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inferred. Several simulation techniques are discussed and a discrete
time domain representation for the various components of a power

system is given.

The Real-Time Power System Simulator is described in terms of its
héxdware and software, with particular attention given to the Monitor
task which manages the collection and use of data generated by the
simulator. Within the Monitor task, mechanisms have been developed
to compare the dynamic and transient stability 1limits of power
systems with different céntroller settings. These mechanisms are
then used to compare the dynamic and transient stability 1limits

changes brought about by the optimisation of the transient

performance of the power system.

The hardware developed by the author has been used in conjunction
with his specifically written software to study, in real time, the
dynamic and transient performance of several different power system
models. Significant improvements in the transient performance of
power systems by the use of sub-optimal controllers have been

demonstrated.
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CHAPTER 1

INTRODUCTION

1.1 The Evolution of Power Systems

The evolution of generating plant has been stimulated since its
eirliest days by .an ever increasing démand for electrjcal power.
Early generating plants were both small and thermally inefficient by
today's standards, and economic pressures gradually demanded an
increase in plant efficiency. as the power system in this country
evolved, other pressures were brought to bear, particularly
environmental pressures, restricting the siting of new generating
plant and the amount of overhead transmission network available to
transport electrical power from centres of generation to centres of
load. Taken together, these pressures favour large, | thermally
efficient generating plants, coupled together by the minimum number
of interconnections. Today, a modern, thermally efficient power
. 8tation, consisting of four generating sets, is capable of generating
in excess of 2000MW of power. In the case of small power systems,
such as those encountered on small islands, oil rigs and naval
vessels, these pressures have resulted in large, efficient plant,
that under light loading conditions may reduce the power system to a

single item of generating plant.

The £first high speed alternating current generating plant was
installed in 1888 by C. A. Parsons (1l-1) and used a steam turbine

prime mover. This generator was fitted with a rotating armature



winding and a static field winding. This arrangement was soon
discarded in favour of a static armature winding and a rotating field
winding, due to the difficulties experienced in removing high levels
of power from the machine using slip rings. In 1912 the basic form of
the turbogenerator plant was established, again by C. A. Parsons,
with the installation of a 25MW turbogenerator set. Since then,
there has been a steady increase in the power output available from a
single generator set.. This increase in plant capacity can be
attributed to improvements in engineering techniques rather than to
fundamental design changes in the form of the turboalternator
configuration. In particular, improved cooling schemes have allowed
large increases in the electrical power output of generating units.
During the 1950°'s, hydrogen cooling of the machine rotor appeared

and, subsequently, water cooled stator windings were introduced.

This increase in the power output of generating plant has not
been accompanied by a proportional increase in the inertia of the
rotor shaft, and has resulted in a reduction of the short circuit
ratio. Both these trends are detrimental to power system stability.
With smaller values for the inertia constant, H, less mechanical
power is required to increase the machine locad angle under transient
conditions, and the smaller short circuit ratio reduces the
capability of the machine to transmit power for a given field current

by increasing the synchronous impedance.

1.2 Power System Stability

A power system generally consists of synchronous generators and

loads, interconnected by a transmission system. This is a dynamic



system, and the stability of a power system is the ability of a
synchronous generator to regain and maintain synchronism with the
rest of the power system to which it is connected, following a
disturbance (1-2, 1-3). The steady-state stability of a power systenm
reflects its abiliﬁ to regain and maintain synchronism following
small, aslow disturbances (such as those caused by normal load
fluctuations), while transient stability reflects the ability of a
" power system to régain and maintain synchronism following large and
sudden disturbances (such as those caused by system faults or line
switching). The stability limit of a generator is the maximum power
that the generator can deliver without losing synchronism. In this
way, the steady-state stability limit is defined as the maximum power
‘ that a generator can deliver without 1losing synchronism when
subjected to a small, slow disturbance, and the transient stability
limit is defined as the maximum power that a generator can deliver
without 1losing synchronism when subjected to a large, sudden
disturbance. The maximum power that a generator may deliver is
governed by its capacity and the conditions under which it operates.
wWhen operating in the lagging power factor region of the operating
chart, the maximum power output of the generator is limited by the
maximum power output of the prime mover, and by the heating of rotor
and stator windings. when operating in the leading power factor
reqgion, the maximum power output of a generator 1is limited by
stability considerations. The steady-state stability 1limit, which
depends on the presence of swmall, siow disturbanceé, is well defined,
while the transient stability limit depends on the type and severity
of the disturbance used to define the stability limit. The transient
stability criterion usually adopted is the ability of the generator

to regain and maintain synchronism following a {-.hree-phase short



circuit fault of a standard duration, close to the generator
terminals. When transient stability is defined in this wmanner,
operation in the leading power factor region of the operating chart
is usually restricted by the transient stability 1limit, which is

generally lower than the steady—state stability limit.

The steady-state stability limit may be discussed in terms of
synchronising and damping torque components (1-4). Synchronising
torques are in phase with the load angle and tend to restore the
machine load angle following a disturbance, while damping torques are
in phase with the rotor slip speed, and tend to damp out rotor
oscillations about the synchronous reference frame. In order to
maintain steady-state stability, both synchronising and damping
torques wmust be positive. This ensures that a small increase in
electrical load, resulting in a small increase in load angle, will be
compensated for by an increase in electrical power output, and that
rotor oscillations will be damped out. Steady-state stability can be
lost if either of these torque components is missing, or negative. A
lack of synchronising torque is characterised by a monotonic increase
in load angle following a small disturbance, while a lack of damping
torque is characterised by locad angle oscillations of increasing
amplitude.. The steady-state stability 1limit of a synchronous
generator can be extended by the use of a continuous, fast-acting,
automatic voltage regulator (AVR), which allows stable operation at
load angles well in advance of those possible using fixed excitation.
The region of the operating chart between the fixed excitation
steady-state stability 1limit and the steady-state stability 1limit
obtained using a modern AVR, is generally referred to as the dynamic

stability region, and the later stability limit is referred to as the



dynamic stability limit, to distinguish it from the fixed excitation
steady-state stability limit. Improvement of the steady-state
stability 1limit by means of gxcitation control using various extra
feedback signals has been investigated by many authors (1-4 to 1-8).
Practical extra feedback signals include shaft speed (1-4,1-5),

terminal power (1-6,1-7) and frequency deviation (1-8).

wWhen the system is disturbed by a three-phase, short circuit
fault, close to the high voltage terminals of the generator
transformer, the voltage at this point collapses, and prevents the
transfer of power betweén the generator and the rest of the power
system. wWhile the fault is present, the power balance between
mechanical power input, and electrical power output is upset, and the
excess power must either be dissipated in increased losses, or stored
in increased magnetic fluxes and as kinetic enerqgy by increasing the
rotor speed. The high level of stator curre;\ts at fault inception
result in excess electrical losses which may give rise to an initial
retarding torque and, consequently, an angular Dbackswing. The
magnitude of this backswing is generally small and it is usually
neglected. Most of the excess input energy is absorbed as additional
kinetic energy in the rotor shaft. The increased rotor speed in turn
increases the angle of the machine e.m.f. relative to the rest of the
power system. When the fault is cleared, the transmission of power to
the rest of the system is resumed, possibly at a new power level,
depending on the state of the power system following fault clearance.
The generator will generally maintain synchronism if the excess
kinetic energy can be transferred to the electrical system as

electrical power. This introduces the concept of first swing

transient stability, which may be considered as a measure of the



likelihood that the machine will not pole slip on the first rotor

swing.

Common methods of comparing the transient stability of power
systems, based on a first swing criterion are pre-fault/post—-fault
impedance plots and critical fault clearance times. Pirst swing
stability ‘gives no insight into the behavicur of the transient
following the first swing in the load angle excursion and, in order to
obtain a comparison of the subsequent behaviour, some form 'of'
performance criterion must bDbe defined. This criterion would
generally be some function of the terminal voltage and load angle,
designed to favour the early damping of rotor angle oscillations and
the rapid recovery of the terminal voltage.

Modern, fast acting, high ceiling AVRs offer ‘an improvement in -
the transient stability limit over a fixed excitation system. The
terminal voltage error during the fault is sufficient to drive the
excitation voltage to its positive ceiling, which maximises the power
transfer during and after the fault, so reducing the size of the load
angle o§etshoot. However, simple terminal voltage feedback, while
increasing the synchronising torque component, reduces the damping
torque component (1-4), and so is not very effective at damping rotor
oscillations following the first load angle swing. 1In general, the
terminal voltage error keeps the field voltage in positive saturation
for too long, resulting in excessive power transfers between the
mechanical and electrical systems, thereby giving an overshoot in the
load angle recovery. Supplementary feedback signals (1-4 to 1-8),
fed into the excitation system, can be used to give more control over

the field voltage response, without degrading the terminal voltage

6‘



recovery.

When considering the governing system, only small speed
deviations are present during the fault and these alone will cause
little governing action. Modern, fast acting, electrohydraulic
governing systems are capable of significantly reducing the prime
mover output torque during a fault, thus improving first swing
stability and subsequént damping, provided a suitable coﬁtrol
strategy can be employed. Since power Dbalance is the ultimate
consideration for the stability of a generator, the most direct
solution to the stability problem is to maintain the power halance,
either by reducing the mechanical input power to the generator, or by
increasing the electrical power output during the fault. This gives
rise to such techniques as fast governing (1-9,1-10), fast valving
(1-11, 1-12) reduction of the fault clearance time, braking resistors

(1-13) and fast excitation with high field voltage ceiling (1-14).

‘In recent years, interest has been shown in the application of
optimal control theory to the problem of stabilising power systems
(1-15 to 1-17) by the use of extra control signals, fed into the
excitation and governing systems. Most early studies used linearised
system representations, and controls cobtained by the solution of the
matrix riccatti equation require access to all the system states.
Such controls are not easily applied in practice since some of the
system states will be inaccessible. Sub—optimal controls have been
obtained using non-—-linear methods (1-18) and selected system states
(1-19, 1-20). It is reasonable to assume that, in control schemes
requiring access to all the system states, some states will dominate

the control law. States making little contridbution to the control



scheme may be eliminated from the control law (1-19,1-20) and it is-an
objective of the work presented in +this thesis to improve the
transient performance of a power system by obtaining sub-optimal
controls which employ the feedback of a limited number of extra
control signals. Several authors (1-21 to 1-23) have considered the
reduction of the number of extra feedback signals necessary +o
produce significant improvements in the transient performance of a
syﬁchronous generator conneéted to an infinite bus bar, and the most
popular of these signals are the terminal power, Pe, the direct axis
current, Iy, and the rotor acceleration, p3s. The use of extra
control signals in improving the transient performance of a small
power system comprising a single synchronous generator and an
inductive locad is also investigated. In this case the operating
power factor is determined entirely by the impedance angle of the
load, and it 1s not possible for synchronism to be 1lost.. The
performance objectives in this case are the rapid recovery of
terminal voltage and the wmaintenance of the power system frequency

following a fault or a load change.

1.3 Power System Simulation

The simulation of power systems is necessary to study their
transient behaviour under controlled and repeatable conditions. This
is particularly true when the transient performance of a power system
is to be optimised with respect to some performance criterion.
Analogue computer simulations are cumbersowme, and incapable of
automatically adjusting control parameters to improve transient
performance as an optimisation proceeds. The general trend in

simulation studies has been towards numerical solution of the system

8.



equations using digital computers. As it Dbecomes necessary to
simulate larger and more complex power Systems, increasing demands
are placed on the processing power of the computing systems.
Traditionally these computing systems have been large mainframe
computers, which are unable to guarantee the speed of response given
to any individual user, and it is uneconomic to comtemplate using

such computer hardware as a single user power system simulator.

In recent years microprocessor parts have appeared on the market,
and the latest of these devices offer processing power which rivals
that of mini-computers such as the PDP 11/34. Indeed, the divisions
between so—called micro, mini and mainframe computer systems are no
longer clear cut, as integration techniques evolve and permit more
complex devices to Dbe fabricated using the same area of
semiconductor. The latest generation of microprocessor devices
offers cheap computing power which may be placed at the disposal of a
single user. Large—-scale power Bsystem simulations can then be
undertaken, with guaranteed response times, at speeds which, from the
user’'s point of view, are far in excess of those obtainable using
either mini or mainframe computer systems. It is now possible to
eqonomically develop sufficient computing power to run a transient

simulation of a power system in parallel with the real power system.

1.4 Digital Systems

Since the first transistors appeared in the 1950's, the field of
digital electronics has evolved at a tremendous pace. The
fabrication of more than one transistor on a piece of semiconductor

soon became commonplace and, as new, more complex and more powerful



semiconductor devices were developed, the cost of these componeﬁts
fell. Similarly, the cost of constructing computer systems from
these new devices has been falling and the reliability of the
resulting systems has been improving. Semiconductor integration
technology has evolved through large—scale integration (LSI) in the
late 1960's which gave rise to devices containing of the order of one
thousand transistors, to tcday's very large-scale integration (VLSI),
where an integrated device may contain in excess of 70,000
transistors. Single component microcomputer systems are now
available, containing random access memnory (RAM), read only wmemory
(ROM), input/output and a central processing unit (CPU), all
fabricated on a single piece of semiconductor. Although not very
powerful as a general purpose computing system, these devices afe
much used in dedicated applications such as the control of consumer
goods, (e.g. microwave ovens and washing machines) and are rapidly
finding new applications in the field of vehicle electronics (e.g.
self tuning ignition timing, anti-skid braking systems, and vehicle
instrumentation). A further order of magnitude increase in the
number of transistors per device will mean that large scale computing

systems may be constructed from a handful of components.

At the end of the 1960's, when LSI technology emerged, further
advances were temporarily blocked by a lack of application. Apart
from wmemory devices, such large-scale devices would be too
gspecialised to be of any use. The development of the pocket
calculator revived the situation by providing a device which required
the use of LSI technology and was extremely marketable, so giving
rise to the volume production necessary to sustain the semiconductor

industry. It was a short step from the fixed function calculator to

10.



the programmable calculator, and from there the next step was the
design of a general purpose wmicroprocessor. The use of
microprocessor based solutions to engineering problems greatly
reduces the component count, and improves the flexibility of the
solution so that design changes may be made easily. Today the problem
of device specialisation has been solved in two ways. First, the
microprocessor route, which provides a general purpose device, and
secondly, the advent of gate array technology. Gate arrays are LSI
" and VLSI devices which are made up of uncommitted logic gates. It is
then a relatively cheap process to customise the device by designing
the metalisation layer which connects these logic gates together and
produces a dedicated device. Gate arrays, however, are still an
expenoive solution when very small production quantities are

required.

The earliest microprocéssors were not very powerful and could not
be considered to be general purpose processing devices. The number
of registers, the width of the data and address paths, and the
instruction set were restricted by the technology available, since
only a limited number of active components could be fabricated on a
single integrated c¢ircuit. - These microprocessors found limited
application in such fields as industrial controls, logic sequencing
and as general purpose logic devices. The second generation
microprocessors (Is080, 6502, MC6800, 2Z80, etc.) evolved from a
realisation that, given a suitable architecture, the microprocessor
could compete with the traditional computing elements. These second
generation devices were fabricated using metal oxide silicon
technology (MOS), which gave rise to the transition from LSI to VLSI.

As a result of the overall reduction in size of these devices, speed

11.



and power dissipation have improved due to a reduction in the gate

capacitance and the cell volume.

A8 microprocessor devices have become more complex, their designs
have become more regular. Early microprocessors were so—called
' randcm logic’ designs, whereas today'’'s third generation
microprocessors, such as the MC68000, are built around microcoded
sequencers, resulting in a large and regular instruction set. The
Motorola MC68020, which has just appeared on the market, represents
the state of the art in microprocessor technology. The instruction
stream is fed to the execution sequencer via an instruction prefetch
pipeline. This pipeline, and the execution unit both make requests
on a bus controlling sequencer which is responsible for moving data
between the microprocessor and memory. Internal to the device there
is .also an instruction cache and, using this architecture, it is
possible. for an instruction to have an execution time of zero. A
register to register instruction, which has already been prefetched
into the instruction pipeline, may be executed simultaneously with
the return of the result of the previous operation to memory by the
bus controlling sequencer, and it becomes impossible to attribute any
execution time to this instruction. The MC68020 also fully supports
virtual memory by instruction continuation, and has been labelled a
'microframe’ s8ince its architecture closely resembles that of a

mainframe computer.

1.5 Multiprocessor Systems

Although third generation microprocessors have resulted in large

increases in the computational power available from a low cost



computer system, this power is limited. A typical third generation
microprocessor has an instruction throughput of one million
instructions per second (1IMIP), which, although large, represents an
absolute limit on the computational speed of a single processor. A
means of bypassing this limit is the development of multiprocessor
systems, These systems, in general, consist of a number of
co—~operating microprocessor devices, either tightly or 1lcosely
coupled together. The wide range of° multimicroprocessor -
configurations available take their 1lead from modern mainframe
architecture. Here a number of tightly coupled CPU's perform the
main task execution, while slightly more loosely coupled front end
processors manage the input/output functions, such as disc storage
and interaction with the user. These front end processors may in turn
be connected directly to the user's terminal, or loosely coupled to
other computer systems, remote from the main installation, which
provide terminal concentration and multiplexing facilities for remote

users.

Distributed microprocessing gives the user several advantages.
The reliability and fault tolerance of such systems is improved by
the distribution and duplication of processing subsystems. More
processing power in terms of instruction throughput is available to
the user, and the system may be expanded in a modular fashion to solve
more complex problems due to the modular nature of the system

architecture.

1.6 Real Time Simulation Studies

With so much processing power now available, and the increasing

13.



demand for more complex power system simulation, with a faster
response to the user’'s commands, it became a logical step to seek a
microprocessor based solution on which to perform power system
simulation. This thesis details the development of a real-time power
system simulator (Chapter 4) and its use in the optimisation of the
transient performance of power systems (Chapter 6). Chapter 3
details the power systems studied and the sigmla.tion methods used.
Other studies have been conducted using the simulator (Chapter 5)
which permit quantative é:ompa.risons to be made between the dynamic
and transient stability limits obtained by the use of various control
strategies. Transient stability limits are compared by the use of
pre—fault/post—-fault impedance charts, while the dynamic stability
comparisons are made by plotting the dynamic stability limit in the

leading power factor region of the operating chart.

The objective of this work is to apply optima.l control theory
(Chapter 2) to the improvement of the transient performance of power
systems by the use of a real-time simulator, and to demonstrate the
effect the use of optimised control strategies has on both the

transient and dynamic stability limits of the generating plant.
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CHAPTER 2

OPTIMAL CONTROL

2.1 Introduction

This Chapter introduces the concepts behind optimal control
theory. These concepts are then developed to obtain a set of
necegsary conditions upon which the design of an optimal controller
may be based. The significance of these various conditions is
discussed in order to assess how each will influence the solution of
an optimal control. A number of solution methods are then considered
and their suitability with regard to deriving optimal controls for a
power system is discussed.

The objective of an optimal controller is to predict a continuous
control function of time, or a sequence of controls, which, when
applied to a plant during a specified interval of time, will cause the
plant to behave in socme optimum manner. The term 'optimum manner’
must be put into context and, in order to do this, it is necessary to

establish the concepts of performance measure and performance index.

A performance measure is some arbitrary scalar valued function of
the plant state variables, the plant output variables and the plant
control variables. The objective of the performance measure is to
provide an instantaneous scalar quantity which may be used to assess
the instantaneous quality of the system. The performance wmeasure

itself gives no explicit information about the state of the system,
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rather it indicates how close the system states or outputs are to
their desired operating point, and how much control effort is

currently being expended.

A performance index 1is the time integral of a performance
measure, taken over the closed control interval, to € t € tg, for
which the optimal control is required, where tgy and tg denote the
beginning and end of the control interval respective;ly. A plant is
said to behave in an optimum manner when the control applied to it

extremalises (i.e. maximises or minimises) the performance index.

Controls generated by a conventional controller are functions of
the instantaneous state of the system and the desired state of the
system. As such, a conventional controller may be thought of as
extremalising ( minimising) a performance measure, and no account is
taken of the possibility of future changes in the desired system
state, or the possibility that the control required to minimise the
performance measure at this instant may give rise to larger
performance measures at_ future instants. In extremalising a
performance index, an optimal controller generates controls not only
for the current instant but for the entire control interval over

which the performance index is evaluated.

Without losing generality only the process of minimisation will
be considered in this Chapter, since a maximisation problem may be
transformed into a minimisation problem by simply negating the value

of the performance index that is to be maximised.
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2.2 Performance Measures

It is clear that an optimal control derived by the minimisation
of a performance index will be heavily dependent on the performance
measure chosen. Therefore, it is important that a performance
measure should embody the objectives of the control scheme. It is
also i:_nportant that during the integration process, which evaluates
the performance index, the value of the performance measure at one
instant in time should not cancel out its value at ancther instant.
For this reason, it is desirable that the performance measure should
yvield values which are either all positive and zero, or all negative
and zero. Consider a single output system in which the difference

between the actual output and the desired output is given by:
e - X - ){d (2'1)

where X is the system output and xg is its desired value. The
performance measure IL(x,Xsg) = e is not suitable in the context of
optimal control, since it is possible for it to take on both positive

and negative values, which may cancel out when the performance index

tf
I = J L(x,xg) dt (2.2)

to

is evaluated.

Suitable performance measures based on the output error of

equation (2.1) are L(x,x3) = le|, L(x,x3) = €2 and L(x,x3) = K® where
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K is any positive number except unity.

In most requlator problems, the performance index is based on the
output error of the system. A performance measure of quadratic form
for a system with n outputs and m controls may in general be

represented by:

Wx(t), x3(£), (%), t)

= [x(t)xa(t)1TQ, (£ ){x(t)xd(t)] + U(t)TQ,(t)u(t) (2.3)

where x(t) is an nxl vector representing the plant outputs, x3(t) is
an nxl vector representing the desired plant outputs, U(t) is an mxl
vector representing the control inputs, Q,(t) is an nxn time varying
positive, semi-definite matrix of weighting coefficients, and Q,(t)
13' an noan time varying positive semi-definite matrix of weighting
coefficients. This expression may be simplified slightly by

redefining the performance measure in terms of the nxl output error

vector, g, such that:

Ree) = xe) - xace) (2.4)
and
LRy, ut),t) = 200, (6 R(E)1+0T()0,(1)u(t) (2.5)

The first term of the performance measure takes into account the

plant output error, while the second term provides a means by which
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the control inputs may contribute to the performance index. If this
second term is ignored, it is possible that the minimisation process
which generates the optimum control function will require infinitely
large magnitude control signals. Incorporating this second term in
equations (2.3) and (2.5) allows a trade off to be made between output

errors and control amplitude.

The matrices Q, and Q, have been shown as time varying. This
permits the output errors ‘and control magnitudes to make time varying
contributions to the performance index, with the effect that output
error and control amplitude variations may be made more important at
differing times. For example, when a synchronous generator is
subjected to a 3-phase symmetrical short-circuit fault close to its
terminals, very little may be done to restore the terminal voltagev
while the fault is present. However, it is important that, following
fault clearance, the terminal voltage is restored quickly to its
pre—faulted value. In this case, an ordinary linear time weighting
on the terminal voltage error term will cause terminal voltage errors
during and shortly after the fault to be ﬁuch less significant than
those some time after the fault has been cleared. This will encourage
rapid terminal voltage recovery following fault clearance. The
performance measures used in Chapter 6 contain linear time weighted
terms to encourage rapid recovery of both the terminal voltage and

load angle deviations.

Two special cases of time weighting exist. Consider first a
matrix Q,(t) in which all the elements are zero except at the terminal
time t=tg. Such a matrix may be written with the aid of the delayed

impulse function, 5(t-tg), to give the following performance index:
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te
I = I ﬁ(t)'l‘s(t-tf)qj‘_c(t)+t_:‘1‘(t)Qz(t)g(t) at (2.6)
to

Integrating the first term under the integral of equation (2.6)

gives:
tf

1 o= Fepe o] 0o (eruce) at (2.7)
to

It can be seen that minimising this performance index will involve
wninimising the output error of the system at the terminal time t=tg.
This type of performance index would be used when system output error

is required to be near zero at the terminal time.

Strictly speaking, the second special case is not an example of
time weighting. The performance measure used to perform what is

known as time optimal control is unity. Thus the performance index is

given by

I = jlat : (2.8)

Minimising this performance index will minimise the transit time of
the system between two operating points, specified at the start and

end of the control interval.

