100 research outputs found

    34th Midwest Symposium on Circuits and Systems-Final Program

    Get PDF
    Organized by the Naval Postgraduate School Monterey California. Cosponsored by the IEEE Circuits and Systems Society. Symposium Organizing Committee: General Chairman-Sherif Michael, Technical Program-Roberto Cristi, Publications-Michael Soderstrand, Special Sessions- Charles W. Therrien, Publicity: Jeffrey Burl, Finance: Ralph Hippenstiel, and Local Arrangements: Barbara Cristi

    Theory and realization of novel algorithms for random sampling in digital signal processing

    Get PDF
    Random sampling is a technique which overcomes the alias problem in regular sampling. The randomization, however, destroys the symmetry property of the transform kernel of the discrete Fourier transform. Hence, when transforming a randomly sampled sequence to its frequency spectrum, the Fast Fourier transform cannot be applied and the computational complexity is N(^2). The objectives of this research project are (1) To devise sampling methods for random sampling such that computation may be reduced while the anti-alias property of random sampling is maintained : Two methods of inserting limited regularities into the randomized sampling grids are proposed. They are parallel additive random sampling and hybrid additive random sampling, both of which can save at least 75% of the multiplications required. The algorithms also lend themselves to the implementation by a multiprocessor system, which will further enhance the speed of the evaluation. (2) To study the auto-correlation sequence of a randomly sampled sequence as an alternative means to confirm its anti-alias property : The anti-alias property of the two proposed methods can be confirmed by using convolution in the frequency domain. However, the same conclusion is also reached by analysing in the spatial domain the auto-correlation of such sample sequences. A technique to evaluate the auto-correlation sequence of a randomly sampled sequence with a regular step size is proposed. The technique may also serve as an algorithm to convert a randomly sampled sequence to a regularly spaced sequence having a desired Nyquist frequency. (3) To provide a rapid spectral estimation using a coarse kernel : The approximate method proposed by Mason in 1980, which trades the accuracy for the speed of the computation, is introduced for making random sampling more attractive. (4) To suggest possible applications for random and pseudo-random sampling : To fully exploit its advantages, random sampling has been adopted in measurement Random sampling is a technique which overcomes the alias problem in regular sampling. The randomization, however, destroys the symmetry property of the transform kernel of the discrete Fourier transform. Hence, when transforming a randomly sampled sequence to its frequency spectrum, the Fast Fourier transform cannot be applied and the computational complexity is N"^. The objectives of this research project are (1) To devise sampling methods for random sampling such that computation may be reduced while the anti-alias property of random sampling is maintained : Two methods of inserting limited regularities into the randomized sampling grids are proposed. They are parallel additive random sampling and hybrid additive random sampling, both of which can save at least 75% , of the multiplications required. The algorithms also lend themselves to the implementation by a multiprocessor system, which will further enhance the speed of the evaluation. (2) To study the auto-correlation sequence of a randomly sampled sequence as an alternative means to confirm its anti-alias property : The anti-alias property of the two proposed methods can be confirmed by using convolution in the frequency domain. However, the same conclusion is also reached by analysing in the spatial domain the auto-correlation of such sample sequences. A technique to evaluate the auto-correlation sequence of a randomly sampled sequence with a regular step size is proposed. The technique may also serve as an algorithm to convert a randomly sampled sequence to a regularly spaced sequence having a desired Nyquist frequency. (3) To provide a rapid spectral estimation using a coarse kernel : The approximate method proposed by Mason in 1980, which trades the accuracy for the speed of the computation, is introduced for making random sampling more attractive. (4) To suggest possible applications for random and pseudo-random sampling : To fully exploit its advantages, random sampling has been adopted in measurement instruments where computing a spectrum is either minimal or not required. Such applications in instrumentation are easily found in the literature. In this thesis, two applications in digital signal processing are introduced. (5) To suggest an inverse transformation for random sampling so as to complete a two-way process and to broaden its scope of application. Apart from the above, a case study of realizing in a transputer network the prime factor algorithm with regular sampling is given in Chapter 2 and a rough estimation of the signal-to-noise ratio for a spectrum obtained from random sampling is found in Chapter 3. Although random sampling is alias-free, problems in computational complexity and noise prevent it from being adopted widely in engineering applications. In the conclusions, the criteria for adopting random sampling are put forward and the directions for its development are discussed

