lengths obtained by the OLRS RFC required the lower number of hops. In this
case, the higher frequency of routing information exchange maintains the routing tables up-
to-date, although generating a higher routing load (NRL).

In summary, it can be confirmed that automatically tuned OLSR configurations by NC
techniques offer the best trade-off between the four QoS metrics in the scope of the multiple
scenario conditions analyzed here. Solutions obtained by NC algorithms show high rates of
packets delivery (>84%), and low values of routing load (<16.5%), end to end delays (<10.3
ms), and paths lengths (<2 hops). Standard OLSR also reached accurate median values of PDR
(88.9%), but with the drawback of a high routing load (>23%), which is a critical concern in
this kind of networks.
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4.3.6 General Discussion on Off-line Proactive Routing Optimization

The results of the experimentation carried out in this study confirm the applicability of NC
algorithms in optimizing the QoS of proactive routing protocols (OLSR) in VANETs. The auto-
matically computed configurations outperform the standard one in all the studied of VANET
networks, which represent a wealth of vehicular situations.

SA outperforms the other studied algorithms when solving the defined OLSR optimization
problem. However, PSO presents a competitive trade-off between the performance and the
execution time requirements. Thus, it can offer accurate OLSR configurations to the experts in
reasonable design times.

Concerning to the solution domain, globally, the validation experiments show that the op-
timized configurations generate reduced network workload, generating about the half of the
routing load than the standard OLSR. Therefore, the NC tuned OLSR are more scalable. By
reducing the protocol routing load, the routing tables are updated less frequently, calculating
routing paths 27% longer. Nevertheless, the mitigation of the OLSR related congestion prob-
lems by optimized configurations generally allowed to shorten the packet delivery times.
Besides, these features were obtained while keeping the degradation of amount of delivered
data lower than 5%.

4.4 Power Aware Proactive Routing for VANETs

The type of routing protocol affects the energy dynamics during the communications in two
different ways: first, the routing network load has an influence on the amount of energy used
for sending and receiving routing control messages, and second, the generated routing paths
affect to which nodes will consume energy in forwarding the packets. In addition, the energy
conservation techniques applied in vehicular communications must ensure the QoS require-
ments of VANET applications (Wu et al., 2010).

After the previous study presented in Toutouh et al. (2012b), which specifically focused on
the optimization of the QoS of a proactive routing protocol (OLSR), this section deals with the
reduction of the energy consumption of the same kind of protocols since their performance
in terms of energy-efficiency is limited due to their need of maintaining the routing tables
updated (De Rango et al., 2008).

Several approaches have been proposed to reduce the power consumption of OLSR (De
Rango and Fotino, 2009; Sangeeta and Sing, 2011). Additionally, Toutouh and Alba (2011a)
presented a study that concluded on the benefits for energy coming from using a QoS opti-
mized version of OLSR. This result motivated the definition of a specific optimization problem
to reduce the energy requirements of the VANET communications.

Then, Toutouh and Alba (2012a) analyzed the use of DE algorithm in solving the energy-
efficiency OLSR optimization problem for VANETs in an initial study, which resulted that the
improved protocol saved up to 30% of energy with negligible a negligible reduction of PDR
(bellow 9%). After that, Toutouh and Alba (2015b) performed an in depth study in applying
NC (PSO, DE, GA, ES, and SA) to reduce the energy requirements of OLSR that succeed in
improving the energy savings up to 33%, with a significant gains of up to 50% in large dense
networks (demonstrating a competitive scalability of this approach).

Although the results provided by these two previous studies are very competitive, the
large amount of time required to perform the VANET simulations limited the proposed search
methods to work with a reduced population in order to obtain results in reasonable execution
times. To overcome this drawback in the previously studied GA (Toutouh and Alba, 2015b),
the study presented in the following section proposes to use a parallel evolutionary algorithm
(pEA) based on GA (pGA) for efficiently searching the parameter values of the OLSR protocol.
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4.4.1 Energy-efficiency OLSR optimization in VANETs

The OLSR routing protocol previously presented in Section 4.3.1 provides high QoS capabili-
ties. However, it suffers from a high energy costs which worsens when increasing the size or
density of the network (De Rango et al., 2008). For this reason it has been selected for being
fine tuned automatically with NC techniques, with the aim of hopefully reducing the power
consumption without incurring a significant lost of QoS.

The automatic search for energy-aware OLSR configurations is carried out by using the
energy cost of the communications as the main objective to be optimized. However, since ex-
cessive reductions of power consumption of the protocol can cause it to malfunction, PDR is
uses as a quality indicator to guarantee a minimum level of QoS in the communications. Thus,
the pGA for finding higher energy-efficient parameter values searches the best configuration
that provides the most energy savings while maintaining PDR within margins of good perfor-
mance (our target is that degradation in the PDR value is kept below 15% of the PDR achieved
with the standard OLSR).

4.4.2 Implementation Details

The pEA proposed here is categorized as a master-slave model according the classification
by Alba and Tomassini (2002). This model follows a classic functional decomposition of the
EA, where different stages of the evolutionary process are performed in different processing
elements (CPUs). The evaluation of the fitness function (VANET simulation) is the main candi-
date to perform in parallel, since it usually requires larger computing time (in order of minutes)
than the application of the variation operators. Specifically, in our case, the master process per-
forms the evolutionary search and controls a group of slave processes that evaluate the fitness
function (see Figure 4.11).

a) Global master-slave pGA methodology. b) Details of how one slave process (si) performs
solution evaluation (fi).

FIGURE 4.11: Optimization strategy to deal with the power-aware optimization of OLSR.

Multithreading is well suited for multi-core computers, where each thread is executed on
a single core. The multithreading master-slave pEA proposed in this study is implemented
using the GA skeleton provided by MALLBA and the standard pthread library. Additional
code is incorporated into the GA skeleton to implement several new features: i) to create and
manage the pool of threads used for the fitness evaluation; ii) to implement the master-slave
hierarchy and the communications between master and slaves; and iii) to define the synchro-
nization mechanisms between threads. Further details about the implementation are presented
in Toutouh et al. (2013).
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Problem Encoding

Since the optimization problem is defined over OLSR, the solution is encoded as a vector of
eight components in the same manner that the OLSR QoS optimization problem (see Sec-
tion 4.3.3). The valid ranges for the parameter values are presented in Table 4.5.

Fitness Function

The optimization proposed in this analysis mainly concerns to power-aware communications,
so the main component of the fitness function is the energy consumed by the VANET nodes
when using a certain OLSR configuration. There is a trade-off between the energy efficiency
and the QoS provided by the protocol. Therefore, the fitness function integrates the PDR metric
to guide the search to solutions with acceptable QoS. The function in Equation 4.14 is formu-
lated as a minimization problem (minimizing the fitness function).

Equation 4.15 is valid for solutions with a PDR degradation lower than 15% of the reference
value. In fitnessQ(s), E(s) and PDR(s) represent the power consumption and the PDR for a
given OLSR configuration s, respectively. ERFC and PDRRFC are the reference values for the
power consumption and the PDR when using the standard OLSR. Finally, ω1=0.9 and ω2=-0.1
are the weights for the energy and PDR contributions, respectively, and ∆=0.1 is a normalizing
offset to keep the fitness value in the interval [0, 1] (Toutouh and Alba, 2012a).

A penalization model in Equation 4.16 is applied to keep in the population those solutions
with still a lower PDR. The penalized fitness fitnessP (s) takes into account the gap between
the PDR of the evaluated solution and the worst PDR value admitted (0.85 ×PDRRFC), and
the ratio between the energy of the evaluated solution and the reference energy value ERFC .

fitness(s) =

{
fitnessQ(s) if PDR(s) ≥ 0.85× PDRRFC
fitnessP (s) if PDR(s) < 0.85× PDRRFC

(4.14)

fitnessQ(s) = ∆ +

(
ω1 ·

E(s)

ERFC
+ ω2 ·

PDR(s)

PDRMAX

)
(4.15)

fitnessP (s) = fitnessQ(s) +

(
(0.85 · PDRRFC − PDR(s)) · E(s)

ERFC

)
(4.16)

Parallel EA Operators

In the literature, a classic GA has been applied for protocol tuning in a previous studies (García-
Nieto et al., 2010; Toutouh et al., 2012b). However, although it offered competitive results, that
algorithm suffered from low population diversity and early stagnation. For this reason, in this
work the diagonal uniform initialization, the classic arithmetic recombination, and OLSR-µmutation
operators are applied in the GA (see Section 4.1.3).

4.4.3 Experimental Results

This section presents and analyzes the experiments carried out to solve the power-aware rout-
ing problem on OLSR. The experimental analysis is performed in a cluster with Opteron 6172
Magni-core processors at 2.1 GHz and with 24 GB RAM.

VANET Instance for Fitness Computations

In this study, the U1 and U2 urban areas are used to define the VANET scenarios for the sim-
ulations (fitness computations), both with 20 vehicles moving along the roads during three
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minutes. The small-sized (U1) is applied in the pGA parameter setting experiments, while the
medium-sized (U2) is utilized in the optimization of OLSR parameters using the pGAs. In
these scenarios, ten pairs of these vehicles exchange data created by a constant bit rate data
generator (CBR) application during one minute. Toutouh et al. (2013) describes further details
of the analyzed VANET instances.

Parameter Settings of the pGA

A parameter setting analysis is performed to study the most competitive values for the
crossover probability (pC) and the mutation probability (pM ) in the pGA. The analysis is
done over a small VANET defined in scenario U1 (with reference values ERFC = 5680 and
PDRRFC = 88.23%). The population size of the parallel GA is fixed to 24 individuals
(24 threads), and the stopping criterion is set at 100 generations. The candidate values for the
parameters are: pC : 0.5, 0.7, 0.9; and pM : 0.25, 0.0125, 0.006125. According to the results, the
most competitive performance is obtained with the pC=0.7 and pM=0.25. The whole parameter
settings results are presented in Table B.8 in Appendix B.

Numerical Analysis

By using the parameters found ibefore, now we apply the pGA to the problem. Table 4.11
summarizes the energy-efficiency optimization results. Three pGA variants are studied: im-
plementations using 8, 16, and 24 individuals, and the same number of execution threads
(named pGA-8, pGA-16, and pGA-24, respectively). In order to provide a baseline for the
comparison, the analysis includes the results obtained with a sequential (single thread) GA
(using a population of 8 individuals).

Table 4.11 reports the average, relative standard deviation, and best fitness results obtained
in 30 independent executions performed for each algorithm. In addition, the power consump-
tion and PDR values obtained with the best OLSR configuration found, and the gaps with
respect to the standard RFC parameterization are also presented.

TABLE 4.11: Experimental results of power-aware OLSR optimization: pGA evaluation.

Algorithm
Fitness Metrics GAP RFC

Average Std. dev. Best Energy PDR Energy PDR

sequential GA 0.7521 2.66% 0.7025 6909.12 80.48% 24.11% -6.64%
pGA-8 0.7058 1.88% 0.6730 6551.89 74.74% 28.03% -12.38%
pGA-16 0.6883 1.69% 0.6621 6446.80 75.20% 29.19% -11.92%
pGA-24 0.6774 1.37% 0.6482 6305.58 75.14% 30.74% -11.98%

The pGA-24 obtains the most competitive results (lowest average, deviation, and best fit-
ness values). As expected, the sequential GA performs the worst. The improvements in the
fitness values bring forth a significant decrease in the power consumption: more than 30% of
reduction with respect to the standard OLSR configuration is achieved for the best configura-
tion found using pGA-24, while the PDR degradation remained below 12%.

In order to determine the significance of the comparison, a statistical analysis is performed
over the results distributions for each parallel GA. The non-parametric Kruskal-Wallis statisti-
cal test is performed with a confidence level of 95%, to compare the distributions for pGA-8,
pGA-16, and pGA-24 because the distributions of the results are not normally distributed. The
small p-values reported (<0.05 in all cases) indicate that the fitness improvements can be con-
sidered statistically significant, thus the parallel GA using 24 threads is the best algorithm out
of all the studied methods.
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Computational Efficiency Analysis

This section discusses the speedup (Sm) and the computational efficiency (em) computed according
to the equations 3.15 and 3.16 presented in Chapter 3. Table 4.12 shows the average and best
run times, and the values of the speedup and efficiency the pGAs when using 8, 16, and 24
threads. These results suggest that significant reductions in the required run times are obtained
when using the parallel implementations with respect to a sequential version.

TABLE 4.12: Performance comparison of the proposed pGAs (computational cost and efficiency).

Algorithm
Execution time (s) Speedup Efficiency

Average Best Average Best Average Best

pGA-8, 8 threads 11113.73 9235.71 5.80 6.86 0.72 0.86
pGA-16, 16 threads 13192.70 12440.05 11.81 12.63 0.74 0.79
pGA-24, 24 threads 20239.02 13670.90 19.10 20.12 0.80 0.84

The results in Table 4.12 demonstrate that the proposed master-slave model is a useful
choice to significantly reduce the execution times of the pGAs. Despite following a syn-
chronous paradigm (that tends to generate idle times due to the synchronization of the execu-
tion threads), the parallel GAs show an almost-linear speedup behavior. The average efficiency
values obtained are greater than 70% for the three implementations studied, and a maximum
average of 80% is achieved when using the pGA-24.

4.4.4 Power Aware OLSR Validation

In order to confirm the efficacy of the results obtained in the experimental analysis, a set of
validation experiments are conducted to compare the performance of the best OLSR configu-
rations found using each pGA against the standard OLSR (RFC) configuration. The validation
experiments involved simulations performed over 36 different urban VANET scenarios, which
comprise the simulation of three different road traffic densities defined in the U2 and the U3
areas and six different types of applications (three traffic densities × two urban areas × six appli-
cations = 36). The definition of the simulation environment is detailed in Toutouh et al. (2013).

This analysis evaluates the energy consumption in transmitting (Esend) and receiving
(Erecv) modes, as well as the total energy (Etotal) and total energy per vehicle (Etot×v). Ad-
ditionally, the non-parametric Friedman statistical test is performed over the energy-efficient
results. The PDR, the NRL, the E2ED, and the RPL are also included in the study. The results
of the whole validation experimentation are included in tables B.10 and B.11 in Appendix B.

TABLE 4.13: Results of the validation experiments of the power-aware OLSR.

Config.
Friedman Energy metrics QoS metrics

rank. Esent Erecv Etotal Etot×v PDR E2ED NRL hops

pGA-24 1.92 13012.84 5928.54 18941.37 527.51 59.22% 269.33 3.45% 1.46
pGA-16 1.94 13383.40 6163.63 19547.03 547.34 60.64% 274.34 3.63% 1.46
pGA- 8 2.94 13390.95 6147.99 19538.93 547.67 58.64% 283.85 3.67% 1.54
RFC 3.94 19572.25 12102.03 31674.29 877.33 67.89% 506.26 25.22% 1.20

Table 4.13 summarizes the experimental results by showing the Friedman ranking and the
average values for each metric (the best values are marked in bold). According to these re-
sults, significant reductions are obtained when using the OLSR parameterizations computed
by using the three pGAs. The configuration found by the pGA-24 is the most efficient parame-
terization for OLSR in VANETs (first ranked by Friedman), allowing a reduction of up to 40.2%
in the power consumption. Figure 4.12 illustrates the GAP of energy regarding the dimension
of the simulated scenarios.
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FIGURE 4.12: GAP of energy of the energy-efficient OLSR regarding the scenario dimension.

The results in Figure 4.12 demonstrate that significant improvements in the power con-
sumption are obtained when using the configuration found with pGAs. In addition, the en-
ergy reductions with respect to the standard RFC configuration increase for the largest scenar-
ios. The configuration found by pGA-24 achieved up to 44.4% of improvement in average for
the largest scenarios. These notable improvements confirm previous claims about the ineffi-
ciency of the standard OLSR configuration in large VANET scenarios with high traffic density,
already suggested by previous experimental evaluations (De Rango et al., 2008). All the pre-
vious results demonstrate the efficacy of the proposed NC methodology to compute accurate
energy-aware OLSR configurations.

The energy-efficient OLSR parameterizations, in addition to obtain high power savings,
reduce extremely the routing overhead (NRL) and the communication delays (E2ED). These
results are obtained without suffering large reductions in the PDR (<8 %) or increments in the
length of the routing paths. This is an acceptable value for the loss in the QoS, when taking
into account the important advantages achieved.

4.4.5 General Discussion on Power-Aware Routing

The proposed improvement in the use of NC techniques to deal with routing optimization
in VANET, i.e., the use of parallelism, provided an almost-linear speedup, obtaining effi-
ciency values greater than 80%. This allowed the parallel GAs presented here to outperform
the energy-efficiency of the previous power-aware routing approaches using classic NC algo-
rithms. The average energy reductions achieved by pGA-24 are up to 40.2%, in contrast to
the 30% and the 33% obtained in Toutouh and Alba (2011a) and in Toutouh and Alba (2015b),
respectively; keeping a higher PDR. Also, significantly better energy savings (up to 77.54%)
are computed for large and dense VANET scenarios. In addition, the energy-aware OLSR con-
figuration found in this study significantly reduces the network overload and communication
delays. All these important features are obtained while only suffering a bounded PDR degra-
dation (less than 8%), what means a promising result for real applications.

4.5 Efficient QoS for Reactive Data Routing for VANETs

Reactive or on-demand routing protocols have been also analyzed to be used in VANETs
(Chauhan and Dahiya, 2012; Ding et al., 2011). The main difference between reactive and
proactive protocols is that the first ones determine routing paths only when there is any data
to send and the second ones attempt to maintain routes to all destinations at all time. There-
fore, reactive routing protocols can be considered as the flip-side of the proactive ones.
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In reactive protocols, as AODV, if a node wants to start a communication with another node
to which the route is unknown, it initiates a global search procedure to find the destination.
This operation is based on classical flooding search algorithms. Indeed, a routing request
message (RREQ) is flooded to other nodes. Neighbor nodes which do not know an active route
for the requested destination forward the RREQ packet to their neighbors, until an active route
is found or the maximum number of hops is reached. When the RREQ reaches the destination
or intermediate node with a valid route entry to the destination, a route reply message (RREP)
is sent back in a unicast manner to the requester node. Figure 4.13 summarizes this procedure
(AODV operation).

a) Route request packet delivery. b) Route reply packet delivery.

FIGURE 4.13: AODV route discovery procedure.

The main advantage of reactive protocols is that they generate less overhead and provide
more reliable routing than proactive ones, but at the (long delay) cost of finding the optimal
route. In turn, nodes do not utilize periodic messages, with a consequent energy advantage in
battery consumption (De Rango et al., 2008).

Specifically, this study analyzes the optimization of the QoS of a reactive protocol (AODV)
in VANETs, because, as it happens with the other protocols analyzed before, its performance
can be improved by finding parameterizations better adapted to vehicular communications.
Here, we focus on the optimization of two important aspects in VANET communications: the
reliability and communication delays. This is principally due to the competitive performance
of this protocol in terms of overhead generated.

This protocol has been optimized previously in different studies. A preliminary study pre-
sented by García-Nieto and Alba (2010) applied several sequential mono-objective NC tech-
niques to the optimization AODV obtaining promising results. In turn, a parallel PSO (pPSO)
was also analyzed in dealing with this problem, outperforming the classic PSO (Toutouh and
Alba, 2012c). Recently, Said and Nakamura (2014) proposed an asynchronous pEA to tackle
the optimization of the same protocol.

All these previous studies defined the AODV QoS optimization problem as a mono-
objective optimization problem, therefore, they obtained a single solution. In contrast, here,
the problem is defined as a multi-objective optimization one, thus obtaining a set of accurate
solutions that offer different trade-offs between the objectives.

4.5.1 AODV Routing Protocol for VANETs

AODV (Perkins et al., 2003) is a reactive distance vector (on-demand) routing protocol for
mobile ad hoc networks designed to overcome the overhead problem of its precedent, DSDV.
As a reactive protocol, AODV determines the routes when a source node has data traffic to
send, and it maintains just the paths that are currently in use. Thus, it reduces the rout-
ing overload generated by proactive routing protocols to maintain the routing paths at any
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time. The operation shown in Figure 4.13 and the performance of AODV are significantly
influenced by the value of its 11 main control parameters that can be grouped in: (1) five
timeout timers: HELLO_INTERVAL, ACTIVE_ROUTE_TIMEOUT, MY_ROUTE_TIMEOUT,
NODE_TRAVERSAL_TIME, and MAX_RREQ_TIMEOUT; (2) three decision variables used
in the process of updating and maintaining the routing tables: NET_DIAMETER, AL-
LOWED_HELLO_LOSS, and REQ_RETRIES; and (3) three counters and decision variables that
control the process of discovering new routing paths: TTL_START, TTL _INCREMENT, and
TTL_THRES-HOLD. The AODV RFC 3561 suggests a generic MANET parameterization (see
Table 4.14) that has been also used in vehicular networks (Chauhan and Dahiya, 2012).

TABLE 4.14: Main AODV parameters and RFC 3561 specified values.

Parameter Type Range Standard configuration

HELLO_INTERVAL R [1.0, 20.0] 1.0 s
ACTIVE_ROUTE_TIMEOUT R [1.0, 20.0] 3.0 s
MY_ROUTE_TIMEOUT R [1.0, 40.0] 6.0 s
NODE_TRAVERSAL_TIME R [0.01, 15.0] 0.040 s
MAX_RREQ_TIMEOUT R [1.0, 100.0] 10.0 s
NET_DIAMETER Z [3, 100] 35
ALLOWED_HELLO_LOSS Z [0, 20] 2
REQ_RETRIES Z [0, 20] 2
TTL_START Z [1, 40] 1
TTL_INCREMENT Z [1, 20] 2
TTL_THRESHOLD Z [1, 60] 7

4.5.2 Multi-objective AODV Optimization in VANETs

AODV provides moderate QoS when it is used in vehicular communications, although the low
routing load generated by reactive protocols makes it scalable to be used in large VANETs.

This analysis is aimed at improving the reliability, evaluated in terms of PDR, and the
communication delays (E2ED). Therefore, the main idea is to find configuration parameters
that maximize the PDR and minimize the E2ED. However, E2ED increases critically with PDR.
This is principally because the possibility of collisions increases with the number of the packets
traveling through the network: the nodes take longer to relay/send the packets. The opposite
occurs when decreasing PDR. Thus, a multi-objective (MO) optimization problem is defined
with the aim of discovering a set of efficient AODV parameters based on their performance
in terms of PDR and E2ED. This problem is named AODV multi-objective QoS optimization
(AODV MO-QoS).

4.5.3 Implementation Details

The AODV MO-QoS problem is treated by using two different multi-objective algo-
rithms (MOAs): a multi-objective evolutionary algorithm, the Non-dominated Sorting Genetic
Algorithm-II (NSGA-II) (Deb et al., 2002), and a multi-objective swarm optimization method,
the Speed-constrained Multi-objective PSO (SMPSO) (Nebro et al., 2009). The competitive com-
putational efficiency of the parallel NC algorithms in solving off-line optimization of protocols
in vehicular communications (Toutouh and Alba, 2012c; Toutouh et al., 2013; Said and Naka-
mura, 2014) motivated the use of parallel implementations of the two utilized MOAs (pMOAs).

The application of pMOAs mitigates the main issues of most precious work in optimizing
VANET routing (Patil and Dhage, 2013; Toutouh et al., 2012b; Zukarnain et al., 2014), which
are: i) the use of single-objective methods to optimize an aggregated objective function, ob-
taining a single biased solution, and ii) the relatively low number of fitness evaluations carried
out during the search process due to the high computational costs of the VANET simulations,
needed to perform such an operation.
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Figure 4.14.a summarizes the operation of the two analyzed pMOAs, in which the master
process performs most of operations of NSGA-II or SMPSO and the n slave processing units
carry out the solution evaluation. The slave process is showed in Figure 4.14.b: it receives a
given solution s (AODV configuration), which is simulated, and it returns the evaluation of
the objective functions regarding to PDR and E2ED.

a) Global master-slave methodology. b) Details of how one slave process performs
solution evaluation of f1 and f2 objective functions.

FIGURE 4.14: Methodology applied to solve the MO-AODV problem.

Problem Encoding

As AODV is governed by 11 configuration parameters, the solution is encoded as a vector of 11
components. The valid ranges for each one of the parameter values are presented in Table 4.14.
Figure 4.15 illustrates a representation of of this vector.

FIGURE 4.15: Solution encoding for the QoS AODV tuning problem.

Multi-objective Solution Evaluation

This study focuses on maximizing the PDR and minimizing the E2ED of AODV in VANETs.
Thus, a multi-objective optimization problem (MOP) is defined (the multi-objective AODV
MO-QoS problem) in which there are two objectives to be optimized, that are defined by two
fitness functions (f1(s) and f2(s)).

The fitness functions are evaluated after performing a VANET simulation configuring
AODV with a given s parameterization. The f1(s) function is given by the expression in Equa-
tion 4.17, in which PDR(s) is the average PDR achieved by all the VANET nodes. As PDR(s)
is a value from 0 to 100 (100 is the value achieved when all the data packets are delivered), then
f1(s) ∈ [0, 100]. The idea is that the problem of maximizing PDR has been changed to a prob-
lem of minimizing f1(s) to ease the representation. The f2(s) function evaluates the E2ED(s)
which is the average delivery time of all the data packets (see Equation 4.18). Thus, f2(s) has
to also be minimized. The E2ED time is given in milliseconds (ms). Therefore, the AODV MO
QoS optimization problem is given by minimizing f1(s) and f2(s).
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f1(s) = 100− PDR(s) (4.17) f2(s) = E2ED(s) (4.18)

Parallel Multi-objective Operators

The two NC algorithms utilize the diagonal uniform initialization. The diversity is introduced
by applying the arithmetic recombination and the AODV-µ mutation operators, in the case of
the parallel NSGA-II (pNSGA-II), and the AODV-µ mutation operator, in the case of parallel
SMPSO (pSMPSO). The operators are defined in Section 4.1.3.

4.5.4 Experimental Results

The experiments carried out to solve the AODV MO-QoS optimization problem are presented
in this section. The pMOAs are implemented using jMetalCpp framework (Durillo and Nebro,
2011) and the standard pthread library. The experimental analysis is done in a cluster with
Opteron 6172 Magni-Core at 2.1 GHz with 24 GB RAM.

VANET Instance for Fitness Computations

In this study, the U2 urban VANET scenario with 30 vehicles moving along the roads dur-
ing three minutes is used for fitness functions computations (ns-2 simulations). In this sce-
nario there are 15 nodes transmitting data at 256 kilobits per second (kbps) during one minute.
Toutouh and Alba (2015c) details this VANET instance.

Parameter Settings of the Parallel NC Algorithms

A parameter settings initial analysis is performed to set the crossover (pC) and mutation (pM )
probabilities of the pNSGA-II and the mutation probability (pM ) of pSMPSO. The experiments
are carried out on both pMOAs with a population/swarm size of 24 solutions (24 threads)
stopping after 300 generations. The candidate values for the parameters are for pC : {0.3, 0.5,
0.7, 0.9}; and for pM : { 1

4L , 1
2L , 1

L , 1
0.5L } being L the number of components of the solution

vector (L = 11). Each configuration of each algorithm is independently executed ten times
and the hypervolume IHV metric (Deb, 2001) is compared among different configurations of
the same algorithm. Table B.12 in Appendix B shows the results for the parameterizations of
the algorithms analyzed here. The best results are obtained configuring pNSGA-II by using
pC=0.9, pM= 1

4L=0.023, while pSMPSO with pM= 1
L=0.091.

Defining an Empirical Stop Criterion

In order to compare both analyzed algorithms the stop criterion is set as obtaining a Pareto
front with a given quality in terms of the hypervolume value. As the AODV MO-QoS is a new
and open problem, no optimal Pareto front is known. Therefore, some initial experimentation
is performed to compute an approximated Pareto front to later evaluate the hypervolume dur-
ing the execution of the algorithms when solving the problem. These initial runs stop after
computing 450 generations. The union set of all non-dominated solutions computed for both
algorithms is considered as the optimized Pareto front. The median hypervolume computed by
all the runs is 0.785. Thus, the stop criterion applied is, first, achieving a hypervolume value
equal or higher than 0.785, or second, performing a given maximum number of generations.

