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Theory and Realization of Novel Algorithms for Random Sampling in 
Digital Signal Processing 

King Chuen LO 

Abstract 

Random sampling is a technique which overcomes the ahas problem in regular 

sampling. The randomization, however, destroys the symmetry property of the 

transform kernel of the discrete Fourier transform. Hence, when transforming a 

randomly sampled sequence to its frequency spectrum, the Fast Fourier transform 

cannot be applied and the computational complexity is N . 

The objectives of this research project are (1) To devise sampling methods for 

random sampling such that computation may be reduced while the anti-ahas property 

of random sampling is maintained : Two methods of inserting limited regularities into 

the randomized sampling grids are proposed. They are parallel additive random 

sampling and hybrid additive random sampling, both of which can save at least 75% 

of the multiplications required. The algorithms also lend themselves to the 

implementation by a multiprocessor system, which will further enhance the speed of 

the evaluation. (2) To study the auto-correlation sequence of a randomly sampled 

sequence as an alternative means to confirm its anti-alias property : The anti-alias 

property of the two proposed methods can be confirmed by using convolution in the 

frequency domain. However, the same conclusion is also reached by analysing in the 

spatial domain the auto-correlation of such sample sequences. A technique to 

evaluate the auto-correlation sequence of a randomly sampled sequence with a 

regular step size is proposed. The technique may also serve as an algorithm to convert 

a randomly sampled sequence to a regularly spaced sequence having a desired Nyquist 

frequency. (3) To provide a rapid spectral estimation using a coarse kernel : The 

approximate method proposed by Mason in 1980, which trades the accuracy for the 

speed of the computation, is introduced for making random sampling more attractive. 

(4) To suggest possible appUcations for random and pseudo-random sampling : To 

fully exploit its advantages, random sampling has been adopted in measurement 



instruments where computing a spectrum is either minimal or not required. Such 

applications in instrumentation are easily found in the literature. In this thesis, two 

applications in digital signal processing are introduced. (5) To suggest an inverse 

transformation for random sampling so as to complete a two-way process and to 

broaden its scope of application. Apart from the above, a case study of realizing in a 

transputer network the prime factor algorithm with regular sampling is given in 

Chapter 2 and a rough estimation of the signal-to-noise ratio for a spectrum obtained 

from random sampling is found in Chapter 3. 

Although random sampling is alias-free, problems in computational 

complexity and noise prevent it from being adopted widely in engineering 

applications. In the conclusions, the criteria for adopting random sampling are put 

forward and the directions for its development are discussed. 
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CHAPTER 1 

INTRODUCTION 

When a continuous-time, analog signal is to be analysed for its frequency 

spectrum by a digital system, the signal is usually sampled at regular time intervals and 

the corresponding signal level is quantized. After the completion of the sampling 

process, a sequence of discrete- valued samples of the original signal taken within a 

finite period of time is obtained. On this sequence of sample data, the Discrete 

Fourier Transform (DFT), or the Fast Fourier Transform (FFT) can be applied to 

evaluate the frequency components accordingly. The FFT, of which the complexity is 

N log N [1] , is in general the most efficient algorithm for computing the frequency 

components. 

Although regular samphng is widely adopted, it is not without drawback. 

Shannon's (or Nyquist's) theorem states that for regular sampling, the samphng 

frequency must be at least twice the value of the highest frequency of the sampled 

signal; otherwise ahases will occur. Aliases are in fact a by-product of regular sampling. 

Their occurrences generate ambiguities in the spectral analysis of a signal. To avoid 

such confusion, the signal to be sampled is usually treated by an anti-ahas low-pass 

filter before the sampling process is performed. However, practical difficulties may 

arise in using the anti-alias filter. Suppose a wide-band signal is to be sampled, an 

anti-alias filter which has a wide pass-band is required. It follows that a high sampling 

frequency of at least twice the cut-off frequency of the filter is needed and fast 

hardware must be used. Another approach is that the wide-band signal is separated 



into different non-overlapping frequency bands by a bank of band-pass filters so that 

each band of the signal can be sampled by a lower sampling frequency; hence the 

advantages of sub-Nyquist sampling can be acquired. When designing the filters, one 

has to compromise between the ripple within the pass-band, the attenuation in the 

stop band, the slope of the roll-off at the cut-off frequency, etc. To implement a 

satisfactory banks of such filters, especially to fulf i l l the requirement of 

non-overlapping frequency bands, is not a simple job at all. 

The objective of sub-Nyquist sampling is to sample an input signal by a 

frequency lower than the Nyquist hmit so that the samphng rate may be lowered and 

inexpensive hardware may be used in the process. Measurement instruments have 

actually been built based on this method [2,3]. Sub-Nyquist sampling can be achieved 

by two different approaches: (i) using regular sampling intervals and (ii) using 

randomized sampling intervals. In principle, the former approach adopts a 

multi-sampling system having two or three samphng frequencies to treat an incoming 

signal having a single frequency. Then, judging from the locations of the aliases created 

by the respective samplers, the frequency of the input signal can be determined. For 

irregular or random sampling, a suitable random variable is added to a regular 

sampling grid, e.g. ti = i.T +Ti, where t is the sampling time, T a regular samphng 

interval, r a random variable and i an integer. In theory random sampling is 

"continuous" sampling, hence no Nyquist limit exists when evaluating the frequency 

components. Instead of standing as sharp spikes in the spectrum, the aUases are turned 

into a broadband noise, which can be distinguished from a signal. In practice, however, 

the word-length of the digital system or computer processing the signal sets a bound 
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to the spectrum to be analysed. These two approaches will be discussed in detail in 

Chapter 3. 

Compared to the conventional regular sampling method, random sampling 

overcomes the aliasing problem and enjoys the advantages of sub-Nyquist samphng. 

There are certainly drawbacks for this method, among which is the heavy 

computational effort in calculating the spectrum. For regular sampling, there are 

trigonometrical symmetries found in the kernel of the transform. These 

trigonometrical synunetries can be utilized to devise efficient computational 

algorithms such as the Fast Fourier Transform (FFT), Prime Factor Algorithm, etc. 

To illustrate this point, a review of some conventional algorithms for DFT is included 

in chapter 2. Because the symmetry in timing is obviously destroyed as random 

sampling is adopted, no regularities occur in the kernel. In computing the spectrum, 

the direct Fourier calculation, in which a different 'random' exponential term is 

multiphed to each data point, must be performed. The complexity of the computation 

is thus N . If a higher speed of computation is desired, some sort of regularity in timing 

must be inserted into the sampling process, but to such an extent that the anti-ahas 

property of random sampling is still maintained. To achieve this objective, two novel 

algorithms are introduced. They are to interlace and to concatenate several suitable 

random samphng sequences to form a resultant sequence for taking sample points. 

The first approach, i.e. the interlacing method, is called the parallel random 

samphng. Its computational algorithm exploits the trigonometrical symmetry to 

reduce up to 87% of the multiplications required in computing the first band of 

frequency components. For subsequent bands, the saving increases with the number 

of sampling blocks used. The whole process, from samphng to computation, can be 
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implemented by a multiprocessor system. With this sampling method, bursts of noise, 

which are the residues of the aliases, appear in the spectrum. Although these bursts 

can be used as another means to identify the input frequency, one may want to 

eliminate them. The second approach, which is the hybrid additive random sampling, 

is devised to give a background noise nearly as "clean" as the genuine random sampling 

method. The computational algorithm derived from this method saves at least 75% 

of the multiplications required and it can be implemented in a modular form. The 

reconstructed spectrum offers a signal-to-noise ratio close to that of genuine random 

sampling. Chapter 4 and chapter 5 will elaborate on these two methods respectively. 

The Wiener -Khinchine relation states that for a stationary random signal x(n): 

00 

Sxx (CO) = 2] Rxx (k) exp(-ja)k) 
k= — co 

where Sxx (co)is the power spectrum and Rxx(k) is the auto-correlation of the signal. 

In words, the power spectrum of a sequence is the Fourier transform of its 

auto-correlation. Hence studying the auto-correlation of a random sampling sequence 

helps to explain its anti-alias property. Chapter 6 will show that the power spectrum 

of a sequence of data obtained from random sampling can be estimated from the 

circular auto-correlation of the sequence at regular time intervals. 

In general, it takes more time for a computer to perform a multiphcation than 

an addition; therefore many fast computational algorithms for the DFT aim at 

reducing the number of multiplications. Gaster and Roberts [4] proposed an 

approximate method for estimating the DFT which uses only two levels (namely, -1 

and -I-1) to represent the kernel of the transform. Mason [5] also suggested to round 

off the trigonometric terms to three levels (namely, -1,0 and +1). By doing so, all 
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multiphcations are changed into additions or subtractions, so that the speed of 

computation is enhanced at the expense of the accuracy of the results. These round-off 

methods are justifiable to be applied to the data obtained by random sampling since 

the frequency components, even if computed by the exact DFT, in practice will not 

equal exactly to those reconstructed from regular sampling. There will be more 

information and discussion about this topic in chapter 7. 

As the FFT is in general the most efficient and readily available computational 

algorithm and it is based on a regular sampling grid, we expect to see that many 

engineering applications adopt the regular sampling approach. Because the advantage 

of random sampling is its anti-alias property, any apphcations which can benefit from 

this property are suitable to adopt the random sampling scheme. Examples in the 

areas of instrumentation and digital signal processing will be included in chapter 3 

and chapter 8 respectively. 

Although one may perform a spectral evaluation by transforming a randomly 

sampled sequence from the spatial domain to the frequency domain, the direct inverse 

transform is made impossible by the spectral noise generated by random sampling. 

Chapter 9 will provide a different approach to realize such an inverse operation. When 

random sampling is adopted, the designer has to compromise between the bandwidth 

of the spectrum, the accuracy of the amphtude of the signal recovered, the background 

noise level, the computational effort, etc. For example, if the computational effort is 

reduced by using either the parallel random sampling or the hybrid additive random 

sampUng, the background noise level tends to increase. In the conclusions contained 

in chapter 10, the properties of random sampling will be summarized. The 
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performance of random sampling and regular sampling will be compared. Finally, 

some possible directions for the development of random sampling will be suggested. 
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CHAPTER 2 

REVIEW OF SOME CONVENTIONAL 
ALGORITHMS FOR FREQUENCY ANALYSIS 

The study of computational algorithms for the DFT is a mature subject. Cooley 

and Tukey published the well-known FFT as early as 1965 [6]. Their approach is in 

fact a radix-2 algorithm, which requires the length of the transform to be a power of 

two, and the calculation is done in the field of complex number. There are many 

transforms closely related to the DFT; to name a few, there are the Discrete Cosine 

Transform (DCT), the Discrete Sine Transform (DST) and the Discrete Hartley 

Transform (DHT), which can be obtained from the DFT by suitable algebraic 

manipulations. Different directions of research in this area were also pursued, e.g. 

using prime numbers for the sequence length of the transform [7,8], or using 

mathematical structures in a finite field [9]. There is, however, a common ground for 

all the above algorithms. They assume that the sample data are recorded at regular 

intervals so that in the kernel of the transform, symmetry property exists. This property 

can be exploited to reduce the complexity of the computation. 

Since there are so many computational algorithms for the DFT based on 

regular sampling, it is not the purpose of this chapter to list them exhaustively. Only 

a few representative algorithms will be included here to give a flavour to this topic. 

Emphasis will be put on the computational complexity and the use of trigonometric 

symmetry to form a computational algorithm so as to set the scene for the discussion 

of random sampling. 
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2.1 The Discrete Fourier Transform 

Let us consider the sampling in the frequency domain of a discrete-time signal. 

Recall that an aperiodic signal with finite energy has a continuous spectrum. For such 

an aperiodic discrete-time signal x(n), its Fourier transform is given by : 

00 

X(co) = ^ x(n) e - j " ° (2-1) 

n=-oo 

Suppose X(a)) is sampled periodically in frequency at a spacing oidco radians between 

successive samples. Since X(w) is periodic with period 2 JT, only samples in the 

fundamental frequency range are necessary. For convenience, let N equidistant 

samples be taken in the interval 0 < co <2JI with spacing do) - Tjt/N. I f we evaluate 

(2-1) at ft; = 2 jr k / N, we obtain: 

X k = 2 x ( n ) e - j ^ ' ^ ^ ^ k = a i , . . . ,N- l (2..2) 
n= —00 

The summation in (2-2) can be written as an infinite number of sunmiations 

- 1 N - l 2N-1 

X 
V / n = - N n=0 n=N 

2 X(n) e-i^-nk/N ^ ^(^^ ̂ - j 2 . a k / N ^ ^^^^ ^ - j 2 . n k / N 

I f we change the index in the inner summation from n to n - IN and interchange the 

order of the summation, we obtain : 

X 
/ 2^ \ ^ 

2 [ 2 x ( n - l N ) ] e - j ^ ' ^ / ^ (2.3) 
n=0 l= -oo 
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for k = 0 , 1 , 2 , N - l . The signal Xp = ^ x (n - lN) obtained by a periodic repetition 

l = - 0 0 

of x(n) every N samples, is obviously periodic with fundamental period N. 

Consequently, it can be expanded in a Fourier series as 
N - l 

xp(n)= 2 ckej^-"^-"^ n = 0 , l , . . . ,N- l 
k=0 

(2-4) 

with Fourier coefficients 

N - l 

= ^ 2 V n ) e-j^'^'^/^ k = 0, l , . . . ,N-l (2-5) 
k=0 

Comparing (2-5) with (2-3), we conclude that 

ck = ^ X 
" n ^ 

Therefore, 

k = 0 , l , . . . ,N- l 

x p ( n ) 4 l x f e ] ^ ^ ° ^ ^ ^ n = 0 , l , . . . .N- l 
k=0 

(2-6) 

(2-7) 

Equation (2-7) provides the reconstruction of the periodic signal x p(n) from the 

samples of the spectrum X (cd). Since x p(n) is a periodic extension of x(n), the 

x(n) 

I n 

0 
xp(n) 

i l I 

N > L 

• n 

0 L N 

Fig. 2-1 Aperiodic sequence x(n) of length L and its periodic extension forN>L 
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sequence x(n) can be recovered from xp(n) if there is no aliasing in the time domain, 

that is, if x(n) is time-limited to less than the period N of Xp(n). 

In summary, when a sequence x(n) has a finite duration of length L < N , then 

xp(n) is a periodic repetition of x(n), where Xp(n) over a single period is given by : 

k n ) 0 < n < L - l 
W ) - | o L < n < N - l 

Consequently, the frequency samples X(2jrk/N), k = 0,1,...,N-1 uniquely represent the 

finite-duration sequence x(n). Hence the discrete Fourier transform of x(n): 

N - l 
X(k) = ^ x(n) e - j ^ ' ^ / N k . o , l , 2 , . . . , N - l (2-8) 

n=0 

In turn, the sequence x(n) can be recovered from the frequency samples by the inverse 

discrete Fourier transform ( IDFT) : 

N - l 

< n ) = ^ 2 X(k) e ) ' ^"^^ n=0, l ,2 , . . . ,N-l (2-9) 
n=0 

2.1.1 Symmetry property : The kernel of the DFT, which is e" '̂̂ ''̂ ^, consists of the 

roots of unity in the complex plane. I f N is an even number, e"^^^^ is the complex 

conjugate of e- j2^(N-i ) /N^ ^ - j W a + O / N ^ _g - j2 ; r i /N g - ^ j ^ ^ symmetry also 

exists when N is odd. This simple relationship is the principle from which many fast 

computational algorithms, including the FFT, are derived. 

To illustrate the use of symmetry, let us consider a very simple algorithm. The 

frequency spectrum of x(n) can be evaluated from eqn (2-8) by varying the parameter 

k. It is obvious that the kernel is periodic and x(n) is also extended periodically, both 

with a period of N points. Hence there are only N distinct values for X(k) to be 
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calculated. Even for these N distinct X(k), we need to compute only half of them 

because of the symmetry mentioned above. If N is even, the first N/2 frequency 

components are the complex conjugates of the remaining components: 

X I = - X ( 0 ) 

X(i) = X * ( N - i ) 

(2-10) 

f o r i = l , 2 , . . . , N / 2 - l 

where * denotes the complex conjugate. The case for an odd N is similar and obvious. 

2.2 Divide-and-Conquer Approach to Compute the DFT 

This approach is based on the decomposition of an N-point DFT into smaller 

DFTs. Let N be factorized as a product of two integers, that is, N = N1N2. The sequence 

x(n), 0 < n < N - l , which is a one-dimensional array, can now be stored as a 

two-dimensional array indexed by n i and n2, where 0 < n i < N i - l a n d 0<n2^N2-1 . 

Suppose we select the mapping n = N2ni -I- n2, we obtain an arrangement in which 

the first row consists of the first N2 elements of x(n) and the second row consists of 

\ n2 

m \ 
0 1 2 N2 -1 

0 x(0) x(l) x(2) x(N2-l) 

1 x(N2) X(N2 + 1) x(N2+2) x(2N2-l) 

2 x(2N2) x(2N2+l) x(2N2+2) x(3N2-l) 
• • • 

• • • 
• • • 

• • • 
Ni-1 x([L-l]N2) x([L-l]N2+l) x([L-l]N2+2) x(NiN2-l) 

Fig 2-2 Two dimensional data array for storing x(n) with n = A/2ni + n2 
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the next N2 elements of x(n) and so on, as illustrated in Fig. 2-2. Another possible 

mapping is, of course, n = n2 + Nin2 , which is a column-wise mapping. 

A similar arrangement can be used to store the computed DFT values. Let the 

mapping be from the index k to a pair of indices k i and k2, where 0 < k i < N i - 1 and 

0<k2^N2 - 1 . The row-wise mapping is given by k = N2ki + k2 . 

Now that x(n) is mapped into a rectangular array x(ni,n2) and X (k ) is mapped 

into a corresponding array X(ki,k2). Then the DFT can be expressed as a double sum 

over the elements of the rectangular array multiplied by suitable twiddle factors. To 

be specific, let x(n) be mapped row-wise and the DFT mapped column-wise; then 

N 9 - I N 1 - 1 

X(ki,k2) = ; ^ 2x(ni,n2)WN(''^'^^+'^^)^"^+^^"^) (2-11) 
02=0 ni=0 

whereWN = e - j ^ / N . But ^^(^2h+k2)(m+N,n2)^y^^2m,n2 ^Nin2k2 ^N^kim 

WS^^ W '̂-Ni* î"2 - 1 as N2Ni = N , wj^^kim ^ ^k^nj^ ^ ^ M i ^ ^ ^ ^ 

W N ' ' ' - ° - = W f e - Wfe'^l With these simplifications, eqn (2-11) may be expressed 

as: 

N i - l N 2 - I 

X(ki ,k2) = 2 { W ^ ^ - [ 2 x(m,n2Wt' ] } WR^" !̂ (2-12) 
ni=0 n2=0 

The computation of eqn(2-ll) can be carried out in three steps : 

First, compute the N2-point DFTs 

N 2 - I 

F(ni,k2)= ^x{ni,m)y^^^'- 0 < k 2 < N 2 - l (2-13) 
n2=0 

for each of the rows n i = 0 , 1 , N i - 1 . 
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Second, compute a rectangular array G(ni,k2) 

G(ni,k2) = WS^>^2F(ni,k2) o < k 2 < N 2 - ! 
(2-14) 

Finally, compute the Ni-point DFTs 

N i - l 

X(ki,k2) = 2 G(ni,k2)WSl'^i 
ni=0 

fo rk2=0 , l , . . . ,N2- l (2-15) 

Apparently the above procedure looks more complex than directly computing the 

DFT. However, let us evaluate its computational complexity. The first step requires 

N1N2 complex multiplications and NiN2(N2-l) complex additions. The second step 

requires N1N2 complex multiplications. Finally the third step requires N2Ni^ 

complex multiphcations and N2Ni(Ni- l ) complex additions. Recalling that N 

= NiN2, the computational complexity of the whole process is therefore 

N ( N i + N2 + l ) complex multiphcations and N(Ni-l-N2 -2) complex additions. I f 

5-point DFT 
( N i = 5) 

2 
r 
5 

*• 
8 

*• 

11 
r 

14 

Fig. 2-3 Computation of DFT with A/ = 15 by 3-point and 5-point DFTs 
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Ni~N2, then N i or N2~"/N, and the complexity for both multiplications and additions 

is approximately 2 N V N . Comparing to the direct computation which requires N^ 

complex multiplications and N(N- l ) complex additions, the divide-and-conquer 

approach can reduce the complexity. 

When N is a highly composite number, i.e. N==rir2 ... ru, then the 

decomposition can be repeated u-1 times, which means that smaller DFTs are formed 

and a more efficient algorithm is available. I f the factors (r's) are mutually prime to 

each other, we have the prime factor algorithm. When all the r's are equal, we have 

N = r"; then all the DFTs are of size r. This number r is called the radix of the 

computational algorithm. In particular when r = 2, we obtain the Fast Fourier 

Transform. Proakis and Manolakis [10] provide a detailed discussion on this topic. 

2.3 The Fast Fourier Transform 

By far, the radix-2 algorithms are the most widely used FFT algorithms. When 

the sequence length N is a power of 2, i.e. N = 2 we can apply the 

divide-and-conquer approach described above successively to form finally DFTs of 

length 2. At first, let M = N/2 and L = 2. This selection splits the whole data sequence 

into two N/2-point data sequences, f i (n) and f2(n), corresponding to the 

even-numbered and odd-numbered samples of x(n) respectively: 

/ l ( n ) = x(2n) 

f2{n) = x{2n+\) n = 0 , l , . . . , y - l 

As f i (n ) and f2(n) are obtained by decimating x(n) by a factor of 2, the resulting FFT 

algorithm is called the decimation-in-time algorithm. Now the N-point DFT can be 

expressed as follows: 
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r^2-i N^2-i (2-16) 
X(k) = 2 x(2m) W ^ ' ^ . + 2 x(2m-M) W^^^^^^^) 

m=0 m=0 

But W N = WN/2 , eqn (2-16) can be expressed as 

N/2-1 ^2-1 

x ( k ) = 2 f i ( ^ ) + wj^ 2 f2(m) w!^2 
m=0 m=0 

= F i (k )+w |^F2 (k ) k = 0 , l , . . . , f - l (2-17) 

where Fi(k) and F 2 (k) are the N/2 -point DFTs of the sequence f i (m) and f2(m) 

respectively. In addition, Fi(k) and F2(k) are periodic with period N/2 and 

^ k + N / 2 ^ _ ^ k ^ which is the symmetry property discussed in section 2.1.1. Hence 

eqn (2-17) can be written as 

X(k) = Fi(k) + W S F2(k) k = 0 , l , . . . , f -1 

X ( k + | ) = F i ( k ) - w S F 2 ( k ) k = 0 , l , . . . , f - l (2-18) 

WN in eqn (2-18) is the twiddle factor. 

Note that the direct computation of Fi(k) requires (N/2)'^ complex 

multiplications. The same is true for F2(k). Furthermore, there are N/2 additional 

complex multiphcations required to compute WN F2(k). Hence the total number of 

complex multiphcations is N /2 -f- N/2. Thus the first step of decimation reduces the 

2 2 

number of multiplications from N to N /2 -I- N/2, which is nearly half the original 

number for a large N. 

Having performed the decimation-in-time once, we can repeat the process for 

each of the sequences f i (n) and f2(n), which will generate in total 4 sequences of N/4 

points each. I f the decimation process is repeated successively, in the last stage there 
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Stage 1 Stage 2 
;<:(0). 

Stage 3 

x(5)' 

c(3). 

xU)' 

-1 

wi 

wk 

Wi 

wi 

X(0) 

xa) 

X{3) 

X(4) 

X(5) 

X{6) 

X(7) 

Fig. 2-4 Eight-point decimation-in-time FFT algorithm 

will be N/2 2-point DFTs to be computed. Each of these 2-point DFTs is called a 

"butterfly" in the signal flow diagram of the algorithm. Fig. 2-4 shows the signal flow 

diagram for an eight- point decimation-in-time FFT algorithm, in which the 

computation is done in place, that is, the same 2N storage locations are used 

throughout the computation of the N-point DFT, and the output data sequence is in 

order, that is, in the normal order. 

From Fig. 2-4, we can estimate the number of complex multiplications 

required. For a sequence of length N = 2 the decimation process is repeated u = 

Iog2 N times until the resulting sequences are reduced to one point each. For each 

stage there are N/2 multiplications of the twiddle factors to be performed. Hence the 
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number of complex multiphcations is reduced to (N/2) log2 N. The number of complex 

additions can be shown to be N log2 N. 

Another radix-2 FFT algorithm, called the decimation-in-frequency 

algorithm, can be obtained by the divide-and-conquer approach with N2 = 2 and 

N i = N/2 in the first step of decimation. Both the decimation-in-time and the 

decimation-in-frequency algorithms need to shuffle the input data sequence in a 

bit-reversed order so that the output data sequence can emerge in order if the 

computation is to be done in place. Details of the decimation-in-frequency algorithm 

and data shuffling are well documented in many reference books [1,10]. 

2.4 The Prime Factor Algorithm 

The aim of the divide-and-conquer approach described in section 2.2 is to 

change a one-dimensional transform into a multi-dimensional transform so that the 

computational complexity is reduced. The mapping leading to the derivation of 

eqn(2-12) imposes no condition on the two transform lengths N i and N2, but twiddle 

factors WN^^^ which requires complex multiplications, are created between the two 

different dimensions. Good [11] and Winograd [12], however, used a mapping that 

requires N i and N2 be relatively prime to each other. By algebraic manipulations 

according to the number theory, each dimension is uncoupled to the others and the 

undesirable twiddle factors can thus be ehminated. 

2.4.1 Address Mapping: Let N = N1N2 where N i and N2 are relatively prime to each 

other. The indices may be mapped as: 

n = A n i + Bn2 0 < n i < N i - l and 0 < n 2 < N 2 - l 

k = Cki + Dk2 0 < k i < N i - l a n d 0 < k 2 < N 2 - l 
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then the transform becomes : 

N 2 - I N 1 - I 

X(ki,k2) = 2 2 x(ni,n2)WN (A«i+Bt.2)(Ck,+Dk2) 
n2=0 ni=0 
N 2 - I N 1 - I (2-19) 

= 2 2 x(ni,n2)Wl^C°i^lWl^"i^2w|^Cn2ki^BDn2k2 
n2=0 nl=0 

Note that W N ^ = 1 and WN^"*"' = WN , where m and i are integers. The index i forms 

an arithmetic structure modulo N . To make eqn (2-19) a real two-dimensional 

transform, we want 

AC = 1, A D =0, BC = 0 and BD = 1 (2-20) 

There are, of course, many possible solutions to satisfy the above conditions. One 

possible mapping for n is that n = N2ni + N i n2, giving A = N2andB= N i . Because 

N i and N2 are relatively prime to each other, this mapping must be one-to-one. 

Substituting A = N2andB= Ni in to eqn(2-19): 

N o - l N i - l 

X(ki,k2) - 2 2 x(ni,n2)W^2Cniki^N2Dnik2^NiCn2ki^NiDn2k2 
n2=0 ni=0 
N 7 - I N 1 - I 

= 2 2 x(ni,n2)W^r''^'W^2Dnik2^NiCn2ki^Dn2k2 

n2=0 nl=0 
(2-21) 

Now the index of the first exponential term, W N I , is modulo Ni , and the last, WN2 is 

modulo N2. In order to satisfy eqn (2-20), we can deduce, from the exponential terms 

of eqn (2-21), that C = N 2 < N 2 ^ > N i and D = N i < N r " ^ > N 2 , where < x > N r denotes 

the residue of x modulo Nr and x"^ its multiplicative inverse . Substituting these 

choices into eqn (2-21) and omitting the < > Nr for simplicity : 

N 2 - I N 1 - I _^ _ j 

X(kl,k2) = 2 2 <ni,n2)V^^f'- '^^klwff^^^N^ n,k2^NiN2N2 n2k,^NaN, n2k2 

n2=0 ni=0 
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N2-1N1-1 (2-22) 

n2=0 nl=0 

as <N2N2 "^>Ni = 1, < N i N i "̂ >N2 = 1 and N1N2 = N making the second and the 

third exponential terms equal to 1. Hence the mapping for the indices: 

n = N2ni + Nin2 (2-23) 

k = N 2 < N f S N , k i + Ni<NrSN2 k2 (2-24) 

where 0 < n i < N i - l , 0 < n 2 < N 2 - l , 0 < k i < N i - l and 0 < k 2 < N 2 - l 

The order to evaluate the two summations in the transform expressed by eqn (2-22) 

is immaterial, i.e. we can evaluate either n i or n2 first. Conceptually the transform is 

performed over a two-dimensional array, but in a single-processor system, the 

elements belonging to a row or column are usually taken from the memory when 

required for computation, after which the results are put back into the respective 

memory locations. Fig. 2-5 illustrates a particular column being loaded into the 

processor for computation and retrieved after computation. Suppose we choose to 

evaluate m first, then the procedure becomes: 

(1) Take x(n) according to eqn (2-23) one column at a time, i.e. for each n2, 

n i = 0,l , . . . ,N-l. 

(2) For each of the columns n2 = 0,1,..., N2-I, compute the Ni-point DFTs 

N i - l 

F(ki,n2) = 2 x(ni,n2)WS^*'i k i = 0 , l , . . . N i - l 
nl=0 

The results are stored in-place, i.e. in the corresponding locations of x(ni,n2). 

(3) Take F(ki,n2) row by row; for each k i compute 
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N2 -1 

X ( k i , k 2 ) = ^¥(ki,n2WW^'' k2 = 0 , l , . . . ,N2-l 
n2=0 

(4) Re-order or unscramble the results according to eqn (2-24). 

To give a simple numerical example, let N = 15 = 3x5. Then N i = 3, N2 = 5 

and n = 5 n i -I- 3 n2, where m = 0,1,2 and n2= 0,1,2,3,4. With this mapping for n, 

we obtain conceptually a 3 x 5 data array similar to the one shown in Fig. 2-2. After 

computing the inverses, we obtain <5~"'̂ >3 = 2 and <3~"'̂ >5 = 2; so the mapping for 

k = l O k i + 6 k2, which specifies the indices for unscrambling the resulting sequence. 

2.4.2 Computational complexity : When a one-dimensional array of length N is 

arranged as a two-dimensional array of N1XN2, there are N i DFTs of length N2 and 

N2DFTS of length N i to be computed. Assuming direct DFT calculation, there should 

be NiN2^ + N2Ni^= N ( N i - f N 2 ) complex multiplications and N(Ni-l-N2-2) 

complex additions. Referring to the 3x5 example, the original number of 

multiplications is (15)^ = 225, but with the prime factor algorithm, the number 

becomes 15(3 -f- 5) = 120, which is a reduction by nearly a factor of 2. In fact, efficient 

algorithms to compute short DFTs of length 2,3,4,5, 7,8,9 and 16 are available [13]. 

Moreover, when the length of the DFT is an odd prime, the DFT can also be evaluated 

in high speed by a convolution [8]. One may even utilize fast hardware in the form of 

a recursive filter to compute the short DFTs [14]. I f /<(Nr) is the complexity of a 

particular algorithm chosen for a short DFT of length-Nr, then the computational 

complexity for multiphcation for two stages can be written as Nifi(N2) + N2/^(Ni). 

2.4.3 In-place, In-order Algorithm: The mapping given by eqn (2-23) and (2-24) leads 

only to an in-place algorithm since unscrambhng is required after the last stage of 
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computation. By modifying slightly the mapping given by eqn (2-24), an in-place, 

in-order algorithm can be achieved [15]. The procedure is as follows: 

(1) Load from the memory array column by column according to n = N2ni -I- Nin2. 

(2) Perform the length-Ni DFTs along each column. Place the intermediate results 

F(ki,n2) into the memory according to the mapping k' = N2N2 ^ki + Nin2. 

(3) Load from the memory row by row, also according to n = N2ni -I- Nin2. 

(4) Perform the length-N2 DFTs along each row. Place the results into the memory 

according to the mapping k = N2ki + NiNr''^k2. 

By examining the above procedure, we see that the mapping specified by eqn 

(2-24) is implemented in two phases; first for k i then for k2. Results are unscrambled 

after every short DFT instead of at the end of the whole transform, but the final 

N = 15 = 3x5 
Loading : n = < 5ni + 3n2 > 15, where n2 = 1, ni=0,1,2. 
Retrieval: k' = < lOki + 3n2 > 15, where n2 = 1, k i = 0,1,2 

x(0,l) = x(3) 
x ( l , l ) = xf8) 

x(2,l) = =x(13) 

F(OJ) = x(3) 
F ( l , l ) = = x(13) 
Ff2, l ) = x(8) 

Fig. 2-5 Memory loading and retrieval for an in-place, in-order prime factor algo
rithm 
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outcomes are the same for both cases. Each time when an unscrambling operation is 

done, only a permutation of data within the same row or colunm is effected, which is 

an in-place process. Fig. 2-5 shows the loading and retrieval of the second column 

(n2 = 1) of a 3x5 example. The permutation is such that the elements of a particular 

row or column will always stay together in the same row or column. Thus the 

permutation does not affect the results of the short DFTs but only their addresses. For 

a particular algorithm, all the addresses required for the transform can be calculated 

in advance; therefore the generation of addresses should not affect the computation 

time at all. 

To find the multiphcative inverse of an integer in a finite field, the solution of 

a diophantine equation is involved. One may refer to books about number theory 

[16]. 

2.4.4 Multi-dimensional transform : To gain the ful l advantage of the prime factor 

algorithm, small integers are desired to be the factors making up the product of the 

sequence length, which enables the use of efficient short DFT algorithms as discussed 

in section 2.4.2. I f only a two-dimensional algorithm is used, i.e. N = N1.N2, the 

resulting sequence length could be too small to be useful when both N i and N2 are 

small integers. One solution is that we select a highly composite sequence length, i.e. 

N = Ni.N2....Ni, where the Ni's are mutually prime to each others. Then more choices 

are available for the sequence length and the two-dimensional prime factor algorithm 

can be appUed recursively as well. 

Let N = Ni.N2....Ni, where the Ni's are mutually prime to each others. Define 

a mapping n = < N r n i + N i n r > N , where Nr = N2.N3...Ni = N /Ni , n =0,1,...,N-l, 

n i = 0 , l , . . . ,Ni - l and Ur = 0,l,2 , . . . ,Nr-l. As N i is prime to Nr by definition, the above 
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mapping forms a two-dimensional prime factor algorithm. We may first compute the 

length-Ni DFTs , then followed by the length-Nr DFTs. When computing the 

length-Nr DFTs, we can apply the prime factor algorithm here again by defining 

another mapping n' = <Nr'n2 +N2nr' > N , where Nr' = N3.N4...Ni = Nr/Nz, n' 

= 0,l, . . . ,Nr-l, n2 = 0,l,...,N2-l and nr' = 0,l,2,...,Nr'-l. It is obvious that this 

decomposition of data can be continued til l the very last factor of Ni is reached. A 

multi-dimensional form of prime factor algorithm can thus be written as [17]: 

Ni-l N2-IN1-I 

X{ku...,k2M) = - E 2 x{ni,...,n2,ni) Wi^^'^ Wz'"^'... W^''' 
rii-O 112=0 ni-0 

and in the r-th dimension, the addresses for loading and retrieval of data can be given 

by [18]: 

n = <Nrn ' + Rnr>N 

k = <Nrn ' + RR~^nr>N ^^'^^^ 

for n ' = 0,1,...,R-1, Ur = 0,l,...,Nr-l where R- N/Nr for the r-th dimension, and 

<RR~"^>Nr = 1- In the retrieval equation, nr is used instead of kr for simplicity. 

Let us take the sequence length N = 3x5x7 = 105 as an example of a three-

dimensional algorithm. Assuming we evaluate length-3 DFTs first, the addresses for 

loading and retrieval are given respectively by : 

n = <3n' + 35nr>i05, n'=0,l,...,34, nr=0,l,2 

k = <3n' + 70nr>i05, n'=0,l,...,34, nr=0,l,2 

Following the concept of a two-dimensional array, after each of the 35 length-3 DFTs 

is computed, the results are permuted and placed in the respective columns of the 

array. To complete the computation, we have to perform 3 length-35 DFTs along the 

rows of the array, the indices of which are given by 
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n = <35n' + 3nr>i05 n '=0, l ,2 , nr=0,l,...,34 

Each of these rows can also be treated as a 5 by 7 array by the same method. Since 

each row is handled independently, its indices may be mapped again from 0 to 34 in 

order to simplify the addressing scheme in the calculation to follow. Performing the 

length-5 DFTs along the sub-columns, the mapping is: 

n = <5n' + 7nr>35, n'=0,l,...,6, nr=0,l,...,4 

k = <5n' + 21nr>35, n'=0,l,...,6, nr=0,l,...,4 (2-26) 

and followed by the length-7 DFTs along the sub-rows with 

n = <7n' + 5nr>35, n'=0,l,...,4, nr=0,l,...,6 

k = <7n' + 15nr>35, n'=0,l,...,4, nr=0,l,...,6 (2-27) 

In eqn (2-26) and (2-27), n = 0 or k = 0 refers to the first element of the row. Finally, 

the results in each row must be permuted according to 

k = <35n' + 36nr>i05, n'=0,1,2, nr-0,l,...,34 

before they are in order. 

2.5 Realization of the PFA in a TVansputer Network 

The prime factor algorithm converts a one-dimensional DFT into a 

multi-dimensional DFT. When the algorithm is implemented in a general purpose 

computer with a single processor, different dimensions must be computed one after 

another. I f special hardware or supercomputers are available, it is possible to share 

the computation by several processors performing simultaneously in a suitable 

configuration. Hypercube and pipeline architectures were suggested and studied by 

G. AJoisio et al [19]. Basically the hypercube is a structure that maps naturally into 

the Cooley-Tukey algorithm rather than the PFA; hence it is not surprising to see that 

the Cooley-Tukey algorithm excels the PFA in several aspects when implemented in 
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Fig. 2-6 The tree network of transputers (adopted from ttie configuration of a 
transputer system in the University of Durham) 

a hypercube, especially the communication time required. There are, however, some 

other networks that fi t the PFA better. A particular example is the tree network shown 

in Fig. 2-6 [20], which is suitable for calculating DFT of a sequence length of N = 

3x5x7x11 = 1155 with a minimum communication time for exchanging partial results 

between processors. 

2.5.1 The Overall Scheme In Fig. 2-6, each box represents a transputer and each line 

represents a two-way communication channel. The tree network is formed by 

connecting the communication channels of the transputers together. Processor 0 is 

the root transputer which is responsible for communicating with the host computer 

system. Processors 11, Ic and I r are called the branches with l,c and r denoting left, 

central and right respectively. Processors 2 to 5 are called the leaves. When the data 

are fed into the root processor, they are rearranged into sets of three according to the 
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addresses of dimension 3. These sets are sent in parallel to the three branch 

processors, each of which calculates one of the three transform components, i.e. 

processor 11 produces X(0) while processors Ic and Ir calculates X(2) and X ( l ) 

respectively. With this systolic-like operation, the partial results are naturally divided 

into three groups coming out from the processors and the subsequent operations for 

these three groups are identical, which is to perform the three-dimensional DFT of 

5x7x11. This arrangement requires no exchange of partial results between the 

branches. 

Underneath each of the branch processors, there are another 4 leaf processors 

linked together by communication channels. Hence there are three groups of 5 

processor each. Since the operations in these three groups are identical, we may 

concentrate our discussion on the left group. There are 385 data points to be 

calculated by processor 1 for dimension 3. While performing the calculation, the 

partial results can be distributed to the leaf processor according to the requirement 

of dimension 5. Since there are 77 sets of data of 5 elements each to be distributed 

among 5 processors, the load will be uneven. Following the loading is the procedure 

for performing length-5 DFTs. From this point onwards, each set of data points will 

be contained and handled by the same processor, so efficient algorithms, like the short 

DFT algorithms, can be applied. 

2.5.2 Addresses in multi-processor system I f the PFA is realized by a single-processor 

system, the addresses of the data expressed as their order in a linear array are sufficient 

to keep track of all data loading and retrieval. In case that several processors are 

computing concurrently different parts of the transform, the processors must know 

the order of the data in that particular dimension and their addresses in the following 
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dimension where the partial products are to be sent after this stage of computation. 

The order of the data in the form of a linear array is essential only at the first loading 

and the final retrieval process. The addressing problem of the PFA has been a 

research topic for years. When the PFA is implemented in a multi-processor system, 

the generation of addresses becomes more complicated. In our approach, the indices 

of data at all dimensions are kept in an appropriate order as their addresses [20]. 