Although it is possible to invent an infinite variety of
performance measures, those of time varying quadratic form are of

most interest to this investigation.
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2.3 PFunctional Minimisation

In the discussion so far, no consideration has been given to the
constraint imposed on the minimisation process by the dynamic system.
This constraint is the relationship between the state of the plant
and the plant input which can be expressed by the vector valued

function £, such that
X(t) = £(x(t),0(¢),¢) (2.9)

where, for an nth order system with m inputs, x(t) and :_.c_(t) are nx1l
vectors representing the system state and rate of change of state,
U(t) is an mx1l vector representing the control input, and f is an nxl1
vector function which may be both non-linear and time varying. The

objective of this section is to derive necessary conditions such that

tg
min

I = e | wameroeerey at (2.10)

to
subject to the constraint that:
£(X(£),U(E)t) —Xx =0 (2.11)

where L is the scalar valued performance measure and 0 is a null

vector.

Adopting the calculus of wvariation approach, this constrained

minimisation problem may be converted into an unconstrained
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minimisation problem by the use of Lagrange multipliers (2-1). A new

constrained performance measure may be defined such that:
H(X(t), X(t),U(t), A(t),t)

= L(x(t),00t), t #AT(£)[£(X(t),U(t), t)-k(t)} (2.12)

where A(t) is an nxl vector of Lagrange multipliers. The problem how

becomes that of finding necessary conditions for:

te
[ mexcer icer, ooy ace), e at (2.13)
to

L. = Win
€7 ut)

where Ic is the minimised value of the new performance index. Note
that the value of both of the performance measures H and L is
identical since the constraint of equation (2.11) applies. Thus,
any condition necessary to solve the minimisation problem of equation
(2.13) will also be necessary to solve the minimisation problem of
equation (2.10).

Before deriving the ’ necessary conditions for solving equation
(2.13), some notation must be defined for the partial derivatives of
both a scalar and a vector function with respect to a vector.
Consider the nxl vector X, the scalar function g(x) and the mxl vector
function r(x) then by definition:

g _ [ ag og ] (2.14)

az ax“. e acs s s Hﬂ
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éx ar, ar, ]

'a'; = ‘az ce s e Txr'
: . (2.15)
o7 otm
a—x: ;n—

where Xi,(1 < i 'S n) is the ith element of x and rq, (1 € g < m) is

the gth element of r.

For convenience in the minimisation problem, the arguments of

the functions X, X, U, A, £, L and H will be dropped except where

necessary for clarity. If the functions which yield the required

minimum in the performance index are denoted xr*, .5*, Ur and A*, then

any arbitrary values of these functions may be written as:

X = Xt + 8x

X = X* + BX where 5x = 3¢ [ox1 (2.16)

=}
[

U* + §U
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wWhere the functions (8X, 8:_'c, 8u and 5A) represent deviations

from an optimal trajectory. Evaluation of a function along the

optimal trajectory, i.e. where x = x*, x = x*, U = U* and A = A* will

be indicated by |x. Assuming that the vector valued functions &x, 8&,
8U and SA represent arbitrary, small deviations from the optimal
trajectory, then an expression for the value of the performance index
in the neighbdurhood of the optimal trajectory may be written by

first order Taylor series expansion, and the corresponding small

change in the value of the performance index, &8I, is:

te
5T = J' _B_H 5x + ii_! 51'(_ + 9H 8U + oH sAalat (2.17)
X {=x X |« au |. AN |x
to a—— — — —

Since each of the small change functions 1is arbitrary, equation
(2.17) may be garti:tioned into three integrals, each of which must be
zero independently in order for the change in performance index, B5I,
to be zero. Thus, necessary conditions required for the solution of

equation (2.13) are:

te
FE-I % + A 8—’5] at = o (2.18)
9X |x X |x
to
te
9H
J 35  fuat = o (2.19)
to
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te

=154
} > l* 8\ o (2.20)
)
As 5% = g_t' (58X}, equation (2.18) may be integrated by parts to give:
te

[ [95 - 9-[35} ] sgldt + {EE BE]tf =0 (2.21)

ox atlex * ax Ix ltg

to

Also, since 6x, 5A and 8U are all arbitrarily small but finite, and
because the various trajectories in the interval t5 < t < tg are
independent of the values at the extremes of the control interval,
t =ty and t = tg, the necessary conditions of equations (2.18) to

(2.20) become:

o | _ d_{.i.”.!. ] = 0 (Euler Lagrange Equation) (2.22)
X Ix atlax i«
ag -
= ' = 0 (Control Equation) (2.23)
au |« -
E:J: | i
Y !* = 0 (State Equations) (2.24)
~[ 4T te

[5* .sglto = 0 (Transversality Condition) (2.25)
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These, then, are the necessary conditions which must be satisfied

by the sclution of equations (2.10) and (2.13).

Before discussing the implications of these necessary conditions,
another form for these conditions was established by Pontryagin (2-2)
et al, along with the Minimum Principle. Pontryagin showed that the
solution to equation (2.10) requires <that the Hamiltonian funct_ion
Bp(X, U, A t) = WXOt) + AT £(x U t) (2.26)
must Dbe minimised. The necessary conditions of equations

(2.22) - (2.25) may be expressed in terms of the Hamiltonian of

equation (2.26), by noting that:

B = Hp - AT % . (2.27)

Thus, Pontryagin's equations are:

.g% L + AT = 0  (Adjoint or Co-state Equation) (2.28)
%gg L = 0 (Control Egquation) (2.29)
'% |- T = o (state Equation) (2.30)
-[A*T.S_g]:: = 0 (Transversality Condition) (2.31)

The essential difference between Pontryagin's formulation of the
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necegsary conditions and that given previously is the statement of
the minimum principle which requires that the optimal control, U*(t).
must be a member of the set of admissable controls. If one or more of
the elements Uj(t), 1 € i € m, of the control vector is constrained,
such that Upin € U; & Upax, and the necessary conditions, equations
(2.28) to (2.31), require the control Uj(t) to lie outside this
range, or no control information is available from the control
equation, (2.29), then the minimum principle requires that Uj(t)
takes on the value in the admissable range which minimises ' the
Hamiltonian, equation (2.26). This is summarised by the statement

that:

inf i
Bplx = UeU [Hp(xe(t), O(t), Axe), ©)) (2.32)

where inf denotes the greatest lower bound or infimum and U is the Qet
of admissible controls. As a direct consequence of the minimum
principle, should the necessary conditions require that the optimal
control Uj(t) lie outside its permitted range, it will ta.ke on the
value Upin Oor Upax, whichever minimises the Hamiltonian, equation
(2.26). The derivation of equations (2.22) to (2.25) also made use of
a Taylor series expansion which requires that the first partial
derivative of the state equation with respect to the control vector U
is continuous. 'fhis requirement is relaxed by the use of

Pontryagin's Minimum principle.

2.4 Implications of the Necessary Conditions

In the next section the application of the necessary conditions,
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equations (2.28) to (2.31), will be illustrated by deriving an
optimal control for a 1linear system subjected to a quadratic
performance measure. Prior to that, some discussion is necessary
with regard to the implications of equations (2.28) to (2.31). The
comments which follow apply equally to the necessary conditions of
equations (2.22) to (2.25), since it has already been shown that both

gets of egquations are closely related.

2.4.1 The Transversality Condition

This condition is defined by equation 2.31 as:
A" T.ex1tf = o (2.31)
to

which implies:
AT(tg) 8X(to) — A"T(tg) 8x(tg) = © (2.33)

The vector function 8x(t) is entirely arbitrary in the interval
to < t < tg and the conditions at either end of the interval, 5x(tg)
and b&x(tg), are independent of each other, but depend on the
specification of initial and terminal conditions. Consequently, in
order that equation (2.31) is satisfied, each of the terms of
equation (2.33) must be 2zero, independently. This means that the
vectors A(tg) and 8X(tg) must be orthogonal, as must the two vectors
Mtg) and 8x(tg). If an initial condition is given for one of the
system states, say xj(tg) = Xjo then 8xj(tg) must be zero, since by

equation (2.16) xj = xj* + 86xj and xj(ty) must be on the optimal
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trajectory. If 8xj(to) 1is zero, then 8x(tgy) and A(tg) will be
orthogonal for all values of Aj(tg). Conversely, if no initial
condition is given for xj, then 8xi(ty) is entirely arbitrary and
Aji(to) must be zero to guarantee that the two vectors 8x(tg) and A(tg)
are orthogonal. Similar considerations may be applied to the
terminal conditions, 8x(tg),A(tg),8xj(tg) and Aj(tgy. These

considerations are summarised in Table 2.1.

Xi(to) x4(tg) 8x4(tg) 8xy(tg) Ai(to) Ai(te)

FREE FREE FREE FREE o o}

Xio FREE o FREE FREE (o]

FREE X{f FREE o} o] FREE

Xio Xif o o FREE FREE
Table 2.1

It can be seen from this Table that every row contains one initial
condition at time to, and one terminal condition at time tg. The
presence of the transversality condition therefore creates a Two

Point Boundary Value Problem (TPBVP).

2.4.2 The Control and State Equations

Equation (2.29) has been 1labelled the control equation.
Application of this equation to the Hamiltonian of equation (2.286)

gives:

xq x* x
:U [ L(x*,U*,t) + A"% £(x",U",t) ] (2.29)
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(2.34)

ml @

1qic

1&he
[]
o

Provided that either the performance measure, L, or the system
function f is non-linear in the control vector U, then the respective
partial derivatives in equation (2.34) will be functions of U and the
equation may then Dbe rearranged to express the co_ntrol g* as a
function of the co-state vector A*. If both L and £ ax.e linéar ingU
then the control equation yields no information regarding the optimal
control g*, since neither of the partial derivatives are functions of
the control vector. In this case the control U* must be cbtained by
direct minimisation of the Hamiltonian according to Pontryagin's
maximum principle. Por example, consider the dynamic equation

described by the state equation:

x = f(x,t) + B(x,t).U (2.35)

where f is an nxl vector function which may be time varying and
non—linear, and B is an nxm matrix function which may also be
non—linear and time varying. This state equation is linear in U, as

is the performance measure:

T
Ix,U,t) = L,(x,t) + Ly(x,t).0 (2.36)

where L; is a scalar function and L, is an mxl vector valued function,
both of which may be time varying and non-linear. The Hamiltonian

that arises by use of the performance measure of equation (2.36) and
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the state equation of (2.35) is:

T T
Bp = Ly + Lp.U+ A [£ + BU] (2.37)

Applying the control equation (2.29) to equation (2.37) gives:

aﬂp T

35 |, = L2+BA =0 (2.38)

which conveys no information about the control g_*. In order to
minimise the Hamiltonian according to the minimm principle, the
terms in U may be collected together and, since these are independent
of any of the other terms making up the Hamiltonian, they may be
minimised independently of the rest of the Hamiltonian. Thus, the

optimal control U* is the control which minimises the term:

T T
(Lz + A B)U" (2.39)

T T
The term (L, + A B) is a lxm vector which is dependent on the system
state x, the co-state A and time. Defining a new mxl vector
function:
T

(2.40)

then each of the optimal controls Uf, 1 € i < m, must be such as to
‘minimise the term K4.Uj. Thus, when Kj > O, Uj will take on as large
a negative amplitude as is admissible and when Kj < 0, Uj will take on

as large a positive amplitude as is admissible. when Kij = 0 no
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control action will directly minimise the Hamiltonian and the problem

becomes a singular optimal control problem.

One of the necessary conditions, equation (2.30), requires that
the state equation is satisfied by the optimal control. Applying

equation (2.30) to the Hamiltonian of equation (2.26) gives:

*x X, Terw® g* .
% [B(ES U7rt) + A E(x7,0 -t)] -xT = o (2.30)

i.e. xX* = f£(x*,0"¢t) (2.41)
which is precisely the state equation of (2.8) in the specific
instance that U = U*. This condition arises because the use of
Lagrange multipliers in the derivation of the necessary conditions,
turns the constrained problem described by equations (2.9) and (2.10)
into an unconstrained problem, equation (2.12). Thus the state
equation 1is not a constraint of the minimisation described by
equation (2.12), but it is a necessary condition for U* to be the

optimal control.

2.4.3 The adjoint or Co-State Egquation

The necessary condition of equation (2.28) may be applied to the

Hamiltonian of equation (2.26) as follows:

88p = —\*T (2.28)
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(2.42)

The form of equation, (2.42) is that of a state equation, say

A = g( _);,:—}-; ) where A is the state vector and g; N corresponds to

the input or forcing term, similar in function to i:he_control vectczr u
of the plant state equation (2.8). In order to solve the TPBVP posed
by the transversality condition, both equations (2.42) and (2.8) must
be integrated. It was noted in the previcus section that the forcing
term g* for the plant equations is generally a function of the
co—-state vector A. Due to the transversality condition, 1if an
iﬂitia.l condition is available for the state xj then there is no
constraint on the initial condition for the co-state Ay. As a result,
theré is no general solution to the TPBVP since simultaneous
integration of the state and co-state variables either forwards from
initial conditions or backwards from terminal conditions, is

impossible. Possible numerical methods of solution will be dealt

with in a later section.

2.5 Application of Pontryaqin's Equations to a Linear System with

Quadratic Performance Measure

Consider a 1linear dynamic system described by the dynamic

equation:

X = Ax + BU with x(tg) = X (2.43)

where A is an nxn matrix which may vary with time and B is an nxm
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matrix which may also be time variant. Also consider the quadratic

performance measure:

L(x,U,t) = XN(Q, + 8(t-t£)Qy)x + UTQ,U (2.44)
where Q,, Q, and Q, are respectively nxn, mxm and nxn symmetrical
positive definite matrices, Q, and Q, may be time varying and §(t-tg)
is the delayed impulse function. The corresponding Hamiltonian is:
Bp = XT(Qy + 8(t-t£)Qs)x + UTQ,U + AT [ax + BU] (2.45)

By transversality, the various initial conditions are x(tgy) = Xo,

X(tg) is free, A(tg) is free and A(tg) = O. Application of the

control equations gives:

—_— = ZQZH*"'BTA* = 0

Q

auT -
P
u

so that, provided the inverse of Q, exists:
o* = (-1/2)Q,7*BTA" (2.46)

is the required control law. Applying the adjoint equation to the

Hamiltonian gives:

A* = -ATA* - 2(Q, + 5(t-tg)Q,)x* (2.47)

for which terminal conditions exist at time tg. The integration of

equation (2.47) in reverse time from t = tg towards t = tgo will
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immediately cross on the impulse function at time t = tg£. This
corresponds to a step in the A versus time response from A = 0 at
t=tg to A =2Q.,x at time t = tF where te 1is the last instant
prior to the impulse in forward time, Thus, equation (2.47) may be
rewritten and the boundary condition adjusted to incorporate the

impulée functicn. This gives:

.

_A_*

= - ATA™ - 20,x™ with A"(tg) = 2Q.x"(tg) (2.48)

The control law of equation (2.46) describes an open loop control and
it is desirable that a closed loop control be found. The adjoint
equation (2;48) is 1linear in the state vector x, so it would be
reasonable to propose that the co-state wvector A is some linear time
varying function of the state vector. This may be represented by the
equations:

®

A" = 2pPx*, and A = 2pPx* + 2Px" (2.49)

where P is an nxn time varying matrix. The control law can then be

w&itten as:

u* = -9;'8Tpx* (2.50)

which is now in a closed loop form. Rearranging equations (2.49) and

(2.48) and substituting for é and, for U, using equations (2.43) and

(2.50) results in the Matrix Riccatti equation:

-

Px = - [PA + ATP + Q, - ppo_'BTPIxX (2.51)
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with P(tg) = Q3. For non—trivial solutions to equation (2.51)

P = -[PA + ATP + Q, - PBQ; BTP], P(tg) = Q4 (2.52)

This is a non-linear equation which governs the dynamics of the
mati:ix P and may be solved by integrating in reverse time over the
closed interval tg 3 t 2 tg. P(t) may then be used to generate the
controls of equation (2.50) when the state equation is integrated

forward in time.

2.6 Dynamic Programming

An alternative approach to the calculus of variation methods used
above, is to use dynamic programming (2-1,2-3,2-4) to establish
necessary conditions for the solution of the optimal control problem.
Dynamic programming requires the definition } of a Minimum Error
Punction, which is an explicit function of the plant state variables
and time. The value of this function is the minimum value that the
perfox':mance index can achieve during the remainder of the control

interval. Thus, for to € t < tg:

R tf
min
E(x(t),t) = U(e)eU [ L(K(0),0(5),0)0 (2.53)
t

where o is a dummy variable for the purposes of integration, L is the
performance measure as before, U is the set of admissible controls
and E is the minimum error function. If the closed interval [t,tg] is
partitioned into two closed intervals ([t,7] and [7,tg], then the

minimum error function can be written as:
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min min T te

E(x(t),t) = (0)e0 O(o)eu | [ Kx(9),U(e),0)0 + | L(z(c).g(c).a)dc]
te,71 (€] '} .

(2.54)

Since the control applied during the later intexval {7,tg]l can have
no effect on the contribution made to the minimum error function

during the first interval [t,T], equation (2.54) may be written as:

min T
E(x(t),€) = O(o)e0 | [ Ux(o), o) 000 + E(x(T),T)] (2.55)
ft, 7} ,
t

Provided T is very close to t, it is possible to assume that x(c) and
U(c) have approximately constant values during the interval
t€o0o<7T, these values being approximately x(t) and U(t)
respectively. An approximation for the integral on the righthand

side of equation (2.55) may then be made, so that:

T

| waer mor )00 = (7 - Eyme) ), ) (2.56)
t

Likewise, provided T is close to t, an approximation for the minimum

error function to the righthand side of equation (2.55) may be made

such that:
E(X(T),T) = E(X(£),£) + (7 - t) Jp [E(x(£),8)] (2.57)

Equations (2.55) to (2.57) may then be combined to give:
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E(x(t),t)

min
= U(o)eU
{t,7]

[(r-ermcmcer,meed ) + (=) JelEaE). €3] + ECx(E).t)]

(2.58)

The total time derivative in these last two equations may be expanded

as:
a L% & % (2.59)
® oo - F e F
= 9E , %E £(x,Ut)
3 3%

by substitution of the state equation (2.8). Incorporating equation

(2.59) into equation (2.58) 1leaves only two terms which are subject
to the minimisation process, % £(x,U,t) and L(X,0,t). Rearranging

(2.58) then results in the dynamic programming condition for minimum

performance index:

min .
- uten | = ]

It naturally follows that the optimal control t_I*(t:) satisfies this

condition, so:

-%E | _ (X", U%,t) + E | £(x",0%,t) (2.61)

at |x X Ix
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which is known as the Hamilton—Jacobi equation (2-3). If the minimum
on the righthand side of equation (2.60) exists for an admissible
control, then an expression for the optimal control g*’ is given by
equating the partial derivatives of the righthand side of equation

(2.60) with respect to U, to zero. This gives the control law

equation as:

aL OE af

—_— + — - .

U |« X (» 9U |» L (2.62)

The functions f and L are known since they are part of the
specification of the problem and so their partial derivatives, with
respect to the control vector, can be evaluated. The function

E(x(t),t) is not given explicitly and the partial derivatives

8E oE

e and 7% cannot be evaluated. Consequently, there is no general

solution to the Hamilton—Jacobi equation, although it may be solved
for specific instances where a general form can be specified for E in
terms of x(t) and ¢t. In particular, if E(x(t),t) is given the

quadratic form:
E(X(t),t) = XTK(t) x(t) (2.63)

where K(t) is an nxn time va.rying matrix, then for a linear system:

I4-
[ ]
14
+
8

(2.43)

as in section 2.5, and a quadratic performance measure:
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(x U t) = xT(Q, + 5(t-tg)Q,)x + UTQ,U (2.44)

such that:
E(x(t),t)
te
- eosen [EFCERX Ee 1 [1X7(9),04(0 1Ko 140T(0),04(@). U(a) o]
t,tg) t : (2.64)

It can be shown that K(t) in equation (2.63) is identical to the P(t)
which is the solution to the Matrix Riccatti equation (2.52). This
result may be immediateiy applied to finding the minimum value of the

performance index:

tg
I = Given | ] (2%oux + TRo,000e + XTenRux(te) |
to
since
I = E(X(to)eto) = x(to)T P(to) x(to) (2.65)

It can also be shown (2-3) that the dynamic programming approach
to optimal control is equivalent to the calculus of variation
approach; in fact, the Euler Lagrange equation (2.22) may be derived

from the Hamilton-Jacobi equation (2.61).

2.7 Solution Methods

It has been noted in previous sections that the presence of the
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transversality condition gives rise to a TPBVP which in general makes
simultanecus integration of the state and co—-state equations
impossible. In general, for an nth order system, the combination of
state and co—state equations results in 2n simultaneous differential
equations with n initial conditions at the beginning of the control
interval and n terminal conditions at ihe end of the control
interval. Wwhen the initial state xX(t,) is compl_etely specified and
the terminal state x(tg) is unspecified, the state equations may be
integrated forward in time from tg to tg and since, by
transversality, A(tg) is known, the co-state equations may be
integrated in reverse time from tgf to ty5. Integration of this type
must be performed numerically on a digital computer since it is
necessary to store state information from the forward integration to
be used in the forcing function for the reverse integration of the
co—-state equati..ons. Initially, some arbitrary choice must be made
for the control function U(t) over the entire control interval.
Using this initial control, the state equations are integrated
forward in time and the state trajectory stored for the subsequent
integration of the co-state equations. After the first iteration,
provided the control equation permits the control to be described as
a function of the co-state variables, A, a new control may be derived
from the co—-state trajectory stored during integration. Repeated
iterations of the above procedure are stable and convergent (2-3).
However, this technique, known as control function iteration, may
only be used when the control equation yields a control law and the
boundary conditions are such that x(tg) and A(tg) are completely

specified.



2.7.1 Relaxation

Relaxation methods (2-3) are applicable to a wide class of
optimal control problems and will always converge to a local minimum
in the performance index value. Consider the nth order non-linear

system:

x = £(x U t) | (2.66)

where x is an nxl state vector, U is an mxl control vector and £ is an

nxl vector valued function. Consider also the performance index:

tf
I = ®xte) + [ Wx U t)at (2.67)
to

where ¢ is a scalar function of the terminal state and L is some
performance measure. If x(t) and U(t) are nominal state and control

trajectories which yield a performance index value of ;, a small
change in the nominal control trajectory, 8U(t), will result in a
small change in the state trajectory 6x(t) and a small change in the
performance index value 8I. The changes 55 and 8U are related by the

linearised state equation:

8x = 3f 6&x + 8f 58U with 8x(0) = 0 (2.68)
ax au

and the corresponding change in performance index is:
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tg

51 = EQBE(tf)_._I aL sx
axX

aL 8U
= + 3a ]dt (2.69)

t

The term in 8x may be eliminated from the integral by use of the

co-gtate equation (2.42):

AT — T T = '
9L _ -AT - ATaf with AT(tg) = 20 (2.70)
ax ax ax |t = tf

Substituting equation (2.70) into (2.69), then integrating the term

in A by parts and finally substituting equation (2.68) for 8;_: gives:

&8I = [22

te
3% AT(tf)]BE(tf) + AT(to).8x(to) + I 2=+ -g]sv at
to

Substitution of the initial conditions into (2.71) make all the terms

outside the integral equal zero, thus:

te
T
8I =J [—"- ‘gt% + at‘]sg_ at (2.72)

EL]
to

If 8U is considered to be an impulse function U7 at some time T in

the closed interval to € T € t then:

A = AT(T).E__f__

oL
ou” au |t=r * |t=r (2.73)

The term on the 1lefthand side of equation (2.73) gives the
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gradient of the performance index with respect to the control vector
at the instant ¢t -i T. This gradient may be used to minimise the
performance index with respect to the control U(t) at each instant in
time by one of numerous gradient methods. Functional minimisation by
gradient methods is discussed in Chapter 6. The iterative procedure

adopted by a relaxation method is:

1. Assume an initial control U(t) for the interval tg € t € tg.

2. Numerically integré.te the state equations forward in time étoring
the state x(t) at each instant in +time and evaluate the

performance index I.

3. Integrate the adjoint equations in reverse time, calculating and

storing ax/ag" at each instant using equation (2.73).

4. Use a gradient technique to improve the control U and reduce the

performance index I. Por example, the use of a steepest descent
technique would require repeated forward integration of the state

equations with the modified control vector:

aT  |T
auT |r=t

U(t) = U(t) -cC (2.74)

to establish the value of the scalar C which minimises ;

5. On conveyance of the gradient technique, the state equations have
just been integrated forward in time. The procedure now returns

to step 3 and the integration of the co-state equations in
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reverse time in order to establish a new set of partial
derivatives 3I/U7T from which the next search direction of the

gradient minimisation will be constructed.