Numerical Analysis

This section compares the performance of the two NC algorithms studied on the optimiza-
tion of the QoS of AODV in VANETs after performing 30 independent runs of each method.
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The comparison of the Pareto fronts approximations are carried out in terms of epsilon (Iε)
and spread (I∆) values (Deb, 2001). The hypervolume is not used because it is used as stop
criterion and there is not a significant difference between the two pMOAs in this metric (see
Figure 4.16). In order to determine the significance of the comparisons, Wilcoxon statistical test
with a confidence level of 99% (p-value<0.01) is applied to compare each metric because they
are not normally distributed.

Table 4.15 shows the minimum (Min), median (Med), and maximum (Max) values obtained
for each metric and algorithm. Please, note that the minimum hypervolume values obtained by
each algorithm (0.772 by pNSGA-II and 0.777 by pSMPSO) are lower than 0.785 (the threshold
value used as the stop criterion). This occurs because four independent runs have not achieved
such hypervolume value and they stopped when they performed the maximum number of
generations (450).

TABLE 4.15: AODV MO-QoS experimental results.

Metric
pNSGA-II pSMPSO

Min Med Max Min Med Max

IHV 0.772 0.786 0.791 0.777 0.786 0.799
Iε 1.741 2.634 3.949 2.195 2.807 4.493
I∆ 0.511 0.619 0.953 0.603 0.706 0.911

FIGURE 4.16: Quality metrics of the Pareto fronts computed in solving AODV MO-QoS.

The epsilon values of pNSGA-II are in general better (lower) than the ones computed by
pSMPSO (see Figure 4.16 and Table 4.15). Therefore the convergence of pNSGA-II is more
competitive than the one of pSMPSO. The spread values achieved by the pNSGA-II computed
Pareto fronts are also better (lower) than the ones obtained by pSMPSO. Thus, the diversity of
the pNSGA-II fronts is better than the ones computed by pSMPSO. These results are confirmed
by the Wilcoxon test results because the p-values computed are 0.0036 and 0.0024 for epsilon
and spread, respectively.

Figure 4.17 illustrates two Pareto fronts obtained by each pMOA and the optimized Pareto
front (the complete fronts in the left and a zoom of a given region of the shown fronts in the
right). The selected Pareto fronts are the ones that obtain the median hypervolume value for
each algorithm. The pNSGA-II solutions are better distributed among the optimized Pareto
front (see Figure 4.17.a). The pSMPSO front does not contain solutions that best minimize
f1(s) (maximize PDR), while it has solutions that sharply reduce the E2ED times and criti-
cally worsen the PDR. Figure 4.17.b shows that most of pNSGA-II solutions dominate the ones
computed by pSMPSO. This confirms the aforementioned results that concluded that pNSGA-
II presents the best performance when the hypervolume is set as the stop criterion for solving
AODV MO-QoS problem.
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a) Complete Pareto fronts of median run. b) Detail of Pareto fronts of median run.

FIGURE 4.17: Pareto fronts computed when solving AODV MO-QoS.

Computational Efficiency Analysis

This section evaluates the performance of parallel algorithms in terms of speedup and compu-
tational efficiency according to equations 3.15 and 3.16 presented in Chapter 3 (see Table 4.16).
Both algorithms, NSGA-II and SMPSO (with the same configurations as the pMOAs) are exe-
cuted sequentially to compute E[T1] (the run time of the one-thread version). As the average
execution times of these sequential versions of NSGA-II and SMPSO are 94.5 hours (3.9 days)
and 173.1 hours (7.2 days), respectively, we were bound to perform just 10 independent runs of
each algorithm due to the limited access to the computational platform (and the large number
of tests done for the rest of this research work).

TABLE 4.16: Performance comparison of the proposed pMOAs in solving AODV MO-QoS.

Algorithm E[T24] E[T1] Speedup Efficiency

pNSGA-II 311.737 5668.040 21.614 0.901
pSMPSO 422.190 10383.449 20.829 0.868

As it happened in the analysis performed in Section 4.4, in the proposed pMOAs, the eval-
uation of the fitness function is the most consuming part within the algorithm, since the ns-2
simulations demand large computation costs. The results in Table 4.16 demonstrate that the
proposed master-slave model is a successful choice to significantly improve the efficiency of
the multi-objective metaheuristic algorithms analyzed in this study. The speedup values are
larger than 20.8, obtaining highly satisfactory efficiency values both for pNSGA-II (90.1%) and
pSMPSO (86.8%).

4.5.5 Improved AODV Validation

A set of validation experiments are carried out to confirm the real applicability of our pro-
posal. Thus, a representative solution (AODV configuration) obtained by each pMOA is com-
pared against other state-of-the-art ones, which are: the standard AODV RFC 3651 (RFC), the
one proposed in García-Nieto and Alba (2010) found applying a PSO (GN), and the one tuned
using a pPSO (pPSO) proposed in Toutouh and Alba (2012c).

The solutions selected as the representative one of each pMOA are the ones that minimize
the distance to the ideal vector (Coello et al., 2007). Table B.13 in Appendix B presents these
configurations. However, one of the most important advantages of using multi-objective NC
techniques is that they return a set of accurate solutions (configurations), which offer different
trade-offs between the objectives. Thus, these configurations may be selected according to the
actual conditions of the VANET.
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The comparison is carried out taking into account 30 VANET scenarios defined in the three
urban areas defined in Section 4.1.1. These scenarios comprise ten urban VANET traffic con-
ditions and three different applications. Toutouh and Alba (2015c) details these urban VANET
scenarios. Table 4.17 summarizes the results by showing the median PDR and E2ED for the
whole experimentation (Table B.14 presents the whole experimentation results). The best re-
sults are marked in bold. Moreover, Friedman Rank statistical test is applied because the
results are not normally distributed. The confidence level is set to 99% (p-value=0.01). The
statistical test results are presented in Table 4.18.

TABLE 4.17: Median values of the whole
AODV validation experiments.

configurations PDR (%) E2ED (ms)

RFC 64.510 59.787
pPSO 59.269 17.183
GN 59.787 10.753
pNSGA-II 67.015 97.206
pSMPSO 69.203 65.681

TABLE 4.18: Friedman Rank test results of the
AODV validation experiments.

PDR E2ED

Configs. Rank Configs. Rank

pSMPSO 3.93 GN 1.53
pNSGA-II 3.50 pPSO 1.87
RFC 3.20 RFC 3.40
pPSO 2.47 pSMPSO 3.60
GN 1.90 pNSGA-II 4.60

Concerning the PDR results, the best median values are: first pSMPSO, second pNSGA-II,
and third RFC. The results of the statistical test in Table 4.18 confirm that these three configura-
tions are the best ranked ones and in the same order. Regarding the times required to delivery
the packets (E2ED), the configurations obtained by the single-objective algorithms (GN and
pPSO) obtain the best results for the analyzed scenarios. The Friedman Rank statistical test
confirms these results, because the test ranked GN as the first and pPSO as the second best
configurations. Comparing just the configurations obtained by the pMOAs, pSMPSO per-
formed better than pNSGA-II. In short, the selected solution to represent pMOAs in the val-
idation experiments provided the best PDR results, while they suffered from slightly longer
E2ED. Moreover, taking into account just pMOAs solutions, the pSMPSO solution performed
the best.

4.5.6 General Discussion on Efficient MO-QoS Optimization

This last research work has been motivated by the need of a deep experimentation in off-line
optimization in VANETs with NC algorithms. In this sense, the problem has been formulated
as a multi-objective optimization problem with the aim of maximizing the PDR and minimiz-
ing the E2ED. The problem has been addressed by using two pMOAs that perform the search
with high competitive results from the point of view of parallelism (computational efficiency
is 86.8% for pSMPSO and 90.1% for pNSGA-II).

The AODV configurations computed by the pMOAs improve the PDR obtained by the
other tstate-of-the-art AODV parameterizations (the standard AODV RFC and two improved
ones by using other NC algorithms), while not leading to a degradation of the other net-
work performance metrics. However, other solutions (AODV configurations) in the optimized
Pareto front may offer different trade-off of QoS metrics.

Analyzing the optimization process, pNSGA-II significantly outperformed pSMPSO in
terms of diversity (spread) and convergence (epsilon) in solving AODV MO-QoS optimiza-
tion problem. In addition, pNSGA-II required lower computation costs: fewer generations
and shorter run times.
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4.6 Conclusions

This chapter has analyzed the application of NC algorithms for the off-line optimization of
VANET software communication protocols. The works carried out in this research are a key
part of the thesis presented here. For this reason, we have presented the design of algo-
rithms, their implementations, initial results (with previous parameterization studies), vali-
dation other scenarios and extended comparisons. The off-line optimization requires the joint
implementation of a NC algorithm and a realistic VANET simulation. Thus, we have included
experimentation and analysis in order to improve the state-of-the-art approaches in both as-
pects: defining competitive search algorithms and providing new and realistic VANET scenar-
ios for accurate simulation.

We have focused on the optimization of a file transfer (VDTP) and two routing protocols
(OLSR and AODV). However, nothing prevents the use of the techniques presented here to
optimize other kinds of VANET protocols. The parameter configurations tuned by using NC
better fit vehicular environments, and therefore, they improve the state-of-the-art ones in terms
of QoS and energy-efficiency.

Analyzing the VDTP QoS optimization by applying PSO, DE, GA, ES, and SA; we conclude
that the communication configurations offered by PSO increased the effective data rate of the
human expert configuration from 243 KB/s to 300 KB/s and from 31 KB/s to 42 KB/s in urban
and highway roads, respectively. In addition, the NC algorithms applied demonstrated a high
scalability in dealing with the problem.

Regarding the optimization of the QoS of OLSR by using a set of sequential NC algorithms,
the computed accurate protocol configurations outperformed other state-of-the-art ones. They
showed high PDRs (>84%), they generated much smaller routing overhead than the stan-
dard OLSR, and they reduced the delivery times. Concerning the optimization process, SA
outperformed the other analyzed algorithms, but PSO presented the best trade-off between
performance and computation cost.

The same protocol (OLSR) has been optimized in terms of energy-efficiency. For this prob-
lem, a pEA was utilized to mitigate the problem of the high computational costs of the fitness
evaluations (VANET simulations). This approach provided a computational efficiency greater
than 80%. The energy-efficient configurations achieved energy consumption reductions up to
40%, improving the results of other NC based search procedures presented in previous studies.

AODV has been also optimized in terms of QoS (PDR and E2ED) by formulating a multi-
objective optimization problem and addressing it by utilizing NSGA-II and SMPSO. The al-
gorithms were implemented by following the parallel master-slave model, motivated by the
high computational efficiency shown in previous studies. In effect, these algorithms provided
a computational efficiency of 87% in pSMPSO and 90% in pNSGA-II. The computed proto-
col configurations outperformed other state-of-the-art ones in terms of PDR while keeping the
E2ED in the threshold of proper operation.

Finally, there is another study published in off-line optimization that has not been detailed
in this chapter because of length constraints. The energy-efficiency optimization of AODV pre-
sented in Toutouh et al. (2012a). In this case, the NC algorithm analyzed (DE) to address the
problem performs the evaluation of a given solution by using parallel Monte-Carlo simula-
tions of variations over the same VANET scenario, and thus, leading the algorithm to improve
the accuracy in the solution evaluation. Using the computed parameterization an average re-
duction of 32% in the power consumption was obtained.

All the results presented in this chapter lead us to confirm the working hypothesis of
this thesis: that coupling NC techniques and accurate VANET simulations represents a valid
methodology to optimize (to improve), and thus, make practical existing theoretical protocols
for vehicular communications.





Chapter 5
On-line Broadcasting Optimization in
Vehicular Networks

BROADCASTING beacons in VANETs is crucial for most of VANET safety applications
(CVS). In this chapter, we introduce the problem of fair (balanced) beacon broadcasting
in VANETs. Then, we propose the FREEDY family of distributed dynamic broadcast-

ing algorithms to address the efficient congestion control. The FREEDY algorithms apply their
optimization strategy during the communication process. This is different to the other studies
presented in the previous chapter that apply the optimization algorithm (e.g., PSO, GA, etc.)
previous to the VANET deployment. Finally, we perform a set of experiments over highway
VANET scenarios to evaluate these algorithms.

5.1 Introduction

Cooperative Vehicle Safety (CVS) applications presented in Section 2.3 are a very important
set of applications provided by vehicular communication systems (Sengupta et al., 2007). CVS
applications principally rely on broadcasting short messages (beacons) on the neighborhood
(1-hop) defined by the communication range of the nodes (r). Beacons include vehicle kine-
matics (e.g., position, speed, and acceleration) and other relevant information for several ap-
plications or services. VANET nodes are continuously broadcasting beacons (beaconing) with
a given frequency (beacon frequency or beacon rate). Figure 5.1 shows an example of a vehicle
broadcasting beacons.

FIGURE 5.1: Vehicle A is carrying out CVS communication.

The reliability of CVS, even lead to save lives, is highly dependent on two QoS metrics: the
packet loss and the communication delays. As discussed in Section 2.6, a challenging issue
in the deployment of VANETs is the network congestion, that aggravates as the scale of the
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system grows. This is mainly because the critical increase of the periodic beacons that cannot
be finally transmitted through the limited channel resources. Network congestion increases
the loss of packets and the communication delays (i.e., it degrades the performance and the
QoS of the VANETs). This may lead to excessive information inaccuracy and to an eventually
failure of CVS (Fallah et al., 2010).

Several strategies have been proposed to address congestion problems in vehicular com-
munications, keeping the communication capabilities of the nodes over a given QoS threshold.
Most of them can be included in the following basic schemes (Sattari et al., 2012): i) adapting
the transmission range of used communication channels, ii) adjusting the data rate generation
of applications and services, iii) hybrid methods by combining the two previous schemes, and
iv) scheduling data packets in various channels based on their constraints, resources, etc.

This chapter proposes a distributed dynamic greedy broadcasting scheme, that applies
congestion control by adjusting beacon rate at each node in order to fit the application re-
quirements and the actual network status (we will call them FREEDY family). In the current
literature there are some broadcasting algorithms that foster similar strategies, e.g., the coop-
erative active safety system (CASS) presented in Rezaei et al. (2007) and the situation-adaptive
beaconing introduced by Schmidt et al. (2010).

A greedy algorithm can be seen as an iterative procedure (heuristic) that selects a local
optimum at each step while it is solving the problem. In fact, greedy algorithms have been
utilized to address optimization problems in many domains such as bioinformatics (Li et al.,
2012), security (Liang et al., 2015), and telecommunications (Tan and Kermarrec, 2012).

The present chapter is organized as follows: Section 5.2 formalizes the fair beacon rate (FBR)
optimization problem. Section 5.3 defines the common framework utilized by the dynamic
greedy congestion control methods devised here. Section 5.4 and Section 5.5 detail the Self
FREEDY and the Swarm FREEDY algorithms. Section 5.6 presents several experiments and
discusses the results. Finally, the conclusion of this analysis are described in Section 5.7.

Let us start with an example to understand the problem and the proposed solution, just to
later discuss on beacon frequency and different ways in which we can control and balance the
communication channel.

5.1.1 Problem Example

Congestion control mechanisms may produce unfairness situations and unbalanced shared
medium distribution (nodes with data to transmit suffer from starvation, while other nodes
monopolize the medium). In IEEE 802.11 communications, mechanisms based on RTS/CTS
protocol have been defined to mitigate unfairness when Carrier-Sense Multiple Access (CSMA)
is used (Tanenbaum, 2002). However, these solutions cannot be directly applied in vehicular
broadcasting for CVS application (Wischhof and Rohling, 2005). One strategy to address con-
gestion in VANETs is utilizing fair beaconing. Fairness in VANET communications can be seen
as the situation in which the nodes located close to each other are able to broadcast beacons
with similar (balanced) beacon rates while avoiding network congestion.

Figure 5.2 illustrates a very simple CVS example about the difference of using fair bea-
coning or not. In this example, it is assumed that the beacon rates can be adapted from 1 to
10 beacons per second (Hertz, Hz), the maximum channel occupancy in terms of beacons per
unit time also called maximum capacity of the channel (MaxQ) is 30 beacons per second, the
threshold limit ratio over MaxQ that can be used by CVS avoiding system malfunction (α)
is 80% (α=0.8), and the transmission (RTX ) and the carrier sense (RCS) have the same range
(they are marked by dotted circles). According to MaxQ and α values, the maximum number
of beacons per second that can be exchanged through the channel is 24 (α×MaxQ=0.8×30=24).



Chapter 5. On-line Broadcasting Optimization in Vehicular Networks 81

Figure 5.2 shows two separated groups of cars closely located that represent different
broadcasting schemes: Pure CSMA and Fair beacon rate. The first one demonstrates the unfair
situation resulting from applying a purely based CSMA based method, which is illustrated by
the starvation of cars 3 and 4 that are allowed to transmit just 2 beacons per second. The main
reason is that these two nodes need to compete with the others in their carrier sense (cars 1
and 2), which are not aware of that the other nodes need to broadcast data and they transmit
beacons at the maximum beacon rate 10 Hz. In the Fair beacon rate situation, all the nodes in
the same carrier sense (cars 5, 6, 7, and 8) apply a given mechanism to allow all the nodes to
transmit the beacons at the same rate (6 Hz) without incurring to a congestion situation.

FIGURE 5.2: Simple CVS VANET scenario (CSMA vs. fair beacon rate).

5.1.2 Beacon Frequency as a QoS Metric

Beacons are sent in a broadcast fashion to the neighbor nodes (1-hop) at regular interval times
and they are used to make vehicles aware of their environment. They are important for CVS be-
cause they contain kinematic information of the vehicle and control data of the software used.
Therefore, VANET nodes broadcast beacons to achieve principally two goals: i) maintaining
constantly aware of the road traffic relevant events in their surroundings to prevent unsafe
situations and ii) controlling the communications and the applications used in VANETs.

Reliability of CVS applications is really dependent on the capability of the nodes in a local
neighborhood to broadcast their beacons. These applications manage more accurate informa-
tion if the nodes are able to exchange information with higher resolution (beacon rate). Thus,
the frequency at which a node can generate beacons and transmit them can be used as a QoS
metric since the higher frequency (without generating congestion or node starvation) the more
accurate received information (Fallah et al., 2010; Mir et al., 2015).

Due to the channel capacity limitations, it is crucial that nodes broadcast beacons with a
suitable beacon frequency according to the current network status. On the one hand, it is
large accepted that a high beacon rate can easily result in channel congestion in regions of
high vehicle densities, therefore causing a high reduction of beacon delivery and a critical in-
crement communication delays (throughput degradation) (Fallah et al., 2010). On the other
hand, larger interval times between consecutive beacons (lower beacon rate) reduce the net-
work throughput and increase the uncertainty of the CVS applications, i.e., nodes might not
know the required information about their neighbors for a certain time. Figure 5.3 summarizes
how beaconing (channel occupancy) affects the throughput of the network. Thus, beacon rate
can be used as a QoS metric that reflects the reliability of CVS applications and the throughput
of the VANET.
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FIGURE 5.3: Representation of the VANET throughput according to the channel occupancy.

5.1.3 Use Case of FBR Utilization in VANETs

In this this study, we define cluster of nodes as the set of VANET nodes in which all the nodes
are (at least) covered by one of the other nodes of the cluster. In this sense, fairness in beacon
rate for VANETs considers three main goals: i) maintaining the VANET load under a given
threshold to avoid network congestion, ii) avoiding the starvation of nodes that have beacons
to broadcast, iii) and balancing beacon rates (allowing the nodes in a given area exchange
beacons with similar rates).

Figure 5.4 illustrates a simple example to show the behavior of VANET nodes when
FBR is applied. The main features of this VANET are the same as the ones of the exam-
ple presented in Section 5.1.1: the beacon rates can be adapted from 1 to 10 Hz (10 Hz
= MaxBRv), MaxQ=30 beacons per second, and α=0.8, i.e., the maximum number of bea-
cons per second that can be transmitted through the channel to keep the performance is ω
(ω = α×MaxQ = 0.8× 30 = 24).

In the example showed in Figure 5.4 there are two cluster of cars: Group 1 composed by the
cars 1 and 2, that travel from left to the right, and Group 2 composed by the cars 3 and 4, that
travel in the opposite direction. At the beginning (see Figure 5.4.a), the two groups of nodes
define two different clusters. All the nodes can broadcast beacons at their maximum frequency
(10 Hz) because the sum of the beacon rates of the nodes in the same communication range
(10+10=20 Hz) do not exceed the maximum beacon rate of the channel (24 Hz). After a given
time (see Figure 5.4.b), both groups of cars define a single cluster. They now have to adapt their
beacon rate (FBR) in order to avoid network congestion and starvation of the nodes because,
in this case, the sum of their beacon rates (10+10+10+10=40 Hz) exceeds 24 Hz. Therefore,
they adapt their beacon frequency and change it from 10 to 6 Hz to maintain the load of the
channel under the defined threshold (24 Hz). Finally, the cars break up the cluster and build
two different ones as the first case (see Figure 5.4.c). Thus, the network status are the similar
and the nodes can broadcast beacons again at the maximum frequency.

As it can be see in the example, the application of FBR in VANETs requires the dynamic
adaptation of the beacon frequency taking into account the current status of the network. Thus,
the nodes need to have the information about the actual network load to be able to compute
the current FBR.

5.2 Fair Beacon Rate Optimization Problem

This section formally defines the optimization problem of computing the beacon rates that
allow fair beacon VANET communications for CVS, the fair beacon rate (FBR) optimization prob-
lem. The information required to adapt the beacon rates to the network status is the current
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a) Time 1. No beacon rate adaptation is needed (
v∈cluster∑

v
MaxBRv < α×MaxQ).

b) Time 2. Beacon rates are adapted. (
v∈cluster∑

v
MaxBRv > α×MaxQ).

c) Time 3. No beacon rate adaptation is needed (
v∈cluster∑

v
MaxBRv < α×MaxQ).

FIGURE 5.4: VANET example in which nodes apply FBR.

network load (channel occupancy). The channel occupancy is measured by the number of bea-
cons that travel through the channel per time unit. The analysis of the channel occupancy in
VANETs can be carried out by monitoring the length of the queues (in the MAC sublayer of
IEEE 802.11p) in a given window of time (Han et al., 2012), because the queues contain the
beacons received that have been broadcasted by all the neighbor nodes (Sattari et al., 2012).
Therefore, in this study, we use the length of the queues to determine the channel occupancy.

The FBR computation problem considers:

• The maximum allowed channel occupancy (MaxQ). MaxQ in practice represents the maxi-
mum value of queues length, i.e., the number of beacons that can be in the queue without
representing network overload (congestion).

• A threshold limit ratio over the maximum channel occupancy α ∈ [0, 1]. If the queue
lengths exceed a given effective capacity of the channel ω (ω = α×MaxQ), the protocol con-
siders that the current network load could lead to a congestion situation (see Figure 5.3)
which in turns provoke unpredictability in the network performance (Fallah et al., 2010),
and therefore, the beacons may reach the destination nodes or not.

• A set of allowed beacon rate values BR={br1, br2, ..., brk} that contains all the possible bea-
con rate values (bri) that can be selected by the all nodes according to the VANET appli-
cation QoS requirements.
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• Given a vehicle v that belongs the VANET, the NN(v) function returns the set that con-
tains all the nodes inside its network coverage (1-hop neighbor nodes). This value is
computed taking into account all the different source nodes of the received beacons.

The problem consists in finding brv ∈ BR for each node v to optimize two objectives:

1. Maximizing number of the beacons traveling through the shared medium in terms of the
ratio of the channel occupancy (η(v) in Equation 5.1).

2. Minimizing the difference between the effective beacon rates in the neighborhood of v
(σ(v) in Equation 5.2), i.e, maximizing the balance in the use of the channel. In this case,
we have decided to use the relative standard deviation to evaluate σ(v).

MAX η(v) = MAX

(
j∈NN(v)∑

j
brj

)
+ brv

MaxQ
η(v) ∈ [0,+∞) (5.1)

MIN σ(v) = MIN

(
j∈NN(v)∑

j
(brj − ¯brv)

2

)
+ (brv − ¯brv)

2

|NN(v)|
σ(v) ∈ [0, 1] (5.2)

¯brv represents the average beacon data rates in the neighborhood of v (see Equation 5.3).

¯brv =

(
j∈NN(v)∑

j
brj

)
+ brv

|NN(v)|+ 1
(5.3)

Furthermore, the selected beacon rates computed by the algorithms brv should not generate
network congestion. Therefore, computed solutions should not exceed the effective capacity of
the channel (ω) even η(v) may return larger values, which means that the computed solutions
are subjected to the restriction presented in Equation 5.4.

η(v) ≤ ω (5.4)

The congestion control algorithms guarantee that the VANET nodes generate at least
brMIN ∈ BR, which is the minimum beacon rate (brMIN < bri, brMIN ∀bri ∈ BR, bri 6=
brMIN ), and never more than brMAX ∈ BR, which is the maximum beacon rate (brMAX >
bri ∀bri ∈ BR, bri 6= brMAX ).

Therefore, the fair beacon rate optimization problem consists in finding for each VANET
node v its current brv that optimizes both objectives with the restriction described in Equa-
tion 5.4. The computations are carried out by each node itself (there is not any central manage-
ment entity) taking into account MaxQ, α, and the beacon rates of all its neighbors (NN(v)).

5.3 Greedy Dynamic Broadcasting

In this thesis, we define a set of different methods to dynamically compute optimized beacon
rates to address the FBR optimization problem. These methods compose the FREEDY (Fair
beacon Rate grEEDY) family of algorithms. The proposed FREEDY algorithms are fully dis-
tributed (executed periodically by each node of the VANET after a given window time), thus,
no central manager entity is used.
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As most of the proposed congestion control methods presented in the literature, the
FREEDY’s perform two main operations: network monitoring and network components re-
configuration (Lochert et al., 2007). In this case, the network monitoring is performed by
analyzing the actual channel occupancy (load) and the number of neighbor nodes. This in-
formation can be obtained by evaluating the queues in a given window time to measure the
channel occupancy and the neighborhood.

FREEDY is composed by four different algorithms: two Self FREEDY, in which the nodes
compute FBR using isolated information from their own network monitoring, and two Swarm
FREEDY, which combine isolated information with information received from the neighbor
nodes. FREEDY algorithms follow a cross-layer design (see Figure 5.5). The two main oper-
ations defined in FREEDY are included in the WAVE Management Entity (WME) (Campolo
et al., 2015).

FIGURE 5.5: Global cross-layer architecture of FREEDY family.

5.4 Self FREEDY Methods

Two Self FREEDY algorithms are defined according to the information used to monitor the
network and to compute the new beacon rates: Self o-FREEDY, that evaluates the channel
occupancy, and Self n-FREEDY, that utilizes the size of the neighborhood of the node (1-hop
distance nodes). Both methods present the same two main software components in their ar-
chitecture (see Figure 5.6):

• Self Queue Monitoring Component (SQMC): It evaluates the filling level of the queues or
the number of neighbor nodes. If it is necessary, the SQMC invokes the Beacon Rate
Adaptation Component.

• Beacon Rate Adaptation Component (BRAC): It analyzes the information received from the
other component to take the decision about which will be the new beacon rate better
suited to the current network status.
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FIGURE 5.6: Main components of Self FREEDY.

5.4.1 Self o-FREEDY

Self o-FREEDY computes FBR by adapting the beacon rate to the current channel occu-
pancy by applying a reduction to the beacon rate if the occupancy starts to be close to α.
Figure 5.7 summarizes the main steps of this algorithm. Self o-FREEDY monitors the
queue, when it detects the channel occupancy CO exceeds the channel occupancy threshold
CO_Threshold, them Self o-FREEDY BRAC is invoked in order to apply the reduction function
red : [CO_Threshold, 1]→ BR to compute brv.