Since exchanges of partial products among the processors should be kept as 

few as possible, the in-place in-order algorithm expressed by eqn(2-25), where a 

length-N sequence is converted to an Nr x R two-dimensional array, will be adopted. 

As discussed previously, the algorithm can be extended to a multi-dimensional 

transform by applying the method recursively. For example, if N = N1.N2.N3, we may 

compute dimension N i first followed by N2 and N3. The loading equation will be : 

n = < N i n23 + N23 n i > N , (2-28) 

where n i = 0,1,2,..., Ni -1 and n23 = 0,1,2,...,N2N3-1. Having finished with dimension 

N i , we can computed dimension N2 and N3. Keeping the original sequence order, the 

loading equations for dimension N2 and N3 are given respectively by : 

n = < N23 n i -h N i < N2 n3 + N3 n2>N2 > N (2-29) 

and n = < N23 n i + N i < N3 n2 + N2 n3>N3 > N (2-30) 

where n2 = 0,1,2,..., N2 -1 and n3 = 0,1,2,..., N3 - 1 . Hence the address of a data point 

in a three-dimensional PFA can be determined by three indices, i.e. ni,n2 and n3. Let 

us call these indices the class number, group number and sequel number of a data 

point. Eqn (2-28) divides the data of length N into N i classes of N2 groups and in each 

group, there are N3 data points. Rewriting eqn (2-28) and (2-29), we obtain : 

n = < N23 c -h N i < N2 g2 + N3 S2>N2 > N (2-31) 

page 27 



and n = < N23 c + N i < N3 g3 + N2 S3>N3 > N (2-32) 

where c is the class number, and gx and Sx are the group and sequel number respectively 

in dimension x. After the computation in dimension 1, we must determine the sets of 

numbers associated with the data in the next dimension. Hence the relationship 

between these numbers must be studied. The following theorems about their 

relationship are useful in determining the routing of the partial products from one 

processor to another. 

Theorem 1 : In a two-dimensional PFA, the group number and sequel number of a 

data in the first dimension become its sequel number and group number respectively 

in the second dimension, i.e. gi = S2 and si = g2. 

Proof : Refer to n = < Nin2 + N2n i> N , a two-dimensional loading 

equation. For dimension N i , n2 is gi and m is si by definition. When dealing with the 

second dimension N2, n i becomes g2 and n2 becomes S2. Hence gi = S2 andsi = g2. 

Theorem 2 : In a three-dimensional PFA, the sequel number in the first dimension is 

the class number in the second and third dimensions. 

Proof : In eqn ( 2 - 2 8 ) n i is the sequel number of dimension 1. In eqn (2 -29) 

and ( 2 -30) , the same index n i becomes the class number of dimensions 2 and 3. 

TTieorem 3 : The starting address of a class differs from its neighbouring class by 

< N2N3 > N if loading is performed according to eqn ( 2 - 3 1 ) or (2 -32) . 

Proof : In eqn ( 2 - 3 1 ) or ( 2 -32) , the starting address of each class is given by 

<cN23 > N sinceg = Oands = 0 . Asc = 0 , l ,2 , . . . ,Ni - l , the first elements of the classes 

are found at locations < 0 > N , < N 2 3 > N , <2N23>N,. . . , < ( N i - l ) N23>N.Therefore 
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the starting addresses between two neighbouring classes differ by < N 2 3 > N 

= < N 2 N 3 > N . 

Theorem 4 : The group and sequel numbers in each class of the second and third 

dimensions can be determined from the group numbers of the first dimension. For 

dimension 2, g2 = <N2~'^ gi>N3, and S2 = <N3"^ gi>N2. It follows from Theorem 1 

that g3 = S2 and S3 = gi-

Proof: From eqn (2-28) and (2-31), n23 = <gi>N23 = < N2 g2 + N3 si> N23-

Taking modulo N3 on the above equation, we obtain g2 = < N 2 ' ^ gi>N3 whereNf'^is 

the inverse of <N2>N3. Similarly, taking modulo N2, we obtain S2 = <N^^gi>N2-

Theorem 5 : I f n = < N i n2 + N 2 n i > N is the loading equation, the retrieval 

addresses of a group can be obtained by updating the sequel numbers of the elements 

as follows : s i ( i )=si( i - i ) - I - < N 2 > N i , where si(i) is the i-th sequel number in 

dimension 1 and i = 0, l , . . . ,Ni- l , i.e. modulo N i . 

Proof : The retrieval addresses are given by k = < N i n2 + Nr^N2 n i > N . It 

is obvious that the changes in addresses are effected by the second term of the 

equation. To express the retrieval addresses in terms of the loading addresses, we 

make k = n and obtain 

< N2~^N2ni> N = < N 2 n ' i > N , ^^"^^^ 

where n ' l represents the loading indices. Since both n i and n ' l = 0, l , . . .Ni-l , eqn 

(2-23) is modulo N i . Hence n i = <N2n ' i>Ni and adopting the i notation defined 

above, we obtain ni(i) = n i ( i - i ) -I- <N2>Ni as n ' l increments by 1. Since n i is the 

sequel number in dimension 1, we have proved the theorem. 
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2.5.2.1 Example :The use of the above theorems in calculating the addresses of the 

data is illustrated here by a numerical example. L e t N = 3 x 5 x 7 = 105. The first 

dimension is the length-3 DFTs, the second is length-5 and the third is length-7. The 

loading equation is <3gi + 35si>i05, where g i and si are the group and sequel 

number respectively in the first dimension. Since processor Ic computes X(2) and 

processor I r computes X ( l ) , the retrieval equation <3gi + 70si>i05 is already 

realized if we keep si = 1 to processor Ic and si = 2 to processor Ir. After computing 

length-3 DFTs, the partial products are stored as a 3 x 35 array. The following table 

shows the arrangement conceptually. 

2 = 0 2=1 2=33 2=34 S=35 
s= 0 0 3 96 99 102 
s = 1 35 38 • • t 26 29 32 
s = 2 70 73 61 64 67 

When we load the transputer network with the partial results, we do so according to 

the order of dimension 35, i.e. the data are stored in three columns of 35 rows each 

as shown in the following table : 

0 = 0 
= 0 0 

1 3 
2 6 

• • • 
32 96 
33 99 
34 102 

0 = 1 
35 
38 
41 

26 
29 
32 

0 = 2 
70 
73 
76 

• 
61 
64 
67 
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Elements of column 1 are distributed in the left branch while those of columns 2 and 

3 are in the central and right branches respectively. As stated in theorem 1, sequence 

numbers in this dimension are the group numbers of dimension 3. 

In dimension 35, we can predict from the known sequel numbers the indices 

of data points in dimension 5 or 7 according to Theorem 4. In dimension 5, N2 = 5 

andN3 = 7, < 5 ~ ^ > 7 = <7~'^>5 = 3. Let us take data 96 (c = 0, s = 32) as an example. 

From Theorem 4, g2 = < 3 x 3 2 > 7 = 5 and S 2 = <3x32>5 = 1; therefore data point 

96 should be routed to (c= 0, g = 5, s = 1). We check this by listing the addresses 

according to n = <0 + 3<5g2 + 7s2>35 >105 : 

Table 2-1: Loading addresses according to 
n = < 0 + 3<5g2 + 7s2>35 >105 

c = 0 

e = 0 1 2 3 4 5 6 
s = 0 0 15 30 45 60 75 90 

1 21 36 51 66 81 96 6 
2 42 57 72 87 102 12 27 
3 63 78 93 3 18 33 48 
4 84 99 9 24 39 54 69 

From the above table, we can confirm that data 96 is at (c = 0, g = 5, s = 1) 

After considering the loading addresses of the data, let us examine their 

retrieval addresses. The purpose of the retrieval equation is to shuffle the data 

according to the computed addresses. In fact this shuffling can be realized either by 

switching the contents of cells in the array or by modifying the addresses associated 

with these cells. Since we are using the in-place algorithm, the modification of 

addresses is very simple because only the sequel numbers of the data need to be 

updated. A recursive equation, which involves only simple addition, is stated in 
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Theorem 5 for updating the sequel numbers. Moreover, only one set of new sequel 

numbers needs to be calculated for all the groups in a certain dimension as the 

elements having the same sequel numbers are shuffled in exactly the same order 

within their individual groups. The retrieval equation for dimension 5 is given by 

k = <0 + 3<5g2 + 21s2>35 >105. Table2-2 lists all the addresses of this 5x7 array. 

Table 2-2 : Loading addresses according to 
n = < 0 + 3<5g2 + 21s2>35 >105 

c = 0 

2 =0 1 2 3 4 5 6 
8 = 0 0 15 30 45 60 75 90 

1 63 78 93 3 18 33 48 
2 21 36 51 66 81 96 6 
3 84 99 9 24 39 54 69 
4 42 57 72 87 102 12 27 

The scrambling can be easily predicted by s(i)=s(i-i) + <N3>N2 (Theorem 5), 

where i = 0,1,..., N2-I. In the above example, N2 = 5, N3 = 7, si(0) = Oand < 7 > 5 = 

2. Hence s(i)=s(i-i) + 2 modulo 5, giving s = 0,2,4,1,3. Mapping the sequel numbers 

in Table 2-linto the new set of sequel numbers generates the addressing scheme shown 

in Table 2-3, which is equivalent to the scheme in Table 2-2, the retrieval addresses. 

The sequel numbers are significant because they are related to the power of the kernel 

Table 2-3 : Retrieval addresses obtained by re-mapping the 
sequel numbers of the loading addresses. 

c = 0 

2 = 0 1 2 3 4 5 6 
s = 0 0 15 30 45 60 75 90 

2 21 36 51 66 81 96 6 
4 42 57 72 87 102 12 27 
1 63 78 93 3 18 33 48 
3 84 99 9 24 39 54 69 
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^N3- l 
in the DFT; for example, in dimension N3, X(k) = — ^X(SI)WN3^^. Provided that 

S3 = 0 

the data points are maintained in the proper order for each computation, it is 

insignificant whether these data are physically scrambled or not in the memory 

storage. 

2.5.3 Procedure in a three-dimensional case : As a summary to all the details 

described above, let us go through a complete computational procedure of a transform 

of N = 3x5x7 = 105. 

(1) Load the input data group by group from the root processor to all three branch 

processors 11,1c and Ir according to < 3gi -I- 35 si > , where gi = 0,1,2,...,34 and si = 

0,1,2. 

(2) Each processor is to compute one component of each length-3 transform. 

Processor 11 computes the first component: X(0) = x(0)+x( l )+x(2) , processor Ic 

computes the third component: X(2) = x(0) +x(l)W3 -I- x(l)W3, and processor Ir 

computes the second : X ( l ) = x(0) +x(l)W3-F x(2)W3. 

(3) The sequel numbers si become the class number of dimension 5x7. By labelling 

the partial products from 11 as class 0, from Ic as class 1 and from Ir as class 2, the 

retrieval equation for dimension 3 has been implemented. 

(4) The group numbers gi = 0,l,...,34 are used for computing the addresses for the 

next dimensions in all classes according to g2 = <3g i>7 and S2 = <3gi>5 (Theorem 

4). 
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(5) Each branch processor keeps a loading assignment for itself and its leaves 

according to g2 so that the partial products can be routed to a suitable processor in 

the following dimension. One possible assignment is : 

Processor number Group number 22 
1 0,1 
2 23 
3 4 
4 5 
5 6 

(6) A l l branch and leaf processors compute concurrently the length-5 transforms of 

the groups according to their sequel numbers. After the computation, re-map all 

sequel numbers according to S2(i) = S2(i-i) + 2 (Theorem 5). 

(7) For dimension 7, g3 = S2 and S3 = g2 (Theorem 1). Route the partial products with 

their indices to the appropriate processors according to the assignment for g3. 

(8) A l l branch and leaf processors compute concurrently the length-7 transforms of 

the groups according to their sequel numbers. After the computation, re-map all 

sequel numbers according to S3(i) = S3(i-i) + 5 (or -2) (Theorem 5). 

(9) For all three classes, restore g i (which is the sequel numbers of dimension 35) by 

g i = < 7 g 3 + 5 S3 >35 . Then re-map gi(i) = g i ( i - i ) + 3 (Theorem 5). 

(10) Restore all the one-dimensional addresses by k = <35c + 3gi>i05. 

(11) Route the results to the host computer. 

Although the above example is set for a three-dimensional case, the above 

procedure can be extended into any number of dimension. Because the PFA is applied 
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recursively, at every stage we can choose to deal with at most three dimensions. 

Supposing N = N1N2N3N4, at the first stage we handle dimensions N i , N2 and N3XN4. 

Then for the next stage we handle dimension N2, N3 and N4. So in the second stage 

there are 4 indices to represent each address. Although the addresses of the data can 

be expressed imphcitly by the addresses of their locations in the memory, it is safer to 

include the addresses in form of the indices as a header to the data points. For a 

four-dimensional case, only the indices of the last three dimensions are sufficient since 

the first indices are implied by the location of the three branches. As the address 

generation (by integer calculation) takes a negligible duration in comparison to the 

complex calculation of DFTs, whether the addresses are pre-calculated or not is not 

significant. 

2.5,4 Analysis in timing : In a multiprocessor network, communication between 

processors is usually time consuming and should be kept to a minimal. The 

tree-network is so cormected that it is most suitable for computing a transform of 

sequence length N = 3x5x..., where exchanges of partial products are required only 

after dimension 5. I f N = 3x5x7x11, after the computation of dimension 3, the data 

are neatly distributed among the three branches which do no communication with 

each other. After dimension 5, partial products must be exchanged between each 

branch processor and its own leaves. Having completed the exchanges, each processor 

holds all the 77 data required for the remaining computation, which means that no 

further communication is needed. This is valid even if the sequence length is extended 

to more than 4 dimensions. 

A program was written in OCCAM for implementing a transform of N = 

3x5x7x11 = 1155 and loaded into the tree-network simulated by our 16 -node 
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transputer network called SUPERLINK [21]. For each node, a T800 transputer is 

used with 32 Kwords local memory. The clock rate of the system is 20 MHz and the 

speed of the communication links is at 10 Mbits/sec. The process begins by passing 

the 1155 points of data (in form of complex numbers, 2x32 bits) in groups of 3 and in 

triplicate to all the branch processors simultaneously. The duration takes about 52 ms. 

The DFTs are performed by direct calculation. In dimension 3,385 points of length-3 

DFTs are evaluated by each processor, with a maximum duration of 12 ms. The 

loading assignment for the partial products is: 

Processor number Group number 
1 Oto 15 
2 16 to 31 
3 32 to 46 
4 47 to 61 
5 62 to 76 

The partial products are then distributed to the 4 leaf processors for the length-5 

calculation. The passage of data from the root, the length-3 DFT collocation and the 

distribution of partial products after dimension 3 are performed in a pipeline. Hence 

the duration of the passage of data from the root (52 ms) covers the total processing 

time for these three operations. In the dimension 5, the evaluation time for at most 

80 data points (16x5) by 1 processor is about 4.2 ms. The communication time for 

passing for the same number of data points from one processor to its neighbour is 

about 3.6ms. The longest path, which involves routing through an intermediate 

processor, takes 7.2 ms. The Transputer Technical Notes [22] suggest that the 

computation and the communication process can be decoupled, but our simulation 

reveals that these two processes cannot be totally independent of each other as 

synchronous communication is adopted. Since there is also a set-up time for each 
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communication, to transfer the partial products in blocks are more efficient. In 

dimension 7 and 11, no exchanges of data between processors are required. The 

address generation time is very small as compared to that for evaluating the DFT - it 

takes about 0.97/<s to produce one set of group number and sequel number. After the 

final stage of computation, the results are distributed among all the processors and 

must be returned to the host system through the root processor. It takes another 52 

ms to complete this passage. A summary of the timing is tabulated in Table 2-4. 

2.5.5 Concluding remarks: From Table 2-4, it is obvious that the communication time, 

which actually is associated with the hardware, dominates the total duration of the 

process. Given that there are available faster communication channels or alternative 

arrangements in memory storage like dual port R A M or direct memory access, the 

communication time can be greatly reduced. The address generation takes only a 

negligible amount of time. Furthermore these addresses can be generated 

beforehand. To make a fairer comparison, let us consider only the computational 

time. The total computational time in the tree-network is 34.5 ms. Had the whole 

process be implemented by a single transputer, the computational time would be 370 

ms. Hence the speed-up factor : 

computational time by 1 processor _ 370 _ -̂ Q y 
computational time by network 34.5 

Table 2-4 : Timing of the tree-network 

max. data points 
/processor 

communication 
time /processor 

computational 
time/processor 

address gen. 
time 

from root 1155 52 ms 
0 0 

length 3 365 
52 ms 

12 ms 0.37 ms 
length 5 80 3.6 ms* 4.2 ms 
length 7 77 0 6.6 ms 74//s 
length 11 77 0 11.7 ms 14fis 

* The longest route takes twice the duration 
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Excluding the root processor, there are 15 processors in the network carrying out the 

evaluation. The efficiency is: 

speed-up factor 10.7 _ 
total number of processors 15 

When a multi-processor system is used for evaluating DFT by PFA, the data 

transfer between processors must be kept to a minimal level in order to achieve a high 

turnover of results. The tree-network is a suitable topology for a PFA of 3x5x ... 

because data transfer is done only after dimension 5 and among the processors within 

the same branch. The addresses in the form of indices of different dimensions and the 

address prediction scheme introduced are very convenient in determining the 

addresses of data in the next dimension. In most practical cases, a sequence length of 

3x5x7x11 = 1155 for DFT is quite sufficient. Therefore, a four-dimensional PFA 

should be most common. 
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CHAPTER 3 

S U B - N Y Q U I S T S A M P L I N G 

When an analog signal is processed by a digital system, sampling of the input 

signal must be done. To choose a suitable sampling period T or equivalently a sampling 

rate F s = 1/T, we must have some information concerning the frequency content of 

the signal. In general, all the signals related to engineering, such as speech or 

television, can be represented over a short time segment as a sum of sinusoids of 

different amphtudes, frequencies and phases: 

xa{t) = ^Ai cos (Tjlfit + Oi) 

For each of these signals, however, the maximum frequency does not exceed a known 

frequency Fmax . For example, Fmax - 3 kHz for speech and Fmax = 6 MHz for 

television. Based on the knowledge of this Fmax , an appropriate sampling frequency 

F s can be determined. We know that the highest frequency in an analog signal which 

can be unambiguously reconstructed is Fs /2 when the signal is sampled at Fs . Any 

frequency above Fs /2 will yield sample values identical to a corresponding frequency 

analog 
signal 

xa(t) X(n) y(n) ya(t) 

Pre-
filter A/D 

Digital 
Processor 

D/A 
Post-
filter 

y'a(t) 

Fig. 3-1 Block diagram of a digital system processing an analog signal 
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in the range -Fs /2 < f <Fs/2. These ambiguities arising from aliasing can be avoided 

by selecting a sufficiently high sampling rate which is Fs > 2Fmax. 

3.1 Shannon Sampling Theorem 

A band-limited continuous-time signal, with highest frequency (bandwidth) B 

hertz, can be uniquely recovered from its samples provided that the sampling rate Fs 

> 2 B samples per second. 

According to this theorem, if the highest frequency contained in an analog 

signal xa(t) is Fmax = B and the signal is sampled at a rate F s > 2Fmax = 2B, then Xa(t) 

can be exactly recovered from its sample values using the interpolation function 

,. sinTjiBt 

Thus the signal is reconstructed by : 

n = -co \ 
si' F.r 

where Xa = xa{nT) =x{n) are the samples of Xa(t). This is called the ideal 

interpolation formula, of which the proof can be found in many reference books [1,10]. 

When the sampling of xa(t) is done at a minimum sampling rate Fs = 2B, the 

reconstruction becomes: 

^ sm2jtB(t-n/2B) 
2B 

n = — oo \ 
2B(t-n/2B) • 

The above series is known as the Cardinal Series of Shaimon Sampling Theorem[23]. 

The sampling rate Fs = 2 B = 2Fmax is called the Nyquist rate. When aliasing occurs 

due to a sampling frequency lower than the Nyquist rate, the effect can be understood 
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• • • 

X a ( f ) 

-B 0 

(a) 
B 

^ X a ( f - F s ) 

1 ; J ; X a ( f - F s ) ; J ; X a ( f - F s ) 

/ , X X , \ 
f ig. 3 -2 Aliasing around the folding frequency (a) original spectrum 
(b) reconstructed spectrum witti no aliasing (c) reconstructed spectrum with 
aliasing. 

as a multiple folding of the frequency axis of the frequency variable f for the analog 

signal. Any sampling process of which the average sampling rate is below the Nyquist 

rate can be called a sub-Nyquist sampling process. 

3.2 Randomized Sampling 

A regular sampling sequence can be described mathematically by 
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^ (3-1) 
uit) = Y , d { t - nT) 

/ J = —00 

where T is the sampling interval and 6 is the Dirac function. To make this description 

applicable to irregular sampling, the above equation can be modified to a more 

general form as 

(3-2) 
< t ) = J^dit- tn) 

n = — co 

where tn is the sampling time at interval n. For regular samphng, tn = n T. If sampling 

is performed at random instants, we can write 

tn^nT+tn n = 0,1,2,... (3-3) 

or 

tn = tn-l + Tn n = 0,1,2,... (3-4) 

where T is a random variable. The samphng intervals chosen according to eqn (3-3) 

adds a jitter to the regular sampling interval. Eqn (3-4) describes a process which is 

known as additive random point process. It was proposed by Shapiro and Silverman 

[24] as a convenient tool for performing randomized sampling. Hence we may call the 

sampling derived from the above two process as the jittered sampling method and the 

additive random sampling method. When performing the additive random sampling, 

the randomness introduced into the sampling process can be controhed by one 

parameter, the ratio o/^, where CT andare the standard deviation and the mean value 

respectively of the sampling periods defined as tn - tn-i at interval n. If o/^ = 0, the 

sampling is periodic and the time intervals between the points are equal to T. By 

increasing this ratio, it is possible to obtain an extremely randomized sampling. 

As discussed in section 3-1, if the sampling rate of a regular samphng sequence 

is below the Nyquist rate, aliasing will occur. In section 2.1, the periodic extension of 
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a regularly sampled signal is briefly mentioned. It can be shown that aliasing is in fact 

associated with this extension on a regular sampling grid. Using a suitable randomized 

sampling scheme, an aUas-free ,̂ sub-Nyquist samphng can be achieved. Shapiro and 

Silverman [24], Beutler [25] and Masry [26] published various theorems and criteria 

on alias-free sampling. 

3.2.1 Theory of Shapiro and Silverman : Shapiro and Silverman argue that jittered 

sampling is not alias-free since the sampling time tn are still "attracted" to the 

equi-space value nh, where h is the average sampling period. What is needed to break 

up this regularity is some sort of "floating point" sampling scheme. Thus the additive 

random sampling, in which each sampling time is derived from the preceding one by 

the addition of an independent random variable, is introduced. Keeping their 

notations, tn = tn-i + Yn, where yn, n= ...,-2,-1,0,1,2,..., is a family of identically 

distributed, independent random variables, with E [yn] -h <oo and a common 

/
CO 

P(T) dr = 1. The Fourier 
— 00 

transform of p(r) 

exp(ia)T)p{r) dr ^ j ^ exp{ia)T)p{r) dr ^ 

is the characteristic function (in the sense of probabihty theory) of the distribution 

Shapiro and Silverman study the correlation function of a random sequence 

and subsequently propose the following theorem : Additive random sampling is alias 

free if the characteristic function (p(o)) takes no value more than once on the real axis. 

^ Sampling is alias free iff the translates by 2 nn (n any integer) of the support of the spectrum of x(t) 
are all disjoint. 
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First they show that the correlation sequence ch(n) and its correlation function C (T) 

of a random sequence xn(t) is given by : 

Ch(n) = E [x{tm+n)x{tm)] = f C(t)pnij) dt 
— 00 

where/?n(7) = J ^pn-iiT^-u) p{u)du,n>2, andpi{t) = j7(r). For an additive random 

samphng sequence : 

/
CO 

^ C(T) pn(T) dr, n>\ 

ch(n) = C(0) . 

By Parseval's theorem and the convolution theorem for Fourier transform, ch(n) is 

related to the power spectrum F(a)) : 

ch(n) = r F((JD) (p"(a)) do), n > 0 ^̂ "̂ ^ 
—00 

The question to be answered is: For which p (r) is there only one correlation function 

which leads via eqn (3-6) to a given correlation sequence ch(n)? if no ahasing occurs, 

eqn (3-6) is satisfied for only one distinct real (non-negative) function inL^H^-^. By 

conformal mapping, it is found that the required p (T) has its characteristic function 

(p{(j)) which is one-to-one on the real axis. This is the sufficient condition for additive 

random sampling to be ahas-free. 

Finally, the Toisson sampling" with an average rate p and p (r) = pQxp(-pz) 

for r > 0 and p (r) = 0 for r < 0 is verified to be ahas free. 

3.2.2 Beutler's Theory : Beutler defines that a sampling sequence {tn} is alias free 

relative to S ( a family of spectra) if no two random processes with different spectra 

belonging to Syield the same correlation sequence {r(n)]. 
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The correlation sequence of the discrete process {x(tn)} is denoted by r(n) = 

E [x(tm + n)x*(tm)] where * indicates complex conjugacy. It is also supposed that the 

probability distributions of (tm + n - tm) do not depend on m. Under the assumption 

that {x(t)} is wide-sense stationary, r(n) depends only on n. Two random processes 

with respective spectra Gi and G2 are said to have different spectra if there exists a 

continuous function f such that 

f fio)) dH{co) ^ 0 
— 00 

where H = Gi - G2 . Thus spectra are regarded as identical iff they differ by at most 

a constant at all their points of continuity. 

Whether a given { tn} is ahas free relative to S depends on the relation between 

G and {r(n)}. The expectation on x(t) is most conveniently written in terms of its 

spectral representation: 

E [x{tm+n)x*{tm)] = ^ / ^ [txp[i(i){tm+n - ^m)]} dG{(J)) 

Consequently: 

'^n)=~f_moy)dG{oy). 

By definition f^rin) = E\txp[-ia){tm+n - tm)]\ = / " e''"" dFn{u), ^^'^^ 

in which F n is the probability distribution function for n successive sampling intervals. 

Note that the difference in sign of the exponential in (3-7) and (3-8) is irrelevant 

because of the character of G for a real stochastic process. For each possible set of 

{tn} statistics, the mapping G {r(n)} is a linear bounded transformation. An inverse 

exists in the sense that G can be inferred from {r(n)} iff this transformation is 
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one-to-one. Thus the definition identifies the spectral recovery capabihty with the 

alias-free property. 

Letj3 s be the family of measures induced by H of the form H = Gi - G2, where 

Gi and G2 are any spectra belonging to S. In particular the null measure h in fit and 

we have the following theorem : The sampling sequence {tn} is alias free relative to S 

i f f with fit 

r fn dH{(D) for all n implies H = 0. ^^'^^ 
— 00 

From the above theorem, the following corollaries are deduced. 

Corollary 1 : Let ^ s be a Banach spacê  with dual fi s , and assume that eachjn £ 

fi s . Then { tn} is alias free relative to S iff {/^} is closed i n ^ s • 

Since closure and completeness are equivalent in a Banach space. Corollary 1 

can be rephrased as: 

Corollary 2 : Under the hypotheses of Corollary 1, {tn} is ahas free with respect to S 

iff every g & fis can be approximated as closely as desired (in fi $ norm) by finite 

linear combinations ofihejn • 

Assume that (tm + n - tm) has a probability density fn. A substitution of (3-8) in 

(3-9) followed by an application of Fubini's theorem yields the following. 

Corollary 3 : Let D be the difference of two correlation functions corresponding to 

spectra belonging to S. Then { tn} is ahas free relative to S iff 

/
oo 
^fn(u) D{u)du for aU n implies D = 0. 

^ A Banach space is a normed space which is complete in the metric defined by its norm; this means 
that every Cauchy sequence is required to converge [27]. 
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After setting the above criteria, three examples of { tn} are examined to see 

whether they are ahas free. The first example is the Poisson point process. The second 

example is a sequence sampled on a finite interval by periodic sampling, in which 

samples are randomly and independently skipped such that the average sampling rate 

is an arbitrary small fraction of the Nyquist rate. The third example is the randomly 

jittered sampling at Nyquist rate. All the three examples are found to be aUas free. 

3.2.3 Expectation value of Spectrum : The spectrum of a signal x(t) sampled in a 

duration To can be given by the Fourier Series 

S(fk) = jr J \ t ) expi-jTjtfkt) dt ^^'^^^ 
lo o 

where fk = k/To and k is an integer. When x(t) is sampled by a randomized timing 

sequence { tn} , according to Bilinskis and Mikelsons [28], the spectrum of the sampled 

signal {x ( tn)} : 

^^(f'^) = e^ooB /̂ Ŵ u{t) cxpi-j^fkt) dt ^^"^^^ 

where © = E[tN], N is the number of samples processed, fk = k /0 and k is an integer. 

/
OO 

x{t) d{t-tn)dt,it follows that 
— 00 

,A^-1 (3-12) 

Let us consider the case when sampling is performed periodically. Then the function 

u(t) = (5 (t - tn) is also periodic and its Fourier series is 

1 1 ^ (3-13) 
w(0 = — + — X[exp(-2jrrt/ro) + exp(2jirt/To)] 

.To To^^ 

Substituting (3-13) into (3-11) and neglecting the scaling factor 1/To yields 
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Ssifk) = Jî ooi/̂ Ŵ expi-j2jtfkt) { 1 + 2 [exv(-j2jtrt/To) + exvijTjtrt/To)] • dt 
r=l 

= e l " B Jô-W exp(-;2./K) dt + ^ J i " 1 
lim 2 r© 

/-=! 

X [exp(-72jr;t/ro) + exp(j2jtrt/To)] dt 

= Sx(fk) + ^ [ s J j r + f k To •fk 
(3-14) 

lim 2 r® 
where Sxifk) = Q - » O O 0 J Q -̂ (0 &w(~j2^fkt) dt is the spectrum of the original signal 

and Sxifk) is the complex conjugate of Sx(fk). Eqn (3-14) shows that replicas of the 

original spectrum are found periodically in the frequency domain as depicted in Fig. 

3-2 (b). When the sampling frequency is lower than the Nyquist rate, aliasing will 

occur because of insufficient separation as depicted in Fig. 3-2 (c). 

Now assume that {tn} is a random sampling sequence, and pn(t) be the 

probabihty density function (p.d.f.) of the nth random variable in u(t). From eqn 

(3-11), the expectation value of the estimated spectrum : 

A' 

j ^ L l I>"(0 [̂ (0 ^M-Mkt)] dt 
(3-15) 

^ 1 
If the "total" p.d.f. at time t, p(t) = ̂ n ( 0 = ^ = ^ constant, then 

(3-16) 

n = l 

lim 

0-»oo 
Ss(fk) 

Hence the expectation of the estimated spectrum approaches the original spectrum 

if the condition specified by eqn (3-16) is satisfied. Note that no rephcas of the original 

spectrum nor any ahasing is produced. 
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3.2,4 Jittered Random Sampling : Bilinskis and Mikelsons discuss the ahas-free 

property of the jittered random sampling and the additive random samphng by looking 

at the probabiUty density functions (p.d.f.) of the random variable r inserted into the 

sampling intervals. For the jittered random sampling, the timing model is given by 

tn=nT+rn 77 = 0,1,2,... 

where {r^} is a family of independent identically distributed random variables with 

zero mean. Let to = 0, the "total" p.d.f. of the time intervals at time t from to is 

P{t) = ^Pnit), TV-00 

n = l 

where pn(t) is the p.d.f. ofrn. To understand the meaning of the function p(t), imagine 

that a narrow time window At is moved along the time axis. Under the condition that 

At - 0, p(t) at any time t is equal to the probability that one of the sampling points ts 

will fall within this window At. Fig. 3-3 shows the p.d.f. of a set of random variables 

belonging to a stream of jittered sampling points for n = 1 to 7. As can be seen from 

the figure, this particular function has multiple maxima and minima and the peaks do 

not change as t increases. Obviously, this p(t) does not satisfy eqn (3-16). 

If the time intervals are distributed uniformly in the intervals nT±0.5T, then 

the resulting p(t) of the sampling points is constant for t > 0.5T, which can be seen in 

Fig. 3-4. When this sampling scheme is apphed, all instantaneous signal values are 

sampled with an equal probabihty and eqn(3-16) is satisfied. It seems, therefore, that 

this method of generating random samphng points is acceptable. However, there are 

a number of substantial disadvantages which prevents the wide application of this 

method. These drawbacks are : 

page 49 



(a) _ 
-51 - I L. 

fi - fo 

(b) ^ 
to 

_l 1 1_ t 

J 1_ 

(c) ^ 
J L A 
-f3 - fo * ^ 

J \—t 

(d) ^ 
^ fo J I I L. 

- f y - fo 

. A . , 

I A A A A A A A / 
Fig. 3-3 Probability density functions characterizing the jittered sampling, (a), (b), (c) 
and (d): Probability density functions of time intervals at t-\, tztz 3nd t4. (e) Resulting 
sampling point density function. (From [28]) 

I I I I 1 L 

J L 

i n J I L_L 

J I L 

J L J 1—M \-t 

Fig. 3-4 The probability density function of a jittered sampling that tn are distributed 
uniformly in the range T±0.5T. (From [28]) 
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1. The random variables {r/i}should be distributed strictly uniform within the given 

intervals. 

2. Time intervals between any two successive sampling instants tn and tn + i may be 

very short. The implementation of this scheme should be wide-band even at a 

relatively low mean sampling rate. 

3. The randomness introduced is considerably large. 

4. Statistical errors resulting from the relatively powerful randomness introduced at 

sampling are significant. 

3.2.5 Additive Random Sampling: In case of additive random sampling, samples are 

taken at instants 

tn = tn+l + rn, n = 0,1,2,... 

where rn is a realization of a random variable. Consider the time interval [0,tn] = t i 

+ t2 + . . . +tn. The random variables are characterized by their respective p.d.f. 

{pn(t)}. We can write 

pi(t)^pr{t) 
P2{t) =pi*PTit) 

pn{t) =pn-l *pT{t) 

where * denotes the "additive" operation. As the interval [0,tn] is a sum of n 

statistically independent random variables, we know from the central limit theorem 

that whatever p.d.f. these variables may have, the probability distribution of the 

random variable [0,tn] will approach the normal distribution as n approaches infinity. 

Fig. 3-5 shows two different p.d.f.s; one is uniform and the other is exponential. The 
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( a ) pAt) (b) p,(f) 

2p2(f) 

f/2 f/2 

8p8(f) 

•//8 •tIB 

Fig. 3-5 Evolution of probability density function pr(t) when p1(t) is (a) uniform and 
(b) exponential. (From [28]) 

expected value of the time intervals {(tn-tn-i)} is In both cases the corresponding 

pr ( t ) change and become more normally distributed as the sunmiing of intervals 

proceeds from r = 1 to 8. 

Consequently, when the additive random sampling is applied, no matter what 

form of pT(t) a variable r may take, the sampling point density function p(t) will always 

tend to the constant level l/ju when t exceeds a certain time Ta which depends on 

pT( t ) . Fig. 3-6 shows the p.d.f. of an additive random sampling scheme from to to ts- It 

can be seen that p(t) tends to become flat as t progresses. Hence when t is large, p(t) 

= 1/ju, which means that eqn (3-16) can be satisfied. 

Bilinskis and Mikelsons also analyze the case when the sampling intervals {tn, 

tn + i } are correlated. They give an example that the individual {tn} are distributed 

normally with a mean value ju and a standard deviation a. The correlated additive 

random point process can be defined as 
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ti = to + ri = tQ+f^ + a^i 

tn = tn-i + rn = ju + p(rn-i - M ) + aVl - ^n forn > 1 

where {^n} are the uncorrected instantaneous values of a zero mean normal random 

process with a variance of 1 and p is the correlation coefficient defined as 

_ E[ rn rn +m ] m 

with 1/91 < 1 and lim 0. Fig. 3-7 shows a positively correlated a.r.s. in (a) 

and a negatively correlated a.r.s. in (b). It can be seen from the figure that a positive 

correlation function helps the samphng point density function converge to the 

constant level VIA. sooner. If, however, the correlation function is negative, the 

convergence of the sampling point density function will be slowed down. 

Q. to 

« ^ fo 

1 ^ 1 \ • • 1 

U - to 

li 1 1 .1. .. , f 

. / \ . . 1 
I I 1 i ^ 

— 1 r 

^ f 3 - to 
1 1 1 1 ^ 

I 1 1 1 

^ ti -to — : ^ 

Fig. 3-6 Probability density functions characterizing additive random sampling: (a), 
(b), (c), (d) Probability density functions of time intervals at t^,tzt3 and t?. (e)Result-
Ing sampling point density function. (From [28]) 
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(a) 

1/M 

o l f i = 0.15 

(b) 
p = -1/2 

Fig. 3-7 Sampling point density functions for uncorrelated sampling (dashed lines) 
and correlated sampling ofa.r.s. when (a)p = \ ; (b) p ^ - \ (From [28]). 

From the analyses of various authors, we can conclude that additive random 

sampling surpasses jittered sampling in acting as an alias-free sampling process. The 

magnitude of the estimated spectrum recovered from the sequence sampled by a.r.s. 

approaches the exact values if the number of samphng points is large enough. 

3.3 Realization of Additive Random Sampling 

To sample a signal x(t) by a.r.s., the timing is specified by eqn (3-4), which is 

tn = tn-i + tn ,n = Q,l,2,.... After a sampled sequence {x(tn)} is obtained, the 

amplitude spectrum can be reconstructed by 

i V - i 
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N-1 (3-17) 

/i=0 

where N is the number of samples and should be a large integer. Eqn(3-17) is a slight 

modification of eqn (3-12). In the normalized case, the total sampling period To = 1 

second and fo = 1 Hz, then fk = k. Eqn (3-17) becomes 

Xik) = j^Y, ^^(^ -i'2jiktn), k = 1,2,3, (3-17a) 

Amplitude spectra of a signal reconstructed from regular samphng and a.r.s. are shown 

in Fig. 3-8 for comparison. Note that the Nyquist hmit is at k = 512. When a.r.s. is 

adopted (Fig. 3-8 (b)), there are no longer any rephcas of the original spectrum in the 

frequency domain. The sharp aliases in this case are turned into a broad-band 

background noise. Provided that the signal-to-noise ratio is high, the signal can be 

recognized easily by setting a suitable threshold in ampHtude to pick out the signal. 

1.6 

amp. 
V 

(a) 

I 
512 

2047 

(b) 

1 1-6 

161 506 900 2047 

Fig. 3-8 Amplitude spectra of a signal sampled for 1024 points by (a) regular sam
pling, (b) additive random sampling. Note that the Nyquist limit is atk = 512. 
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In this example, the signal-to-noise ratio is 17.3 dB and the average accuracy of the 

recovered signal is 95.3 %. 

3.3.1 Computational Complexity : In Chapter 2, the computational complexity of a 

few fast algorithms, including the best known radix-2 FFT, have been mentioned. The 

main saving in computation of these fast algorithms, in fact, comes from the 

trigonometric symmetry of the kernel of the transform, which is exp(-j27rkn/N). By 

adopting the "divide-and-conquer" approach, the F F T exploits this symmetry to such 

an extent that the complexity is reduced to Nlog2N. 

When random sampling is adopted, the kernel of the transform becomes 

exp(-j27rfktn), where tn is a random variable. At once we realize that the roots of unity 

are no longer lying evenly on the unit circle in the complex plane. Hence no symmetry 

is available and the complexity is obviously N . By nature, when random sampling is 

used, "fast" algorithms (in the sense of having a linear complexity, such as NlogN) are 

not available. A heavy computation load is therefore the price that randomized 

sampUng has to pay. 

3.3.2 Estimation of Noise Level: Assuming that the input signal is a simple sinusoid 

of unity amphtude, i.e. x(t) = lexp (27rfit) volt, let us estimate the signal-to-noise ratio. 