In accordance with the minimum principle, controls must be kept
within their admissible range during step 4. The relaxation method
described above requires the initial conditions for the state
equation at time t5 and the terminal conditions for the co-state
equations at time t¢ to be completely specified in order that the
forward and reverse integrations can be performed. In common with
the ‘'control function iteration' method described, the optimal
controls derived by this method are open loop and, as such, are
applicable only to the particﬁlar initial conditions x(ty) and the
control interval for which the optimal control has been calculated.
This type of control law is unsuitable for the control of generating

plant subjected to la.i'ge external disturbances.

2.7.2 Numerical Solution of the Matrix Riccatti Equation

In Section 2.5, Pontryagin's equations, (2.28) to (2.31) were
used to derive an optimal control for the linear systenm described by
equation (2.43) in association with the performance measure of
equation (2.44). The formulation of this optimal control forces a
clogsed 1loop solution by the definition of a 1linear relationship

between the state and co—state vectors

1>
|
¥

(2.49)

The nxn time varying matrix P was shown to be governed by the
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matrix riccatti equation:

P = -[PA + ATP + Q, - PBQ; BTP] with P(tg) = Q, (2.52)

Given equation (2.52) and its terminal condition, it is possible to
obtain P(t), t < t g, by integration of the matrix riccatti equation
in reverse time. This results in the closed loop control described by

equation (2.50):

0* = —Q,BTPx = -Kx with K = Q, BTP (2.50)
= 2 x 3 2

which, in general, requires full state feedback using the time

varying gain matrix, K.

Much has been written regarding the solution of the matrix
riccatti equation (2-5) to (2-9) and, in particular, the solution of’
the so—-called stationary matrix riccatti equation. This stationary
solution arises when the terminal time, tg, of the control interval
is extended towards infinity, with a time invariant plant .-and
constant matrices Q, and Q,. The matrix P becomes time invariant so

equation (2.52) reduces to:

PA + ATP + Q, - PBQ, 'BTP = 0 (2.75)

Provided the matrix pair [Q,,A] are completely detectable, that is,
all unstable modes are cobservable, integration of equation (2.52) in
reverse time is completely stable and will converge upon the unique

non—negative definite solution (2-6) of equation (2.75). If the

49.



pair{Q,,A] are completely cbservable this solution will be positive

definite.

Potter (2-5) showed that the solution of equation (2.75) could be

inferred from the eigenvalues of the 2nx2n matrix:

E = A . —BQ:*BT
lll‘.l:“ll“ll‘.. (2.76)
Q. -aT

provided these eigenvalues are distinct. 1If Ajy i8 an eigenvalue of E

and a4 is the corresponding eigenvector which may be partitioned as:

(2.77)

|
|
5

where bj and cj are each nxl vectors, then it can be shown (2-5 and

2-6) that:

P = [g ** " “Cnl by ... .Dbnlt* (2.78)

is a solution of the stationary matrix riccatti equation (2.75). The
'n' eigenvectors a, to a, used to establish this solution may be
chosen arbitrarily from the 2n eigenvectors of E. However, it can
also be shown that corresponding eigenvalues A, to Ap are also

eigenvalues of the closed loop system matrix.

G = A—BQ;"BTP (2.79)

Purthexr, if Ajy is an eigenvalue of E, then so is -Ajy and if Aj is
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complex then A{* and -Ai* are also eigenvalues of E, where A{* is the
complex conjugate of Aj. In order that the closed loop system matrix,
G of equation (2.79) is stable, the eigenvalues A{ to Ap included in
the solution, equation (2.78) must have negative real parts and since
only n of the 2n possible eigenvalues have negative real parts
(assuming there are no entirely imaginary eigenvalues) there is only
one way to chocse P such that G is stable. Martensson (2-6) relaxed
the requirément that E must have distinct eigenvalues Dby the
introduction of generalised eigenvectors. These generalised
eigenvectors are defined such that if Ajy is an eigenvalue of E with

multiplicity h then

(E-AiI)ay = 0O defines the rank one eigenvector

(E-AjI)ai4, = aj defines the rank two eigenvector

(E-AiI)aj4h-s ™ 2i+h~2 defines the rank h eigenvector
(2.80)

where I is the nxn identity matrix., If it is required to include the
eigenvector ajyjpy-; of rank r, 1< r € h, in the solution, then all
eigenvector of rank less than r corresponding to Aj must also be
included in the solution. If Aj is a stable, unobservable mode of the
matrix pair ([Q,;,A] then the solution matrix P is not positive
definite, Dbut is non—-negative definite. If Aj 1is an unstable,
unobsefvable mode of [Q,,A] then the solution matrix is non-negative
definite, but is no 1longer unique. In general, if there are m
unstable, uncbservable modes, then there are 2® possible non-negative

definite solutions to equation (2.75). In all cases, the matrix pair
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{A,B] must be stabilisible, that is, all unstable modes must be
controllable, otherwise it will not be possible to choose the
eigenvalues such that the matrix (b; . . . bp] is non—singular and so,
by equation (2.78) a solution will not exist. The insight this gives
to the solution of the stationary matrix riccatti is that, where a
mode of the open loop system is unobservable in the matrix pair
[Q..A], i.g. it makes no contribution to the performance index, there
is no positive definite solution. Purther, if this unobservable mode
is unstable, the solution is not unique. The various non-negative
definite solutions that arise with unobservable, unstable modes
corxespond to optimal controls which may stabilise some or all of
these wmodes. Each of these solutions is a local minimum in the
minimisation process. Stabilisation of unstable modes will clearly
require more control effort on the part of the controller and the
solution with the largest performance index value, x(to)TPx(tg) by
equation (2.65; corresponds to the solution with all the closed loop
modes stabilised. Thus, depending on the observability
characteristics of the pair ({Q,,A], it 1is posaible to perform
integration of equation (2.52) in reverse time to converge upon one
of a number of distinct non-negative definite solutions. Martensson
(2-6) shows that the choice of the terminal condition, P(tg) = Q,,
influences which of these solutions this integration will converge
upon and that, 1if Q. is an identity matrix, the integration will
converge on the largest solution, i.e. the one that stabilises all

the closed loop modes.

An alternative means of solving the stationary matrix riccatti
equation is by iterative methods (2-8 and 2-9). Egquation (2.75) may

be rearranged as follows:
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(a-BQ;*BTP]T P4+p (A-BQ;!BTP] = —(Q, + PBQ;!BTP) (2.81)

ATp + PA, = —(Q, + KR,K) = -2 (2.82)

where A, = A+BK, K = —0718TpP and 2 = @, + KQ,K.

An initjal value for K is estimated and, from this, values for A, and
Z are calculated. With these values for A; and Z, equation (2.82) is
solved to give the matrix P, from which a new value for K may be
calculated and the process repeated until the solution converges. It
can be shown (2-10) that, subject to similar observability and
controllability conditions as those above, if the initial gain matrix
Ko is chosen such that A, 1s a stable closed loop System matrix, the
sequence of values of the matrix P, known as Newton's sequence, will

converge to the unique solution of equation (2.75).

Stabilisation of the system:

X = (A+BK)X (2.83)

prior to the iterative solution of the stationary matrix riccatti
equation may be achieved in a number of ways. In the trivial case
where the matrix A is already stable, the matrix K may be set to zero.
A stabilisation algorithm due to Kleinman (2-10) applicable to only
completely observable and controllable linear systems was extended by
Sandell (2-9) to include systems which are only stabilisible. These
two algorithms are particular cases of an algorithm attributed to
Bass (2-11) and extended by Armstrong (2-12) so that the system need

only be stabilisible.
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These algorithms are based on the theorem that for any constant
nxn matrix A, the matrix —-(A+B8I) is a stability matrix provided
B > |IAll, where HAH- is any matrix norm of A which has a consistent
vector form and I is the nxn identity matrix. By Lyapunov's stability
theory (2-13) for any constant nxn matrix A, there is a positive

definite solution, Z, to the Lyapunov matrix equation:
AZ + 7aT = - (2.84)

if and only if, A 1s a stable system matrix, where Q is any nxn
positive definite matrix. For a completely controllable matrix pair

{A,B}, the Bass (2-11) algorithm states that the control law:

U = Kxwithk = -gTz: (2.85)

will stabilise the system, equation (2.43), where Z = 2T > 0 is the

positive definite solution to the Lyapunov equation:
(~(A+BI)]Z + Z[-(A+BI)]T = -2BBT (2.86)

and 8 > |lAll. Armmstrong's modification relaxes this requirement for
complete controllability to a requirement for stabilisability, this

results in a modification to the gain matrix K which becomes:!
K = -pTgt (2.87)

where Z = 2T > 0 is the unique positive definite solution of equation
(2.86) and Z* is the pseudo inverse of Z. Equation (2.86) and the

modified matrix riccatti equation (2.82) are of the same form, each
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requiring the solution of n(n+l)/2 linear algebraic equations, since

both P and Z are unknown, symmetrical nxn matrices.

Many authors (2-14 to 2-18) have used a linear model of the
generating plant with quadratic performance indices to obtain optimal
controls by the solution of the stationary matrix riccatti equation.
This type of solution results in a feedback controller with constant
coefficients. However, in general, it is necessary to feedback all
‘the states used to represent the system. These solutions can only be
said to be optimal for small disturbances that do not cause large
deviations about the operating point for which the system was
linearised. 1In general, those authors obtained improvements in the
transient performance of optimally controlled machines over
conventionally controlled machines when small disturbances were
applied to linearised models. Wwhen the same control law is applied to
a non—linear representation of the generating plant, some form of
sub—optimal performance is expected. However, it has been shown
(2-16 and 2-18) that use of the optimal control for the linearised
system can improve the transient performance of the corresponding
non—-linear system when subjected to large disturbances. In order
that a useful optimal solution is obtained, it is necessary to
formulate the system representation in terms of system states that
may be measured, otherwise the control derived may not be applied to a
real plant. Even then some of the states may be inaccessible and a
modification can be made (2-18) to the matrix riccatti equation such
that the control law becomes:

Uty = -o7'BTeMx (2.88)

where M is an nxn diagonal watrix in which the elewment Mjj, 1 € 1 € n,
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is either 1 if the state x4y is available to the controller, or zero if
it is not, x4 being the ith element of the state vector. The modified

matrix riccatti equation then becomes:
-p = pA +aTp + Q + wpBQ; tBTR(M-21) (2.89)

which may be solved by integration in reverse time as before.

The matrix riccatti equation can, and has been, applied
successfully to the optimal control of generating plant. The
controls obtained are only optimal for small deviations about a
particular operating point. However, as sub—optimals controils,
performance improvements can still be obtained in the presence of

large disturbances.

2.7.3 The Minimum Principle and Singqular Solutions

Some mention has already been made in section 2.4.2 concerning
the application of Pontryagin's minimum principle in situations where
the control equation (2.29) yields no information about the optimal
control. 1In general, if the control vector U appears linearly in both
the performance measure and the state equations and, in addition,
each element of the optimal control is bounded, then the optimal
control is of a Bang-Bang nature. In practice, there are always
finite limits imposed on control magnitudes so this latter condition
is always present. Thus, even though the control law may not be given
explicitly by application of the control equation, its form may be

inferred via the minimum principle. Chana (2-19) inferred that the
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optimal excitation control of a synchronous generator may be
'bang-bang’ in nature and used direct minimisation (described in the
next _section) to determine the optimum times at which to switch the
field voltage of the generator from its positive to its negative
ceiling and vice versa. Following these investigations, Chana (2-19)
used a similar technique to investigate a closed 1loop bang—-bang

control.

It is also possible that the coefficient of the control vector in
the Hamiltonian is zero for finite periods of time during the control
interval. If this occurs, the minimum principle can offer no help
since it is not possible to infer the effect of the control vector on
the Hamiltonian by direct inspection. The solution to th1$ type of
problem is known as a Singular control. Thus, an optimal control may
either be soluble wvia Pontryagin's eciuations', bang~-bang by
application of the minimum principle when the control equation yields
no information about the control vector, singular when the minimum
principle cannot be applied, or some combination of bang~-bang and

singular,
Consider the Hamiltonian:
Bp(X, U/ Act) = Ly(X,At) + oT(X,A,£).0 (2.90)

where the terms in the control vector U have been gathered together
into the mxl vector valued function ¢. If ¢ is a null vector for any
period of time then the optimal control problem becomes singular and,
when it is non—-zero, the minimum principle may be applied. While the

problem is singular:
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9=$-é""-2 (2.91)

and expanding the first time derivative of ¢ gives: -

® = 20400, , 0, _

Depending on the nature of ¢, this may or may not result in the
reintroduction of U into an equation which can be rearranged into a
control law via the state and co—-state equations. There is no
guarantee that this or higher time derivatives of ¢ will vyield a
control law and, even if a control law is obtained, it is not
necegsarily the optimal control. 2As yet, there is no general set of
necessary conditions to determine the optimality of a singular
control but an optimal singular control must satisfy both the
generalised lLegendre Clebtch condition and the Jacabson condition

(2-20).

2.7.4 Direct Minimisation or Specific Optimal Control

It has already been noted that, in general, the solution of
Pontryagin's equations (2.28) to (2.31) leads to an open loop optimal
control, which is undesirable. The matrix riccatti equation leads to
closed loop optimal controllers which, in general, have time varying
coefficients and this time variation is itself open loop. In the
particula_r case of linear time invariant systems, matrix riccatti

solutions result in time invariant closed loop controllers.

It is also possible to assume some general form of control law
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which is a function of the measurable outputs of the system and some
as yet unspecified parametric values, say, parameter vector g. The
resultant controller must be sub-optimal since the form of the
controller is assumed and the minimised value of the performance
‘index may not be the smallest possible by control means. However,
such a controiler is in a desirable closed loop form and is
constrained to use plant variables which are measurable. Numerical
techniques for performing the minimisation of the performance index

of equation are discussed further in Chapter 6.

2.8 Summary

Having introduced the fundamental concepts of performance wmeasure
and performance index, conditions necessary for a control to be
optimal have been derived. These conditions are not sufficient in
themselves and there exists no general solution to the oétimal
control problem, due to the presence of the Two Point Boundary Value
Problem (TPBVP) imposed by the transversality condition. The most
general application of the necessary conditions, whether in the form
of Pontryagin's equations, or as the dynamic programming conditions,
leads to open loop control laws. In many cases it is impossible to
derive a practical control law, since solution of the necessary
conditions either fails to yield an explicit control law, or the
TPBVP prevents simultaneous solution of the state and adjoint
equations. Except in the case where the matrix riccatti equation may
be applied, the main value of the conditions necessary for optimal
control are that they indicate the form of the control. If the
control equation yields a control law, then an optimal control may be

expressed in terms of the state and co—-state variables. Otherwise it

59.



wmay be posssible to invocke the wninimum principle to obtain a
bang-bang controller. Only in the case of a linear, time invariant
plant, optimised for a quadratic performance index, over an infinite
control interval, is it possible to obtain a linear, time invariant,

optimal feedback controller.

The matrix riccatti equation may not be applied tc a non—linear
plant, such as a power system. However, the type of solution obtained
from matrix riccatti suggests that a sub-optimal control may be
obtained in the form of a state feedback controller. Unfortunately,
not all the system states are measurable and scwme are therefore not
avalilable for control purposes. This motivates the search for a
sub—optimal controller which uses the minimum number of feedback
signals. Such sub-optimal controllers may be established by the use
of ‘'specific' optimal control techniques, where the form of the
c;ntroller is predetermined and a parametric optimisation is required
to establish the specific values of the controller parameters. The
reduction in the number of feedback signals used is discussed in

Chapter 6.

Finally, where a control is bounded, for example, the ceiling
voltage of an AVR, or the rate limits on governor value actuation,
application of Pontryagin's minimum principle suggests that it is
likely that the optimal control will, to some extent, be bang-bang in
nature. Thus, when a power system is subjected to a severe transient,
it may be expected that an optimal control will drive the field

voltage rapidly between its upper and lower ceilings.
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CHAPTER 3

SYSTEM REPRESENTATION

3.1 Introduction

Two power system configurations are studied in this dissertation.
These correspond to, first, a single synchronous generator connected
to an infinite busbar via a generator transformer and a transmissiocon
line and, secondly, a finite busbar system consisting of a single
synchronous generator, connected to an 1inductive lcad. Three
different prime movers have also been used in these studies, namely,

a steam driven turbine, a water driven turbine and a diesel engine.

Three sets of plant data have been used and these may be found in
Appendix A. Two sets of plant data were supplied by the CEGB and
correspond to a typical SOOMW turbogenerator such as those installed
at Pembroke Power Station and a 330MW hydrogenerator such as those
installed at the Dinorwig Pump Storage scheme. The data used for the
studies carried out on the finite busbar system was supplied by the
Royal Naval Engineering College (RNEC) at Manadon and is based on

values typical of those found in the power system of a warship.

This Chapter develops the dynamic and algebraic equations
associated with the synchronous machine, the excitation system, the
prime movers and governors and the transmission system.
Consideration is then given to numerical solution of these equations

and the plant equations are finally transformed into a suitable form
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for numerical solution.

3.2 sSynchronous Machine Representation

The synchronous machine model used in these studies ias based on
Park's two-axes equations for an idealised machine (3-1). These
equations are obtained by performing an axis transformation on the
original three-phase equations. This transformation is known as
Parks transform and resolves the stator gquantities onto a set of
rotating axis which lie along, and perpendicular to, the direction of
the main field flux vector. These axes are known as the direct and
quadrature axis respectively. Zero sequence components are not
congsidered in the representation given here since, for the purposes
of this study, the synchronous machine is assumed to be on balanced
three-phase operation, so the zero sequence components are zero in
value. The effect of eddy current losses in the rotor iron and damper
windings are considered to be adequately represented by one short

circuit winding in each of the rotor axes. The idealised machine is

further subject to the following assumptions (3-2):

(1) The current flowing in any winding is assumed to set up an
m.m.£f. which has a sinusoidal distribution in space around

the air gap.

(ii) The effects of hysteresis may be ignored.

(iii) A component of m.m.f. acting in the direct axis only, is
assumed to give rise to a sinusoidally distributed flux

wave in the direct axis only. Likewise, an m.m.f. acting
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in the quadrature axis only, is assumed to give rise to a
sinusoidally distributed flux wave in the quadrature axis

only.

Fig. 3.1 illustrates schematically the layout of the generator
windings. The algebraic signs shown represent generator action and
direct and quadrature axes flux linkage and voltage equations may be

written as follows.

The flux linkage equations:

VEd = Xffd-ifd — Xaq.ig + Xaq-iiq (3. 1)
Va = X3q.1gq - Xgq.1a + x33.134 . (3. 2)
V1a ". Xad-ifd - Xad.iq + x114.114 (3. 3)
Vq = -Xgq.ig + Xag-ilg (3. 4)
V1q = —Xag-ig + x11q-11q (3. 5)

The voltage equations:

VeEa = PVUfg/wo + rfdq.ifd (3. 6)
Va = PYg/up — Wig/ug — Ta.ig (3. 7)
0 = Pg/wo + rig-ilg (3. 8)
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Vq = Blg/uo + wha/uo - Ta.iq (3. 9)

o = PY1g/uo + rig-ilg (3.10)
The air gap torque is given by:

Telec = W¥a.ig - vgq-ia , (3.11)

All the above equations are given in per-unit form. The

magnitude of the terminal voltage may be obtained from:

Ve = ¥ (Va2 + Vg?) (3.12)
Associated with the synchronous machine are the mechanical

dynamics of. the rotor shaft which are described by:

MP28 = Tout — Telec — Ka P8/ug (3.13)

where Kg is a constant to account for mechanical damping, and Tgyut is

the prime mover output torque.

It has been shown (3-3) that iron saturation has little effect on
the transient stability of the machine and so such effects have been
neglected. The above equations give a seventh order representation
of the machine (five from the electrical equations and two from the
rotor dynamics). This representation takes into account the decay of
stator flux linkages which result in power frequency oscillations in
the machine axis voltage and currents after a severe disturbance. It

also takes into account the initial braking torque, caused by the
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direct current induced in the armature, which decays quickly with the
armature time constant. This torque can result in an initial
decrease in load angle prior to the large increase resulting from the
sudden loss of demand for power caused by the fault. Unfortunately,
since power frequency terms are present in the axis quantities using
this representation, the time steps for numerical integration wmust be
-swmall enough to simulate these texms accurately. This obviously
increases the overall computing time necessary to simulate the effect
of a disturbance and, whén the simulation has to Dbe performed
repeatedly in order to perform an optimisation of the system
transient response, the computing effort will be appreciable. Also,
the state information generated by integration of equations (3.6) to
(3.13), along with the solution of the algebraic equations (3.1) to
(3.5), are flux 1linkages, which are not readily measurable as
feedback signals. These two drawbacks motivate a rearrangement of
these equations into operational form by eliminatiné the rotor
currents. This, followed by some algebraic manipulations, results in

the following set of equations(3-3):
Peg = ((xq - xg).iq - e3)/Tgo (3.14)
Peq = (Vg - (xq - x3).ia - eq}/Tao (3.15)

Peq = [eq-(x3-x3).ig - eq - (T,(eqX3.1a)+T;.Xq.1a-Txd -VE}/Taol/ Tdo

(3.16)
Va = P(eqx3.ig)/wot w(ed+xq.iq)/wo - ra.ia (3.17)
Vg = P(-ed-Xq.iq)/wo + wWegx3.ig)/wo - Ta.iq (3.18)
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Ty = (X14+Xaq)/(w.r1q) ' (3.19)

T, = (xX13+Xad.-Xa/(XatXaq))/(w.r1q) (3.20)

Tka = X18/(w.r1d) (3.21)

These equations (3.14) to (3.20), take into account all the
effects described by equations (3.1) to (3.10). Ih tﬁe above
equations, the terms l/wg P ig and l/wg P ig are usually negligible
compared with the other terms. By neglecting these two terms and
other less significant terms, equations (3.14) to (3.18) may be

written as:

Peg = [(Xg-Xg).-ig—e31/Tgo (3.22)
Peq = [Ve-(Xg-x3).ig—eq)/Tdo (3.23)
Peq = [eq - (X3-Xd).1a-eql/Tdo (3.24)
eq = Vd+ra.j€—x&.iq (3.25)
eq = Vq + ra.iq + x3.iq (3.26)

When combined with the rotor dynamic equations, these equations
give a fifth order machine representation. The air gap torque in this

case becomes:

T, = " " " "
elec T 4.ia + eg.ig - (X3 - xy).ig.1q (3.27)
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Further simplification may be achieved by neglecting the effects
of both the direct axis and quadrature axis damper windings. This

results in the following third order machine representation:

Peg, = [Ve ~(x4-x3).1g-eq)/Tdo (3.28)
(o] = Vg + ra.ig - :qz.iq (3.29)
€y = Vg + ra.ig + x3.iq (3.30)
Telec = eq-ig - (Xa-Xq)ia.iq (3.31)

The f£ifth order synchronous wmachine representation of the
synchronous generator is used throughout the work presented in this

thesis.

3.3 The Excitation System

The primary objective of any excitation control system is to
wmaintain the voltage at the wmachine terminals within specified
limits. The simplest form of excitation system is to apply a constant
voltage to the field winding. The voltage regulation of such a
system is extremely poor and, since no control signals are used to
vary the field voltage, temminal voltage recovery following a fault

is likely to be poor.

Terminal voltage regulation may be improved by the use of an

automatic voltage regqulator (AVR), which drives the field voltage
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from the difference Dbetween the terminal voltage and a reference
voltage, through a gain, K, as shown in Fig. 3.2. In order for such a
system to maintain the temminal voltage to within 0.5% of the
reference voltage, Vief, the actual value of the gain, K, must be in
the order of 200 (assuming a unity gain through the generator and
terminal voltage rectifier). Unfortunately, such a simple system is
impractical since no corsideration has been given to the dynamic
terms of the generator itself, or to the mechanism by which the field

voltage, Vg, is produced.

on Igrge generator sets the excitation system must supply a large
amount of power to the field circuit of the machine (typically about
5% of the machine’'s rated output power), and thus the gain, K, is not
easily synthesised. In fact, the most widely used strategy for
generating the field woltage is to mount a second machine on the
generator shaft, this is known as an exciter. The exciter has its
field circuit mounted on the machine stator and its armature coils
wound on the wachine rotor, so that control of the voltage generated
by the exciter may be exercised without the use of 8lip rings. The
voltage generated by the exciter is firstly rectified by a diode
bridge mounted on the generator shaft and is then fed into the main
generator field winding. PFig. 3.3 shows such an arra;ngemnt. In sowe
cases the amplification stage, K,, is provided by further exciter

stages.