FIGURE 5.7: Complete flowchart of the Self o-FREEDY algorithm.

In this analysis, the use case evaluated to test beaconing adaptation is based on the real
requirements of most CVS applications in the literature (Campolo et al., 2015), in which
BR ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and α = 0.8. In addition, after an initial experimentation, the
CO_Threshold is set to 0.6 and logarithmic decay is the applied red function (see Equation 5.5).

brv =

⌈
MAX

1 +A× eB×COm
⌉

(5.5)

5.4.2 Self n-FREEDY

The main idea of the Self n-FREEDY consists in dividing the maximum effective capacity of
the channel into all the nodes in the neighborhood (including the own node). The algorithm
starts by analyzing the received beacons in the queues to compute |NN(v)|, i.e., the number
of neighbor nodes (see Figure 5.8). Then, the tentative beacon rate (tbrv) is computed dividing
the effective capacity of the channel (ω) by the number of the neighbor nodes plus one (see
Equation 5.6). If tbrv is higher than brMAX (10 Hz in our studies), then brv is equal to brMAX .
Otherwise, brv is equal to tbrv (see Equation 5.7).
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FIGURE 5.8: Complete flowchart of Self n-FREEDY algorithm.

tbrv =

⌊
ω

|NN(v)|+ 1

⌋
(5.6) brv =

{
tbrv if tbrv ≤ brMAX

brMAX if tbrv > brMAX
(5.7)

5.5 Swarm FREEDY Methods

Swarm FREEDY algorithms combine self measured (monitored) information with shared con-
gestion control data from the neighbor nodes. This control information is encoded as an in-
teger value in the beacons to be broadcasted. This information is stored in a temporal buffer
(BRBuffer) in order to utilize it in the near future beacon rate computations.

We have designed two different Swarm FREEDY algorithms according to the information
utilized to compute the new beacon rates: Swarm o-FREEDY, that evaluates the channel occu-
pancy, and Swarm n-FREEDY, that utilizes the size of the neighborhood.

The Swarm FREEDY algorithms have three different software components (see Figure 5.9):

• Self Queue Monitoring Component (SQMC): It evaluates the filling level of the queues or
the number of neighbor nodes in order to update BRBuffer.

• Swarm Information Exchange Component (SIEC): It decodes information encoded in the
received beacons and updates BRBuffer.

• Beacon Rate Adaptation Component (BRAC): It analyzes the information stored in BRBuffer
to compute the new beacon rate.

FIGURE 5.9: Main components of FREED algorithms.

In short, the SQMC and SIEC components operate in parallel with the aim of updating the
information stored in the BRBuffer, and the BRAC component updates the beacon frequency br
according to the stored information in the buffer. The main difference between the two defined
swarm methods, Swarm o-FREEDY and Swarm n-FREEDY, is the type of information stored
in the buffer and how it is used.
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5.5.1 Swarm o-FREEDY

The main idea applied in Swarm o-FREEDY is: if a node detects that the CO is higher than the
effective capacity of the channel (ω) in a given percentage, then all the nodes of the neighbor-
hood have to reduce their beacon rates in the same percentage.

In this method, the BRBuffer is a vector of natural values with ten components, [x1 x2 ...
x10]. Each component xi stores the number of petitions to modify its current beacon rate (brt)
according to Equation 5.8. Therefore, i is the multiplicative factor to be applied to compute the
new beacon rates. These values are stored in the BRBuffer during a given window of time.

brt+1 = brt × (i× 0.1) (5.8)

For example, if BRBuffer=[0 0 10 25 0 0 0 0 0 1], then it means that the node has received 36
beacons that included the following broadcasting protocol information: 10 petitions to use a
new beacon rate which is the 30% (x3 = 10) of the current one, 25 requests to use a new beacon
rate that is the 40% (x4 = 25) of the current one, and one petition to not apply any modification
(x10 = 1) on the current beacon rate (brt+1 = 100% brt).

Figure 5.10 summarizes the Swarm o-FREEDY complete procedure. Notice that SQMC and
SIEC are executed in parallel and BRAC is run once just after a given timeout is reached.

FIGURE 5.10: Complete flowchart of the Swarm o-FREEDY algorithm.

In the Swarm o-FREEDY, the SQMC component monitors the IEEE 802.11p queue length to
obtain the actual CO. According to CO, it includes in the beacons to be broadcasted the beacon
modification request (BMR ∈ [1, 10]) which is computed by following Equation 5.9. At the same
time, the protocol modifies its own BRBuffer by adding an own petition according to the BMR
computations, the BMR-th component of the vector is incremented (xBMR = xBMR + 1).
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BMR =


10 CO ≤ ω
10−

⌈(
CO−ω
ω

)
× 10

⌉
ω < CO < 2× ω

1 CO ≥ 2× ω
(5.9)

The SIEC decodes the beacons received in order to extract the BMR requested by the neigh-
bors and to update the BRBuffer. The buffer is modified by increasing in each component of
the vector the request received, i.e., xBMR = xBMR + 1.

The BRAC is invoked at the end of a given window time in order to compute the new
beacon rate brt+1 according to the information stored in the BRBuffer. It applies a multi-
plicative factor mf to the current beacon rate according to the information stored in BRBuffer
(brt+1 = brt ×mf × 0.1). There are two different variants of Swarm o-FREEDY depending the
what metric is evaluated to select the mf to use: a) the Swarm o-FREEDY-med, which selects
the median value between the two most requested values of the BRBuffer, and b) the Swarm
o-FREEDY-mod, which chooses the most requested one (the mode).

FIGURE 5.11: Histogram that represents a given BRBuffer which stores the beacon rate modification
requests received.

Figure 5.11 shows a BRBuffer that stores the following information [0 0 5 15 20 40 15 30 5
0]. According to these values, Swarm o-FREEDY-med computes mf=7 (median value between
6 and 8) and Swarm o-FREEDY-mod mf=6 (the most frequent BMR).

5.5.2 Swarm n-FREEDY

The Swarm n-FREEDY is motivated by the same idea as Self n-FREEDY: the channel should be
proportionally divided according to the neighborhood size. However, in this case, in addition
to the information about the own neighbor nodes, this new algorithm utilizes the information
about the number of neighbor nodes of its neighbors to increase the accuracy.

In Swarm n-FREEDY, the BRBuffer of each node is also a vector of natural values xi, where
each one stores the number of petitions received by the node to change its beacon rate to i
beacons per second. For example, if BRBuffer=[0 0 10 25 0 0 0 0 0 1], then it means that the
node has received 10 requests to change the beacon rate to 3 Hz (x3 = 10), 25 to change to
4 Hz (x4 = 25), and 1 to change to 10 Hz (x10 = 1).

Figure 5.12 summarizes the Swarm n-FREEDY complete procedure. Notice that SQMC and
SIEC are executed in parallel and BRAC is run once just after a given timeout is reached.
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FIGURE 5.12: Complete flowchart of the Swarm n-FREEDY algorithm.

The Swarm n-FREEDY SQMC component behaves similarly to Self n-FREEDY. The differ-
ence is that the swarm method do not update the current beacon rate, in contrast, it increases
the BRBuffer component of the desirable beacon rate (DBR) that is computed as brv in Equa-
tion 5.7, i.e.,DRB = brv. Thus, this component updates the BRBuffer by increasing the DBR-th
component (xDBR = xDBR + 1) and includes the DRB value in the new beacons in order to
inform the neighbor nodes.

In this method, the SIEC decodes the beacons received to extract the DBR requested by the
neighbors to update the BRBuffer. The buffer is modified by increasing in each component the
request received, i.e., xDBR = xDBR + 1.

In addition, after a given timeout timer (window time), BRAC is executed to compute
the new beaconing frequency brt+1 according to the DBRs stored in BRBuffer. There are
two different variants of Swarm n-FREEDY depending the what metric is evaluated to select
the brt+1 to use: a) the Swarm n-FREEDY-med, which chooses the median value between
the two most requested values of the BRBuffer as new beacon rate, and b) the Swarm n-
FREEDY-mod, which selects the most requested one (the mode). Following the example in Fig-
ure 5.11 (BRBuffer=[0 0 5 15 20 40 15 30 5 0]), in Swarm n-FREEDY-med it holds that brt+1=7
and Swarm n-FREEDY-mod it holds that brt+1=6.

5.6 Experimental Results
The experiments are carried out by using MATLAB. Each analyzed congestion control method
is simulated 100 times over the same highway scenarios. We now define the highway VANET
scenarios used in the experiments, we set the parameters of the Self o-FREEDY algorithm, and
finally, we discuss the numerical results of evaluating the FREEDY algorithms.

5.6.1 Highway VANET Scenarios

The on-line fair beacon rate optimization is studied in a highway road of two kilometers long
and six lanes (three lanes in each direction). Nine highway VANET scenarios are defined over
this road by changing the mobility models in order to test the performance of the congestion
control algorithms proposed here in different vehicular network status.
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These scenarios are grouped in five homogeneous and four heterogeneous road traffic
scenarios. In the first ones, the vehicles are assigned to a given lane randomly in which all
the lanes have the same probability, and therefore, all the lanes have a very close number
of vehicles. In the heterogeneous highway scenarios the probabilities are not the same. The
vehicles have higher probability to be assigned to the external lanes than to the internal ones.
The speed per lane increases from the external to the internal lanes, as in real highways. The
distances between vehicles and the speeds are computed according to the square law for dry
roads defined by Spanish authorities (DGT, 2015), i.e., speed× speed ' distance

100 . Tables 5.1 and
5.2 summarize the main characteristics of the used scenarios. The average values of the number
of vehicles and the speed per lane are not shown in heterogeneous scenarios because these
values are lane dependent (see Table 5.2) The simulation time for all scenarios is 100 seconds.

TABLE 5.1: Main characteristics of homogeneous highway scenarios for congestion control tests.

Road density and Total number Average vehicles Average distances Average speedscenario name of vehicles per lane between nodes

Very low density (HM-Ld1) 120 20 100 m 100.00 km/h
Low density (HM-Ld2) 160 26 75 m 86.60 km/h
Middle density (HM-Ld3) 240 40 50 m 70.71 km/h
High density (HM-Hd1) 480 80 25 m 50,00 km/h
Very high density (HM-Hd2) 800 100 <25 m 38.73 km/h

TABLE 5.2: Main characteristics of heterogeneous highway scenarios for congestion control tests.

Road density and scenario name Total number of vehicles Range of speeds

Very low density (HT-Ld1) 200 [40 km/h, 130 km/h]
Low density (HT-Ld2) 240 [40 km/h, 130 km/h]
High density (HT-Hd1) 320 [40 km/h, 130 km/h]
Very high density (HT-Hd2) 380 [40 km/h, 130 km/h]

In terms of communications, the vehicles are running CVS applications that require ex-
changing beacons with a frequency that ranges from 1 Hz to 10 Hz. The wireless devices
utilized are configured with IEEE 802.11p with a communication range of 250 meters. In addi-
tion, following the MATLAB simulation presented in Mir et al. (2015), it is considered that the
maximum size of the queues of IEEE 802.11p is 400 and α is 0.8.

5.6.2 Self o-FREEDY Parameterization

As defined in Section 5.4.1, the Self o-FREEDY algorithm utilizes the logarithmic decay as reduc-
tion function (red) to compute the beacon rate according to the current channel occupancy (see
Equation 5.5). This function depends on two parameters that have to be set A and the loga-
rithmic growth parameter B. In our case, we have selected a set of tentative values for both
parameters A ∈ {1, 3, 5, 7, 9} and B ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}. These
set of values generate different logarithmic decay functions that are plotted in Figure 5.13.

Each possible configuration of the logarithmic decay function is evaluated by simulating
100 times the middle density homogeneous highway VANET scenario. The configuration that
presents the best trade-off between the occupancy and the balance is A=3 and B=0.10.
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FIGURE 5.13: Different curves of the generated logarithmic decay functions.

5.6.3 Numerical Results and Discussion

This section discusses the results obtained by all the proposed FREEDY congestion control
methods in the defined scenarios. In addition, other two additional methods are included in
the experiments as a baseline for the comparisons:
• Aloha based method (Tanenbaum, 2002), the nodes broadcast beacons at the beginning of a

given slot time slot without analyzing the medium, regardless whether there are another
nodes using the medium or not. This is a very simple method, but the probability of
having packet collisions critically grows with the size of the network.
• CSMA based method: When VANET nodes have to transmit a given beacon they analyze

the medium. If no other node is using it then they broadcast the beacons, otherwise they
drop the given beacon since, after a short while, new beacons will be generated and the
information in the current beacon will be obsolete. This method reduces the likelihood
of collisions.

These last two broadcasting methods utilize a fix beacon frequency. In order to analyze
them, they are configured with three different fix beacon frequencies: 1 Hz, 5 Hz, and 10 Hz.

Tables 5.3 and 5.4 summarize the experimental results by showing the average and the
normalized standard deviation values of the two optimized metrics, channel occupancy (see
Equation 5.1) and network balance (see Equation 5.2), respectively. These results are organized
in four groups: homogeneous low density, which includes HM-Ld1, HM-Ld2, and HM-Ld3
scenarios; homogeneous high density, which comprises HM-Hd1 and HM-Hd2 ones; heteroge-
neous low density, which consists of HT-Ld1 and HT-Ld2 ones; and heterogeneous high density,
which covers HT-Hd1 and HT-Hd2 ones.

Analyzing the occupancy, there are three type of results: a) the ones that guarantee the
proper operation of the network (CO ≤ α), b) the ones that may incur in a critical drop of QoS
(α < CO ≤ 1.0), and c) the ones that exceed the channel capacity (CO > 1.0). In table 5.3
and 5.4 the second and third group are shaded with light and dark gray, respectively.

As expected, the aloha based methods allow the nodes to communicate with very low bea-
con rates (1 Hz) with a very poor performance. If the rate increases to 5 Hz it just is able to
operate property in low density scenarios. In the other cases the channel occupancy reported
value is higher than the channel capacity, which in practical means that the network is com-
pletely congested. There are no measure in terms of balance because they always broadcast
packets and there are not difference between the beacon rates in the neighborhood, i.e., always
σ(v) = 0 (see Equation 5.2).
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TABLE 5.3: Results in terms of occupancy for each congestion control method (Equation 5.1).

Homogeneous scenarios Heterogeneous scenarios

Algorithms low density high density low density high density

Avg. Std. Avg. Std. Avg. Std. Avg. Std.

Self o-FREEDY 0.614 3.53% 0.872 8.46% 0.642 5.85% 0.714 1.78%
Self n-FREEDY 0.801 5.26% 0.908 2.56% 0.836 0.71% 0.845 0.31%
Swarm o-FREEDY-med 0.741 14.25% 0.721 13.06% 0.766 17.25% 0.515 4.67%
Swarm o-FREEDY-mod 0.753 2.17% 0.398 25.27% 0.727 32.42% 0.263 17.50%
Swarm n-FREEDY-med 0.610 23.57% 0.638 5.53% 0.730 14.02% 0.691 16.48%
Swarm n-FREEDY-mod 0.759 2.75% 0.548 9.15% 0.736 2.78% 0.732 3.70%
Aloha-1Hz 0.107 29.06% 0.398 25.28% 0.142 29.29% 0.217 8.63%
Aloha-5Hz 0.537 29.02% 1.988 25.26% 0.712 29.30% 1.083 8.64%
Aloha-10Hz 1.075 29.02% 3.976 25.26% 1.424 29.25% 2.165 8.65%
CSMA-1Hz 0.108 29.02% 0.398 25.27% 0.142 29.24% 0.217 8.64%
CSMA-5Hz 0.537 28.98% 0.846 7.55% 0.694 8.88% 0.756 0.21%
CSMA-10Hz 0.761 2.49% 0.988 6.41% 0.781 5.87% 0.864 2.17%

TABLE 5.4: Results in terms of balance for each congestion control method (Equation 5.2).

Homogeneous scenarios Heterogeneous scenarios

Algorithms low density high density low density high density

Avg. Std. Avg. Std. Avg. Std. Avg. Std.

Self o-FREEDY 0.343 28.28% 0.196 6.08% 0.278 47.14% 0.165 12.96%
Self n-FREEDY 0.137 83.18% 1.108 24.21% 0.285 37.20% 0.453 13.81%
Swarm o-FREEDY-med 0.202 47.37% 0.293 33.33% 0.249 31.93% 0.349 13.18%
Swarm o-FREEDY-mod 0.247 102.00% 0.000 0.00% 0.500 59.91% 0.268 108.63%
Swarm n-FREEDY-med 0.070 99.40% 0.128 23.28% 0.082 74.32% 0.105 55.17%
Swarm n-FREEDY-mod 0.004 153.26% 0.007 7.14% 0.027 87.12% 0.020 100.93%
Aloha-1Hz - - - - - - - -
Aloha-5Hz - - - - - - - -
Aloha-10Hz - - - - - - - -
CSMA-1Hz 0.000 0.00% 0.000 0.00% 0.000 0.00% 0.000 0.00%
CSMA-5Hz 0.001 667.57% 1.162 17.22% 0.102 289.00% 0.656 15.02%
CSMA-10Hz 0.520 74.90% 1.765 13.02% 0.918 21.23% 1.260 5.54%

The CSMA based methods improve the performance of the aforementioned non-adaptive
method. Taking into account just the channel occupancy metric, they offer the best values
in low density highway scenarios when CSMA-10Hz is used. However, it incurs in a very
high cost in terms of balance, and therefore, it suffers from the largest differences between the
amount of data that each node in the neighborhood broadcasts. This means that although the
channel is efficiently used, when managed by CSMA-10 Hz the VANET applications cannot
property operate because many nodes do not broadcast their beacons.

Regarding to the Self FREEDY methods, the channel occupancy of Self n-FREEDY (that
divides the effective channel capacity among the neighbors) has exceeded the α value defined
in our experiments. Therefore, it provokes a drop in the QoS of the network. This is because
the computations take into account just the information of their neighborhood (1-hop nodes),
and ignore the rest of the nodes in the same cluster. In addition, the fairness between the
nodes (balance) is the least competitive of all FREEDY methods. In contrast, the Self o-FREEDY
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provides more conservative beacon rates (lower channel occupancy), although the channel
occupancy surpass the α value in high density scenarios. Besides the balance provided is very
poor in comparison with the Swarm FREEDY methods.

Analyzing the Swarm FREEDY algorithms, they provided the best trade-off results in
terms of occupancy and fairness. Specifically, if we compare Swarm n-FREEDY and Swarm
o-FREEDY methods, the first ones outperform the second ones in terms of occupancy in the
low density scenarios, but the opposite occurs in high density scenarios. If the analysis is in
terms of balance, in general, the Swarm n-FREEDY algorithms generate a more balanced net-
work. Although, in the homogeneous high density scenarios, Swarm o-FREEDY-mod presents
σ(v) = 0, which means that all nodes in the clusters broadcast the beacons with the same rate.
This is due to the reduced beacon rates generated and the very low channel occupancy (the
lowest for these scenarios, 0.398). Taking into account the metric used to select the values from
the BRBuffer: median or mode, we can observe an emergent behavior. The algorithms that use
the mode (the most repeated value in BRBuffer) the balance between the nodes is significantly
higher than when they utilize the median. This means that the vehicles broadcast beacons with
similar beacon rates, which is the desirable behavior.

These results are confirmed by the statistical test applied to the simulation results (Fried-
man and Wilcoxon tests). Tables B.15, B.16, and B.17 in Appendix B show the statistical test
results. According to these tests, the Swarm n-FREEDY-mod is significantly the most compet-
itive method in terms of both analyzed metrics.

Finally, in the light of the results in the tables we can conclude that the Swarm FREEDY
algorithms present a set of methods that provide the best trade-off occupancy channel and fair-
ness between the nodes than the other studied methods. Specifically, Swarm n-FREEDY-mod
demonstrates the best performance taking into account both analyzed metrics. In addition,
the two Self FREEDY broadcasting methods improve the other two non-adaptive (Aloha and
CSMA based) algorithms included in the comparison.

5.7 Conclusions

This chapter has tackled the fair beacon rate optimization problem in order to address the
congestion control problem of CVS applications in VANETs. Thus, a set of greedy dynamic
broadcasting methods have been proposed to be applied in vehicular communications. These
methods are based either on isolated information monitored by the own node (Self FREEDY)
or on combining the monitored information with the shared one received in the same beacons
broadcasted by the neighbor nodes (Swarm FREEDY).

In order to evaluate these methods, they have analyzed a number of highway VANET sce-
narios that represent a big set of diverse vehicular scenarios. According to the experimental
results, the Swarm FREEDY algorithms are the most competitive ones in terms of channel occu-
pancy and fairness (balance). Specifically, the Swarm n-FREEDY-mod method experimented
the best trade-off between these two metrics. In addition, Self FREEDY algorithms outper-
formed other broadcasting base methods (Aloha and CSMA based broadcasting algorithms).

The Swarm FREEDY methods have demonstrated to provide a reliable and non-complex
broadcasting method. They just require to include a natural value from 1 to 10 in the beacon
as control information for the broadcasting algorithm (i.e., four bits long).

The Swarm FREEDY algorithms presented in this chapter are a starting point for devel-
oping new dynamic swarm broadcasting methods that utilize modern NC (e.g., Ant Colony
Optimization or Artificial Bee Colony based algorithms) in order to compute more reliable
beacons frequencies for VANETs.



Chapter 6
Natural Computing for Smart Roadside
Unit Placement

THE deployment of the RSU infrastructure along the roads is one of the main issues that
VANET designers should address. They have to decide the type and the location of
the RSUs in order to maximize the service offered and minimize the deployment costs.

This is even harder when considering city-scaled areas to deploy the RSU infrastructure. The
current literature shows that the hard-to-solve optimization problem associated cannot be effi-
ciently solved using classic exact methods for such instances. In this chapter, we define a novel
explicit multi-objective problem which is addressed with a parallel EA. Besides this, we have
defined two different greedy constructive heuristics based on the state-of-the-art ones. The
chapter begins introducing the problem, after that it is mathematically formulated. Then an
experimental analysis is performed taking into account real data traffic from the city of Málaga
(Spain) an real wireless devices.

6.1 Introduction

This chapter focus on a specific type of agents in the VANET architecture, the RSUs. As intro-
duced in Section 2.2.1, RSUs are devices usually installed along the roads (either using specific
VANET elements or equipping already established infrastructure elements). They perform
three main important functions in the VANET via V2I (see Figure 6.1): i) they act as informa-
tion source or receiver, ii) they extend the effective communication range of the other nodes
of the VANET, and iii) they provide nodes without V2B interfaces with Internet connectivity.
Therefore, the deployment of a fixed infrastructure of RSUs has been treated in the domain of
vehicular networks.

FIGURE 6.1: Global VANET architecture using a RSU.
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Deploying such an infrastructure is a challenge in modern cities, because designers must
decide about the number, the type, and the location of the RSUs in order to maximize QoS of
the vehicular network, while satisfying and/or minimizing the deployment cost constraints.
This is known as the RSU deployment problem (RSU-DP), which consists in placing a set of RSU
terminals (antennas) along the roads of a given area, maximizing the network capabilities and
minimizing the deployment costs.

The RSU-DP is a hard-to-solve optimization problem when dealing with (large) scenarios
on city-scaled areas, since the number of possible solutions (i.e., sets of RSU locations) becomes
very large (virtually impractical) (Reis et al., 2014). Therefore, as it happens with the previous
optimization problems, traditional exact methods are not able to find accurate solutions in
reasonable computation times. As presented in Section 3.3.3 some authors have proposed
specific heuristics to deal with RSU-DP for limited sized instances (Ben Brahim et al., 2014;
Wang et al., 2014; Patil and Gokhale, 2013; Trullols et al., 2010). In this case again, NC raises
as promising strategy to address the RSU-DP, because this type of methods allows computing
good infrastructure designs (with satisfactory QoS and reduced cost) in limited execution times
(Cavalcante et al., 2012; Cheng et al., 2013).

In this chapter, we propose a novel explicit multi-objective formulation of the problem in
order to overcome the drawbacks of the previously applied NC that utilize a mono-objective
formulation. The multi-objective approach analyzed here is tackled by applying NSGA-II (Deb
et al., 2002) in order to optimally design the RSU infrastructure within a city-scaled road net-
work in Málaga (Spain). Aiming at obtaining realistic results, the studied scenarios consider
real information about road traffic (traffic flows and road map) and hardware (network capa-
bilities and costs). Besides this, a specific QoS model is proposed in our study: considering the
number of vehicles, speed, and the coverage of street segments in the city; and a Monte-Carlo
simulation approach is used to compute the corresponding QoS metric. The research work
carried out here is an extension of the analysis presented in Massobrio et al. (2015a).

6.2 The RSU Deployment Problem

One of the main contributions of this work is the new multi-objective formulation of RSU-DP.
The mathematical definition of this problem considers the following elements:
• A set of road segments S = {s1, s2, . . . , sn}, which are potential locations for placing a set

of RSUs R = {R1, R2, . . . , Rq} along the city streets. Each segment si is defined by a
pair of points (pj , pk), with pj , pk ∈ P = {p1, p2, . . . , pm}. Each point pj is identified by its
geographical coordinates (latitude, longitude), that coincide with corners of the streets or
point-of-interest for the neighborhood. The length of a given segment si is given by the
function len: S → R+. RSUs can be placed at any location within each segment si ∈ S.
• An estimation of the number of vehicles per time period across each segment si, given

by function NV : S → N+, and the average vehicle speed for each segment, given by
function sp: S → R+.

• A set of RSU types T = {t1, . . . , tk}. Each RSU type is characterized by a given deploy-
ment cost and a coverage determined by the transmission power and the antenna gain.
The type of a RSU is given by the function type: R→ T .
• A cost function C: T → R+, where C(th) indicates the monetary cost of placing a RSU of

type th in the deployed infrastructure.
Solutions of the problem are defined by a set of RSUs placed over the road segments of the

city, i.e., sol = {R1, R2, . . . , Rl}, where l is the number of RSUs in sol. The segments covered
by a RSU are given by the function cov: R→ S, and the portion of segment si covered by RSU
Rj is given by the function cp: R× S → [0, 1].
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The multi-objective version of the problem proposes to find a set of locations and the type
of RSU to deploy in each location, with the goal of maximizing the service time given by the
whole RSU infrastructure (see Equation 6.1), while simultaneously minimizing the total cost of
deployment (see Equation 6.2). The service time is given by the number of vehicles attended by
RSUs and the time they are served (considering the coverage and average speed per each road
segment). Formally, the problem is defined as the simultaneous optimization of the following
two objective functions:

max

Rj∈ sol∑
Rj

∑
si∈cov(Rj)

NV (si)×
cp(Rj , si)× len(si)

sp(si)
(6.1)

min

Rj∈ sol∑
Rj

C(type(Rj)) (6.2)

6.3 Implementation Details

The RSU-DP problem is treated by using NSGA-II, because as we indicated earlier in this thesis
it is a state-of-the-art MOEA that has been successfully applied in many areas. Therefore, we
have selected it as a baseline for the research work performed in this chapter. The NSGA-II
algorithm proposed has been tailored to compute accurate solutions for the RSU-DP.

As it has been carried in our last studies in off-line optimization problems (see sections 4.4
and 4.5), a master-slave parallel model is applied to reduce the execution time demanded by
the NSGA-II to evaluate the objective functions for each individual in the population. The
main implementation details are presented next.

6.3.1 Problem Encoding

Solutions are represented as vectors of real numbers, having n = #S elements (the number
of road segments in S). Each position on the vector defines the RSU information for the cor-
responding segment. The RSU type is given by the integer part of the real number (0 stands
for no RSU placed on the segment, and integers 1 . . . k represent RSUs of types t1 . . . tk, re-
spectively). The position within the segment is given by the fractional part of the real number,
mapping the interval [0, 1) to points in the segment [pj , pi).
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FIGURE 6.2: Solution encoding for RSU-DP.
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Figure 6.2 presents an example of solution encoding for a scenario with four segments
(n = 4) and three RSUs. The value 1.50 in position 2 of the solution vector (s2 = 1.50) means
that a RSU of type t1 (1.50) is placed at the middle (1.50× len(s2)) of the segment s2 = (p2, p3).