The sampling time of a randomized sampling scheme is tn - nT + ^n, where T is the 

mean sampling period and ySn is the deviation from the mean value at time tn. Then 

the sampled signal is given by 

x(n) = exp \j2itfiT (« + y ) ] = exp \j2jt^ (« + f ) ' 

since f i = k / NT. Then the D F T of x(n) is, according to Berkovitz and Rusnak[29]: 
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N-1 

n=0 

N-1 

n=0 

^W = E e x p ^ ( n + f ) 

exp 

exp 

NT 

N 

{k-D 
(3-18) 

To compute the power spectrum, eqn(3-18) is multiphed by its conjugate and then the 

expected value is taken : 

j V - 1 A ^ - l 

n=Q m=0 
^{k-l){n-m) E\ exp 

/2jr 
NT {k-mn-M 

(3-19) 

The value of the expected value on the right hand side of eqn (3-19) is of the form : 

= Ei exp 
jljti 
NT 

1, n=m 
2 

q , n^m 

where i is an integer. When 1 = k, E[IN(1)] gives the spectrum of the original signal: 

N - l N - l 

W O ] = 77 2 E^^P N 
(0)(n-m) 

(3-20) 
= N 

n=Om=0 

When 1 5̂  k, eqn (3-19) gives the noise in the background. When n = m. 

exp N 
{k-l){n-m) = land E^ = 1. There are totally N cases. Hence eqn (3-19) 

becomes 

n^mm^n 
'7JI 

N 
(k-l)(n-m) 

N 
{k-l)in-0) E^O + exp 

£/3+ 1 

N 
{k-l){n-l) Epi + ..] + ! 

(3-21) 

There are N of these exponential terms and all the EyS's have the same value. Looking 

at one of these exponential terms: 

iTjl 
N 

(k-l)(n-p) Ep + Ep- Ej3 
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N-1 

n=0 

j2jT 
N 

(k-l){n-p) - ! • = 

N-l 
because (k-1) and (n-p) are integers, so the summation is of the form ^ exp 

i=0 

0. Substituting eqn(3-22) into (3-21) yields : 

EMl)] = l-\q\ 

(3-22) 

]27ii 
N 

(3-23) 

3.3.2.1 Noise and Signal Power : From eqn (3-20) and (3-23), the average 

signal-to-noise ratio is N : (1 - \q\^) and the maximum noise power is obtained when 

q\ 0. As a rough estimation, within the band from k = 0 to N - l , i f the input x(t) 

= exp (27rfit + 6), the minimum signal-to-noise ratio is N : 1. Hence in a band of N 

frequency components, the signal-to-noise ratio for 1 watt of input is : 

S/N = N : 1 ( or 10 logioN dB) (3-24a) 

I f amplitude is concerned, for 1 volt of input in the same band, the ratio becomes : 

S/N = VN : 1 ( or 20 logioVN dB) (3-24b) 

From eqn(3-24a), it can be seen that noise power is 1/N watt in a band of N frequency 

components per watt input. Hence the noise spectral density per watt input is : 

rj - -hz (V^ per frequency resolution) 
N 

(3-24c) 

The above analysis is based on the timing model of the jittered sampling. In 

case of the additive random sampling, the expected value of the exponential term of 

the random variable should be [29]: 

Eiexp 
jTjii 
NT 

-m 
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where qr is the value of the characteristic function of r at frequency f i . Since the 

minimum signal-to-noise ratio of N : 1 is obtained at | q | ^ 0 , the result should give 

a good indication to the additive random sampling as well. Simulation results about 

the signal-to-noise ratios are tabulated in Table 3-1 and 3-2. From these tables, we can 

see that the noise power in the band depends on the sequence length N as well as the 

total input signal power. When N = 480, the signal-to-noise ratios from simulations 

are close to the estimated value, but when N = 1024, the signal-to-noise ratios drop 

slightly below the estimated value. 

Table 3-1: Signal-to-noise ratios (as defined by eqn (3-24a) )of spectra 
reconstructed from jittered sampling 

Input, V length N recovered 
amp., V 

total 
power, V 

noise, 
rms, mV 

S/N, dB 
simulated 

S/N,dB 
estimated 

exp(27r X 30tn) 480 1.41 1.99 65.7 26.6 26.8 exp(27r X 30tn) 

1024 1.42 2.02 46.7 29.6 30 
2 cos (2jt X 200 tn) 480 2.00 4.00 97.0 26.3 26.8 
2 cos (271X 600 tn) 1024 2.05 4.20 67.1 29.7 30 
cos {2jt X 30 tn) + sin (2jr x 
200tn) + 2 cos (271X 400 tn) 

480 1.17,1.18, 
2.18 

7.51 127.3 26.6 26.8 

cos (2jt X 30 tn) + sin ( T J I X 

400tn)+2cos (27rx800 tn) 
1024 0,89, 0.96, 

1.92 
5.38 84.9 28.7 30 1 

Table 3-2 : Signal-to-noise ratios (as defined by eqn (3-24a)) of spectra 
reconstructed from additive random sampling 

Input, V length N recovered 
amp., V 

total 
power, V" 

noise, 
rms, mV 

S/N,dB 
simulated 

S/N,dB 
estimated 

exp(27r X 30tn) 480 1.42 2.02 61.2 27.3 26.8 exp(27r X 30tn) 

1024 1.42 2.02 42.6 30.4 30 
2 cos (27r X 200 tn) 480 1.96 3.84 86.4 27.1 26.8 
2 cos {2JI X 600 tn) 1024 2.05 4.20 67.1 29.7 30 
cos (2jt X 30 tn) + sin (2JC X 

200tn)+2cos (27rx400 tn) 
480 1.07, 0.97, 

2.12 
6.58 126.8 26.1 26.8 

cos (271X 30 tn) + sin (2JC X 

400tn)+2cos (27rx800 tn) 
1024 0.93,1.08, 

2.03 
6.92 84.7 29.8 30 
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From tables 3-1 and 3-2, we can also see that the total signal power to noise 

power is a constant at a particular length N. This implies that the individual 

signal-to-noise ratio will be lower when the input has more than 1 input frequency 

components. Taking the last row of table 3-1 as an example, the individual 

signal-to-noise ratios are 20.5dB, 20.5dB and 26.4dB while the total signal-to-noise 

ratio is 28.2dB. I f there are m frequency components of equal power, the individual 

signal-to-noise ratio will be Ps/m: Pn, where Ps and Pn are the total signal power and 

the r.m.s. noise power respectively. Hence 

S/N = 10 logio ^ = 10 logio ^ - 10 logio m 
mrn in 

=total S/N - 10 logio m (3-25) 

I f m = 3, the individual S/N should drop by 4.8dB from the total S/N. By simulation, 

a signal x(t) = cos(2yrx30t) + cos(27rx50t) + cos(2jrx80t) is sampled by jittered 

sampling for 480 points. From eqn (3-24), the estimated total signal-to-noise ratio is 

26.8 dB. The simulation results in a total signal-to-noise ratio of 26.4 dB and the 

S/N, dB 

Fig. 3-9 Drop in signal-to-noise ratio (dB) with the increasing number of frequency 
components (m). 
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individual signal-to-noise ratios are 21.5,21.6 and 21.8 dB. Taking the median value, 

the drop is 26.4 - 21.6 = 4.8 dB, which matches the predicted value. Since the individual 

signal-to-noise ratio will decrease as the number of frequency components increases, 

random sampling is suitable for an input signal with only a few frequency components 

in order to maintain reasonable individual signal-to-noise ratios. 

3.3.2.2 Noise and Bandwidth : To compute a band of N frequency components, 

eqn(3-17) or (3-17a) may be used with k = 0,1,2,...,N-1. When a higher band of another 

N frequency components are to be evaluated, the same equation will be used, but in 

this case k = N,N + 1,N + 2,..., 2N-1. I f a sinusoidal signal is an input signal located in 

this band, the noise analysis will be exactly the same as stated in section 3.3.2 and the 

estimated signal-to-noise ratio will also be given by eqn(3-24). Theoretically, the 

signal-to-noise ratio in a band of N components remains the same even if the 

frequency indices increase, which implies that the background noise is independent 

of the bandwidth. Table 3-3 shows the signal-to-noise ratios of different input signals, 

Table 3-3 : Signal-to-noise ratios in different frequency bands 

Input signal in V 
N = 480 

recovered 
power 

v'-

Noise in mV, (S/N in dB), 
with k = 

0-479 480-959 960-1439 1440-1919 
jitter, cos {2JI X 30t) 0.98 48.01 

(26.2) 
61.47 
(24.1) 

64.64 
(23.7) 

64.05 
(23.8) 

jitter, cos (2JI x 530t) 0.96 52.27 
(25.5) 

55.16 
(25.0) 

62.80 
(23.9) 

64.57 
(23.6) 

jitter, cos (2JI x 200t) + sin(2jr 
x800t) + cos (27rxl200t) 

2.95 103.0 
(24.4) 

101.2 
(24.6) 

104.2 
(24.3) 

109.3 
(23.9) 

a.r.s., cos (2jt x 30t) 1 43.26 
(27.3) 

68.20 
(23.3) 

61.26 
(24.3) 

66.06 
(23.6) 

a.r.s., cos (2jt x 530t) 1.05 59.20 
(24.8) 

51.56 
(26.0) 

68.04 
(23.6) 

63.53 
(24.2) 

a.r.s., cos (2JI x 200t) + sin(2jr 
x800t) + cos (2jrxl200t) 

2.40 99.35 
(23.9) 

87.13 
(25.0) 

96.08 
(24.1) 

104.9 
(23.4) 
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all of which have a sequence length N = 480. From this table, noise levels are 

evaluated up to 4 times of N. We can see that the signal-to-noise ratios do not vary 

more than 3 dB from band to band. 

3.3.3 Word-length and Bandwidth : In theory, there is no fold-over frequency or 

replicas in the frequency spectrum when random sampling is apphed. This is true if 

the samphng times can be represented with infinite word-length in a system. 

Unfortunately, no practical digital systems have infinite word-length and a finite 

word-length set a limit to the useful bandwidth of the reconstructed spectrum. It will 

be shown that the resolution of the word-length is in effect the sampling frequency of 

the system. 

Assume that the frequency spectrum is evaluated in the normahzed case as in 

eqn (3-17a), which is : 

2 ^ 1 (3-17a) 
^(^) = ^ Z ^ ( ^ ' ' ) exp(-;2jrfo«), k = 1,2,3,... 

and tn is represented by d digits past the decimal point, i.e. tn is of the format O.yyyy 

... to d places. When k = 10*̂  , we have in the kernel exp(-;2jrxl0'^x0.>{){xy...) = 

exp ( -y27rX3^. . . ) = 1 because the term inside the bracket becomes a whole multiple 

of 7JI. Since exp (0) = exp(-j2n;7r) = 1, this is the 'zero' of the function and we have 

made a complete revolution along the unit circle in the complex plane at k = 10^ . It 

can be checked by letting k = lO'̂  + 1 , then 

exp(-;2jr X (10^+1) X 0.>{>^...) = exp(-;2jr X}^ . . . ) exp ( - ; 2 j r X 0.}0{>y...) 

= exp(-y27r X 0.}{){)y...) 

which is the same as at k = 1. The case is exactly the same as in a regularly sampled 

sequence of length N when the frequency index k reaches N -I-1. Hence it is obvious 
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that the fold-over frequency is at k = 10^/2. Consider the following example. Let the 

sequence length N = 480 and the sampling times are recorded to 3 decimal places. 

Then the fold-over frequency should be at k = 1000/2 = 500. Fig. 3-10 shows the 

reconstructed spectrum sampled by jittered sampling and the corresponding fold-over 

frequency. In all digital systems, numbers are expressed in binary digits. Suppose the 

timing is expressed in a normalized format (the value of the mantissa is between 0 and 

1) by floating-point number with a b-bit mantissa and a positive x-bit exponent, then 

the "period" of the spectrum will be 2*'"'̂  Hz and the fold-over frequency is at 2̂ "̂ "̂  

Hz. Fig. 3-11 shows the useful bandwidth of a representation of timing by fbced-point 

number when the fractional part varies from 8 bits to 20 bits. 

3.3.4 Practical Considerations : As a summary, let us consider a numerical example. 

Suppose a bandwidth of 4 GHz is to be covered by a random samphng scheme with 

a frequency resolution of 0.5 MHz, then the total sampling period = 10'^ /0.5 = 2 

fcs. I f we divide the whole band into 4 bands of 1 GHz each, then in each band we 

needl0^/(0.5x 10"^) = 2,000 frequency indices. We may choose to take 2,000 samples 

in 2^s, then the mean sampling period = 2/<s / 2000 = 1 ns, or the mean sampling 

frequency is 1 GHz (as compared to 8 GHz by regular sampling). The expected value 

of the signal-to-noise ratio = 33 dB. For the whole band we need 8,000 points; hence 

the sampling time should be accurate up to 5 decimal places or 14 bits after the decimal 

point. The computational load for each band is 2,000 = 4 x 10 , and for the whole 

band 1.6 x 10 .̂ (Suppose regular sampling is performed, 2^^ = 16,384 points of data 

wiU be sampled. By FFT, the computational complexity is 2^\ 14 = 229,376 

~ 2.29x10^.) I f a signal -to-noise ratio having an expected value of 30 dB and a 

frequency resolution of 1 MHz are acceptable, we may sample the signal for 1,000 
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AmpHtude, V 

1.4| 

Fig. 3-10 An amplitude spectrum from a randomly sampled sequence ofN=480 
and sampling times expressed to 3 decimal places. Note that the fold-over frequen
cy occurs at k = 500. 

Bandwidth, Hz 

b, bits 

Fig. 3-11 Useful bandwidth (Hz) and the number of bits representing the fractional 
part of the sampling times. 
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points inljus, which gives a mean sampling frequency of 500 MHz. The computational 

load becomes 4 x 1,000 = 4 x 10 . The sampling time needs to be accurate up to 4 

decimal places or 13 bits. 

Random sampling is an alias-free, sub-Nyquist sampling; therefore, it is most 

suitable to be adopted to any apphcation that can benefit from this characteristic. 

Since the background noise level increases with the number of frequency components, 

the input signal to be sampled randomly should contain only a few sinusoids. Taking 

all these into consideration, this samphng scheme has been adopted to build 

measurement equipment, such as oscilloscope or frequency meter, where sub-Nyquist 

sampling enables the use of slower, thus less expensive, hardware [2,28] and the input 

signals are usually not too complex. Section 3.3.5 provides several typical examples. 

In a random sampling scheme, the randomness of the random variable t can 

be expressed hya/ju, where a is the variance of r and is the mean sampling period. 

I f this ratio is too small, the samphng approaches a regular sampling so that alias may 

occur. If, however, this ratio is too large, the error in the amplitude recovered will 

also be large. Usually, when a/fi is around 30%, the result is satisfactory. 

From section 3.3.2, we see that the signal-to-noise ratio depends on the input 

power and the sequence length. It is found that the longer the sequence, the better 

the signal-to-noise ratio. Unfortunately, a longer sequence length means much more 

computation since the complexity of the computation is N . When the sampling is 

implemented by a digital system, the finite word-length of the system will set an upper 

bound to the bandwidth of the spectrum. 
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3.3.5 Typical Applications in Instrumentation 

3.3.5.1 Spectrum Analyzer ; A spectrum analyzer displays in the frequency domain 

the components of a stationary signal. When the input signal is to be processed 

digitally, it has to be sampled and quantized before its spectrum can be computed. If 

the signal is sampled regularly, an anti-alias filter must be inserted before the samphng 

process. Since the bandwidth of this filter should be sufficiently wide to accommodate 

a broad spectrum, the order of the filter would be high so as to achieve a reasonably 

narrow transition band. A wide bandwidth also leads to a stringent requirement in the 

speed of the hardware since the sampling frequency of the analyzer must be at least 

twice the bandwidth of the anti-alias filter. 

Random sampling is appropriate to be applied in spectral estimation. First of 

all the anti-alias filter can be ehminated. The operation speed of the sampling 

hardware can be reduced as the average samphng frequency can be made lower than 

the Nyquist frequency. However, as discussed in section 3.3.3, the resolution in the 

word-length of the sampling time must be high enough to support a wide spectrum. 

Apart from gaining advantages in hardware, random sampling also provides a flexible 

bandwidth. For a regularly sampled sequence of N points, only N/2 useful frequency 

components can be recovered. With random sampling, the spectrum can be computed 

to any index larger than N provided that the resolution in the word-length of the 

sampling time is high enough and the background noise level is acceptable. The 

appearance of a reconstructed spectrum would look similar to the spectrum shown in 

Fig. 3-8 (b). Another numerical example can be found in section 3.3.4, which is 

equivalent to an analysis of a spectrum of 4-GHz bandwidth with 0.5-MHz frequency 
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resolution. I f a power spectrum is required, the auto-correlation method described in 

section 6.4 may be adopted. 

3.3.5.2 Meters : For detecting a simple signal comprising only a few sinusoids which 

are located within a narrow frequency band, random sampling, especially hybrid 

additive random sampling (section 5.5), is a suitable choice since the amount of 

computation incurred is small. One such example is the frequency meter, which is 

usually for measuring monotonic input. There are instruments whose operation is 

based on non-linear signal conversion, e.g. true r.m.s. voltmeters and wattmeters. 

When a non-linear converter is involved, it can be quite troublesome if high precision 

and broad bandwidth are simultaneously required. For this type of instruments, after 

the conversion process and sampling, the quantity to be measured is made 

proportional to the d.c. term of the resulting spectrum [2]. I f the converted signal is 

regularly sampled, aliases produced could be very close to the d.c. value, making 

subsequent filtering very difficult. When the signal is sampled randomly, aliases will 

become broadband background noise, which can be filtered easily. In this scheme, 

only the d.c. value of the spectrum is to be computed; thus averaging, not 

multiplication, is required for calculating the desired quantity. The computation is 

therefore very simple. 

3.3.5.3 Oscilloscope and Filter: Instruments may be so designed that its output signal 

is reconstructed in the time domain from a periodic input sampled randomly or 

irregularly. One example is the sampling oscilloscope which utilizes sub-Nyquist 

sampling to improve its high-frequency performance [30]. Fig. 3-12 illustrates the 

working principle of the oscilloscope. From the timing diagram, it can be seen that 

each sampling pulse turns on the sampling circuit for a very short interval. With 
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reference to the input waveform, the positions of the sampling pulses shift horizontally 

such that different parts of the input cycle are sampled in each period. In this way,the 

oscilloscope plots the output waveform point by point, using as many as 1,000 samples 

to reconstruct the original input. The sampling frequency may be as low as 

one-hundredth of the input signal frequency. If the input frequency is 1,000 MHz, the 

required bandwidth of the amplifier would be only 10 MHz, which is much easier to 

implement. 

Non-recursive filtering in the spatial domain can also be realized with a 

randomly sampled signal [28]. Recalling that with regular sampling, a filtered signal 

00 

y(n) can be expressed asy(n) = ^ x { k ) h(n-k), where x(k) and h(k) are the input 

sequence and the impulse response of the filter respectively, a filtered output y(tk) 

can similarly be calculated by weighted summation of a randomized input sequence 

x(tk) except that the coefficients h(tn-tk) vary with both n and k, which imphes that 

the values of the filter coefficients are different for computing each output point. Fig. 

3-13 shows the timing diagram for computing_v7 toys by the equationy/j = hnixi -I-

hn2X2 + . . . -F hnkxk , where yk=y(tk), xk=x(tk) and hnk = h(tn-tk) are the filter 

coefficients which are the sample values of the impulse response h(t). Note that the 

peak of h(t) is positioned to coincide in time with the corresponding output signal 

value. I f the two sets of timing {tn} and {tkjare fixed for all input signals and h(t) can 

be explicitly expressed in time t, hnk can be calculated beforehand and stored in 

memory. The filter can then be implemented by switching the input sequence to a 

suitable set of filter coefficients for evaluating each output value. 
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Fig. 3-12 Waveforms illustrating the operation of a sampling oscilloscope (From 
Helfrick and Cooper [49]). 

filter 
coefficients 

output 

Fig. 3-13 Filtering of a signal xk by a filter of impulse response hnk. Five output data, 
yi to ys, are shown (From Bilinskis and Mikelsons[ 28]). 
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3.4 Three-sampler System 

Apart from random sampling, there is another sampling method that can 

achieve sub-Nyquist sampling by adopting a totally different approach. The input 

signal is regularly sampled by three sampling frequencies which are below the Nyquist 

rate[3,31]. Aliases occur in the three output spectra but the ambiguity can be resolved 

by the mathematical relationship between the outputs and the samphng frequencies. 

This method is suitable for sparsely populated spectra over an extremely wide 

bandwidth. 

3.4.1 Principle of the System : To explain the principle of this method, it is assumed 

that the input signal contains only one frequency component. The results are then 

readily generalized for a signal containing multiple components. Consider that a 

signal fx is input to a sampler and a low-pass filter, which yields an output foi as shown 

in Fig. 3-14. I f fx < 0.5 fs i , fol = fx. I f fx is between 0.5 fsi and fsi, the active element 

is filtered out but its image fsi - fx is below 0.5 fx and thus appears in the output. When 

fx = fs, the output fol = 0. This relationship between fol and fx is plotted in Fig. 3-15. 

It is clear from this figure that the relationship is ambiguous and caimot yield a unique 

value of fx for a given value of fol. It is possible, however, to describe their relationship 

by the following pair of expressions : 

fol 

fx LPF 

f s i / 2 

fsi < < f 

fol 

LPF 

1 1 
fx fsl/2 fsi 2fsi 

Fig.3-14 The frequency spectrum from a sampler and a low-pass filter. The aliases 
under the shaded area will appear in the output according to the relationship 
shown in Fig. 3-15. 
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fol 

fs/2 

3fsi 2fsi fsl I s l 

Fig. 3-15 Relationship in frequency between tlie input and output signals 

fol =fx - Kfsi, Kfsi <fx< iK+0.5)fsi 

fol = Kfsi - fx, iK+0.5)fsi < < (K+ l)fsi (3-26) 

where K is a positive integer. A possible means of removing the ambiguous 

relationship between fx and fol is to use a second sampling with a different sampling 

frequency fs2 < < fx and fs2 -fsl = Afs . The cut-off frequency of the corresponding 

LPF is at 0.5 fs2 . This results in a different output frequency fo2 which can also be 

expressed as: 

fo2 fx - Lfs2, 

fo2 = Lfs2-fx, 

Lfs2 < fx < {L + 0.5)fs2 

(L + 0.5)fs2^fx^iL + l)fs2 (3-27) 

where L is a positive integer. We can choose either K = L or K = L - M to relate 

eqn(3-26) and eqn(3-27). Fig. 3-16 is the frequency characteristic of this joint 

sub-Nyquist sampler. Close examination of Fig. 3-16 reveals that a point of symmetry 

exists in the frequency patterns generated by the two graphs where 

FR - nfsi = (n-Q.5)fs2 

After this point, the frequency pattern is a mirror image of the pattern before FR. 

Therefore, the highest frequency of the components must be less than the value of 

FR. This operational frequency range is given by : 
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2 S2 

r*gion 

Fig. 3-16 Frequency characteristic of ttie joint sub-Nyquist sampler 

S i 

fx 
input 

Fig. 3-17 Sub-Nyquist sampler with three sampling frequencies 
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2Afs 2Af, 

The graphs in Fig. 3-16 and the corresponding table show that there are four 

distinguishable regions labelled 1 to 4. The corresponding equations are : 

Region 1 foi = f x - Kfsi, fo2 = f x - Lfsi K=L 

Region 2 foi = Kfsi - fx , fo2 =fx-Lfs2 K = L+l 

Region 3 foi = J^sl - fx , fo2 = Lfs2 - f x K = L 

Region4 foi = fx-Kfsi, fo2 = Lfs2-fx K = L (3-29) 

Each of the above four pairs of equations can be solved separately for fx and three 

possible input frequencies fxi,fx2 and fx3 can be obtained : 

foTfsl - fo^fs2 
fxl 

fx2 = 

A/. 

fo2fsl +folfs2 
A/. 

Unique solution for fx , however, cannot be obtained from eqn(3-30). To solve this 

problem, a third sub-Nyquist sampler with sampling frequency fs3 = fs2 + Afs and a 

LPF with cut-off frequency at 0.5 fs is added. Similarly, samplers 2 and 3 yield three 

possible inputs fx4, fx5 and fx6 : 

r ^ \fo3fs2 -fo2fs?,\ 
A/. 

r _fo2fs2 +fo7fs3 
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. _ fs2fs3 , (3-31) 

The desired input frequency is arrived at by selecting the pair of values derived from 

the two sets which are equal. Any final ambiguous answer which may result if any two 

false frequency ambiguities having equal values, thus giving equal numbers in the two 

sets, can be resolved by a simple vahdity test: 

f^±foi = Nfsi 

where i = 1,2 and 3 and N is a positive integer. An invalid answer will give a 

non-integer N for at least one sampling frequency while a real fx will pass such tests. 

From eqn(3-28) the useful frequency range of the Si and S2 pair is 

fsl fs2 
FR = . Similarly, the useful frequency range of the S2 and S3 sampling pair is 

2Ats 

fs2 fs3 
FR' = -—rj- < FR since fs > f i . Hence the working frequency range of the whole 

zAts 

system is determined the smaller value of the two, i.e. FR. 

To illustrate the principle of the system, let the sampling frequencies fsi = 9 

MHz, fs2 = 10 MHz and fs3 = 11 MHz. Then the frequency difference Afs = IMHz 

and the working frequency range is FR = 9x10/2 = 45 MHz (FR' = 55 MHz). The 

results of computing three incoming signals having different frequencies are tabulated 

in Table 3-4. 

3.4.2 Error Analysis : The characteristic graph of Fig. 3-16 which is used to derive eqn 

(3-30) is subject to frequency errors in the presence of noise in the input and sampling 

signals. The effect of frequency jitter associated with the periodic sampling impulse 

is much more pronounced than that for the original signal. These errors have been 

analyzed in detail by Sarhadi [32]. Another source of error is the hmited resolution 
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of the FFT. I f the number of points in the FFT is N, then any active element must be 

represented by spreading over the coefficients of the FFT but assuming that most of 

the energy is concentrated in the single nearest coefficient. The maximum frequency 

error in the ahased spectral lines is given in [33] by : 

Af, omax — 2N 

(3-32) 

where fs is the samphng frequency. From Fig. 3-16, region 4 , the output is fx 

folfs2 +fo2fsl 

A/ . 
Errors on the ahased lines lead to an error in the calculated output of: 

(3-33) 
A/^ 

A/ . 

Since fs2 ~ fsi=fs, eqn (3-33) can be written as: 

2fs^fo 
A/x = 

A/ . 

(3-34) 

The maximum errors are given by substituting Afomax in eqn (3-32) into eqn (3-34): 

2 

A/, xmax — 
fs 

NAfs 

Therefore, i f Afxmax is to be less than fs/4 giving an error band less than fs/2 , then 

f f 
4- > -TTT^. By rearranging the expression : 4 NAfs 

Table 3-4 : Examples of the three-sampler system (From Underhill et. 
al. [3]) 

input 
signal 

Samplers Si and S2 Samplers S2 and S3 Calculated 
frequency 

fx. fxl fx2 fx3 fa4 fx5 fx6 fx 

34 161 >45 34 34 541 >55 34 

24 6 t >45 34 24 >55 461 24 

7.25 7.25 42.25* >45 7.25 >55 42.25* 1 7.25 

* False ambiguity of fx in the relevant pair of samplers 
t Real ambiguity of fx in the relevant pair of samplers 
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N > ^ (3-35) 
Afs 

It should be noted that the ratio fs/Afs is a magnification factor of the error which is a 

consequence of the sub-Nyquist sampling. 

3.4.3 Illustrative Example : Assume that it is required to analyze signals in a broad 

bandwidth up to 10 GHz with a frequency resolution of 0.5 MHz and a population of 

the active elements much less than 1%. With conventional techniques some 20,000 

filters would be required to achieve the same resolution over the frequency range of 

interest. 

To design the sub-Nyquist system capable of operating over the 10 GHz range, 

eqn (3-28) can be used. I f the nominal sampling rate is chosen to be 1 MHz, then Af 

^q6s2 

must be 50 Hz to give FR = )̂  = 10 GHz. The number of frequency indices N 

within fs is given by eqn (3-35): 

^ = = 80,000 

The length of the sequence of samples must then be 2N. The computational load for 

the sub-Nyquist system is thus given by : 

W = 3x2Nlog2(2N) 

For N = 131,072 = 2^^: 

W = 3 X 2 X 2^^ log2 (2 X 2^^) = 14,155,776 
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3.5 Concluding Remarks 

From the discussions above, it is clear that random sampling and the 

three-sampler method are two different approaches to achieve sub-Nyquist sampling. 

One motivation of implementing sub-Nyquist sampling is to adopt slower hardware, 

which can be regarded as a means to lower hardware cost or to push the operation 

speeds of the components to their limit. The sequence length of the samples, in 

contrast to regular sampling which observes Sharmon's theorem, can be curtailed. This 

curtailment may save memory storage and even computation in some cases. Anti-alias 

filters, which must appear in regular sampling, may also be eliminated or kept to a 

minimum. 

Random sampling turns aliases to a broadband background noise, which is 

similar in nature to the leakage produced in the regular sampling. Since the noise 

level tends to increase with the total power of the input signal, this approach is suitable 

to detect a broadband signal with a sparse population of frequency components. Also, 

if among these components there is one which is much weaker in power than the 

others, this component could be covered up by the background noise and would not 

be recognized. As variation in timing is deliberately introduced into the sampling grid, 

noise or jitter inherent to the sampHng hardware may be ignored if it is small, or it 

may be incorporated into the random variable i f the jitter is measurable. With the 

introduction of randomness into the timing grid, symmetry is lost and the 

computational complexity is N . In chapters 4 and 5, we shall discuss how the 

computational load may be alleviated. Although this method in principle is ahas free, 

when realizing the sampling in a digital system, its finite word-length sets an upper 
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bound to the bandwidth. The timing must, therefore, be kept in a word-length long 

enough for a broad spectrum. 

The three-sampler system adopts regular samphng which enables the use of 

the FFT to compute the frequency spectrum. Having a complexity similar to the FFT, 

its computational load is lighter than that of random sampling. With regular sampling, 

noise in the timing will generate error in the output, and this error is further magnified 

by this sub-Nyquist sampling. This method is also suitable to detect a broadband signal 

with a sparse population of frequency components. Here, three low-pass filters are 

required. Baier and Fiirst [34] suggest a system with only two samplers and no filters. 

This system can detect aliases and recover frequency components to a bandwidth only 

half of the sampling frequency. Sub-Nyquist sampling is thus not achieved. 
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C H A P T E R 4 

P A R A L L E L ADDITIVE RANDOM SAMPLING 

4.1 Introduction 

In estimating the spectrum of a band-limited signal, discrete Fourier Transform 

(DFT), or more often. Fast Fourier Transform (FFT) is applied to the samples of the 

signal taken at regular intervals. Shaimon's sampling theorem states that the samphng 

frequency must be at least twice that of the sampled signal, otherwise alias will occur. 

Random sampling has been suggested to overcome the above limitation. Two methods 

of random sampling, namely jittered sampling and additive random sampling (a.r.s.), 

have been discussed in Chapter 3. When computing the frequency components from 

a randomly sampled sequence, however, different "random" exponential terms must 

be multiphed to each data point since the symmetry in regular samphng is now 

relinquished, giving rise to an N complexity. I f a higher speed of the computation is 

desired, some sort of regularity must be inserted into the sampling process, but to such 

an extent that the anti-ahas property is still maintained. A sampler of m parallel 

blocks, each operating with an additive random sampling sequence of p points, is 

found to satisfy this requirement [35]. This scheme, which interlaces several a.r.s. 

sequences to form an anti-ahas sequence, exploits trigonometrical symmetry to 

reduce up to 87% of the multiphcations required in computing the first band of 

frequency components. The whole process, from sampling to computation, can be 

implemented by a multiprocessor system [36]. With a variable threshold, a relatively 

weak signal can also be recovered. 
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4.2 Timing of the sampling sequence 

The structure of the parallel sampler is shown in Fig. 4-1, where there are m sampling 

blocks working together. To have the maximum saving in computation, m should be 

a multiple of 4. Each block takes p samples according to the additive random sampling 

tn = tn-i+ "Cn where r is a uniformly distributed random variable of finite variance 

[37]. The sequence length of the resultant signal x(tn) will be N, where N = m.p. The 

starting time of the first sequence to = 0, and each subsequent sequence starts at ti 

= to + i.T where T = 1/N of the sampling duration. With such an arrangement, 

t i = to + T and t2 = to + 2T, etc. (see Fig. 4-1). In general 

tim+q = Urn + q.T 

where i = 0,l,2...p-l, and q = 0,1,2,...m-1. 

(4-1) 

x(t) 

to 

tl 

t2 

tm 

im-l)T 

tm+1 

tffl+2 

tin(p.l) 

so 

tm-1 

Sm-l 

Fig. 4-1 Timing diagram of the parallel additive random sampling 

SI 

S2 

t2m-l 

Sm-l 
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4.3 Anti-alias property 

Fig. 4-2 shows the frequency spectrum of a 1024-point sequence formed by 

interlacing 32 a.r.s. sequences of 32 points each. The interlace is equivalent to hnearly 

convolving a 32-point a.r.s. sequence with a train of 32 unit pulses of uniform 

separation T. Hence in the frequency spectrum, we expect to see a unit pulse at the 

origin followed by groups of noise with relatively large amplitude centering at 1024.i, 

where i is an integer. I f the spectrum is, however, examined closely, it can be seen 

that the phase angles of these groups are randomly distributed. Sampling in the time 

domain with this sequence is equivalent to convolving with its frequency spectrum in 

the frequency domain. By the randomness of the phase angles, the effects of these 
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Fig. 4-2 Frequency spectrum of a 1024-point (m=32, p^ 32) parallel random sam
pling sequence: 

(a) amplitude (b) phase in degree 
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residual groups tend to average out, leaving behind "bursts of noise" rather than sharp 

ahases. 

When a signal of frequency f is sampled by this sequence, the reconstructed 

spectrum will show a strong component at f and groups of noise with much weaker 

amplitude at i.fs ± f , where i is an integer. Similar to the case of a normal a.r.s., as 

long as the band of signal to be recovered is not congested with a large number of 

frequencies, the signal can be easily identified. Fig.4-3 shows different spectra of a 

signal, lcos(2 7r.l60t + j r ) +0.3 sin {2JI. 400t) +1.5 cos (2 7r.l,100t) V, sampled 

regularly and by parallel random sampling. The ratio of the standard deviation of x 

to the mean of the sampling period is about 10%. I f sampled uniformly, the Nyquist 

l imi\ is at 512Hz. With the parallel a.r.s., the l,100Hz can clearly be identified. Its 

anti-alias property is thus demonstrated. 

As mentioned in section 3.2, the randomness of a sampling scheme can be 

measured by a ratio ol^, where a is the standard deviation of the sampling periods and 

^ their mean. (The sampling periods are defined as tn - tn-i, where tn represents the 

sampling time at interval n.) Basically the parallel a.r.s. is a random samphng scheme 

with the original random variable "diluted" by a number of regular sampling intervals 

having a value equal t o w h i c h are inserted deliberately to the timing grid. In Fig. 4-4 

there are five amplitude spectra of a signal sampled for 1024 points by a.r.s. and 

parallel a.r.s. Table 4-1 summarizes the results of the simulation. We can see that the 

signal-to-noise ratios depend on the sequence length N (estimated value = 20 log 

V N = 30 dB) rather than m or p of the parallel a.r.s. As m increases, regularity 

increases (or randomness decreases), the "bursts of noise" are "compressed" into 
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Fig.4-3 Spectra of a signal sampled for 1024 points: 

(a) amplitude spectrum, by regular sampling, 

(b) amplitude spectrum, by parallel a.r.s.,m=32, p=32, 

(c) power spectrum of (b), 

(d) spectrum from (b) by variable threshold method. 
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Fig. 4-4 Noise in the spectra of a signal sampled for 1024 points: 

(a) by a.r.s. (b) by parallel a.r.s., m=4,p = 256 (c) by parallel a.r.s., m=8,p = 128 
(d) by parallel a.r.s., m = 16,p = 64 (e) by parallel a.r.s. m = 32,p=32. 
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Table 4-1 : Noise in the spectrum and the randomness of the sampling 
sequence 

Sampling method Signal, V 
at 300 Hz 

Noise within k < 1024 
r.m.s., mV peak, mV 

S/N, dB o m 1 

a.r.s., 1024 points 0.999 29.0 94 34.4 29.9 
parallel a.r.s., 4 x 256 0.994 31.1 147 31.9 15.6 
parallel a.r.s., 8 x 128 0.997 31.2 201 31.9 11.0 
parallel a.r.s., 16 x 64 1.001 31.3 301 31.9 7.65 
parallel a.r.s., 32 x 32 0.998 31.3 262 31.8 6.18 1 

narrower frequency windows and their peak values rises. I f the ratio ̂  ^ 0, we return 

to regular sampling so that the "bursts of noise" will become sharp ahases. 

4.4 Computational Algorithm and Realization 

4.4.1 Symmetry in Timing : The real and imaginary parts of the estimates of the 

frequency components (except the d.c.) are given respectively by [37]: 

Xrik) = — Jx(fn)cos(2jr^ / f„) 
/i=0 

/j=0 

(4-2) 

where k = 1,2,3... and f = 1/NT = 1 in the normalized case. Hence T = 1/N. 

Using the timing specified by eqn (4-1), putting xn=x(tn) and neglecting the scahng 

factor, eqn (4-2) can be written as: 

X(k) = yko + yki + yk2 + ... + yk(p-i) where 

XO XI 

yki Xm Xm+1 

yk2 = Lk- X2m X2m+1 

^k{p-i)^ yX(p-l)m X(p-l)m+l 

Xm-1 

X2m-1 

X3m-1 

XN-1 

exp(j2jik/N) 
exp(j2jz.2k/N) 

[exp(j2jt.{m-l)k/N)j 
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with Lk = 

1 0 0 
0 exp(j2jiktm) 0 
0 0 exp(j2jtkt2m) 

0 
0 
0 

0 0 0 exp(j2jtkt(p-i)m)] 

(4-3) 

a diagonal matrix for post-multiplication. For simphcity, eqn (4-3) may be 

represented by: 

Y k = L k { D . E k } = L k { M k } 

When evaluating the base-band components, k = 0,1,2,...N-1. As xn are real 

numbers and m is a multiple of 4, an analogy may be drawn between Mk and the roots 

of unity evenly distributed in the four quadrants of the complex plane. Taking N = 16 

as an example, real{Ei} = real{E9} and imag{Ei} = -imag{E9}. Similar symmetry 

properties can be found in Ev and E15 with E i . For E i and E3, the real and imaginary 

parts are interchanged alternatively with appropriate changes in sign. In general, after 

Mi is evaluated, MN/2-i, M N / 2 + i, Mn-i and MN/4-i can be deduced. As Mo, MN/4, M N / 2 

and M3N /4 do not require any actual multiplications, only 1/8 of these Mk need actual 

multiphcations. The following describes the algorithm for computation in detail. 

4.4.2 Computational Algorithm: 

(Step 1) Evaluate Mo, MN /4, M N / 2 and M3N/4. Multiply the corresponding L i to form 

X(0), X(N/4), X(N/2) and X(3N/4). 

(Step 2) For i = 1 to N/8, repeat the following : 

(Step 2.a) Break Mi into a sum of vectors: 

(XO ^ (xi ^ f y 1 ^ Xnt-1 

+ Xm + 1 X2m-1 ^j2jii{m-iyN 

X(p-l)m^ ^X(p-i)m + l^ ^x^-y 
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= biO+bii+...+bi(m-l) 

(Step 2.b) Defining Miv and Mid as the sums of all even-index terms and all odd-index 

terms of bin respectively: 

Miv = bio + bi2 + ... + bi(m-2) 

Mid = bi i + bi3 + ... + bi(m-i) 

then Mi = Miv + Mid and MN/2 + i = Miv-Mid . 

From Mi obtain Mn-i = real jMi} - j . imag{Mi} , and 

from MN/2 + i obtain MN/2-i = real{MN/2 + i} - j.imag{MN/2+i}. 

Multiply the corresponding Li to Mi to obtain X(i) . 

(Step 3) From bir evaluated in (Step 2.a), deduce b(N/4-i),r as follows: 

for r = 0, b(N/4-i),0 = biO 

for r = even, real{b(N/4-i),r} = (-l)'"^^.real{bir}, 

imag{b(N/4-i),r} = (-l) '^^'^\imag{bir}, 

f o r r = odd, real{b(N/4-i),r} = (-l)^'""'^)^^.imag{bir}, 

imag{b(N/4-i),r} = (-l)^'''^)^^.real{bir}. 

Repeat (Step 2.b), taking i = N/4-i. 