At this stage, some dynamic consideration may be given to the
system shown in Pig. 3.3. By representing bcth the exciter and the
generator as simple time constants and neglecting the time constants
associated with the rectifiers, the system of Fig. 3.4 approximates

the dynamics of the excitation system shown in Pig. 3.3, with the
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generator operating viith its terminals open circuit.

It was wmentioned earlier <that the gain, K, of the
amplifier/exciter must be in the order of 200 to achieve good steady
state terminal voltage regulation. The time constants Te and Tao
are typically in the range 0.5 to 2.0 seconds and 2.0 to 15 seconhds
respectively. Taking typical values for these time constants as
Te = 1.0 seconds and Tgo = 5.0 seconds, substituting these in the

characteristic equation:

Te + Tdg K,
s=+[—-—-——]s+-—-—-— = 0 (3.32)

™o.Te Tdo.Te

gives a natural frequency of wp = 6.32 radians/sec and a damping ratio
of n = 0.095 which results in a very oscillatory system. Clearly,
this is an unsatisfactory situation. To improve matters, a
stabilising feedback signal is introduced into the excitation system.
This signal is the time derivative of the field voltage, passed
through a low pass filter, in the manner shown in Pig. 3.5 to give
some low frequency phase advance to the loop around the e:ccitef. This
way be considered to reduce the forward path gain under transient

conditions and gives a better damped response.

The stabiliser time constant, Tg, is generally in the range 0.5
to 2.0 seconds, which permits the maximum phase advance to be moved to

the region of the gain crossover and so give maximum damping.

Thus, the component parts of a conventional AVR have been
introduced, namely a summing junction and amplifier/exciter and a

stabiliser. There are, however, two further considerations which
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have so far been neglected. Pirst, the iron of the exciter field .
circuit may be driven into saturation, thereby placing a natural
limit on the magnitude of the field voltage. This is to some extent a
desirable feature as it is necessary to limit the power dissipated in
the field circuit of the generator to avoid overheating. Secondly,
the effect of the rectifier which supplies the field voltage from the
exciter, to the generator field winding has not been considered. It
is clear that the presence of the rectifier will prevent the field
voltage from being forced in a negative direction and that any
attempt to reduce the field voltage will cause the field current to
flywheel through the rectifier. This flywheeling action continues
until the field current has decayed to a level supported by the new,
lower, field voltage. So the action of the rectifier is such that the
field voltage may not be driven negative and, since the resistance of
the field winding is low, the time constant associated with the decay

of field current will be long due to the flywheel effect.

More recently, the trend has been towards the use of thyristor
e:q:iters. These consist of a thyristor amplifier, fed from a
three—-phase supply which is, in general, independent of the machine
terminal voltage. This type of exciter has two principle advantages
over the exciter described previously. Pirst, the field voltage way
now be reversed and secondly, the thyristor is much faster to respond
to changes in the control input, so increasing the speed of the
excitation system. Such a system is shown in PFig. 3.6 and is very

similar in configuration to that of Fig. 3.3.

Again, due to the presence of time lags in the system and the high

gain necessary for good steady state terminal voltage regulation, a
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stabiliser must also be fitted to this type of excitation system.

A general form of excitation system representation used

throughout this thesis is shown in Fig. 3.7. Aan extra input, Vy, is

shown, which permits the injection of extra control signals into the

excitation system.

This form of representation may be used for both types of

excitation system with appropriate changes in the time constants, Te

and Tg, and by adjusting the lower field voltage limit, Vguin. The

following assumptions are made by adoption of the representation.

1.

2.

4.

The parameters of the exciter are constant throughout any

transient behaviour.

The characteristics of the thyristor exciter and any rectifiers

present in both types of exciter are linear.

Saturation of the exciter output may be represented by a simple

limit on the ocutput voltage.

There is no reactive power limiter fitted to the excitation

gystem.

The dynamic equations for the excitation system which may be

written from Fig. 3.7 are:

PVg

= ([K;.Vin = V£1/Te (3.33)
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PVg = [K;.PVg - Vgl/Tg (3.34)

Vin = Vpeg + Vi — Vg — V¢ (3.35)

Equation 3.33 may be substituted in equation (3.34) to give:

- - /Tg (3.36)
Te Te *
Care must be taken in the application of the field voltage limit.
If equation (3.34) is used to integrate the stabilising voltage, Vg,
then the term PVg must be set to zero when the limit is applied.
Alternai:ively, if using equation (3.36) then the voltage Vi, must be
adjusted according to equation (3.37) in order to obtain the correct

stabilising voltage.
Vin = Vg~

—_— ' (3.37)

Equation (3.37) applies only while the field voltage is in limit.

3.4 The Steam Turbine Prime Mover and Governor

The objectives of governor action when applied to a generating
plant are two fold and, to a certain extent, depend on the size of the
plant in relation to the rest of the total generating capacity of the
power system. These two cbjectives are the regulation of the power

system frequency and the control of the amount of power generated by
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the power system as a whole. These two objectives are linked. If the
power system in total generates more power than is required to supply
all the loads in the system and all the associated transmission
losses, then the system frequency will rise as the excess power

accelerates the various inertias in the system.

Two modes of governing are often discussed: ‘droop' mode, or
free governing; and ‘'pressure’ wmode governing. Pressure mode
governing relies on the synchronous nature of the plant to maintain
the system frequency, and the governor controls the torque output by
the pr:une mover and hence (at constant speed) the power output by the
-generator. Pree, or droop mode governing is applied to a number of
large generating sets 1in order to cor;trol the overall system
frequency by allowing large fluctuations in the power output by the
generator. Typically a droop setting of 4% is used by <the CEGB,
which means that a 4% speed change (expressed as a percentage of the
nominal generator speed )~ will fully open the turbine steam valves

from a fully closed position.

The original Watt type governor was a droop mode type governor.
This type of governor, based on a mechanical flyball device, remained
the principal method of governing steam turbines until the
mid-twentieth century. Its popularity was due to a proven
reliability and 1its ability to support acceptable 1load sharing
between a number of generators in parallel operation. Generators of
different capacities operating in parallel will share 1load
fluctuations in proportion to their capacity if they all have the
same droop setting. Speed changes detected by the flyball mechanism

control hydraulic servos which position the main steam valves. Such
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governors have dead bands, their droop settings are fixed and there
is no facility for introducing extra control signals into the
governor control loop. These limitations, coupled with the need for
faster responses from governors due to the gradual increase in the
power output of new generating- plant and the reduction in the shaft
inertia constant, have led to the adoption of electrical wmeans for
wmeasuring shaft speed and governing. Electronic governors 4o not
suffer from wear and vibration which can cause the failure of a
mechanical governor. FPFurther electrical signals, representing other
measuremsents made on the plant may be easily Introduced into the
control loop, and the slip speed gain, which controls the droop
setting, may be adjusted easily. Actuation of the steam valves is
still performed by hydraulic amplifiers and the Watt type governor is
still present on the turbine as part of the overspeed trip safety
mechanism. Schematically the turboalternator system is represented

in Pig. 3.8.

A8 can Dbe seen from Pig. 3.8, the Dboiler/turbine/reheater/
condenser arrangement is quite complicated. The system represented
is a three stage axial flow turbine. Superheated steam is passed from
the boiler through the emergency valves and the governing valves to
the high pressure stage. Approximately 25%-30% of the energy
supplied by the generator is derived from the high pressure (HP)
stage. After passing through the high pressure stage, the steam is
returned to the boiler to be reheated, so boosting the thermal energy
of the steam. The reheated steam then passes through a further set of
emergency valves and governing valves (known as intercept valves) to
the intermediate pressure (IP) stage of the turbine. The

intermediate pressure stage directly feeds the low pressure (LP)
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stage which, in turn, exhausts under the wvacuum created by the
condensation of steam in the condenser prior to its return to the

boiler.

Clearly, any control aimed at improving the first swing in load
angle following a severe fault must have influence over a large
portion of the turbine output power, so it is assumed for the purposes
of this study that both the ﬁtemept valves and the high pressure
governing valves are controlled. It is further assumed that these
valves are controlled together and, as a result, all three stages of
the turbine are amalgamated into a single stage wi}:h a single control
input. These assumptions were Jjustified by Hazell (3—4) in a
reduction of a detailed non-linear representation given by Ham (3-5).
This results in the turbine/governor representation of Fig. 3.9.

Pig. 3.9 also shows an auxiliary input, Ty, to the governor which
may be used to feedback extra control signals. The following
assumptions are made by adoption of the plant representation in Fig.

309‘

1. Both the superheater and the reheater deliver steam at a
constant tewmperature and pressure, 1i.e. they may be

considered to be infinite steam sources.

2. Both the high pressure control valves and the intercept

valves operate in unison and are subject to the same limits.

3. The output torque, Tout, i8 a linear function of the wvalwve

displacement, Tjq.

78'



VOmax T_ig.max
1 /i Tin 1 Tout
Ta J 1+sTb
VCmax Tinmin
Kt

Governor and Turbine Representation

Fig3.9



4. Turbine efficiency is constant over small speed changes.

5. The dynamics of the speed transducer are negligible.

The various limits shown in FPig. 3.9 represent the limit on valve
position, Tip., and the asymmet;:ic rate limit on the valve velocities.
Valve closing rates are generally faster than valve opening rates due
to spring assistance. The closed loop around the time constant T, and
.the agsociated integrator represent the valve positioning
servo-mechanism, while the time constant T}, represents the lag

between valve position and output torque.

Prom Fig. 3.9 the following dynamic equations may be written to

represent the prime mover and governor.

PTout = (Tin - Tout)/Tb (3.38)
PTin = (Govip - Tin)/Ta (3.39)
where Govin = GoVpef — Ti - KpY (3.40)
and Y = W -W = P& (3.41)

3.5 The Hydro—-Turbine Prime Mover and Governor

The plant data used to simulate a water driven synchronous
generator is based on the Dinorwig Pump Storage Scheme sited in the
Snowdonia National Park, North Wwales. Dinorwig has a subterranean

machine hall which contains six machine sets,. each rated at 330MW.
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The Dinorwig machine sets are mounted vertically and each is capable
of both pumping water during off-peak periods or generating during
peak periods. Dinorwig is unique in this respect, since other pump
storage schemes, such as the small Pfestiniog installation, use
separate machine sets for pumping and generating operations.
Installations such as Dinorwig are necessary in order that nuclear
generation ma}y be usad to supply more than the base load power
requirements. Nuclear plant may not be run up or down quickly and, as
a result, other types of generation, such as oil fired, coal fired or
gas turbine, must be used to cater for the daily peaks and troughs in
the demand for power. Thg use of pumping action at Dinorwig during
off-peak periods artificially increases the system load and the
energy stored by this action is used during peak periods to
supplement the output from other generating plant. Thus Dinorwig may
be used to smooth the daily fluctuations in the demand for power by
artificially increasing the base load requirements dJduring off-peak
periods and supplementing generating capacity during peak periocds.
Dinorwig may also be turned around very quickly if generating
capacity is lost from the WNational Grid. Unlike most other
installations, Dinorwig requires very little in the way of power in
oxrder to run the station. Coal fired power stations require large
amounts of power, typically 10% of the station output, to supply the
various pieces of plant and machinery, such as coal crushers, forced
draught fans, and conveyors, all of which supply the coal/air mixture
to the boiler furnaces. Dinorwig has been designed to be capable of
being run up from ‘'cold’', without any support from the grid. In the
event that the grid as a whole were to be run down then the presence
of Dinorwig allows a much more rapid recovery of the power system.

Once Dinorwig itself has been run up, it could supply the auxiliary
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power necessary to bring up another large piece of generating plant
and so on until sufficient of the network is operational for load

centres to be reconnected.

The transmission lines which connect Dinorwig to the rest of the
National Grid run close to the north coast and are subjected to severe
weather conditions. Conductor clashes are not uncommon and 8o
disturbances to the plant are not infrequent. When generating, water
is taken from an existing lake at Marchlyn Mawr and discharged some
500 metres below at Llyn Peris (3-15). The main high pressure water
tunnels are 9.5 wetres in diameter and deliver the water to a manifold
from which high pressure, steel penstock pipes direct the water
through the main inlet valves to each machine set. The opening and
: closix_\g rates of the main inlet valves are very slow and it takes of
the order of 15. seconds to fully open or close these valves. Such
slow valve rates dominaté the dynamics of the governor loop and very
little governor action can occur in the short transient period
associated with faults such as overhead conductor clashes. The prime
mover/governor arrangement has therefore been represented by the same
structure as the steam turbine, Fig. 3.9. Again, the loop around the
time constant T, represents the position servomechanism of the
control valves, while the time constant, T, represents the lag
between valve position, Tjp, and prime mover output torque, Tgyut.
The valve opening and closing rates have been set at +0.0833 p.u. per
second which requires 12 seconds to fully open the control valves

from the fully closed position or vice wversa.
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3.6 The Diesel Engine Prime Mover and Governor

Diesel engine prime movers are often used in small finite busbar
power systems, such as thoge found on board ships and on small
islands, or used as backup facilities for equipment normally supplied
from the National Grid or some other electricity supply utility. A
£full dynamic simulation of a diesel engine requires representation of
the fluid and thermodynamics of the engine, where these are treated
as a series of control volumes, interconnected by orifices of varying
geometry (valves, etc.), which are coupled by heat, mass and work
transfers (3-6). Such a representation leads to a high order dynamic
model which requires a large amount of plant data. An alternative
approach is to use a quasi-steady (3-6) representation in which the
model employs the steady state characteristics of the engine. This
approach requires steady state experimental data for each of the
active components ©f the prime mover. Models of this nature are
essentially algebraic and ignore the dynamic effects involved in mass
and heat transfers within the engine. Again, a large amount of data

is required to describe the diesel engine.

A simple linear representation, used by Wyatt (3-7) relies on the
fact that the diesel engine may be expected to operate close to the
electrical supply frequency at a nominally constant speed. In this
mode of operation, the output torque of the diesel engine may be
considered to be proportional to the fuel rack position and delayed
by the transport lag of the fuel system. At constant speed the output
torque 1limit may be implemented simply as a constant saturation
limit, rather than as a complex speed dependent function. PFig. 3.10

shows a schematic diagram of the diesel engine and governor
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representation used in the finite busbar optimisation studies

presented in Chapter 6.

The time constant, T, represents the dynamics of the fuel rack
and the lead/lag network, T and Tp, 18 introduced by the control
amplifiers used to actuate the fuel rack. An auxiliary input, T4y, is
available to feed extra control signals into the governor system.
The transport lag of the fuel system is not represented. From Fig.
3.10 the following equations may be written to represent this prime

mover/governor arrangement.,

PTout = [Tin - Tout}/Tc  (3.42)
PTin - [Kg( 14+PT3).Govin — Tinl/Tp (3.43)
pw = [Tout — Telec — Tlossesl/J (3.44)
where

GoVin = GOVyef ~ W - Ty (3.45)

3.7 The Transmission System and the Finite Load

The equations governing the transmission line dynamics may be
obtained by applying the Parks transform to the three phase
transmission line equations. The following assumptions are made in

formulating these equations.

1. The magnetising currents of the generator transformer and the

line charging currents may be neglected.
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2, The transformer and transmission lines may be represented

together by a lumped series inductance and resistance.

Application of the Parks transform yields the following equations

in the direct and quadrature axes of the generator.

Va = Vpsing + Xp.Pig + Rp.ig — w Xp iq

o o (3.46)
Vq = Vpcoss + XqpPiq + Rp.ig + w .Xp.ig (3.47)
o Wo

By neglecting the effects associated with frequency variation and the
rate of change of axis currents, then these equations may be

simplified and written as:

Va = Vpsins + Rp.ig - Xp.ig (3.48)

Vq = Vpcos8 + Rp.ig + Xpig (3.49)

where Xp and Ry represent the lumped transformer/transmission line

reactance and resistance.

An inductive load, connected to a single generator in a small
finite busbar system may be represented by considering the busbar
voltaqe, Vh, to be zero. This gives the following equations which
represent an inductive load connected to a simple finite busbar power

systen.
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Vg = Rb.id-xt,.i.q (3.50)
Vq - R'Liq"'xb'id (3.51)

where R;, and Xp, represent the load resistance and reactance
respectively. Equations (3.48) to (3.51) are steady state equations
and their use simulates the transmission line by stepping from one

steady state condition to the next.
3.8 Numerical Solution

The plant equations given in the preceding sections are given in
a continuous form and, as such, are suitable for solution by an
analogue computer. The solution obtained by numerical techniques on
a digital computer will give the system response at discrete instants
in time. 1In general, the mathematical description of a plant
congists of a set of simultaneous differential equations and a set of
simultaneous algebraic equations. These two groups of equations may

be represented as:

(3.52)

HIS
[ |
i
oy
a
~

R

o
]

ax.y) (3.53)
where x is a vector of dynamic state variables which may be generated
by the integration of the vector function f with respect to time. The

vector y is a vector of algebraic variables which are obtained by
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solving the algebraic equations represented by the vector function g.

The vector U contains a subset of the algebraic variables that make up
the vector y, which are known as the interface variables. These
interface variables provide the coupling between the dynamic and
algebraic equations. For example, using a plant description made up
of the fifth order machine representation, with automatic excitation
control, prime mover and governor, and a load, the vectors x, y and U

are:

;l 8, P§, Toutv Tinl vfr Vs]

= [ig, iq, Telecr GoVyefr Vreg: Vo, Vg, vql (3.54)
= [ig. igs Telecs SoVrefs Vregr Vrl

- [ed, eq, e

l% N..g lxa

The objective of solving these equations 1is to compute the
dynamic response of the system with sufficient accuracy for
engineering purposes. The solution method must also be reliable and

stable.

3.8.1 Integration Techniques

There are two main categories of integration technique, explicit
or implicit integration and each of these categories can be
subdivided into single—step and multi-step algorithms. Explicit
integration techniques involve explicit evaluation of the system
function f, whilst implicit techniques involve some form of

rearrangement of the dynamic equations into a set of simultaneous

algebraic equations, so that the derivative g is not explicitly
calculated. This latter type of technique is more complicated, but

leads to greater numerical stability (3-8). Single step techniques
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require no information about the solution prior to the beginning of
each integration step. A8 such, they are self-starting, which is
convenient when discontinuities are present. Multi-step algorithms
require the storage of previous values of the state variables and/or
their time_ derivatives. In principle, such algorithms are more
efficient. However, most multi-step algorithms must be restarted
when a discontinuity is encountered. Most multi-step algorithms are

based on open and/or closed difference equations.

It is also necessary to recognise the possible sources of
numerical error which contribute to the total error encounterxred
during a given integration step. Since wmost integration algorithms
are obtained from truncated series; errors wmay be introduced due to
the missing terms. Purther errors may be introduced by the numerical
representation since, in general, it is not possible to represent the
full significance of a numerical value and arithmetic operations will
cause a rounding error. If equations (3.52) and (3.53) cannot be
' solved simultaneously at each integration step, an interfacing error
may be introduced. Errors may also be introduced by approximations
Mng the bDbehaviour of wvariables (through interpolation or
extrapolation) or by assuming the linearity of equations over the
integration step. The application of limits can cause problems due
to the finite nature of the time increments. Care must also be taken
when a 1limit is encountered. Any time derivatives of limited
variables which are explicitly calculated must be forced to behave
correctly. Thus the error in the solution at the end of an
integration step is some function of the error incurred during the
integration step and the accumulated error passed on from the

previous integration step. An integration technique becomes unstable
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when these errors accumulate and hide the true solution.

3.8.2 Explicit Integration Techniques

Perhaps the most simple of all integration methods 1is the
explicit Euler method. This algorithm calculates the system state at
the end of an integration step by simply adding to the state at the
beginning of the integration step the time derivative of the state at
the beginning of the integration step multiplied by the integration

step length. Thus, by Euler:

?Sn - !h—l. +h_f.(1_‘n—;l gn—;) (3.55)

where h is the integration step length and the subscripts n-i1 and n
indicate the begining and end of the integration step respectively.
This method 1is equivalent to a Taylor series truncated after the
first order term. This is a single step explicit integration method

since equation (3.52) 1s explicitly evaluated and only the current

values of x and § are used to calculate the new value of x. Euler
is not a very stable algorithm so the integration steps must be short
in order to ensure that the error introduced into the solution is

small.

Open multi-step methods are similar to Euler. In essence, they
are the predictor part of a predictor-corrector algorithm and differ
from Euler solely in the use of stored values of the time derivative

of the system state, x.

Predictor-Corrector methods consist of two equations both of
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which are multi-step. The open multi-step predictor equation
predicts a value for the state at the end of the integration step, x;,

based on the state at the beginning of the integration step, xn—,,

and the time derivatives stored backward in time from Xn—,. The
predicted value for X, then Dbecomes the initlal estimate in the
closed multi-step corrector algorithm which is iterated +to
convergence. For example, the following Adams pair (3-15) may be
used to Iimplement a predictor-corrector algorithm. First, the

(3

derivative Xp-, = £(Xp-i, Un- ) is calculated and used in the

predictor equation

Xn = Xp-y + h(23%p-, — 16Xp_, + 5Xp-5)/12 (3.56)

to obtain an estimate for x;. The corresponding value of the

interface vector, Up, is then calculated by solution of the algebraic

equations (3.53) and the time derivative x_n = £(Xn.Un) is calculated.

The closed corrector equation:

Xn = Xp-y + N(5£(Xn,Un) + 8kn-; — Xn-,)/12 (3.57)

is applied to modify the value of the state at the end of the
integration step. A new solution to the algebraic equations is then
calculated and the correction process repreated to convergence.
Economies may be made in the use of this algorithm by only solving the
algebraic equations once, at the point Dbetween prediction and the
First correction and using this value for U, throughout the
correction steps. This introduces an interface error, which may or

may not be significant, depending on the integration step length. If
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the algebraic equations are solved each time around the correction
loop, then the interface erxror is eliminated, even if they were not
solved between the prediction step and the first correction step. 1In
this latter case, an extrapolated value for Up is used in the first
. correction step. When iterated to convergence, the solution provided
is independent of the performance of the predictor which merely
provides initial values for the corrector. Corrector convergence is
slow for stiff problems, that is, for problems in which the ratioc of
the largest time constant to the smallest time constant is high and
these algorithms must be restarted following a discontinuity. The
iterative nature of the corrector steps make it difficult to
guarantee the execution time of the algoritha which is a severe

disadvantage when the algorithm is required to operate in real time.

The Runge Kutta method is another single step explicit
integration technique. This method has been widely used f<'>r. the
solution of the dynamic responses of power systems (3-8 to 3-10) and
the fourth order verison 1is commonly used, This algorithm is

" summarised by the following equations:

K: = hf(xpn-y, Un-i) (3.58)
K; = hf(Xn-, + 0.5K:, Ua) (3.59)
K3 = hE(Xp-, + 0.5K;, Up) (3.60)
K. = hf(Xn-y + K5, Ug) (3.61)
Xn = Xp-, + 1/6(K, + 2K, + 2K; + K,] (3.62)
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Some variations to the algorithm are possible due to the handling
of the interface vector, U, during the integration step. In orxder for
the differential and algebraic equations to be rigorously interfaced
to each other, Uy, Uy and Us must be obtained by solution of the
algebraic equations between each evaluation of the function f£. Thus,

Uy must be abtained by the solution of:
O = g(Xn-, + 0.5K,, Ya) - (3.63)

prior to the evaluation of K,, remembering that U; is a subset of y,.
Likewise, Up and Us must be calculated prior to the evaluation of K,
and X, and, finaliy, Un must be calculated prior to the beginning of
the next integration step. Alternatively, it is possible to assume
that U is constant over the integration step so that U = Up = Ue =
‘g_n_,_, or it is possible to extrapolate values for these intermediate
values of U based on the previous integration steps. Neither of these
last two metheods provides a rigorous interface between the two sets
of equations and it is possible to improve on the solutiona cbtained
in these instances by reintegration of the time step using values for
Ua, Up and Us which are interpolated from the Un-, and U, values.
This.reintegration process may be repeated until values for x, and Up
converge., Iterative solution in this manner is only of advantage if
the time taken to converge is less than the time taken by a single
vigorously interfaced integration step. It is notéble that the
fourth order Runge Kutta method requires four evaluations of the
dynamic equations and up to four evaluations of the algebraic
equations for each integration step. Thus, although Runge Kutta may
be used with longer integration step lengths than Euler, a 4:1

increase in the step length must be obtained before the Runge Kutta
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algorithm becomes computationally more efficient. Numerical
stability problems arise when using Runge Kutta to integrate stiff
equations. With stiff equations, a relatively unstable integration
method requires a shorter integration step length in order to
accurately track changing components in the state vector and to
wmaintain introduced errors at a low lével. The range of time
constants encountered in a power system can be large and the only
solution to numerical instability when using Runge Kutta is to reduce

the integration step length.