6.3.2 Objective Functions Computation

RSU-DP optimization problem has two objectives maximizing the RSU service time (as QoS
indicator) defined in Equation 6.1 and minimizing the total deployment cost (see Equation 6.2).
The calculation of the total cost is straightforward, by adding the cost (according to the corre-
sponding type) of each RSU placed in the scenario.

For computing the QoS metric, we consider the distances and values depicted in the exam-
ple illustrated in Figure 6.3: the RSU placed in the point “×” in segment s1 = (p1, p2) covers
the subsegments c1 (in s1), c2 (in s2), both in street A, and c3 (in s3), and c4 (in s4) in street B,
according to the coverage defined by the RSU type. The number of effective vehicles attended
in this example is given by the following equation:

i=4∑
i=1

NV (si)×
ci

sp(si)
(6.3)

This operation requires computing the intersections between the road segments and the circle
representing the coverage of the RSU. Coverage is computed using a Monte-Carlo simulation
approach: each segment is divided in 10 points and the length of the subsegment ci is com-
puted by simulation, considering the coverage radius of the corresponding RSU.

FIGURE 6.3: Calculation of the vehicles attended by a RSU.

Given that the distances involved in the problem are relatively small, we use the Euclidean
distance in the latitude-longitude space as an estimation, with negligible error. This approxi-
mation makes the problem significantly faster to compute, thus improving the overall perfor-
mance of the algorithm. Since the distance of a degree of longitude depends on the latitude, it
is necessary to adjust for that by multiplying the longitude by the cosine of the latitude.

6.3.3 Evolutionary Operators

In this study, we have design specific evolutionary operators in order to improve the efficacy
of the NC algorithm applied. These specific evolutionary search operators are described next.
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Initialization

The population is initialized by considering the solutions computed by two randomized
greedy heuristics for the problem (see a description of the greedy heuristics in Section 6.4.2).
A total number of 20% of the individuals in the population are seeded using the greedy solu-
tions. Given that one of the extremes of the ideal Pareto front is known (i.e., the solution that
places no RSU has cost 0), we add that solution to the initial population as well. The remaining
individuals of the population are randomly initialized, using reals from the interval [0, k + r]
being k the number of different RSU types in T , and r ∈ [0, 1).

RSU-DP Mutation

An ad-hoc mutation operator is designed to provide diversity to the search, which works as
follows. Mutation is applied over solutions with probability pM . When applied, the mutation
operator selects a number of segments to modify (si) according to a uniform probability. Then,
it applies a variation over each si segment as follows:
• with probability πA, the mutation operator sets the integer part of the selected gene value

to 0, thus removing the RSU (if any) from the corresponding segment (see Figure 6.4.a);
• with probability πB , the mutation changes the type of the RSU (if any) to a random type

picked uniformly from set T , thus changing the type of the RSU (or adding one if there
was none) (see Figure 6.4.b);
• and with probability 1 − πA − πB , a Gaussian mutation on the value for segment si is

applied with a standard deviation given by parameter σ in order to change the position
of the RSU within the segment (see Figure 6.4.c).

a) Removing RSU (applied with probability πA).

b) Changing RSU type or adding RSU (applied with probability πB).

c) Changing RSU position (applied with probability 1− πA − πB).

FIGURE 6.4: Graphical representation of RSU-DP mutation operator.
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Recombination

The crossover operator is Intermediate Recombination; two parents ~x = {xi} and ~y = {yi} are
combined to generate two offspring O1 and O2; they satisfy O1i = αixi + (1 − αi)yi and
O2i = βiyi + (1 − βi)xi with αi, βi randomly chosen from the interval [−µ, 1 + µ] for a given
value of parameter µ ∈ [0, 1]. The recombination operator is applied with a probability pC .

6.4 Experimental Results

This section presents the experiments carried out to solve RSU-DP optimization problem by
using the proposed MOEA, which is implemented by using ECJ Java-based Evolutionary Com-
putation framework (White, 2012). Further details about this experimental analysis can be found
in Massobrio et al. (2015b).

6.4.1 Problem Instances

In order to apply our evolutionary approach, we define a real world problem instance based
on a real map of Málaga, real road traffic data, and real wireless antennas to equip the RSUs.

The map covers an area of 42.557 km2 in the city, including a number of 106 points, which
define 121 segments with lengths between 55 and 1556 m (see Figure 6.5.a). All major traffic
ways, including avenues and important streets in Málaga are sampled. Some important av-
enues with large traffic volume define multiple segments in the map (e.g., Avenida de Andalucía,
Avenida de Velázquez, Avenida de Valle Inclán and Paseo Marítimo Pablo Ruiz Picasso, all of them
with more than six segments defined in the map).

The traffic data was collected by the Málaga governmental institutions using a set of sen-
sors located along the roads. These sensors returned the total number of vehicles that circu-
lated during the last three months of 2014. Thus, this information is utilized to define the
normal pattern for traffic (see Figure 6.5.b). In addition, two probabilistic multiplicative factors
are applied over the normal pattern to define two other ones: low pattern, reducing the traffic
randomly in [0%–20%] and high pattern, increasing the traffic randomly in [0%–20%]. These
patterns represent situations with lower and higher road traffic density, respectively.

The RSUs hardware is defined by a processing unit equipped with a IEEE 802.11p network
interface. Each network interface is connected to an external antenna to improve the commu-
nication range according to a given antenna gain. The gain, measured in decibels (dBi), is a
measure of the power of the radio signal radiating from the antenna. Generally, the higher the
gain of an antenna, the longer radio range will be obtained. The used antennas have to operate
in 5.9 GHz band utilized in IEEE 802.11p standard. Our instance includes three types of RSUs
that differ in the antenna gain connected. Three types of IEEE 802.11p antennas are considered,
according to three commercial omni-directional antennas that can be found in Cetacea on-line
shop (Cetacea, 2015). Table 6.1 summarizes the main features of such antennas.

In order to define the effective radio range (ERR) of each RSU, we evaluate via simulations
the average PDR, at different distances (from 0 to 650 m) for each RSU. The experiments were
performed using the ns-2 simulator (NS2, 2015) to simulate vehicular communications using
IEEE 802.11p PHY/MAC standard in a urban scenario defined in a one lane road of 1 km with
one RSU and 10 moving cars at 40 km/h. During the simulations, the RSU sent continuous
data streams at 256 Kbps to the cars. The Probabilistic Nakagami radio propagation model
(Saunders and Aragon, 1999) is used to represent channel fading characteristics of urban sce-
narios. The results of these experiments are summarized in Figure 6.6.
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a) Segments that represent the road map.

b) Road segments in which their width represents the traffic density.

FIGURE 6.5: Road information from Málaga taken into account in RSU-DP analysis.

Finally, in order to ensure a competitive QoS, we defined the ERR of each RSU as the dis-
tance at which the average PDR is equal or higher than 66.67%. Therefore the ERR is set for
each antenna as it is shown in Table 6.1.

FIGURE 6.6: PDR results regarding to the three types of antennas analyzed in RSU-DP.
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TABLE 6.1: General information about the used antennas to address RSU-DP.

type commercial model gain ERR cost

t1 Echo Series Omni Site Antenna 6 dBi 243.12 m 121.70 $
t2 Echo Series Omni Site Antenna 9 dBi 338.70 m 139.20 $
t3 Echo Series Omni Site Antenna 12 dBi 503.93 m 227.50 $

6.4.2 Comparison Against Two Greedy Strategies

In order to compare the results achieved by the proposed MOEA, we develop two randomized
greedy heuristics, focused on each one of the problem objectives. These heuristics apply in-
tuitive ideas that simulate the behavior of human-planning strategies, and they are improved
versions of the methods defined by Trullols et al. (2010) and later used in the comparative study
by Cavalcante et al. (2012). The improvements in our heuristics (over the ones in Trullols et al.
(2010)) include: i) in our methods, RSUs can be located anywhere within road segments (in-
stead of placing RSUs only at road intersections), ii) we consider a variable number of RSUs
(instead of using a fixed number of RSUs), and iii) a set of RSU types and coverages are consid-
ered (instead of a single RSU type). We compare the results achieved by the proposed MOEA
against two greedy heuristics.

The two greedy heuristics are briefly described next:
1. Greedy QoS (GQoS): the set of segments P is sorted according to the QoS they provide

(i.e., the ratio between number of vehicles and average speed) in case they are totally cov-
ered by a RSU. Iteratively, GQoS adds to the solution the RSU that provides the best QoS
(or cheaper in case of overlapping), at a random location in the sorted segments, while
computing the segments covered by the located infrastructure in each step. Segments
that are already covered are not taken into account to be included in the solution.

2. Greedy cost (GCost): starting from the solution computed by GQoS, the algorithm tries to
reduce the cost without significantly affecting the quality of service. Different solutions
are explored, by replacing existing RSUs by cheaper ones, or deleted, and the option
with the lower QoS degradation is selected. The algorithm stops when all segments are
considered or when the QoS of the solution is equal to α ·QwhereQ is the best QoS value
achieved by the greedy algorithm for QoS and α ∈ [0, 1]. For the experimental analysis,
GCost was executed using α ∈ {0.70, 0.75, 0.80}.

Parameter Settings of NSGA-II

We perform an analysis to find the best values for NSGA-II parameters. In the parameter
setting experiments, the best results are obtained using the configuration: population size = 72,
pC = 0.95, pM = 0.01, πA = 0.5, πB = 0.25. The value of µ in the Intermediate Recombination
operator is set to 0.25. In the Gaussian mutation the value of parameter σ is 0.25.

6.4.3 Numerical results

The experimental analysis is oriented to evaluate the problem solving capabilities of NSGA-II
for the RUS-DP. On the one hand, we compare NSGA-II with the greedy heuristics; on the other
hand, we evaluate several standard multi-objective optimization metrics (Deb, 2001): genera-
tional distance (GD), to evaluate the solution quality; spread (I∆), to evaluate the distributions
of solutions; and the combined metric relative hypervolume (RHV ), to evaluate both quality and
dispersion. We also analyze the Pareto fronts computed by NSGA-II for each scenario in the
experimental evaluation. For each problem instance, we perform 30 independent runs of the
MOEA and both greedy algorithms.
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In the experimental analysis the proposed MOEA shows a good solving capability. NSGA-
II significantly outperforms the two greedy heuristics while computing accurate Pareto fronts.
The solutions computed by the greedy heuristics tend to group in different areas of the solution
space, depending on the parameters used for their execution. Therefore, the results obtained
by the MOEA are compared against the average results of each group of greedy solutions.

The improvements of NSGA-II over the greedy strategies are reported in Table 6.2. The
selected NC algorithm is able to improve the QoS of the greedy heuristics in up to 6.0% while
keeping the same cost, and improve up to 37.1% the cost of the greedy heuristics while keeping
the same QoS (this value represents a $5218.4 saving on a $14079.7 investment). Regarding
the cost objective, NSGA-II improves over the greedy results 19.8% in average (for low traffic
instance), 20.3% in average (for normal traffic instance), and 17.0% in average (for high traffic
instance). Improvements on QoS are smaller but still significative: 4.2% in average (for low
and normal traffic instances) and 3.5% in average (for high traffic instance).

TABLE 6.2: NSGA-II improvements over greedy heuristics in solving RSU-DP.

Instance
Cost improvement (%) QoS improvement (%)

Best Avg.±Std. Best Avg.±Std.

low 37.1 19.8±10.3 5.6 4.2±0.9
normal 36.9 20.3±10.7 6.0 4.2±1.2
high 31.0 17.0±8.3 5.5 3.5±1.4

Figures 6.7 and 6.8 illustrate two different solutions (RSU deployments) with the same QoS
computed by the EA and the the heuristics, respectively. As it can be seen, the reduction of
costs achieved by the NC method is principally because the RSUs are located such that they
avoid unnecessary network overlapping. Thus, they can offer similar coverage by using a
smaller amount of antennas.

FIGURE 6.7: RSU-DP deployment computed by applying NC.
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FIGURE 6.8: RSU deployment computed by using a heuristic method.

Table 6.3 shows the average, standard deviation and best results for the studied standard
multi-objective optimization metrics. The ideal Pareto front (which is unknown for the prob-
lem instances studied) is approximated by gathering the non-dominated solutions obtained
over all executions performed. The small generational distance values indicate a good conver-
gence to an hypothetical ideal Pareto front, and demonstrate the robustness of the NSGA-II
approach. Spread values suggest a good distribution of the non-dominated solutions, which
is similar for the three analyzed instances. These results are confirmed by the unitary value of
the relative hypervolume metric.

TABLE 6.3: NSGA-II results (multi-objective optimization metrics) when solving RSU-DP.

Instance GD I∆ RHV

Best Avg.±Std. Best Avg.±Std. Best Avg.±Std.

low 1.2 1.5±0.3 0.7 0.7±0.0 1.0 1.0±0.0
normal 1.2 1.5±0.1 0.7 0.7±0.0 1.0 1.0±0.0
high 1.0 1.6±0.2 0.7 0.7±0.0 1.0 1.0±0.0

Finally, figures 6.9.a, 6.9.b, and 6.9.c illustrate the global Pareto fronts achieved by NSGA-II
in the 30 executions performed, compared against the results obtained by the state-of-the-art
greedy algorithms on low, normal, and high traffic density scenarios. In these figures, black
dots represent the non-dominated solutions that belong to the obtained Pareto fronts and the
red circled points are the solutions computed by the greedy algorithms. As it is illustrated, the
solutions of the computed Pareto fronts by the parallel EA dominate the ones of the greedy
algorithms. Therefore, the heuristics compute RSU designs with lower QoS and higher de-
ployment costs than our NC method.
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a) Low traffic density.

b) Normal traffic density.

c) High traffic density.

FIGURE 6.9: Global Pareto fronts computed by the NSGA-II and the solutions obtained by the greedy
algorithms in solving RSU-DP.
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6.5 Conclusions

An explicit multi-objective formulation is presented and a parallel MOEA is applied to solve
real problem instances in city-scaled scenarios.

In the experimental analysis, the proposed MOEA shows good problem solving capabil-
ities. NSGA-II significantly improves over two greedy heuristics for the problem (which are
improved versions of methods proposed and used in the literature). The NSGA-II improve-
ments are up to 37.1% (19.0% in average) in the cost objective and 6.0% (5.7% in average) in
the QoS objective. Additionally, NSGA-II is able to compute accurate Pareto fronts, provid-
ing different trade-off solutions for the problem. The novel analysis presented in this chapter
represents a first successful step to address RSU-DP in large-scaled cities by using NC.



Chapter 7
Real World VANET Experiments

THE evaluation of vehicular networks is overwhelmingly carried out in the present liter-
ature with simulations. The degree of realism of those is limited because their compu-
tations simplify the real world interactions too much in many cases. In this chapter,

we define two different outdoor VANET testbeds to evaluate the performance of short range
vehicular communications. This study is carried out to confirm the efficiency of configuring
nodes with protocols improved by applying NC and to evaluate the use of lightweight per-
sonal devices in V2V communications. This chapter introduces the importance of performing
outdoor experiments and details the experimental analysis results.

7.1 Introduction
The different solutions obtained in the previous chapters have been evaluated by using simula-
tors. This analytic method is limited by the complexity and dimension of real world systems,
which usually require simplifications and approximations that generally lead to differences
between their results and real world behavior.

As a useful complement (or even realistic substitute) for simulations we can use experimen-
tal real world testbeds. Testbeds have important advantages with respect to the simulations
because these tests are carried out in a real world environments offering close-to-real or real
performance, as well as revealing behavioral issues (Pinart et al., 2008). However, there is a
lack of scientific articles that use outdoor experiments in the field of vehicular networks. The
main reasons for this may be the unavailability of resources (vehicles and road equipment),
the difficulties in doing field studies, and the accuracy of the performance analysis.

Despite these limitations some authors have analyzed the feasibility of VANET commu-
nications by using laptops equipped with IEEE 802.11bg wireless interfaces (Gass et al., 2006;
Bychkovsky et al., 2006; Lee et al., 2007). In Festag et al. (2004), the authors analyzed FleetNet’s
platform, which combines IEEE 802.11bg (WLAN) and GPRS (cellular) wireless interfaces. Re-
cently, the performance of IEEE 802.11p PHY standard has been studied via V2I communi-
cations (Paier et al., 2010; Mangel et al., 2011). As the availability of IEEE 802.11p devices is
very limited at present, other studies have utilized IEEE 802.11a PHY standard, which uses the
band (5 GHz) closest to the one used by IEEE 802.11p (Sanchez et al., 2014).

This chapter presents two different experimental analysis of vehicular communications
performed in real outdoor VANETs (real vehicles and wireless devices): 1) we analyze the
VDTP protocol (optimized versus standard) in order to validate the results of Chapter 4; and 2)
we evaluate the performance of V2V communications by using personal devices (smartphones,
tablets, and laptops) and two different PHY standards (IEEE 802.11g and IEEE 802.11a), in or-
der to study the possibility of deploy VANETs without installing specific OBUs.

107
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7.2 Performance Analysis of Improved VDTP in Real World Tests

In the present section, we are aimed at defining a testbed in order to study the performance
of the VDTP file transfer service between cars in a real urban VANET. In these outdoor ex-
periments, the VDTP protocol has been tested following different parameter settings: the
optimized VDTP configurations proposed in Chapter 4 and the standard one proposed by
CARLINK experts (Luna S., 2008). Thus, the results offer the possibility to confirm the QoS
improvements on a VANET’s performance when optimized protocols are used, validating the
previous results obtained through simulations.

7.2.1 VDTP Testbed Definition

The VANET scenario utilized in our experiments is comprises of two cars moving through the
roads in an area of 1.44 km2 from the downtown of Málaga, Spain. The roads are opened to the
general traffic during a non rush hour, so the number of vehicles traveling through our scenario
are not constant (see Figure 7.1). Therefore, the speed and the distance between the vehicles
vary over time, just as it would be in any real city. According to the tracking information,
during the experiments the average distance between the nodes is 77 meters.

FIGURE 7.1: Nodes during the real world VDTP experiments (P=petitioner and O=owner).

Regarding the communication platform, the cars are equipped with a laptop with a
PROXIM ORiNOCCO PCMCIA (IEEE 802.11bg) Wi-Fi transceiver (Proxim, 2015) connected
to a 7 dBi omnidirectional antenna located on roof top of the car (see Figure 7.2). The file
transfers are performed by using the six different configurations for urban VDTP shown in
Table 4.4. Five of these configurations have been obtained automatically by using NC (i.e.,
PSO, DE, GA, ES, and SA) and the other one was proposed by Luna S. (2008), in this study
it is named EXPERTS configuration. The global network is configured following the VANET
specifications used in the simulations presented in Chapter 4. Additionally, we included a GPS
unit in each vehicle to track their movement.

In order to perform a general study, we take into account five types of data files of different
sizes: 100 kBytes and 500 kBytes typical in traffic information services; and 1 MByte, 5 MBytes,
and 10 MBytes that contain multimedia content. For each VDTP configuration, the vehicles
exchange 15 files of each type, i.e., for each VDTP configuration there are 75 (5×15) file trans-
fers. In turn, we define two different types of experiments named Urban Low Speed tests (uLs)
and Urban High Speed tests (uHs) to study the influence of the speed in the performance of the
VANET. In the first ones, the vehicles speed fluctuates between 20 and 30 km/h. In the Urban
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FIGURE 7.2: Vehicles equipment used to perform VDTP real world file transfers.

High Speed tests, the vehicles speed fluctuates between 40 and 50 km/h. After the file transfers,
the VDTP QoS is evaluated in terms of the number of lost packets during the downloads and
the effective transmission data rate of the network during the file transfers. More information
about the definition of the testbed is detailed in Toutouh and Alba (2011c).

7.2.2 Numerical Results

We present here the experimental results from two points of view. First, we study the commu-
nications carried out between the cars during the experiments in order to evaluate the VDTP
service. Next, we discuss about the performance of each VDTP parameterization taken into
account in this work in order to compare them with each other.

VANET Global Performance

During the experimentation, all files are transferred completely and correctly. This is mainly
because the two cars (network nodes) are always following the same course (see Figure 7.1).
Therefore, even though there are lost packets because of networks problems related with the
distance or the existence of obstacles between the nodes, they are able to reconnect with each
other before refusing the file transfer.

Table 7.1 presents the results obtained during the whole experimentation: the average num-
ber of lost packets during the transference of a file and the average effective transmission data
rate performed during the downloads. The results are grouped by the VDTP parameterization
used (PSO, DE, ES, GA, SA, and EXPERTS), the file type transferred (100 kBytes, 500 kBytes,
1 MByte, 5 MBytes, and 10 MBytes), and both experiment types (uLs and uHs).

Globally, in terms of transmission data rates, the majority of the file transfers are carried out
with a competitive bandwidth higher than 600 kBytes/s. As expected, we check that the com-
munications perform better (larger data rates and smaller packet loss) when the speeds of the
vehicles are lower. In Table 7.1 (last row), we can observe that, in average, during uLs there are
0.133 lost packets per file transfer with an effective data rate of 610.056 kBytes/s. In contrast,
during uHs there are more packet loss (0.1533) and lower bandwidth (598.878 kBytes/s).
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TABLE 7.1: Average number of lost packets per transfer and effective transmission data rates (TDR) in
kBytes/second achieved by the different VDTP configurations during the outdoor experiments.

File Size Configuration
Urban Low Speed test Urban High Speed test

Lost packets TDR Lost packets TDR

100 kBytes

PSO 0.0 409.071 0.0 398.852
DE 0.0 436.008 0.0 476.131
ES 0.0 423.882 0.0 423.320
GA 0.1 445.342 0.0 414.768
SA 0.0 493.717 0.0 402.369
EXPERTS 0.0 456.934 0.0 429.721
AVERAGE 0.016 444.159 0.0 424.193

500 kBytes

PSO 0.0 631.454 0.0 654.180
DE 0.0 697.256 0.0 645.269
ES 0.2 470.885 0.0 651.626
GA 0.0 677.265 0.0 677.705
SA 0.0 646.538 0.0 693.088
EXPERTS 0.0 664.802 0.0 641.828
AVERAGE 0.033 631.367 0.0 660.616

1 MByte

PSO 0.0 717.596 0.0 696.155
DE 0.2 582.832 0.1 628.457
ES 0.0 723.764 0.0 684.709
GA 0.2 679.841 0.0 715.286
SA 0.0 704.318 0.1 708.165
EXPERTS 0.0 691.338 0.0 678.908
AVERAGE 0.066 683.281 0.033 676.232

5 MBytes

PSO 0.0 698.371 0.2 659.464
DE 0.0 740.345 0.1 623.026
ES 0.2 668.905 0.2 643.788
GA 0.0 688.538 0.3 620.872
SA 0.2 563.724 0.2 656.115
EXPERTS 0.2 600.207 0.2 574.677
AVERAGE 0.1 660.015 0.2 629.657

10 MBytes

PSO 0.4 643.576 0.4 621.259
DE 0.4 690.145 0.4 609.239
ES 0.2 618.988 0.5 604.702
GA 0.6 650.997 0.6 613.021
SA 0.6 578.297 0.7 581.800
EXPERTS 0.5 606.760 0.6 532.147
AVERAGE 0.45 631.460 0.533 593.695

GLOBAL 0.133 610.056 0.153 598.878

We have studied the influence of the file size in the effective transmission data rates of
the downloads. In average, the 1 MByte files are transferred with the highest bandwidth (see
Figure 7.3). These files are transferred with an effective data rate of 683.281 kBytes/s and of
676.232 kBytes/s during the uLs and uHs, respectively (see Table 7.1). This is because the
VDTP protocol configurations used in this study are optimized to exchange data stored in
1 MByte files (see Chapter 4). The transfers of files of 500 kBytes and 5 MBytes are exchanged
with data rates between 629.657 kBytes/s and 660.616 kBytes/s. The smallest data rates are
obtained when the 100 kBytes files are transferred. This is because of the impact of the hand-
shaking process of VDTP (FIRP and FIRQ packets exchange), that is greater for the smaller
files. The lesson learned is that, as the nodes speed, the sizes of the files to transfer determine
the performance of the VANET.
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FIGURE 7.3: Average effective transmission data rates achieved during the outdoor experiments of
transferring files using VDTP.

VDTP Configuration Comparison

We compare here the performance of the different VDTP configurations in terms of effective
transmission data rates (also named goodput). Figure 7.4 shows these results achieved during
the experiments. However, checking the information provided by this figure and by Table 7.1,
it is not evident how to provide any global conclusion about which configuration performs the
best. Thus, we have decided to carry out a statistical analysis of the results.

As the distribution of the results (75 goodput values for each VDTP parameterization) are
not normally distributed, we perform non-parametric tests. Specifically, we apply the Fried-
man Ranking statistical test to the distributions the results of both tests, the Urban Low Speed
test and the Urban High Speed test, and to the whole experimentation (named Urban). Thus, we
are able to compare the VDTP configurations in different contexts. The confidence level is set
to 95% (p-value=0.05).

FIGURE 7.4: Effective transmission data rates (kBytes/s) achieved during the outdoor experiments of
transferring files using VDTP.

TABLE 7.2: Friedman Rank test results for VDTP outdoor experiments.

Urban Low Speed test Urban High Speed test Urban

Configuration Rank Configuration Rank Configuration Rank

PSO 4.26 PSO 4.26 PSO 4.26
GA 3.95 SA 3.62 ES 3.60
DE 3.73 ES 3.56 GA 3.54
ES 3.64 DE 3.28 DE 3.51
SA 2.74 EXPERTS 3.16 SA 3.18
EXPERTS 2.68 GA 3.12 EXPERTS 2.92
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The results of this statistical test (see Table 7.2) rank the VDTP parameterization computed
by PSO as the best one during both, low and high speed tests. The average goodput of this con-
figuration is 620.014 kBytes/s for uLs, 605.982 kBytes/s for uHs, and 612.998 kBytes/s without
taking into account the speeds. EXPERTS configuration shows the worst rank among the com-
pared VDTP configurations for uLs and Urban, and the second worst rank for uHs. Besides,
the experts configuration shows the lowest average goodput (587.732 kBytes/s). Therefore,
this confirms in vitro what we observed in silico (by means of simulations presented in Chap-
ter 4). It presents the PSO configuration as the most competitive one. Additionally, CARLINK
experts configuration has achieved the lowest bandwidth during the simulations carried out in
the experiments of that chapter. A further detailed analysis of these experiments are presented
in Toutouh and Alba (2011c).

7.2.3 General Discussion on VDTP Performance Analysis

After performing the outdoor tests of VDTP file transfers, we have observed that VDTP is a
competitive solution for transferring files in a VANETs. It is able to perform file transfers an
average effective data rate of 603.842 kBytes/s. The use of counters and timers of VDTP allows
to complete all the file transfers, hiding the possible problems caused by link loss.

Besides this, analyzing the QoS obtained for each VDTP configuration applied in our exper-
iments, we have observed that the automatically optimized VDTP configurations by using NC
outperform the one proposed by the human experts. Specifically, the VDTP parameterization
computed by PSO is the most competitive one.

7.3 Lightweight Personal Devices for VANETs

In this section, we present a set of outdoor experiments to analyze VANET communications
by equipping vehicles with three different type of widespread devices (smartphones, tablets,
and laptops). The idea is to prove the feasibility of VANET short range communications when
using these devices. Moreover, we analyze other kinds of characteristics of these devices that
are useful for VANET applications, e.g., the human machine interface (HMI) provided. Thus,
we want to analyze the possibility of using such widespread lightweight commodity devices to
provide ITS services to improve road transport in nowadays scenarios, where specific VANET
devices are not available to most road users. The main goals of our work are: i) analyzing the
main features that personal mobile devices provide for deploying VANETs without having to
acquire new equipment for vehicles and ii) studying the wireless capabilities of the devices
analyzed in order to discuss their use in the deployment of VANETs.