Fig. 4-5 shows a signal flow diagram of the algorithm with N = 4x4 = 16. If a higher 

band of N frequency components are to be evaluated, all the M i in the base band can 

be re-used. Take i = N -F k as an example, where i is the frequency index in the next 
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band, substituting k by N + k in (3) and noting that exp(j2 j t [N + k]/N) = exp(j2 TI 

k/N), we get 

YN + k = LN + k Mk, where 

'l 0 0 ... 0 
0 exp(j2ji[N+k]tm) 0 ... 0 

LN+k= 0 0 exp(j2ji[N+k]t7m) ... 0 

0 0 0 ... exp(j2ji[N+k]t(p-i)m)j 

(4-4) 

4.4.3 Saving in Multiplications: In general a complex multiplication is considered to 

comprise 4 real multiplications. In our case, since the input sequence is real, we define 

a complex multipHcation to consist of 2 real multiplications. So when 2 complex 

numbers multiply each other, there are 4 real multiplications, i.e. 2 complex 

multiplications. With direct evaluation of N frequency indices of N sample points, 

there are multipHcations. Applying the above algorithm, in the first quadrant, only 

N/8 of the points need to be multiplied by both Ei and Li, the exponential vectors and 

the diagonal matrices for post-multiplication respectively. Considering a single point 

of ful l treatment, there are p(m-l) = N-p multiphcations for Ei and 2(p-l) for Li, 

summing up to N + p-2. The remaining N/8-1 points are to be multiplied by Li, giving 

another 2(N/8-l)(p-l) . In the other 3 quadrants, only Li are required, hence there are 

altogether 6(N/4-l)(p-l) multipHcations. For X(0), no multiplication is required. For 

X(N/4), X(N/2) and X(3N/4), only Li are required, hence there are 6(p-l) 

multiplications. The total is: 

tm = N/8(N + p-2)+2(N/8- l ) (p- l )+6(N/4- l ) (p- l ) -F6(p-1) 

= N^/8-2N +p(15N/8-2) +2 

page 88 



N = 4x4 = 16 D .Ei bin 

i = 0 £ 0 = 1 

boo 

boi 

b03 

Mov (Msv) 

boo 
b02 

• b40 
b42 

bo i - jb4 l 
b03-jb43 

X(0) 

X(8) 

b4Q 

M12 

*= complex conjugate S= summation 

X(4) 

X(12) 

i = 1 D£i -» bin 

Miv (M9v) 
bio 

bl2 

bii 

bi3 

bio b30 

real{bii}-» imag{b3i} 

real{bi2} -»- real{b32} 

real{bi3} -• - imag{b33} 

Ml 

Mi5 Li5 

imag{bii} - real{b3i} 

imag{bi2} imag{b32} 

imag{bi3} - real{b33} 

Fig. 4-5 (first part): Signal flow diagram of the computational algorithm for N = 16. 
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M3v (Mllv) 
b30 

b32 

h3i 

b33 

Ml3 Ll3 

M i l d M i l 

* = complex conjugate 

L i i S 

S = summation 

i = 2 D£2 -> bin 

M2v (MlOv) 

b20 

b22 

b21 

b23 

Ml4 Ll4 

Fig. 4-5 (second part): Signal flow diagram of the computational algorithm for N 
16. 

The fraction saving: sv = 1 - tm/N . Since N = pm. 

sv = 7/8 + 2/N - 15p/8N + 2p/N^ - 2/N^ 

Since N > > 2, sv = 7/8 - 15/8m 

(4-5a) 

(4-5b) 

With N = 1024, eqn (4-5b) gives an error smaller than 0.2%. Let N = 1024, Table 4-2 

shows the saving obtained from eqn (4-5a). When m = 4, each a.r.s. sequence is 

comparatively long and the saving is also low. When m rises to 128, the saving seems 

to be very high, but with only 8 points in each a.r.s. sequence, the residues of the ahases 
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will also be very strong. The case with m = p = VN is a satisfactory compromise 

between the two extremes. The percentage savings with p = m are tabulated in Table 

4-3. 

For any higher band of N frequency components, only the post- multiplications 

of L i are required. Therefore there are 2p multiplications per point. The total for N 

components tm = 2pN = 2N /m, since p = N/m. Therefore, the fraction saving: 

sv = 1 - 2/m (4-6) 

4.5 Implementation with Multiprocessor System 

4.5.1 Sampling and Computing : The parallel random sampling is naturally parallel 

and fits perfectly into a concurrent structure. From sampling to computation, each 

process can be separated into several identical units which can perform 

Table 4-2 : Percentage saving for p.m = N = 1024 

m D saving % m D savmg % 
4 256 40.87 32 32 81.84 
8 128 64.28 64 16 84.77 
16 64 75.99 128 8 86.32 

Table 4-3 : Percentage saving for p = m 

p N tm saving % 

16 256 15,330 65,536 76.61 
20 400 34,162 160,000 78.65 
32 1024 190,420 1,048,576 81.84 
64 4096 4096 16,777,216 84.62 1 
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independently. Fig. 4-1 shows clearly that m samplers can be employed to read in data 

concurrently with a fixed delay in time relative to each other. Each sampler is thus 

working at only 1/m of the effective sampling rate, which offers the possibility of using 

slower and cheaper hardware. Apart from the delay, all samplers are the same in every 

aspect. 

After sampling, the sequence obtained will be used to evaluate the frequency 

components of the spectrum. From the computational algorithm shown in Fig. 4-5, 

the process is neatly divided into N/8 identical blocks. An example of realization with 

four transputers is shown in Fig. 4-6. Since no exchange of intermediate data is 

required between these blocks, they are truly independent of each other. Running 

concurrently, the whole process can be speeded up by a maximum factor of N/8. I f N 

is 1024, the speed-up factor may go up to 128. 

4.5.2. Simulation with Ti-ansputers: The computational algorithm of the parallel a.r.s. 

is simulated in a computer system with an add-on transputer board of B008. On the 

board there are five IMS T800 transputers, four of which contain 4 Mbytes R A M and 

the f i f th one contains 8 Mbytes RAM. T800 transputer is a 32-bit CMOS 

micro-computer with a 64-bit floating point unit and graphic support [38]. It has 4 

Kbytes on-chip RAM, a configurable memory interface and 4 communication links. 

By establishing communication between these links, a concurrent system can be 

constructed from a collection of transputers operating simultaneously. The T800 links 

support the standard operating speed of 10 Mbits/sec, but they can also operate at 5 

or 20 Mbits/sec. Each link can transfer data bi-directionally up to 2.35 Mbytes/sec. 

IMS C004 programmable link switch is used to provide ful l switching capabilities 

between 32INMOS links. 
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Transputer 1, i = 0 

VO boo Mov <M8v) 
Mo 

V 2 bo2 \ ^ < o 
V I taoi 

V 3 

Mod 
Ms / Ms / 

V 
' Mod 

V 

VO b^o 

V 2 b4e 

V I 

V 3 V 3 \ I b4 i + b43 

X(0) 

X(8) 

X<4) 

X(12) 

Transputer 2, i = 1 

• 

X<15) 
• 

X(7) 

• 

X(9) 
• 

LEGENDS 

y J multiplying with y 

adding v e c t o r s 

VO [ Xn X , 

conp lex c o n j u g a t e o adding v e c t o r c o n p o n e n t s 
t o form Q s c a l a r 

V E = [ x^ x,o x,^] 

V/P = exp(j2TTp/ ie. ) 

V I = [ X , X ^ X g x^^i 
V3 = [ Xg X ^ X j , X15] 

Fig.4-6 (first part) Realization of the computational algorithm shown in Fig. 4-5 with 
four transputers. The first transputer computes {X(0), X(8), X(4), X(12)} and the 
second transputer computes {X(1), X(15), X(7), X(9)}. Note that there is no data 
communication between the transputers. 

The data flows of the third and fourth transputers are shown in Fig. 4-6 (second 
part). 
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Transputer 3, i = 2 
XCP) 

X<14) 
- > 

X(6) 

- > 

X(IO) 

Transputer 4, i = 3 
VO b30 I |M3v<M,j^)| M3 

X<3) 

X(5) 

x a i ) 

- > 

Fig.4-6 (second part) Realization of the computational algorithm shown in Fig. 4-5 
with four transputers. The third transputer computes {X(2), X(14), X(6), X(10)} and 
the fourth transputer computes {X(3), X(13), X(5), X(11)}. 

The ideal configuration for running the algorithm on 5 transputers is a star 

connection with the root at the centre (see Fig. 4-7(a)). Unfortunately two of the links 

of the root are reserved for special purposes; hence the configuration shown in Fig. 

4.7(b) is adopted. Since there is no exchange of data between the transputers during 

computation, the communication links are used only at the initial stage when the root 

sends input data to the other transputers and at the final stage when the root collects 

the results from the others. 
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The simulation program is written in 3L Parallel C of INMOS Ltd [39]. Parallel 

C is based on the idea of communicating sequential processes on the transputer 

systems. In a user program, there is a collection of one or more concurrently executing 

tasks, each of which has its own region of memory for code and data, a vector of input 

ports and a vector of output ports. Each processor can support any number of tasks 

limited only by the availabihty of memory. Tasks placed on the same processor can 

have any number of intercoimecting channels since there is no external 

communication involved. Tasks placed on different processors, however, can only 

communicate where physical wires connect the links of the processors. Each logical 

connection between two tasks placed on different processors is assigned the exclusive 

use of one of the physical links connecting the processors. The number of connections 

between tasks is therefore limited by the number of hardware hnks each processor 

possesses. Apart from the hardwire list specifying the physical connections of the 

communication channels, there is a softwire list which describes where the tasks, 

including the "Iserver" and "Filter", are to be placed on the transputer network. 

Three programs are written to verify the saving in computation when using the 

parallel a.r.s. A sequence of 1024 points are sampled by the parallel a.r.s. with m = 32 

and p = 32. The first program is a direct evaluation of the sequence and the second is 

an evaluation using the algorithm described in section 4.4.2. These two programs run 

on a single transputer. The third program is also an evaluation using the same 

algorithm, but it runs concurrently on 4 transputers (excluding the root, which is 

mainly for data communication). The results of the simulations are tabulated in Table 

4-4, which can be compared to the saving predicted by eqn (4-5) and (4-6). When 

evaluating the components in the base band, the percentage saving, from eqn (4-5) or 

page 95 



T2 
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Fig. 4- 7(a) Ideal configuration for 5 transputers computing parallel a.r.s. 

concurrently. 
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Fig. 4-7(b) Practical hardwire configuration for the 5 transputers 
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Table 4-2, is 82% for m = 32, p = 32, which means that 18 calculations is performed 

per hundred calculations required by the direct evaluation. Hence the speed-up factor 

is 100/18 = 5.6. From Table 4-4, the simulation result gives a speed-up of 5.9. It can 

be seen that with 4 transputers operating concurrently, the calculation is further 

speeded up by a factor of 4. From eqn (4-6), the saving for calculating the next band 

of 1024 frequency components is 15/16, which means that 1 calculation is required per 

16 in the direct evaluation. Hence the speed-up factor should be 16. From Table 4-4, 

the simulation result gives 12, which is lower than expected. The difference should 

come from the extra time consumed by the program overheads, such as fetching from 

the memory those vectors Mk stated in eqn (4-4) for the multiplications with LN + k • 

As a whole, the simulation results are close to the expected theoretical values. 

4.5.3 Recovery of Signal by Variable Threshold : After an amplitude spectrum is 

evaluated from a sequence, a threshold may be applied to the spectrum to pick out its 

relatively strong components. At a first glance, the amplitude of the bursts generated 

by the ahases is relatively high. A closer look, however, reveals that these bursts 

Table 4-4 : Computational time by transputers for a 1024-point (m = 32, 
p = 32) sequence sampled by parallel a.r.s. 

method base band speed-up next higher band speed-up 

direct evaluation, 
1 transputer 

127.7 sec. 
1995584 ticks'^ 

1 127.7 sec. 
1995535 ticks 

1 

parallel a.r.s. algorithm, 
1 transputer 

21.6 sec. 
337840 ticks 

5.9 10.7 sec. 
167119 ticks 

11.9 

parallel a.r.s. algorithm, 
4 transputers * 

5.3 sec. 
82528 ticks 

24.1 2.9 sec. 
46088 ticks 

42.6 

# 
excluding the root transputer 
1 tick is equal to 64/us, 
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exhibit a "ringing" which is absent from a frequency component (see Fig. 4-8). This 

information provides one criterion to differentiate a signal from a residue of an alias. 

When a strong signal is detected, its amplitude and frequency f are noted. From f, we 

can predict that bursts are found at |i.fs ±f | , where i is an integer and fs is the 

sampling frequency. Hence there are two tests for a signal: (1) Is the component 

located within the "band" of a burst ? (2) Is there a ringing around the component ? 

I f a frequency component passes both tests, it should be classified as a signal with a 

high degree of confidence. 

Referring to the example in Fig. 4-3, fs is 1024Hz and we consider up to 2fs (4 

times the Nyquist hmit). An initial threshold of ±0.5V may be set and two 

voltages,-1.023V and 1.499V are detected at 160 Hz and 1,100 Hz respectively. Bursts 

are expected to appear at 864Hz, 1184Hz and 1888Hz (which are generated by the 

160- Hz component), and at 76Hz, 948 Hz and 1972 Hz (which are generated by the 

0.4 

• 1.081 

(a) 

450 

0.4 

-0.4 

(b) 

4S0 

Fig. 4-8 Residue of alias and signal 

(a) real part (b) imaginary part 
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1,100 -Hz component). Let these frequencies be called burst centres and denoted 

by fc . Judging from the spectrum of the sampling sequence, we may choose ± 15 Hz 

from fc as the bandwidth of a burst. Within such a band, there are no less than 10 

components of comparable amplitude but randomized phase angles. 

Eliminating the two voltages at 160 Hz and 1,100 Hz, the maximum of the 

remaining "noise" voltages is 0.42V and the average is 0.042V. Any frequency 

component located within the bandwidth of a burst with a magnitude smaller than 

0.42V is considered as noise. Now we may lower the threshold level to ±0.1V 

(~i4 {maximum - average noise } ) . At 400 Hz, a voltage of 0.296V is detected. Since 

there is no component having a magnitude greater than O.IV from 385 Hz to 415 Hz, 

this voltage is taken as a signal. Hence the recovered signal is -1.023 cos(2jr 

160t) + 0.296 sin(2jr 400t) +1.499 cos(2jr l,100t), giving an average accuracy of 98.8% 

in amplitude when compared with the original. 

4.6 Concluding Remarks 

The parallel random sampling maintains the anti-alias property of the additive 

random sampling. A signal well above the Nyquist limit can be recovered by this 

method. In general, saving in computation of a fast algorithm comes from the 

symmetry in the trigonometrical terms being multipKed to the sampled data for 

evaluating the frequency components. For FFT, there are so many synmietry terms 

to be exploited that the complexity is reduced to NlogN [40]. Symmetry, however, is 

the source of aliasing. Hence in parallel random sampling, only a limited degree of 

symmetry is introduced in order to avoid the occurrence of sharp aliases. It is not 

surprising that the complexity of the problem is still N and the upper limit of the 
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saving in multiplications is only 87% in the base band . The number of additions 

remains substantially the same as that of the direct evaluation. 

TTiis sampling scheme offers another advantage - a genuine concurrent 

architecture in nature. During the sampling process, there can be as many as m 

samplers working independently at 1/m of the composite sampling rate, which relaxes 

the requirement of using fast hardware. The computation process is also neatly 

divided into N/8 identical functional blocks, which can be implemented by similar 

structures running concurrently, thus speeding up the whole process by a maximum 

factor of N/8. 

The insertion of a random variable into the timing of the sampling sequence 

turns an alias into a burst of phasors having random phase angles. This characteristic 

provides information to differentiate a weak signal from the residue of an alias. By 

varying the threshold, a weak signal smaller than the burst can be detected provided 

that the signal is not located within the burst. A high accuracy in the amplitude of the 

recovered signal can be achieved when the ratio of the variance of the random 

variable to the mean of the samphng period is around 10%. 
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C H A P T E R S 

HYBRID ADDITIVE RANDOM SAMPLING 

5.1 Introduction 

In Chapter 3, additive random sampling (a.r.s.) is introduced as one of the 

methods in random sampling which offers the advantage of being alias-free. When 

applying this sampling technique, instead of getting a sharp alias at a particular 

frequency, a broadband noise in the whole spectrum is seen. This method, however, 

generates an N'^ complexity in computing the frequency components. For example, 

when a signal is sampled regularly for 1024 points in one second, a frequency 

resolution of 1 Hz is obtained. The Nyquist hmit is at 512 Hz and the number of 

complex multiplications required is 5,120 (H^i logz N) by applying FFT. I f a lower 

frequency, resolution of 4 Hz and the resulting noise are acceptable, we may sample 

the signal for 128 points in 1/4 second with a randomized sampling method and 

evaluate the spectrum up to 512 Hz. The number of complex multiplications required 

is 16,384 (N ). To speed up the computation, a method of inserting limited regularity 

into the random sampling process by interlacing a.r.s. sequences (parallel a.r.s.) has 

been suggested and described in Chapter 4. With parallel a.r.s., bursts of residual 

noise appear at the alias locations of the frequency spectrum (Fig. 5-1). A different 

approach of inserting regularity, which does not generate these bursts of noise, can 

also be achieved by concatenating a.r.s. sequences. (Three resulting spectra are shown 

in Fig. 5-2). A n anti-alias sampling sequence, called the hybrid additive random 

sampling (a.r.s.) sequence, can be formed by concatenating an a.r.s. sequence to a 



1.6 

(a) 

2047 

1.6 

(b) 

1 .u .4. ...JLJL 
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Fig. 5-1 Amplitude spectra of a signal sampled for 1024 points (a) by regular sam
pling and (b) by parallel a.r.s. 

reverse a.r.s. sequence [41]. Under suitable manipulation, at least 75% of the 

multiplications and additions required in computing the frequency components are 

saved. The computational algorithm for the hybrid a.r.s. can be implemented in 

modular form, which can also be realized in either a "recursive" or parallel format. 

5.2 Reverse and Hybrid a.r.s. 

5.2.1 Timing: The timing of a.r.s. is defined as tn = tn-i + tn , where r is a uniformly 

distributed random variable of finite variance [37]. I f t n runs in a reverse order, 

another sequence t \ = t^.n is obtained, where N is the sequence length. Obviously 

t' is also an a.r.s. sequence which can be derived from the a.r.s. equation by 

redefining T. A hybrid a.r.s. sequence is formed by taking its first N/2 elements from 

a normal a.r.s. sequence and the remaining elements from a reverse sequence, i.e.. 

f o r n = l,2,. . . ,N/2-l: 
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Table 5-1: Comparison of Amplitude Spectra 

N = 1024; k up to N-1. Samples taken by : 
(a) an a.r.s. sequence, 
(b) a hybrid a.r.s. sequence with m = 2, p = 512 and 
(c) a hybrid a.r.s. sequence with m = 4, p = 256. 

average 
signal 

accuracy, % 

noise level 
r.m.s., V 

signal-to-noise 
ratio*, dB 

peak noise 
level, V 

peak signal to 
peak noise.dB 

a 95.3 0.0722 29.1 0.189 17.3 
b 99.1 0.0731 29.4 0.249 15.5 
c 98.7 0.0730 29.3 0.294 14.0 

* as defined in chapter 3. 

Amphtude, V 
1-6 

(a) 

1.6 

(b) 

2047 

0 161 2047 

Fig. 5-2 Amplitude spectra (a), (b) and (c) as tabulated in Table 5-1. Note that the 
Nyquist limit is at k = 512. 
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tn =tn-l + tn 

t N - / J = 1— tn 

(5-1) 

with t 0 = 0, t N/2 = 0.5 and the total sampUng period is unity. To compare the 

performance, a simulated signal, 1.2cos(2jr xl61t) +lsin(2jr x 506t) + 1.5cos(27r x 

900t) volts is sampled for 1024 points by different a.r.s. sequences (with the ratio of 

the standard deviation to the mean of the sampling periods ~ 30%) and the results 

of reconstruction are recorded by Table 5-land Fig. 5-2. It can be seen that the hybrid 

a.r.s. (b) rivals the a.r.s. (a) in performance regarding noise and accuracy. 

The method of concatenation can be extended by adding two N/2 -point 

hybrid sequences sequentially. The timing equation is : 

tn = tn-l n 

t W2-n = 0.5 -t n 

t W2+n = 0.5 +t n 

(5-2) 

t N-n = 1 —t n 

with n = l,2,.. . ,N/4-l, t o = 0 , t N/4 = 1/4 and t N/2 = 1/2 . In general, let N samples 

be taken in unit time and divided equally into m sections. N and m are multiples of 4 

and N > > m. Defining q = N/m, p = l,2,...,q-l and s = l,2,...,m, the timing for the 

N samples is given by: 

t p = t p - l + Tp 

to = 0, tsq = -

s-1 
t(s-l)q+p = ~^^^P iOTodds 

(5-3) 

for even s 
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5.2.2 Anti-alias Property: The sequences from eqn (5-2) and eqn (5-3) are anti-alias. 

The concatenation expressed by eqn (5-2) is equivalent to a Unear convolution in the 

time domain of an N/2-point hybrid a.r.s. sequence with a train of two unit impulses 

(5(0) -t- (5(n-N/2). The frequency spectrum of the N/2-point hybrid sequence 

comprises a unit impulse at the origin and a broadband noise, while the spectrum of 

the pulse train is also a pulse train with a period of 2/N. Convolution is equivalent to 

multiplication in the frequency domain. Multiplying the above two spectra will give 

a spectrum similar to that of an a.r.s. sequence, which imphes that the hybrid a.r.s. 

is anti-alias. 

It can be shown that the distribution of the sampling periods of the reverse 

a.r.s. is the same as that of normal a.r.s. For normal a.r.s., the timing at interval n : 

n - l 

tn = nT + 2 > 
i=0 

where T is the mean sampling period = 1/N. The sampling period at interval n is : 

dn=tn- tn-1 ^ T + Tn 

where n = 0,1,..., N - l . For reverse a.r.s., the timing at interval r : 

N - r 

i=0 

where r = 0,1,...,N-1. The sampling period at interval r is : 

dr = t r - tr-l ^ T - Tr 

Since r is a random variable having a zero mean and distributing symmetrically, dn 

and dr have the same distribution. As the normal a.r.s. is aUas free, the reverse a.r.s, 

which has the same random variable and distribution, is thus alias free. When the 

hybrid a.r.s. is formed according to eqn (5-2), it is obvious that the addition of a section 
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having the same sampling periods doubles the number of occurrences in each class 

but the shape of the distribution and the ratio of a/// remain the same. Fig. 5-3 shows 

the distributions of the sampling periods of the hybrid a.r.s. sequence which is 

tabulated as item (c) in Table 5-1. There are 4 sections in this sampling sequence with 

256 points in each section. Fig. 5-3 (a) shows the histogram for the 256 samphng 

periods of the first section. The histograms of the sampling periods of the first two 

sections, the first three sections and the whole sequence are depicted in Fig. 5-3 (b). 

n(t) n(t) 

t x lO t x lO 

t x l O t x lO 

Fig. 5-3 The distributions of the sampling periods of a hybrid a.r.s. with m=4 and 
p = 256: (a) the histogram for the first 256 sampling periods (b) the histogram for 
the first 512 sampling periods (c) the histogram for the first 768 sampling periods 
and (d) the histogram for all the sampling periods. 
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Table 5-2 : Distributions of sampling periods for hybrid a.r.s. sequence 
shown in Fig. 5-3 with m = 4 and p = 256. 

class (x 10 ''^) 
periods 

1 to 256 1 to 512 1 to 768 1 to 1023 
0-0.9 1 1 1 1 
1-1.9 0 0 0 0 
2-2.9 0 0 0 0 
3-3.9 1 1 3 5 
4-4.9 4 7 17 27 
5-5.9 30 74 97 120 
6-6.9 28 50 72 94 
7-7.9 30 44 68 91 
8-8.9 13 27 42 57 
9-9.9 16 36 55 74 

10 -10.9 45 103 164 225 
11-11.9 21 44 64 84 
12 -12.9 34 49 79 109 
13 - 13.9 23 49 72 95 
14 -14.9 10 24 30 36 
15 - 15.9 0 2 2 2 
16 -16.9 0 0 0 0 

mean (x 10 ''^) 9.722 9.747 9.753 9.759 
standard deviation (x 10'"*) 4.320 4.304 4.300 4.300 1 

(c) and (d) respectively. It can be seen that the shapes of the four distributions are 

similar. 

Another approach to explain this anti-ahas property is by studying the circular 

auto-correlation of the sampled sequence [42], which will be discussed in Chapter 6. 

In brief, when assessing components at a higher frequency band, the width of the steps 

in the time frame of the auto-correlation is reduced, hence a signal and its ahases 

yield different auto-correlation sequences. In performing the auto-correlation, as the 

sampled data have a higher probability to "overlap" at the instants when the a.r.s. 
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sequences are joined to form the hybrid a.r.s. sequence, noise tends to cluster at these 

corresponding frequencies. For example, for the hybrid a.r.s. sequence denoted by 

eqn (5-2), noise tends to cluster at the even or odd frequency indices depending on 

whether the frequency of the signal being sampled is even or odd. This "biiming" of 

noise will be elaborated in the following section. 

5.2.3 Binning of Noise : The hybrid a.r.s. sequence formed by concatenating several 

a.r.s. sequences exhibits periodicity which is reflected from the spectrum of the 

samphng sequence or the spectrum of the reconstructed signal. In eqn (5-1), two 

sequences are concatenated (m = 2), but the second sequence is not a repetition of 

the first; hence no periodicity is observed. Fig. 5-4 (a) and (b) show respectively part 

of the amplitude spectrum of a 1024-point a.r.s. sequence and a hybrid a.r.s. sequence 

with m = 2. Spikes appear at every frequency index. When the sequence is formed 

according to eqn (5-2) with m = 4, the last two sections are a repetition of the first 

two sections, which gives a periodicity of 2 in the sampling sequence. In Fig. 5-4(c), 

we can see that spikes appear at the even indices. Similarly, when m = 8, the first 

two sections are repeated 4 times so that a periodicity of 4 is expected. Fig. 5-4(d) 

reveals that spikes appear at the indices which are a multiple of 4. 

Suppose an input signal containing a component with an odd frequency index 

is sampled by a hybrid a.r.s. sequence Math m = 4, we expect that the background noise 

will tend to gather at every odd index of the reconstructed spectrum. The sampling in 

time domain is equivalent to a convolution in the frequency domain. As the spectrum 

of the signal is convolved with the spectrum in Fig. 5-4(c), "overlapping" occurs at 

every other step so that amplitude of the signal or the noise will appear on the odd 

indices only. I f the input contains both even and odd frequency components, the 
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Amplitude, V 

120 180 

120 180 

0.1 

120 180 

120 180 

Fig. 5-4 Parts of the amplitude spectra of 1024-point sampling sequences to show 
the "binning" of hybrid a.r.s.: 

(a) a.r.s. 

(b) hybrid a.r.s. with m=2,p = 512 

(c) hybrid a.r.s. with m=4,p =256 

(d) hybrid a.r.s. with m = 8,p^ 128. 
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"binning" of noise will not be apparent as noise will f i l l the whole spectrum. I f m = 

8, with an input of frequency index k, noise will gather at every index i = k modulo 4. 

Fig. 5-5 shows part of the spectrum of a signal lsin(27r.506t) volt sampled by a hybrid 

a.r.s. with m = 8, p = 128. The input frequency 506 Hz is congruent to 2 modulo 4, 

hence noise is expected to gather at k = 502,510,514, etc. 

Although the overall signal-to-noise ratio does not depend on m (but on N, the 

sequence length), the maximum noise level becomes higher as m increases because 

of the "binning". In the worst case, with m = 8, the maximum noise level could be 4 

times that of a normal a.r.s. sequence. In Table 5-3, the results of two signals sampled 

by a.r.s. and hybrid a.r.s. are tabulated for showing the effect on the noise levels. The 

signal-to-noise ratios are about the same for all sampling sequences, but the ratios of 

signal to peak noise drop about 4 to 5 dB from a.r.s. to hybrid a.r.s with m = 4. A similar 

drop is observed from hybrid a.r.s. with m = 4 to m = 8. 

Amplitude, V 

0.15 

Fig. 5-5 Part of an amplitude spectrum of a signal 1sin(2ji.506t) sampled by a 
hybrid a.r.s. with m^8,p = 128. Note that noise tends to gather at the indices 
congruent to 2 modulo 4. 
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Table 5-3 : Noise levels of hybrid a.r.s. sequences 

Input signal,V sampled by signal 
amp., V 

noise, 
r.m.s., mV 

peak 
noise, mV 

S/N ratio, 
dB 

signal to 
peak 

noise, dB 

1.2 cos (2jr.l61t) 

a.r.s., 
1024 points 

1.202 34.6 120 30.8 20.0 

1.2 cos (2jr.l61t) hybrid a.r.s., 
m = 4,p = 256 

1.185 34.8 189 30.6 15.9 1.2 cos (2jr.l61t) 

hybrid a.r.s., 
m = 8,p = 128 

1.199 35.5 294 30.6 12.2 

Isin (2jr.506t) 

a.r.s., 
1024 points 

0.980 31.7 85 29.8 21.2 

Isin (2jr.506t) hybrid a.r.s., 
m = 4, p = 256 

1.004 31.0 160 30.2 16.0 Isin (2jr.506t) 

hybrid a.r.s., 
m = 8,p = 128 

0.937 30.4 243 29.8 11.7 

5.3 Computation of Signal Amplitude 

5.3.1 Symmetry in Timing: The estimates of the frequency components (except the 

d.c.) are given by [37]: 

- N-l (5-4) 
X{k) = j^J^x{tn)exp(j2jtkftn) 

n=0 

where k = 1,2,3,... a n d f = 1 in the normalized case. Let us consider the case m = 4 

in detail. Eqn (5-4) can be rearranged according to the timing given by eqn (5-2). 

Because of the symmetry between tn, ^ N - Z J , twz+n and t^2-n, we find groups of four 

cosine terms in X (k) having the same magnitude but different signs . This is also 

true for the sine terms. Using subscripts r and i to denote the real and imaginary parts 

respectively and x(n) to represent x (t n), eqn (5-4) becomes : 

W4 -1 

^K^) = ;^ { 2[{x{n)+xiN-n)) + { - l f ' ' ^ ' x 
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(x (r^2 +n) + X QV2 -n)) ] cos {litk tn)+Cr (k)} 

«=l 

(x (N/2 +n) - X (fV2-n)) ] sin (Tjtk t n) +C/ {k)} 

where Cr (k) = [x ( 0 ) + ( - 1 ) ^ ^ ^ ^ ^ + ('^4)+JC (3^4)] cos (2jrA:/4), 

Ci (k) = [x (^f4) -X (W,)] sin (2jrA:/4), 

and < k > 2 = k modulo 2 . Neglecting the scaling factor, we can write : 
W4 -1 

Xrik) = ^ [ A inj^-n) + ( -1 )<^>2^ (^2+n, W2-n) ] 
n = l 

X cos (Zjlktn) + Cr(k) 

m -1 
Xi (k) = ^ [ S inj^-n) + i - l f " ^ ^ S {^2+n, H'l-n) ] 

n = l 

X sin {Tjtk t«) + Q (k) (5-5) 

where A(u,v)= x(u) + x(v) and S(u,v) = x(u)-x(v). Fig. 5-6 shows the signal flow 

diagram of eqn (5-5) with N = 16. 

5.3.2 Saving in Computation : In general, to compute N frequency components of a 

randomly sampled real sequence, it takes approximately 2N^ real multiplications and 

2N real additions if N > > 1. In eqn (5-5), Ci and Cr require no actual multiplications. 

(Multiplications with only ± 1 are involved.) For the remaining part, since 1 

multiplication is performed every 4 data points, there are in total N^/2 real 

multiplications and 75% saving is attained. Evaluating all the partial sums of the 

groups of A,S and C requires 3N additions. These partial sums may be stored and 

subsequently multiplied to the appropriate sines and cosines. Each X(k) is then 

computed by adding up N/2 of these products and a C. The total number of additions 
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N = 16 

Real Parts: 

k 

Imaginary Parts: 

Fig. 5-6 Signal flow diagram of the computational algorithm for eqn (5-5) 
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is therefore N'^/2 + 3N, which is approximately N'^/2 if N is large. The percentage 

saving is approximately 75%. In eqn (5-5), < k > 2 means keeping track of k being 

odd or even. Since the operation is simple, the load incurred is minimal. 

As m increases, the saving in multiphcations also increases. If m = 8, q = N/8. 

Comparing to m = 4, there are more symmetry groups between exp(j2 n k tn) and 

exp(j2 jr k t2q + n) available when k is even; namely, symmetry between exp(j4 it tn) 

and exp(j4jr t2q + n) , between exp(j&7r tn) and exp(j8:7r t2q+n), etc. For odd k, the 

frequency components are given by eqn (5-5). Denoting TA(n,k) = [A (nj^-n) + 

( - 1 ) ^ ^ ^ ^ ^ Q¥2+n, ^2-n) ] and similarly for TS(n,k), we have for even k : 

Xr (k) = 2 [TA (n,0) + (-iyTA (2^+«,0) ] cos (Tjtktn) 
n = l 

+ TA (q,0)cos(2jik/8) -̂  C r(k) 

ih) = ^ [TS («,0) + ( - l y TS {2q+n,Q) ] sin (Tjtktn) 
« = ! 

-F TS (q,0) sm(2nk/8) + C [(k) (5-6) 

where y = 0 if 4 divides k and y = 1 if otherwise. Only 1 multiplication is performed 

every eight data points when computing the even components. 

To estimate the saving, let us consider the odd and even indices separately. 

For the odd indices, N^/4 multiplications are required. When computing the even 

2 2 

indices, only N /8 multiplications are performed. Hence the total work done is 3N /8, 

which means that the saving is about 81%. Roughly the same amount of additions 

can also be reduced if more partial sums can be stored. Although the number of 

symmetry groups having even indices increases with m, the number of symmetry 
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groups with odd indices remain the same as the case of m = 4. So the upper bound in 

the percentage saving is 87%. 

When recovering a narrow band in the frequency spectrum, random sampling 

may require fewer multiplications than regular sampling. Recall that for the FFT, 

computation is performed in stages so as to reduce the complexity to N log N for a 

sequence of length N . Owing to this arrangement, there is virtually no extra saving 

even if fewer components than N are computed. Suppose we are interested in a band 

of 40 frequency indices from 461 to 500, we need to sample 1,024 points from the input 

and perform (in general) 10,240 complex multiphcations to obtain the spectrum by 

the FFT. Assuming that the background noise is acceptable, a scheme with 

sub-Nyquist random sampling and a partial evaluation of the spectrum will meet the 

specification. Keeping the same resolution, 256 points may be sampled and 40 x 256 

= 10,240 multiplications are performed, which is a draw. However, by applying the 

hybrid additive random sampling with 4 sections, 75 % of the multiplications will be 

saved, i.e. only 2,560 are performed. 

5.4 Realization 

By examining the signal flow diagram in Fig. 5-6, we discover that a regular 

pattern occurs in computing the signal amplitude. Fig. 5-7 shows a modular approach 

to realize the algorithm, which can easily be implemented by either software or 

hardware. The structure shown in Fig. 5-7 is in a "recursive" form, the beauty of which 

is its simpHcity. To speed up the computation, a parallel structure can also be derived 

from this basic module. Referring to Fig. 5-6 or eqn (5-5), every 4 input data points 

form a group. Therefore the computational algorithm can be implemented naturally 
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with N/4 processors, each of which is a module deleting the z'^, Ci and Cr from the 

basic module in Fig 5-7. With N = 1024, the number of processors is then 256. In 

fact, the number of processors used can be reduced to any number smaller than N/4, 

and Fig. 5-8 shows how four modules can be employed to share the computation. With 

four of these modules working in parallel, the computation can be speeded up by a 

factor of four. 

5.5 Concluding Remarks 

The amplitude spectra in Fig. 5-2 reveal that the hybrid a.r.s. sequences are 

anti-alias. The signal amplitudes recovered from all the sampling sequences are 

accurate and the signal to noise ratios are high. By exploiting the symmetry in timing 

of a hybrid a.r.s. sequence, at least 75% of the computation required can be eUminated, 

although the complexity is still N^. It is obvious that the percentage saving increases 

with m, but so does the peak noise level. Reasonable choices of m are 4 and 8. (A 

Cr/Ci 

x(n) 

g(k,tn)/h(k,tn) 

x(N/2 + n) 

x(N/2.n) 

1/-1 

+ 
Xr(k)/Xi(k) 

Fig. 5-7 Modular realization of the computational algorithm 
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trade-off between the computation load and the noise level is inevitable in random 

sampling.) The hybrid a.r.s. can be implemented systematically either by software or 

hardware. With the parallel implementation shown in Fig. 5-8, a speed-up factor of 

N/4 can be attained when there are N/4 processors. 

Another advantage of the hybrid a.r.s. is that the amount of saving in 

computation is a constant irrespective of the number of frequency components to be 

evaluated, i.e. we achieve 75% saving even if only one frequency component is 

computed. With other algorithms, e.g. FFT, the maximum amount of saving is attained 

only if the whole band of N components are computed. Hence this method is especially 

beneficial for estimating a narrow band of frequency above the Nyquist limit. 
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x(nl) 

x(N-nl) — 

g(k,tnl)/h(k,tnl) 

x(N/2+nl) 

x(N/2 

x(ii2) 

x(N-n2) 

g(k,tn2)/h(k,ti,2) 

x(N/2 + ii2) 

x(N/2- n2) 

x(n3) . 

x(N-n3) • 

x(N/2 + n3) 

x(N/2-n3) 

x(n4) 

x(N-

g(k,t„3)/h(k,t„3) 

»4) "lyT-̂ O 
g(k,tn4)/li(k,tn4) 

x(N/2+n4) 

x(N/2- n4). 
z-1 

Xr(k)/Xi(k) 

F/gf. 5-8 Block diagram for the computational algorithm realized by 4 basic 
N N N N 

modules. To share the load evenly, n1 = 7,2,...,—-1, n2 =— - ^ - 1 , 
'16 

^ N N , 3N , ^ ^ 3N 3N ^ N , 
'^=8' 8"-^' - ' 1 6 " " ^ " ^ = l 6 ' l 6 •'̂ ^ 

16' 16 8 
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CHAPTER 6 

AUTO-CORRELATION AND POWER SPECTRUM 
OF RANDOMLY SAMPLED SEQUENCES 

6.1 Introduction 

Correlation is a mathematical operation which closely resembles convolution. 

A n auto-correlation is performed when a sequence is correlated with itself. Since the 

auto-correlation of a sequence is related to its power density spectrum, this operation 

can be applied to a randomly sampled sequence as an aid to study and explain the 

anti-ahas property of random sampling. The process can also be regarded as a method 

to convert a randomly sampled sequence to a regularly sampled sequence of a desired 

sequence length. 

Auto-correlation is only one of the possible means to explain the anti-alias 

property of random sampling. The other method is to study the outcome of the 

convolution of the frequency spectra of the sampling sequence and the sample 

sequence, which is already mentioned in chapters 4 and 5. (Note that auto-correlation 

involves only the sample sequence but the convolution process involves both the 

spectra of the sampling sequence and the sample sequence.) For the sake of 

completeness, the convolution method is briefly repeated below. 

6.1.1 Convolution in the Frequency Domain : When a signal is sampled in the time 

domain, the resulting sequence is obtained by multiplying the signal with the sampling 

sequence. Multiplication in the time domain is equivalent to convolution in the 

frequency domain. Hence by examining the frequency spectrum of a sampling 

page 119 



sequence, one will easily envisage the spectrum of the sampled signal. Let us consider 

the spectrum of a regular sampling impulse sequence which is also a periodic impulse 

sequence. Hence the spectrum of a signal sampled by it is repetitive as shown in Fig. 

3-2 after the convolution is performed . With random sampling, the situation is very 

different. Fig. 6-1 (a) shows the amplitude spectrum of a length-1024 additive random 

sampling (a.r.s.) sequence which comprises a unit impulse at the origin and a 

broadband noise. When this spectrum is convolved with a signal spectrum, the original 

signal spectrum together with a background noise is obtained. Fig. 3-8 (b) shows a 

typical result where no aUases are found. With parallel a.r.s., bursts of noise appear 

as residues of the aliases, which can be seen in Fig. 6-1(b). A detailed discussion is 

given in section 4.3. The spectrum of a hybrid a.r.s. sequence is found in Fig. 6-l(c). 

Its anti-alias property is obvious since its spectrum resembles that of an genuine a.r.s. 

sequence. The binning effect created by the concatenation is described in section 

5.2.3. 

6.1.2 Auto-correlation of a Sequence : Starting from here a totally different approach 

will be introduced. This approach is to study the auto-correlation of the sample (or 

data) sequence in the time domain so as to confirm the anti-alias property of the 

sampling sequence. 