3.8.3 Implicit Integration Techniques

An implicit multi-step integration method can be based on the

corrector equation of a predictor-corrector pair. This equation, for

example, equation (3.57), is a simultaneous equation in x, with U,
being the only other unknown. All closed loop multi-step corrector

equations may be expressed in the form:

Xn = KhE(XnUn) +C (3.64)

where C is a constant vector during each integration step, made up of

some weighted sum of previous x and X vectors, and K is some constant

coefficient. If the function f can be expressed in the linear form:

X = Ax + BU (3.65)

where the matrices A and B are constant over the integration step then

equation (3.64) may be written as:
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(I - KhA]x, = KhBUp + C (3.66)

where I is an identity matrix. Provided that the matric (I - KhA] is
non—-singular, X; can then be expressed in terms of U,. Iterative
solution of equations (3.52) and (3.53) is then possible. From an
initial estimate of U,, eilther by extrapolation from previous values
or by application of a predict:or_ equation to estimate x, and the
subsequent solution of the algebraic equations, a new value of xu may
be cbtained by application of equation (3.66). This value of x, is
then used to resolve the algebraic equations and a new value for Un
calculated 80 that the process may be repeated to convergence.
Although this process may be slightly more complicated than the
predictor corrector method, interface error is eliminated and larger
integration steps are possible with stiff equations, so the overall

computation effort may be reduced (3-8).

Another implicit integration method arises from dynamic equations
represented in the form of equation (3.65). Equation (3.65) may be
integrated analytically over a single time step in which case the
solution is expressed as a matrix exponential. This results in an
expression for the new state x, in terms of the state x,-; and the
interface variables U, and Up.,, of which U, is again the only other

unknown. Thus:

Xn = OXp-y + WU, + WpUn (3.67)
where

] = I + A.G.h (3.68)
G = T + A.FP (3.69)
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o0
F = ¢ aKnK+i/(g42)1 (3.70)
K=0

W, = pP.B (3.71)
and
W, = Gh-W, | (3.72)

The form of equation (3.67) is similar to that of equation (3.66)
since it is possible to express x, as a function of U, the remaining
terms being constant across the integration step. This equation may
also be solved by iterative means to avoid interfacing error. The
infinite series of equation (3.70) may be truncated after a few terms
to give, say, an mth order integration Eormula, where m-1 is the upper
1limit of the summation. Integration by this method is extremely
stable (3-8) and, provided that the matrices A and B do not vary with
time or operating point, the matrices ¢, W; and W, need only be

calculated once.

Implicit integration by use of the Z-transform (3-14) requires
the transformation of the plant differential equations into the
discrete time domain (the Z dowmain). The Z~transform is used to
describe sampled data systems. In general, a system is considered to
act on a train of scaled impulses (samples), which represent the
input, to produce a train of scaled impuses at the output. The

Z-transform of a continuous function of time, £f(t), is defined as:

ZIE(t)] = K‘go £(KkT)Z K (3.73)

94.



where Z means "take the Z transform of”, is the Z-transform operator
and Z~* represents a delay of one sample period, T. The transfer
function of a system may be represented by the ratio of the input and
output Z~-transforms. For example, the impulse response, y(t), of a

first order lag described in terms of the Laplace domain transfer

function:
¥s) _ 1
X(8) == (3.74)

is well known to be an exponential with a time constant of 1/a. Thus

the Z-transform of the output, y(t) = e™at, ig;

[ ] o
¥z) = © e&ATK)zK =  [eaTz1jk = L1 ___ (3.75)
K=0 K=0 1-e—aTz—1

The Z-transform of the impulse x(t) = &§(t) is unity, i.e. X(Z2) = 1, s0
the discrete time domain transfer function for the first orxrder lag of

equation (3.74) is:

¥(2) 1 z
- - — (3.76)
X(2) 1-e~aTz~1 z-e—aT

This transfer function may be implemented by rearranging equation

{(3.76) so that:
Y(Z) = X(2Z) + eaTz-1y(Z) (3.77)
which may be programmed simply as a multiply and add loop, since e—aT

is a constant and Z~*Y(Z) is the previous sample value of y(t). Note
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that in steady state Z71Y(Z) = Y(Z), so at steady state for a unit

step input where all sample values are unity,

%Z) = y=g=ar X2) | (3.78)

This shows that the discrete time domain transfer function requires

scaling in order to produce the correct amplitude output. In the

Laplace domain the steady state value is given by:

v(t) = 1lim s8.Y(S) (3.79)
t->m» s—->0

which, in this case, for a step input gives:

y(t) = lim s. 11
t—Ho» s—>0 s+a s

1 .
=3 (3.80)
Likewise, in the discrete time domain the steady-state value of a

Z-transform is given by:

vwKT) = 1lim (2-1) Y(2Z) (3.81)
K-> Z->1

which, in this case, for a step input gives:

Y(KT) = 1lim (Z-1) __ 2 2 .l (3.82)

K—>m Z—>1 z—e-al 2.3 1-e—aT

Thus, in this case, the normalised discrete time domain transfer

function for the first order lag of equation (3.74) is given by:

¥(z) _ [l-e'aT

Z
X(2Z) a ] Z-e=aT (3.83)

96.



It is notable that no explicit evaluation of the time derivative of
v(t) is made_. An important consideration with this type of
integration method is the sample period, T. If the sampling
frequency (1/T Hz) is less than twice the fr_equency of the highest
frequency component of the transformed functions, then an aliasing

exrror may occur. This is illustrated in Fig. 3.11.

Although *i:he sample values of the two curves in Fig. 3.11 are
coincident, the two curves are completely different. If it can be
said that the function, y(t), contains no frequency components higher
than 1/(2T)H, then it can be shown that there is a unique function
v(t) vwhich passes through all the sample wvalues, i.e. the 1low

frequency curve in Fig. 3.11.

Timings taken by Tanner (3-11) show that the Z-transform
integration method is approximately four times as fast as the,fourth
order Runge Kutta method and that the method is numerically stable
enough to use an integration step length that is twice as long as that

used with Runge Kutta.

The Z-transform method has been chosen as the method by which
simulation of +the plant dynamic equations is implemented.
Transformation of the various plant equations into the discrete time

domain will be conducted in a later section.

3.9 Numerical Representation

The choice of numerical representation is an important decision
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when considering numerical simultation. There are two distinct
methods of representing numerical data when finite sized number
representations are used. These two methods of representation are

fixed point (scaled integer) and floating point.

Fixed point representations of numerical data are essentially
integer representations with a fixed position for the binary point
(either inside or outside the width of the number representation).
Most, if not all, currently available wmicroprocessor integrated
circuits are equipped with instructions for performing arithmetic
operations on integer data. More recent microprocessors such as the
Motorola MC68000 (3-12) are capable of handling two's complement
binary arithmetic using word lengths up to 32 bits. Additions and
subtraction of fixed point wvalues with aligned binary points may
therefore Dbe performed by a single machine instruction.
Multiplication and AQivision of fixed point numbers may also be
carried out using the standard integer mecham.sms However, the
binary point of the product or quotient must be re—aligned so that the
result remains consistent with the particular fixed point
representation. Again, most currently available microprocessors
facilitﬁte such realigmment with a comprehensive set of shift
 instructions. If a 32 bit two's complewment binary representation is
used to represent fixed point numbers, then a dynamic range of
12147483658 to 1', i.e. 221 to 1, is possible. Despite this large
dynamic range, should the dynamic range over which a particular value
varies be large, then problems arise due to the precision to which
this number may be represented. Truncation due to arithmetic
operations can force small but finite values to zero purely because

there are insufficient bits to the right of the binary point to
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represent the finite value. Thus a fixed point representation of a
value is equivalent to quoting that value to a fixed nuwber of decimal

places.

Conversely, a floating point representation is equivalent to
quoting a value to a fixed number of significant figures. A floating
point value is kept in two parts, a mantissa and an exponent. The
mantiséa of a floating point value represents the significant figures
of the number, while the exponent indicates the position of the
binary point. In order that the mantissa gives the wmost precise
representation of the numerical value, the wantissa is generally
normalised so that the most significant bit of the wmantissa is always
set and the exponent adjusted accordingly. One example of a 32 bit

floating point representation is shown in Fig. 3.12.

The 24 bit mantissa, from bits 23 to 0, is unsigned and the binary |
point is deemed to be immediately to the left of bit 23. This means
that, by using a normalised mantissa, the value of the mantissa, m, is
such that 1 > m » 0.5. The exponent, E, is a 7 bit two's complement
value in the field between Dbits 30 and 24, so the exponent is such
that 63 > E>—64. Bit 31 gives the sign of the mantissa, O for a
positive mantissa, so that the sign of a floating point value may be

determined in the same manner as the sign of a two's cowmplewment

representation. The decimal value, D, represented Dby this
representation is D = (-1)%.m.2E, such that
9.2234x10%% > |D| » 2.7105x10"2°, This gives this particular

floating point representation a dynamic range of £3.4028x10%2 to 1,
i.e. 2%2% o0 1. Using this representation, zero is represented by a

32 bit word with all its bits cleared since it is not possible to
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normalise a zero valued mantissa. Alternative floating point
representations, such as that recommended by the IEEE (3-13)
recognise that, in general, the most significant bit of the mantissa
is set by the normalisation process and so need not be represented.
The extra bit left over by the removal of the so—called 'hidden bit'
is then available for use either to increase the precision of the
mantissa or, more usefully, to increase the dynamic range of <the
representation by extending the exponent field. .Exponents may also
be represented by unsigned values since no sign extension is then
required on an exponent extracted from a floating point value. For
emple, the IEEE recommended representation of a single precision 32
bit floating point number (3-13) uses an 8 bit exponent, from bits 30
vto 23 inclusive, represented excess 127, i.e. the true exponent is
obtained by subtracting 127 from the unsigned 8 bit exponent field.
In order to accommodate this 8 bit exponent field and maintain 24 bit
precisid;x for the mantissa field, the most significant mantissa bit
is taken to be set, unless the whole floating point word is zero and
the binary point is taken to be immediately to the right of the hidden
bit. Thus the mantissa is normalised such that 2 > m > 1.0 and the
exponent field represents values for the exponent E s8such that
128 » E > -127. Use of the maximum exponent value, E=128, 1is
reserved for representing infinity and other exceptional conditions,
so the range of decimal values which are represented is
2x27127 5 D} » 1x27127, i.e. 3.4028x103%% > |D| > 5.8775x10739,

giving a dynamic range of 15.7896x107% to 1, i.e. 22%% to 1.

A variety of number representations are used throughout the real
time simulation software. By far the majority of arithmetic

performed in the simulation uses fixed point arithmetic with the



binary point between bits 15 and 16 of a 32 bit value. In order to
extend the precision to which certain small numerical values are
represented at critical points in the simulation, many of the
constant multipliers used in the simulation are represented by fixed
point values with the binary point placed between bits 23 and 24. 1In
one case, an exceptionally small multiplier is represented by a fixed
point_ number with the binary point to the left of bit 31. These fixed
point formats correspond to representations with 16, 24 and 32
significant binary digits to the right of the binary point and care
must be taken to align the binary points correctly during arithmetic
operations and to preserve the low order bits where truncation would
otherwise occur. The fixed point representation has Dbeen chosen
because of the superior speed of arithmetic operations. Floating
point calculations involve an extra implied operation since each
value is handled as a wmantissa and an exponent and results must be
renormmalised following each arithmetic operation. The type of number
representation used in a calculation will be 1indicated in the

sections which follow.

3.10 The Z-Trangsformed Power System Model

The various power system component blocks were discussed earlier
in this chapter. Each of these blocks will now be considered in turn
and the corresponding 2-transformed equations derived. In the
following subsections, two additional values will be associated with
- any time constant, T, which will be denoted a3 and B3 where a3 =

e T/Ta, g, = 1-a; and T is the sampling period.
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3.10.1 The Generator

A fifth order representation of the synchronous generator,
equations (3.22) to (3.26) was chosen for this simulation and these

equations may be rearranged into the form of transfer functions:

ed(8) = _1  [(xg-x"qlig(s)] (3.84)
148Tqgo

eq(s) =__1  [Ve(8)(xa-x3)ia(s)] (3.85)
1+8T30

ey (s) = _ 1 [ey(s)~(xj-x3)ia(s)] (3.86)
1+8Ta0

Each of these equations may then be *t_:ransformed in the manner of

equation (3.83), such that:

ea(Z) =  Bgo  [(xg-xg)ig(2)] (3.87)
l-ago Z°*

eq (2) = fao [VE(Z)(xg-x3)ia(Z)] (3.88)
1-ago Z°t

eg (Z) = Bad [eq(Z) - (x3-x3d)ia(2Z)] (3.83)
l-ogo Z %

These equations may then be rearranged into a form where the current

values of e;, e;I and e:l are expressed in terms of their previous
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values and the current values of V¢, ig and ig. Thus:

ed(Z) = qu [(xq-.xq) iq(Z)] + aqo 271 eq(2) (3.90)
eq(Z) = Bdo [Vf(Z)-(xd—xd)id(Z)] + adozﬂ eq(Z) (3.91)
eq(Z) = Bdo[eq(Z)—(xd—xd)id(Z)] + ddOZ"' eq(Z) - (3.92)

Providing current values are available for ig, iq and Vg, the

equations (3.90) to (3.92) may be evaluated in order to provide

current values for e;, e;I and e"q. Equations (3.90) to (3.92) may be

written as:

ed(Z) = Gliq(Z) + Gzz—led(Z) (3.93)
eq(Z) - Gavf(Z) + G‘id(Z) + GSZ""eq (3.94)
eq(Z) = Geeq(Z) + G7id(Z) + G‘Z—"eq (3.95)

where GL = qu(xq-xq), Gz = aqo' 63 = ﬁdo’ G‘ = _(xd—xd)cs' Gs = “do'

Ge = Bdo' G7 - -(xd—xd)ce, and Ge = “do' The multipliers Gx.- Ga are

represented by 32 bit fixed point binary values with the binary point

to the left of bit 23.

3.10.2 The Excitation System

Equations (3.33) to (3.35) describe the excitation system
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representation. These equations may be expressed in the form of

transfer functions as:

VE(8) = K, Vin(s) (3.96)
1+3Te

and

Ve(s) = K,s Vg(8) ' (3.97)
T+sTg

which may be transformed to:

VE(Z) = _K;Ba_ Vin(2) ' (3.98)
1-caZ ™t

and

Vs(Z) = K,(1-Z"1)Bg Vg(2) (3.99)
T(1—agZ 1)

using (1-Z~*)/T as an approximation for the operator s on the top of
equation (3.97). Rearranging equations (3.98) and (3.99) and

substituting equation (3.35) for Vin gives:

Ve(Z) = Bo.K.[Vyes(Z) + Vi(Z) = Vg(Z) - Ve(Z)] + xoZ Vg(2Z)

(3.100)

Vs(Z) = BgK, VE(Z) + agZ WVg(Z) - B;K2 77 Vg(32) (3.101)
T T
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Substituting equation (3.101) into (3.100) to remove the term in Vg

gives:
Ve(Z) =
(1-Z71)3gK,
BeKy (Vref(ZHVi(2)- V(2 ——F—— VE(Z)—agZ Vg(2)+xeZ WVg(2Z)

(3.102)

Collecting temms in Vg yields:

ve(z) [145aK2B0fe | o gox, (Vres(Z1VA(Z)VE(Z)] - BeK, GeZ  Ve(Z)

+ [%*—L-‘—Bg”—sgx KT ]Z‘*Vf(Z) (3.103)

8o that:

VE(Z) = A [Vyees(Z) + Vi(Z) - Ve(Z)] + A,Z 3Vg(Z) + R,Z VE(3Z)

where A, = K,8e/(1+a), A, = —~aghA,, A; = (ae+a)/(1+a) (3.104)

and a = K K;B8g8e/T

Having calculated Vg(Z) from equation (3.104), then equation
(3.101) may be used to calculate Vg(Z). Care must be taken when the
field voltage reaches either of its limits to ensure that the term
(1-Z7*)Vg(Z) in equation (3.99) becomes zero so that the rate of
change of field voltage, which this term represents, is zero.

Equation (3.101) may be written as:

Ve(Z) = B (1-Z L)Vg(Z) + AgZ 1Vg(2Z) (3.105)
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where A, = Eﬁg‘ and Ag = &g. The multipliers A,-A, are represented

by 32 bit fixed point binary values with the binary point to the left
of bit 23, while the multipliers A, and A, are represented by 32 bit
fixed point binary values with the binary point to the left of bit

15.

3.10.3 Generator Dynamics

The dynamics of the generator associated with the inertia of the
generator shaft are represented by equation (3.13), which may be

written as:

8(s) = -;-Y(s) (3.106)
and
- Y(s) = ;‘g [(Tout(8) - Telec(S8) — Tiosses] (3.107)

Each of these equations may be transferred and rearranged so that:

8(Z) = Z18(Z) + TY(Z) (3.108)

Y(Z) = Z73(Z) + T/M[Tout(Z) — Telec(Z) — Tiosses(Z)] (3.109)

Equation (3.109) must be evaluated before equation (3.108), and a
small amount of interfacing error is introduced into the equation by
the various torques, Toyt: Telec and Tiogges: Since they depend on
quantities evaluated in the current sample period. By comparison to
the electrical dynamics of the machine, the dynamics of the machine
rotor are very slow and so these interfacing errors are small and may

be ignored. The time step, T, and the constant T/M, are both
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represented by 32 bit fixed point binary values with the binary point

to the left of bit 23.

3.10.4 The Turbine Prime Mover and Governor

Both the steam and hydro turbines are represented by equations

(3.38) to (3.41), which may be rearranged as:

Tout(8) = 1 Tin(8) : ‘ (3.110)
1Ty,

and

Tin(8) = 1 [Govpeg(8) — Ti(8) - Kp¥(8)] (3.111)
1+8T_

Each of these equations may be transformed and rearranged to give:

Tout(Z) = PpTin(2) + pZ Tout(2) (3.112)

Tin(Z) = BalGovref(2Z) - Ti(Z) - KrY(Z)] + aaZ 'Tin(Z) (3.113)

Limits on both the size of Tj, and the rate of change of Tjp are
applied in order to implement the position and rate limits on the
valve gear. The constants aa, B3, op and fp are all represented by 32
bit fixed point binary values with the binary point to the left of bit
23, The interfacing error present in the generator dynamics

-mentioned earlier may be reduced by integrating equations (3.113) and
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(3.112) before equations (3.109) and (3.108). This does not
completely remove the interfacing error since the current value of
Tin is dependent on the current value of ¥ and the current value of Y
depends on the current value of Ty,. This ambiguity could be resolved
by substituting equations (3.112) and (3.113) into equation (3.109)
in place of the term in Tgyt. However, it is not felt that the
improvement in the accuracy of the simulation justifies the extra

computation involved.

3.10.5 The Diesel Engine Prime Mover and Governor

The dJdiesel engine and governor are represente§ by equations

(3.42) to (3.45), which may be rearranged as:

Tout{s8) = 1l Tin(s) (3.114)
1+8Tg

and

Tin(8) = Kg(1+8Ta) [Govreg(8) — w(8) - Ti(8)] (3.115)
1+sTp

Equation (3.109) may be written in terms of the rotor speed, w,

instead of the rotor slip speed, Y, so that:

W2Z) = Z'(Z) + T/M[Toyut(Z) - Telec(Z) - Ticsses(Z)] (3.10%)

Equations (3.114) and (3.115) may be transformed to give:

Tout(Z) = Bc Tin(2) (3.116)
Iz T
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- 1
Tin(Z) = xgab(u-l-—,iz:—'ra) (GoVyeg( Z)—w( Z)-T1(2Z)] (3.117)

1-apZt
These equations may be rearranged so that:

Tout{Z) = BcTinl(Z) + GcZ  Tout(2) (3.118)

- i
Tin(Z) = Kghp(l+-a—Ta)(GoVres(Z)-A Z)T1(Z)] + MZ *Tin(Z)

- Kgﬁb(l + Ta/T)[Govref(Z)-u(Z)—Ti(Z)] -
KgPp Ta/T Z *[Govyef(Z)-w(2)-Ti(Z)] + apZ 1Tin(2)

(3.119)

The expression for Tin may not be calculated at this point since it
contains a term in the current rotor speed which, in turn, contains a
term in the current prime mover output, Ty. Substituting equation

(3.118) into equation (3.109a) gives:

W2Z) = Z7(Z) + T/MI(Bc.Tin(Z)+ac.Z7* . Toyut(Z))-Telec( Z)-Tiosses(2)]

(3.120)

which may be substituted into equation (3.119) to replace the term in

w, giving:
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- b %
Tin(14KgBp{1+Ta/THT/M)Be) = KgBp(1+a—1Ta1(Govres(Z)-T1(Z)] +

KgPp{1+Ta/TH T/M)(Telec(Z) + Ticsses(Z)] -
KgPp(1+Ta/TH T/M)GRZ *Tout(2) -
KgBpZ 3 Z) + apZ~*Tin(Z) (3.121)

Thus, the diesel engine and governor are simulated by the following

equations:

Tin(Z) = D, [Govees(Z) - Ti(Z)] + DpZ~ [Govees(Z) - Ti(Z)] +
Dy [Telec(Z) + Tiosses(Z)] + DZ7* Tout(2) + DgZ *w(Z) +

DeZ *T1in(2) (3.122)

Tout(Z) = DyTin(Z) + DeZ *Tput(Z) (3.123)

where D, = Kghp(l + Ta/T1/Dy, D, = -Kgfp(Ta/T)/Dg, Dy = D, T/X,
Dy = -Dy X3, Dy = -KgPp/Dg, Dg = &3/Dg, D; = B3, Dy = x3 and
D = [1 + KgPpScll + Ta/TIT/M]. The constants D,-Ds are represented
by 32 bit fixed point binary values with the binary point immediately
to the left of bit 23. Limits may be applied to Ty, and Toyut as

appropriate.

3.10.6 Algebraic Equations

So far, only the dynamic plant equations have been considered. A
further set of algebraic equations exist which must be solved

simultaneocusly with the dynamic equations. These equations give
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expressions for electrical torque, Telec: the voltages Vg, Vg and Vg,
the currents ig and ig, and the extra control signals, rotor
acceleration (p28) and transient electrical power (Pg), which are
made available to the excitation and governing systems. The equation
for the air gap torque, equation (3.27), was given earlier in this
chapter. The four equations, (3.25), (3.26), (3.48) and (3.49),
relate the direct and quadrature axis voltage and currents, and the
lcad angle §. 'fhese equations may -be combined, to eliminate Vg and Vg

and expressed in matrix form as:

{e - Vbains] [(ra + Rp) =~(Xp + x;>] [u]
- (3.124)
ig

(¥ + x3) (ra + Ry)

which may be inverted to express the currents ig and ig in terms of

the busbar voltage V4, the subtransient voltages e; and e;, and the

load angle 8. Thuss

ig 1 [ (ra + Rp) (Xp + x;) e; - Vpsins

L o
1q]  (FARTIHRCX IR | (x o x3) (ra + Rp) le - vpcoss
(3.125)
and the currents so obtained may then be substituted into equations
(3.48) and (3.49) to obtain the axis components of the terminal

voltage, Vg and Vq. These voltage components are then used to cbtain

the terminal voltage magnitude according to equation (3.12).

Ve = ¥ Va7 + V@ (3.12)
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This calculation is the only part of the simulation that is performed
using floating point arithmetic, Vg and Vq are both converted from
fixed point to floating point, squared, summed, square rooted and
then converted back to a fixed point representation of the terminal

voltage magnitude V.

The rotor acceleration is calculated from the difference in two
speed values, rather than using the expression for the rate change in
rotor speed 'given by rearranging equation (3.107). This action more
closely corresponds to the action of the slotted disc type speed and
acceleration transducer used by H_azell (3—4) and introduces the type

of phase lag associated with such a transducer. Thus:

A
pP25(2) = (1 - Z°2) Y(Z) (3.126)
2T

-

A
is used to estimate the rotor acceleration, p2s.

The electrical power at the machine terminals is calculated from
the standard equation for the terminal power of an electrical

machine.