In the following, we present in more detail the three types of analyzed devices. Then, the
experimental analysis is described and the results are discussed.

7.3.1 VANET Ubiquitous Devices

In our testbed, three different kinds of VANET nodes are defined depending on the type of
the device used to equip the vehicles: a smartphone, a tablet or a laptop. To this end we use
three devices that are readily available in the present market, as well as fairly standard in the
features we are evaluating here: Samsung Galaxy SII (Gt - I9100) smartphones, Samsung Galaxy
Tab Gt - P7510 tablets (Samsung, 2015), and HP Pavilion dv6-3181ss laptops (HP, 2015) that use
ALFA AWVS051NH USB Wi-Fi transceivers (ALFA, 2015). Figure 7.5 shows the devices used
in our experimental VANET nodes.
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a) Smartphone.

b) Tablet.
c) Laptop.

FIGURE 7.5: Vehicle equipment used to perform the data transfers.

The possible use of smartphones and tablets to deploy VANETs could accelerate the devel-
opment of these kinds of networks, as these devices are already widely used by the popula-
tion, this would in turn ease VANET’s market penetration while the supply of on-board units
specifically designed for vehicular communications is not widespread. In turn, these devices
themselves are equipped with high processing capabilities (multi-core CPUs), many useful
sensors for VANET applications (GPS, accelerometer, thermometer, compass, etc.), along with
the required wireless connectivity (Bluetooth, Wi-Fi, and cellular links). Next, we present these
three devices that have been used to deploy the VANET nodes of our testbed.

Smartphones/Tablets for Equipping VANET Nodes

Smartphones and tablets provide a complete set of solutions that could fulfill the requirements
of a VANET node (see Figure 7.6). In order to perform V2V/V2I, V2B (cellular), and in-vehicle
communications they include IEEE 802.11bgn, cellular, and Bluetooth interfaces, respectively.
The Bluetooth interface may be used to interact with the on-board diagnostics (OBD) reader
and with other sensors of the vehicle. The internal GPS antenna makes the vehicle’s geoloca-
tion possible, which is required by most ITS services and applications.

Smartphones and tablets principally offer three different HMIs: the touch-screen, the mi-
crophone, and the speakers. The later two are really useful because drivers should not have to
use their hands nor look away from the road to interact with the devices, thereby avoiding dis-
tractions that can cause dangerous situations on the road. Both devices offer several internal
hardware components such as one or two cameras, a USB interface, and a set of sensors. These
components can be used by different types of services or applications, e.g., the accelerometer
can be used to detect a collision to inform of possible road accidents.

In terms of wireless communication capabilities, both types of devices used here integrate
the same Broadcom BCM4330 wireless chip (Broadcom, 2015), but the tablet is bigger than the
smartphone, and therefore, the antenna is larger and better located in tablet devices. Finally,
in our testbed, we require the vehicles during the experiments to be located, and therefore, we
utilize the GPS antenna integrated in these devices.
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FIGURE 7.6: Main features of the analyzed devices which can be used in VANETs.

Laptops for Equipping VANET Nodes

Most laptops provide two different types of wireless interfaces: IEEE 802.11abgn and Bluetooth
(see Figure 7.6). The first one can be used for V2V and V2I communications, and Bluetooth for
in-vehicle communications. In order to perform V2B cellular network communications the
laptop requires an external modem. In general, laptops do not include GPS antennas, so an
external one may be required (see Figure 7.5.c).

In the tests carried out in this study, we evaluate the V2V communications by using a laptop
as the on-board unit. The laptops use an external ALFA AWVS051NH USB Wi-Fi transceiver,
which includes an omnidirectional gain antenna that provides 2.5 dBi for transmitting on the
2.4 GHz band and 5 dBi for transmitting on the 5 GHz band. We also use the external Blue-
tooth GPS antenna to locate the vehicles during the experiments (see Figure 7.5.c). In terms of
HMI, laptops usually provide a larger screen than smartphones and tablets, in addition to the
keyboard, the touch-pad, the microphone, and the speakers. However, the idea is to use the
speakers and the microphone to interact with the system to avoid possible distractions.

For the interaction with the vehicle, as in the case of mobile personal devices, a Bluetooth
OBD reader can be used. It is important to take into account that smartphones and tablets
provide a set of extra sensors, but laptops do not. So, ITS applications and services can access
the information provided for the internal sensors installed in the car and the external sensors
connected via USB or Bluetooth interfaces. Finally, there is a drawback in using laptops as the
main device for VANET nodes, which is the need for a specific space to place it in the car. This
space is larger than the one needed to place smartphones or tablets.

7.3.2 VANET Testbed Definition to Evaluate Personal Devices

The experiments carried out in this study aim to analyze the feasibility of using personal
portable devices to deploy VANETs. Therefore, we have designed two different types of ex-
periments: first, the evaluation of the power of the wireless signal generated by the analyzed
devices, and second, tests to characterize the QoS of V2V communications when nodes use
smartphones, tablets, and laptops.
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VANET Scenarios

This VANET testbed has been also defined in an urban area of Málaga covering a zone of the
campus of the University of Málaga (see Figure 7.7). The two experiments described here are
both carried out in this area.

FIGURE 7.7: Urban area where the personal devices are tested as VANET nodes.

The wireless interfaces of the analyzed devices are configured with the widely used IEEE
802.11g mode that operates on the 2.4 GHz band and provides interoperability with IEEE
802.11b standard, and therefore, these devices can exchange information with most end user
wireless devices. We also studied the communications between laptops when applying the
IEEE 802.11a standard that operates on the 5GHz band. This standard is also included because
it operates on the closest band to the one used by IEEE 802.11p (ETSI, 2010).

Description of the Tests

The evaluation of the power of the wireless signal generated by the devices studied is carried
out by measuring the signal strength at different points located at distances between 0 and
150 meters during 15 seconds. In this case the cars are stopped at a given point and we use
another portable device to evaluate the power of the signal. As the cars are stopped we name
these experiments static experiments. These experiments involve the signal strength evaluation
of each device in 21 different points. The points are separated from each other by 7.5 m (see
Figure 7.9.a). The distance of each point i (distancei) with the evaluated device is defined
by Equation 7.1.

distancei = i× 7.5 m ∀i ∈ {0, 1, ..., 20} (7.1)

The transmission power is important in wireless communications since it determines differ-
ent aspects of the performance of the node in the network. Increasing the transmission power,
not only increases the effective coverage and reduces the attenuation rate, but it also gener-
ates a greater amount of noise (Whitehouse et al., 2007). Thus, the most efficient transmission
power is difficult to determine because of the combination of these positive and negative ef-
fects. However, empirical studies have demonstrated from an application point of view that
the greater the signal strength received the better the PDR (Zhao and Govindan, 2003).

The study of the feasibility of V2V communications is done by defining a VANET com-
prising two cars that exchange data with each other. These cars move along a regular road of
the area that defines a circuit of 3.8 km (see Figure 7.7). As the road is open to traffic, other
vehicles are able to circulate, and therefore, our vehicles are affected as in a real life journey
(neither constant speeds nor fixed distances between each other). In fact, other vehicles on
the road could come in between the VANET nodes, thus affecting the wireless signal propa-
gation (see Figure 7.8.b). During the experiments, the speed of the vehicles is between 15 and
50 km/h. These experiments are called dynamic experiments.
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a) Cases with no vehicle in-between our two
moving cars.

b) Cases of vehicles (in dotted circles) coming
between our two moving cars.

FIGURE 7.8: Nodes during the real-wold V2V experiments.

In order to study how the distance between the VANET nodes also influences the perfor-
mance of the communications, we have carried out different tests by modifying the distance
between the vehicles over the journey in the dynamic experiments. As it was very difficult to
maintain the same distances between the nodes as the ones defined for the experiments of
the signal strength analysis because of the speed variations of the cars, we have used longer
distances (distances multiple of 25 m). Thus, as shown in Figure 7.9.b, we have defined differ-
ent experiments with the two vehicles separated by six different distances grouped in medium
distance (25, 50, and 75 m) and long distance (100, 125, and 150 m).

a) Distances at which the signal strength of the devices was measured.

b) Distances between the cars during the V2V QoS analysis.

FIGURE 7.9: Distances between the moving nodes during the real world experimentation.

Seven kinds of VANET communication schemes are analyzed in the dynamic experiments.
These communication schemes are distinguished by the devices connected to exchange the
information and the IEEE 802.11 standard. They are named using the following format:
<device1>-<device2>. Note that for the laptops we have included a capital letter to spec-
ify the PHY/MAC standard used, i.e., “A” for IEEE 802.11a and “G” for IEEE 802.11g. The
smartphones and the tablets always communicate using IEEE 802.11g, therefore, we have
not used any letter to specify the standard. Thus the communication schemes analyzed here
are: smartphone-smartphone (sph-sph), smartphone-tablet (sph-tab), smartphone-laptopG (sph-
laptG), tablet-tablet (tab-tab), tablet-laptopG (tab-laptG), laptopG-laptopG (laptG-laptG), and
laptopA-laptopA (laptA-laptA). Figure 7.10 summarizes these seven communication schemes.
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We have carried out 42 different tests for the dynamic experiments. Each test is defined
according to one of the seven aforementioned communication schemes and one of the six dis-
tances between nodes (see Section 7.3.2). These tests are named according to the communica-
tion scheme and the distance: <communication scheme>-<distance>. For instance, sph-sph-25m
refers to the test in which both nodes are equipped with smartphones and are separated by
25 m while they are moving, and tab-laptG-125m represents the test in which one of the vehi-
cles is equipped with a tablet and the other with a laptop (IEEE 802.11g) separated by 125 m.

a) Communication schemes that use IEEE
802.11g (2.4 GHz).

b) Communication scheme that uses IEEE
802.11a (5 GHz).

FIGURE 7.10: Representation of the communications analyzed in the real world V2V experiments.

The V2V transferring data tests consist in exchanging data streams from the source node
to the destination node of the VANET while the cars are moving. The information exchange
is done by using ICMP (Internet Control Message Protocol) packets (Tanenbaum, 2002) that
encapsulate the bytes of data to be sent. We have selected this protocol as the use case pro-
tocol because we do not intend to test any specific type of application. In order to study the
effects of the size of data packets on the performance of the VANET communications, we have
performed data transfers by exchanging five kinds of data packets for each V2V test, that are
defined by their size (32, 64, 128, 256, and 512 bytes of data). For each one of the five types of
data packets, each node transfers to the other streams of 100 independent packets each.

For more detailed information about the VANET testbed see (Toutouh and Alba, 2016).
Now let us to present the results in terms of transmission power and QoS for the experimental
analysis performed in this work.

7.3.3 VANET Nodes Transmission Power Analysis

In the static experiments, the wireless transmission power of each device is evaluated in terms
of the received signal strength indicator (RSSI) in a given location. RSSI reflects relative received
signal strength in a wireless environment, in arbitrary units. Specifically, RSSI is an indication
of the power level observed by a radio hardware while receiving a data frame. Remember that
the evaluated RSSI includes the power from adjacent channel interference, thermal noise, etc.
that could affect the signal received. In order to measure the RSSI we use dBm (also known
as dBmW), which is an abbreviation for the power ratio in decibels (dB) of the measured power
referenced to one milliwatt (mW).

The experimental results are summarized in Figure 7.11, which shows the average signal
strength sensed at a given point for each studied device. The shaded area represents the lowest
receiver sensitivities for which a receiver can correctly decode frames for most of IEEE 802.11g-
based wireless devices (signal strengths between -90 dBm and -80 dBm).
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FIGURE 7.11: Signal strength results the outdoor V2V experiments.

As a first conclusion, the RSSI decreases with the distance between the node (device) that
generates the signal and the measurement point (see Figure 7.11). At the same time, we observe
that, even if we have measured the signal strength for some time to limit the negative effects
over the signal propagation in real outdoor scenarios, the values still show some irregular
behavior. Our explanation for this phenomenon is that the RSSI includes the received power
of the interference, thermal noise, etc. that affect the possible regular behavior of such metric.

As expected, the smartphone is the least competitive device in terms of RSSI results. The
signal strength values for this device are between -90 dBm and -80 dBm from 60 m to 75 m,
which means that its performance in transmitting information could suffer from a degradation
at these distances. After 75 m, the RSSI is lower than -90 dBm, and therefore, smartphones
barely have the capacity to exchange data streams at greater distances.

The strength of the signal produced by the tablet is higher than -70 dBm for distances lower
than 67.5 m. After that, from this point until 127.5 m, the strength of the signal decreases but
it maintains values greater than -80 dBm. Thus, tablets may offer competitive communication
performances at distances up to 127.5 m. Finally, when the distance is greater than 127.5 m the
signal strength is lower than -80 dBm, but always higher than -90 dBm, which means that the
tablet signal strength is over the lowest sensitivity threshold of IEEE 802.11g wireless based
communications throughout our experiments.

The best results in terms of signal strength are provided by the laptop when using both
PHY/MAC standards, IEEE 802.11a and IEEE 802.11g. On the one hand, when IEEE 802.11a
is used, the received signal strength is significantly higher than in the other devices. The main
reason is that the antenna gain is higher on the 5 GHz band than on the 2.4 GHz. In this
case, the RSSI is lower than -60 dBm just when the distance is longer than 90 m and the lowest
measured signal strength is -70.29 dBm (see Figure 7.11). On the other hand, when the radio
used in the laptop is configured with IEEE 802.11g, the RSSI results when the distance is lower
than 67.5 m are surprisingly close to the ones obtained by the tablet. From this point until the
furthest one the signal strength is always higher than -80 dBm.

Therefore, the best results in terms of transmission power are achieved by the laptop when
transmitting on the 5GHz band. The second best ones are achieved when the same device uses
the 2.4 GHz band. The third best RSSI is shown by the tablet, allowing interesting competitive
results compared to the laptop for the complete experimentation (RSSI higher than -90 dBm).
The lowest signal strength results are presented by the smartphone: so after 75 m the experi-
mental results are lower than -90 dBm, offering an undesirable behavior. Applications needing
more than 75 m would probably not rely on smartphone’s Wi-Fi, with the important exception
of V2I (e.g., exchanging information with Wi-Fi spots). We must also mention that, even if
these results were expected, we are here quantifying the distance ranges and communication
power of regular smartphones, something difficult to find in the related literature.
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Finally, note that, although the signal strength decreases with the distance for all devices
and frequency bands, the reduction is smoother and the signal strength is more stable when
the radio used the 5 GHz band. This happens because the 2.4 GHz frequency band is way
more crowded than the 5 GHz one, and therefore, the devices on the 2.4 GHz suffer much
more interference than those on the 5 GHz.

7.3.4 VANET Communication Feasibility Experimental Results

In this section, we present the experimental results, analyzing the exchange of data between
the two moving vehicles by evaluating E2ED, PDR, and TDR (these metrics have been already
defined in Section 4.1.2). Table B.18 in Appendix B, illustrates the whole results. Table 7.3 sum-
marizes the results of the entire experiment by showing the average and the relative standard
deviation of the three metrics studied. Thus, it is easier to conduct a comprehensive study of
the performance of VANET communications by using smartphones, tablets, and laptops. The
results are grouped by distances between the nodes (medium distance and long distance experi-
ments). It also presents the global average results for the complete dynamic experiments set.

TABLE 7.3: Average and relative standard deviation E2ED, PDR, and TDR results of the personal de-
vices outdoor testbed grouped by the distance between vehicles.

Connection E2ED (ms) PDR (%) TDR (KB/s)

type Avg. Stdev. Avg. Stdev. Avg. Stdev.

medium distance (from 25m to 75m)
sph-sph 140.68 181.43% 83.11 32.21% 1.99 96.02%
sph-tab 30.47 33.54% 81.33 27.22% 7.46 90.67%
sph-laptG 13.06 51.68% 98.45 2.82% 18.26 80.90%
tab-tab 56.43 52.82% 94.89 7.14% 3.91 69.69%
tab-laptG 21.78 99.86% 92.67 11.63% 19.05 116.86%
laptG-laptG 1.68 29.43% 98.45 3.81% 128.53 69.87%
laptA-laptA 16.10 156.96% 40.76 18.29% 13.80 71.39%

long distance (from 100m to 150m)
sph-sph - - 0.00 0.00 0.00 0.00
sph-tab - - 0.00 0.00 0.00 0.00
sph-laptG 13.97 41.18% 86.45 14.54% 16.94 83.88%
tab-tab 144.19 98.85% 43.67 68.73% 1.52 75.95%
tab-laptG 64.71 87.39% 91.67 8.44% 9.11 146.81%
laptG-laptG 3.06 63.29% 94.45 8.08% 72.86 67.42%
laptA-laptA 156.01 63.80% 8.67 157.57% 0.44 192.93%

global average (from 25m to 150m)
sph-sph 101.33 251.88% 41.56 111.12% 0.99 167.79%
sph-tab 15.70 65.10% 40.67 108.52% 3.73 161.92%
sph-laptG 14.48 42.65% 92.45 11.71% 17.60 81.01%
tab-tab 101.60 110.45% 63.99 59.38% 2.51 99.59%
tab-laptG 47.59 101.79% 92.17 10.02% 14.08 133.09%
laptG-laptG 2.51 63.59% 96.45 6.48% 100.71 76.01%
laptA-laptA 38.42 259.38% 24.71 79.21% 7.12 135.65 %

According to the results in Table 7.3, the communications in the testbed scenario in which
both nodes are equipped with tablets (tab-tab tests) require longer E2ED than the scenario in
which one node uses a smartphone and the other uses a tablet (sph-tab tests). This is not the
expected behavior because the smartphone signal strength is lower than the one of the tablet
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(see Section 7.3.3), and therefore, our smartphone should show worse wireless communication
capabilities than our tablets. The same occurs when we compare the E2ED of the tab-laptG and
the sph-laptG tests. This can be explained by the road traffic density growth during the exper-
iments with tablets (tab-tab and tab-laptG), as Figure 7.8.b illustrates. Thus, the data transfers
suffer from the existence of obstacles between the nodes.

Taking into account just the experiments carried out by using two laptops, we can observe
that the average E2ED during the laptA-laptA tests is longer than ten times the E2ED during
the laptG-laptG tests. This difference is significantly greater if we take into account the average
E2ED during the long distance tests (E2ED laptA-laptA=156.01 ms and laptG-laptG=3.06 ms).
This is principally because the performance of the network is more likely to be negatively
affected by real world obstacles when it uses a higher frequency (Doefexi et al., 2003). Thus,
the IEEE 802.11g standard is more promising than the IEEE 802.11a to perform competitive
vehicular communications (average E2ED laptG-laptG=2.51 ms), while the market does not
broadly assimilate the use of IEEE 802.11p.

The data transfers performance suffers from variability of the communications provoked
by the obstacles (e.g., other vehicles). This can be observed in the standard deviation results in
Table 7.3. As the road traffic increased during the experiments involving the tablets, the tab-
tab and the tab-laptG transmissions presented larger deviation values than the sph-tab and the
sph-laptG ones, respectively. The largest deviation value, which means the lowest robustness,
is obtained by the laptop communicating on the 5 GHz band (laptA-laptA).

Figures 7.12 and 7.13 summarize the experimental results in terms of PDR and TDR, respec-
tively, grouped by the distances between the VANET nodes. Note that, in both figures, some
bars that represent the results of sph-sph, sph-tab, and laptA-laptA tests do not appear because
there has been no data information exchange due to the complete loss of communication, as it
can be seen in Table 7.3.

Analyzing the quantity of the successfully delivered data packets (PDR), we observe two
clearly differentiated behaviors. On the one hand, all the VANET communications studied be-
tween devices that used the IEEE 802.11g standard (smartphones, tablets, and laptops) present
similar and competitive results (PDR above 80%) for the scenarios in which the vehicles are
separated by medium distance (see Table 7.3). However, only communications that involve lap-
tops maintain such a high performance (PDR above 85%) when the distance passes beyond
100 m (long distance). On the other hand, when the vehicles exchanged data by using lap-
tops configured with the IEEE 802.11a standard, the communications showed a limited perfor-
mance since the PDR results were always below 50%. However, these nodes were not able to
perform any data exchange when they were separated for distances greater than 100 m.

FIGURE 7.12: Average PDR results of outdoor testbed of V2V personal devices communication.
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Laptops transferred the highest amount of data between each other transmitting on the
2.4GHz band (see Figure 7.12). The average PDR for the laptG-laptG communications is 98.45%
in medium distance and 94.45% in long distance. In any case, the global average PDR is higher
than 90% for all tests in which at least one of the communication nodes is equipped with a
laptop and is using the IEEE 802.11g standard (see Table 7.3).

This is in sharp contrast to the results achieved by the same devices (laptops) when they
communicate using IEEE 802.11a. The amount of delivered data are 40.76% and 8.67% for
medium distance and long distance, respectively. In turn, the effective transmission range is
shorter for the IEEE 802.11a communications than for the IEEE 802.11g ones. The main reason
for this is that both standards use the same modulation (OFDM) and IEEE 802.11a transmits
on higher frequencies (5 GHz over 2.4 GHz), reducing its communication capabilities against
IEEE 802.11g (Al-Khusaibi et al., 2006; Paul et al., 2011).

In terms of transmission data rates (TDR), there are considerable differences between
the laptG-laptG communications and the other VANET communications studied here (see Ta-
ble 7.3). For this reason, Figure 7.13 is shown in logarithmic scale.

FIGURE 7.13: Average TDR results of outdoor testbed of V2V personal devices communication.

Smartphones have the least competitive results in terms of TDR. In the sph-sph and sph-tab
experiments, the nodes are able to exchange data in just medium distance scenarios by achieving
average data rates of 1.99 KB/s and 7.46 KB/s, respectively. Although it seems a poor perfor-
mance, the TDRs achieved for distances between 25 and 75 m are enough to deploy VANET
applications for exchanging lightweight warning messages and traffic information with vehi-
cles nearby and with the authorities via V2I.

Tablets offer better TDR results than smartphones since tab-tab experiments achieve higher
rates (its global average TDR 2.51 KB/s) and communicate with nodes at greater distances (up
to 125 m). However, when one of the nodes is equipped with a laptop this does not hold true.
The sph-laptG tests obtained more competitive TDR results than tab-laptG ones (global average
TDRs, sph-laptG=17.60 KB/s and tab-laptG=14.08 KB/s). This is due to the increase in road
traffic during the test that involved vehicles equipped with tablets, which negatively affected
the communications.

Taking into account the experiments carried out by transferring data by using laptops
configured with the IEEE 802.11a standard, the performance is significantly different for
both medium distance and long distance. When the distance is shorter or equal to 75 m,
these communications achieved a competitive transmission data rate (average TDR laptA-
laptA=13.80 KB/s). However, the TDR drops to 0.44 KB/s for long distance tests.
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As in the previously analyzed metrics, in the analysis of the data rates, the best results
are achieved when the two VANET nodes use laptops using IEEE 802.11g to exchange data
between each other. In the medium distance experiments the average laptG-laptG TDR is
128.53 KB/s and in the long distance ones the average TDR is 72.86 KB/s (see Table 7.3). These
competitive transmission data rates may allow the exchange of multimedia information be-
tween the nodes, such as voice messages and videos. It is important to remark that this high
TDR is achieved in distances up to 150 m.

Broadly speaking, the feasibility of the communications carried out on the 2.4 GHz, ve-
hicles equipped with laptops offer a practical solution for deploying VANETs right away, be-
cause this solution allows communications at distances greater than 150 m with the largest
PDR and TDR and the lowest E2ED. This is not an unexpected behavior because the laptops
are equipped with the highest gain antenna that is placed outside the car (see Figure 7.5.c).
Analyzing the personal portable devices, both present competitive QoS and so could deploy
useful VANETs with applications that do not require large transmission data rates. At the same
time, tablets provided an effective communication coverage over 125 m, and smartphones a
coverage up to 75 m. These relatively low performance results dramatically improve when
devices with powerful wireless interfaces, such as laptops, are included in the VANET com-
munication loop.

Note that, even the results obtained when the radios used the 5 GHz band are less com-
petitive, the IEEE 802.11p communications are still considered as a promising technology for
vehicular environments. This standard provides several improvements that make it more ro-
bust than IEEE 802.11a. For instance, the reduction of the bandwidth of the channels from
20 MHz of IEEE 802.11a to 10 MHz of IEEE 802.11p, which duplicates the transmission time
for a specific data symbol, allowing the receiver to better cope with the characteristics of the
radio channel in vehicular environments (Lin et al., 2012).

Finally, the importance of these outdoor testbeds is notable, because some of our exper-
iments have suffered from the existence of real world obstacles producing a decrease in the
performance of the wireless communications, leading to far from ideal results. A further de-
tailed analysis of these experiments are presented in Toutouh and Alba (2016).

7.3.5 General Discussion on V2V by Using Lightweight Devices

Widely available smartphones and tablets provide a set of facilities, which are required by
VANET applications. Thus, they can be used to deploy VANETs even if specific on-board units
are not available to most road users. This could accelerate an early development of vehicular
networks to provide useful ITS services.

In the light of the real-wold communications experimental analysis by using such devices,
we can conclude that: smartphones allow useful information to be exchanged with nearby
nodes in urban areas; tablets improve the smartphones’ communication capabilities and could
be used to exchange more information, also on highways; finally, laptops are able to exchange
multimedia information (audio and video) with the highest data rates and with any kind of
communication partner node at distances up to 150 m.

7.4 Conclusions

In this chapter, we have analyzed vehicular communications by defining two real world ex-
periments carried out in open roads of the city of Málaga. They have been defined for two
different main purposes: 1) confirming in vitro what we observed in silico about the use of op-
timized VANET protocols in Chapter 4 and 2) evaluating the possibility of using the widely
available lightweight devices in VANET communications.



Chapter 7. Real World VANET Experiments 123

For the first purpose, we have focused on the VDTP file transfer protocol. Thus, we have
analyzed the file transfers when configuring the protocol with the human experts parameteri-
zation and with the ones obtained by using NC. The human experts configuration performed
the worst in exchanging files under the same conditions. The best results have been obtained
when using the VDTP configuration computed by PSO. Therefore, the experimental results
confirmed the QoS improvements of the optimized VDTP experienced by simulations.

When the use of portable devices to deploy VANETs have been analyzed (instead of spe-
cific OBUs), we have observed that smartphones and tablets provide a set of facilities which
can be directly utilized for VANET applications (e.g., GPS antenna). According to the VANET
communications results, we have observed that smartphones can be used to exchange infor-
mation with nodes located up to 75 m of distance. Nodes equipped with tablets provides a
higher effective coverage over 125 m. Laptops equipped with a IEEE 802.11g Wi-Fi transceiver
are able to exchange data with nodes at distances greater than 150 m, with the highest trans-
mission data rates (higher than 100 kBytes/s). Besides this, when a laptop is included in the
VANET communication loop the network dramatically improve the performance.

It should be taken into account that the performance of VANET communications has not
always followed the regular expected behavior. This can be explained by the variability of the
road traffic density (vehicles act as obstacles for the signal propagation) and by the existence of
a number of other wireless networks that interfered with the signal of our VANET. This kind
of behavior, which influences the radio signal propagation, and therefore the communications
QoS, is quite difficult to accurately represent and evaluate in simulators or emulators. There-
fore, performing real world tests is strongly recommended to evaluate vehicular networks,
even if it is difficult to master when conducting such experiments.





The most important reason for going from one place to
another is to see what is in between, and they took great
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Chapter 8
Conclusions and Future Work

FROM the early days of humanity, nature has been an unlimited source of inspiration for
the design of useful solutions, ranging from the construction of simple artifacts to the
definition of complex industrial processes. In this thesis we have analyzed a set of na-

ture inspired algorithms to address vehicular networks optimization problems (the off-line
and on-line optimization of protocols and the smart design of RSUs infrastructure). These al-
gorithms have presented a competitive performance in finding accurate solutions that improve
the VANET behavior. Additionally, we have carried out VANET pilots to evaluate these com-
munications in real world environments. This chapter contains a global review of this PhD
thesis and regroups the main conclusions drawn for the whole research work. The thesis ob-
jectives and main contributions are discussed now in view of the results. To end this chapter,
the future lines of research that can be pursued are briefly sketched and discussed.