Suppose a signal sequence x(n) has finite energy. The linear auto-correlation 

of x(n) is defined as a sequence : 

M ) = ^4n+ I)x(n) l = 0,±l, ±2, 
n = -<x> 

or Rx{l) = ^x{n)x{n-l) / = 0 , ± 1 , ±2, 

(6-la) 

(6-lb) 

n = -co 
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Eqn(6-la) represents that the sequence x(n) is shifted to the left and (6-lb) to the 

right during the auto-correlation. 

The Fourier transform of the auto-correlation function of a signal sequence is 

called the power spectral density function [43] and is denoted by Sx (ê *̂ )- The power 

spectral density function is given by : 

0 

(a) 

niiiilliiii^Xiii iiiilMiiiidyMitaitiimiiiitiiiiiiiimiiiJ 
0 2047 

Ol 

r 

(b) 

Milk » Jfc 
0 2047 

(c) 

ttk 11 rill ••umiiiMiliJt t l i i ifaiiibiiMilikHUiiaAikiiitoilLiiiliJi^^^ 
2047 

Fig. 6-1 Amplitude spectra of 3 random sampling sequences having a sequence 
length of 1024 points: 

(a) additive random sampling (a.r.s.)sequence, (b) parallel a.r.s. sequence with 4 
sections, and (c) hybrid a.r.s. sequence with 4 sections. 
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^ • ; (6-2a) 

/=-00 

and its inverse is given by : 

R:,(l)=±fj4^-)^-^dco 

Eqn (6-2) is called the Wiener-Khintchine relations, the proof of which can be found 

in many books [10,43]. A plot of Sx (e''") versus o) is the power density spectrum (or 

simply the power spectrum), and its value at a given radian frequency co is called the 

power spectral density. 

The Wiener-Khinchine relations assert that auto-correlation of the sample 

sequence is related to its power spectrum. This fact implies that studying the 

auto-correlation of the sample sequence in the time domain can reveal the anti-alias 

property of the sampling sequence. Before going into this study, the circular 

auto-correlation must first be defined. 

6.2 Circular Auto-correlation 

6.2.1 Regular Sampling : As discussed in section 2.1, when a continuous signal is 

sampled to become a sequence of finite length, a periodic extension of the sequence 

in the time domain is assumed in calculating its Fourier transform. Corresponding to 

this periodic extension, the auto-correlation of a sequence of finite length is to be 

performed circularly rather than linearly. Parallel to eqn (6-1), the circular 

auto-correlation of x(n) of length N is : 

^ 1 (6-3a) 
^^(0 = Z - ^ ( < " + ^>N)X(«) 

1=0 

or 
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^ 1 (6-3b) 

/=o 

where < y > N denotes y modulo N. Fig. 6-2 shows a graphical illustration of the 

circular auto-correlation. For simphcity, auto-correlation will refer to circular 

auto-correlation in this chapter when no ambiguity arises. 

It can be shown that Rx(l) = RxiN-l) and whether the shifting of x(n) in the 

correlation is to the left or right will give the same power spectrum. As an illustration 

of the Wiener-Khinchine relations, consider a 16-point sequence {x(n)} = {2, 0.8, 

-2.212, 6.498, -7, 0.346, -3.356, 8.035,4, -4.557, 2.121, -2.741,1,-12.588,3.536,4.208}. 

The auto-correlation of x(n) according to eqn (6-3a) is a sequence {Rx(l)} = {26, 

-8.096, 0.836, -7.312, 3.5, 0.948, -16.839, 14.46, -1 , 14.46, -16.839, 0.948, 3.5, -7.312, 

0.839, -8.096}. Let X(k) and FR(k) be the Fourier transform of x(n) and Rx(l), and it 

is found that { | X ( k ) | ^ } = | { FR(k)} = {0, 1, 9, 0, 16, 1, 0, 25}.The sequences 

{Rx(l)}, {I X(k) I ^ } and I { FR(k)} are plotted in Fig. 6-3. 

When a continuous signal is sampled for N points in a total duration of T 

seconds, the sampling period ts = T/N and the sampKng frequency fs = 1/ts = N/T. 

In the frequency spectrum, there will be N spectral lines representing a bandwidth of 

fs. Hence the frequency resolution of the Fourier transform Af = fs / N = 1/T. In 

these N spectral lines there are only N/2 distinct values because after fs/2, the spectral 

lines are the images of the first N/2 lines (see Fig. 6-4). In order to push up this Nyquist 

Hmit, ts must be decreased. 

Let us now consider the auto-correlation of x(n) and its power spectrum. When 

the auto-correlation is performed, the step size of each shift is ts so that N values for 
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Fig. 6-2 Graphical illustration of the circular auto-correlation of an 8-point sequence 

with 1= 2,i.e.Rx(2). 

1 1 1 

- (a) 

I ^ 

1 1 1 

i 1 i 
O 13 

V 

(b) 

-f- > 

1 1 1 

(c) 

1 1 

-

• 1- 1 

Fig. 6-3 Illustrating the Wiener-Khintchine relations: 

(a) the circular auto-correlation Rx(l) of a length-16 sequence x(n), 

(b) the magnitude spectrum of the Fourier transform ofRx{l), 

(c) the power spectrum ofx(n). 
page 124 



Rx{l) are obtained, thus yielding a power spectrum of a period of N. Suppose the step 

size is now halved so that the number of points obtained for Rx(l) is doubled. Would 

the Nyquist frequency be extended ? The answer is no. In this 2N-point sequence, all 

the odd-numbered points are equal to zero and the even-numbered points are equal 

to the values of the former N-point sequence. Zeros result in these "half steps" because 

there are no sample values between two steps (or two sampling time intervals) in 

regular sampling; hence there are no "overlaps" in the correlation. The 2N-point 

Rx(l) padded with N zeros may be considered as an up-sampling or expansion of an 

N-point sequence. Although the number of points is increased, its spectrum is 

"compressed" in the frequency domain so that there is no change in the Nyquist limit 

x(n) 
• ts 

X(k) Af = 1/T 

fs 
N 
T 

fs/2 

nts 

kAf 

Fig. 6-4 Relationship between the timing of an extended sample sequence and the 

resolution of its frequency spectrum. 
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[44]. Obviously, since there is no extra information obtained in the time sequence, the 

information content in the frequency spectrum should remain unchanged. 

6.2.2 Random sampling : One can argue that a randomly sampled sequence is alias-

free by considering the possibility of decreasing the step size of its auto-correlation 

function. For a continuous signal, a linear auto-correlation can be performed at any 

step size because there is a probability of finding overlaps everywhere within the 

duration of the signal. When sampling is randomized in the time domain, the resulting 

sequence is also a "continuous" signal in the sense that there is a probabihty, however 

small, that a sampUng point will fall into a particular instant. Hence, in contrast to 

regular sampling, overlaps exist when the step size of the auto-correlation decreases, 

which demonstrates that the Nyquist frequency with random sampling is not limited 

by the apparent sequence length. 

Let a sample sequence of N points be sampled by a random sampling scheme 

with a mean sampling period/^, and the auto-correlation is performed with a step size 

ts smaller than fi. Assume that the probabihty density function (p.d.f.) of a point has 

a gaussian distribution as shown in Fig. 6-5. Since the probability of finding a sampling 

point exactly at time t is zero, we consider a region in the time frame. The probability 

of finding a sampling point between t2 and t i is: 

When this point is shifted by a step, the probabihty of finding a sampling point in the 

corresponding region is : 

Then the probability of an overlap is : 
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-t's I I t'O 

Fig. 6-5 The overlapping of the probability density function of a point In an auto

correlation when the step size Is smaller than the mean sampling period. 

P(y) = P{t)J'(t') > 0 

since for a gaussian distribution, P(t) and P(t') are non-zero. For example, i f the 

standard deviation a 0.3^ and the step size = 0.5/i, and the whole step is considered 

as the region of overlapping, then the probability P(t) = P'(t) = 0.4082, and P(v) 

= 0.1666. According to Bilinskis and Mikelsons [28], the probabihty density function 

of a sampling point in an additive random sampling scheme approaches l/fi when the 

time t is large enough (see Fig. 3-7). Hence the probability of finding a sampling point 

in an interval At is At/// and this probability is greater than zero so long as At is greater 

than zero. 

Let us consider the effect of reducing the step size successively. Suppose the 

step size is fi/2 (a regular step size) so that there will be 2N points in the 

auto-correlation sequence RxQ). Since the probability of finding an overlap in each 
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step is non-zero, RxQ) wil l not be a sequence with zero values in alternate positions, 

which is the case with regular sampling, although there are zeros distributed randomly 

inside the sequence. In effect there are 2N distinct data points in Rx{l) so that its power 

spectrum has A'̂  distinct values, which means that the Nyquist limit is twice that of an 

auto-correlation of N points while the frequency resolution remains unchanged. Thus 

if the step of the auto-correlation is a regular size of fi/2\ the Nyquist limit of the 

resulting power spectrum will be further extended to 2''^N distinct values, where i is 

an integer. Following this argument, the Nyquist limit could be extended in principle 

to any even multiple of N . Intuitively speaking, the extra information in the frequency 

spectrum is obtained because information in the time domain may be available 

between two consecutive points of a regular time grid. 

6.2.2.1 A Pseudo-continuous sampling : Coming back to those zeros distributed 

randomly inside Rx(l) mentioned previously, they are the source of the random 

background noise seen in the frequency spectrum. Conceptually the random sampling 

is a corrupted case of continuous sampling. Suppose Rxe{l) is the exact auto

correlation, then conceptually we can write : 

Rxe(i) - M l ) = m 

or _ _ 

Rxe(l) = Rxil) + N(l) (6-6) 

where N(l) is the sequence of "drop-outs" whose non-zero values corresponds to the 

positions of those zeros mRx{l). Therefore, according to eqn(6-6), the exact spectrum 

of the sampled signal is split into two parts, and both the spectra of RxQ) and N(l) 

contain the frequency information of the exact spectrum but corrupted by noise. From 

the above argument, a random sampling scheme may be considered an irregular 
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selection of points from a continuous or an infinitesimally dense and regular time 

grid. 

For illustration, consider a sequence {yi(n)} which contains 32 non-zero data 

points sampled irregularly from a regular sequence {y(n)} of 128 points. At those 

locations j where data are not selected, yi( j) = 0. Therefore, the difference between 

{y(n)} and {yi(n)}is a sequence {y2(n)} having 96 non-zero values. The power 

spectrum of these three sequences are shown in Fig. 6-6. It can be seen that the Nyquist 

limit is not affected by the irregular down-sampling and it remains at k = 64 for all 

three spectra. From Fig. 6-6 (b), where only one-quarter of the original sequence is 

selected, the signal at k = 60 can still be recognized although the signal-to-noise ratio 

is low (13.6 dB) as compared to the case in Fig. 6-6 (c), where the signal-to-noise ratio 

is 23 dB. 

The aim of the above example is to show that a randomly sampled sequence, 

as an irregular down-sampling from a continuous signal, would maintain the Nyquist 

limit of a continuous signal, i.e. at infinity. However, in handling the missing data 

problem that drop-outs occur in a sequence, interpolation methods and linear 

least-square fitting such as Lomb's algorithm [45,46] can be appUed to construct a 

better periodogram than a direct Fourier transform of the sequence. 

6.3 Evaluation of Auto-correlation 

The theoretical background of the circular auto-correlation has been covered 

and the next step is to write computer programs for computing its numerical values. 

When doing so, practical difficulties are encountered and solutions to them are 

suggested in the following sections. 
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Fig. 6-6 Power spectra of: 

(a) a sequence {y(n)} sampled regularly for 128 points, 

(b) a sequence {yi(n)} of 32 samples selected unevenly from the above 128-polnt 
sequence, and 

(c) the sequence iy2(n)} containing the remaining 96 samples. 

6.3.1 Step Size and Window Width : The auto-correlation of a randomly sampled 

sequence x(tn) can be written as : 

or 

N-l 

^ ( 0 = ^x{<tn+ l.ts>t<^)x{tn) 
1=0 

N-l 

RxQ) = ^x{tn)x(<tn - l.ts>Nf^) 
1=0 

(6-7a) 

(6-7b) 

where ts is the step size, /u is the mean sampling period, and N/u is the total sampling 

period. To evaluate the auto-correlation of a sequence sampled randomly is more 
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complicated than a sequence sampled uniformly. For a uniformly spaced sequence, 

the step size is always one sampling interval (ts in Fig. 6-4). So in programming eqn 

(6-3), the rotation of the input array in the time frame is achieved simply by modifying 

their indices n. Then the products between the corresponding elements of the two 

arrays can easily be formed. When evaluating a randomly sampled sequence, the 

results are sensitive to the computational errors of the host system. Unlike regular 

sampling, the sampling times of a randomized sequence must be recorded. To rotate 

the sequence means adding the value of the required step to the sampling times of the 

input sequence (see eqn (6-7)). The next step after rotation is to compare point by 

point the original times with the shifted times to search for equal values. (In theory, a 

point has no width. As discussed in section 6.2.2 and shown in Fig. 6-5, we have to 

consider a region for the overlapping.) Besides the involvement in searching^, another 

problem arises when comparing the time values, which are not integers but most likely 

floating-point numbers. Usually the sampling times for random sampling are 

represented by many significant digits. Thus an exact match of two points requires that 

all the bits representing the values, up to the least significant bit, are equal. When the 

step size is added to the original set of times, rounding off is bounded to occur, 

especially in circular auto-correlation where modulo arithmetic is involved. So the 

probability of finding exact matches in the two sets of times would be extremely low, 

and many zeros will be obtained in the results. 

To overcome this problem, a tolerance may be incorporated into the 

comparison such that the chance of matching can be increased. Instead of comparing 

the two sets of time values by points, windows of width w are opened in one of the 

1 The techniques to avoid modulo arithmetic and to reduce search effort will be discussed in section 
6.3.2. 

page 131 



sets. Now the process becomes checking whether or not a set of points fall into these 

windows. By this modification, the influence of machine errors is completely 

eliminated and the probabihty of matching is enhanced. The idea is illustrated 

graphically in Fig. 6-7, where part of a randomly sampled sequence shown in (a) is 

shifted by a step ts as shown in (b). No overlaps can be found although there are three 

pairs of points lying closely together in time. In Fig. 6-7 (c), windows are opened and 

the three points in (a) are now captured. Referring to eqn (6-4), P(t) is the probability 

of finding a sampling point in the original sequence in a region where t i and t2 

correspond to the beginning and the end of a specific window, i.e. w = t2 - t i . In an 

N-point sequence with a mean sampUng period oifi, the total sampling period is Nfi 

in which N windows appear. The probability of the occurrence of a window is thus 

w —. The probabihty of an overlap in time is then 

(a) 

(b) 

(c) 

• 

step 
ts 

w 

V 

V 

Fig. 6-7 Using windows In auto-correlatlon: 

(a) part of a randomly sampled sequence, 

(b) the sequence In (a) shifted by a step ts In the time frame, and 

(c) windows of width w opened In the shifted sequence. 
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P(v) = ^I^^Pir)dr- -Pit) 

According to Bilinskis and Mikelsons [28], the probability density function of a 

sampling point in an additive random samphng scheme approaches 1/w when the time 

t is large enough. Therefore, P(t) = W/M and P(v) = (W/M)^. Hence P(v) increases 

with the increasing window width w. Returning to the example in section 6.2.2 where 

the gaussian distribution has a standard deviation of 0.3/a. The step size of correlation 

is 0.5 /^( = the region of interest) and windows are not used in the shifted sequence. 

Given that a sampling point is found in the original sequence between to and ts, i.e. 

P(t) = 1, then P(v) = P(t') = 0.4082. I f a window centred at t'o of w = 0.8 fi is used, 

the conditional probabihty of P(v) will become 0.8, i.e. nearly doubled. 

6.3.1.1 Nyquist Limit and Noise : Consider a signal x(t) = 1.5 cos (2jr. 501) +2 sin 

(2jt. 5061) + 1 cos (2jr. 14001) sampled by a.r.s. for 512 points in 1 second. Its power 

spectrum is recovered up to k = 1535 and shown in Fig. 6-8 for reference. To illustrate 

the effects of the step size and window width in auto-correlation, the above sequence 

x(tn) is auto-correlated with a step size of 1/1024 = 976.5 jus and different window 

widths. The results RxQ) with 1 = 1 , 2 , 2 0 0 are shown in Fig. 6-9 where the window 

width decreases from ±146 fis in (a) to ±24.4/^5 in (d). It can be seen that aU the 

sequences share a similar "shape" in the time frame, implying that their frequency 

contents are more or less similar. Their corresponding DFT's are shown in Fig. 6-10, 

where the Nyquist limit is at k = 512 as the time sequences comprise 1024 points 

regularly spaced in time. The component at k = 1,400 is aliased to 376 and 648. The 

amplitudes of RxQ) and their DFT's are proportional to the widow width, e.g. the 

maximum amplitudes in Fig. 6-9 (a) and 6-10(a) are about 6 times those in Fig. 6-9 

(d) and 6-10 (d) respectively. This happens because the chances of overlapping are 6 
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times higher in (a) than in (d). It can also be seen in Fig. 6-10(d) that drop-outs are 

prominent, which results in high noise in its power spectrum. Turning to their Fourier 

transforms in Fig. 6-10, the signal-to-noise ratios are 19.3 dB in (a), 17.6 dB in (b), 

14.7 dB in (c) and 11.8 dB in (d). In Fig. 6-10 (d), the maximum noise level is even 

higher than the weakest signal component. As a reference, the signal-to-noise ratio 

of the spectrum obtained by direct evaluation and shown in Fig. 6-8 is 24.8 dB. In Fig. 

6-10 (a) and (b), the power of the three signal components maintain roughly a ratio 

of 2.25 to I t o 4. 

Let us continue the auto-correlation with finer step sizes. Fig. 6-11 (a) shows 

the correlation results Rxil), 1 = 0,1,..., 200, with a step size of 1/2048 = 488 fis and 

(b) shows the correlation results with a step size of 1/4096 = 244 fis. The window 

widths are ±20% of the respective step size in both cases. Hence the sequence lengths 

are 2,048 points and 4,096 points respectively. It is obvious, even in the time domain, 

that the auto-correlation sequence in Fig. 6-11 (b) should contain a higher frequency 

content than in (a). Their corresponding Fourier transforms confirm the above 

conjecture. In Fig. 6-12 (a), the Nyquist limit is at k = 1,024 since the sequence length 

is 2,048. Comparing to the spectra in Fig. 6-10, the ahases at 376, 518 and 974 are 

power, V'^ 

* M i I it 
506 k 1400 

Fig. 6-8 The power spectrum of a signal x(t) = 1.5 cos (2JI .50t) + 2 sin (2JI . 5061) 
-H 1 cos (2n. 14001) sampled by a.r.s. for 512 points In 1 second. 
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1^ 1 i m i (c) 

200 

1 

J - ^ XiJinLTL -

1 

TVTTT - -^TTJT , 

1 

11 Ĵ l f 1 

1 1 

(d) 

1 200 

Fig 6-9 Parts of the auto-correlation results Rxil)in time domain of an a.r.s. sequence 
sampled for 512 points in 1 second. The step size for correlation is 976.5 fiS, i.e. half 
of the average sampling period and the window widths are: 

(a) ±15% of step size = ±146 ^s , (b)±10% of step size = ±97.6 fiS, 

(c) ±5% of step size = ±48.8 fis , (d)±2.5% of step size = ±24.4 ^s. 
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Fig. 6-10 The Fourier transforms corresponding to ttie auto-correiation sequences 
shown in Fig. 6-9 (a) to (d). 
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removed, but aliases at 1,542 and 1,998 are generated because of the change in 

Nyquist Umit. In Fig. 6-12 (b), the Nyquist limit is at k = 2048 so that all aliases are 

removed and a spectrum similar to the one shown in Fig. 6-8 is achieved. The data of 

the above spectra are summarized in Table 6-1. 

From the above discussion, we can conclude that a randomly sample sequence 

is alias-free so long as a proper evaluation method is adopted. 

6.3.2 Programming Techniques : The auto-correlation results are computed by 

programming eqn (6-7a) with Microsoft C. In the equation, modulo arithmetic and 

searching are involved, both of which are time consuming. Two techniques may be 

used to speed up these operations. 

To eliminate the usage of modulo arithmetic with floating point numbers, 

circular correlation is replaced by linear correlation using the concept of periodic 

extension of an aperiodic signal shown in Fig. 2-1. For illustration, Fig. 6-13 (a) shows 

a sequence of 4 points from which Rx( 1) is to be computed. The sequence is circularly 

shifted to the left by 1 step as shown in (b). Correlating the above two sequences yields 

Table 6-1: Auto-correlation results of a sequence sampled by a.r.s. for 
512 points in 1 second using different step sizes and window widths. 
(Mean sampling period is 1/512 = 1.95 ms.) 

Spectrum 
in Fig. 

Step size 
("s) 

Window width 
% of step (as) 

Nyquist 
limit (Hz) 

aUasing component 
power 
ratio 

S/N(dB) 

6-10 (a) 976.5 ± 15% ± 146 512 ves 2.7 :1: 4.5 19.3 
6-10 (b) 976.5 ± 10% ±97.6 512 yes 2.3 :1: 3.9 17.6 
6-10 fc) 976.5 ± 5 % ±48.8 512 ves 1.9 :1: 3.2 14.7 
6-10 (d) 976.5 ± 2.5% ± 24.4 512 yes 1.6 :1: 2.6 11.8 
6-12 (a) 488 ± 20% ±97.6 1024 ves 2.5 :1: 4.1 20.3 
6-12 (b) 244 ± 2 0 % ±48.8 2048 no 2.1:1: 3.7 20.3 1 
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Fig. 6-11 Parts of the auto-correlation results of the same sample sequence in Fig. 
6-9 but with different step sizes: 

(a) step size = 488 jus, window width = ±97.6 fiS, (b) step size =244us, win
dow width = ±48.8/^s 

amplitude 
looT 
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Fig. 6-12 The Fourier transforms corresponding to the auto-correlation sequences 
shown in Fig. 6-11 (a) and (b). 
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a result of 24. Suppose the sequence is now extended to two periods as shown in (c). 

When it is correlated with the sequence in (d), which is the original sequence linearly 

shifted to the right by one step, the result is the same as before. Hence the circular 

shift in eqn (6-7a) can be programmed as a linear shift as follows : 

(i) Let x(tn) and tn be the input data sequence and time sequence respectively. 

Assuming that the total sampling time (N^) is known, the input sequences can be 

extended to two periods as shown in Fig. 6-13 (c). In the second period : 

•*:(/N+n) = x{tn) and N̂+n = tn + Nju 

where n = 0,l,...,N-l.Denote these sequences by {x2N(i)} and {t2N(i)} respectively. 

(a) 

(b) 

V 0 
•V. 

Result: 

J-

(c) 

(d) 

2 + 6 + 12 + 4 = 24 

^ n ' = < n + l > 4 0 

n 

n' = n-l 

2 + 6 + 12 + 4 = 24 

Fig. 6-13 Circular correlation is replaced by an equivalent linear correlation: 

(a) The original sequence x(n) is to be correlated with (b); 

(b) x(<n + 1 >4), which is obtained by shifting x(n) to the left circularly one step 

(c) x(n) is extended to two periods and to be correlated with (d); 

(d) x(n-1), which is x(n) shifted to the right linearly one step. 

The results of the two correlations are identical. 
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(ii) Set / = 0. 

(iii) The input sequences are modified by keeping the data values x(tn) but shifting 

the corresponding sampling times by : 

t(j) = tj + Its 

where j = 0,1,...,N-1 and ts is the correlation step size. 

(iv) Set Rx{l) = 0. For each t(j) search for a t2N(i) such that 

w 

t(j) - t2N(i) I - ^ > where w is the window width. 

If a match is found, compute RxQ) = Rx(l) + x(t(j))jc2Nii) 

(v) Increment / by land repeat steps (iii) and (iv) until / = N. 

Note that step (i) is performed only once for the whole process. 

In step (iv), there are potentially 2N searches to be performed for each / since 

there are N time values in the shifted sequence and 2N time values in extended 

sequence. For computing N correlations, the order of magnitude for searches is 

therefore N"̂ , which is undesirable. Fortunately all time values are stored in an 

ascending order, i.e. t(j +1) > t(j), the index j can be treated as a pointer to minimize 

the number of searches. Let us specify a "distance" D, say, equal to one step size ts. In 

the search process, t2N(i) is fetched as a target to be compared with t(j), where j is 

being incremented. When t(j) - t2N(i) is greater than D, we know that we have passed 

the target and the search should stop. Then we decrement j by 2 if j > 2, otherwise we 

set j to 0, to ensure that we do not pass the next target before the next search starts 

since we have set back the pointer. A new search begins by fetching the next target in 

{t2N(i)} with i incremented by 1 until i = 2N-1. After one value ofRx{l) is computed, 
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the pointer j is reset to 0. By this method, only a few (about 2 or 3) searches are done 

per t(j) so that the order of magnitude is N for each / and N for the whole process, 

which is one order lower than that of an exhaustive search. 

The following is the search times spent in performing the auto-correlation with 

a 80486 machine having a 33-MHz clock. The programs are written in Microsoft C 

version 6 : 

progranmiing method length N search time 
(seconds) 

comp. time 
(seconds) 

overhead 
(seconds) 

(a) with preset distance but no 
Dointer 

1,024 2,314 0.5 1.8 

-C-— 

(b) with preset distance and 
pointer 

1,024 8.8 0.5 1.8 

V —• 

(c) with preset distance and 
pointer 

4,096 39 0.9 

When a "distance" in time is set, the search for matches for a particular point stops 

when that distance is reached, but, without the pointer, the search will resume at the 

initial time for the next point. The average number of searches is thus N/2 per point, 

i.e. 512 per point in (a). With a pointer installed, about 2 or 3 searches are required 

per point. Indeed the ratio of the search time in (b) to that in (a) is 1 to 260. For 

computing 4,096 points, it takes, as shown in (c), a search period 4 times as long as in 

(b). 

6.4 Auto-correlation of Parallel a.r.s. and Hybrid a.r.s. 

In Chapters 4 and 5, the generation and the implementation of the parallel 

a.r.s. and the hybrid a.r.s., as well as their savings in computation, are fully described. 

In this section, the sequences sampled by these two methods will be analyzed by the 

auto-correlation approach developed above with an aim to confirm their anti-ahas 

property. The principle is to check whether a valid auto-correlation sequence is 
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available (as described in section 6.3.1.1) when the step size is smaller than the 

sampling period. For consistency, the input signal used in this section, namely x(t) 

= 1.5 cos(2jr. 50t) + 2 sin(2jr. 506t) + cos(27r. 1400t), is the same as the one in section 

6.3. 

6.4.1 Parallel a.r.s.: Let the input signal x(t) be sampled by a 32 x 32 parallel a.r.s. 

format (refer to section 4.3) yielding a data sequence {x(tn)} of 1024 points. This 

sequence {x(tn)} can, of course, be used directly to reconstruct a power spectrum, 

but here it is auto-correlated with a regular step size equal to 1/4 of the mean sampling 

period to generate anRx (/), 1 = 0,1,2,..., 4097. Part of the auto-correlation sequence 

and the power spectrum (computed by FFT) are shown in Fig. 6-14 (a) and (b), from 

which the characteristics of the parallel a.r.s. can be observed. 

6.4.1.1 Bursts of Noise: Comparing to those auto-correlation sequences of a genuine 

a.r.s. shown in Fig. 6-9, one can easily observe that Rx (/) in Fig. 6-14(a) has 22 

relatively large components from 1 = 0 to 88 at an interval of 4. To illustrate this point 

numerically, the first 9 values of ̂  (/) are {2211,12.45, -1.624,6.04, -983.5.5.08,9.73, 

8.06, 1606. . . . }, where the large values are underlined. This phenomenon is easily 

explicable if we recall that in the 32 x 32 parallel a.r.s. there are 32 groups of sampling 

points separated from each other by a random variable (see Fig. 4.1). Within each of 

these groups, there are 32 sampling points equally spaced in time. Since every 4 

correlation steps correspond to one sampling period, a strong correlation is expected 

every 4 steps where overlaps occur certainly when the shift / is equal to the first 32 

sampling periods. As the shift / progresses, randomness increases and we can see that 

the shape oiRx (/) begins to look similar to those in Fig. 6-11. In fact the" block effect" 
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Fig. 6-14: 

(a) Part of the 4096-point auto-correlation result, Rx (/), of a 1024-pointdata se
quence sampled by a 32x32 parallel a.r.s.; step size of correlation = 1/4 of the 
mean sampling period and window width = ± 20% of the step size. 

(b) The spectrum ofRx (/). 

(c) The spectrum of Rx (/) with the prominent bursts of noise removed. 

(d) Part of the sequence Ry (/) which is the inverse DFTof (c). 

page 143 



exists in the whole auto-correlation sequence but it is most prominent in the first 88 

steps and the last 88 steps since Rx(l) =Rx (N-l), where N is the sequence length. 

Let us remove the prominent bursts of noise in the power spectrum and 

observe the effect in the auto-correlation sequence. The resulting spectrum is shown 

in Fig. 6- 14(c) and its inverse DFT, Ry (I), is partly depicted in Fig. 6-14 (d). It is obvious 

that the large components in the original Rx (/) shown in Fig. 6-14 (a) are absent here, 

which is an evidence that the bursts of noise are generated by the blocks in the time 

domain. 

The block effect in the auto-correlation sequence also lends itself to the 

explanation of the appearance of the bursts of noise seen in the power spectrum. 

Recall that a rectangular pulse in the time domain transforms to a sine pulse 

(sine x/x) in the frequency domain, and the wider the pulse width is in time, the 

narrower in frequency and higher in amplitude is the main lobe of the sine pulse. By 

analogy, the wider a block we have in the parallel a.r.s. (i.e. a larger value in p of 

eqn(4-l)), the narrower and higher the burst of noise in the spectrum. This effect is 

illustrated in Fig. 4-4. 

To further demonstrate the block effect of the parallel a.r.s., let us suppress the 

first 21 large components and the last 21 components of the sequence, which are 

Rx (/) with 1 = 4,8, . . . , 88 and 1 = 4008, 4012,..., 4092 , by 100 times to force them 

into the same order of magnitude of its neighbours. The resulting spectrum is shown 

in Fig. 6-15 (b), which, when compared to the original spectrum, has lower bursts of 

noise. Note that the total noise power is not reduced but spread out more evenly 

instead. The signal-to-noise ratios of both spectra are about 22 dB, but the peak noise 
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2 2 

level in (a) is 22.6 V , whereas in (b) it is only 12.6 V . In (a) the ratio of the weakest 

component to peak noise is about 0.12 dB but in (b) the ratio increases to 2.53 dB. 

6,4.1.2 Nyquist Limit: In section 6.4, it is pointed out that if a uniformly sampled data 

sequence is auto-correlated with a step size smaller than the sampling period, zeros 

(null information) will be found in a regular pattern inside the resulting sequence. For 

example, a regularly sampled sequence auto-correlated with a step size of 1/4 of the 

sampling period would yield a sequence {Ro,0,0,0, R4,0,0,0, Rg,...} where Ri stands 

for non-zero values. Although the sequence length is increased by four times, the 

effective sampling period, which is the interval between the non-zero values, remains 

unchanged. Such an up-sampling by padding with zeros does not change the Nyquist 

limit [44]. 

V 
iiol 

(a) 

V 

i i 

Fig. 6-15: 

(a) The original spectrum of Rx (/), which is the same as Fig. 6-14 (b). 

(b) Spectrum of Rx (/) with the amplitude of the first 21 and last 21 large com
ponents reduced by 100 times. 
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Since the auto-correlation sequence Rx (/) of the parallel a.r.s. contains 4,096 

data regularly spaced in time, the Nyquist limit of its spectrum should be at k = 2048 

if its effective sampling period is indeed 114096. Referring to Fig. 6-14 (a), in the first 

88 steps, we do see a regular pattern of low values (effectively zeros) enclosed by large 

values in every interval of 4 steps. At about / = 100, however, the low values begin to 

grow in amplitude whilst the large components disappear. As a numerical illustration, 

let us compare the two auto-correlation sequences in Fig. 6-14 (a) and (d) for / = 200, 

201 , . . . , 209 : 

RxQ) :{... ,-13 8.5, -13.5, 100, 6.8, -91.2, -134.4, -343.8, -332.1, -67.67, -146,... }, 

and 

Ry {I):{..., -192.5, -6, 96.8, -3.41, -60.74, -140.5, -413.5,269.3, -128.1, -122, . . .} . 

\nRx (I) no fixed pattern of zeros is discernible. The values are also close to those in 

Ry (/), which is a filtered version of Rx (/). Observing from the simulation result, in 

the 4,096-point sequence Rx (/), patterns of zeros appear only in a very small portion 

of the total sampling period, revealing that information is available most of the steps. 

Hence we can conclude that the effective sampling period is 1/4096 and the Nyquist 

hmit is at k = 2048. The spectrum in Fig. 6-14 (b) in fact confirms this assertion; the 

component at k = 1,400 can be clearly seen. 

6.4.2 Hybrid a.r.s.: To study the properties of the hybrid a.r.s., an input signal, x(t) = 

1.5 cos(2jr. 50t) + 2 sin(2jr. 506t) + cos(2jr. 1400t), is sampled by a 4 x 256 hybrid a.r.s. 

sequence and an 8 x 128 hybrid a.r.s. for 1,024 points (refer to section 5.2). The 

resulting sequences are auto-correlated with a step size of 1/4 of the mean sampling 

period and a window width equal to ±20% of the step size. The auto-correlation 
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sequences, together with its Fourier transforms, are shown in Fig. 6-16 and Fig. 6-17 

respectively. 

6.4.2.1 Binning of Noise : By scrutinizing the auto-correlation sequence from the 4 x 

256 hybrid a.r.s. in Fig. 6-16 (a), we can observe that the overall shape of this sequence 

is similar to the auto-correlation sequences of data sampled by genuine a.r.s. (shown 

in Fig. 6-11 but with a different scale) except that there is a large value at / = 2,048, 

which is the mid-point of ̂ ( / ) . This value, ̂ (2,048), is as large as ^ ( 0 ) . Recall that 

the timing of the second half section of this hybrid a.r.s. sequence is equivalent to the 

first half plus 1/2 if the total sampling period is unity (see eqn 5-2); therefore when 

the shift / of the correlation reaches half of the total sampling period, a total match in 

timing occurs as at / = 0 so that a large correlation result is obtained. These 

components at / = 0 and at / = 2,048 are part of a pulse train of a periodicity of 1/2. 

Thus in the reconstructed power spectrum, we expect to see the effect from this pulse 

train. In Fig. 6-16(c), it can be seen that the amplitudes of the background noise at the 

even frequency indices are substantially larger than those at the odd frequency indices, 

which means that noise tends to gather at the even indices. In fact, if the frequency of 

the input signal is f, noise will cluster at indices congruent to f modulo 2. As all the 

components of the input signal in this case have even frequency indices, the 

background noise accumulates at the even indices. To show that this biiming effect is 

attributed to Rx(2,048), let us set this value to 0 and perform the DFT again. The 

resulting spectrum in Fig. 6-16 (d) shows that noise is redistributed into the odd indices 

making the peak noise level lower than that in (c). 

All other formats of hybrid a.r.s., e.g. 8 x 128, exhibit this binning of noise in 

the frequency spectrum. For the 8 x 128 format, the whole sampling period is divided 
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Fig. 6-16: (a) The auto-correlation result, Rx (/), of a 1024-pointdata sequence 
sampled bya4 x 256 hybrid a.r.s.; step size of correlation = 1/4 of the mean sam
pling period and window width = ± 20% of the step size. 

(b) The spectrum ofRx (/). 

(c) Part of the spectrum in (a). Noise tends to cluster at even indices. 

(d) Part of the spectrum of the same sequence in (a) with Rx(2,Q48)set to 0. Noise 
is spread out more evenly. 
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into four sections (see eqn 5-3). The timing of the second, third and fourth sections 

are the same as the first if the timing in each section is referred to the beginning of 

the respective sections. Hence for the 4,096-step auto-correlation, total match in 

timing is expected when the shift / reaches 1,024, 2,048 and 3,072 . These three 

conspicuous values can be seen in Fig. 6-17(a). (Note that the phase reversal of 

Rxi 1,024) and ^(3,072) is attributed to the phase change of the input signal.) Together 

with Rx(0) these three components form part of a pulse train having a frequency of 

4. Therefore, for an input frequency f, noise will cluster at indices congruent to f 

modulo 4. Since our input components have frequencies at 56,506 and 1,400, noise is 

expected to accumulate at k = 0 and 2 modulo 4, which are even integers (see Fig. 

6-17 (c)). Two input components at 56 and 506 are, however, congruent to 2 modulo 

4. Thus noise at these indices are relatively stronger. If the component at 1,400 is 

changed to 1,402, then all the indices of the components are 2 modulo 4 and noise will 

accumulate at only one index per period of 4, which is shown in Fig. 6-18. When 

^(1,024), ^(2,048) and ^(3,072) are all set to 0, noise in the frequency spectrum is 

redistributed more evenly as shown in Fig. 6-17 (d). 

Filtering the extra large components in Rx(l) does not improve the overall 

signal-to-noise ratio of the power spectra, but only reduces the peak noise level. The 

signal-to-noise ratios of the 4x 256 or 8x 128 hybrid a.r.s. in Fig. 6-16 and 6-17, whether 

filtered or not, are about 23 dB. After filtering, for the 4 x 256 format, the peak noise 

2 2 

level is reduced from 8 V to 7 V , making the ratio of the weakest signal to peak noise 

increase from 5.5 dB to 5.9 dB. For the 8 x 128 format, the peak noise level is reduced 

from 14.8 V to 12.7 V , making the ratio of the weakest signal to peak noise increase 

from 2.5 dB to 3.3 dB. 
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Fig. 6-17: (a) The auto-correlation result, fifx (/), of a 1024-pointdata sequence 
sampled by an 8 x 128 hybrid a.r.s.; step size of correlation = 1/4 of the mean sam
pling period and window width = ± 20% of the step size, (b) The spectrum of 
Rx (l).(c) Part of the spectrum in (a); noise tends to cluster at indices congruent to 
Q^nd 2.mo^ 4. (d)Part of^e spectrum of the same sequence in (a) with 
Rx{1,024),Hx(2,048) and Rx(3,072) sef to 0. Noise is spread out more evenly 
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6.4.2.2 Nyquist Limit : Similar to the analysis in section 6.4.1.2, i f the effective 

sampling period of a 4,096-point auto-correlation sequence generated by the hybrid 

a.r.s. is 1/4,096, then the Nyquist limit is at k = 2,048. Although there are large 

components at the beginning of each section, the auto-correlation sequences of both 

4 X 256 and 8 x 128 formats contain no patterns of zeros at all. Parts of Rx(l) from the 

4 X 256 and 8 x 128 hybrid a.r.s are shown in Fig. 6-19 (a) and (b), and the numerical 

values ofRxQ) with / = 10 to 20 are Hsted below : 

For 4 X 256 hybrid a.r.s. (Fig. 6-19 (a)) : 

{ . . . 101.4, -38.2, -43.4, -176,42.6,192.1,149.8,28.2, 69.5, -208.1, -71.95 . . . } 

For 8 X 128 hybrid a.r.s. (Fig. 6-19 (b) ) : 

{ . . . 96.1, -29.4, -67.3, -181.9,37.8,103.9,130.4, 9.4, 29.5, -181.1, -126.2 . . . } 

From Fig. 6-19 and the values oiRxQ) listed above, we can conclude that information 

is available at every step of the auto-correlation; thus the Nyquist limit is at k = 2,048. 

Fig. 6-18 Part of the power spectrum of an input x(t) = 1.5cos(27t. 50t) +2sin(2ji. 
506t) +COS(2JI. 1402t) reconstructed from ttie auto-correlation sequence of an 8 x 
128 fiybrid a.r.s. Noise clusters at indices congruent to 2.mod 4. 
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Fig. 6-19 : 

(a) Part of the auto-correlation sequence in Fig. 6-16(a) generated from ttie 4 x 256 
hybrid a.r.s. 

(b) Part of the auto-correlation sequence in Fig. 6-17(a) generated from the 8x128 
hybrid a.r.s. 

In their respective spectra shown in Fig. 6-16 (b) and 6-17 (b), the component at k 

1,400 can be unambiguously recognized. 