Pe = V3.1g + Vqiq | (3.127)

In practice there will be some dynamics associated with the
transducers measuring the terminal power. For the purposes of this
investigation, it is assumed that electrical power can be accurately
weasured at the machine terminals and that this power is given by

equation (3.127).
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3.11  Summary

The dynamic and algebraic equations used to simulate the
component parts of a power system have been described. A number of
numerical integration techniques were then considered, and of these
an implicit integration method, based on the Z-transform was chosen
to implement the numerical solution of the plant equations. The
plant equations were then transformed into the discrete time domain
and written in a 'form suitable £or. numerical integration. As
presented here, there is a small amount of interfacing error
asgociated with the couplinq' of the electrical and mechanical
systems. At the start of each integtation loop, all the algebraic
equations may be solved by using the dynamic quantities from thé
previous integration step. This introduces a one sample interface
error, which is insignificant provided that the integration step

length is short.

The prime mover, governor and rotor dynamic equations may then be
applied to step the machine speed, w, or slip speed, Y, and the load
angle, 38, forward by one integration step length. Next the
excitation system equations may be applied to establish the field
voltage for the current step, which in turn is used to evaluate the
- direct and quadrature axis transient and subtransient voltages prior

to the next iteration of the simulation.
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CHAPTER 4

THE REAL-TIME SIMULATOR

4.1 Introduction

The increasing complexity and speed of digital integrated
circuits, in particular, memory devices and the latest gene:_:ation of
16-bit microprocessors, make it possible to consider their use in
solving large computational problems which have previously been
confined to scolution by mainframe computer due to their size in terms
of storage and processing requirements. Dedicated processing systems
may be designed relatively cheaply from these circuits and, in this
particular study, the objective of such a system is to solve, in
real-time, the dynamic and | algebraic equations (developed in
Chapter 3) which describe a small power system. The term 'real—-time’
is widely used in many contexts but for the purposes of this
investigation ‘'real-time’' IiIs taken to mean that the time taken to
solve all the equations associated with the plant is less than the
time step of the particular integration method used. This means that
the simulation must be capable of generating data at the same rate as
the real plant which the computer system is simulating. The power
systems considered consist of a prime mover with governor control, a
synchronous generator fitted with automatic excitation control and a
load. These components have already been discussed in Chapter 3 and
methods for numerical integration of the dynamic equations have been

described.
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This Chapter describes the development of both the hardware and
the software of a Real-Time Power System Simulator, which combine to
solve the power system equations in real-time. The hardware
requirements for the simulator and various possible configurations
are discussed, with a detailed description of the particular hardware
used. The software for the simulator may be considered in three
groups: the system software, which provides the environment in which
the simulation is executed; the application software, which comprises
of the simulation software itself and the | necessary wonitoring
software; and the support software which eases the debugging, loading
and modification of the real-time simulation. Finally, the operation
of the hardware and software components together as a simulation is

discussed.

4.2 Simulator Hardware

A variety of possible solutions exists to the problem of choosing
hardware capable of simulating the power system equations given in
Chapter 3. The equations could be left in the operational form in
which they were introduced, to be solved using analogue (4-1 to 4-3)
or hybrid analogue/digital computers. An analogue cowmputer
simulation results in a very inflexible solution which is very labour
intensive to set up or modify. The results from such a simulation may
be saved by plotting directly onto paper or by recording on magnetic
tape. Part of the wotivation for the real-time simulation is to
enable stability and optimisation studies to be performed, rapidly,
on the system under investigation. These studies require various
parameter changes based on the results of previous simulations, and

the manual modification of the various potentiometer settings on an
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analogue computer becomes a tedious process. It is possible to
program a hybrid computer to wmake the necessary parameter
modifications as the study progresses. However, the cost of a hybrid
computer is prohibitive and an all digital solution to the hardware
problem has been chosen. Three main digital solutions are available,
namely, array processors, mainframe computers, or some form of

multiple microprocessor architecture.

An array processor consists of a single execution unit
controlling an array of arithmetic and logic units (AIUs). As such, a
single program instructions is executed simultaneously on several
a&s of data (Single Instruction Multiple Data, SIMD). This type of
processing hardware is ideal for handling matrix calculations, where,
for example, in a matrix multiply, each ALU is responsi.bl_e for
calculating a single element Of the product matrix. In this case,
each ALU would have to altiply a row of the lefthand matrix by a
column of the righthand matrix and each of these operations is
entirely independent of the other row and column products. Thus, the
product matrix elements may be calculated simultaneocusly by the use
of an array processor which performs the same operation on multiple
sets of data. There is obviously a finite limit to the number of ALUs
built into an array processor and such a processor is at its most
efficient when all its ALUs are in use. In the matrix multiply
example, should there be more elewments in the product matrix than
there are AlUs, then a number of passes over the data will be
necessary, each pass calculating new elements of the product matrix.
The flow of data to and from an array processor is very complicated as
separate pathways between the system mewmory and each ALU must exist.

' Por this reason, array processors are dJgenerally slave processors
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which increase the performance of a host processor. The host is then
responsible for retrieving data from the host memory and supplying it
to pipelines assoclated with each ALU. When each ALU requires a new
operand it removes a data item from the front of its pipeline. It is
the responsibility of the host to ensure that this data is presented
in the correct oxrder. The results of intemmediate calculations are
held in registers internal to each ALU. 'ﬂhen the calculation is
complete, it is the responsibility of the host to retrieve each
result from the ALUs and return it to host mewmory. Clearly, large
" speed improvements are possible with such architectures, where a
number of similar, independent, calculations may be performed
simultaneously. Despite this speed improwement, an array processor
is not a stand-alone device, and may be considered to be a hardware
‘add on' which improves the performance of the host. The array
processor 1is . purely a ‘number cruncher®' which makes no decisions
regarding program flow based on the calculations it performs. It
merely handles arithmetic calculations on complex data structures.
Programming a combination of host and array processor is not a simple
matter. Apart from the host software needed to steer data to and from
the array processor, there is also the software/firmware required by
the array processor to detemmine the function it performs on the déta
axriving via its pipelines. The cost of array processing is high, not
justintemsofthecostofhamwaxe(.themayptocessorandthe
host) but in terms of the software effort necessary to program the
device. Expansion of such a device to handle more complex problems at
the same execution speed requires either the use of more ALUS or
replication of the entire array processor/host combination. Axrray
processing is therefore not an attractive solution when the cost of

the system is important.
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The traditional approach to the numerical solution of power
system equations and those of other large engineering systewms has
been to use the facilities of a mainframe computer, such as those
found serving Universities or industrial concerns. In general, the
simulation is wﬁtten in a high level language and, once compiled, it
wmay be run as a single task amongst the many tasks such a computer is
executing on behalf of its many users. The raw processing power of a
mainframe, typically in excess of 10 million instructions per second
(MIPS), is more than adequate for the real-time simulation of many
large engineering systems. HBowever, exclusive use of a mainframe
computer is prohibitively expensive. In general, such computing
systems are equipped with large quantities of random access mewory
(RAM) and disc storage in order to service a large number of users.
The user enviromment set up by the system software must protect each
userfro.thebtherusetsanditisqenerallynotpoesibletowrite
low level machine code to improve the execution speed of a task. Due
to the time-sharing nature of such a system 1t 1is iImpossible to
quarantee a ‘real-time' response from the system. This and the cost
of exclusive use of a mainframe computer make it an unattractive

solution.

Distributed computing systems in general contain msore than one
processing unit. The term ‘distributed computing' is used loosely
here to encompass a whole variety of architectures based around the
use of many processing elewments, working together in sowme manner to
solve ‘a problem. Distributed processing schemes increase the
instruction throughput of a computing installation since a
computational problem may be divided into a number of tasks and each

task may be emecuted on a separate processor. Each of these tasks
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would poesibly wait for data that is the result of a computation
taking place in another task. The use of multiple processing
elements has some similarities with the use of array processors, in
that truly simultaneous calculations can take place. However, in
this case, the nature of the simultaneous calculations wmay be
entirely different (Multiple Instruction Multiple Data, MIMD), since
each ALU has its own execution unit, Thus, assocciated with each
processing element is an ‘intelligence’' not present in an array
processor, which allows each element to make decisions and steer its
own execution, without disturbing the execution of other calculations
elsewhere in the system. The individual manner in which each of the
processing elements may perform its calculations eases the problem of
debugging the application software that runs on the system. Also,
depending on the specific architecture choeen, expansion of the
system to solve more complex problems at the same speed may simply
require the addition of further processing units. This type of
approach will encourage the use of modular hardware and software,
whereby a computation may be distributed in some ‘optimum® fashion
around a mumber of identical pieces of hardware. If the problem
expands, requiring the use of more hardware to achieve the required
computational speed, new program modules may be written and all the
modules wmay then Dbe redistributed around the new hardware

configuration.

With the falling price and increasing complexity of currently
available microprocessor integrated circuits and their supporting
devices, it was decided that the simulator should be some form of

distributed microprocessing system.
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4.3 A Microprocessor Based Distributed Computing System

One of the £irst choices that has to be made when opting for a
microprocessor based solution to a problem is which microprocessor to
use., PFour main contenders were considered: the Texas Instruments
TMS9900; the Intel I8086; the Motorola HC68000; and the Zilog Z8000;
all of which have at least 16-bit arithmetic capabilities. As a
result of benchmark tests by Tanner (4-4) it was decided to use the
nqtomlg device. This decision is based on the speed with which the
MC68000 can perform arithmetic operations, ;ts large instruction set
and the potentially fast bus access speed of its asynchronous bus

interface.

The Motorola MC68000 is a powerful 16-bit microprocessor (4-5)
which can directly access an address space of 16 Megabytes. It
supports operands of five different types; bit; byte (8 bits); word
(16 bits); longword (32 bits); and binary coded decimal (BCD). The
instruction set of the MC68000 contains instructions to perform; data
movement; two's compieuient integer arithmetic; logical operations;
shift and rotate operations; bit manipulation; Dbranch and Jjump
operations; and system control and privileged operations. The
programmers model of the MC68000 consists of a 16-bit status register
and eighteen 32-bit registers cowprising eight general purpose data
registers, seven general purpose address registers, two stack
pointers and a program counter. The processor supports two levels of
privilege and 3even 1levels of prioritised, vectored interrupt.
Exception processing is directed via 256 exception vectors, most of
which are available for handling vectored interrupt exceptions. Sowe

of the exception vectors are reserved for use by such exceptions as
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regset, bus error (when an accessed 1location fails to respond),
address error (when a word or longword access is attempted at an odd
valued address) and a variety of trap instructions and conditions
such as illegal instrucfion, divide by zero, privilege violation and
a trace exception which allows software single stepping. In order to
ease the design procedure, the MC68000 supports two types of bus
interface. The asynchronous bus intexface is a high performance
weans of accessing mewory devices and peripheral devices of the
MC68000 family. The synchronous bus interface wmay be used to
directly intexface the MC68000 to the large range of peripheral
devices belonging to the Motorola MC6800 family of support devices
(46). The MC68000 contains bus arbitration logic which aids in the
tra.nsfe; of control of the wicroprocessor buses to multiple bus
wasters, with the possibility of bus contention being resolved while .
the bus is still active and assigned to another bus master. Thus, the
MC68000 is capable of supporting a large range of devices and
peripherals such as ter-inals; rotating disc storage, wmemory
management hardware and direct memory access controllers. These

features greatly simplify the task of the system designer.

4.3.1 Systewm Specification

once the choice of wicroprocessor device has been wmade, it is
necessary to specify the requirements of the system into which it is
to be built. The fundamental requirement is that each of the MC68000
based processing units should be capable of operating in a
wultiprocessor configuration, with high speed transfer of data
between the processing units. In order to wmake the system flexible,

it was considered that some form of open ended architecture should be
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used to facilitate easy expansion. On these grounds, it was felt that
a 'star® connected processing system, with communication between all
processors directed throuch a central, intelligent, bus controller,
was undesirable. In its simplest form such a star connected system
could consist of a number of identical processing units, each of
which supports at least one serial port (for example, an RS232-C
‘asyachrom)us port), all coupled to a further, possibly similar,
processing unit fitted with sufficient serial ports to allow
individual connection of each of the other processing units. The
processing unit at the centre of the star connection represents a
common mode of failure should it break down and it can be identified
as a potential bottleneck should the volume of communication traffic
become large. Expansion is also restricted to the number of serial

ports available on the controlling unit at the centre of the star.

Pig. 4.1. shows a mumber of bus orientated wmultiprocessor
configurations. Pig. 4.1(a) shows a tightly coupled system where all
the system resources, » disc ocontrollers and input/output
devices reside on the system bus. When multiple bus masters, such as
central processing units (CPUs) or disc controllers fitted with
direct mewmory access (DMA) facilities, contend for the ownership of
the bus in order to exchange data, the bus controller must resolve
vhichofthezequestinqbﬁsnastersactuallyacquimsthebus. On the
surface such a system appears to meet the specification. It is
expandable and, in theory, more memory, CPUs or peripheral devices
may be connected to the bus, with high speed communication between
CPUs accomplished simply by data movement. There are, however,
practical limits to the number of devices that can be connected to the

bus and a much more serious limitation to the owverall expansion of the
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system is imposed by the bus bandwidth. In order to operate, each CPU
must fetch instructions and data from the memory attached to the bus.
This has both advantages and disadvantages. The major advantage is
that if separate CPUs are identical, they may share both program and
data areas. This means that any sub—~task of the overall computation
may be executed by any CPU. The decision as to waich CPU executes a
particular sub—~task can be made dynamically as the cowmputation
proceeds and the computation load varies. In a wmultitasking
environment, a suspended task wmay be resumed by a different processor
to that which suspended the task. The disadvantage of this
a.rchitecturt_e is fhat each processor must acquire ownership of the bus
for every read or write cycle. For the worst case MC68000
instruction, the actual instruction fetch will require 5 bus cycles
{the longest MC68000 instruction format is ten bytes long) and, if
both source and destination operands are long words held in wmewory, a
further 6 bus cycles are required to obtain both operands and return
the result of a cowmputation to wmewmory. Thus, each CPU generates a
large volume of traffic on the bus and, in the limit, each CPU will be
kept waiting prior to each bus cycle, while the bus cycles of other
bus wmasters (CPUs, DMACS, etc.) are completed. Despite the
attractive nature of this regular architecture which permits elegant
software to be written, the overall instruction throughput of the

system is limited by its bus bandwidth.

A wodification to this configuration is shown in Pig. 4.1(Db).
Associated with each CPU are sowe private, or dedicated, resources.
Aside from some form of local memory, these dedicated resources way
include peripheral devices, such as disc controllers, terminal ports,

timers and parallel ports. The local wmemory wmay be organised in two
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forms, either as cache memory or as conventionally addressed, linear
memory. A cache mewmory intercepts read cycles to the glcbal bus to
determine whether or not the  particular memory location has already
been read by its own CPU and whether a wvalid value for that location
is available from the cache memory. If a cache *hit®' occurs, i.e. the
cache does in fact contain valid data for the required mewory
addreess, then no cycle takes place on the glabal bus and the data is
supplied locally to the CPU by the cache. If the cache 'wmisses’, then
the read cycle proceeds as normal by acquiring the global bus and
reading from the global mewory (part of the glabal resource). The
data so read is captured both by the CPU and by the cache mewmory. The
cache then tags the stored value with the address from which it came,
8o that a subsequent access to the same location will result in a
cache hit. Problems arise from the use of cache mewmory in a
multiprocessor environment where the global bus is shared. Pirst,
the cache itself is a complicated piece of hardware and it requires
time to respond at the start of a CPU read cycle, so lengthening the
time taken to acquire the data if that data is to be acquired from the
global bus. A wmore serious problem arises in a multiprocessor
enviroment if a cached valued is invalidated by a write to the
corresponding global address by a different CPU. Caching wmay be
restricted to instruction fetches only in order to avoid this latter
problem since it is generally accepted that it is bad practice to
write software in such a manner that it is modified during its
execution. This ‘instruction omnly* restriction reduces the
effectiveness of using cache memory since not all read cycles are
subject to the possibility of a cache hit. However, use of
instruction cache does reduce much of the traffic on the global bus,

so increasing owverall instruction throughput beyond the limit



previously imposed by the bus bandwidth, whilst at the same time
maintaining the elegant software flexibility offered by the tightly

coupled architecture of Fig. 4.1(a).

The use of linearly addressed private memory also offers a
reduction in bus traf:ic. The linear wemory forms part of the CPU
wmewory map and both program and data segments may reside there. Such
private memory may be very closely coupled to the CPU and it is
poésible to achieve full speed operation of wmemory cycles using this
arrangement. Only software resident in the global wmewory may be
shared, but making use of shared software in this fashion results in
the bus Dbandwidth problems previously encountered with the
arrangement of Fig. 4.1(a). The mewmory of the global resource is used
for the exchange of messages or data while the memory of the private
resource is used for program execution and the storage of all the data
necessary to make use of the global bus infrequent. Comsaon
subroutines and mes wust be duplicated throughout the private
resources and the possibility of one CPU taking up the ewecution of a
task suspended by another CPU is cowmplicated by the fact that the
appropriate software and data segments are not resident on the CPU
taking up task execution. In many cases, the private resources
(particularly the memory) of a CPU are accessible from the global bus
as indicated by the brokem lines in Fig. 4.1(Ddb). The addresses, at
which access to this memory is made via the global bus, are different
for each CPU board and different to that used by the local CPU to make
private accesses. Care is therefore necessary if a suspended task is
to be resumed by a different CPU and, in general, it is simpler if
each task rewmains resident on one CPU throughout its execution. With

the configurations of FPig. 4.1(a) and (b), the bus interface is a
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complex section of hardware and many contingencies must be taken into
account. For example, a ‘'deadly ewmbrace' c¢an occur with. the
configuration of Fig. 4.1(b) if one CPU attempts to access the
private resources of a different CPU whilst this second CPU is
attempting to access the global bus. The first CPU has access to the
global bus, but may not access the private resources of the second CPU
until its internal buses are free, which cannot happen until it has
completed the access it requires to make to the global bus. Bardware
wechanisms can be incorporated to handle such problems so that the

programmer remains unaware of their existence.

The confiquration shown in Pig. 4.1(c) is a loosely coupled
system. Each CPU becomes an entire subsystem, consisting of the
processor itself, wemory, input/output devices and a communication
link. Each subsystem, enclosed by broken lines in Pig. 4.1(c), is
capable of functioning independently of the ;thers. On the surface,
this arrangement appears to be similar to the arrangement of Fig.
4.1(b). However, the important difference is that the communication
bus has no private resources associated with it. Access to the
communication bus is governed by the communication controller. A CPU
deposits a wmessage for another processor subsystem in its own
communication 1link and it may then continue processing. wWhen
directed by the communication controller, the communication link then
transfers the message to the communication link of the destination
subsystem. The arrival of the message at the destination subsystem
then causes an interrupt at the associated CPU. This communication
is therefore asynchronous to the software running on both the source
and destination subsystems and results in larger transmission delays

than those encountered in the previous two arrangements, although the
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bandwidth of the communication bus may in fact be higher than that of

the system bus of either of the tightly coupled systems.

There is a clear evolutionary trend through these three possible
multiprocessor configurations and the choice of one of these
configurations in particular is not made easily. It is questionable
whether the tightly coupled configuration of Fig. 4.1(a) is capable
of meeting the speed requirement in terms of instruction throughput
and there is certainly an upper 1limit placed on this by the bus
banawidth. It is not possible for the CPU elements of Fig. 4.1(a) to
function independently since they have no private resources. The use
of private resources, Pig. 4.1(d), relieves the bandwidth limitation
on instruction throughput and, with the linearly addressed private
memiy, it is possible with careful design for the processing units
to function in a stand-alone mode, independently of the global bus
and the other processing units. The loosely coupled architecture of
Pig. 4.1(c) is wmore flexible s8ince each of the subsystems may be
tailored to its function. Each subsystem may be rack based so that
~only the necessary board assemblies for each subsystem may be
included, whereas the private resources associated with each CPU in
Pig. 4.1(b) often reside on the same board as the CPU and so are

present whether they are used or not.

The configuration chosen for the real-time simulator described in
this Chapter is that of Fig. 4.1(c). Each subsystem is housed in a
standard 19 inch rack, fitted with a 9 or a 22 slot backplane capable
of accepting standard and extended double Eurocard sized boards. The
entire system is expandable by the use of extra subsystems, and each

subsystem has expansion capabilities in terms of the peripherals and
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wemory that it uses.

4.4 The Microprocessor Based Sub—System

The minimum hardware requirements for each processing subsystem
are that it should contain: one MC68000 based CPU; a minimum' of
256Kbytes of dynamic random access memory (DRAM); monitor and/or
bootstrapping firmware, stored in eraseable programmable read only
memory (EPROM); two RS232-C asynchronous serial ports for terminal
connectionss a real-time counter/timer device; a front panel offering
reset and non—-maskable interrupt facilities in addition to status
display; hardware enhancement of the CPU arithmetic capabilities; and
a communication link. An expanded subsystem may also require direct
memory access {DMA);' rotating dise storage; and high resolution
graphics facilities. Pig. 4.2 shows a block diagram of an extended
processing subsystem where the components enclosed inside the broken

line are not required for the minimum configuration.

As far as possible, each of the functions within the subsystem
block diagram of Fig. 4.2 has been implemented on a single, extended
double Eurocard. Subsystems may then be assembled from a series of
standard Dboards. In the subsections which follow, a Dbrief

description is given of each of these boards.

4.4.1 The Central Processing Unit

A simplified schewmatic diagram of the CPU board is shown in Fig.
4.3. The major functional blocks enclosed by the broken line are only

available on the latest version of this board. The principle
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components can be identified as the processor itself, an 8MHz MC68000
microprocessor; clock generation; a direct memory access controller
(DMAC); a memory management unit (MMU); bootstrap EPROMs (4Kbytes);
and some decoding and time out logic. The MMU, DMAC and EPROMs are
all optional and may be removed from the board if not required. The
MMU is made up of two Motorola MC68451 integrated circuits which
facilitate the translation of logical mewmory addresses into physical
memory addresses and protect mewory from illegal accesses. Part of
the control bus passes through the MMU logic in order that illegal
cycles (e.g. write cycles to write protected memory) may be
inhibited. Memory management facilities offer the sort of memory
protection required by multi-user, multi-tasking operating systems.
Provision of these facilities on the CPU board greatly increases the
range of applications a stand-alone subsystem may be put to. On the
latest versions of the CPU board direct memory access is offered by
the HD68450 or )(:58446 DMAC integrated circuits. By providing m
facilities on the CPU board it is possible for DMAC generated
addresses to be translated by the MMU. This reduces the memory
wmapping problems that arise when disc blocks are locaded into a memory
managed system by DMA. A small area of EPROM is also provided on the
latest CPU boards which, in a disc based system, is intended to
contain all the firmware necessary to load an operating system from
the disc device. In non-disc based systems, a large amount of
firmware may be required and this may be provided by the EPROM board

described in a later section.

The block marked decode generates the necessary device selects
for all the on-board devices {(MMU, DMAC and EPROM) and it also

generates two partial decode signals which identify two arxreas of
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memory reserved for input/output devices. The signal IOCPAGE
identifies a 4Kbyte area ($840000 to $840FFF) intended for use by I/O
devices interfaces using the MC68000 asynchronous bus interface and
256 bytes ($83FFP¢d to $83FFFF), identified by the signal 68OOPAGE,
are intended for use by peripherals using the MC6800 type synchronous
bus interface. These two partial decode signals reduce the size of
the address dJdecoding 1logic on peripheral boards since, instead of
having to decocde 23 address lines, use of IOPAGE requires the decode
of 11 address lines, while use of 6800PAGE requires the decode of 7

address lines.

Finally, the CPU board generates the main 8MHz system clock and
times out all accesses, 8o that accesses to unpopulated wmemory

locations may be signalled via the Bus Error exception.