    Energy efficient hardware acceleration of multimedia processing tools

    Get PDF
    The world of mobile devices is experiencing an ongoing trend of feature enhancement and generalpurpose multimedia platform convergence. This trend poses many grand challenges, the most pressing being their limited battery life as a consequence of delivering computationally demanding features. The envisaged mobile application features can be considered to be accelerated by a set of underpinning hardware blocks Based on the survey that this thesis presents on modem video compression standards and their associated enabling technologies, it is concluded that tight energy and throughput constraints can still be effectively tackled at algorithmic level in order to design re-usable optimised hardware acceleration cores. To prove these conclusions, the work m this thesis is focused on two of the basic enabling technologies that support mobile video applications, namely the Shape Adaptive Discrete Cosine Transform (SA-DCT) and its inverse, the SA-IDCT. The hardware architectures presented in this work have been designed with energy efficiency in mind. This goal is achieved by employing high level techniques such as redundant computation elimination, parallelism and low switching computation structures. Both architectures compare favourably against the relevant pnor art in the literature. The SA-DCT/IDCT technologies are instances of a more general computation - namely, both are Constant Matrix Multiplication (CMM) operations. Thus, this thesis also proposes an algorithm for the efficient hardware design of any general CMM-based enabling technology. The proposed algorithm leverages the effective solution search capability of genetic programming. A bonus feature of the proposed modelling approach is that it is further amenable to hardware acceleration. Another bonus feature is an early exit mechanism that achieves large search space reductions .Results show an improvement on state of the art algorithms with future potential for even greater savings

    Survey of FPGA applications in the period 2000 – 2015 (Technical Report)

    Get PDF
    Romoth J, Porrmann M, Rückert U. Survey of FPGA applications in the period 2000 – 2015 (Technical Report).; 2017.Since their introduction, FPGAs can be seen in more and more different fields of applications. The key advantage is the combination of software-like flexibility with the performance otherwise common to hardware. Nevertheless, every application field introduces special requirements to the used computational architecture. This paper provides an overview of the different topics FPGAs have been used for in the last 15 years of research and why they have been chosen over other processing units like e.g. CPUs

    Towards efficient exploitation of GPUs : a methodology for mapping index-digit algorithms