8.1 Conclusions

This thesis dissertation has tackled the resolution of complex optimization problems in the
domain of vehicular networks. Since this is a young field we can find in it a new and inspiring
set of possibilities for research and industry, since the efficient deployment of VANETs may
change modern society by enhancing one of its main issues: the road traffic. But also, VANETs
brought new problems and harsh constraints which must be addressed. Considering these
factors, we have analyzed the application of modern NC to deal with them.

We have first reviewed the main features of VANETs, including the basic aspects of the
communication technologies that are involved in vehicular communications (i.e., architecture,
communication domains, and radio access technologies), and the most salient proposed appli-
cations. We have listed the main differences between VANETs and other types of MANETs. We
have summarized their main open issues that presently receive more attention from research
community (with or without an optimization component).

The next step has been to review NC focusing on its strength in solving complex opti-
mization problems. We have used different types of NC techniques (EAs, swarm intelligence,
and SA) and have used different sorts of formulation problems (mono-objective and multi-
objective). Then, from the main open issues mentioned in VANETs, we have selected some
that successfully can be treated as optimization problems. These are categorized in two main
groups: 1) the ones regarding to data dissemination (i.e., file transfer, routing, and broadcast-
ing), addressed as on-line and off-line optimization problems, and 2) the one which deals with
the optimal design of a roadside infrastructure.
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It should be taken into account that our approaches have not been applied over abstract
academic definitions, instead we have put stress onto defining realistic problem models and
instances by modeling real world wireless communication and vehicular environments (based
on Málaga). We describe these problems and the main results shortly below.

Regarding off-line optimization of data dissemination, we applied an automatic mecha-
nism based on coupling NC and a realistic VANET simulation in order to compute optimized
configurations of VANET protocols. We analyzed this problem from different points of view:

• The file transfer optimization (FTC) problem consists in computing configurations of a
file transfer protocol in order to maximize the effective transmission data rate and min-
imize the amount of lost data. The effective transmission data rated of the computed
configurations was more competitive than the standard configuration of the protocol.
Therefore, VANET nodes may transfer larger files (e.g., multimedia) and show lower
error rates when using optimized protocols.

• In the QoS routing optimization, the idea is to find accurate routing protocols parameter-
izations that maximize the QoS, while the wireless medium is efficiently used. We opti-
mized OLSR QoS by defining a mono-objective formulation taking into account PDR,
E2ED, and NRL. The resulting configurations showed high PDRs (>84%), reducing
drastically NRL regarding the standard one. Besides this, we decided to explore the pos-
sibility of applying a multi-objective formulation in order to find a set of solutions that
maximize the PDR and minimize the E2ED of AODV at the same time (AODV MO-QoS).
The computed protocol configurations outperformed the state-of-the-art ones in terms
of PDR while keeping the E2ED in the threshold of proper operation. Therefore, our
optimized routing protocols improve both the reliability of the communications (high
PDRs) and the VANET scalability by reducing the overhead (NRL), while keeping low
communication delays.

• As VANETs may include nodes with energy restrictions (e.g., sensors fed with solar pan-
els or with small batteries), a similar idea has been also analyzed in computing power-
aware routing protocols. Thus, we optimized the energy-efficiency of OLSR while keep-
ing its PDR above a given quality threshold. The energy-efficient configurations achieved
energy consumption reductions up to 40%, improving the results of other approaches
presented in the literature. The use of this power-aware protocol may facilitate the future
use of nodes with energy consumption constraints.

Let us now summarize our findings concerning the NC methods utilized to address these
off-line optimization problems. We initially started evaluating a set of different canonical al-
gorithms (PSO, DE, GA, ES, and SA) because we did not find other analogous studies in the
related literature. This way, a set of preliminary results was provided in order to allow future
comparisons with other optimization techniques. Thus, we analyzed these algorithms in solv-
ing FTC and OLSR QoS. Globally, PSO presented very competitive and robust results when
computing accurate parameterizations.

After this analysis, we detected that the final solutions computed by the NC algorithms
suffered from the need of using a reduced number of fitness function evaluations during
the optimization process due to the high computation costs of performing VANET simula-
tions. Therefore, we decided to apply paralleled algorithms (i.e., pGA, pPSO, pNSGA-II, and
pSMPSO) by using a master-slave model in order to distribute the fitness function evaluations
through different processing elements (CPUs). This strategy provided a high time inefficiency,
which was in average between 80% and 90%, allowing the algorithms to compute protocol
configurations better than sequential techniques. Additionally, we designed problem specific
operators which provided better results than the canonical ones.
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Finally, as we observed that the configurations computed by applying NC provided dif-
ferent QoS depending on the scenarios (e.g., number of vehicles or type of applications), we
decided to explore the possibility of applying a multi-objective formulation in order to com-
pute a set of accurate configurations that maximize the PDR and minimize the E2ED at the
same time, if possible. Thus, a given obtained optimized configuration might be applied de-
pending on the network status or the VANET application. The results showed that the idea
behind this methodology is sound. It should be noticed that the methodology presented here
in off-line optimization of VANET protocols can be tailored to successfully optimize any other
protocol, not only the ones evaluated here.

After this long series of off-line optimization problems (targeted to a better design and use
of the VANET), we got to a not less challenging domain: real time optimization of the com-
munications while the VANET is in operation. For this, the on-line beacon broadcasting opti-
mization problem in CVS applications was addressed by tacking into account two metrics: the
channel occupancy and the fairness (balance in using the channel). Thus, a set of greedy dy-
namic broadcasting methods were devised: two Self FREEDY algorithms, which are based on
isolated monitored information, and four Swarm FREEDY algorithms, which combine mon-
itored information with data received from the neighbor nodes, being Swarm FREEDY the
most competitive ones. Self FREEDY outperformed other broadcasting base methods (Aloha
and CSMA), Swarm FREEDY were the most competitive ones. Therefore, sharing information
between the VANET nodes has shown to improve the performance of the congestion control
algorithms. Though Swarm FREEDY provided competitive results, we advice they are just a
first step to design other new Nature inspired CVS applications based on swarm intelligence
(e.g., ACO or ABC). Another distributed greedy algorithm was proposed to address the RAT
problem, in which the nodes have to dynamically select which radio technology to utilize (IEEE
802.11p or LTE), however it is not presented in this manuscript because of length constraints.
Further details can be found in Mir et al. (2015).

In RSU-DP, in contrast to the previous studies in the literature that applied mono-objective
optimization methods, we presented here a new explicit multi-objective formulation. A pEA
was applied to solve a realistic problem instance based on actual information of Málaga city.
The pEA significantly outperformed other two state-of-the-art greedy heuristic algorithms. In
average, these improvements meant 19.0% of the cost and 5.7% of the QoS. In addition, we
obtained a set of different solutions that present different trade-offs between the cost and the
QoS. This facilitates the decision making of VANET designers, who can chose the one that best
fits their specific needs and constraints.

In this thesis we have not just analyzed optimization problems over realistic instances, but
in addition we performed real world outdoor tests in order to confirm the results obtained by
using simulations. In this sense, we have defined a testbed in order to perform file transfers be-
tween cars by using different versions of VDTP: the optimized ones by NC and the standard
one. The results showed that the automatically optimized VDTP configurations outperformed
the one proposed by human experts. And as it happened during the simulations, the PSO com-
puted parameterization was the most competitive one. Besides this testbed, we have carried
out another one in order to analyze the feasibility of using personal devices to perform V2V
communications. During the experimentation we observed that: a) smartphones can be used
to exchange information with nodes located up to 75 m of distance, b) tablets provide a higher
effective coverage over 125 m, c) and laptops are able to exchange data with nodes at distances
greater than 150 m. In turn, when a laptop was included in the VANET communication loop
the network dramatically improved the performance.

In short, this PhD thesis has addressed several VANET optimization problems, and NC
has emerged as a satisfactory methodology for solving them. We have explored novel mono-
objective and multi-objective formulations to these problems that have helped to improve the
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state-of-the-art results. The performance of the utilized NC techniques have been improved
by applying two main strategies: paralleling the algorithms and devising new problem spe-
cific operators. The algorithms have been parallelized in order to efficiently mitigate the issue
of the high computation cost (time) of evaluating the solutions, and therefore, to increase the
allowed number of fitness function evaluations. Several novel evolutionary search operators
(initialization, mutation, crossover, etc.) have been designed in order to improve the efficacy
of the NC algorithms in dealing with such optimization problems. Moreover, new distributed
dynamic greedy algorithms have been proposed in order to establish a starting point for de-
veloping more intelligent data dissemination algorithms based on swarm intelligence. Finally,
real world experiments have been carried out to satisfactory prove the realism of the results
obtained by laboratory simulations. Besides providing a wide plethora of useful results by
themselves, we can also conclude that NC has proven to be an efficient tool to tackle optimiza-
tion problems in vehicular networks.

8.2 Future Work

After this thesis work, there are still some open lines to address in the future. Regarding off-
line optimization of VANET protocols, the solution evaluation during the optimization process
may be carried out by using Monte-Carlo simulation over different VANET scenarios in paral-
lel. Applying this idea, the algorithms may compute more robust optimized protocol configu-
rations, as we observed that the optimized configurations performed differently depending on
the VANET scenario. In addition, a dynamic method that allows the VANET nodes to decide
which optimized protocol configuration (from a given Pareto front) should be utilized depend-
ing on the current VANET situation could be proposed in order to adapt the protocol operation
to the current network constraints and requirements. Finally, advanced multi-objective NC
algorithms may be explored in order to improve the efficiency and efficacy of the optimization
process presented in this work.

Focusing on the on-line optimization of broadcasting and RAT selection, the dynamic
greedy algorithms proposed in this thesis work may be improved by including more advanced
swarm intelligence based operations, since swarm intelligence based algorithms have pre-
sented very competitive results in many other problems (e.g., MANET routing).

In the RSU-DP, the main lines of future studies are related to extend the experimental anal-
ysis to other geographical areas and to consider additional information (e.g., road accidents
or points-of-interest) in order to model the problem by including more road traffic related
information. Besides this, the problem may include specific VANET applications based on
V2I communications (e.g., multimedia downloading for infotainment or local weather forecast
broadcasting) to define communication requirements for the RSUs.

Regarding outdoor experiments, we used IEEE 802.11a (5 GHz band communication) be-
cause it operates on the closest frequency band to the one used by IEEE 802.11p, but the results
were not very competitive in V2V communications. The testbed should be extended by a) in-
cluding IEEE 802.11p devices, as soon as we are able to find them on the market, in order to
confirm its feasibility for communicating VANET nodes; b) increasing the number of nodes;
and c) evaluating optimized versus standard protocols.

Finally, the research work presented in this PhD thesis provides the basis for considering
NC as a promising mechanism to address diverse issues in vehicular networks. Therefore, it
gives the research community an innovative body of knowledge to accelerate the deployment
of VANETs, a technology that will change our near future life.
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List of Publications Supporting this
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Appendix B
Complementary Results

B.1 Data Transfer Between Vehicles with Optimized QoS Results

This section includes different tables with complementary results obtained during the off-line
optimization of the VDTP protocol (see Section 4.2).

B.1.1 Parameterization of the Used NC Algorithms

Table B.1 shows the results obtained in the preliminary parameters tuning procedure presented
in Section 4.2.4.

TABLE B.1: Different combinations and results of the preliminary parameter tuning of the algorithms
used in FTC optimization problem.

Algorithm Parameter Values

Instances Results

ϕ1 2.0 2.0 2.0 2.0 2.0

PSO

ϕ2 2.0 2.0 2.0 2.0 2.0
w 0.1 0.3 0.5 0.7 0.9

Urban 1.952 1.978 1.634 2.766 3.280
Highway 5.676 4.622 4.1761 5.283 6.045

DE

Cr 0.1 0.3 0.5 0.7 0.9
µ 0.9 0.7 0.5 0.3 0.1

Urban 4.027 2.647 2.241 1.866 1.742
Highway 7.255 5.622 4.776 4.734 4.663

GA

Pcros 0.2 0.4 0.6 0.8 1.0
Pmut 0.8 0.6 0.4 0.2 0.1

Urban 2.701 2.245 1.953 1.908 2.077
Highway 5.216 4.848 4.380 4.490 4.609

ES

Pcros 0.1 0.3 0.5 0.7 0.9
Pmut 0.9 0.7 0.5 0.3 0.1

Urban 4.920 3.878 3.031 2.606 2.151
Highway 7.836 6.877 6.240 5.783 5.923

SA

T 0.2 0.4 0.6 0.8 1.0

Urban 4.922 1.978 2.785 1.634 3.744
Highway 7.665 5.201 4.820 4.424 4.683
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B.1.2 Scalability Analysis

Table B.2 presents the results of the scalability analysis experimentation described in Sec-
tion 4.2.4. The three last columns of the table show the time required to find the best solution
(Tbest) for each VANET instance.

TABLE B.2: Performance comparison in terms of average fitness and average optimization time (Tbest)
of the scaled Urban VANET scenarios.

Algorithm
Average fitness ± Stdev. Tbest

Scenario U1 Scenario U2 Scenario U3 Scenario U1 Scenario U2 Scenario U3

PSO 1.6346±17.74% 1.3920±20.34% 3.6763±12.06% 7.95E+03 5.93E+03 1.20E+04
DE 1.7423±21.33% 1.4504±13.00% 3.9186±18.93% 7.12E+03 1.10E+04 1.43E+04
GA 1.9086±11.84% 1.4100±8.76% 3.6829±13.75% 6.68E+03 9.81E+03 1.41E+04
ES 2.1517±5.88% 1.5462±38.95% 3.7799±16.47% 9.00E+03 8.99E+03 1.50E+04
SA 2.7850±31.30% 2.3880±42.74% 3.8143±3.30% 4.76E+03 3.40E+03 5.36E+03

B.1.3 Final Fitness Values Statistical Test results

Table B.3 shows the Friedman ranking of the compared algorithms in Urban and Highway in-
stances (the best ranked algorithm is in the top).

TABLE B.3: Friedman Rank test results of NC solving FTC (confidence level set to 99%).

Urban Highway

Algorithm Rank Algorithm Rank

PSO 1.27 SA 1.87
DE 1.83 GA 1.97
GA 3.07 PSO 2.63
ES 4.33 DE 3.57
SA 4.50 ES 4.97

Tables B.4 and B.5 contain the resulted p-value of applying the Wilcoxon Signed Rank test
with a confidence level of 99% to PSO (the best ranked one for Urban instance) and SA (the
best ranked one for Highway instance) in comparison with the remaining of algorithms, re-
spectively. In this tables, the symbol N means that there are statistical differences between the
algorithms, and therefore, the best ranked algorithm is significantly better than the compared
algorithm, whereas the symbol4means that non-statistical difference can be assured between
the two algorithms.

TABLE B.4: PSO versus others Wilcoxon
Signed Rank test in FTC (Urban scenario).

Algorithm Test p-value

DE N 0.001
GA N <0.001
ES N <0.001
SA N <0.001

TABLE B.5: SA versus others Wilcoxon
Signed Rank test in FTC (Highway scenario).

Algorithm Test p-value

PSO 4 0.371
DE N <0.001
GA 4 0.975
ES N <0.001

B.2 Optimization of the QoS of Proactive Routing Results

This section includes different tables with complementary results obtained during the QoS
off-line optimization of the OLSR routing protocol (see Section 4.3).
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B.2.1 Parameterizations Analyzed of QoS Optimization of OLSR
Table B.6 the OLSR parameter settings considered for comparison in the analysis in Sec-
tion 4.3.5. Columns 2 to 4 contain three human expert configurations (#1, #2, and #3) proposed
by Gómez et al. (2005); columns 5 and 6 contain the OLSR configurations of the RFC 3626 and
the one obtained by the random search, respectively; columns 7 to 10 show the best OLSR
configurations obtained by each one of the NC algorithms analyzed: PSO, DE, GA, and SA.

TABLE B.6: OLSR parameterizations of the state of the art (Gómez et al. (2005)), the standard RFC 3626,
and the best solutions in optimization algorithms validated in Section 4.3.5.

Metric
Human experts OLSR Optimized configurations

#1 #2 #3 RFC RAND DE PSO GA SA

HELLO_INTERVAL 0.50 1.0 4.0 2.0 3.730 8.477 8.909 8.568 9.005
REFRESH_INTERVAL 0.50 1.0 4.0 2.0 6.188 1.086 9.663 15.829 4.925
TC_INTERVAL 1.25 2.5 10.0 5.0 5.188 7.246 7.192 5.286 6.753
WILLINGNESS 3 3 3 3 4 0 1 1 0
NEIGHB_HOLD_TIME 1.50 3.0 12.0 6.0 5.400 16.924 67.238 83.771 80.334
TOP_HOLD_TIME 3.75 7.5 20.0 15.0 40.164 99.061 72.693 67.619 80.965
MID_HOLD_TIME 3.75 7.5 20.0 15.0 34.476 6.713 91.303 37.105 2.913
DUP_HOLD_TIME 30.0 30.0 30.0 30.0 31.515 71.938 21.572 16.268 16.705

B.2.2 Results of the Validation Experiments of QoS Optimization of OLSR
Table B.7 presents for each OLSR configuration found using the optimization algorithms, the
median values for each studied metric, computed in the simulations performed over the 54
different VANET scenarios. The results are compared with the values obtained in simulations
performed with the standard OLSR configuration suggested by RFC 3626. The best median
values obtained for each metric are marked in bold.

TABLE B.7: Median results of the validation of the QoS optimized OLSR configurations.

Scenario Configurations PDR NRL E2ED RPL

U1

SA 99.95% 15.09% 2.13 ms 1.03
DE 92.58% 12.64% 4.34 ms 1.09
GA 99.95% 16.95% 2.10 ms 1.01
PSO 99.39% 12.73% 2.60 ms 1.05
RAND 94.41% 18.35% 17.16 ms 1.38
RFC 99.40% 22.28% 2.79 ms 1.05

U2

SA 84.01% 12.36% 8.99 ms 1.59
DE 85.77% 10.04% 9.23 ms 1.54
GA 85.70% 15.82% 3.81 ms 1.63
PSO 86.03% 12.36% 10.56 ms 1.54
RAND 84.98% 20.15% 21.11 ms 1.41
RFC 85.91% 23.94% 8.27 ms 1.18

U3

SA 74.85% 10.05% 44.38 ms 1.29
DE 78.29% 9.07% 19.19 ms 1.31
GA 75.08% 11.17% 44.95 ms 1.30
PSO 75.05% 9.97% 45.81 ms 1.28
RAND 69.76% 15.58% 398.42 ms 1.49
RFC 86.71% 20.65% 70.26 ms 1.05

Global

SA 84.76% 14.56% 4.04 ms 1.35

Results

DE 84.29% 11.98% 10.24 ms 1.34
GA 87.85% 16.32% 4.36 ms 1.34
PSO 86.73% 12.73% 8.12 ms 1.46
RAND 88.93% 19.21% 17.16 ms 1.38
RFC 89.56% 23.15% 6.06 ms 1.09
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B.3 Power-aware of Proactive Routing Results

This section includes different tables with complementary results obtained during the off-line
optimization of the energy-efficiency OLSR routing protocol (see Section 4.4).

B.3.1 Parameterization of the Energy-efficiency Optimization of OLSR

Table B.8 presents the results for the combinations of pC and pM analyzed, reporting the aver-
age, relative standard deviation, and best values of fitness; the average energy and PDR, and
the average gaps in energy and PDR with the standard RFC configuration.

TABLE B.8: Results of parameter setting of the pGA for solving power-aware optimization of OLSR.

(pC,pM)

Fitness Metrics GAP RFC

Avg. Stdev. Best Energy PDR Energy PDR

(0.5,0.06125) 0.576836 0.31% 0.572319 3454.40 75.03% 39.19% -14.95%
(0.7,0.06125) 0.577790 0.55% 0.571034 3446.11 75.01% 39.34% -14.99%
(0.9,0.06125) 0.577498 0.39% 0.572754 3459.03 75.20% 39.11% -14.77%
(0.5,0.125) 0.573733 0.21% 0.571268 3447.76 75.03% 39.31% -14.95%
(0.7,0.125) 0.573778 0.24% 0.570946 3445.84 75.05% 39.34% -14.93%
(0.9,0.125) 0.576217 0.14% 0.574546 3470.34 75.33% 38.91% -14.61%
(0.5,0.25) 0.574279 0.13% 0.572724 3457.23 75.01% 39.14% -14.99%
(0.7,0.25) 0.572346 0.15% 0.570118 3440.33 75.01% 39.44% -14.99%
(0.9,0.25) 0.572408 0.17% 0.570351 3442.20 75.07% 39.41% -14.91%

B.3.2 Statistical Analysis of pGA

Table B.9 shows the results of the Kurskal-Wallis statistical test applied over the fitness results
obtained by the pGAs solving power-aware optimization of OLSR.

TABLE B.9: Statistical analysis of pGAs results in addressing power-aware optimization of OLSR.

Statistical test
Algorithm

pGA-8 pGA-16 pGA-24

Kruskal-Wallis
pGA-8 - 6.4×10−4 1.9×10−7

pGA-16 6.4×10−4 - 0.015
pGA-24 1.9×10−7 0.015 -

B.3.3 Results of Validation Experiments of Power-Aware OLSR

The validation analysis evaluated several metrics related to the energy-aware and QoS of the
communication. From the point of view of the power consumption, the energy in transmitting
(Esend) and receiving (Erecv) mode, as well as the total energy (Etotal) and total energy per
vehicle (Etot×v) were studied. From the point of view of QoS, the studied metrics include the
PDR, the E2ED (in miliseconds), the NRL, and the RPL . Table B.10 presents for each best OLSR
configuration found using the three pGAs studied, the average values for each studied metric,
computed in the simulations performed over the 36 VANET scenarios.

Table B.11 summarizes the results of the Friedman and Wilcoxon statistical tests regard-
ing the energy gaps. In the Wilcoxon test, the group of three values reported corresponds to
the positive ranks, average positive ranks, and the sum of positive ranks for every pairwise
comparison, respectively.
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TABLE B.10: Results of the validation experiments of energy-efficient OLSR configurations.

Configuration
Energy metrics QoS metrics

Esent Erecv Etotal Etot×v PDR E2ED NRL RPL

Medium size (U2)
pGA-8 12099.05 5265.45 17364.49 604.12 61.54% 62.39 3.36% 1.58
pGA-16 11902.02 5206.53 17108.55 589.17 63.64% 58.35 3.53% 1.43
pGA-24 11776.50 5094.87 16871.36 575.86 61.80% 55.04 3.34% 1.47
RFC 17918.45 8102.75 26021.20 876.91 70.22% 1356.18 25.46% 1.25

Large size (U3)
pGA-8 14682.85 7030.52 21713.36 491.22 55.75% 505.30 3.98% 1.50
pGA-16 14864.78 7120.72 21985.51 505.51 57.63% 490.34 3.73% 1.48
pGA-24 14249.18 6762.22 21011.39 479.16 56.65% 483.62 3.57% 1.45
RFC 21574.81 16247.10 37821.93 877.75 64.00% 868.57 28.34% 1.15

Overall
pGA- 8 13390.95 6147.99 19538.93 547.67 58.64% 283.85 3.67% 1.54
pGA-16 13383.40 6163.63 19547.03 547.34 60.64% 274.34 3.63% 1.46
pGA-24 13012.84 5928.54 18941.37 527.51 59.22% 269.33 3.45% 1.46
RFC 19572.25 12102.03 31674.29 877.33 67.89% 506.26 25.22% 1.20

TABLE B.11: Statistical analysis of the energy results.

Statistical test
Configuration

pGA-8 pGA-16 pGA-24 RFC

Friedman (Avg. rank) 2.19 1.94 1.92 3.94

Wilcoxon

pGA-8 - (14, 19.8, 277) (16, 16.6, 266) (35, 19.0, 665)
pGA-16 (22, 17.7, 389) - (16, 17.1, 274) (36, 18.5, 666)
pGA-24 (20, 20.0, 400) (20, 19.6, 392) - (35, 18.9, 661)
RFC (19.0, 1.0, 1) (18.5, 0.0, 0) (1, 5.0, 5) -

B.4 Multi-objective Optimization of QoS Routing Results

This section includes different tables with complementary results obtained during the multi-
objective optimization of the QoS of AODV routing protocol (see Section 4.5).

B.4.1 Parameter Configuration of pMOAs for addressing AODV MO-QoS

Table B.12 presents the median hypervolume value for each parameterization analyzed for
pNSGA-II and pSMPSO.

TABLE B.12: Median hypervolume value for each parameterization of pNSGA-II and pSMPSO.

pC

pM

1
4L

=0.023 1
2L

=0.045 1
L

=0.091 1
0.5L

=0.182

pNSGA-II

0.3 0.757 0.749 0.751 0.801
0.5 0.734 0.760 0.810 0.776
0.7 0.752 0.776 0.786 0.810
0.9 0.832 0.770 0.767 0.776

pSMPSO 0.738 0.755 0.758 0.747
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B.4.2 Optimized AODV Configurations

Table B.13 shows the optimized AODV configurations evaluated in Section 4.5.5.

TABLE B.13: The AODV parameterizations obtained by the pMOAs evaluated in this study.

AODV parameter pNSGA-II pSMPSO

HELLO_INTERVAL 10.46 3.94
ACTIVE_ROUTE_TIMEOUT 10.55 2.14
MY_ROUTE_TIMEOUT 20.42 8.06
NODE_TRAVERSAL_TIME 6.89 10.00
MAX_RREQ_TIMEOUT 41.13 40.62
NET_DIAMETER 21 24
ALLOWED_HELLO_LOSS 6 1
REQ_RETRIES 6 1
TTL_START 7 19
TTL_INCREMENT 3 8
TTL_THRESHOLD 19 5

B.4.3 Validation Experiments of the QoS Optimized AODV Configurations

Table B.14 shows the results of the validation experiments presented in Section 4.5.5.

TABLE B.14: Median values of each QoS metric and each analyzed AODV configuration grouped by
scenario area size.

Configurations
QoS metrics

PDR NRL E2ED

Small size VANET scenario (U1)
RFC 64.127 82.101 69.896
pPSO 69.745 57.331 42.894
GN 67.811 61.079 56.244
pNSGA-II 66.270 79.659 102.798
pSMPSO 71.788 51.336 60.085

Medium size VANET scenario (U2)
RFC 83.465 10.829 20.183
pPSO 71.188 7.689 15.131
GN 72.542 8.434 15.028
pNSGA-II 81.758 8.466 36.512
pSMPSO 78.125 8.810 31.389

Large size VANET scenario (U3)
RFC 27.979 18.337 120.692
pPSO 25.761 11.517 15.875
GN 23.622 12.209 5.861
pNSGA-II 25.153 18.434 249.932
pSMPSO 29.362 11.777 118.328

Overall
RFC 64.510 59.269 59.787
pPSO 59.269 12.320 17.183
GN 59.787 13.063 10.753
pNSGA-II 67.015 19.416 97.206
pSMPSO 69.203 12.401 65.681
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B.5 On-line Broadcasting Optimization Results

Table B.15 shows the Friedman ranking of the Swarm FREEDY algorithms (see Section 5.6) in
terms of channel occupancy and network balance (the best ranked algorithms are in the top).
Please notice that, in case of occupancy, the higher values represent the better results, but in
case of balance, the lower values represent the better results.

TABLE B.15: Friedman Rank test results of the Swarm FREEDY algorithms devised in our study (confi-
dence level set to 99%).