. -

4.4.2 The 256Kbyte Mewmory Board

A schematic diagram of the memory board used for constructing
processing subsystems is shown in Fig. 4.4. Many of the signals shown
in this figure are unnamed and are intended to indicate a functional
dependence rather than to represent a particular signal from the
circuit diagram. The main memory array is made up of thirty-two 64K
bit dynamic random access memory (DRAM) devices arranged in two banks
of 64K x 16 bit words. In addition to the main memory, a further
twelve DRAM devices are arranged as two banks of 64K x 6 bit words
which are used to store check words generated by the Error Detection
and Correction Unit (EDC). All the DRAM devices have access times of
200 nanoseconds and require a multiplexed address bus. The board

timing is completely asynchronous, except for arbitration between
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backplane and refresh cycles, which makes use of the system clock.
Board refresh occurs transparently at reqular intervals and may
extend the access time to the board in the event of contention between
backplane and refresh cycles. All the timing and control signals are
generated from an analogue delay line which is triggered at the start
of either a refresh cycle or a backplane access. Once a valid address
is present on the address bus, and the appropriate data strabes for
the particular cycle are active on the control bus, then, assuming
that the board decodes and BRDSEL is asserted, a row address is
supplied to the mewmory devices wvia the address multiplexer. This
multiplexer partitions the address bus into row and column address
and also generates refresh addresses for refresh cycles. The row
address strobe (RAS) is then asserted so that the memory devices
latch the row address. The multiplexer is then switched over to
supply the column address and, after a short delay to allow the
address to settle, the column address strobe (CAS) is asserted so
that the complete memory address is latched in the memory devices. Up
to this point in the cycle the write signal, W, has been inactive, so
data is read from the 16 data bits and the 6 check bits. All memory
cycles (except for refresh) internal to this Dboard are
read-modify-write cycles, although the backplane cycles may be read
only, write only, or read-modify-write. Data is read from the wmemory
array via the Dout bus and arrives at the EDC via the three way
buffers. The EDC generates new check bits during the DRAM access time
(200ns8) and, at the end of this period, the EDC is put into correct
mode in order that the freshly generated check bits may be used in
conjunction with the previously stored wvalue to, if necessary,
correct any single bit error in the data. Up to this point, all

backplane accesses follow the same timing. During the remainder of a
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read access, the corrected data bits are presented to both the memory
array (via the Din bus) and the backplane wvia the three way buffers.
The 8ix check bits are presented to the check RAM. The write signal,
W, is then asserted (logic 0), to re-write data and check bits to the
appropriate memory devices and the backplane is signalled, via the
control bus (DTACK), that a valid data is available on the backplane
data bus During the remainder of a backplane write access to the
wemory board, following the error correction stage, partially new
(byte write cycles) or wholly new (word write cycles) data is
presented to the EDC for the generation of new check bits. The
freshly generated check bits protect the whole of the new data word,
be it wholly new, or comprised of one 'new’ byte and one 'old' byte.
W and DTACK are activated as in the read access to simultaneously
write the data and check bits and to signal the backplane that the
access is complete. 1In both read and write accesses, following the
coxrection stage, the EDC is returned to the generate mode 8o as to
supply valid check bits when necessary. Thus, all accesses to the
wemory board follow the same pattern, i.e. read the memory axray,
detect and correct errors, generate new check bits, then write back
to the memory devices. The whole operation takes approximately 400

nanogeconds.

The EDC logic is comprised of an AM2960 integrated circuit and
the associated data buffers are AM2961 devices (4-7). Each 16 bit
data word is protected by a 6 bit check word which is generated
according to a modified Hamming code. This code guarantees to detect
and correct all single bit errors, detect all double bit errors, and
detect many other multiple bit errors in the 22 bits comprising the

data word and its check word. Not all wmultiple bit errors are
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detectable, since many data words must share the same check word.

It was felt that EDC facilities should be provided on this board
because, with the increasing density of memory devices in terms of
memoxry storage for the same surface area, the charge storage for one
bit of a data word diminishes. This increases the possibility that an
alpha particle collision may corrupt data stored in RemOxy and so
increasés the bit error rate and decreases the reliability of the
memory board. The use of EDC can improve the reliability of the
memory board by a factor of sixty (4-7). The control and status
register (CSR) associated with each memory board offers a number of
programmable options with regard to the handling of errors detected
by the EDC. This register is located in the IOPAGE at an address
governed by the base address of the memory board. Three bits are
gignificant when this register 1s written to; bit 0O determines
whether a detected error is reported, via the bus error exception, or
not; bit 1 may be set to put the EDC into a pass through mode, so that
no detection, correction, or generation of check words occur; bit 2
uiay be sBet so that only uncorrectable, multiple bit, errors are
reported, otherwise all bit errors will be reported if bit 0 is set.
Reading the CSR returns the value of the syndrome bits generated by
the EDC during the correction step and output on the check bus. The
syndrome bits are captured if any bit errors occur and either encode
the identity of the single bit in error or report the occurrance of a
double bit or detectable multiple bit exrxror. If no errors have
occurred since the last time the CSR was read, the CSR will read as

Zerxo.

Thus, this wemory board offers full error detection and
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correction facilities with programmable reporting options and
transparent refresh. The cycle time of a typical access is

approximately 500ns8 when used with an 8MHz CPU.

4.4.3 The EPROM Board

A schematic diagram of the EPROM board is shown in Pig. 4.5. The
EPROM array consists of sixteen 24 pin sockets which may be
configured, by the use of header plugs, to accept any of the JEDEC
standard 24 pin EPROM/ROM packages. Each of these sixteen sockets
supplies a byte of data to the data bus, so that the EPROM array is
arranged in eight pairs of devices, each pair supplying a whole 16 bit
data word. Each pair of devices is enabled by one of the chip
selects, CSO0-CS7, from the EPROM decode 1logic. This decode 1is
switchable so that each socket may be decoded as either 1K x 8,
2K x 8, 4K x 8 or 8K x 8 devices, the latter only being available as a
24 pin read only memory (ROM) device. The access time to the devices
wmay be varied by moving a wire link and there is a switch selectable
option which reports attempted write accesses to the board via the
bus error exception. A further switchable option is available which
allows the first eight bytes of the EPROM board to decode at memory
locations 0 to 7. This allows the reset vector to be stored in
non-volatile EPROM whilsi:, by using a similar option on the DRAM
board to disable access to RAM at addresses O to 7, the remaining

exception vectors may be programmed by software.

Thus, the EPROM board supports a number of different EPROM/ROM
devices and may be used to supply either 16K, 32K, 64K or 128K bytes

of read only storage.
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4.4.4 The Display Driver and Peripheral Board

This board, a schematic of which is shown in Pig. 4.6, has three
functions. Pirst, it buffers all the address, control and data
signals present on the backplane and uses these buffered signals to
drive ILEDa on the front panel of each subsystem, which indicate the
state of. the Dackplane. Secondly, this bDoard terminates the
backplane with termination networks identical to those on the CPU
board. These two boards therefore belong at opposite ends of the
backplane. Lastly, this Dboard implements a number of simple
peripheral and support devices which provide serial input/output and

event timing.

Serial I/O 1is provided by two Motorola MC6850 Asynchronous
- Communication Interface Adaptors (ACIA), each of which (4-6) supports
a full duplex, RS232-C, serial interface. Each of these devices is
supplied with a switch selectable baud rate c¢lock which enables

coamunication at baud rates from 110 baud to 9600 baud.

Event timing is catered for by a Motorola MC6840 Programmable
Timer Module (PT™). This device (4-6) contains three individual
counter/timer circuits, each of which may be used for interval
timing, period measurement, frequency measurement or event counting.
Each counter/timer may be independently clocked by an external source
or internally connected to the system E clock (0.8MHz) which is

present on the control bus.

Both the ACIAs and the PTM are interfaced to the backplane using

the simple MC6800 type bus interface. Both sets of devices are
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capable of generating interrupts to the CPU. The ACIAs use
autovectored interrupt 1level 2 and the PTM uses autovectored

interrupt level 6.

A seven segment display driver device (ICM7218-E) has also been
implemented on this Dboard. This has been configured as two
four—digi:t, seven—segment, LED display ports on the front panel.
These ports may be used to display program status information. For
example, the real time simulation software uses one of these ports to
display the passage of time and the other is used to indicate the
occurrance of transmission errors on the communications 1link. The
display driver provides two output formats. In hexadecimal mode,
each digit displays, in hex, the value of a 4 bit binary number
written to the corresponding address of the digit within the device.
In the alternative mode, the display driver .uses a B-code

representation which gives the ten decimal digits, 0 to 9 and a

selection of displayable letters.

On each subsystem front panel, in addition to the display LEDs,
there are also reset and non—maskable interrupt switches. These
switches are debounced and attached to the backplane by the display

driver board.

4.4.5 The Floating Point Board

The floating point board was designed to improve the speed of
floating point calculations. A schematic of this board is shown in
Fig. 4.7. It can be seen that this board accommodates four separate

AM9511 oxr AMSS512 Ploating Point Processors (FPPs) described in
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reference (4-8). When the board 1is accessed, the address deccde
determines which of the four FPPs to access and applies the

appropriate chip select. The access timing and control logic

generate the read, write and register select (RD, WR and RS)
signals, to control the direction of the exchange of data between the
backplane and the FPP data register or command and status register
(CSR). If the FPP is busy when it is accessed, then its PAUSE signal
will become active during the access, and the access may not complete
until tr;e PAUSE signal becomes inactive. Each FPP handshakes with
the interrupt controlling logic using the service request (SVREQ) and
service acknowledge (SVACK) signals. The interrupt logic prioritises
the individual FPFP interrupts and passes pending interrupts through
to the CPU. Associated with each FPP is a separate switch selectable
interrupt vector which will be published on the data bus during an
1nterrupt' acknowledge cycle., All four FPPs may be active
simultaneously and, once the CPU has initialised an FPP operation, it
may also operate in parallel with the FPPs until the result of a
floating point operating is required. Floating point results may be
recovered from the FPP when it interrrupts or, since interrupting and
polling versions of each FPP command are available, they may be
recovered from the FPP data register when required, having ensured

completion by reading the CSR.

The AM9511 device uses the floating point representation of Pig.
3.12 and also supports 16 and 32 bit twos complement integer
arithmetic. In addition to floating point add, subtract, multiply
and divide operations, the AM9511 supports the trigonometrical
functions sine, cosgine, tangent, arc—-sine, arc—cosine and

arc—-tangent, together with the commonly used functions, square root,
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common logarithm, natural logarithm, exponential and power functions.
The AM9512 is much more humble in its capabilities. However, it does
support the IEEE 32 bit single precision and 64 bit double precision
floating point representations (4-9). This device supports floating
point add, subtract, multiply and divide operations and both devices
support the conversion of values between integer and floating point

representations.

The provision of four FPP units offer a simple extension to the
arithmetic capabilities of each aubsystem and also increases the
level of parallel operation capable when floating point calculations

are performed.

4.4.6 The Communication Link

The communication link hardware was itself the subject of other
research (4-10) and only a descripi_;ion of its operation as seen by the

programmer will be given here.

A specification for the communication 1link data rate may be
arrived at by estimating the amount of data that must be exchanged
during each integration step and by noting that this exchange must
occur within the time taken to perform an integration step. If the
data exchange takes 1longer than one integration step period to
complete, new data will Dbe generated before the previous data
transmission has completed. If a simulation is considered where 1000
data items, each represented by a 32 bit word, must be exchanged
during each integration step and the integration step length is 5

milliseconds, then the minimum acceptable transmission rate for
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real—-time operation is one byte every 1.25 microseconds, or 0.8 bytes
per microsecond. At this minimm data rate, data generated during
one integration step is in transit during a second integration step
and is not available for use by the receiving subsystem until the
beginning of the third integration step. Clearly, a much higher data
rate is necessary if subsystems are to complete. their data exchange
within the integration step in which it is caliculated. Ignoring any
parity and start/stop bits or framing characters associated with the
transmission protocol, 0.8 bytes per microsecond requires a bit rate
of 6400000 bits per second. This order of bit rate is too high for
serial protocols such as HDIC (4-1l1l), X25 (4-12) or 1553 (4-13).
Possible contenders using standard specifications were Ethernet
(4-11) and the Cambridge ring (4-15), each of which has a raw data
rate of 10 million bits per second. Unfortunately, the transmission
efficiency of both these systems is low for short messages and the
effective data rate falls below the minimum rate given above. In
addition to the purely hardware considerations regarding bit rates,
higher levels of protocol are necessary in the system software to
check the validity of each transmission in order that the possibility
of transmission failure is minimised. It was concluded that none of
the standard communication specifications could meet the requirements
for communication between the processing subsystems of the real-time
simulator, so a dedicated communications system was designed and

built (4-10).

The communication link uses a byte wide parallel communication
bus (Fig. 4.1(c)). A byte is transferred every 125 nanoseconds,
giving a raw data rate of 8 Mbytes per second, which corresponds to a

bit rate far in excess of the minimum requirement. The system
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operates on a time slot wechanism, where each subsystem in turn is
given the opportunity to transmit one of the outstanding messages.
Should the communication controller detect no activity on‘ the
communication bus, it passes the transmission opportunity on to
another subsystem. Up to 15 processing subsystems may be attached to
this system and the transmission overhead amounts to two bytes per
message, one leading byte to identify the message and one trailing
byte which contains a checksum. The checksum is generated and
checked by the link hardware. Should an error be detected, no message
is passed to the receiving subsystem, and the sending subsystem is
informed of the transmission failure via an interrupt. When none of
the subsystems have any outstanding messages for transmission, the
conpunication controller continuously cycles through each subsystem
offering the opportunity to transmit. The destination of individual
messages is independent of the time slot allocated to a processing
subgystem. - Each message is preceded by an identifying byte which is
inserted and removed by the hardware. This identifier may be in the
range O to 254, a value of 255 indicates to the controller that no
wessage is to be transmitted and that it should pass on the
transmission opportunity to the next subsystem. Thus, there are 255
possible wmessage numbers and it is entirely up to the programmer to

specify the content and size of each message.

To the programmer, the communication link has three functional
areas. These three areas are 2Kbytes of high speed shared memory
($200000 to $S2007FF) used for assembling messages, 2K bytes of 'slow’
wmemory (S201000 to $2017FF) partitioned as two tables of wessage
descriptors, and 4 bytes of registers (8201800 to $201803). The fast

memory is divided into arbitrary length contiqguous areas of wemory by
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the message descriptors held in the slow memory. For transmission, a
message is copied into the appropriate area of the shared memory and,
on reception, the received wmessage may be copled out of the
appropriate area of the shared wmemory. The slow memory is
partitioned into two tables of message descriptors, one table for
message reception ($201000 to $2013FP) and one table for wessage
transmission ($201400 to S$2017FF). Each entxy in the. descriptor
tables is four bytes long, as shown in E'ig.A 4.8, and each table is
indexed according to the message number, 8o that, for example,

5201408 is the address of the transmission descriptor for message 2.

31 24 23 20 19 is 8 7 o

T R Don't Care

Start Offset End Offset

FPig. 4.8 Message Descriptor

The bottom byte of a descriptor is ignored and reads back as $FF, bits
31 to 20 give the starting byte offset of the message area in the fast
wewmory and bits 19 to 8 give the end offset of the message. Note that
both these offsets are even, since the least significant bit of each
descriptor is either a transmit permit (bit 20) or a receive permit
(bit 8) flag which indicates the validity of the descriptor. Thus, a
descriptor value of $48150100 loaded into address $201004 enables
reception of wmessage number 1 with the message area reserved in fast
memory, from $200480 to $2004FF inclusive. Both the receive and
transmit permit bits have been set in this descriptor. However, the
receive permit bit is ignored by the transmission table and the

transmit permit bit is ignored by the reception table. When loading
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the descriptor tables,

the programmer's responsibility to manage allocation of fast memory

to wmessages.

register located at address $201801.

The

bits is illustrated in Pig. 4.9.

no checks are made by the hardware and it is

link control and status register (CSR) is a byte wide

The significance of the CSR

Write

El EO RF RE TP TE I X

X X X X ¢CQ SL CL IE

X

o

Don't Care

El, EO Error Code

RF

H 3 &

The communication link is initialised by setting the lockout bit in
the CSR (SL) or by applying the link reset on the link controller.

The descriptor table may then be flushed by writing zeros to all

Receive Queue Full
‘Receive Queue Empty
Transmit Queue Full
Transmit Queue Empty

Lockout Indicator

Error Codes El
(o] o)
1 0
2 1l
3 1

EO

o

1

&

IE

Clear Queues
Set Lockout
Clear Lockout

Interrupt Enable

Coulnent

Successful Transmission
Reception Complete
Transwmission Error

Illegal Transmission

FPig. 4.9 Control Status Register
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locations and the appropriate descriptors then locaded. The transwit
and receive queues (byte registers at $201800 and $201802
respectively) are then cleared by setting the CQ bit in the CSR.
Finally, the interrupt may be enabled and the lockout bit cleared to

enable the communication link to access the communication bus.

A message is transmitted by assembling the message data to the
appropriate area in the shared memory The coFrespdnding message
number is then written to the transmit queue (write only register at
$201800) and the communication link will transmit the message in a
future time slot. When the transmission complete, the link hardware
enters the message number into the receive queue with the appropriate
status bits set to  indicate the s8success or failure of <the
transmission. If the interrupt enable bit has been set, then the
communication link will interrupt the CPU for as long as entries

remain in the receive queue (read only register at $201802).

When the CPU services an interrupt from the communication 1link,
it may simultaneously read the message status from the CSR and the
wmessage number responsible for the interrupt by performing a word
read from address $201802, since the CSR is reflected at $201803.
Reading the receive qﬁeue will unload the entry causing the interrupt
from the queue and will update the error code bits in the CSR to
correspond to the next entry, if any, on the receive queue. Each
interrupt from the communication link may then be handled on the
basis of its wmessage number and the error code returned in the status

register.

Following the reception of a permitted message, the corresponding
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receive permit bit will be cleared and an appropriate entry placed in
the interrupt queue. In order that a further wessage of the same
number way be received thel corresponding permit bit must be set to
indicate that the previous wmessage, using that number has been

handled by the CPU.

- This communications link offers a fast and flexible mechanism for
transporting information around the multiprocessor 'system. Since
messages are identified by.message number and not by reference to a
particular subsystem, application software may be written so that it
receives the expected messages no matter which particular subsystem
it resides in. The messages require simple handling, i.e. copying,
and protocol software may be kept to a minimum when using the simple

type of messages employed in the real-time model.

4.4.7 The Floppy Disc Controller Board

A floppy disc controller (FDC) board has been designed (4-17) so
that a 'mass’ storage medium is available to subsystems equipped with
this board. Fig. 4.10 shows a schematic diagram of the FDC board
which is designed around the Western Digital FD1793-02 Floppy Disc
Formatter/Controller (4-16) integrated circuit and its associated
support devices. This r'chip set' is capable of supporting both
double and single sided disc drives using both double and single
density recording formats. The FD1793 supports a wide range of
controller functions for establishing and verifying the position of
the read/write head, reading and writing of single and multiple
sectors for data storage and retrieval and reading and writing of

entire tracks for diagnostic and formatting purposes. Command
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completion may be detected by polling the command/status register
(CSR) of the FD1793 (a byte wide register at $840101) or by enabling
the device interrupt request, IRQ, to reach the interrupt control
logic by setting bit 1 of the auxiliary register (a byte wide register
at $84010D). Enabling the device interruét: allows the FDC board to
inform the CPU that it has completed a command by propagating an
interrupt request to the interrupt control log;c which, in turn,

supplies the CPU with an 8 bit switch selectable interrupt vector.

Data transfer may also be handled by polling the CSR or,
alternatively, by setting bit 2 of the auxiliary register, the device
data request signal, DRQ, wmay be propagated to a DMAC via the DREQ
signal. During a DMA access on behalf of the FDC, the FDC timing and
control generation is altered by the DACK signal from the DMAC which
identifies the DMA cycle. During a DMA cycle, the address bus
references a memory device, so the direction of transfer from the
point of view of the FDC, must be opposite to that normally associated
with the particular sense of the read/write signal of the control
bus. Also, during a DMA access, the FDC may not signal the end of a
cycle by using the DTACK signal since this will be used by the memory
device for the same purpose. Thus, an extra control signal, PREADY,
is necessary so that the FDC may inform the DMAC that it has completed
its part of the DMA transfer. This DMA interface allows data transfer
between the FDC and memory, without processor intervention, leaving

the CPU free to perform other tasks.

Wwhen used in conjunction with the operating system described in a
subsequent section, a double density format is used on both sides of

the disc. A total of 1232 sectors, each storing 1Xbytes of data are
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formatted onto each disc, giving each disc drive a formatted storage
capacity of 1.232 Mbytes. Up to four disc drives wmay be driven by the

board offering a total storage capacity approaching SMbytes.

4,4.8 The Direct Memory Access Controller

Direct memory access was considered a desirable property for
peripherals such as disc controllers to possess, Two alternative
methods exist for implementing such facilities exist, Either each
peripheral requiring direct memory access is fitted with address
generation, bus cycle generation and bus acquisition logic, or a
board is c§nstructed which services the DMA requirements of a number
of peripherals. The lattef of these two optiona allows much of tr;e
logic required to furnish DMA facilities to be shared between a
nunber of peripheral boards and sSo make their design less
complicated. Fig. 4.11 shows a simplified schematic diagram of the
Direct Memory Access Controller Board. In order to avoid cluttering,
many of -the connections between functional blocks have been omitted.
For example, the address decode logic supplies device selects to the
two AM9517 devices (4-8) and the 8x8 register files, The most
significant omission from Fig. 4.11 is the mechanism by which the
register files are addressed which will be described later in this
section. At the time this board was designed, a specification
existed for the BD68450/MC68440 type DMAC incorporated on the later
CPU boards. HBowever, production time scales made it necessary to
consider designing this board as an interim measure, None of the
available DMAC integrated circuits directly supported a 24 Dbit
address bus and a 16 bit data bus and most were designed to interface

to the synchronous buses associated with most of the popular 8 bit
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microprocessors, the Z80 or 18080 family devices. Of these devices
the AMS517 offered the most powerful facilities (4-8). The AM9517
supports 4 independent channels of 8 bit DMA in a 64Kbyte address
space, with data transferred either in bursts, on demand, or by cycle

stealing.

This board only supports byte wide DMA and this was considered
acceptable since most peripherals requiring DMA facilities are byte
orientated. Thus, the major function of this board i8 to increase the
width of the address bus associated with the AM9517 to 24 bits in
order that the full 68000 address space may be accessed. During DMA
cycles, the top 8 address bits are supplied by the register files,
while the lower 16 address bits are supplied by the AM9517. The
address used to index these files dAuring DMA is encoded from the
device acknowledge (DACK) signals output by the AM9517 to indicate to
the requesting devices that the backplane has been acquired on their
behalf. Each AM9517 supports four DREQ/DACK handshake pairs which
interface directly to the peripheral associated with each DMA
channel. One of these handshake pairs is reserved for internal use
8o, with two AM9517 devices on the Dboard, it can support DMA
facilities for 7 DMA peripherals. During backplane accesses which
initialise the register files, the register files are indexed from

the address bus in the usual way.

Two state machines have been incorporated into the design of this
board. One converts the simple request/acknowledge (HREQ/HACK) bus
acquisition protocol of I8080 type devices, to the three 1line
request/grant/grant acknowlege (BR/BG/BGACK) protocol of the MC68000

and supports daisy chaining of the bus grant if multiple DMAC boards
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are required. The other state machine generates MC68000 backplane
control signals from the control signals output by the AMS517. This
state wachine is responsible for applfing the 68000 type control
signals in the correct order and waiting for the DTACK and PREADY

responses from the memory and the peripheral respectively.

In order that the 24 bit addrees generated by the combination of 8
bits from a register file and 16 bits from the AM9517 is capable of
crossing a 64Kbyte boundary as a sequence of DMA cycles proceed, it is
necessary to modify the value held in the register file when boundary
crossing occurs. This is accomplished as follows. At the start of
every DMA cycle, the top 8 bits of the address, supplied by the
register files, are loaded into an 8 bit up/down counter and, shortly
after the end of every DMA cycle, the value at the output of the
counter is rewritten into the register file. Should the boundary
detection log'ic’ detect that the address of the current cycle is the
last address of the current 64K pa.qe, i.e. SXXFFFF during address
increment or $XX0000 during address decrement, the up/down counter is

clocked in the appropriate direction prior to the rewrite to the

register file.

The handshaking protocol between peripherals and the DMAC was
introduced in the discussion of the floppy disc controller board.
Fig. 4.12 shows clearly the sequence of events during DMA read and
write cycles to memory. Note that, during the DMA read cycle, a
peripheral must observe the assertion of DTACK by the memory board at
the end of the memory access time, tp, before commencing the access to
the peripheral device with access time, tp. This ensures that wvalid

data, read from the memory is written to the peripheral. Similarly,
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during a DMA write cycle, the peripheral device must present data to
the data bus (both halves since neither of the data strobes is active
to identify whether a high byte or low byte data transfer is taking
place) during the device access period, tp. Once the peripheral has
signalled the validity of the data by asserting PREADY, the DMAC
asgerts the appropriate data strobe to activate the memory board
timing. The cycle completes with the assertion of DTACK. The broken _
lines in the timing diagram indicate that further DMA cycles may
occur before the DMAC relinquishes the backplane, depending on the

transfer mode.

The DMAC board provides byte orientated direct memory access for
up to seven peripheral devices. It is primarily intended to permit
the performance improvement available when used with disc devices, or
other devices whicim require large volumes of data movement at

hardware detexrmined intervals.