6.5 Concluding Remarks 

Since the auto-correlation of a sequence is related to its power spectrum, the 

anti-alias property of a randomly sampled sequence can be studied and explained via 

its auto-correlation sequence. For a regularly sampled sequence, the step size of its 

auto-correlation cannot be smaller than its sampling period ; otherwise null 

information (zero values) is obtained between two consecutive points of the sampling 

grid. The randomly sampled sequence, however, is a pseudo-continuous signal, and it 

holds information (with a certain probability) along the whole sampling period. 
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Hence, in theory, the step size of the auto-correlation can be reduced to an arbitrarily 

small interval so as to squeeze out the information of the high frequency components. 

In section 6.3, the effect of the step size on extending the Nyquist limit is illustrated. 

Based on the above theory, the auto-correlation of the parallel a.r.s. and the 

hybrid a.r.s. are studied in section 6.4. Apart from some large values, the 

auto-correlation sequences derived from both methods contain information in every 

step even i f the step size is smaller than the mean sampling period, thus confirming 

their anti-alias characteristics. The large values in these auto-correlation sequences 

are related to noise in their frequency spectrum. Eliminating these large values in the 

time domain does not improve the overall signal-to-noise ratio of the spectrum, but 

redistributes the noise more evenly within the spectrum so that the peak noise level 

is reduced. I f a weak signal component exists in the spectrum, it may be desirable to 

lower the peak noise level to make the signal more conspicuous. 

In general, using the DFT to reconstruct a spectrum of a randomly sampled 

sequence is more direct than using the auto-correlation method. Assuming that an 

N-point real sequence is obtained by random sampling, it takes N real multiplications 

( = N'^/16 complex multiplications) for evaluating its spectrum by the DFT and another 

N complex multiphcations for computing their power, i.e. a total of N /16 -i- N 

complex multiplications. For auto-correlation, N /16 complex multiplications are 

required for computing the auto-correlation sequence and N log2 N complex 

multiplications are required for transforming the sequence to the frequency domain 

by the FFT, i.e. a total of N /16 + N logz N complex multiplications. Although the 

order of magnitude of computation is the same for both methods, the auto-correlation 

method needs extra time in searching for overlaps. With the auto-correlation program 
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written in C, both the computation and the search process are implemented by using 

the mathematical functions of the C library. It turns out that the search time dominates 

the whole process time, making the computational time a negligible factor. In section 

6.3, we can see that the search time is 39 seconds for a 4,096-point auto-correlation 

while the computational time is less than a second. 

The auto-correlation method, however, may be considered a means to convert 

a randomly sampled sequence to a regularly sampled sequence since the resulting 

auto-correlation sequence is regularly spaced in time. If a randomly sampled sequence 

is so "pre-processed" once, the timing information of the sampling points may be 

discarded and the FFT may be used to compute the power spectrum. In some cases 

where correlation is desired, e.g. checking similarity between two randomly sampled 

signals, the techniques introduced in this chapter can be adopted. 
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CHAPTER 7 

RAPID EVALUATION OF SPECTRUM 

7.1 Introduction 

After an N-point data sequence x(n) is obtained by sampling, its frequency 

spectrum can be reconstructed by the D F T : 

^ (7-1) 

X(k) = 2 4n) m , k = 0,1, ...J^-1 

where W N = exp (-jlni/N). It is well known that for the above evaluation, the 

complexity of computation is N . For general-purpose computers manufactured 

before the nineties, the computational time required to perform a multiplication is 

significantly longer than an addition (e.g. a 8086 microprocessor takes a few clock 

cycles to do an A D D but over 100 clock cycles to do a M U L ) . To speed up the 

computation, fast algorithms were devised with a target to reduce as many 

multiplications as possible, even if in exchange more additions had to be performed. 

Among those fast algorithms, radix-2 FFT is the one most commonly used. Nowadays, 

however, microprocessors (like 80486 and Pentium 5) can perform floating-point 

multiplication as fast as floating-point addition. Hence overall optimization in both 

multiplication and addition must be considered. 

In eqn (7-1), W N ' is the kernel of the transform, which, i f programmed in a 

high-level language, requires the use of trigonometric functions in the library. Suppose 

the accuracy of X(k) can be sacrificed for the sake of computational speed, the kernel 
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may be approximated in value such that multiplications required can be reduced to a 

small number or even totally eliminated. This approach of optimization is completely 

different from exploiting the symmetry property of the kernel, which is adopted by all 

conventional fast algorithms discussed in Chapter 2. 

Considering all factors, the FFT may still be a more appropriate algorithm than 

the approximate method for evaluating a uniformly sampled sequence. However, 

when the sequence is randomly or irregularly sampled, the FFT cannot apply and the 

approximate method will become an attractive choice to speed up the computation. 

7.2 Approximate Fourier TVansforms 

7.2.1 Coarse Quantization of the Kernel 

7.2.1.1 Basic Principle: The kernel of the DFT, Wit, is composed of a set of orthogonal 

sine and cosine basis functions. Let us consider the case when k = 1; X ( l ) is evaluated 

by multiplying the input sequence by cos (27rn/N) and sin (2jrn/N). Suppose the 

sequence length N is 1,024, then there are 1,024 different values (if the sign is also 

considered) for the sine and cosine functions respectively. By representing values lying 

within a range by their mean, which is basically a clustering or re-quantization, fewer 

values remain and the computational load can also be reduced. 

Let the magnitude of cos (2jrn/N) and sin (TJIB/N) be divided into m levels 

and denoted by c(m) and s(m) respectively. If, for example, the positive range of s(m) 

is represented by five levels, we may have 

= 0 for 0 < 5(m) < 0.125 
= 0.25 for 0.125 <5 (m) < 0.375 

s{m) = • = 0.5 for 0.375 < 5(m) < 0.625 
= 0.75 for 0.625 < Sim) < 0.875 
= 1 for 0.875 < s{m) < 1 
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which is illustrated in Fig. 7-1. Similarly, the negative range of s(m) can also be so 

represented, yielding a 9-value representation scheme. Given a fixed sequence length 

N, the arc-sine of the quantization levels in s(m) can be evaluated to find the 

corresponding value in n. For N = 1,024, we obtain for the above scheme : 

= - 1 - - i for 682 < n < 850 
= -0.75 for 662 < n < 682 or 850 < n < 914 
= -0.5 for 575 < n < 622 or 914 < n < 961 
= -0.25 for532 < n < 575 or 961 <n< 100̂  
— Q f^,- n ^ », ^ on /too ^ c:in — 

= 0.25 
= 0.5 
= 0.75 
= 1 

for 532 < n < 575 or 961 < n < 1004 
for 0 < n < 20 or 492 < n < 532 or 1004 <n< 1024 
for 20 < n < 63 or 449 < n < 492 
for 63 < n < 110 or 402 < n < 449 
for 110 < n < 174 or 338 < n < 402 
for 174 < n < 338 

(7-2) 

It is obvious that c(n) can be represented in a similar way. When X ( l ) is to be 

evaluated, each element of {x(n)} is sorted according to the values of s(n) and c(n) 

it is to be multiplied, which can be achieved simply by looking at the values of n as 

sin(2jin/1024) 

1 — 

0.75 \— 

0.5 h-

0.25 

quantization steps 

0.875 

0.625 

0.375 

0.125 

20 63 110 174 338 402 449 492 

Fig. 7-1 Representing the magnitude of the positive half cycle of a sine function by 
5 values, namely 0, 0.25, 0.5, 0.75 and 1. 
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specified in eqn(7-2) for s(n) and a similar equation for c(n). The real and imaginary 

parts of X ( l ) are respectively given by : 

Real{X{l)\ = ^ iyx{n)\c{i) 
iGn \iE.di ^ 

and Imag{X{l)} = J^ (^x(n)\sii) 
iGn \(tGei ^ 

where i is one of the levels specified by n, and di and ei are the groups formed according 

to c(i) and s(i) respectively. Fig. 7-2 shows the block diagram for the computation, in 

which only 2 groups of x(n) are depicted. As multiplications by 0,1 and -1 are trivial, 

there are only 6 non-trivial multiplications required for a 9-level kernel. I f the sums 

of x(n) corresponding to s(n) = -m and c(n) = -m are first subtracted from those 

corresponding to s(n) = m and c(n) = m respectively before doing the multiphcations, 

there are only 3 multiplications required for computing X ( l ) . 

To compute X(k) other than k = 1, the same sorting procedure can apply with 

k regarded as a "scaling factor". Recall that sin (2jrnk/N), with a period of N/k in the 

time domain, is a compressed version of sin (Zjtn/N). Hence for a kernel Wlm '• 

s(nk) 

= - 1 for 682 < nA: < 850 
= -0.75 for 662 < nk < 682 or 850 <nk<9U 
= -0.5 for 575 < nk < 622 or 914 < nk < 961 
= -0.25 for 532 <nk< 575 or %l<nk< 1004 
= 0 for 0 < nA: < 20 or 492 < n < 532 or 1004 <n< 1024 

for 20<nk< 63 or 449 < nk < 492 
for 63<nk< 110 or 402 < nk < 449 
for m<nk< 174 or 338 < nk < 402 
for 174 <nk< 338 

= 0.25 
= 0.5 
= 0.75 
= 1 

(7-3) 

where nk = nk modulo N because the period of s(nk) in eqn (7-3) is now scaled to the 

sequence length N, which is 1,024 in this example. 
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7.2.1.2 Computational Complexity : Consider that the data sequence x(n) is sampled 

regularly in time. With the approximate method, there are only a few complex 

multiplications for evaluating one frequency component. In the above example of a 

9-level kernel, the actual multipUcations required are only 3 per frequency 

component. In general, therefore, the total number of multiplications required is u.N, 

where u is a small integer. As compared to the FFT whose complexity is Nlog2N, both 

algorithms have a linear complexity, but the number of multiphcations required by 

the approximate method can even be smaller by making u < < log2N. The kernel may 

also be rounded off to the nearest integer power of 2, thus making the multiphcations 

merely binary shifts, which can be effectively implemented by hardware or low-level 

languages. 

x(n) 
sort(n,k) 

-1 

c(n) = - l or 
s(n) = - l 

c(n) = -0.75 or 
s(n) = -0.75 

X ( l ) 

Fig. 7 - 2 Block diagram of the approximate evaluation ofX(k) by grouping x(n) ac
cording to the values ofc(n) ands(n). 
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In principle N-1 additions are required for computing each frequency 

component, although those data points to be multiphed by 0 need not be added at all. 

Thus the complexity for addition is N , which is significantly higher than that of the 

FFT. This approximate method could be faster than the FFT if both programs were 

run on a computer which took a much longer interval in executing multiplication than 

addition. 

Suppose the data sequence is not uniformly sampled, then the FFT is not 

applicable and the computational complexity is N for both multiplication and 

addition. It is obvious that, with the approximate method being used, computational 

effort will be significantly saved in multiphcation, and even for addition, it is also 

slightly lessened. The problem remaining to be considered is the trade-off in the 

accuracy of the recovered spectrum. 

7.2.2 Three-level Kernel 

7.2.2.1 Basic Principle: In the previous section, the kernel of the transform is rounded 

off to a few levels. Obviously, the computational speed increases as the number of 

levels in the kernel decreases. This rounding off can get coarser and coarser until 

ultimately two levels, i.e. -I-1 and -1 are left, which is equivalent to a set of rectangular 

waves being used as the kernel [4]. Multiplications by ± 1 are trivial; hence only 

additions and subtractions are required for the computation. A penultimate round 

off to 3 levels ( + 1 , -1 and 0) corresponding to addition, subtraction and 'do-nothing' 

was proposed by Mason[5]. The three-level round-off was reported to have less 

leakage than the two-level truncation while maintaining the computational effort 

substantially the same as the latter. In fact it could even be marginally less because 
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there is a "do-nothing" that requires no operation at all. Fig. 7-3 shows how a sine 

function is quantized to three levels. 

7.2.2.2 Leakage and Amplitude Error : Fig. 7-4 shows a typical truncated sine 

function, sal, and its corresponding cosine counterpart, cal. (The terms sal and cal are 

borrowed from Hughes and Herron [47].) The truncation level to generate these 

functions is V2 = 0.707, which corresponds to a "cut-in angle" of 0.25:7r. Note that in 

this case, the duration for the occurrence of 1 is equal to that of 0. I f the truncation 

level is lowered, the duration for the 1 will be lengthened. 

An interesting property of these sal and cal functions is that they keep the 

geometric symmetry of the sine and cosine functions, which can be clearly seen in Fig. 

7-4. Hence a set of "almost orthogonal"'^ basis functions can be generated by sal(k0) 

and cal(k^), where k is an integer. Consequently, when these functions are used as a 

transform kernel, the results retain the frequency characteristics of the DFT except 

sin^, said 

e 

Fig. 7-3 Quantization of the sine function. X is the truncation level and Be is the cut-
in angle. 

1. The functions sal(k0) and cal(ke) are orthogonal in its own right. When they are, however, used as 
substitutes for sin(k0) and cos(k0), orthogonahty is lost. 
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0.125 0.375 

0.625 0.875 
d 

0.125 

0.375 0.625 6 
0.875 1 

-1 

Fig. 7-4 The truncated sine function, sal 6, and cosine function, cal 6 [46]. The trun
cation level is at V2(=0.707) and the period of the function, 2JI, is scaled to 1. 

that leakage occurs and generates a background noise in the spectrum. The Fourier 

series of the cal and sal functions can be written as: 

cal 6 = -— -\-^ ak cos kd and said = ^ bk sin kd 
k=i k=l 

where 

flO - is dd-f d9 

0 
coskddd 

I 

- ^ { s i n [ ^ ( f - e c ) ] + sin[fc(|-K0c)] • 
(7-4) 

and 

b k ^ - f ^'sin kddB = T^lcos kdc - cos \k ( jr-^c)] • 
(7-5) 
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Hence for the functions in Fig. 7-4 where Oc = 0.25n : 

cal 6^ 

4 . lot 
— sm— 
kJi 4 

0 

and 

sal 6 = 

4 kji 
— cos— 
kn 4 

0 

cos kd for odd k 

for even k 

sin kd for odd k 

for even k 

(7-6) 

(7-7) 

which are shown in Fig. 7-5. Since sal 6 and cal 6 correspond to sin 6 and cos 6 

respectively, the coefficients other than k = 1 represent leakage terms. The desired 

coefficients at k = 1 contain about 44% of the total energy of the series. A different dc, 

of course, yields different series for the sal and cal functions, but the desired 

coefficients will still be the most significant terms. This property is illustrated in 

Hughes and Herron [47], where the distributions of the Fourier coefficients for four 

different dc are shown. 

T 1 1 r 
(a) 

L L _ ^ _ ^ _ l _ i _ ^ _ ^ _ l _ r _ ^ _ ^ _ r _ x _ ^ _ , 

T r 

• r - j - - I - I - i - r X - . -

J L J I I L 

Fig. 7-5 The Fourier coefficients of (a) sal 6 and (b) cal 6 with 6c = 0.25jr. 
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Equations (7-4) and (7-5) also indicate the amount of error in amplitude when 

the cal and sal functions are used as the kernel. By definition, k = 1 in the above 

equations corresponds to the desired frequency index and the desired values for ai 

and b i are 1. Hence the actual values of ai and b i are related to the amphtude of the 

components being recovered. For example, in Fig. 7-5 where 6c = 0.25JI, ai = b i = 

0.9003. Thus the real and imaginary parts of the computed components are expected 

to be 10% smaller in amplitude. Referring to Table 7-1, the relative accuracy of the 

3-level kernel is 92%, which is about 8% smaller than expected. The set of amplitudes 

in (a) are used as reference for computing the error incurred in (b) because the input 

data x(n) is the same for column (a) and (b). More numerical examples will be given 

in Table 7-3 of section 7-4. 

Numerically, 6c can vary between 0 to Q.SJI. When 6c = 0, we have a two-level 

kernel of values -I-1 and - 1 , which gives an estimated error of 27.3 % (larger than the 

expected value) in the amplitude of a real component or imaginary component. As 

6c approaches O.SJC, the truncation level approaches 1, which means that the all input 

data will be discarded and the evaluation fails. Hence a practical value of 6c falls 

within 0 to 0.25jr. 

7.2.2.3 Computational Complexity : Since no multipUcations are required by this 

algorithm, the only computational load derives from additions (including 

subtractions). Fig. 7-6 shows a block diagram of the computation using the three-level 

kernel. Assuming that all input data x(n) in Fig. 7-6 are to be added, there are N-1 

additions per X(k) and the overall complexity is thus N . The actual numbers required 

will be a fraction of N'^ since the "duty cycle" of the rectangular waves forming the 

kernel is always less than 100% (see Fig. 7-4). 
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x(n) 

n,k 

0 

sign(n,k) sign(n,k) 

X(k) 

Fig. 7-6 Block diagram of the evaluation of a frequency spectrum by a three-level 
truncation of the kernel values. 

7.3 Estimation of Randomly Sampled Sequences 

As pointed out in section 7.2.2, the approximate Fourier transform using the 

truncated sine and cosine functions requires no multiplications at all, which is very 

attractive for evaluating randomly sampled sequences. Fig. 7-7 shows two amplitude 

spectra of the same signal, x(t) = 1.5 cos(2jr.50t) + 2 sin(2jr.506t) -(- cos(2jr.l,400t), 

sampled for 1,024 points and evaluated to k = 2,047. It can be seen that the spectrum 

recovered by the three-level kernel retains the anti-alias property of the additive 

random sampling (a.r.s.) although the amplitudes of the components are slightly less 

than those obtained by direct evaluation. Table 7-1 summarizes the results of the 

spectral estimation. Note that the ratios of the component amplitudes and the 

signal-to-noise ratios for both evaluation methods are virtually the same, which shows 

that the key dimensions of the spectrum are preserved. Taking the set of component 

amplitudes computed by the DFT as the reference, the accuracy of the three-level 

method is about 92%. The method also reduces the time required for computation by 

57% because of the saving in multiplications. 
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1.504 

1 

1.974 

(a) 

1 1 

1.083 

0 2047 

k 

1 

1.39 
1.82 

(b) 

1 1 

0.991 

2047 

Fig. 7-7 Amplitude spectra of a signal x(t) = 1.5 COS(2JI .50t) -\- 2 sin (2n 
.506t) + cos(2jt. 1,400t) sampled for 1,024 points by a.r.s. and evaluated by: 

(a) direct computation, and 

(b) the rapid method with a 3-level kernel shown in Fig. 7-4. 

Table 7-1: Data of the spectra shown in Fig. 7-5. 

Computed by: 
Ca) DFT Cb) 3-level kernel 

Signal amplitude (V) 1.504,1.974,1.083 1.39,1.82, 0.991 
Amplitude ratio 1.39 : 1.82 : 1 1.40 : 1.84 : 1 
Average accuracy (%) 96.7 94.3 
Rel. accuracy (average) 1 0.92 
S/N ratio (dB) 28.3 27.4 
Peak noise (mV) 311 317 
Computation time (sec) 78.55 33.61 
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7.4 Three-level Method with Parallel a.r.s. and Hybrid a.r.s 

7.4.1 Accuracy and Saving : The algorithms for parallel a.r.s. and hybrid a.r.s., which 

are covered in Chapters 4 and 5 respectively, aim at reducing the number of 

multiplications required for evaluating the frequency components of a randomly 

sampled sequence. Both of these algorithms save at least 75% of the multiphcations 

when compared to direct evaluation. It will be shown that data sequences sampled by 

parallel a.r.s. and hybrid a.r.s. can also be reconstructed with the three-level kernel. 

The most obvious advantage is that even the remaining 15% of multiplications can be 

saved as well. 

The amplitude spectra of a signal x(t) = 1.5 cos(27r .50t) + 2 sin {2JI .506t) 

+ cos(2jr. l,400t) sampled for 1,024 points by parallel a.r.s. and hybrid a.r.s. are shown 

in Fig. 7-8 (a) and (c) respectively. In (d) and (e), the sequences sampled by the above 

methods respectively are reconstructed using the three-level kernel with the 

truncation level at 0.707. It can be seen that the spectra reconstructed by using a 

three-level kernel maintain the anti-alias property. Table 7-2 lists the results of the 

computation. Since the principle of applying the three-level kernel to both of the 

above sampling methods is the same, hybrid a.r.s. will be chosen as the representative 

for further discussion. 

To illustrate the effect of the cut-in angle on the relative accuracy. Table 7-3 

lists a set of results when the above signal x(t) is sampled by hybrid a.r.s. and computed 

by three-level kernels of different OQ. The first row (DFT) is the result of direct 

evaluation used as the set of references. The column of expected relative accuracy is 

in fact the magnitude of ai or b i given by eqn 7-4 or 7-5. It is obvious that the values 

of relative accuracy obtained by computation match closely with the expected values. 
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Fig. 7-8 Amplitude spectra of a signal x(t) = 1.5cos(2jt .50t) + 2 sin (2jr .506t) 
+ COS(2JI . 1,400t) sampled for 1024 points by: 

(a) parallel a.r.s. and reconstructed by the DFT, 

(b) parallel a.r.s. and reconstructed by a three-level kernel with dc = 0.257t, 

(c) hybrid a.r.s. and reconstructed by the DFT, and 

(d) hybrid a.r.s. and reconstructed by a three-level kernel with 6c = 0.25JI. 
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Table 7-2 : Data of the spectra from parallel a.r.s. and hybrid a.r.s. 
shown in Fig. 7-8. 

Parallel a.r.s. 
(a) (b) 

DFT 3-level kernel 

Hybrid a.r.s. 
(c) (d) 

DFT 3-level kernel 
Signal 
amplitude (V) 

1.501,1.993, 
0.964 

1.369,1.801, 
0.865 

1.532,2.011, 
1.027 

1.371,1.776, 
0.959 

Amplitude 
ratio 

1.56 : 2.07 :1 1.58 : 2.08 : 1 1.49 :1.98 :1 1.43 :1.85 :1 

Rel. accuracy 
(average) 

1 0.91 1 0.90 

S/N ratio 
(dB) 

28.2 27.1 28.4 27.4 

Peak noise 
(mV) 

754 734 478 484 

Computation 
time (sec) 

77.9 31.2 77.4 30.9 

Since these expected values are readily available, they can be used as scaling factors 

to adjust the amphtudes computed by a three-level kernel closer to those by direct 

evaluation. For example, in the second row of Table 7-3 where dc = O.ISJI, the 

expected relative accuracy = 0.9. When the computed components are divided by 0.9, 

their values become 1.52,1.96 and 1.06, which are close to the reference values in the 

first row and also to the exact values of 1.5,2 and 1. 

The three-level kernel is devised to save multiphcations, and so are the 

algorithms of parallel a.r.s. and hybrid a.r.s. When this kernel is applied to either of 

the two algorithms, the effort in determining the sal and cal values will also be reduced. 

Referring to the signal flow diagram for computing the hybrid a.r.s. shown in Fig. 5-6, 

for a sequence length of 16, only 4 instead of 16 cal and sal values are needed per data 

point. This results in a 75% saving in the load of determining the cal and sal values, 

which is exactly the same percentage of saving in multiplications by the cosine and 
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Table 7-3 : Effect of the cut-in angle dc on the relative accuracy of the 
component amplitude. The input sequence is sampled by hybrid a.r.s. 

expected 
rel. accuracy 

computed amplitude in V 
(relative accuracy) 

DFT 1 1.532(1) 2.011 (1) 1.027(1) 
(9c=0.257r,A = V2 0.90 1.371 (0.90) 1.766 (0.88) 0.959 (0.93) 
0c=O.166jr,A = O.5 1.10 1.689 (1.10) 2.214 (1.10) 1.123 (1.09) 
0c=O.O96jr,A = O.3 1.22 1.853 (1.21) 2.451(1.22) 1.202(1.17) 

sine values. In practice, the saving of cal and sal in terms of computation time is hardly 

observable because the time for determining such a value by a 486 system is so short 

that this amount becomes an insignificant factor. Referring to column (d) of Table 7-2, 

from a total of 30.9 seconds of computation time, about 0.83 second can be saved . 

7.4.2 Bandwidth : In principle, the substitution of the sine and cosine by the sal and 

cal does not affect the anti-alias property of a random sampling algorithm so that the 

resulting Nyquist frequency is also infinite. However, similar to the case discussed in 

section 3.3.3, the bandwidth of the spectrum will be limited by the characteristics of 

the host system that implements the reconstruction. 

The situation is clear when we refer to the block diagram of the evaluation 

shown in Fig. 7-6. Assuming that the evaluation is realized by hardware, the sal and 

cal are generated by a switching action depending on the input indices n and k. The 

upper bound in frequency is obviously determined by how fast the switching can be. 

When realization is by software, the switching rate is reflected by the resolution of the 

word-length representing the sampling times, which is equivalent to the limiting 

frequency of the system. The Kmiting frequency index km occurs when the product 

kmtn becomes an integer for all n, where {tn} is the set of sampUng times. If, for 
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example, tn is in seconds expressed in fixed point decimal number which holds values 

to 6 digits past the decimal point, then km = 10̂  Hz and the fold-over frequency is at 

^2 km = 5x10^ Hz. Proofs are omitted here since the analysis parallels that in section 

3.3.3. 

7.5 Concluding Remarks 

The rapid evaluation method using a three-level kernel requires no 

multiphcations at all for estimating a spectrum. Given a randomly sampled sequence 

that has a computation complexity of in both multiplication and addition, such a 

method is certainly an attractive solution to speed up the computation. In Tables 

7-land 7-2, we can see that this method saves about 60% of the original computation 

time. 

The speed of computation is gained at the expense of the accuracy in the 

amplitude of the resulting spectrum. From the major coefficients of the Fourier series 

of sal 9 and cal 6, nevertheless, a scaling factor can be obtained to adjust the computed 

amplitude. Another drawback is the leakage which occurs in the form of a broadband 

noise, but with random sampUng, background noise exists anyway. By observation, 

these two types of noise are random in nature and exhibit no reinforcement to each 

other. Tables 7-1 and 7-2 show that the signal-to-noise ratios are not degraded by the 

rapid evaluation method. 

From the frequency-domain representation in Fig. 7-5, it can be seen that the 

major components of the sal and cal functions map to the frequency indices (or wave 

numbers) of the sine and cosine functions. Consequently, the anti-alias property of 

random sampling is unaffected by using the sal and cal as substitutes for the sine and 
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cosine respectively. The rapid evaluation method can also be appHed to parallel a.r.s. 

and hybrid a.r.s. to eliminate all the multiplications required by these two algorithms. 

In fact, with either of these algorithms, the load in determining the sal and cal values 

can also be saved. This load, however, is insignificant when realized in a modern 

computer and the saving will not enhance the speed of computation significantly. 

If speed is a crucial factor to consider, the rapid evaluation method is the best 

candidate in computing the spectrum from a randomly sampled sequence. This 

evaluation method can also be exploited to reduce the hardware cost of 

implementation. As neither trigonometric functions nor multiphcations are involved, 

a micro-processor having no floating-point operation (e.g. Intel 8086), or even a binary 

adder, is also suitable for computing the spectrum. 
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CHAPTER 8 

APPLICATION EXAMPLES OF RANDOM AND 

PSEUDO-RANDOM SAMPLING 

8.1 Introduction 

Random sampling, also known as randomized sampling, irregular sampling, or 

time dithering [48, 49], is one of the sub-Nyquist sampling methods that can recover 

without aliasing a spectrum which is not band-limited. As discussed in Chapter 3, the 

use of random sampling may facihtate the adoption of slower hardware and save 

memory storage in some cases, but in general the loading in computation is heavier 

than regular samphng. Owing to this reason, specially designed hardware can be more 

efficient than a general purpose computer for computing a spectrum from a randomly 

sampled sequence. Besides the loading in computation, there are other costs 

associated with random sampling as well. Hence this sampling method finds its 

applications where the alias-free property or the reduction in the number of samples 

outweighs other considerations. 

Random or irregular sampling appUes naturally when signals being observed 

occur irregularly in time, such as those in astrophysics and space science. Another area 

of application is in instrumentation where anti-alias filtering is not desired or a speed 

higher than the normal operational speed of the available hardware is required. 

Typical applications in instrumentation have been introduced in Chapter 3. Two 

appUcations in digital signal processing, which are motion detection in images and 

the correlation detector, will be suggested in this chapter. 
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8.2 Motion Detection in Images 

8.2.1 Segmentation by motion : For our visual perception, motion is a powerful cue 

to extract objects of interest from a background. In imaging applications, motion arises 

from a relative displacement between the sensing system and the object being viewed. 

The use of motion in segmentation can be achieved in both spatial and frequency 

domain [50,51]. The basic approach of the spatial domain technique is to compute 

the difference between the images taken at different instants whilst the frequency 

domain technique uses the Fourier transform to detect objects moving at a constant 

speed. In the following discussion, we shall focus on the latter approach equipped 

with random or pseudo-random sampling. 

8.2.2 Frequency Domain Technique : Assuming an object moves at a constant speed, 

a sequence of T digital images of the scene of size MxN pixels per frame may be 

obtained as shown in Fig. 8-1. The projections of the object onto the x-axis and y-axis 

N - l M-1 

are given by ^ f(x,y,t) and ^ f(x,y,t) respectively, where t = 0,l,...,T-l. A complex 
y=0 x=0 

f(x,y, to) 

to 

time M 

• f(x,y,ti) 

t i 

projection onto the x-axis 

Fig. 8-1A sequence of image frames. 

N 

ti 
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sinusoid of frequency k i can be multiphed to the sums of pixel values added along the 

y direction. The sum of the weighted projections onto the x-axis at time t is [52]: 

(8-1) M - l N-1 

(8-2) 

gx(t,ki) = X2t(>'.y.')ei'"''"" 
x=Oy=0 

where t = 0,1,...,T-1, and k i is a positive integer. 

Similarly, the sum of the weighted projections onto the y- axis is 

N - l M - l 

gy(t,k2) = 2 2 ^(W) ^"^^''^^ 
y=Ox=0 

where t = 0,1,...,T-1, and k2 is a positive integer. 

Let VI and V2 be the velocities of the motion in the x and y directions 

respectively. The 1-D Fourier transforms of eqns (8-1) and (8-2) respectively become: 

1 ^ 1 (8-3) 
Gx(ui,ki) = :i2gx(t,ki)e-J^"^ /̂T 

t=o 

where ui = 0 , l , . . . , r - l and 
..^ ^ (8-4) 

f Gy(u2,k2)=;^2gy(t'k2)e-j^"^^/^ 
t=0 

where U2 = 0,1,...,7-1. Obviously ui = kivi and ui = kivi. Here vi and V2 are in 

pucels per total frame time and the actual physical speeds depend on the frame rate. 

Let us consider a particular case that a point object is moving in the x-direction 

in a background with a high but constant level. Hence eqn(8-l) applies. Note that the 

multiphcation of the complex sinusoid, ei-^^i^' , is orthogonal to the projection of the 

image. The result is that any moving point will be characterized by a complex sinusoid 

and any static level, no matter how large, will be averaged to zero or nearly so. 
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N - l 

Referring to eqn (8-1), let S(x,t) = ^ f(x,y,t). The plot of S versus x at two 

y=0 

particular times t i and t2 is shown in Fig. 8-2 (b), where A is the background level and 

A > > (B- A), the projection of the object above the background. Then eqn (8-1) can 

be written as: 

M - l 

gx(t,ki) = 2 S(x,t) ei^"^^^' 
x=0 

M - l M - l 

= ^ rB(x,t) - A ] e'^'^i'^^ + 2 A ej^^^'^^ 
x-0 x=0 

(8-la) 

For the first term in the above equation, at each At there exists only 1 value of B(x,t) 

at a particular x. Hence the summation gives a complex sinusoid : 

M - l 

2 [B(x,t) - A ] ei^ '^i '^ ' = C eJ^^i^' , C a 
x=0 

constant 

motion 
projection 

image 
projection 

(a) 

Image 
projection, S 

B(xi,ti) B(x2,t2) 

XI X2 

(b) 

Fig. 8-2 (a) Ttie orthogonality of the projections, (b) The image projections of a 
high bacf<grouncl level A and a moving point B at different times ti and fe.. 
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To have a proper DFT with no smearing, kiAt must be chosen such that ^'^^^^^ 

traverses a number of complete cycles in the M frames. Hence the second term of 

eqn (8-la) can be written as : 

M - l 
A 2 e j^'^ i^ t^O. 

x=0 

Therefore gx(t,ki) = C e^^'^i^^ and its DFT should look similar to those in Fig. 8-4. 

From the above example, we can generalize that a moving object is characterized by 

a complex sinusoid, hence contributes to a frequency component in the DFT. Any 

static background, however, will be suppressed to zero or a very small value in the 

spectrum. 

A practical example is taken from p.474 to 477 of [52]. Fig. 8-3 (a) shows one 

of a 32-frame sequence of LANDSAT images with white noise added to it. There is 

an object moving at 0.5 pixel per frame in the x direction and 1 pixel per frame in the 

y direction. The target, which is circled in Fig. 8-3 (b), has a Gaussian intensity 

distribution spread over a small area and is hardly discernible. The spectra Gx and Gy, 

computed according to eqns (8-3) and (8-4), are shown in Fig. 8-4. The indices k i and 

k2 are chosen to be 6 and 4 respectively. Taking Gx as example, there should be two 

peaks, one at frequency index 3 ( = k m ) and the other at 29 ( = T - k iv i ) . From the 

location of the first peak and the frame rate, we can deduce the speed of the object. 

This method is especially effective for checking an object moving slowly in a stable 

background scene corrupted by white noise, e.g. satellite images. Because of aliasing, 

there is limitation in choosing the values of k i and k2. Suppose k i is chosen to be 34 

instead of 6, there will be two peaks at frequency indices 15 and 17 in the spectrum. 

If 15 is taken as the solution, the result will be incorrect. 
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Fig.8-3(a) ALANSATframe ( From Cowart, Snyder and Ruedger [53]) 

'mm 

Fig. 8-3 (b) Intensity plot of the above frame with target circled. (From Rajala, Rid
dle, and Snyder [51]) 

page 178 



640i 

560 

480 

400 

o 
X 

240 

I60H 

80 

(a) 

\ A a 
12 16 20 24 

Frequency 
28 32 36 40 

lOOl 

80 

2 6 0 

20H 

(b) 

12 16 20 
Frequency 

24 28 32 36 40 

Fig. 8-4 Spectra of a moving object in an image: 

(a) Gx with 2 peaks at frequency indices 3 and 29; 

(b) Gy with 2 peaks at frequency indices 4 and 28. 

(From Rajala, Riddle and Snyder [51]) 
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8.2.3 Applying Random Sampling : Referring to the frequency domain technique 

discussed above, i f the timing of the input frame is a continuous variable, i.e. an image 

frame can be taken at any moment, random sampling can be applied so as to gain the 

advantage of being alias-free. One of the consequences is that the range of the 

multipliers k i and k2 described above can be extended [54]. 

Let us return to the previous numerical example that k i is chosen to be 34. 

Assume that 32 frames are taken in a duration of one unit of time, the timing for each 

frame is given by ti = i/32 -\- r/ , where r is a uniformly distributed random variable. 

Fig. 8-5 (a) shows the power spectrum of a simulated sequence of length 32 with 

random noise added. A peak is seen only at frequency index 17, hence no ambiguity 

arises in choosing the solution. Two more examples are shown in Fig 8-5 (b) and (c) 

where a sequence is sampled by two random sampling methods, namely jittered 

random sampling and additive random sampling respectively for 64 points. Note that 

the input frequency is 41 and the Nyquist limit is 32, but no aUas occurs in both cases. 

8.2.4 Pseudo-random Sampling : In many practical cases, frames of images are 

recorded uniformly in time, hence genuine random sampling may not be apphcable. 

We can, however, under-sample the input sequence of images by adopting a scheme 

which selects the samples f(x,y,tn) from T frames recorded regularly at an interval of 

At between frames at : 

tn = {nP + Gn) At (8-5) 

where n = 0,1,2,...,Q-1, Q is an integer which divides T, P = T/Q and a is a random 

variable with integer values distributing uniformly between ±P/2. 
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Fig. 8-5 Power spectra of a sequence (with random noise added) sampled by: 

(a) jittered random sampling for 32 points. The input frequency (peak) is atk = 17. 

(b) jittered random sampling for 64 points. The input frequency (peak) is at k = 41. 

(c) additive random sampling for 64 points. The input frequency (peak) is atk ^41. 
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8.2.4.1 Advantages : The spectrum of the above sequence selected by this pseudo

random sampling scheme differs from that of a sequence of samples obtained by 

down-sampling the input sequence regularly with zeros padded in between. The 

former method retains the original fold-over frequency whilst the latter does not. For 

example, i f the total number of input frames available (T) is 128 and the number of 

frames selected (Q) is 32, i.e. a down-sampling of 4, for the pseudo-random sampling 

method , the fold-over frequency is at 64 (=T/2), whereas for the regular case, the 

fold-over frequency is effectively at 16 ( = Q/2) only. By regularly skipping the data, 

only a repetition of a compressed version of the original spectrum is obtained (see 

Fig. 8-6(a)). Fig 8-6 (b) and (c) show the spectra of two sequences with 32 points 

selected by the pseudo-random scheme from 128 and 256 points respectively. Clearly 

the frequencies at k = 60 and k = 120 of the two input sequences are in place. Hence 

with the pseudo- random scheme, the ranges for the multiphers k i and k2 are 

extended comparing to the regular down-sampling. 

In order to detect a slow movement of a target, a long period of observation, 

hence a large number of frames may be required for the analysis. In doing so, more 

memory space is required. One solution is that frames are skipped regularly, which 

effectively lowers the sampling rate and may generate ahas. I f the pseudo-random 

sampling is adopted, not only the fold-over frequency remains as if no skipping is 

done, but also the memory space required is less than storing the original input 

sequence. Suppose a sequence of T words is obtained and down-sampled by the 

pseudo-random sampling method by a factor of 4, at most T/2 words, which includes 

T/4 words of the sampled data and T/4 words denoting the corresponding timing, will 

be stored. I f the timing sequence is not stored, the data sequence should contain 
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Fig. 8-6 Power spectra of a sequence (with random noise added) 

(a) down-sampled regularly by a factor of 4 with zeros padded. Original length is 
128 points. 

(b) down-sampled with pseudo-random sampling by a factor of 4. Original length 
is 128 points and input frequency is atk = 60. 

(c) down-sampled with pseudo-random sampling by a factor of 8. Original length is 
256 points and input frequency is at k = 720. 
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zeros at all instants where samples are discarded. Let u(x,y,ti) be the values of the 

sampled sequence, then 

'u{x, y, ti) = fix, y, ti), if U G tn (8-6) 

u{x,y,ti) = Q, iiti^tn 

Since these zeros appear consecutively in the form of short sequences, encoding 

methods, e.g. run-length encoding, may be used to reduce the amount of memory 

storage. 

8.2.5 Simulation results : When random or pseudo-random sampling is adopted to 

sample a signal, the amplitude of the signal recovered cannot be exact since 

randomness is introduced in the timing. Table 8-1 summarizes the percentage errors 

in the signal amplitude from the spectrum estimated by the above methods described. 

We can see that all errors are below 10 %. Since different sets of random variables 

are used, we cannot judge their relative performance by directly comparing the 

numerical values of these errors. 

Random sampling and pseudo-random sampling methods can be appHed in 

detecting moving objects recorded by a sequence of image frames, e.g. satellite 

images. As random sampling is alias free, there is no ambiguity in choosing the correct 

peak of frequency in the spectrum for calculating the speed of the object. 

Pseudo-random samphng effectively retains the usable frequency range of a long 

sequence although data points are in fact discarded. This scheme is especially suitable 

for detecting a slow moving object as discussed in section 8.2.4.1. 

With either random or pseudo-random sampUng, background noise is 

generated and error is introduced in the amplitude spectrum. From Fig. 8-5 and Fig. 
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8-6, however, we can see that the peak frequencies are strong enough to be extracted 

even with random noise dehberately added to the input sequences. Table 8-1 shows 

that the signal amplitude estimated by the above methods are at least 90% accurate. 

For the pseudo-random method, if zeros are inserted in the sequence where samples 

are discarded, the evaluation of the spectrum can be performed with the FFT provided 

that the original sequence length is a power of two. 