    Get PDF
    [Resumen]La computación de propósito general en GPUs supuso un gran paso, llevando la computación de alto rendimiento a los equipos domésticos. Lenguajes de programación de alto nivel como OpenCL y CUDA redujeron en gran medida la complejidad de programación. Sin embargo, para poder explotar totalmente el poder computacional de las GPUs, se requieren algoritmos paralelos especializados. La complejidad en la jerarquía de memoria y su arquitectura masivamente paralela hace que la programación de GPUs sea una tarea compleja incluso para programadores experimentados. Debido a la novedad, las librerías de propósito general son escasas y las versiones paralelas de los algoritmos no siempre están disponibles. En lugar de centrarnos en la paralelización de algoritmos concretos, en esta tesis proponemos una metodología general aplicable a la mayoría de los problemas de tipo divide y vencerás con una estructura de mariposa que puedan formularse a través de la representación Indice-Dígito. En primer lugar, se analizan los diferentes factores que afectan al rendimiento de la arquitectura de las GPUs. A continuación, estudiamos varias técnicas de optimización y diseñamos una serie de bloques constructivos modulares y reutilizables, que se emplean para crear los diferentes algoritmos. Por último, estudiamos el equilibrio óptimo de los recursos, y usando vectores de mapeo y operadores algebraicos ajustamos los algoritmos para las configuraciones deseadas. A pesar del enfoque centrado en la exibilidad y la facilidad de programación, las implementaciones resultantes ofrecen un rendimiento muy competitivo, que llega a superar conocidas librerías recientes.[Resumo] A computación de propósito xeral en GPUs supuxo un gran paso, levando a computación de alto rendemento aos equipos domésticos. Linguaxes de programación de alto nivel como OpenCL e CUDA reduciron en boa medida a complexidade da programación. Con todo, para poder aproveitar totalmente o poder computacional das GPUs, requírense algoritmos paralelos especializados. A complexidade na xerarquía de memoria e a súa arquitectura masivamente paralela fai que a programación de GPUs sexa unha tarefa complexa mesmo para programadores experimentados. Debido á novidade, as librarías de propósito xeral son escasas e as versións paralelas dos algoritmos non sempre están dispoñibles. En lugar de centrarnos na paralelización de algoritmos concretos, nesta tese propoñemos unha metodoloxía xeral aplicable á maioría dos problemas de tipo divide e vencerás cunha estrutura de bolboreta que poidan formularse a través da representación Índice-Díxito. En primeiro lugar, analízanse os diferentes factores que afectan ao rendemento da arquitectura das GPUs. A continuación, estudamos varias técnicas de optimización e deseñamos unha serie de bloques construtivos modulares e reutilizables, que se empregan para crear os diferentes algoritmos. Por último, estudamos o equilibrio óptimo dos recursos, e usando vectores de mapeo e operadores alxbricos axustamos os algoritmos para as configuracións desexadas. A pesar do enfoque centrado na exibilidade e a facilidade de programación, as implementacións resultantes ofrecen un rendemento moi competitivo, que chega a superar coñecidas librarías recentes.[Abstract]GPU computing supposed a major step forward, bringing high performance computing to commodity hardware. Feature-rich parallel languages like CUDA and OpenCL reduced the programming complexity. However, to fully take advantage of their computing power, specialized parallel algorithms are required. Moreover, the complex GPU memory hierarchy and highly threaded architecture makes programming a difficult task even for experienced programmers. Due to the novelty of GPU programming, common general purpose libraries are scarce and parallel versions of the algorithms are not always readily available. Instead of focusing in the parallelization of particular algorithms, in this thesis we propose a general methodology applicable to most divide-and-conquer problems with a buttery structure which can be formulated through the Index-Digit representation. First, we analyze the different performance factors of the GPU architecture. Next, we study several optimization techniques and design a series of modular and reusable building blocks, which will be used to create the different algorithms. Finally, we study the optimal resource balance, and through a mapping vector representation and operator algebra, we tune the algorithms for the desired configurations. Despite the focus on programmability and exibility, the resulting implementations offer very competitive performance, being able to surpass other well-known state of the art libraries

    Scheduling Problems

    Get PDF
    Scheduling is defined as the process of assigning operations to resources over time to optimize a criterion. Problems with scheduling comprise both a set of resources and a set of a consumers. As such, managing scheduling problems involves managing the use of resources by several consumers. This book presents some new applications and trends related to task and data scheduling. In particular, chapters focus on data science, big data, high-performance computing, and Cloud computing environments. In addition, this book presents novel algorithms and literature reviews that will guide current and new researchers who work with load balancing, scheduling, and allocation problems

    Power system optimisation and stability studies using real-time simulation

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:D68146/86 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    A computational approach to flame hole dynamics

    Get PDF
    Turbulent diffusion flames at low strain rates sustain a spatially continuous flame surface. However, at high strains, which may be localized in a flow or not, the flame can be quenched due to the increased heat loss away from the reaction zone. These quenched regions are sometimes called flame holes. Flame holes reduce the efficiency of combustion, can increase the production of certain pollutants (e.g. carbon monoxide, soot) as well as limit the overall stability of the flame. We present a numerical algorithm for the calculation of the dynamics of flame holes in diffusion flames. The key element is the solution of an evolution equation defined on a general moving surface. The low-dimensional manifold (the surface) can evolve in time and it is defined implicitly as an iso-level set of an associated Cartesian scalar field. An important property of the method described here is that the surface coordinates or parameterization does not need to be determined explicitly; instead, the numerical method employs an embedding technique where the evolution equation is extended to the Cartesian space, where well-known and efficient numerical methods can be used. In our application of this method, the field defined on the surface represents the chemical activity state of a turbulent diffusion flame. We present a formulation that describes the formation, propagation, and growth of flames holes using edge-flame modeling in laminar and turbulent diffusion flames. This problem is solved using a high-order finite-volume WENO method and a new extension algorithm defined in terms of propagation PDEs. The complete algorithm is demonstrated by tracking the dynamics of flame holes in a turbulent reacting shear layer. The method is also implemented in a generalized unstructured low-Mach number fluid solver (Sandia's SIERRA low Mach Module ``Nalu") and applied to simulate local extinction in a piloted jet diffusion flame configuration

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF
    corecore