4.4.9 The High Resolution Graphics Board

A high resolution graphics board was designed around the
Thomson-Efcis EF9365/EF9366 Graphic Display Processor (GDP) (4-18).
This board supports screen resolutions of 512x512 pixcels using an
interlaced scan or 512x256 pixels using a non—interlaced scan. The
pixel memory consists of two pages of three planes each, which permit
each pixel to take on one of 8 simultaneously displayable colours,
Two pages of memory assist animated graphics since erase and draw
operations may be carried out on the background page whilst the
foreground page is displayed and then the two pages may be swapped

over. The eight displayable colours may be chosen from a palette of
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4096 colours and shades made available via a colour lockup table
attached to the pixel outputs. Light pen facilities are also

available on this board to ease user interaction with the system.

The GDP itself is capable of plotting lines and pixels directly
into the pixel planes at a waximum rate of 1,500,000 pixels per
second, or an average rate of 900,000 pixels per second. The device
also supports the display of characters. using an on-chip ASCII
character generator and generates all the synchronising and blanking

pulses necessary to interface to a CRT display.

GDC commands include vector drawing, character drawing, screen
clear, light pen position requests and direct access to the pixcel
memory. After completion of each command, the GDC may be programmed
to interrupt the CPU so that once a command has been initiated the CPU

is free to perform other tasks until the GDC interrupts.

The graphics board has been used for displaying data collected
from the real-time simulation in graphical form. This permits a very
fast assessment of the transient behaviour of the power system to be
made and is wvery useful for observing the progression of an

optimisation study such as those described in Chapter 6.

The hardware configuration used for the studies presented in this
thesis is comprised of two basic subsystems and one subsystem

supporting a disc based operating system and high resolution

graphics.



4,5 Simulator Software

The software associated with the simulator may be considered in
three distinct groups: the system software, the application software
and the support software. In the sections which follow,
consideration will be given to the ROM based operating system, or
monitor, used in the basic subsystem racks, the disc based operating
system used with the expanded subsystem rack, the simulation and
monitoring software which combine to form the real-time simulation
and 1its user interface, and the debugging, loading and support
software which ease the development and use of the real-time

simulator.

4.5.1 System Software

.The function of system software is to provide an enviromnment for
the developwent and execution of application software. The objective
of this environment is to provide standard mechanisms for accessing
peripheral devices, allocating memory, passing messages between tasks

and scheduling tasks in a multi-tasking environment.

The system software used on the basic subsystems is an enhanced
vergion of the Macsbug monitof by Motorola (4-19). This monitor
provides the usual facilities expected from a monitor, such as wmemory
and CPU register inspection and modification, program 1loading,
execution and single stepping for debugging purposes. In its
original form, this monitor supported only two serial ports, which
were polled rather than interrupt driven. The facilities offered by

this monitor were enhanced by the developwment of an interrupt driven
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I/0 subsystem (4-4). This subsystem gives the application programmer
a’standard interface for using the two serial ports, each of. the three
timers associated with the PT™, the floating point processor board
and the graphics board. Provision of this ;tandard interface removes
the necessity for the application programmer to have explicit
knowledge of how to program each of the wvarious peripheral devices.
In order that the I/O subsystem may be used in a protected or mewory
manéqed environment, it is entered by the use of a TRAP instruction
rather than a subroutine call. Althouqh very similar in function in a
non—proted:ed system, the use of a trap will force the MC68000 into
supervisor mode and resume program execution (exception processing)
at an address indicated by the supervisor controlléd exception vector
table. Since, in a protected system, programs executing in user mode
may be denied direct access to the exception vector table and the I/0

devices themselves, the use of the TRAP instruction provides a secure

wechanism of controlling the use of I/0 devices.

TRAP 12 is used to gain access to the I/0 subsystem. A single
parameter is passed to the I/0 subsystem in address register A6. This
parameter is a pointer to a 'packet' which describes the particular
I/0 subsystem function requested and supplies any further parameters
necessary to fulfil the user's request. The structure of all I/0

packets is shown in FPig. 4.13.

To request the execution of a particular I/0 function, the
address of the first entry in the packet is loaded into A6 and a TRAP
instruction executed. The AI/O subsystem cowprises primitives for
queueing, dequeueing, device initialisation, interrupt handling and

I/0 completion. On entry to the I/0 subsystem, the packet function



code is checked to determine whether a wvalid function has been

requested.
15 o
P FUNCTION CODE PAFUNC
P42 SUB-FUNCTION CODE PASFUN
P+4 ERROR RETURN PAERR
P+6 BYTE COUNT RETURN PACNT
P+8 BUFFER ADDRESS HIGH PABUFF
~ TBUFFER ADDRESS LOW
P+10 BYTE COUNT PABYTE
P+12 SPARE PASPAR
P+14 AST HIGH PAAST
— ST — — — —

Fig. 4.13 I/0 Packet Structure

The function code primarily determines which device the I/O packet
activates and is used to select the appropriate queue on which to
place the packet. This queueing action is the only a.cti«.:m that will
always occur synchronously with the task which made the I/O request.
If the function code given is invalid, or the appropriate queue is
. already vfull, the I/O subsystem will return to the user task,
following the trap instruction, with the carry bit set in the MC68000
status register. 1In all cases where errors are detected, be it here
during the queueing operation or at some intermediate point in the
I/0 operation, an appropriate error code is returned in the packet.
If the packet is successfully queued, then the device initialisation
routine will be called. This routine attempts to dequeue the packet
at the front of the queue and place it on the device's active list.
If the device 1is already active, servicing another I/0 request
packet, this action will fail and be retried later when another

packet is queued to the same queue or when the currently active I/0
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request is completed. After the device initialis#tion routine has
returned, the I/O subsystem will pass control back to the calling
task Dby returning with <the carry bit cleared. The device
initialisation routine is also responsible for checking the
sub—function code which determines the particular action required of
the device identified by the function code. If the sub—-function code
is not supported by the device, then when the packet reaches the front
of the queue, the I/O0 goes immediately to completion and an
appropriate error code is placed in the packet. Once an I/O operation
has been successfully initialised, the I/O sub-system may only be
re—entered on behalf of that particular I/O operation by interrupts
from the device concerned with the operation. The interrupt routine
is responsible for all the intermediate handling of the I/O such as
filling or emptying buffers and adjusting byte count values in the
packet. When the end of the I/O operation is detected within the
interrupt routine, either due to an ei?austed buffer or sowe device
specific circumstance, the I/O completion routine is called. The
completion routine is responsible for placing the return code in the
packet and removing the packet from the active list. At this point,
if the address of an asynchronous service trap (AST) routine has been
" given in the last two words of the packet, this routine will be called
as a subroutine of the I/O completion routine. This AST routine is
optional (the AST field of the packet is set to zero if it is not
required) and may be used to inform the task of return of its packet,
or to perform some action that may not be performed prior to the
return of the packet. In general, it is not desirable for a task to
wait for the completion of an I/O request, which it may do by
monitoring the packet error code field, and the AST is a task specific

routine which handles the result of the I/O operation. Once the AST
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returns, then the I/0 completion routine will recall the device
initialisation routine to commence processing of the next packet, if

any, on the device queue.

All registers are preserved on entry and restored on exit from
the I/0 subsystem. The only critical areas of operation occur during
queue manipulation. Since a queueing operation can be interrupted by
a device interrupt associated with the same queue and this interrupt
may cause a dequeueing action, then the consistency of the pointers
handling the queue must be guaranteed by masking interrupts during
queueing operations. Thus, the I/O subsystem is completely
re-entrant, whether entered via a TRAP instruction or an interrupt
request, or a further TRAP instruction called as part of an AST

routine.

Devices supported by the I/0O subsystem are the serial ports, the

timers, the floating point processors and the high resolution

graphics board.

The teminal driver supports full and half duplex wmodes of
operation and each serial port is configured as a s8ingle
bidirectional device. Each serial port has a separate function code,
although the rest of the packet is interpreted in the same manner for
both devices. The sub—function code 1is used to determine which
direction of transfer is required. The buffer address (Fig. 4.13)
points to the input or output buffer while the byte count (PABYTE)
indicates the buffer length in bytes, i.e. the number of characters
to be output or the maximum size of the input buffer. The byte count

return (PACNT) contains the actual number of characters read during
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input requests since input operations may be terminated by either a
carriage return, an escape or a control Z character. Input lines may
be edited prior to termination by use of the delete character to erace
single characters, or control U to delete the entire line. Control R
may be used to redisplay the current input line as held by the I/O
subsystem prior to line termination. The standard XON/XOFF protocol

is also supported by the driver.

The floating point processors are handled as one dévice capable
of four simultanecus activities. I/O packets are routed to the first
available processor and the sub—function code is the value of the
command byte required by the FPP to perform the particular operation.
The buffer address of the packet should point at a block of three
fields reserved for the lefthand and righthand operands and the
result of the operation. Where operations require only one operand,
the lefthand operand is ignored by the FPP, although a dummy value
wust be present to maintain the structure of the three field block.
The size of the three fields is given in bytes in the packet byte
~count, i.e. 1 for byte wide fields, 2 for word wide fields and 4 for
longword fields. It is the responsibility of the programmer to
ensure that the field size and the operation requested by the
sub—function code are consistent. The error codes returned in the
packet reflect the status of the AM9511/AM9512 floating point devices

when the arithmetic operation completes.

The three timers are considered to be one device capable of three
simultaneous operations. Timing operations are therefore identified
by a single function code and the individual timers are identified by

the sub—function code. Timing may either be continuocus or single
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shot, the distinction being made by the sign of the sub—function
code. In continuous mode, an AST routine is mandatory since the I/O
never completes and the packet remains busy (Error code = 0), This
AST is called each time the timer interrupts and so must perform
whatever tasks are necessary to inform the application software of
the interrrupt. The timer delay is passed in the packet byte count

(PABYTE), the remaining fields being redundant.

A comprehensive set of I/0 requests are provided for handling the
high resolution graphics board. This board supports a variety of
functions and it was felt necessary to provide a user interface to
this device via the I/O subsystem. Sub-functions are defined which
danaqe a textual scrolling region so that the graphic display may be
used as a terminal device; erase the screen to specified background
colours; plot polylines, i.e. lists of continuous X-Y vectors; plot
defined characters, A'i.e. lists of disjoint X-Y vectors; write ASCII
characters directly to the display (rather than the scrolling region)
in any position, orientation size and colour; and which obtain the
light pen position. The bulk of the graphics driver is table driven
and many of the sub—functions share sub-routines, such as those for
placing characters on the screen and those for drawing straight

lines.

A series of number conversion functions have also been
implemented to assist in the parsing of lines input through the I/O
subsystem, or in the formatting of lines for output. The functions
are called using a TRAP 13 instruction with A6 pointing to a packet
which describes the conversion required. Since no interrupting

devices are involved in the execution of these functions, all



conversions occur synchronously with the user task which calls them
and are completed when exception processing completes and normal
processing resumes at the instruction following the trap instruction.
These functions support the conversion of decimal, octal and
hexadecimal ASCII strings into twos complement integer formats as
bytes, words or long words and the conversion of decimal floating
point ASCII strings into a binary floating point representation.
J?uncfions are also avallable to perform the converse operations and
to display hexadecimal values on the seven segment port LEDs8 on the

front panel.

Thus, the monitor enviromment furnished by the Macsbug monitor
has been extended to provide efficient, interrupt driven support of

the serial ports, the timers, the PFPPs and the high resolution

graphics board.

The enviromment used with disc based hardware subsystems is the
Tripos portable operating system (4-20 to 4-23). This operating
system was originally developed at the University of Cambridge
Computing Science Laboratory. - Most of the operating system is
written in BCPL (4-24) an untyped gystems programming language which
Tripos was designed to support most readily. Many of the operating
system primitives, such as those for storage management, the creation
and deletion of tasks and devices and the task scheduler, are written
in assembly 1language. Tripos is a multitasking operating system
which is intended to support a single user and no protection is
offered to prevent one task interfering with another task since no

wewmory management facilities are implemented.
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A wide range of utilities and programming tools are available.
Compilers are available for a number of languages other than BCPL,
for example, FORTRAN, ALGOL 68C and PASCAL. A selection of cross

assemblers exist to support other microprocessors than the MC68000.

The main utilities used for this project were text editors, the
BCPL compiler and the MC68000 Macro Assembler, the use of which are
detailed in the Tripos User Guide (4-20) and the Tripos Programmers

Guide (4-21).

Tripos is a message passing operating system and all scheduling
occurs as a result of the transfer of a packet between two tasks or a
task and a device driver. All tasks have a unique priority and the
highest priority runnable task is always scheduled. Exchange of
messages between tasks and devices is accomplished using the kernel

primitive ’'gpkt’', which queues a packet of the form shown in Fig.

4.14.
32 (o)
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P+4 ID
P+8 TYPE
P+12 RES1
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Message Dependent

Entries

Fig. 4.14 Tripos Packet Structure

The ID field of the packet is used to identify the destination of
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a packet. Tasks always have a positive ID value which is the task
number. The task number is used to index the task table in order to
locate the task control block (TCB). Likewise device driver ID
values are all negative and their absolute value, the device number,
is used to index the device table to locate the appropriate device
control block (DCB). Associated with each control block is a work
queue which is a linked list of packets which require the attention qf
the particular device or task. The packets are linked together by
pointing the link field of one packet to the link field of the next. -
The link field of the last packet on a queue is zero and the link
field of a packet which has been removed from a queue is marked 'not
in use' (-1). Once 'gqpkt' has located the queue identified by the ID
field of the packet, it zeros the link field and points the link field
-of the packet on the end of the queue at the link field of the new
packet. The 'qpkt' primitive also changes the ID field so that, once
it arrives on the receiving queue, it 1d.en;:ifies the queue of the
sending device or task. In this way, a packet may be returned to its
originator by a further call to 'qpkt’. The type field of the packet
is ana.logo(xs to the sub—function code used with the previously
described I/0 sub-system and indicates the specific action the
receiving device or task is to take and how the message dependent
parts of the packet are to be interpreted. The two result fields RES1
and RES2 return information to the packet originator regarding the
success or failure of any actions requested by the transfer. The
result RES1 is generally zero if the requested action was successful.
Thus, communication between all tasks and device drivers is
accomplished in a coherent fashion Dby the use of the ‘'qpkt’

primitive.
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Device drivers are also written in assembly language. Each
driver contains five compohents. An INIT routine is required which
is used to initialise the device when the device driver is loaded and
entered into the device table. The INIT routine must ensure that the
physical device controlled by the driver is initialised and ready to
accept work arriving in subsequent packets. The INIT routine also
initi§1ises wany of the entries in the device control block. INIT is
either called by the kernel primitive 'create device' which allocates
the device an entry in the device table, or, in the case of resident
device drivers loaded with the operating system, during the
initialisation of the operating system. An UNINIT routine is require
which is used to make the physical device 'safe' prior to the removal
of the device driver from theioperating system. This routine is
called by the kernel primitive ‘'deletedevice’, which deallocates the
device table entry and should ensure that the éhysical device will
generate no further interrupts. A START routine is required which is
called to initiate the handling of a new packet. START is called by
'gpkt’' only if the freshly queued packet is the only packet on the
device work queue, otherwise START is called from inside the driver
once the work required by a previously queued packet has been
completed and that packet returned. Once the processing of the START
routine is complete, the only way to re—enter the driver code is by a
device interrupt. A STOP routine is required which will terminate
processing of the packet at the front of the work queue when this
packet is recalled by the kernel primitive 'deqpkt' which removes a
packet from a work queue. The final component of the driver is the
interrupt routine, INT. This routine is responsible for all the
intermediate action required to service a packet and ultimately for

the return of the packet to its originator. INT is also responsible
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for starting the processing of any further packets which are on the
work queue, following the return of the head packet, by recalling

START if the work queue is not empty.

It can be seen that the structure of a Tripoe device driver is
very similar to that of the device dependent routines used in the I/0
subsystenm. In fact, the driver fo: the graphics Dbcard described
earlier in this section was converted to operate under Tripos with
minizal changes. Detailed information regarding Tripos data
structures such as the task table, the device table, device control
blocks, stream control blocks and packet structures for various
device driver types such as disc drivers and terminal drivers may be

found in the Tripos Technical Guide (4-22).

The Tripos operating system image is built by a utility named
syslink (4-20, 4-21). This utility creates a loadable file which
contains the various system tables, the kernel, the resident
lidbraries, the resident device drivers, and the initial tasks loaded
with the system. Five tasks are generally loaded with the operating
system, although it is quite possible to locad a system image which
contains any assortment of tasks. The five tasks generally loaded
are a Command Line Interpreter (CLI), a Debug task, a Console
Handler, a Filing System task and a Restart task. The CLI interprets
command lines obtained from the console handler via the terminal
device driver. The CLI assumes that the text contained in the command
line is the name of a loadable file which it attempts to locad and
execute as a coroutine. The CLI also supports the redirection of
command input to a file so that sequences of regularly used commands

way be submitted to the CLI by a single command invocation.
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The console handler may direct input lines to the debug task by
means of an escape sequencs. 'The debug task permits the inspection of
CPU registers, memory, task stacks and subroutine local variables.
It also supports the setting of breakpoints and single stepping

through program code with line by line disassembly.

The console handler task interfaces the terminal device to other
tasks. Although direct access to the terminal device driver is
available to all tasks via the 'qpkt' mechanism, the console handler
assembles character input via the terminal device driver into
complete lines and then passes these complete lines on to the
'currently selected task. The console handler also supports the
XON/XOFF protocol, the automatic insertion of line feed and carriage
return characters when output lines exceed a specified length and
optional pausing of the output to enable the user to inspect output
before it is scrolled off the top of the terminal screen if the output

is particularly rapid.

The file structure supported by the filing system task is
described in the Tripos User Guide (4-20). Each Tripos ‘'volume' is
structured as a tree of directories and files. Files may be
referenéed by their relative position in the tree structure from some
currently set directory, or by an absolute reference from the root of
the tree structure. As new Tripos volumes are mounted on new disc
devices, new filing system tasks are created to manage access to the
files on that voluwe, These multiple filing system tasks share the

task software, although they maintain separate data areas.

The restart task is a transient task which checks the validity of
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the tree structure of a disc volume. Until the restart task has
ascertained the validity of this tree structure and constructed a map
of all the allocated blocks on the disc volume, the volume is write
protected. When the restart task completes, it sends a packet to the
filing system task which contains a bit map of free disc blocks. This
bit map is then maintained by the £filing system as files are created
and deleted. As new disc volumes are mounted, new restart tasks are

created to validate the new volumes.

Multiple CLI tﬁsks may also be created in order that a user may
invoke more than one Tripos command line at a time. Tripos supports
a simple interface for calling assembly language subroutines from
within high 1level languages. This interface has been heavily
exploited in the construction of the monitor task for the real-time

simulator.

Thus, two operating enviromments are available, the extended
Macsbug enviromment which offers execution and debugging facilities
suitable for use in subsystems not fitted with disc storage and the
Tripos operating system which supports an environment in which
software may be created as well as excecuted and debugged. A
subsystem fitted with disc drive hardware, running the Tripos
operating system is ideally suited to the development of software to
run both on itself as a Tripos task and on remctely connected

subsystems which operate using the extended Macsbug facilities.

4,.5.2 The Application Software

The application software is made up of three major components.
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T™wo of these components perform the task of integrating the equations
described in Chapter 3 and the third component wmonitors the
simulation, collecting data for storage or display and applying
disturbances to the simulated plant in a programmed manner. The
first two components are written entirely in assewbly language,
whilst the third is written in a wmixture of BCPL and assembly
language. The first two components are executed on two separate
subsystems and operate in the Macsbug environment, while the third
component runs under a Tripos CLI task on a disc based subsystem.
Each of these components may be considered to be a separate task, each
task communicating with the other two via the communication 1link.
These tasks will be known as the Generator task, the Volt task and the

Monitor task.

The Generator and Volt tasks are each structured as a series of
subroutines and each subroutine is responsible for the evaluation of
algebraic equations or the integration of dynamic equations. By
structuring the software in this wmanner, the various component
subroutines perform a calculation that may be transported to another
processing subsystem in the event that one subsystem does not have
adequate time to complete all its calculations within an integration
step time. The basic structure of the Generator and Volt tasks is
shown in PFig. 4.15. Pigs. 4.15(a) and (b) show the main task
structure, while (c) and (d) show the sequence of subroutine calls
which perform the calculation. ©On entry to both the Generator and
Volt tasks, the communication 1links and the interval timers are
initialised. A variety of synchronisation methods have been
attempted, from allowing each task to perform its own, independent,

interval timing with the simulation data exchanged by the tasks
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updated asynchronously during the communication interrupt routine
associated with message moeptioﬂ, to the tight synchronisation shown
in PFig. 4.15, where message 125 is transmitted by the Generator task
to initiate calculation of an integration step. The loosely
synchronised strategy proved to Dbe adequate for generating and
displaying transient responses. However, identical fault conditions
resulted iIn widely wvarying performance 1index yalues during
optimisation studies. Tight synchronisation removes this problem
since data is updated at consistent points during the execution of
each task. Interval timing is accomplished by submitting a
continuous timing request to the I/O subsystem. The delay specified
in the I/O packet is equivalent to the integration step time, and the
AST‘ routine merely increments a counter maintained in the subsystem
mewory. The Wait subroutine monitors the wvalue of this counter. If
the counter is non—-zero then the subroutine decrements the counter
and then exits. Other:wisa. it loops until the timer AST makes the.
counter non-zero. In this fashion the simulation will continue to
operate if the calculation time is larger than the integration step
length and this way be detected if the counter value ever exceeds

unity.

Once the timer interrupt has caused the Wait subroutine to exit,
the Generator task transmits the synchronisation message and then
updates 1its internal copies of data transmitted by the Volt task
(message O0) during the previous integration step. The Volt task
behaves -in a similar fashion following the reception of the
synchronisation message. Both tasks then perform their respective
calculations ‘'Gensim’' and Voltsim’, and then transmit data for

reception by each other and the wmwonitor task. Finally, prior to

168.



returning to the top of their respective loops to wait for the nexﬁ
clock interrupt and the synchronisation message, both tasks perform
any changes to their data bases requested by the Monitor task. These
changes will be discussed later. Subroutine “Gensim' is wmerely a
list of subroutine calls which perform parts of the simulation.
Subroutine 'Vbcalc' calculates the direct and quadrature axis
components of the infinite busbar voltage, WV, sin 8§ and W, cos §
respectively, which are used later in both the calculation of the
direct and quadrature axis armature currents, Ig and Igq, by the
subroutine 'Integnet', and the calculation of the axis voltages, Vg
and Vq, by the subroutine 'Vdwvg’, Subroutine 'Auxcalc' calculates
the auxiliary signals supplied to the governor and excitation systems
by calculating the rotor acceleration and the electrical power and
~ then combining these using the appropriate gains. Subroutine
‘Integnet' evaluates the direct and quadrature axis currents using
equationh 3,125, while subroutine 'Integgov' first calculates the
electrical torque using equation 3.27 and then integrates the
equations associated with the appropriate prime mover representation,
equations 3.112 to 3.113 for the turbine prime wover or equations
3.122 to 3.123 for the diesel enqme prime mover. Subroutine
‘Integavr' applies equations 3,104 and 3.105 in order to step the
excitation system forward by one time step and, finally, subroutine
‘Integgen' integrates the generator, equations 3.93 to 3.95.
Subroutine ‘Voltsim' consists of a single subroutine call to
subroutine Vdvg which calculates the direct and guadrature axis
terminal voltage cowmponents, Vg and Vg, using equations 3.48 and
3.49, and then calculates the terminal voltage wmagnitude using

equation 3.12.
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?ig. 4.15(e) illustrates the message traffic between the three
tasks. Message O and 1 exchange s8imulation data between the
Generator and Volt tasks. These two tasks, once initiated, do not
require the presence of the Monitor task and will continue to operate
without intervention from it. Megsages 64 and 66 communicate
parameter changes from the Monitor task to each of the simulation
tasks and messages 65 and 67 deliver simulation data to the Monitor
task every time step. Messages 125, 126, 127 and 128 do not carry any
data, the reception of the particular message being all that is
necessary to signal its significance. In general, message .numbers
below 64 have been used for transporting data between tasks directly
involved in the simulation calculations, while message numbers 64 and
above have been used for communication between the Monitor task and
the two simulating tasks. Fig. 4.16 details the contents of each
message. All the message entries, except for the 'Txlate’, ‘Rxlate’
and 'Status' fields, are four byte entries. These three entries pass
status information about the communication link‘ and interval timing
associated with the simulating tasks. ‘Txlate' is a count of t