Occupancy Balance

Algorithm Rank Algorithm Rank

Swarm o-FREEDY-med 2.99 Swarm n-FREEDY-mod 1.42
Swarm n-FREEDY-med 2.67 Swarm n-FREEDY-med 2.31
Swarm n-FREEDY-mod 2.64 Swarm o-FREEDY-mod 2.82
Swarm o-FREEDY-mod 1.70 Swarm o-FREEDY-med 3.45

p-value = 4.01 ×10−32 p-value = 3.66 ×10−78

Tables B.16 and B.17 present the Wilcoxon test results in terms of p-value of comparing all
the Swarm FREEDY algorithms between each other in order to confirm the Friedman ranking
results.

TABLE B.16: Post hoc statistical results of Swarm FREEDY algorithms (occupancy). The table shows
the p-values of applying Wilcoxon test.

Statistical test Algorithms

Sw o-FREEDY-med Sw o-FREEDY-mod Sw n-FREEDY-med Sw n-FREEDY-mod

Wilcoxon

Swarm o-FREEDY-med 4.57 ×10−27 3.13 ×10−3 0.99
Swarm o-FREEDY-mod 4.57 ×10−27 2.42 ×10−8 6.07 ×10−27

Swarm n-FREEDY-med 3.13 ×10−3 2.42 ×10−8 3.01 ×10−6

Swarm n-FREEDY-mod 0.99 6.07 ×10−27 3.01 ×10−6

Regarding the occupancy of the channel, the first and second ranked algorithms (i.e.,
Swarm o-FREEDY-med and Swarm n-FREEDY-med, respectively) are not statistically differ-
ent since the computed p-value when comparing them is 0.99 (>0.01). Therefore, Swarm o-
FREEDY-med cannot be considered better than Swarm n-FREEDY-med. The other algorithms
are significantly different between each other.

TABLE B.17: Post hoc statistical results of Swarm FREEDY algorithms (balance). The table shows the
p-values of applying Wilcoxon test.

Statistical test Algorithms

Sw o-FREEDY-med Sw o-FREEDY-mod Sw n-FREEDY-med Sw n-FREEDY-mod

Wilcoxon

Swarm o-FREEDY-med 0.43 5.09 ×10−46 4.92 ×10−46

Swarm o-FREEDY-mod 0.43 6.20 ×10−8 7.73 ×10−24

Swarm n-FREEDY-med 5.09 ×10−46 6.20 ×10−8 4.28 ×10−33

Swarm n-FREEDY-mod 4.92 ×10−46 7.73 ×10−24 4.28 ×10−33

Regarding the balance of the network, the first ranked algorithm (i.e., Swarm n-FREEDY-
med) is significantly the best since the computed p-values are lower than 0.01 when comparing
it with all the other analyzed algorithms.
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B.6 Real World Test Results

Table B.18 shows the results of the real outdoor testbed when using personal portable devices
in terms of the average E2ED in milliseconds (ms) of each data type and for each one of com-
munication schemes analyzed in Section 7.3.4. The results are grouped by the distance between
the cars during the data transfers. The cases in which none of the data packets sent reached
the destination node are shown in the table by a dash (-).

TABLE B.18: Experimental results of the outdoor test by using portable personal devices in terms of
the average V2V E2ED (milliseconds) grouped by distance between vehicles (separation) and the data

packet type (size in bytes).

Connection type
Data size in bytes

32 64 128 256 512 Avg.

separation = 25 meters
sph-sph-25m 77.1 108.9 173.8 171.2 87.0 116.8
sph-tab-25m 25.8 22.2 25.5 29.5 23.7 25.2
sph-laptG-25m 18.6 8.8 7.7 8.8 9.1 10.0
tab-tab-25m 30.0 20.9 71.6 47.7 51.7 40.6
tab-laptG-25m 17.7 6.2 7.4 10.6 7.1 9.1
laptG-laptG-25m 1.2 1.4 0.9 2.1 1.8 1.4
laptA-laptA-25m 8.7 9.2 12.0 14.8 16.7 12.3

separation = 50 meters
sph-sph-50m 83.8 107.0 159.0 83.0 90.8 101.4
sph-tab-50m 23.2 29.0 26.6 54.4 23.3 29.6
sph-laptG-50m 29.2 9.0 9.2 21.2 21.9 16.2
tab-tab-50m 27.7 51.5 40.2 38.8 126.0 48.9
tab-laptG-50m 58.8 20.8 43.5 45.1 73.9 44.6
laptG-laptG-50m 1.7 0.8 1.6 2.1 1.8 1.6
laptA-laptA-50m 13.5 14.6 15.8 29.5 16.9 18.1

separation = 75 meters
sph-sph-75m 23.4 488.0 1042.0 158.0 187.0 203.8
sph-tab-75m 32.3 26.4 36.1 41.3 51.7 36.6
sph-laptG-75m 15.1 10.4 11.0 9.8 22.0 13.0
emphtab-tab-75m 90.5 55.1 98.2 85.5 76.9 79.7
tab-laptG-75m 33.2 8.9 7.8 10.5 8.7 11.6
laptG-laptG-75m 2.2 1.6 2.5 2.1 2.2 2.1
laptA-laptA-75m 14.6 19.6 14.6 15.5 17.7 16.5

separation = 100 meters
sph-sph-100m - - - - - -
sph-tab-100m - - - - - -
sph-laptG-100m 26.0 11.4 13.0 16.1 13.3 15.2
tab-tab-100m 56.1 220.1 165.3 561.1 134.2 172.7
tab-laptG-100m 66.7 55.2 78.5 149.7 26.3 64.7
laptG-laptG-100m 2.8 3.2 7.0 5.7 6.9 4.8
laptA-laptA-100m 96.2 146.0 154.9 207.1 168.7 154.6

separation = 125 meters
sph-sph-125m - - - - - -
sph-tab-125m - - - - - -
sph-laptG-125m 26.4 8.6 9.5 17.7 14.2 14.0
tab-tab-125m 51.3 83.6 216.4 122.5 182.1 115.7
tab-laptG-125m 27.2 23.3 10.2 7.5 13.5 14.6
laptG-laptG-125m 1.6 1.7 1.5 2.0 2.7 1.9
laptA-laptA-125m - - - - - -

separation = 150 meters
sph-sph-150m - - - - - -
sph-tab-150m - - - - - -
sph-laptG-150m 8.6 10.3 21.0 15.6 11.2 12.7
tab-tab-150m 52.4 290.7 - - - -
tab-laptG-150m 132.0 175.1 78.2 73.2 151.0 114.8
laptG-laptG-150m 2.0 1.8 1.7 3.6 4.9 2.6
laptA-laptA-150m - - - - - -
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LA aplicación de los últimos avances en tecnologías de la información y las comunica-
ción (TIC) a entornos vehiculares ha resultado en la aparición de las redes vehiculares
ad hoc o VANETs (vehicular ad hoc networks). Estas redes de comunicación inalámbrica

sin infraestructura se forman de forma espontánea, principalmente entre vehículos cercanos y
distintos elementos de la infraestructura vial como semáforos o sensores. Así, estas redes ofre-
cen la posibilidad de desarrollar aplicaciones revolucionarias en el ámbito de la seguridad y
la eficiencia vial mediante el intercambio continuo de información relevante sobre tráfico. Sin
embargo, el dinamismo y las limitaciones de las tecnologías inalámbricas utilizadas (basadas
en IEEE 802.11) abren un nuevo conjunto de problemas de gran complejidad que tienen que
ser investigados previamente si se quiere una implantación eficiente de dicha tecnología.

Ya existe un importante campo de conocimiento en el ámbito de las comunicaciones mó-
viles ad hoc o MANETs (mobile ad hoc networks), y en un principio se han tratado de implantar
estas soluciones en las VANETs. Sin embargo, estas propuestas no han ofrecido el rendimiento
necesario. Así, ha surgido un cuerpo del conocimiento específico, que debido a la importancia
que pueden tener las VANETs en la sociedad actual, está creciendo y evolucionando conti-
nuamente. Al ser un dominio tan novedoso, existe una serie de cuestiones abiertas, como el
encaminamiento y la difusión de paquetes de datos, que todavía no han podido resolverse
empleando estrategias clásicas. Es por tanto necesario crear y estudiar nuevas técnicas que
permitan de forma eficiente, eficaz, robusta y flexible resolver dichos problemas.

A lo largo de la historia, la naturaleza ha sido fuente de inspiración para diseñar desde las
herramientas más rudimentarias a procesos computacionales complejos. Este trabajo de tesis
doctoral propone el uso de computación inspirada en la naturaleza o Computación Natural
(CN) para tratar algunos de los problemas más importantes en el ámbito de las VANETs. Ade-
más de resolver los problemas VANET en los que nos enfocamos, se han realizado avances en
el uso de estas técnicas para que traten estos problemas de forma más eficiente y eficaz. Por
último, se han llevado a cabo pruebas reales de concepto empleando vehículos y dispositivos
de comunicación reales en la ciudad de Málaga (España).

C.1 Organización
Esta tesis doctoral se divide en tres grandes bloques. El primer bloque presenta los princi-
pales fundamentos en los que se basa la tesis: primero se introduce el dominio de las redes
vehiculares y después se presenta la Computación Natural como herramienta eficiente para
resolver problemas de optimización complejos, como los que se han tratado en este dominio
de las VANETs. El segundo bloque, el de mayor extensión, detalla la resolución de los proble-
mas de optimización en VANETs en los que se ha profundizado en la tesis y las pruebas reales
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de concepto. Los problemas tratados son los siguientes: la diseminación eficiente de datos, te-
niendo en cuenta tres aspectos distintos (la transferencia de archivos, el encaminamiento o routing
de paquetes y la difusión o broadcasting de mensajes) y el diseño inteligente de la infraestructura
de estaciones base o RSUs (RSU-DP). Finalmente, el último bloque agrupa los principales logros
alcanzados en esta tesis y se extraen las conclusiones. A continuación detallamos de manera
específica el contenido por capítulos.

• Capítulo 1: Introducción. En este capítulo se realiza una justificación de las razones que
han motivado el trabajo que incluye la presente tesis, y se esboza un esquema del conte-
nido de la misma.

• Capítulo 2: Redes Vehiculares. Este capítulo describe de manera general las VANETs.
Presentamos aquí distintos aspectos de las tecnologías de comunicación que se aplican,
así como la amplia aplicabilidad de estas redes y las principales diferencias con otros
tipos de redes móviles ad hoc. Finalmente, se revisa el panorama general sobre los prin-
cipales proyectos y consorcios que tratan o han tratado el tema de las VANETs a nivel
mundial, así como se revisa las principales cuestiones abiertas en las que actualmente se
están trabajando.

• Capítulo 3: Computación Natural y Optimización en VANETs. Esta capítulo introdu-
ce el campo de la CN poniendo especial atención en su aplicación en el ámbito de la
resolución de problemas de optimización complejos. A continuación, se especifican los
problemas de optimización que se tratan en la tesis, así como se revisa la literatura relati-
va a su resolución. Finalmente, se incluye la metodología aplicada para evaluar tanto las
soluciones obtenidas como las técnicas empleadas para obtenerlas.

• Capítulo 4: Optimización off-line de protocolos. Este capítulo describe el problema de
optimización off-line de protocolos para VANET, es decir, la búsqueda de la configura-
ción de los parámetros de los protocolos que optimice su rendimiento. Se han analizado
tanto protocolos de transferencia de archivos como de encaminamiento de paquetes. Se
han estudiado diferentes tipos de formulación mono-objetivo y multi-objetivo. El análisis
experimental incluye el uso de diferentes técnicas CN que se han mejorado mediante la
aplicación de operadores específicos y paralelizando los algoritmos para que la búsqueda
requiera menos coste computacional. Finalmente, se estudia la eficacia de los resultados
obtenidos mediante simulaciones VANET realistas basadas en información de Málaga.

• Capítulo 5: Optimización on-line del broadcasting. Aquí se presenta el problema de
congestión del medio debido a la difusión de mensajes (beacons) en VANETs. Después
se proponen cuatro tipos de algoritmos voraces (greedy) dinámicos para la difusión efi-
ciente de mensajes (familia de algoritmos FREEDY). Finalmente, hemos realizado unos
experimentos de validación comparando estos algoritmos con otros del estado del arte.

• Capítulo 6: Diseño inteligente de la infraestructura. Este capítulo trata el problema del
diseño de infraestructura (RSU-DP) de forma novedosa, empleando una formulación
multi-objetivo. Así, se optimizan de forma conjunta los dos objetivos contrapuestos de
este problema (maximizar el servicio que se ofrece y minimizar el coste del despliegue).
El problema se ha resuelto sobre una instancia realista de Málaga empleando un algorit-
mo evolutivo paralelo multi-objetivo, que utiliza operadores originales.

• Capítulo 7: Pruebas reales. En este capítulo se presentan las pruebas reales de concepto
en las que se han utilizado vehículos en movimiento por las carreteras de Málaga. Se han
realizado dos tipos de pruebas distintas: en las primeras, se ha comprobado cómo un
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protocolo mejorado mediante CN ofrece un mejor rendimiento que su versión estándar;
en las segundas, se ha estudiado el uso de dispositivos móviles personales (teléfonos
inteligentes, tabletas y ordenadores portátiles) para comunicaciones VANET.

• Capítulo 8: Conclusiones y trabajo futuro. Aquí se resumen las principales conclusiones
extraídas de trabajo realizado y se presentan distintas directrices para el trabajo futuro.

• Apéndice A: Publicaciones. En este apéndice se listan las publicaciones realizadas como
consecuencia del trabajo enmarcado dentro de la presente tesis doctoral.

• Apéndice B: Tablas y resultados detallados. En este apéndice se incluyen tablas y resul-
tados de distintos experimentos realizados en el marco de la tesis, que no han podido
incluirse en el manuscrito principal.

• Apéndice C: Resumen en español. El presente resumen de la tesis.

C.2 Redes Vehiculares

El continuo crecimiento de la población mundial y su concentración cada día más acusada en
ciudades ponen en jaque la viabilidad del modelo de desarrollo urbano. La iniciativa mundial
Smart Cities persigue mitigar este problema incrementando la calidad de vida de los ciuda-
danos, mejorando la eficiencia de los recursos, facilitando la participación ciudadana, y, en
definitiva, garantizando el desarrollo sostenible de las mismas. Uno de los ejes fundamentales
es la Smart Mobility, que trata de paliar los problemas ocasionados por la congestión de las
carreteras permitiendo desplazamientos más seguros, cómodos y eficientes.

Así, han aparecido diversas iniciativas impulsadas por los gobiernos y por la industria,
desarrollándose nuevas soluciones en el campo de los Sistemas Inteligentes de Transporte
(SIT). Fruto de estas iniciativas ha sido el diseño de servicios orientados a la prevención de
accidentes, a la mejora de la eficiencia (tiempos de desplazamiento, emisiones de CO2, etc.) e
incluso al entretenimiento de los pasajeros.

Uno de los pilares de estos nuevos sistemas son las redes vehiculares ad hoc o VANETs (vehi-
cular ad hoc networks). Las VANETs son redes descentralizadas que proveen de una plataforma
para el diálogo de vehículos entre sí (vehicle-to-vehicle -V2V-) y con los elementos de la infra-
estructura vial (vehicle-to-infrastructure -V2I-) como semáforos, señales de tráfico, etc. Así, los
vehículos pueden recibir, procesar y difundir información actualizada sobre distintos aspectos
del tráfico (ver Figura C.1). En las últimas propuestas también se han incluido comunicaciones
vehiculares empleando redes de amplia cobertura como WiMAX o redes celulares (vehicle-to-
broadband -V2B-), aunque solo para cierto tipo de servicios (Hartenstein y Laberteaux, 2009;
Campolo y col., 2015).

FIGURA C.1: Escenario VANET típico.
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El estándar IEEE 802.11p (ETSI, 2010), basado en comunicaciones directas de corto alcance
(DSRC), se ha definido expresamente para el acceso al medio inalámbrico en entornos vehicu-
lares (WAVE) (Uzcategui y Acosta-Marum, 2009). A pesar de su existencia, en la actualidad se
están empleando otros estándares más generalizados para las primeras pruebas de concepto,
como puede ser el IEEE 802.11g. La limitada cobertura de los estándares de acceso al medio
que se está utilizando (basados en IEEE 802.11), la existencia de interferencias/obstáculos y la
alta movilidad de los nodos provoca que los enlaces que se crean durante la comunicación ten-
gan un tiempo de vida muy limitado, lo que complica de forma crítica el correcto intercambio
de paquetes (frecuentes cambios de topología y fragmentación de la red). Así, el encamina-
miento (routing) eficiente de paquetes en redes vehiculares (totalmente descentralizadas) es
una tarea altamente compleja (Lee y col., 2010; Chen y col., 2011). Este problema también afec-
ta a los protocolos de comunicaciones de capas más altas, como los protocolos de transporte
de datagramas o transferencia de archivos.

Además, mucha de las aplicaciones para VANETs requieren de un servicio continuo de
difusión (broadcasting) de mensajes para el descubrimiento de nodos cercanos y el envío de in-
formación cinemática de los vehículos (velocidad, aceleración, posición, etc.) (Sengupta y col.,
2007). Sin embargo, en situaciones de tráfico denso (número elevado de conexiones), aparecen
serios problemas de congestión y colisión debido principalmente a la retransmisión repetida
de mensajes sobre un mismo canal (problema de tormenta por difusión) (Chen y col., 2010;
Sattari y col., 2012).

Cabe destacar la importancia en este campo de disponer de una plataforma física para el
despliegue de este tipo de redes, es decir, de una infraestructura compuesta por nodos fijos,
conocidos como estaciones base o RSU (roadside units). Estos se emplean para comunicar nodos
móviles con los elementos de la infraestructura vial, con redes estáticas (Internet) con otros
nodos móviles que estén fuera del alcance directo. La dificultad del diseño e implantación de
este tipo de infraestructura consiste en la selección óptima de la localización de las estaciones
base (podrían ser semáforos o farolas), así como de sus componentes hardware y software
(Trullols y col., 2010). Con ello se persigue reducir los costes de implantación (económicos,
sociales y medioambientales), maximizando la calidad del servicio (minimizar los problemas
por congestión, maximizar la cobertura, etc.) y la robustez (alta disponibilidad).

Con los avances y la expansión de las diferentes redes de comunicación inalámbrica, como
WiMAX, las redes celulares (3G, LTE o 4G) y otros, surge la posibilidad de ofrecer comuni-
cación ubicua a los vehículos (Hossain y col., 2010). Sin embargo, la selección eficiente de
qué tecnología de acceso al medio utilizar para enviar un determinado mensaje no es sencilla,
puesto que depende de muchos factores como la aplicación que quiere comunicarse (requisi-
tos) o el estado de la red que se quiere utilizar (número de nodos conectados, etc.).

Esta tesis doctoral trata de resolver estos cuatro problemas en el ámbito de las VANETs. Pa-
ra ello los trata como problemas de optimización (complejos) que se van a resolver empleando
modernas técnicas de optimización basadas en CN.

C.3 Computación Natural y Optimización

La naturaleza ha inspirado al ser humano desde el inicio de los tiempos en el diseño de he-
rramientas, procesos y objetos complejos en general. Así, la CN aparece como el desarrollo
de sistemas computacionales extrayendo ideas de la naturaleza o utilizando medios naturales
(De Castro, 2006). En esta tesis nos hemos centrado en la rama de la CN que se dedica al dise-
ño de algoritmos para la resolución de problemas complejos (algoritmos bio-inspirados). Más
concretamente, se han utilizado técnicas de CN que se engloban dentro de las metaheurísticas
(Glover y Kochenberger, 2003; Blum y Roli, 2003) y que se agrupan en Algoritmos Evolutivos
(EA), Inteligencia de Enjambre y Enfriamiento Simulado (SA).
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Las metaheurísticas son estrategias de alto nivel (generalmente estocásticas) que combinan
distintos métodos para explorar un espacio de búsqueda (normalmente extensos) de forma
eficiente. Suelen definirse como métodos genéricos que se deben instanciar empleando infor-
mación específica sobre problema al que se aplican (representación de las soluciones, opera-
dores, etc.). Existen dos categorías de metaheurísticas según el número de soluciones sobre las
que operan de forma simultánea: las basadas en trayectoria, que manejan una sola solución
que mejoran de forma iterativa, como el SA; y las basadas en población, que operan sobre un
conjunto de soluciones o población, como los EAs.

Dos son las principales razones que han motivado el uso de CN en la resolución de pro-
blemas en VANETs en esta tesis. La primera, y la principal, es que todos implican una gran
complejidad computacional, por lo que requieren de la gestión eficiente de muchos recursos
para su resolución. Esto se sufre principalmente en la diseminación eficiente de mensajes en
VANETs (encaminamiento, difusión y transferencia de archivos). La segunda, y que ha apare-
cido en varios de los problemas, es que existen distintos objetivos en conflicto entre sí, es decir,
que la mejora de uno de los objetivos implica el empeoramiento en los otros (Deb, 2001). Un
ejemplo de esto se da en el diseño eficiente de la infraestructura, donde no se puede maximi-
zar la calidad del servicio ofrecido por las RSUs y minimizar el coste de instalación al mismo
tiempo. Este tipo de problemas requieren del uso de técnicas CN multi-objetivo que devuelven
un conjunto de soluciones optimizadas no-dominadas (o frente de Pareto).

Cabe destacar que la generalización de plataformas de computación paralela y distribuida,
ha llevado a los investigadores a utilizar dichas plataformas para mejorar la eficiencia de los
métodos CN (en términos de tiempo de cómputo y memoria). Así, surgen las metaheurísticas
paralelas (Alba, 2005). En este trabajo de tesis se ha empleado el modelo maestro-esclavo. Este
modelo consiste en una división funcional del algoritmo, por lo que unas tareas las realiza el
proceso maestro y otras se distribuyen por diversos elementos de proceso para que se ejecuten
en paralelo. Específicamente, en los algoritmos propuestos en esta tesis se realiza en paralelo la
evaluación de la calidad de la solución, que es la operación computacionalmente más costosa.

Para resolver los distintos problemas abordados en esta tesis se emplea un juego de algo-
ritmos con distintas características. Estos son los siguientes:

• Algoritmos Evolutivos:

– Mono-objetivo: Algoritmo Genético (GA), Estrategias Evolutivas (ES) y Evolución
Diferencial (DE).

– Multi-objetivo: GA basado en un Ordenamiento No-Elitista (NSGA-II)

• Inteligencia de Enjambre:

– Mono-objetivo: Optimización por Cúmulo de Partículas (PSO)
– Multi-objetivo: PSO Multi-objetivo con Velocidad Limitada (SMPSO)

• Enfriamiento Simulado (SA).

C.4 Problemas VANET Analizados

La hipótesis de trabajo de esta tesis doctoral consiste en demostrar que los algoritmos de CN
ofrecen una herramienta potente para la resolución de los problemas de diseño de VANETs
introducidos anteriormente. Así, se plantean tres ejes básicos:
• Optimización off-line de protocolos: Uso de técnicas CN para la configuración eficiente

de parámetros de protocolos de transferencia de archivos y encaminamiento de paquetes.
En este estudio se han aplicado técnicas tanto mono-objetivo como multi-objetivo; a su
vez también se han aplicado modelos paralelos de algunos de los algoritmos estudiados.
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• Optimización on-line de protocolos: Como las VANETs operan de forma distribuida,
se plantea la utilización de estrategias CN distribuidas y dinámicas para el diseño de
nuevos protocolos tanto de difusión de mensajes como de selección de tecnología de
acceso al medio.
• Diseño eficiente de la infraestructura: Este problema puede modelarse de forma natural

como multi-objetivo (maximizar calidad de servicio proporcionada y minimizar coste de
despliegue), así que se va a aplicar un algoritmo multi-objetivo paralelo para tratar este
problema de forma eficiente.

Cabe destacar que los problemas se han resuelto sobre instancias realistas definidas utili-
zando información real de la ciudad de Málaga.

C.5 Optimización Off-line de Protocolos

La optimización de protocolos off-line consiste en la búsqueda automática de configuraciones
factibles de los parámetros que gobiernan los protocolos para optimizar su rendimiento. Éste
no es un problema fácil. El número y el rango de los parámetros que gobiernan el protocolo
definen un espacio de búsqueda lo suficientemente grande y desconocido para hacer inútil el
uso de métodos exactos y enumerativos para resolverlo. Por contra, el uso de CN es viable
puesto que calculan configuraciones optimizadas en tiempos de ejecución razonables.

La estrategia de optimización seguida en esta tesis ha consistido en aplicar de forma con-
junta un algoritmo CN y un proceso de simulación de una VANET que informe de la calidad
de las soluciones tentativas que se van creando. Así, las diferentes soluciones (configuraciones
del protocolo que se optimiza) que calculan los algoritmos de optimización son evaluadas por
un simulador que configura los nodos con la solución a evaluar. Tras la simulación, se anali-
zan distintas métricas sobre las comunicaciones, y con ellas se evalúa la calidad o fitness de la
solución (ver Figura C.2).

FIGURA C.2: Estrategia de optimización off-line de protocolos VANET.

Esta tesis ha tratado la optimización de dos tipos de protocolos: el protocolo de transferen-
cia de archivos VDTP y los protocolos de encaminamiento de paquetes OLSR y AODV. Al ser
protocolos de tipo distinto se han utilizado distintos tipos de métricas para evaluar la calidad
de las soluciones. El primer tipo de protocolo se ha evaluado en términos de cantidad de datos
transmitidos (Kbytes), número de segmentos de datos perdidos, tiempo de transmisión (se-
gundos) y tasa de transferencia (Kbytes/segundo). Los protocolos de encaminamiento se han
evaluado en función del porcentaje de paquetes recibidos respecto de los enviados o PDR, el
tiempo que emplea un paquete en llegar a su destino o E2ED (milisegundos), la tasa de carga
generada por un protocolo en relación con la cantidad de datos enviados o NRL.
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Todos los problemas de optimización off-line se han resuelto sobre distintas instancias VA-
NET definidas sobre la ciudad de Málaga. A su vez, cabe destacar que los protocolos mejorados
se han enfrentado a una validación exhaustiva. Ésta consiste en una comparación con diferen-
tes versiones en el estado del arte del mismo protocolo sobre diversos escenarios VANET que
representan una multitud de situaciones distintas.

C.5.1 Optimización de la Transferencia de Archivos

El primer problema abordado es la optimización de la transferencia de archivos en VANET
empleando el protocolo VDTP, denominado problema FTC (García-Nieto y col., 2010). Este
problema consiste en encontrar la configuración de tres los parámetros que gobiernan el proto-
colo para maximizar la cantidad de datos enviados y minimizar tanto el tiempo de transmisión
como el número de segmentos perdidos. Se ha estudiado el problema en entornos urbanos e
interurbanos (autopista).

El uso de técnicas exactas para resolver este problema es impracticable debido al tamaño
del espacio de búsqueda y al tiempo elevado de evaluación de las soluciones (simulaciones
VANET). Así pues, hemos tratado el problemas utilizando un conjunto de técnicas CN: PSO,
DE, GA, ES y SA. Éstas han empleado el simulador ns-2 para evaluar las soluciones. El fitness
que se va a minimizar se calcula evaluando 10 transferencias de archivos según la Ecuación C.1.

fitness(s) =
1

N

N∑
i=1

tiempo_transmisioni + paquetes_perdidosi
log(datos_transferidosi +K)

(C.1)

Evaluación Experimental

Para la evaluación experimental se realizado 30 ejecuciones independientes de cada algoritmo,
cada una ejecutando 1000 evaluaciones de fitness. Los algoritmos poblacionales como PSO,
DE, GA y ES operan sobre 20 soluciones (partículas o individuos), por lo que llevan a cabo 50
iteraciones. El SA, al ser un algoritmo de trayectoria, lleva a cabo 1000 iteraciones.

Las soluciones se han evaluado sobre dos escenarios, uno urbano y otro interurbano (en
función de dónde se ha resuelto el problema), en los que hay una VANET de 30 vehículos de
los cuales 20 realizan transferencias de archivos.