Table 8-1: Percentage error of the signal amplitude recovered from 
different random sampling methods 

Samphng Method % error 
jitter, 32 points, Fig. 8-5 (a) 4.95 
jitter, 64 points. Fig. 8-5 (b) 9.47 
additive random sampling, 64 points, Fig. 8-5 (c) 9.19 
pseudo-random, 128 points*. Fig. 8-6 (b) 1.98 
pseudo-random, 256 points*. Fig. 8-6 (c) 5.30 

*32 points of the original sequences are selected 
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8.3 Correlation Detector 

The cross-correlation of two sequences x(n) and s(n) can be defined as 

N-l 

Rsx(l) = J^xin)s(n-l) 
1=0 

(8-7) 

where n = 0,1,2,..., N - l and N is the sequence length. This function measures how 

similar these two sequences are and it can be used for signal comparison such as in 

the detection of a signal in white noise or a one-dimensional template matching in 

image processing. The block diagrams for both of the mentioned applications would 

be similar to the one shown in Fig. 8-7, where x(n) is the input signal to be compared 

with a replica signal s(n). Although the operation is performed in the time domain, 

with regular sampling, the problem of aliasing still exists i f the input is sinusoidal or 

periodic. Suppose s(n) = A cos (Ztt f n/N), then the system will not be able to 

distinguish x(n) = A cos {2n f n/N) from x(n) = A cos [In f(N-l-n)/N]. Another 

example is illustrated in Fig. 8-8, where two patterns of grating are sampled regularly 

Both of them wil l yield a sequence {1,1,1,0,0,1,1,1,0,...}. I f either of them is taken as 

the template, both patterns will be aimounced the same. One approach is to increase 

the sampling rate, which will elongate the sequences and increase the number of 

x(n) Compare to 
threshold 

s(n) 

RepHca sequence 

cross-correlation 

Fig. 8-7 Detection of a deterministic signal in wtiite noise [42]. 
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operations. Another approach is to adopt random or irregular sampling. Suppose the 

sampling instants 1,2 and 5 are shifted slightly to the left, the sequence from the first 

pattern may become {1,0,0,0,0,0,1,1,0, . . . } while the sequence from the second 

pattern will remain unchanged. The two patterns can now be differentiated. 

8.3.1 Cross-correlation of Randomly Sampled Sequences : Let us define, according 

to the format in section 6.4, the linear cross-correlation of two signals as: 

N-l 

Rsx(l)=^ X{tn)s{tn-l.ts) 
1=0 

(8-8) 

where n = 0,1,2,... and ts is step size of the correlation. This equation can be used 

to demonstrate the anti-alias property and noise immunity of random sampling. 

Assume that, in Fig. 8-7, the rephca signal is s(t) = 1.5 cos (27r.501) and it is 

sampled by additive random sampling for 512 points to yield a replica sequence 

s(tn) = 1.5 cos (27r.50 tn). The input signal x(t) will also be sampled by the same timing 

(a) 

sample number 

2 3 4 5 6 7 8 
(b) 

Fig. 8-8 (a) Two patterns of grating and (b) their corresponding intensity profiles 
obtained by regular sampling such that the resulting sequences are the same. 
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sequence to give x(tn). Fig. 8-9 shows the results of cross-correlations of s(tn) with 

different x(tn) using a step size of 1/512 and a window size of ± 1 0 % of the step size 

(section 6.3.1). In Fig. 8-9(a), x(tn) = s(tn), and the matching is reflected by a large 

value in Rsx(O) =580.7. In Fig. 8-9(b), x(tn) = s(tn) + e(tn), where e(tn) is a random 

noise of 0.58 V r.m.s., giving a signal-to-noise ratio of 8.25 dB. In spite of such strong 

noise, Rsx(O) =587.5. In Fig. 8-9(c), x(tn) = 1.5 cos (2jr.562 tn), which would be an 

alias of s(tn) i f sampling were performed regularly. With random sampling, however, 

aKasing is suppressed and Rsx(O) is only -29.2. 

The correlation detector works not only with monotonic sinusoids, but also 

with signals having several frequency components. Table 8-2 shows another set of 

results of a template s(tn) = 1.5 cos (2jr.50 tn) +2 sin (2jr.506 tn) + cos (2jr.l400 tn) 

correlating with different inputs. Only the first terms of the correlation, i.e. Rsx(O), 

are listed because these are the most significant terms. The first two rows of Table 

8-2 show the results of a perfect match and a perfect match corrupted by noise. It can 

be seen that Rsx(O) are large. In row three to row six, matches are partial so that the 

values of Rsx(O) are smaller than the previous cases. In row seven, the input has 

components which are ahases of the template s(tn); and in the last row, the input 

frequencies are close, but not equal, to those of the template. For these cases of 

mis-matches, the results are small in value and negative in sign. Note that in this 

example the Nyquist frequency is 256, but an input frequency more than 5 times this 

value (i.e. 1,400) can also be handled. 

8.3.2 Cross-correlation with Delayed Signal: In regular sampling, an input being a 

delayed version of a template can be detected by cross-correlation using eqn (8-7). 

Suppose the input x(n) = s (n-m), then the maximum value Rsx(m) in the resulting 
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Fig. 8-9 Cross-correlation of a template s(tn) = 1.5 cos (2 jt. 50 tn) with: 

(a) x(tn) = s(tn). A large Rsx(0) indicates a match atl = 0. 

(b) x(tn) = s(tn) + noise. Rsx(0) is also large. 

(c) x(tn) = 1.5 cos (2 jr. 562 tn). This alias is rejected since Rsx(0) is small. 
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sequence will indicate a match at / = m. With random sampling, however, a Hnear 

shift in the time or spatial domain cannot align two randomly sampled sequences. A 

different approach, which uses a delayed version of the template for detecting a 

delayed signal, is suggested : 

N-l 

Rsx{l)='2x{tn)Si{tn) (8-9) 
« = 0 

where 5̂  (tn) = s (tn - l-d), I is an integer and d is a fixed delay interval. Obviously d is 

the resolution of the cross-correlation. Fig. 8-10 shows three cases of correlation using 

eqn(8-9). The input sequences in (a) and (b) are sampled regularly. In (b) the input 

signal is delayed by 14 sampling periods with reference to (a) and in (c) the input signal 

is a randomized version of (b). From these examples, we can see that the maximum 

values in Rsx(/), which are Rsx(O) in (a) and Rsx(14) in (b) and (c), are not much larger 

than some other correlation values, making the subsequent thresholding very 

umeliable, especially when the input sequence is randomized. Despite a strong 

correlation, an input sequence may be close, but not necessarily identical, to a 

particular template. For example, in Fig. 8-10 (c), Rsx(14) = 3075, Rsx(18) = 2883 

andRsx(73) = 2967. The corresponding templates are514(^7,)= {-6.35,2.829,-0.385, 

Table 8-2 : Cross-correlation of s(tn) = 1.5 cos (IJT.SO tn) + 2 sin 
(2:^.506 tn) + cos (2:T:.1400 tn) with different inputs x(tn). 

X(tn) Rsx(O) matching 
same as sftn) 1863.9 yes 
same as s(tn) + noise 1906.5 ves 
2 sin (2jr.506 tn) +cos (2jr.l400 tn) + noise 1332.4 partial 
2 sin (2jr.506 tn) + noise 1060.2 partial 
1.5 cos (2/r.50 tn) + noise 616.6 partial 
cos (27r.l400tn) noise 314.8 partial 
2 cos (2jr.562tn) - 2 sin (2JI.6 tn) -1- 3cos (2^1.376 tn) -135.4 no 
2 cos (2jr.51tn) -f-2 sin (2jr.505 tn) + 3sin (2jr.l400 tn) -230.5 no 1 
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Fig. 8-10 Correlation results of: 

(a) 2 regularly sampled sequences x(n) and s(n) with x(n)=s(n)= s\n(2Jr.^8n / 
256) + 3cos(27r.65A7/256) - 4cos(27r.126n/256). Rsx(0) is the maximum value in 
the resulting sequence. 

(b) 2 regularly sampled sequences x(n) ands(n) withx(n) = s(n-14). Rsx(14) is the 
maximum value in the resulting sequence. 

(c) 2 sequences same as in (b) but sampled by a.r.s. withx(tn) = s(tn-14 ts). Eqn (8-
9) is used for the evaluation with d = ts. 
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5.475, -5.685, 3.434,... }, s^^ (tn) = {-6.916, 0.6181, -1.802, 3.997, -6.17, 2.797,... } 

and 573 (tn) = {-7.507, 2.713, -1.173, 4.921, -6.134, 3.799,... }. To make the result of 

a matched template distinct, instead of performing the correlation, we can compare 

the magnitude of each data point between the input and the template, i.e. checking 

whether | input [i] - template [i] \ < d where (5 is a preset threshold, and count the 

number of pairs satisfying the requirement. Fig. 8-11 shows the block diagram of the 

scheme and Fig. 8-12 shows the counts obtained from masking three inputs with the 

same set of templates. The delay interval d is equal to one averaging sampUng period 

ts. As the correlation is performed in regular intervals, the count will repeat after 

/ = N/2, where A'̂  = l/ts. From Fig. 8-12 (a) and (b), it is clear that the delay in a 

randomly sampled sequence can be determined uniquely up to N/2. A set of counts is 

tabulated in Table 8-3. In each of the first three rows of the table, a large count 

indicates a detection of the signal at a delayed interval. Row three illustrates how 

resistant to noise the scheme is. Adding a random noise of 0.58 V r.m.s. to the input 

signal in row two decreases the maximum count from 218 to 187, but raises the second 

Table 8-3 : Masking -s/^n) = 1-5 cos [27r.50 (tn - /.ts) ] + 2 sin [27r.506 
(tn - /.ts) ] + cos [2jr.l400 (tn - /.ts) ] with different inputs x(tn). 
6 = 5% of \si{tn)\. 

Input xCtn) = max. count / 

S 14(tn) 239 14 

S 200(tn) 218 200 
s 200(tn) -1- noise 187 200 
2 sin f2jr.506 tn) + cos (2jr.l400 tn) + noise 32* 253 
1.5 cos (27r.50 tn) + noise 18* 245 
cos (2jr. 1400 tn) + noise 19* 83 
1.5cos(2jr.5tn) + 2sin(2:^.501tn) + cos(2jr.l402tn) 17* 136 

*low counts which will be rejected by thresholding. 
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X(tn) 
compare 
magnitude : 

x(tn)-Si(tn) 
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Si (tn) =s{tn- Id), I = 0,1,2 . . . , N/2-1 

Fig. 8-11 Correlation by comparing the magnitude of input with a set of templates. 

Counts 

o 14 

456 5" 

(c) 

Aitfiiilftiiii 

Fig. 8-12 Masking s{tn - id), where s(tn) = 1.5cos(2jr.50fn) + 2sin(2jr.506fn) 
+ cos(27r.1400fn),/ = 0,1,2,... 511, d = 1/512 andd = 0.05 \Si(tn)\,with: 

(a) x(tn) = s{tn - ^4d) sampled by jittered random sampling. 

(b) x(tn) = s(tn - 200d) sampled by additive random sampling. 

(c) x(tn) = 1.5cos(2:7r.5fn) + 2s/A7(27r.501f/?) + cos(2;r.1402/n) sa/77p/ec/6ya./:s. 
Low counts are obtained. 
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largest count (not tabulated here) slightly from 32 to 33 only. The last four rows show 

cases of mis-matches where the counts are low. 

8.3.3 Advantages and Disadvantages : Random sampling is one of the sub-Nyquist 

sampling methods. Its anti-aUas property in the cross-correlation of two similar signals 

is shown in Table 8-2 and Fig. 8-9. As fewer samples require fewer operations for a 

correlator, random samphng has an advantage over regular sampling in detecting 

periodic signals, such as the image of a texture pattern or grating. 

Alignment of timing between the input and the template is necessary whether 

sampling is performed regularly or irregularly. To obtain useful cross-correlation 

results, the initial sampling times of both signals must be aligned to a suitable point, 

for example, the begiiming of a periodic waveform. I f the input and the template are 

continuous signals that can be synchronized and sampled simultaneously, aligrmient 

is achieved. Without synchronization, alignment is also feasible by trial and error for 

signals coming from a source that can be re-sampled. Assuming that the the input is 

in phase with the template, i.e. no delay between the two signals, only one template 

is required. In this case, alignment should be accurate within one average sampling 

period since the correlation result is still acceptable within such a phase error. For 

example, in row 1 of Table 8-2, if the input signal is delayed by one average sampling 

period ( = 1/512), the result will become 1,452.1, which is 78% of the value of a perfect 

match. 

I f delays in terms of a whole multiple of the average sampling period are 

introduced in the input, the scheme depicted in Fig. 8-11 may be used to detect the 

delays. In order to save computation time, the set of templates required can be 

generated beforehand but a memory space must then be assigned to store them. 

page 194 



Performing magnitude comparison takes approximately the same amount of time as 

computing correlation. Simulation results for 512-point sequences matching with 512 

templates indicate that computation time is increased slightly by 4% as compared to 

correlation. Simulation also reveals that the phase error in time alignment must be 

less than 4% of a sampling period, which is true for both randomly and regularly 

sampled sequences. 

8.4 Concluding Remarks 

In this chapter, two applications in digital signal processing which exploit the 

anti-ahas property of random sampling have been proposed. The first application, 

which is to detect a moving object in a sequence of images, requires spectral 

reconstruction. As discussed previously in Chapter 3, random sampling loses the 

advantage to apply the FFT, which will slow down the process when a general purpose 

computer is used. Fortunately, the sequence length in this apphcation is usually so 

short, say a few tens of frames, that computation will not become a prohibitive factor. 

The second application, which is the correlation detector, operates in the spatial 

domain and requires no extra work-load for computing a spectrum, although for the 

sampling process itself, a more complicated hardware, such as a synchronized circuit, 

may be needed for taking sample values from the input signals. 

A detailed discussion on the criteria to choose random sampling for an 

engineering apphcation will be found in Chapter 10, the conclusions. 
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CHAPTER 9 

RECONSTRUCTING RANDOMLY SAMPLED 

SIGNALS BY THE FFT 

9.1 Introduction 

In regular sampling, the DFT is a reversible operation since the transform 

kernel is a set of orthogonal functions. When a sequence is randomly sampled, the 

randomized timing destroys the orthogonaUty of the transform kernel for estimating 

the frequency spectrum, which can be seen in eqn (3-17) and repeated below : 

2 ^ ^^-^^ 
^(^) ^(^«)exp{-j2jiJctn), k = 1,2,3,... 

n=0 

Hence given a set of frequency components X(k) and sampling times tn, we cannot 

recover the time sequence x(tn) from an inverse DFT corresponding to eqn (9-1). 

Bilinskis and Mikelsons [28] propose an unorthogonal transform method which is 

basically a minimization of the mean square error of a reconstructed time sequence. 

Applying this method to reconstruct a randomly sampled sequence will involve heavy 

computation in manipulating the transform kernel, but the reconstructed signal may 

not keep the details of the original waveform even though a minimization process is 

performed. 

When a spectrum is estimated by eqn (9-1), the resulting spectrum X(k) is in 

fact mapped to a regular grid in the frequency domain. Therefore, when X(k) is 

eventually transformed to a time sequence x(n), the result will correspond to a 
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regularly sampled version of x(tn). In this reconstruction, there are three conditions 

to be satisfied: 

(1) The reconstructed signal x(n) must be a real sequence since the input x(tn) is real. 

(2) The seiquence length of the reconstructed signal x(n) must be long enough to 

convey the required frequency information although the original sequence x(tn) may 

be sampled at a sub-Nyquist rate. 

(3) The broadband noise in the frequency spectrum introduced by random sampling 

must be eliminated. 

9.2 Reconstruction on a regular time grid 

9.2.1 Length of Sequence : In eqn(9-l), N is the number of samples taken in the time 

domain and k corresponds to the index of the frequency component being evaluated. 

In regular sampling, the spectrum can be evaluated uniquely to only N/2 - 1 when the 

length of the input time sequence is N . Nevertheless, with random sampling, the 

frequency index k should go beyond this limit in order to take advantage of the 

sub-Nyquist sampling. 

In general, we have a randomly sampled real sequence x(tn) of length N and 

we may evaluate its frequency spectrum X(k) to a length M such that M > N. The 

spectrum X(k) is now on a regular grid but its value is unique up to k = M-1. I f the 

input sequence x(tn) were regularly sampled, to obtain M unique frequency 

components, we should have sampled 2M points and the fold-over frequency in its 

spectrum would be at k = M . To exploit this symmetry property of a real signal, we 

can extend X(k) to 2M points by putting: 
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X(M) = 0 

Real {Xi2M-k)} = Real {X{k) 

Imag [X (IM-k)] = -Imag {X (k)} (9-2) 

where k = 1,2,3,... M-1, and Real and Imag stands for the real and imaginary parts 

of X(k) respectively. Then we can perform an inverse DFT (or FFT if M is a power 

of 2) on the extended spectrum and the result x(n) of length 2M will be a regular time 

sequence containing all the information carried by X(k). 

9.2.2 Filtering of Noise : Filtering in the frequency domain can be implemented by 

choosing a suitable window function. The simplest window is, of course, the 

rectangular window, but it will create an adverse effect, which is the well-known 

Gibb's phenomenon, in the recovered time sequence [55,56]. There are many 

different windows available to solve this problem, such as the Harming window, the 

Hamming window, the Blackman window, etc., and the choice is not crucial for this 

application. On the other hand, we need some knowledge of the characteristics of the 

spectrum so as to determine which type of filter, e.g. low-pass or band-pass, we should 

apply to recover the desired information. 

9.2.3 Examples : Three examples are to be given : (i) a rectangular wave, (ii) a 

triangular wave and (iii) a triangular wave mixed with two sinusoidal waves. The first 

two waves are reconstructed by low-pass filtering below the Nyquist frequency. The 

purpose is to show the effects of windowing. The third example demonstrates the 

alias-free property of random sampling by extracting components above the Nyquist 

frequency. 

Fig. 9-1 shows the process of recovering a rectangular wave from a randomly 

sampled sequence of length 256. The samphng sequence is a jittered sampling 
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sequence, of which the ratio of the standard deviation of the random variable to the 

mean sampling period {alfx) is equal to 33%. Fig. 9-1 (b) depicts the amplitude 

spectrum of the randomly sampled sequence. Since the information of the input signal 

lies mainly in the low-frequency band, a low-pass FIR filter using the Hamming 

window may be used to filter out the wide-band noise generated by random sampling. 

The Hamming window is defined as : 

'0.54 + 0.46 cos(2jik/m), - ( m - 1 ) / 2 <k < ( m - 1 ) / 2 (9-3) 

0, elsewhere 
w>h{k) = 

where wh(k) is the window coefficient and m, an odd integer, is the length of the filter. 

The spectrum, after modified by a Hamming window with m = 31 (cut-off frequency 

kc = 15) and extended according to eqn(9-2), is shown in Fig. 9-l(c). Its inverse DFT, 

i.e. the recovered signal in the time domain, is shown in Fig. 9-1(d). In this example, 

although the length of the resulting sequence is doubled to 512 points, it can actually 

be down-sampled to 256 points without losing any details in the waveform. 

The effects of windowing are illustrated in Fig. 9-2, where Hamming windows 

of kc= 15, 30 and 50 are used to filter the spectrum in Fig. 9-1 (b). The respective 

mean square errors of the reconstructed signals are 6.15x10"^, 1.82 X 10"̂  and 1.00 X 

10"̂  . It is obvious that a wider window returns sharper corners and edges in the 

recovered waveforms since these features correspond to the high frequency 

components in the spectrum. However, passing more high frequency content into the 

output signal will generate larger ripples on the top part of the waveform which should 

be flat. Another example with a triangular wave as input is shown in Fig. 9-3. The 

same effects are also visible. 
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Fig. 9-1 Reconstructing a rectangular wave: 

(a) tlie input signal, 

(b) tlie amplitude spectrum from a 256-point sequence sampled from (a) by jittered 
random sampling; 

(c) the amplitude spectrum in (b) after filtering and extending to 512 points; 

(d) result after performing ttie inverse DFT on (c). 
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Fig. 9-2 Results of reconstructing a rectangular wave by random sampling and fil
tering with Hamming windows of a cut-off frequency: 

(a) kc = 15; mean square error ^ 6.15x 10 ''^; 

(b) kc =30; mean square error = 7.82 x 10 '^; 

(b) kc =50; mean square error = 7.00 x 10 

In each plot, the dash line represents the original signal. 
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Fig. 9-3 (a) A triangular wave, A(t), and its reconstruction by random sampling and 
filtering with different cut-off frequencies: 

(b) kc = 15; mean square error = 5.1 Ox 10 "*; 

(c) kc = 30; mean square error = 1.18 x 10 ''^; 

(d) kc =50; mean square error = 2.97x 10 
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The third example shown in Fig. 9-4 utilizes the alias-free property of random 

sampling in reconstructing a time sequence. The reference signal, depicted in Fig. 9-4 

(a) , consists of the triangular wave A(t) plotted in Fig. 9-3 (a) mixed with two sinusoids, 

0.5 sin (27r.l50t) and 0.4 cos (2jr.l54t). To exploit the sub-Nyquist sampUng, the signal 

is sampled randomly for 256 points so that the frequency indices of the two sinusoids 

are above the Nyquist limit at 128. The resulting spectrum is plotted in Fig. 9-4 (b) 

and it is filtered and extended to 512 points as shown in Fig. 9-4 (c). The filtering 

consists of three Hamming windows, which are a low-pass filter centred at k = 0 with 

a length of 31 (kc= 15) and two band-pass fihers centred at k = 150 and 154, both 

having a length of 5. Even i f we do not know beforehand the characteristics of the 

input, the choices of such filters can also be made basing on the spectrum in Fig. 9-4 

(b) , which clearly indicates low frequency content near the d.c. region and two 

sinusoids at k = 150 and 154. 

Since the reconstructed sequence will be regularly spaced, the Nyquist 

criterion applies. Having performed the inverse DFT, the resulting sequence shown 

in Fig. 9-4 (d) has a length of 512, which is a suitable length for conveying the frequency 

information. I f it is down-sampled to 256 points, the result will be identical to the 

samples of the triangular wave A(n) plus the ahases of the two input sinusoids, which 

102/2 106/2 
are 0.4 cos ( 2 ^ - ^ ^ ) • 0.5 sin (27r x ^ ^ ) - As the highest frequency content is 154, 

the fold-over of the spectrum can in fact be made at any point above that value, say 

160, thus producing a sequence of length 320. The result of this reconstruction can be 

seen in Fig. 9-5 and the mean square error is found to be the same as with length 512. 

However, i f the FFT is adopted for computing the inverse, 512 is a reasonable length 
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Fig. 9-4 Recovering a signal sampled at a sub-Nyquist rate: 

(a) the reference signal: the triangular wave A(t) in Fig. 9-3 (a) + 0.5 sin (2jt. 150t) 
+ 0.4 cos (271.154t) sampled regularly for 512 points; 

(b) the amplitude spectrum of the reference signal sampled randomly for 256 
points; the frequencies of the two sinusoids are above the Nyquist limit at 128; 

(c) the amplitude spectrum in (b) after filtering and extending to 512 points; 

(d) the signal recovered by applying the inverse DFT to (c); mean square error = 
1.53x10'^. 
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Fig. 9-5 Reconstruction oftlie composite wave A(t) + 0.5 sin (2n:.150t) + 0.4 cos 
(2JI. 154t) using a sequence length of 320: 

(a) the input sampled regularly for 320 points and taken as the reference signal; 

(b) the amplitude spectrum in Fig. 9-4 (b) after filtering and extending to 320 points; 

(c) the signal recovered from the inverse DFTofFig.9-5 (b); mean square error = 1.53 
x10'^. 

Table 9-1: Mean square errors of the reconstructed signals. 

Waveform Shown in Low-pass cut-oif Mean square error 
Rectangular Fig. 9-2(a) kc =15 6.15x10"^ 
Rectangular Fig. 9-2(b) kc =30 1.82x10"^ 
Rectangular Fig. 9-2(c) kc =50 1.00x10"^ 
Triangular Fig. 9-3fb) kc =15 5.10x10""^ 
Triangular Fig. 9-3(c) kc =30 1.18 xlO""^ 
Triangular Fig. 9-3(d) kc =50 2.97 x lO'"* 
Composite Fig. 9-4(d) kc = 15 1.53 X 10"̂  
Composite Fig. 9-5fc) kc =15 1.53 X 10'^ 
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since it produces a Nyquist frequency of 256, which is the smallest power of 2 greater 

than 154. 

9.3 Concluding Remarks 

The previous three examples illustrate how a time sequence may be recovered 

from the spectrum of a randomly sampled signal by filtering, extending the spectrum 

and performing the inverse DFT (or FFT). For a regularly sampled sequence, a direct 

inverse of its frequency spectrum leads to a perfect reconstruction of the time 

sequence, but for random sampling the two extra processes mentioned above are 

essential because filtering preserves the recovered signal from distortion and the 

extension of the spectrum guarantees the existence of a real sequence after the 

inverse transform. With the inversion process made possible, a two-way transform 

between the time and the frequency domains for random sampling is complete. The 

usefulness of this sampling method can be broadened, such as to reconstruct 

one-dimensional patterns, and is no longer limited to spectral estimation. 

Computational complexity is not a concern as the FFT can be used for finding the 

inverse provided that a suitable sequence length is chosen. 

The advantages of adopting random sampling are obviously its alias-free 

property and the reduction in the number of samples. Tomography is one example 

that might benefit from adopting random sampling since data from a patient are 

acquired by x-ray scanning, in which reducing the number of samples is highly 

desirable. Although it is straightforward to extend random sampling from one 

dimension to two dimensions, the effects of random sampling to the Radon transform, 

which is involved in computing tomography, are yet to be studied. 
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CHAPTER 10 

CONCLUSIONS 

10.1 A Brief Review 

In various fields of engineering involving the use of digital signal processing, 

input signals may be processed by algorithms which require heavy computation. 

Nowadays, with the development in fabrication technology that produces fast chips 

(microprocessors, memory, etc.) at a low cost, computing power is no longer a problem 

in most cases, although computing speed may still be a concern in real-time 

applications. In the ages when only vacuum tubes and transistors were available, it 

was obviously important to develop methods that could simplify or speed up the 

computation. Some examples of those methods are the Monte Carlo simulation, 

statistical estimation and stochastic computation. Randomized signal processing 

(including samphng, quantization, correlation, etc.), which is also a statistical 

approach, was proposed and developed during that time. Apart from being a 

mathematical topic, random sampling finds its applications in engineering. By using 

this technique to extend the input frequency range in measuring a signal, 

Hewlett-Packard produced and marketed successfully high-quality instruments such 

as the sampling voltmeter HP 3406 A (in 1985) and the high-speed digitizing 

oscilloscope HP 54100 A/D. According to Bilinskis and Mikelsons [28], 

"Hewlett-Packard is the only company which has enough knowledge of, and 

confidence in, this approach to apply it over and over again with remarkable results". 
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10.2 Relationship between Random and Regular Sampling 

The conventional samphng method assumes that all sampling instants occur 

precisely at regular intervals, but in practice this may not be true as the sampling time 

might be affected by noise or the inaccuracy of the hardware. While one might simply 

ignore this minor deviation, there were researchers who showed interest in studying 

how the inexact timing would affect the frequency spectrum [24,29]. When the 

deviation is considered to be a random variable in time being added to each 

occurrence of a regular sampling impulse, the result is identical to a randomized 

sampling sequence. Hence randomized sampling may be related to regular sampling 

through this field of study. 

Mathematical proofs of the alias-free property of random sampling can be 

dated back to 1960 [24]. Conceptually, random sampling may be considered a pseudo-

continuous sampling process as a sampling impulse can occur, with a certain 

probability, at any instant throughout a sampling period, which implies that the 

separation between two successive sampling periods can be infinitely small. In other 

words, the effective sampling rate is very high. This topic is discussed in Chapter 6 

with the aid of auto-correlation which converts a randomly sampled sequence to its 

power spectrum on a regular grid. 

The major motivation of using randomized sampling is its alias-free property 

which enables an input signal to be sampled at a sub-Nyquist rate. In fact, sub-Nyquist 

sampling can also be achieved by another approach - manipulating several regular 

sampling sequences to obtain more information from the input signal. Underbill et. 

al. [3] proposed to sample the input independently by three sampling sequences of a 

slightly different frequency. Kohlenberg[57], and recently Coulson [58], discussed an 
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Nth order nonuniform sampling where N uniform sample streams of separation T 

were interleaved with time offsets ki < T between successive streams. In principle, 

the above methods resolve the ambiguities in the frequency domain by the properties 

of the aliases themselves. However, when random sampling is adopted, aUases are 

turned to a broadband noise and thus no ambiguities arise in the spectrum. 

10.3 Contributions of This Thesis to Random Sampling 

10.3.1 Estimation of Noise Spectral Density and Bandwidth : When a sequence is 

randomly sampled, an alias-free spectrum can be recovered from a sequence sampled 

below the Nyquist rate. In exchange, we have to pay a much higher cost in computation 

and to tolerate a background noise in the whole spectrum. In section 3.3.1, it is pointed 

out that the computational complexity is N , and in section 3.3.2, the noise spectral 

density per watt input in the spectrum is shown to be approximately 1/N watt per 

frequency resolution, where N is the length of the data sequence. Theoretically the 

bandwidth of a randomly sampled sequence is infinite, but in practice it is limited by 

the word-length of the host system. Detailed discussion is found in section 3.3.3. 

10.3.2 Sampling Methods and Computational Algorithms: Two methods of speeding 

up the calculation of a spectrum, which are based on the principle of inserting limited 

regularities into random sampling sequences, are proposed and described in Chapters 

4 and 5. In Chapter 4, parallel additive random sampling is exposed to show how it 

can save 87% of the multiplications required. Since this scheme forms a naturally 

parallel process, several processors may be employed to compute the spectrum 

simultaneously, which can further speed up the evaluation. When examining the 

resulting spectrum, it is seen that aliases are turned into bursts of noise. Should these 
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bursts be found undesirable, an adaptive thresholding is suggested to filter them out. 

Another sampling procedure without generating these bursts of noise is hybrid 

additive random sampling, which is described in Chapter 5. Saving in multiplications 

is between 75% to 87% depending on the format chosen. 

10.3.3 Study of Auto-correlation Sequences: In Chapter 6, a technique of determining 

the auto-correlation of a randomized sequence using a regular step size is proposed 

and elaborated. With the aid of auto-correlation, the anti-alias characteristics of 

parallel additive random sampling and hybrid additive random sampling are further 

examined and verified. This technique may also be used as a means to convert a 

randomly sampled sequence to an equivalent regularly spaced sequence having a 

desired Nyquist frequency. 

10.3.4 Rapid Spectral Estimation using a Coarse Kernel: Since most fast algorithms 

were based on the principle of reducing multiplications^, researchers would consider 

simplifying the transform kernel as such to obtain a similar effect. Walsh and 

Hadamard transforms are examples that use only 1 and -1 in their transform matrices. 

Parallel to this line of thought, one might look for a simplified representation of the 

kernel of the Fourier transform. For example, we may approximate the sine and cosine 

functions by binary fractions (1/2, V4 , . . ., etc.), as in computer arithmetic these 

multiplications can be realized by a hnear shift of the multiplicand. To push this idea 

further, a two-level representation by 1 and -1 [4] and a three-level representation by 

1,0 and -1 [5] of the sine and cosine functions were proposed. The motive in so doing 

is, of course, that all multiplications become additions and subtractions. (This method 

1. With the advent of microprocessor having a built-m mathematical co-processor capable of 
performing floatmg point multipUcations, e.g. Intel 80486 and Pentium, the cycle time of a 
multiphcation is in the same order of magnitude to an addition. When designing a fast algorithm for 
these processors, one should consider minimizing the total operations in multipUcations and additions 
rather than replacing multiplications by additions. 
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is known by various names. It is cited as the Poorman's transform by Lamoureux [59].) 

Although this approximation can be applied to uniformly sampled sequences as seen 

in the examples of the above mentioned papers, the computation process is slower 

than the FFT unless special hardware (but not a general purpose computer) is used 

for the evaluation because its complexity for additions is N . Therefore the 

approximation method is particularly suitable for estimating the spectrum of a 

randomly sampled sequence to which the FFT cannot be applied. In Chapter 7, the 

three-level kernel is analysed and recommended for random sampling. 

10.3.5 Applications in Digital Signal Processing : Application examples in the 

literature of random sampling are mostly related to instrumentation for spectral 

estimation. In Chapter 8, two applications in the field of digital signal processing are 

proposed. They are a method for detecting a moving object in an image sequence and 

a correlation detector. 

10.3.6 Inverse TVansformation : In regular sampling, the Fourier transform is 

reversible. A n inverse transform always exists as the kernel is orthogonal and 

transform between the spatial (or time) domain and the frequency domain is 

straightforward. Random sampling, however, destroys the orthogonaUty and makes 

the inverse transform impossible. In Chapter 9, a reconstruction process which 

converts the spectrum of a randomly sampled sequence to a uniformly spaced time 

sequence is suggested. Although the process is rigorously not an inverse transform, it 

serves as a means to channel data from the frequency domain to the spatial domain, 

which is required by many applications. The conversion process may now be regarded 

as two-way and complete. 
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10.4 Usefulness of Random Sampling 

The advantage of using random sampling is apparently the possibility of 

recovering an alias-free spectrum from a sequence sampled at a sub-Nyquist rate, 

which is definitely a feature superior to regular sampling. Before jumping on the 

bandwagon, however, one should consider the whole picture of a certain application 

when adopting random sampling. Typical aspects for consideration are the mode of 

operation, the computation load and the type of hardware available. 

Whenever the situation of an application permits, computation should be 

avoided or minimized. Computation arises when a spectrum is evaluated. Hence it is 

more effective to manipulate the data in the data domain without taking any 

transforms. A n example illustrated in section 3.3.5.3 is a sampling oscilloscope, which 

reconstructs a periodic waveform in the time domain. Another efficient use of random 

sampling includes those applications requiring minimal computation. Examples are 

digital r.m.s. voltmeters and wattmeters by which the quantity to be measured is made 

proportional to the d.c. term of the spectrum [2]. As the d.c. term is obtained by 

averaging, no multiplications are needed. 

In terms of efficiency, the radix-2 FFT is the best algorithm for computing the 

DFT when a general purpose computer is used as the host system. Unfortunately, with 

a randomly sampled sequence, the FFT cannot be apphed. A simple (but expensive) 

solution is to build a concurrent structure composing of many fast multipliers and 

adders. (To the extreme, there are as many multipUers and adders as the number of 

data points. A result wil l be obtained after the cycle of one multiplication and one 

addition.) A more cost-effective approach is to replace multiplications by hnear shifts, 

which can be reahzed if the values of the sine and cosine functions of the transform 
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kernel are all represented by binary fractions. Suppose the accuracy of computation 

can be traded for the speed, one may adopt a two- or three-level kernel so as to 

eliminate all operations related to multiplication. If only general purpose computers 

are available, one may choose the parallel or hybrid additive random sampling to 

speed up the calculation. 

Although the FFT is in general the most efficient algorithm for computing a 

spectrum, there is a particular case that a random sampling algorithm may win. An 

example given at the end of section 5.2.3 shows how fewer multiplications than 

regular sampling can be achieved with random sampling when a narrow frequency 

band is computed. 

In a word, one must be cautious in recommending random sampling without 

qualification. There is much speculation about the usefulness of random sampling and 

the complexity which a nonuniform time axis introduces is esoteric. In general it is 

always better to use uniform sampling with the FFT except for the specific cases listed 

above, or when one is dealing with a very broadband single frequency signal such as 

radio jammer transmissions, or when the cost of sampling is more expensive than 

computation, etc. 

The crux of applying this technique as widely as uniform sampling to spectral 

estimation is the loading in computation, which is related to the choice of the 

transform kernel. The insertion of a random variable to the kernel comprising 

sinusoidal functions destroys the condition for performing the inverse transform as 

well. Ideally another set of basis functions suitable for random sampling should be 

generated, but it seems to be too ambitious a task in mathematics. Failing that, fast 

computational methods could be devised to make random sampling more 
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competitive. In the time domain, a systematic representation or modeUing of a time 

sequence could be helpful. In spectral analysis, efficient algorithms or effective 

hardware structures for computation are desirable. As a challenge in mathematics or 

engineering application, this area is worth studying and will be elaborated in the 

following section. 

10.5 Further Development 

10.5.1. Mathematical Representation : Besides using the Fourier transform, the 

frequency content of a signal sampled uniformly can also be manipulated by 

operations in the time domain. The most usual case is to convolve an input sequence 

with a mask or template. Many discrete-time systems, such as recursive filters, linear 

systems, control systems etc., can be modelled by hnear shift invariant (LSI) constant 

coefficient difference equations and the z transform is a mathematical operator for 

solving these equations. I f a mathematical operator similar to the z transform could 

be devised for randomly sampled sequences, then a productive study parallel to the 

discrete-time system would be developed. Unfortunately, a genuine randomized 

sampling sequence will create a shift variant system. Consider the impulse response 

function of the non-recursive FIR filter shown in section 3.3.5.3. Since the coefficients 

vary with each set of sampling times, one needs as many equations as the number of 

the sets of sampling times to fully describe the function. Such a representation is very 

compHcated, if not impossible, to handle. 

In case that the analytical approach is still preferred for a non-recursive system, 

one may accept an approximation using pseudo-random samphng as a substitute. To 

make this approach successful, a suitable scheme of mapping a set of randomized 

timing to a uniform reference grid must be designed. Using the concept about 
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auto-correlation discussed in Chapter 6, the interval T of the reference grid can be 

determined by the highest frequency of interest fm according to the Nyquist criterion, 

i.e. T > . The randomized sampling instants are mapped to the nearest points on 

the reference scale (see Fig. 10-1). The sample values form accordingly a new 

sequence which contains many zero values as there should be fewer points in the 

original grid than the reference. Since the resulting sequence is now equally spaced, 

all mathematical tools tailored for regular sampling can be applied. Convolution or 

correlation with other regular sequences is easily performed. However, i f the 

sequence represents a system function and its frequency response is evaluated, noise 

reflected by those zero coefficients will mar the result. The case is similar to the 

discussion on the inverse DFT in Chapter 9. The zero coefficients may, of course, be 

filled up with values by interpolation, but the result will become dubious when too 

many fictitious values are inserted. Since the pseudo-random sampling is also a 
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Fig. 10-1 Mapping a sequence with randomized timing to a regular time grid: 

(a) Ttie original sequence. 

(b) The pseudo-random sequence formed by mapping sample values in (a) to the 
nearest regular grid points. 
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random process, the resulting sequence mapped from random sampling retains the 

original characteristics except the infinite bandwidth. I f aliasing occurs after the 

mapping, a denser grid may be chosen to remove it. 

10.5.2 Computational Algorithms : Intrinsically the complexity for computing a 

spectrum from random sampling is N . Any attempt to trim the complexity to a linear 

class wil l be in vain. When methods are devised to reduce the number of 

multiplications, a loss in another aspect is expected. Considering a random sequence 

of N points being down-sampled to N/2 points and N components being evaluated in 

the spectrum, the number of multiplications (as well as additions) is N /2, whereas it 

would be N for a length-N sequence. Being alias-free, the spectrum will appear the 

same as the one without down-sampling except that the signal-to-noise ratio is lower. 

Thus in this case the saving in computation is achieved at the expense of a higher noise 

level. In other cases, the trade-off may be a lower frequency resolution or a higher 

hardware cost. Hence the optimal use of random sampling in terms of the above 

parameters for certain applications forms a topic to study. 

One of the motives for designing computational algorithms is to reduce the 

cost of a hardware structure built for spectral evaluation. For example, when 

performing a multiplication is much more expensive than an addition, a strategy is to 

minimize the number of multiplications even if more additions are thus required. 

Since the cost of integrated circuits is going down, one may eventually opt for the 

massively parallel structure comprising many processors as described in the previous 

section. Meanwhile one may adopt a moderate approach of concurrent processing, 

which requires clever algorithms to break the computation into several independent 

parts (like the parallel additive random sampling). The concept of pipe-line may also 
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be exploited whenever possible. Even though the complexity may remain unchanged, 

the process time is still shortened considerably. The direction of designing algorithms 

intended for parallel computing should be more rewarding than for a single processor. 

10.5.3 MulUrate Systems: Returning to the example of down-sampling in section 10.4, 

one may have noticed the difference caused by the sampUng method. For random 

sampling, only the noise level is affected, whereas for regular sampling, the Nyquist 

frequency will be lowered. Multirate system with regular sampling is a very fruitful 

topic, and wavelet transform can also be realized by a collection of multirate filter 

banks. It is interesting to see whether random sampling can be applied to this area. 

Can multi-resolution analysis or polyphase representation be estabhshed with random 

sampling? How will the property of perfect reconstruction of filter banks be affected? 

Can mother wavelets survive randomized timing? Vaidyanathan [44] and Benedetto 

[60] may be referred to as a starting point for the study. 

10.5.4 IVvo-dimensional Applications : In the spatial domain, a two-dimensional 

sampling function usually consists of impulses lying on a uniform square lattice. 

