thesis

Towards efficient exploitation of GPUs : a methodology for mapping index-digit algorithms

Abstract

[Resumen]La computación de propósito general en GPUs supuso un gran paso, llevando la computación de alto rendimiento a los equipos domésticos. Lenguajes de programación de alto nivel como OpenCL y CUDA redujeron en gran medida la complejidad de programación. Sin embargo, para poder explotar totalmente el poder computacional de las GPUs, se requieren algoritmos paralelos especializados. La complejidad en la jerarquía de memoria y su arquitectura masivamente paralela hace que la programación de GPUs sea una tarea compleja incluso para programadores experimentados. Debido a la novedad, las librerías de propósito general son escasas y las versiones paralelas de los algoritmos no siempre están disponibles. En lugar de centrarnos en la paralelización de algoritmos concretos, en esta tesis proponemos una metodología general aplicable a la mayoría de los problemas de tipo divide y vencerás con una estructura de mariposa que puedan formularse a través de la representación Indice-Dígito. En primer lugar, se analizan los diferentes factores que afectan al rendimiento de la arquitectura de las GPUs. A continuación, estudiamos varias técnicas de optimización y diseñamos una serie de bloques constructivos modulares y reutilizables, que se emplean para crear los diferentes algoritmos. Por último, estudiamos el equilibrio óptimo de los recursos, y usando vectores de mapeo y operadores algebraicos ajustamos los algoritmos para las configuraciones deseadas. A pesar del enfoque centrado en la exibilidad y la facilidad de programación, las implementaciones resultantes ofrecen un rendimiento muy competitivo, que llega a superar conocidas librerías recientes.[Resumo] A computación de propósito xeral en GPUs supuxo un gran paso, levando a computación de alto rendemento aos equipos domésticos. Linguaxes de programación de alto nivel como OpenCL e CUDA reduciron en boa medida a complexidade da programación. Con todo, para poder aproveitar totalmente o poder computacional das GPUs, requírense algoritmos paralelos especializados. A complexidade na xerarquía de memoria e a súa arquitectura masivamente paralela fai que a programación de GPUs sexa unha tarefa complexa mesmo para programadores experimentados. Debido á novidade, as librarías de propósito xeral son escasas e as versións paralelas dos algoritmos non sempre están dispoñibles. En lugar de centrarnos na paralelización de algoritmos concretos, nesta tese propoñemos unha metodoloxía xeral aplicable á maioría dos problemas de tipo divide e vencerás cunha estrutura de bolboreta que poidan formularse a través da representación Índice-Díxito. En primeiro lugar, analízanse os diferentes factores que afectan ao rendemento da arquitectura das GPUs. A continuación, estudamos varias técnicas de optimización e deseñamos unha serie de bloques construtivos modulares e reutilizables, que se empregan para crear os diferentes algoritmos. Por último, estudamos o equilibrio óptimo dos recursos, e usando vectores de mapeo e operadores alxbricos axustamos os algoritmos para as configuracións desexadas. A pesar do enfoque centrado na exibilidade e a facilidade de programación, as implementacións resultantes ofrecen un rendemento moi competitivo, que chega a superar coñecidas librarías recentes.[Abstract]GPU computing supposed a major step forward, bringing high performance computing to commodity hardware. Feature-rich parallel languages like CUDA and OpenCL reduced the programming complexity. However, to fully take advantage of their computing power, specialized parallel algorithms are required. Moreover, the complex GPU memory hierarchy and highly threaded architecture makes programming a difficult task even for experienced programmers. Due to the novelty of GPU programming, common general purpose libraries are scarce and parallel versions of the algorithms are not always readily available. Instead of focusing in the parallelization of particular algorithms, in this thesis we propose a general methodology applicable to most divide-and-conquer problems with a buttery structure which can be formulated through the Index-Digit representation. First, we analyze the different performance factors of the GPU architecture. Next, we study several optimization techniques and design a series of modular and reusable building blocks, which will be used to create the different algorithms. Finally, we study the optimal resource balance, and through a mapping vector representation and operator algebra, we tune the algorithms for the desired configurations. Despite the focus on programmability and exibility, the resulting implementations offer very competitive performance, being able to surpass other well-known state of the art libraries

    Similar works