Los resultados obtenidos en entornos urbanos muestran que PSO obtiene los mejores va-
lores de fitness (media, mediana y test estadístico de Friedman), seguido de DE y GA. Para
entornos interurbanos los resultados varían algo más, puesto que el algoritmo que presenta
mejor media de fitness es PSO y mejor mediana es SA. Además, según los test estadísticos no
existen diferencias significativas entre PSO, SA y GA en el caso interurbano.

Validación de los Resultados

Comparando las soluciones obtenidas por los algoritmos con la propuesta estándar propues-
ta para VDTP, se comprueba que las configuraciones optimizadas mejoran el estándar en casi
todos los casos. Concretamente, la configuración obtenida por PSO es la que ofrece un rendi-
miento más competitivo para las dos instancias estudiadas. Si se compara ésta con la estándar
se ha observado que PSO mejora entre un 24 % y un 36 % la tasa de datos efectiva.

C.5.2 Encaminamiento Eficiente de Paquetes con OLSR

El problema de optimización off-line de OLSR consiste en buscar la configuración de los ocho
parámetros principales del protocolo para optimizar su rendimiento en VANETs (maximizar
PDR y minimizar E2ED y NRL). Siete parámetros son reales y uno entero. De nuevo las técnicas
CN pueden calcular buenas soluciones en tiempos de ejecución aceptables.
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Así pues, hemos analizado la optimización de OLSR utilizando un conjunto te técnicas CN:
PSO, DE, GA y SA. A su vez, también hemos incluido una búsqueda aleatoria (RAND) como
algoritmo base. El rendimiento de OLSR se evalúa en términos de PDR, NRL y E2ED. Así,
cuando una solución tenga que ser evaluada se simulará usando ns-2 que devolverá los valo-
res resultantes tras medir las tres métricas. Empleando dichos valores se evaluará la función
objetivo que se va a minimizar y que se calcula según la siguiente ecuación (Toutouh y col.,
2012b):

fitness(s) = w2 ·NRL(s) + w3 · E2ED(s)− w1 · PDR(s) (C.2)

Evaluación Experimental

Para la evaluación experimental se han realizado 30 ejecuciones independientes de cada uno
de los algoritmos. Estos utilizan como criterio de parada evaluar 1000 veces la función objetivo.
Los algoritmos poblacionales (PSO, DE y GA) se han configurado con 10 individuos, por lo que
llevan a cabo 100 pasos iterativos (100×10=1000 evaluaciones de fitness).

Las soluciones calculadas se evalúan en una simulación donde 30 nodos de una VANET
urbana intercambian paquetes encaminando los paquetes utilizando el protocolo OLSR confi-
gurado según la solución que se evalúe en cada momento.

Según los resultados del proceso de optimización, SA obtiene los mejores resultados en
función de la media y la mediana. DE, PSO y GA son segundo, tercer y cuarto, respectivamente.
Como era de esperar, RAND obtiene los peores resultados. Estos resultados se confirman de
forma estadística puesto que el ranking del test de Friedman los ordena de este mismo modo
(SA, DE, PSO, GA y RAND).

Validación de los Resultados

Los resultados se han validado primer, sobre el escenario utilizado para la optimización, y
segundo sobre un conjunto de 54 escenarios distintos que presentan diferentes tamaños, den-
sidades de tráfico vehicular y aplicaciones VANET.

Sobre el escenario de la optimización, los protocolos configurados utilizando CN obtienen
los mejores resultados en comparación con el estándar de OLSR RFC 3626 (Clausen y Jacquet,
2003) y otras tres configuraciones de la literatura (Gómez y col., 2005).

Se ha hecho posteriormente una validación de la configuración aprendida sobre 54 escena-
rios nunca vistos para evaluar su robustez. Para la validación sobre los 54 escenarios distintos
se ha comparado las configuraciones optimizadas con el estándar. En este caso se puede ob-
servar la fortaleza de las configuraciones optimizadas, puesto que reducen más de un 50 % de
media la carga generada (uno de los principales problemas de este protocolo). Por lo general
siempre se han reducido los tiempos de entrega de paquetes. Todo ello con una rebaja de la
tasa de entrega de paquetes insignificante menor al 5 %.

C.5.3 Reducción del Consumo Energético de OLSR

La necesidad de tener la información continuamente actualizada sobre las rutas que tiene
OLSR provoca otro de sus mayores problemas: el consumo elevado de energía por parte de
los nodos. En las VANETs los vehículos no tienen unas restricciones de energía elevadas. En
cambio otros nodos como sensores, paneles, estaciones base, etc. a veces solo se pueden abas-
tecer de la energía de baterías limitadas o paneles solares. Por ello, en esta tesis también hemos
tratado la optimización de la eficiencia energética de los protocolos de comunicación.

Sin embargo, una reducción excesiva del consumo energético de los protocolos puede lle-
var a una bajada del rendimiento o a un mal funcionamiento de los mismos. Por eso es impor-
tante tener en cuenta el rendimiento cuando se optimiza la energía. En el trabajo que aquí se
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presenta se ha minimizado la energía que consume OLSR, pero se ha empleado el PDR para
garantizar la calidad de servicio. En este caso se va a permitir una pérdida de hasta un 15 %
del PDR sobre el que obtendría el estándar (Toutouh y col., 2013).

Así pues, el problema de optimización consiste en encontrar la configuración que minimice
la energía consumida por OLSR sin conllevar una disminución de más del 15 % del PDR. En
este caso el problema lo hemos tratado aplicando una algoritmo evolutivo paralelo (modelo
maestro-esclavo) basado en GA (pGA). La evaluación de la función objetivo (ver Ecuación C.3)
se ha paralelizado para que el algoritmo pueda computarla más veces sin conllevar tiempos
de cómputo prohibitivos, puesto que ésta se realiza simulando una VANET urbana con ns-2.

fitness(s) =

{
fitnessQ(s) si PDR ≥ 0, 85× PDR
fitnessP (s) si PDR < 0, 85× PDR

(C.3)

La función de fitness que se minimiza se presenta en la Ecuación C.3. Cuando la reducción
del PDR que genera la reducción de la energía es menor al 15 % se evalúa la solución según la
Ecuación C.4. Se la merma del PDR es mayor, se aplica una penalización al fitness (ver Ecua-
ción C.5) para que tenga la opción de mantenerse en la población.

fitnessQ(s) = ∆ +

(
ω1 ·

E(s)

ERFC
+ ω2 ·

PDR(s)

PDRMAX

)
(C.4)

fitnessP (s) = fitnessQ(s) +

(
(0,85 · PDRRFC − PDR(s)) · E(s)

ERFC

)
(C.5)

Evaluación Experimental

Para analizar la eficacia del pGA en la resolución de este problema, se han probado tres imple-
mentaciones distintas: pGA-8, pGA-16 y pGA-24, que difieren en el número de individuos (o
hebras) que emplean. Todas llevan a cabo 100 generaciones en cada ejecución. La evaluación
experimental comprende 30 ejecuciones independientes de cada una de las implementaciones.

Como era de esperar, pGA-24 ha obtenido los mejores resultados y es el más competido
según el test estadístico de Kruskal-Wallis. En el dominio del problema, la mejor configuración
obtenida ha reducido en más de un 30 % la energía consumida y la degradación del PDR ha
sido menor al 12 %, bien dentro de nuestras restricciones.

Cuando se emplean algoritmos paralelos es importante estudiar la eficiencia computacio-
nal de los mismos. En este caso los resultados han sido satisfactorios porque de media la efi-
ciencia computacional ha sido mayor al 70 % en todos los caso (72 %, 74 % y 80 % para pGA-8,
pGA16 y pGA-24, respectivamente).

Validación de Resultados

Los experimentos de validación se han llevado a cabo comparando las mejores configuraciones
encontradas por los tres pGA con la versión estándar del OLSR. Para ello se han simulado 36
VANET urbanas que combinan distintos tamaños, densidades de tráfico y aplicaciones.

Los resultados de estos experimentos confirman que las configuraciones calculadas por el
pGA consiguen que los nodos consuman menos energía. Concretamente la configuración de-
vuelta por el pGA-24 es la más eficiente (la mejor según el test de Friedman), proporcionando
un ahorro medio de un 40 % de energía con una reducción menor al 8 % del PDR respecto al
estándar. Todo esto lo consigue mejorando en otras métricas como el E2ED y el NRL.
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C.5.4 Opimización Multi-Objetivo del Encaminamiento con AODV

AODV es un protocolo de encaminamiento unicast para redes inalámbricas ad hoc que perte-
nece a la familia de protocolos reactivos, es decir, calcula la ruta cuando se va a empezar a
transmitir y se mantiene solo durante la transmisión. Se han propuesto diferentes variantes de
AODV para VANETs porque al ser reactivo ofrece una tasa de entrega de datos aceptable y
no genera una carga de control excesiva. Sin embargo, los tiempos de entrega se ven afectados
por el proceso de búsqueda de la ruta.

En este trabajo hemos definido el problema de optimización multi-objetivo del protocolo
AODV en VANETs (AODV MO-QoS) (Toutouh y Alba, 2015c). Buscamos configuraciones facti-
bles de los 11 parámetros de AODV que optimicen dos objetivos enfocados a los dos requisitos
más críticos en el encaminamiento de datos en VANETs: maximizar la cantidad de datos que
se intercambian (PDR) y minimizar los tiempos de transmisión (E2ED). Estos dos objetivos son
contrapuestos porque cuanto mayor es la cantidad de paquetes que viajan a través de la red,
mayor es la probabilidad de que aparezcan problemas de acceso al medio por lo que los nodos
tardan más en retransmitir los paquetes, y viceversa.

Por lo tanto se van a emplear dos algoritmos multi-objetivo (NSGA-II y SMPSO) para re-
solver el AODV MO-QoS (maximizar PDR y minimizar E2ED) en una VANET urbana. Tras
los resultados de eficiencia computacional obtenidos en el estudio anterior (ver Sección C.5.3)
estos algoritmos se han implementado para que paralelicen la evaluación de las funciones ob-
jetivo (simulaciones VANET con ns-2).

Evaluación Experimental

El problema se ha resuelto sobre un escenario VANET urbano en el que hay 30 vehículos in-
tercambiando información. Para el análisis experimental se han implementado NSGA-II y SM-
PSO paralelos (pNSGA-II y pSMPSO) para que se ejecuten empleando poblaciones/cúmulos
de 24 individuos/partículas (o hebras). Se han llevado a cabo 30 ejecuciones independientes
de cada uno de los algoritmos. Como criterio de parada se ha definido el obtener un frente de
Pareto de una calidad (hipervolumen) determinada.

Los frentes de Pareto devueltos por los dos algoritmos tienen un hipervolumen similar,
puesto que se ha utilizado dicha métrica como criterio de parada. Sin embargo, el frente de-
vuelto por pNSGA-II presenta estadísticamente una mayor diversidad y mejor valor de epsilon
(convergencia).

En términos de eficiencia computacional, si bien ambos algoritmos presentan una eficiencia
computacional bastante satisfactoria (90 % el pNSGA-II y 87 % el pSMPSO), los tiempos de
ejecución del algoritmo basado en inteligencia de enjambre ha necesitado una media de un
35 % más de tiempo en terminar que el pNSGA-II.

Validación de Resultados

La validación de resultados en este caso es más que interesante, puesto que en la literatura ya
había estudios en los que se optimizaba AODV utilizando CN con los que comparar nuestra
nueva metodología (formulación multi-objetivo y uso de algoritmos paralelos). Así pues, se
han comparado una configuración calculada por cada uno de los algoritmos que aquí se han
analizado (aquellas que minimiza la distancia con el vector ideal) con una calculada aplicando
PSO propuesta por García-Nieto y Alba (2010), otra utilizando una versión paralela del mismo
algoritmo (pPSO) presentada en Toutouh y Alba (2012c) y la configuración estándar (Perkins
y col., 2003). Para ello se han evaluado las comunicaciones entre los nodos de las VANETs de
todas estas configuraciones en 30 escenarios urbanos distintos (tamaños, densidad de tráfico y
aplicaciones).



Appendix C. Resumen en Español 155

Los resultados han mostrado que las configuraciones devueltas por los algoritmos multi-
objetivo obtienen los mejores resultados en términos de PDR. Las configuraciones obtenidas
por PSO y pPSO han obtenido mejores resultados en términos de E2ED, pero con una penali-
zación acusada en el PDR. Si tenemos en cuenta las configuraciones obtenidas por pNSGA-II
y pSMPSO, la segunda es la obtiene mejores resultados en términos de E2ED.

Cabe destacar que estos resultados serían distintos si se hubiesen escogido otras soluciones
de los frentes de Pareto calculados. Esta es una de las grandes ventajas de utilizar optimización
multi-objetivo: se puede escoger una solución distinta (ya calculada a la vez que las demás) en
función de cuál es la situación actual de la red y de los requisitos de la aplicación.

C.6 Optimización On-line de Protocolos

La difusión de mensajes o beacons es fundamental para muchas de las aplicaciones VANET
cooperativas para la seguridad vial o CVS. Los vehículos tienen que estar constantemente di-
fundiendo dichos mensajes con una frecuencia determinada para informar a los nodos vecinos
sobre su posición, velocidad, etc. y para controlar otros aspectos de las comunicaciones.

La frecuencia a la que se difunden los mensajes determina la resolución de la información:
cuanta mayor sea mejor informados están los vecinos. Sin embargo, cuando esta frecuencia no
tiene en cuenta el tráfico de alrededor (número de vehículos o mensajes que circulan) puede
llevar a la red a congestionarse. El rendimiento de los protocolos de difusión se puede medir
en términos de carga de la red: cuanto mayor carga de la red sin llevar ésta a la congestión
mejor será el algoritmo. También puede calcularse en términos del equilibrio en el uso de la
red por cada uno de los nodos. Así pues, los métodos de difusión deben maximizar los dos
objetivos (carga y equilibrio), sin llevar a la VANET a congestionarse.

En este contexto, en esta tesis se propone una nueva familia de algoritmos voraces distribui-
dos y dinámicos para la difusión de mensajes con adaptación de la frecuencia, los algoritmos
FREEDY. Estos algoritmos se dividen en dos grupos en función de la fuente de información
que utilizan: Self FREEDY, la información la obtienen de monitorizar la red, y Swarm FREEDY,
que además de monitorizar la red obtienen información de los nodos de su vencindario. Tam-
bién se han dividido en función de qué tipo es la información que utilizan (la carga de red en
función del número mensajes que recibe o el tamaño del vecindario en función de los emisores
de los mensajes recibidos). Así que los algoritmos propuestos son: Self o-FREEDY, monitoriza
la carga de la red; Self n-FREEDY, monitoriza el número de nodos vecinos; Swarm o-FREEDY,
monitoriza e intercambia la carga de la red; y Swarm n-FREEDY, monitoriza e intercambia el
tamaño de su vecindario (número de nodos en su rango de comunicaciones).

Evaluación Experimental

La evaluación experimental se ha realizado sobre nueve escenarios interurbanos en los que
se ha analizado el rendimiento de los algoritmos propuestos simulando 100 veces cada uno.
Además se han incluido en la evaluación dos algoritmos de difusión basados en ALOHA y en
CSMA. El rendimiento se ha medido en términos de carga de la red y del equilibrio en el uso
del canal.

De acuerdo con los resultados obtenidos, los algoritmos Swarm FREEDY son más competi-
tivos que los Self FREEDY. Por esto, podemos decir que el intercambio de información entre los
nodos mejora la percepción real del estado de la red y ésta se puede usar de forma más eficien-
te. Concretamtente, Swarm o-FREEDY, que utiliza la información de la carga de la red como
medida para autoconfigurarse, es el algoritmo que mejores resultados ha obtenido (valores de
compromiso entre las dos métricas que optimizar). Finalmente, los algoritmos Self FREEDY se
comportaron de forma más eficiente que los métodos de difusión base (Aloha y CSMA).
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C.7 Diseño Eficiente de la Infraestructura

Las estaciones base o RSUs son parte fundamental en las VANETs por los servicios que dan.
Disponer de una infraestructura instalada en las ciudades mejoraría las capacidades de comu-
nicación de los vehículos y se podrían implantar nuevos servicios basados en comunicaciones
V2I. El problema RSU-DP consiste en determinar la cantidad de RSUs que se va a desplegar,
así como las localizaciones en las que se va a colocar cada una de ellas. Una RSU (antena) se
puede colocar en un segmento que representa una carretera o una sección de la misma.

Los objetivos perseguidos son obtener la mayor calidad de servicio (en función del número
de vehículos a los que se les da servicio y el tiempo del mismo) y reducir los costes de ins-
talación. En esta tesis se ha formulado por primera vez en la literatura como problema con
dos objetivos diferentes de forma explícita (multi-objetivo): maximizar cobertura y minimizar
coste. El problema se ha tratado utilizando una versión paralela de NSGA-II al que se le han
aplicado operadores específicos de inicialización y mutación. Más información sobre dichos
operadores está en nuestro estudio presentado en Massobrio y col. (2015b).

En este trabajo se ha tratado este problema empleando información real sobre el tráfico
publicada por el Ayuntamiento de Málaga. El área utilizada para definir la instancia cubre
42,55 km2 de la ciudad, incluye 106 puntos para definir 121 segmentos con longitudes de entre
55 m y 1556 m. Además se han utilizado especificaciones reales sobre antenas que cumplen
con el estándar IEEE 802.11p (para redes vehiculares) que se encuentran en el mercado (infor-
mación de potencia/cobertura y precios).

C.7.1 Formulación del Problema

Las soluciones se representan como vectores de tamaño n del tipo real. En cada posición i del
vector se almacena la información sobre la RSU instalada en el segmento i de la instancia: la
parte entera del número real indica el tipo de RSU (0 significa que no hay RSU) y la parte real
del número indica la sección del segmento en la que se ubica la RSU y está en el rango [0, 1).
En el ejemplo de la Figura C.3, el valor 1,50 en la posición 2 del vector (s2) indica que en el
segmento 2 que va desde el punto p2 al p3 hay ubicada en el centro del segmento (1,50) una
RSU con la antena del tipo 1 (1,50).

FIGURA C.3: Representación de soluciones en el RSU-DP.

El cálculo de los dos objetivos se hace de la siguiente forma. El coste total se obtiene de
sumar el precio total de las antenas (según el tipo) que se han colocado en el escenario. Para el
cálculo de la calidad de servicio se consideran las distancias y valores como se muestran en la
Figura C.4: la RSU localizada en el punto × cubre los subsegmentos c1 (en el segmento s1), c2

(en s2), c3 (en s3) y c4 (en s4). El número efectivo de coches atendidos es
∑i=4

i=1NV (si)× ci
sp(si)

.
Donde NV (si) es el número total de vehículos que circulan por si.
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FIGURA C.4: Cálculo de la calidad de servicio que proporciona una RSU (RSU-DP).

C.7.2 Evaluación Experimental

El problema se ha tratado sobre la instancia que se ha mencionado antes (a la que llamamos
normal), pero también se han definido dos instancias de forma probabilística: bajo, que tiene re-
ducida la densidad de tráfico hasta un 20 % para cada segmento, y alto, que tiene incrementada
la densidad hasta un 20 %.

Se ha ejecutado de forma independiente 30 veces el algoritmo para cada una de las instan-
cias. A su vez, se han comparado los resultados con dos algoritmos voraces empleados en la
literatura actual para tratar este mismo problema (uno que optimiza la calidad de servicio y
otro que minimiza el coste).

Los resultados indican que el algoritmo de CN empleado mejora al algoritmo voraz que
maximiza la calidad de servicio en un 6 % necesitando el mismo coste. Cuando se compara el
CN con el voraz que minimiza el coste, nuestra propuesta mejora el coste en un 37 % el coste
mientras obtiene la misma calidad de servicio (este resultado significa un ahorro de 5218,4 $
en una inversión de 14079,7 $). La Figura C.5 muestra una de las soluciones obtenidas por el
algoritmo de CN.

FIGURA C.5: Representación sobre el mapa de una solución obtenida al problema RSU-DP.
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C.8 Pruebas Reales de Concepto

Para poder evaluar la validez de los resultados obtenidos mediante simulación sobre la opti-
mización de protocolos, se ha llevado a cabo un estudio experimental empleando vehículos y
dispositivos reales en las carreteras abiertas al tráfico de Málaga (Toutouh y Alba, 2011c). A su
vez, se ha hecho otro estudio en el que se analizado la posibilidad de poder utilizar dispositivos
móviles para las comunicaciones V2V (Toutouh y Alba, 2016).

C.8.1 Protocolos Optimizados en Entornos Reales

Para comprobar la eficiencia de los protocolos optimizados, se ha analizado el uso del VDTP
estándar y el mejorado con CN (ver Sección C.5.1) en la transferencia de archivos. Para ello se
han instalado dos ordenadores portátiles en sendos vehículos y se han realizado la transferen-
cia de archivos de distintos tamaños (100 KBytes, 500 KBytes, 1 MByte, 5 MBytes y 10 MBytes).
A su vez se han evaluado las transferencias de archivos a distintas velocidades: primero, velo-
cidades comprendidas entre 20 y 30 km/h, y segundo, de entre 40 y 50 km/h.

Los resultados muestran que: a) los protocolos optimizados ofrecen una mayor velocidad
de transferencia de datos que el estándar, b) a mayor tamaño del archivo que se transfiere,
mayor es la tasa de transferencia de datos, y c) la velocidad afecta negativamente a la calidad
de las comunicaciones (una mayor velocidad de los vehículos conlleva una menor tasa de
transferencia).

C.8.2 Dispositivos Móviles en Comunicaciones Vehiculares

Este estudio ha consistido en evaluar las capacidades de distintos dispositivos móviles para
su uso en VANETs. Concretamente se han analizado teléfonos móviles inteligentes, tabletas y
ordenadores portátiles, que están fácilmente disponibles en el mercado y que muchos usuarios
no especializados tienen. Para ello se han equipado pares de vehículos con dichos dispositivos
y se han analizado las comunicaciones utilizando las interfaces Wi-Fi (IEEE 802.11g) todos con
todos.

Se han realizado numerosas pruebas en las que se han probado las comunicaciones entre
dos vehículos que se mueven a velocidades que van desde los 15 km/h a los 50 km/h por
carreteras abiertas al tráfico. A su vez, se han estudiado cómo se ven afectadas las comunica-
ciones en función de la distancia a la que se encuentran los nodos. Así, se han hecho distintos
experimentos modificando la distancia (más o menos constantes) entre los vehículos (se han
probado distancias de 25, 50, 75, 100, 125 y 150 metros). Los vehículos intercambiaban flujos
de 100 paquetes de datos de distintos tamaños (32, 64, 128, 256 y 512 bytes).

El análisis de los resultados obtenidos nos permite observar que los teléfonos inteligen-
tes posibilitan el intercambio de paquetes de datos de texto con nodos alejados hasta 75 me-
tros. Los nodos equipados con tabletas pueden comunicaciones con nodos a una distancia de
125 metros. Por último, los ordenadores portátiles son capaces de intercambiar información
multimedia con vehículos alejados a distancias mayores de 150 metros. Además, debido a la
mayor sensibilidad de la interfaz Wi-Fi de los portátiles, si un portátil se comunica con un te-
léfono o una tableta, estos pueden comunicarse con el portátil aunque esté a mayor distancia
de las que se han presentado antes (más de 75 m si es un teléfono móvil y más de 125 m si es
una tableta).
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C.9 Conclusiones y Trabajo Futuro

En esta tesis doctoral hemos abordado la resolución de varios de los principales problemas en
el ámbito de las VANET: la optimización off-line de protocolos de transferencia de archivos y de
encaminamiento de paquetes; la optimización on-line de protocolos de difusión de mensajes; y
el diseño eficiente de la infraestructura de estaciones base. Todos ellos se han tratado aplicando
CN.

Se ha observado que la optimización off-line de protocolos es una herramienta que ofre-
ce unos resultados satisfactorios tanto a la hora de mejorar las comunicaciones como reducir
el consumo de recursos de los protocolos. Se ha conseguido mayores tasas de transferencia
cuando se ha optimizado VDTP. Facilitando que se puedan enviar archivos de datos de mayor
tamaño. Los protocolos de encaminamiento han mejorado su escalabilidad (reduciendo la can-
tidad de tráfico de control que generan), a la vez que han mejorado o mantenido su eficiencia
(cantidad de paquetes entregados y tiempos de envío). Cabe destacar que esta metodología
de optimización se puede aplicar a cualquier protocolo VANET, no solo sobre los que se han
analizado en esta tesis.

Respecto al comportamiento de los algoritmos CN y la estrategia de resolución de los pro-
blemas de optimización off-line de protocolos, se ha observado que los algoritmos paralelos
ofrecen una eficiencia computacional satisfactoria (ésta ha ido desde el 70 % al 90 %). Ade-
más, las parametrizaciones que ofrece la formulación multi-objetivo han mejorado las mismas
obtenidas por algoritmos mono-objetivo.

El problema de optimización de protocolo on-line consiste en diseñar algoritmos basados
en CN que se ejecuten de forma eficiente durante el funcionamiento de la red. En esta tesis se
han diseñado la familia de protocolos FREEDY para la difusión de mensajes de forma eficiente.
Estos algoritmos dinámicos distribuidos utilizan información de la carga del canal o el número
de nodos vecinos para adaptar de forma eficiente la frecuencia con la que se difunden los men-
sajes. De los algoritmos propuestos el Swarm o-FREEDY (los nodos utilizan la información que
monitorean y la que intercambian con el vecindario para el cálculo de las nuevas frecuencias
de envío de mensajes) es el que presenta un uso más eficiente del canal a la vez que balancea
mejor el acceso al medio por parte de los nodos.

El último problema de optimización analizados, es el del diseño inteligente de la infraes-
tructura de estaciones base. En este caso se ha propuesto de forma novedosa una formulación
multi-objetivo del problema y se ha resuelto utilizando una versión paralela de NSGA-II. Los
resultados obtenidos sobre una instancia realista de Málaga muestran que el algoritmo CN me-
jora el resultado de distintas heurísticas propuestas en la literatura, tanto en calidad de servicio
con mismo coste como en reducción del coste con la misma calidad de servicio.

A su vez, el trabajo realizado en esta tesis se ha completado con pruebas de concepto uti-
lizando vehículos y dispositivos reales. Con los resultados obtenidos se puede observar que
los protocolos optimizados efectivamente ofrecen un mejor rendimiento que la versión están-
dar. Esto se ha estudiado sobre el protocolo VDTP de transferencia de archivos. Asimismo, se
ha observado que se pueden utilizad dispositivos móviles personales para realizar comunica-
ciones VANET (IEEE 802.11g), aunque según la naturaleza de los mismos se disfruta de una
calidad de servicio u otra. Los teléfonos inteligentes, las tabletas y los ordenadores portátiles
proporcionan rangos de cobertura de hasta 75 metros, hasta 125 metros y de más de 150 metros,
respectivamente.

Como evaluación general de la tesis, los resultados obtenidos en los distintos problemas
analizados presentan a la CN como una herramienta prometedora para resolver de forma
eficiente problemas en redes vehiculares.
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Las líneas de trabajo futuro avanzarán en la mejora de las técnicas de optimización utili-
zando CN. Por ejemplo, la optimización off-line podría emplear simulación Monte-Carlo para
evaluar las soluciones en distintos escenarios a en paralelo. Así, se podría mejorar la robustez
de las parametrizaciones optimizadas que se han calculado. En la optimización on-line de pro-
tocolos, se podría aplicar técnicas modernas basadas en inteligencia de enjambre (tipo ACO o
ABC) para mejorar los algoritmos propuestos. A su vez, el problema RSU-DP se podría anali-
zar sobre instancias más grandes y de otras ciudades, incluyendo nueva información relevante
sobre el tráfico (como por ejemplo, accidentes o puntos de interés). Finalmente, se plantea la
definición de experimentos reales empleando un mayor número de vehículos y dispositivos
con interfaces de red IEEE 802.11p, tan pronto como se extienda su oferta en el mercado.
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