Randomization could be introduced in either one or both of the axes to form a random 

sampling scheme. Assuming the separability of the transform kernel, the row-column 

decomposition can be used for estimating the DFT of randomly sampled sequences. 

Although it is not difficult to realize a two-dimensional random or pseudo-random 

sampling, it may not be easy to find an application justifiable for using such a process. 

One would spontaneously connect two-dimensional signal processing with image 

processing, but to one's disappointment, image processing in general does not benefit 

from random sampling. Making things even worse, the associated noise will degrade 
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the quality of an image composed of grey-level or colour pixels. Despite the above 

disadvantage, at least two successful cases can be quoted. Random and 

pseudo-random sampling can be adopted for tracking a moving object in a sequence 

of images as described in Chapter 8. Dithering improves a half-tone picture by 

removing the blocking effect left behind by compression using transform coding or by 

any process which manipulates data in blocks. 

Another possible candidate to adopt random sampling is tomography. 

Computed tomography refers to the cross-sectional imaging of an object from either 

transmission or reflection data collected by illuminating the object from many 

different directions. With sufficient cross-sectional images (called slices), a 

three-dimensional model of the object can be estabhshed. This method is extremely 

helpful for exploring nondestructively internal organs of the human body. Sub-Nyquist 

samphng is an advantage here because, for medical ground, one may prefer to reduce 

samples which are taken with an x-ray scanner. The mathematical tools utilized in the 

computation, i.e. the Radon transform and Fourier slice theorem, are related to the 

Fourier transform [61, 62]. To reconstruct a sHce from the projections requires the 

inverse Radon transform. Hence the effects of random sampling on both the forward 

and the inverse Radon transform must be carefully studied. A more efficient algorithm 

for finding an inverse transform is preferred even if the techniques proposed in 

Chapter 9 are applicable. Adding an extra filtering process prior to finding the inverse, 

which is already computationally intensive, will be too much a burden. The accuracy 

of the reconstructed image is a decisive factor affecting the suitability of the 

application. For locating the position of an internal organ, a high accuracy in the 

physical dimension of a reconstructed image is required. Suppose it is intended for 
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examining the function of an organ, then the exactness in the physical dimension may 

not be a concern. Apparently random sampKng is more suitable for the latter. 

Sampling may also be performed in the transform domain. For example, in 

designing an FIR filter, the frequency sampling method is one of the techniques often 

used. Angelidis proposes to sample nonuniformly in the frequency plane when 

designing zero-phase FIR filters for acquiring flexibility in the placement of the 

frequency samples [63]. The computation involves recursive polynomial 

interpolation, which is claimed to be fast and simple. Pseudo-random samphng is 

obviously feasible in the case of one-dimensional frequency sampling and its viability 

in a two-dimensional procedure is yet to be studied. Randomized sampling in the 

spatial domain gains a wider bandwidth in its frequency spectrum, but this advantage 

does not exist (or has no meaning) in frequency sampling since the corresponding 

spatial sequence, such as the impulse response of a low-pass filter, should be 

band-limited. Instead one has to hunt for other advantages in terms of saving in the 

computation, the convergence in the solutions, the accuracy of the results, etc. to 

justify the adoption of such an unconventional process. 
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Appendix 1: Program Listing 

The following programs are written in 3L Parallel C for the 
realization of parallel a.r.s. using 5 transputers. 

Configuration file: 

processor host 
processor root 
processor T l 
processor T2 
processor T3 
processor T4 

wire jumper root[0] host[0] 
wire ? root[2] T l [ l ] 
wire ? Tl[2] T2[l] 
wire ? T2[2] T3[l] 
wire ? T3[2] T4[l] 
wire ? T3[3] root[3] 

task master file = "getroott.b4" ins = 3 outs = 3 
taslt s i file = "getlt.b4" ins = 2 outs = 2 
task s2 file = "get2t.b4" ins = 2 outs = 2 
task s3 file = "get3t.b4" ins = 3 outs = 3 
task s4 file = "get4t.b4" ins = 2 outs = 2 
task iserver ins = 1 outs = 1 
task filter ins = 2 outs = 2 data = 30k 

place iserver host 
place master root 
place s i T l 
place s2 T2 
place s3 T3 
place s4 T4 
place filter root 

connect ? filter[0] iserver[0] 
connect ? iserver[0] filter[0] 

connect ? master[l] filter[l] 
connect ? filter[l] master[l] 

connect ? master[0] sl[0] 
connect ? sl[0] masterfo] 

connect ? sl[l] s2[0] 
connect ? s2[0] sl[l] 

connect ? s2[l] s3[0] 
connect ? s3[0] s2[l] 

connect ? s3[l] s4[0] 
connect ? s4[0] s3[l] 

connect ? s3[2] master[2] 
connect ? master[2] s3[2] 
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Root transputer 

/* program name: getroott.c 

description: parallel ARS 32x32 points taking for 1 second under 
5 transputers nodes with channel method, include 
high order band 

related progarm: getlt.c 
get2t.c 
get3t.c 
get4t.c 
gett.cfg 

date: 11/3/1993 */ 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <time.h> 
#include <chan.h> 

#defme pi 3.141592 
#defme T 1.0 
#define f 1.0 
#defme E S C 27 
#define Y 89 
#defme y 121 
#defme n 110 
# define node 5 
#define node_address 0 
#defme MAXDATA 1024 

************************ Global variable ********* 

float **x; 
float *t; 
CHAN **in, "out; 
int p, m, N; /* p - row size 

m - column size 
N - p*m size of matrix 

*/ 
int order; /* high order band indicator */ 

*************/ 

y* ******* ************** puucfion protocol *********************** 

void error_message(int); 
void Imtiali2e(void); 
struct MATRIX *MakeMatrix(void); 
int get_input(int *, float *); 
void get_time(void); 
void gen_sample(int *,float *,int); 
void Insmat(struct MATRIX *, int); 
void Calculate(struct MATRIX *, int, float *, float *); 
void KillMat(void); 
void Process(float *, float *, int, int); 
void output(float *, float *); 
void send_input(int *, float *, int, int); 
void send_matrix_size(int, int, int); 
void get_result(float *, float *, int); 
void main(int, char **, char **, CHAN **, int, CHAN **, int); 
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/********************* Matrix Structure *************************/ 

struct MATRIX 

float **real; 
float **imag; 

}*Mmatl, *Mmat2; 

/ * * * * * * * * * * * * * * * s = * * * * * message printout *******************/ 

void error_message(error_no) 
int errorno; 
{ 
switch (error no) 

case 1: printf("error allocating memory\n"); 
printf("*** program ended abnormally ***\n"); 
exit(l); 
break; 

case 2: printf("error open file\n"); 
printf("*** program ended abnormally ***\n"); 
exit(l); 
break; 

case 3: printf("error reading file\n"); 
printf("*** program ended abnormally ***\n"); 
exit(l); 
break; 

default: printf ("unexpected error\n"); 
printf("*** program ended abnormally ***\n"); 
exit(l); 
break; 

} 
} 

********************* matrix size **********************/ 

void get_matrix_size() 
{ 
int temp, done, vahd = 0; 

printf ("Get matrix size parameter\n"); 
printf("= = = = = = = = = = = = = = = = = = = = = = = = =\n"); 
while(!valid) 
{ 
printf("Row size?"); 
scanf("%d",&p); 
i f (p<=l ) 

printf ("Invalid input\n"); 
else 
{ 
done = 0; 
temp = p; 
while(templ && done! = 1) 
{ 

if(temp%2!=0) done = l ; 
temp = temp/2; 

} 
} 
if (done) printf("Invalid mput\n"); 
else vaUd = 1; 

} 
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valid = 0; 
while(!vahd) 
{ 
printf("Column size?"); 
scanf("%d",&m); 
if(m< =1) 

printf("Invahd input\n"); 
else 
{ 
done = 0; 
temp = m; 
while(templ && done! = 1) 
{ 

if(temp%2!=0)done = l ; 
temp = temp/2; 

} 
} 
if (done) printf("Invahd input\n"); 
else valid = 1; 

} 
N = p*m; 

} 
*̂ ************************ Memory allocation * * * * * ***************/ 

void InitializeO 
{ 
int i; 

printf ("Initialization memory\n"); 
printf("= = = = = = = = = = = = = = = = = = = = =\n"); 
x = (float **)maUoc(p*sizeof(float *)); 
if (x= = N U L L ) error_message(l); 
for(i = 0;i<p;i+ +) 
{ 
x[i] = (float *)malloc(m*sizeof(float)); 
if (x[i] = = N U L L ) error_message(l); 

} 
t = malloc(p*sizeof(float)); 
if (t = = N U L L ) error_message(l); 

} 

y************************** QfQ2iiQ Matrix ************************/ 

struct MATRIX *MakeMatrix() 
{ 
struct MATRIX *mat; 
int i; 

mat = (struct MATRIX *)malloc(sizeof(struct MATRIX)); 
if (mat= = N U L L ) error_message(l); 
mat-> real = (float **)malloc(p*sizeof(float *)); 
if (mat- > real = = N U L L ) error_message(l); 
mat-> imag = (float **)malloc(p*sizeof(float *)); 
if (mat- >miag= = N U L L ) error_message(l); 
for (i = 0;i < p;i - f - - I - ) 

mat- > real[i] = (float *)malloc(m*sizeof(float)); 
if (mat- > real[i] = = N U L L ) error_message(l); 
mat- > imag[i] = (float *)malloc(m*sizeof(float)); 
if (mat- > imag[i] = = NIJLL) error_message(l); 

} 
return (mat); 

} 
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/********************** Get frequency & amplitude ****************/ 

int get_input(freq,amp) 
Lnt *freq; 
float *amp; 
{ 
int count = 0, end input = 0; 
char input; 

printf("Get input frequency and ampUtude\n"); 

while(end_input! = 1) 
{ 
prmtf ("frequency"); 
scanf("%d",freq+ +); 
printf("amphtude"); 
scanf("%f',amp + +); 
count + +; 
printf("More (y/n)"); 
scanf("%s",&mput); 
if (input = = n) end_input = 1; 
else 
end_input = 0; 

} 
return(count); 

} 

********************** Get variable timing ********************/ 

void get_time() 
{ 

F I L E *fp; 
int i; 
float input; 

printf("Getting variable timing\n"); 
printf("= = = = = = = = = = = = = = = = = = = = = = =\n"); 
fp = fopen("uniform.prn","r"); 
if (fp= = N U L L ) error_message(2); 
t[0] = 0.0; 
i = i ; 
while(i < p) 

if(fscanf(fp,"%f',&input) = = E O F ) error_message(3); 
t[i] = (float) (input + 1)/N; 
i + + ; 

} 
fclose(fp); 

} 

^**************** Generate sample matrix element ****************/ 

void gen_sample(freq,amp,count) 
int *freq, count; 
float *amp; 
{ 
int i, j , row, column; 
float tm, comp value, angle; 

printf("Generating sampling sequence\n"); 
printfC = = = = = = = = = = = = = = = = = = = = = = = = = = = =\n"); 
tm = 0.0; 
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for (row = O;row < p;row + - I - ) 
for (column = O;column < m;column + + ) 
{ 
if (column = = 0) 
{ 
tm-l- =t[row]; 
t[row] = tm; 

} 
else tm-l- = (float) 1.0/N; 
compvalue = 0.0; 
for (i = 0;i < count;i -I- - I - ) 
{ 
angle = 2.0*pi*freq[i]*tm; 
compvalue = amp[i]*cos(angle) -I- comp_value; 

} 
x[row] [column] = compvalue; 

} 
} 

• *****************/ ^******************** Insert elements to matrix 

void Insmat(mat,i) 
int i; 
struct MATRIX *mat; 
{ 
int r, c; 
float angle, cosine, sine; 

i f ( i==0) 
{ 
for(c = 0;c<m;c-l- - I - ) 
for(r = 0;r<p;r-f + ) 

mat- > real[r][c] = x[r][c]; 
mat- > imag[r][c] = 0.0; 

} 
} 
else 

for (c = 0;c<m;c-l- - I - ) 
{ 
angle = 2.0*pi*c*i/N; 
cosine = cos(angle); 
sine = sin(angle); 
for (r = 0;r<p;r-F +) 

mat->real[r][c] = x[r][c]*cosine; 
mat->unag[r][c] = x[r][c]*sine; 

} 
} 

} 
} 

^****************** Calculate frequency spectrum ****************/ 

void Calculate(mat,comp,real,imag) 
struct MATRIX *mat; 
int comp; 
float *real, *imag; 
{ 
float x real, x imag, row_sum_real, row_sum_imag; 
float angle, cosine, sine; 
int r, c, i, component; 
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for(i = 0;i < order;! + +) 
{ 
component = comp + i*N; 
xreal = 0.0; 
ximag = 0.0; 
for (r = 0;r<p;r+ +) 
{ 
rowsumreal = mat->real[r][0]; 
row_sum_imag = 0.0; 
for (c = l;c < m;c + +) 
{ 

row_sum_real + = mat->real[r][c]; 
row_sum_imag + = mat->imag[r][c]; 

} 
i f ( r = = 0 ) 
{ 

xreal = row_sum_real; 
ximag = row_sum_imag; 

} " 
else 
{ 

angle = 2.0*pi*component*t[r]; 
cosine = cos(angle); 
sine = sin(angle); 
x_real + = (row_sum_real*cosine-row_sum_imag*sine); 
ximag + = (row_sum_imag*cosine + row_sum_real*sine); 

} 
} 
real[component] = x_real; 
imag[component] = x_imag; 

} 
} 

*̂ ********** *********** Free meniory allocation ** 

void KillMatO 
{ 
int i; 

for (i = 0;i<p;i+ +) 
{ 
free(Mmatl- > real[i]); 
free(Mmatl- > imag[i]); 
free(Mmat2- > real[i]); 
free(Mmat2- > imag[i]); 
free(x[i]); 

} 
free(Mmatl- > real); 
free(Mmatl- > imag); 
free(Mmat2- > real); 
free(Mmat2- > imag); 
free(x); 
free(Mmatl); 
free(Mmat2);. 
free(t); 

} 

^************************ Process matrix ************************/ 

void Process(real,imag,start,stop) 
float *real, *imag; 
int start, stop; 
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{ 
int row, column, i, j , comp; 
float power indexl, power_mdex2; 

printf("Processing data\n"); 
printf("= = = = = = = = = = = = = = =\n"); 
/* calculate M[0] */ 

Mmatl = MakeMatrixQ; 
if (Mmatl= = ^ ^ J L L ) 
error_message(l); 

Mmat2 = MakeMatrix(); 
if (Mmat2= = N U L L ) 

error_message(l); 

comp = 0; 
Insmat(Mmatl,comp); 
Calculate(Mmatl,comp,real,imag); 

/* calculate M[N/2] */ 

comp = N/2; 
for (column = O;column < m;column + = 2) 
for (row = O;row < p;row + +) 
{ 

Mmat2->real[row][colunm] = Mmatl->real[row] [column]; 
Mmat2->imag[row] [column] = Mmatl->imag[row][column]; 
Mmat2->real[row][column-1-1] = -1.0* (Mmatl->real[row][colunm-1-1]); 
Mmat2->imag[row][column-1-1] = -1.0 * (Mmatl->imag[row][column-M]); 

} 

Calculate(Mmat2,comp,real,imag); 

/* calculate M[N/4] */ 

comp = N/4; 

for (row = O;row < p;row + + ) 
{ 
Mmat2- > real[row][0] = Mmatl- > real[row][0]; 
Mmat2- > imag[row][0] = Mmatl- > imag[row][0]; 

} 
for (column = l;column < m;column -I- = 2) 
{ 
power_indexl = pow(-1.0,(float)((column +1)/2)); 
power_index2 = pow(-1.0,(float)((column -I- 3)/2)); 
for (row = O;row < p;row -I- - I - ) 
{ 
Mmat2- > real[row] [column + 1] = Mmatl- > real[row] [column -I- l]*power_indexl; 
Mmat2- > imag[row] [column -t-1] = Mmatl- > imag[row] [column -I- l]*power_indexl*-1.0; 
Mmat2- > real[row][column] = Mmatl- > imag[row][column]*power_index2; 
Mmat2->imag[row] [column] = Mmatl->real[row][column]*power_index2; 

} 
} 

Calculate(Mmat2,comp,real,imag); 

/* calculate M[3N/4] */ 

comp = 3*N/4; 
for (column = O;column < m;column - I - + ) 
for (row = 0;row < p;row + +) 

Mmat2->imag[row] [column] = Mmat2->imag[row][column] * -1.0; 
Calculate(Mmat2,comp,real,imag); 
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for (i = start;i < stop;i + +) 
{ 

comp = i; 
Insmat(Mmatl,comp); 

Calculate(Mmatl,comp,real,imag); 

/* Mat[N/2 + i] */ 
comp = N/2 +i; 
for (colunm = O;column < m;column + = 2) 
for (row = 0;row<p;row+ +) 
{ 

Mmat2->real[row] [column] = Mmatl->real[row] [column]; 
Mmat2->imag[row] [column] = Mmatl->imag[row][column]; 
Mmat2->real[row][column+ 1] = Mmatl-> real[row][column +1] *-1.0; 
Mmat2->imag[row][column-1-1] = Mmatl->imag[row][coliunn-1-1] * -1.0; 

} 
Calculate(Mmat2,comp,real,imag); 

/* Mat[N-i] */ 
comp = N-i; 
for (column = 0;colimm < m;column -I- - I - ) 
for (row = 0;row < p;row + +) 
{ 
Mmat2->real[row] [column] = Mmatl->real[row] [column]; 
Mmat2-i>mag[row][column] = Mmatl->imag[row] [column] * -1.0; 

} 
Calculate(Mmat2,comp,real,imag); 

/* Mat[N/2-i] */ 
comp = N/2-i; 
for (column = 0;column < m;column - t - = 2) 
for (row = O;row < p;row - f - I - ) 
{ 

Mmat2->real[row][column-1-1] = Mmatl->real[row] [column-1-1] * -1.0; 
Mmat2->imag[row] [column-1-1] = Mmatl->imag[row] [column-1-1]; 

} 

Calculate(Mmat2,comp,real,imag); 

/* calculate N/4 - i */ 

j = N/4 - i; 
i fG!=i) 
{ 
/* Mmat[j] */ 
comp = j ; 
for (row = O;row < p;row - I - + ) 
{ 

Mmat2- > real[row][0] = Mmatl- > real[row][0]; 
Mmat2- > imag[row][0] = Mmatl- > imag[row][0]; 

} 
for (column = l;column < m;column + = 2) 
{ 

powerindexl = pow(-1.0,(float)((colimm -I-1)/2)); 
power_index2 = pow(-1.0,(float)((column -I- 3)/2)); 
for (row = O;row < p;row + + ) 
{ 
Mmat2 > -real[row][column +1] = Mmatl- > real[row] [column -I- l]*power_indexl; 
Mmat2- > imag[row] [column -I-1] = Mmatl- > imag[row] [column + l]*power_indexl*-1.0; 
Mmat2->real[row] [column] = Mmatl->imag[row] [column] *power_mdex2; 
Mmat2-imag[row] [column] = Mmatl-real[row][column]*power_index2; 

} 
} 
Calculate(Mmat2,comp,real,imag); 
/*Mat[N/2-Fj] */ 
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comp = N/2 - I - j ; 
for (column = O;column < m;column + = 2) 
for (row = O;row< p;row + + ) 
{ 

Mmatl->real[row] [column] = Mmat2->real[row] [column]; 
Mmatl->imag[row] [column] = Mmat2->imag[row] [column]; 
Mmatl->real[row][column-H] = Mmat2->real[row][column-f 1] * -1.0; 
Mmatl->imag[row][colimm + l] = Mmat2->imag[row] [column-t-1] * -1.0; 

} 
Calculate(Mmatl,comp,reaI,imag); 
/* Mmat[N-j] */ 
comp = N-j; 
for (column = O;column < m;column + +) 
for (row = 0;row<p;row-l-
{ 

Mmatl->real[row] [column] = Mmat2->real[row] [column]; 
Mmatl->imag[row][column] = Mmat2->imag[row][column] * -1.0; 

} 
Calculate(Mmatl,comp,real,imag); 

/* Mat[N/2-j] */ 
comp = N/2 -j; 
for (coluron = O;column < m;column + = 2) 
for (row=0;row<p;row-l-
{ 

Mmatl->real[row][column-M] = Mmat2->real[row][colimm-l-1] * -1.0; 
Mmatl->imag[row][column-1-1] = Mmat2->imag[row] [column+ 1]; 

} 
Calculate(Mmatl,comp,real,imag); 

} 
} 

} 

************************ Output to file ***********************/ 

void output(real,imag) 
float *real, *imag; 
{ 

F I L E *fp; 
int i; 

printf ("Output to fde\n"); 
printf("= = = = = = = = = = = = = =\n"); 
fp = fopen("gett.prn","w"); 
if (fp = = N U L L ) error_message(2); 
else 
real[0] = real[0]/N; 
fprintf(fp,"%.10f\t%.10f\n",real[0].imag[0]); 
for (i = l;i < order*N;i - I - - I - ) 
{ 
real[i] = real[i]/N*2; 
imag[i] = imag[i]/N*2; 
fprintf(fp,"%.10f\t%.10f\n",real[i],imag[i]); 

} 
fclose(fp); 

} 

y* ******* * ggjj J message information to other processors 

void send_input(freq,amp,freq_count,port) 
int *freq, freq_count, port; 
float *amp; 
{ 
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/* chan out message to port */ 
chan_out_word(freq_count,out[port]); 
chan_out_message(freq_count*sizeof(int),freq,out[port]); 
chan_out_message(freq_count*sizeof(float),amp,out[port]); 
clian_out_message(p*sizeof(float),t,out[port]); 

} 

***************/ /*********** Send matrix size to other processors 

void send_matrix_size(port) 
int port; 
{ 
/* chan out message to port */ 
chan_out_word(p,out[port]); 
chan_out_word(m,out[port]); 
clian_out_word(order,out[port]); 

} 

/************** results from other processors ****************/ 

void get_result(real,imag,port) 
float *real, *imag; 
int port; 
{ 
int count, cnt[MAXDATA], i, comp; 
float inp_real[2*MAXDATA], mp_imag[2*MAXDATA]; 

/* chan in message from port */ 
chan_in_word(&coimt,in[port]); 
chan_in_message(count*sizeof(float),inp_real,in[port]); 
chan_in_message(count*sizeof(float),inp_imag,in[port]); 
chan_in_message(count*sizeof(int),cnt,in[port]); 
for (i = 0;i < count;i + +) 
{ 
comp = cnt[i]; 
real[comp] = inp_real[i]; 
imag[comp] = inp_imag[i]; 

} 
} 

*********************** jy[^jj program *************************/ 

void main(argc,argv,envp,in_ports,iiilen,out_ports,outlen) 
int argc,iiilen,outlen; 
char *argv[],*envp[]; 
C H A N *in_ports[],*out_ports[]; 
{ 
int freq[MAXDATA], freq_count, count[MAXDATA]; 
float amp[MAXDATA]; 
int start, stop; 
float y_real[2*MAXDATA], y_imag[2*MAXDATA], real[MAXDATA]; 
int tml, tni2, tnl, tn2; 
int size_int, size_remain; 

if(argc) order = 1; 
else 
switch(*argv[l]) 
{ 
case'H': order = 2; 

break; 
case 'h': order = 2; 

break; 
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case ' L : order = 1; 
break; 

case '1': order = 1; 
break; 

default: order = 1; 
break; 

} 

in = in_ports; 
out = outports; 

get_matrix_size(); 

Initialize(); 
send_matrix_size(0); 

/* get input frequency component & amplitude */ 
freq_count = get_input(freq,amp); 

/* get random variable */ 
get_time(); 

/* send message to workers */ 
printf ("sending packets to workers\n"); 
printf("= = = = = = = = = = = = = = = = = = = = = = = = = =\n"); 

send_input(freq,amp,freq_count,0); 

/* generate sampling sequence */ 
gen_sample(freq,amp,freq_count); 

/* generate no. of processing element */ 
size_int = N/8/node; 
size_remain = N/8%node; 
switch(node_address) { 
case 0: start = 1; 

stop = start + sizeint; 
break; 

case 1: start = size int -I-1; 
stop = start - 1 - size_Lnt; 
break; 

case 2: start = 2*size_int +1; 
stop = start + size_int; 
break; 

case 3: start = 3*size_int -I-1; 
stop = start + size_int; 
break; 

case 4: start = 4*size_int 4-1; 
stop = start + sizeint + size_remain; 
break; 

default: exit(l); 
} 

tml = time(NULL); 
tnl = timer_now(); 

/* Processing Data */ 
Process(y_real,y_imag,start,stop); 

/* get result from workers */ 
printf ("get result from workers\n"); 
printf("= = = = = = = = = = = = = = = = = = = = = = =\n"); 

get_result(y_real,y_imag,0); 
get_result(y_real,y_imag,2); 
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tm2 = time(NULL); 
tn2 = timer_now(); 

printf("time needed = %d\n",tm2-tml); 
printf("tick time = %d\n",tn2-tnl); 

output(y_real,y_imag); 

/* free memory from matrix allocation */ 
KillMatO; 

printf("program ended normally\n"); 
printf("= = = = = = = = = = = = = = = = = = = = = =\n"); 

} 

Node transputer 

Since the programs for all nodes are the same execpt the node addresses, only the 
programs for node 1 are listed below. 

y * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
program name: getlt.c 

description: parallel ARS 32x32 points taking for 1 second under 
5 transputers nodes with channel method, include 
high order band 

related progarm: getroott.c 
get2t.c 
get3t.c 
get4t.c 
gett.cfg 

*************************************************************************y 

#include <stdlib.h> 
#include <math.h> 
#include <chan.h> 

#define pi 3.141592 
#define T 1.0 
#definefl.O 
#define node 5 
#define node_address 1 
#defme MAXDATA 1024 

^************************* Qiol^al variable **********************/ 

float **x; 
float *t; 
C H A N **in, **out; 
int p, m, N; /* p - row size 

m - column size 
N - p*m size of matrix 

int order; /* high order band indicator */ 

y * * * * * * * * * * * * * * * * * * * * * * punetionprotocol *********************** 
void error_message(int); 
void Initialize(void); 
struct MATRIX *MakeMatrix(void); 
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int get_input(int *, float *); 
void gen_sample(int *,float *,int); 
void Insmat(struct MATRIX *, int); 
int Calculate(struct MATRIX *, int, float *, float *,float *,int); 
void KillMat(void); 
int Process(float *, float *, int, int); 
void send_input(int *, float *, int, int); 
void send_matrb£_size(int, int, int); 
void send_result(float *, float *, int *, int, int); 
int get_result(float *, float *, int); 
void main(int, char **, char **, CHAN **, int, CHAN **, int); 

*************************/ y * * * * * * * * * * * * * * * * * * * * * Matrix Structure 

struct MATRIX 
{ 
float **real; 
float **imag; 

}*Mmatl, *Mmat2; 

y * * * * * * * * * * * * * * * * * * * * * * * * * Memory allocation ********************/ 

void InitializeO 
{ 

int i; 

x = (float **)malloc(p*sizeof(float *)); 
for(i = 0;i<p;i-l- +) 

x[i] = (float *)malloc(m*sizeof(float)); 
t = malloc(p*sizeof(float)); 

} 

* * * * * * : ( c * * * * * * * : i t * * : h * * * * * * * Crcatc Mfltrix ************************/ 

struct MATRIX *MakeMatrix() 
{ 
struct MATRIX *mat; 
int i; 

mat = (struct MATRIX *)malloc(sizeof(struct MATRIX)); 
mat- > real = (float **)malloc(p*sizeof(float *)); 
mat-> imag = (float **)malloc(p*sizeof(float *)); 
for (i = 0;i<p;i-)- +) 
{ 
mat- > real[i] = (float *)malloc(m*sizeof(float)); 
mat- > imag[i] = (float *)maUoc(m*sizeof(float)); 

} 
return (mat); 

} 

/* Get input frequency component & amphtude from other processors */ 

int get_input(freq,amp,port) 
int *freq, port; 
float *amp; 
{ 

int count; 
chan_in_word(&count,in[port]); 
chan_in_message(count * sizeof(int) ,freq,in[port]); 
chan_in_message(count*sizeof(float),amp,in[port]); chan_in_message(p* sizeof (float),t,in[port]); 
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return(count); 
} 
/**************** Generate sample matrix element ****************/ 

void gen_sample(freq,amp,count) 
int *freq, count; 
float *amp; 
{ 

int i, j , row, column; 
float tm, comp value, angle; 

tm = 0.0; 
for (row = O;row < p;row + + ) 
for (column = O;column<m;column + +) 
{ 

if (column = = 0) 
{ 

tm-f =t[row]; 
t[row] = tm; 

} 
else tm+ = (float) 1.0/N; 
compvalue = 0.0; 
for (i = 0;i < count;i + +) 
{ 
angle = 2.0*pi*freq[i]*tm; 
comp_value = amp[i]*cos(angle) -I- comp_value; 

x[row] [column] = compvalue; 
} 

} 
/******************** Insert elements to matrix 

void Insmat(mat,i) 
int i; 
struct MATRIX *mat; 
{ 

int r, c; 
float angle, cosine, sine; 

i f ( i==0) 
{ 
for(c = 0;c < m;c-I- - I - ) 
for(r = 0;r<p;r-f - I - ) 
{ 
mat- > real[r][c] =x[r][c]; 
mat- > imag[r][c] = 0.0; 

} 
} 
else 
{ for (c = 0;c<m;c-l--f) 

{ 
angle = 2.0*pi*c*i/N; 
cosine = cos(angle); 
sine = sin(angle); 
for (r = 0;r<p;r-l- - I - ) 
{ 

mat-> real[r][c] = x[r][c]*cosine; 
mat->imag[r][c] = x[r][c]*sine; 

} 
} 

} 
} 

1 ; * * * * * * * * * * * * * * * * / 
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/****************** Calculate frequency spectrum ****************/ 

Calculate(mat,comp,real,imag,cnt,element) 
struct MATRIX *mat; 
int comp, *cnt, element; 
float *real, *imag; 
{ 
float x real, x imag, row sum real, row sum imag; 
float angle, cosine, sine; 
int r, c, i, key, component; 

key = element; 
for(i = 0;i < order;i + + ) 
{ 
component = comp -f i*N; 
xreal = 0.0; 
x_imag = 0.0; 
for (r = 0;r < p;r - f - I - ) 
{ 
rowsumreal = mat->real[r][0]; 
rowsumimag = 0.0; 
for (c = l;c<m;c-l- + ) 
{ 

rowsumreal + = mat->real[r][c]; 
row sum unag -I- = mat->imag[r][c]; 

} 
i f ( r = = 0 ) 
{ 

x_real = rowsumreal; 
x_imag = row_sum_imag; 

} 
else 
{ 

angle = 2.0* pi* component *t[r]; 
cosine = cos(angle); 
sine = sin(angle); 
x_real + = (row_sum_real*cosine-row_sum_imag*sine); 
x imag -I- = (row_sum_imag*cosine + row_sum_real*sine); 

} " 

} real[key] = x_real; 
imag[key] = x_imag; 
cnt[key] = component; 
key+ + ; 

} 
return(key); 

} 

y * * * * * * * * * * * * * * * * * * * * * * pj.gg memory allocation 

void KillMatO 
{ 
int i; 

for (i = 0;i<p;i+ - I - ) 
{ 
free(Mmatl- > real[i]); 
free(Mmatl- > imag[i]); 
free(Mmat2- > real[i]); 
free(Mmat2- > unag[i]); 
free(x[i]); 

free(Mmatl- > real); 
free(Mmatl- > imag); 
free(Mmat2- > real); 
free(Mmat2- > imag); 

******************/ 
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free(x); 
free(Mmatl); 
free(Mmat2); 
free(t); 

} 
^************************ Process matrix ************************/ 

int Process(real,imag,start,stop,count) 
float *real, *imag; 
int start, stop, * count; 
{ 
int row, column, i, j , k, comp; 
float power indexl, power_mdex2; 

/* for start to stop calculate Mi */ 

Mmatl = MakeMatrixO; 
Mmat2 = MakeMatrixQ; 
k = 0; 
for (i = start;i < stop;i + +) 
{ 
comp = i; 
Insmat(Mmatl,comp); 
k = Calculate(Mmatl,comp,real,imag,count,k); 

/* Mat[N/2-hi] */ comp = N/2 +i; 
for (column = 0;column < m;column + = 2) 
for (row = O;row< p;row + + ) 
{ 
Mmat2->real[row][coliunn] = Mmatl->real[row] [column]; 
Mmat2-> imag[row][column] = Mmatl->imag[row][column]; 
Mmat2->real[row][column+ 1] = Mmatl-> real[row][column-H1] * -1.0; 
Mmat2-> imag[row][column +1] = Mmatl->imag[row][column + l] *-1.0; 

k = Calculate(Mmat2,comp,real,imag,count,k); 

/* Mat[N-i] */ 
comp = N-i; 
for (column = O;column < m;column + + ) 
for (row = O;row < p;row -I- +) 

Mmat2->real[row] [column] = Mmatl->real[row] [column]; 
Mmat2-> imag[row][column] = Mmatl-> Lmag[row][column] * -1.0; 

} 
k = Calculate(Mmat2,comp,real,imag,count,k); 

/* Mat[N/2-i] */ 
comp = N/2-i; 
for (column = 0;column < m;column -I- = 2) 
for (row = 0;row < p;row + + ) 
{ 
Mmat2->real[row][column-H] = Mmatl-> reaI[row][column-M] * -1.0; 
Mmat2->imag[row] [column-1-1] = Mmatl->imag[row][column-H]; 

} 
k = Calculate(Mmat2,comp,real,imag,count,k); 

/* calculate N/4 - i */ 
j = N/4 - i; 
ifG! = i) 
{ 
/* Mmat[j] */ 
comp = j ; 
for (row = O;row < p;row + +) 
{ 
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Mmat2- > real[row][0] = Mmatl- > real[row][0]; 
Mmat2- > miag[row][0] = Mmatl- > imag[row][0]; 

} 
for (column = l;column < m;column + = 2) 
{ 

power_indexl = pow(-1.0,(float)((column +1)/2)); 
power_index2 = pow(-1.0,(float)((column -I- 3)/2)); 
for (row = 0;row < p;row + + ) 

Mmat2- > real[row] [column + 1] = Mmatl- > real[row] [column + l]*power_indexl; 
Mmat2- > imag[row] [column + 1] = Mmatl- > imag[row] [column + l]*power_indexl*-1.0; 
Mmat2->real[row] [column] = Mmatl->imag[row] [column] *power_mdex2; 
Mmat2-> imag[row] [column] = Mmatl->real[row][column]*power_index2; 

} 
} k = Calculate(Mmat2,comp,real,imag,count,k); 

/* Mat[N/2-Hj] */ 
comp = N/2 -I- j ; 
for (column = O;column<m;column + =2) 
for (row = O;row < p;row -t- -I-) 
{ 

Mmatl->real[row][column] = Mmat2->real[row] [column]; 
Mmatl-> imag[row][column] = Mmat2->imag[row] [column]; 
Mmatl-> real[row][column +1] = Mmat2->real[row][column-t-1] * -1.0; 
Mmatl- > imag[row][column + 1] = Mmat2- > imag[row][column -I-1] * -1.0; 

} 
k = Calculate(Mmatl,comp,real,imag,count,k); 

/* Mmat[N-j] */ 
comp = N-j; 
for (column = O;column < m;column -I- - I - ) 
for (row = O;row < p;row + +) 
{ 

Mmatl->real[row][column] = Mmat2-> real[row] [column]; 
Mmatl->imag[row][column] = Mmat2->imag[row][colunin] *-1.0; 

} 
k = Calculate(Mmatl,comp,real,imag,count,k); 

/* Mat[N/2-j] */ 
comp = N/2-j; 
for (column = O;column < m;column + = 2) 
for (row = O;row < p;row - f - I - ) 
{ 

Mmatl->real[row] [column-1-1] = Mmat2->real[row][colimm-l-l] * -1.0; 
Mmatl- > imag[row][column -I-1] = Mmat2- > imag[row][column -I-1]; 

} 
k = Calculate(Mmatl,comp,real,imag,count,k); 

} 
} 
return(k); 

} 

/************* Get matrix size from other processors ************/ 

void get_matrix_size(port) 
int port; 
{ 
/* chan in message from port */ 
chan_in_word(&p,in[port]); 
chan_in_word(&m,in[port]); 
chan_in_word(&order,m[port]); 
N = p*m; 

} 
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/********* Send message information to other processors *********/ 

void send_input(freq,amp,freq_count,port)int *freq, freq_count, port; 
float *amp; 
{ 
chan_out_word(freq_count,out[port]); 
chan_out_message(freq_count*sizeof(int),freq,out[port]); 
chan_out_message(freq_count*sizeof(float),amp,out[port]); 
chan_out_message(p* sizeof (float) ,t,out[port]); 

} 
/*********** Send matrix size to other processors ***************/ 

void send_matrix_size(port) 
int port; 
{ 
/* chan out message to port */ 
chan_out_word(p,out[port]); 
chan_out_word(m,out[porti); 
chan_out_word(order,out[port]); 

} 

/************* Send result to other processors ******************/ 

void send_result(real,imag,count,comp_count,port) 
float *real, *imag; 
int *count, comp_count, port; 

chan_out_word(comp_count,out[port]); 
chan_out_message(comp_count*sizeof(float),real,out[port]); 
chan_out_message(comp_count*sizeof(float),imag,out[port]); 
chan_out_message(comp_count*sizeof(int),count,out[port]); 

} 
^***************** Get result from other processor **************/ 

int get_result(real,imag,count,comp_count,port) 
float *real, *imag; 
int comp_count, port, *count; 
{ 
int inp_cnt[MAXDATA], i, comp, inp count; 
float inp_real[MAXDATA], inp_imag[MAXDATA]; 

/* chan in message from inport 1 */ 
chan_in_word(&inp_count,m[port]); 
chan_in_message(inp_count*sizeof(float),inp_rea],in[port]); 
chan_in_message(inp_count*sizeof(float),inp_imag,in[port]); 
chan_in_message(inp_count*sizeof(int),inp_cnt,in[port]); 
for (i = 0;i < inp_count;i - f - I - ) 
{ 
real[i -I- comp_count] = inp_real[i]; 
imag[i + comp_count] = inp_imag[i]; 
count[i + compcount] = inp_cnt[i]; 

} return(inp_count -I- comp count); 
} 
^*********************** juainprogram ***************************/ 

void main(argc,argv,envp,in_ports,inlen,out_ports,outlen) 
int argc,inlen,outlen; 
char *argv[],*envp[]; 
C H A N *in_ports[],*out_ports[]; 

int freq[MAXDATA], freq_count, count[2*MAXDATA], comp_count; 
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float amp[MAXDATA]; 
int start, stop; 
float y_real[2*MAXDATA], y_miag[2*MAXDATA]; 
int size_int, size_remain; 

in = inports; 
out = out_ports; 

get_matrix_size(0); 

send_matrtx_size( 1); 

InitializeO; 

/* get frequency component & amplitude */ 
freq_count = get_input(freq,amp,0); 
/* send message to workers */ 
send_input(freq,amp,freq_count,l); 
/* generate sampling sequence */ 
gen_sampIe(freq,amp,freq_count); 

/* generate no. of processing element */ 
sizeint = N/8/node; 
sizeremain = N/8%node; 

switch(node_address) { 
case 0: start = 1; 

stop = start + sizeint; 
break; 

case 1: start = size int -I-1; 
stop = start + sizeint; 
break; 

case 2: start = 2*size_int +1; 
stop = start -I- size int; 
break; 

case 3: start = 3*size_int -1-1; 
stop = start -I- size_int; 
break; 

case 4: start = 4*size_int -I-1; 
stop = start + size int -I - size_remain; 
break; default: start = 0; 
stop = 0; 
break; 

} 

/* Processing Data */ 

comp_count = Process(y_real,y_imag,start,stop, count); 

/* get result from worker */ 

compcount = get_result(y_real,y_imag,count,comp_count,l); 

/* send to root */ 

send_result(y_real,y_imag,count,comp_count,0); 

KillMatO; 
} 
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Appendix 2 : Program Listing 

C routines for calculating the DFT according to hybrid a.r.s. and 
generating random numbers. 

y * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *i 
/* */ 
/* Hyrbid.c */ /* */ y * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *i 

#include <math.h> 
#include <conio.h> 
#include <malloc.h> 
#include <stdlib.h> 
#include <complex.h> 

long int Number Add = 0, Number Mult = 0; 
static complex w; 
static long int i,j,N; 

/* a = pointer, point to input data */ 
/* *(a) = starting address of mput data */ 
/* r = pointer, point to "Random Number" table */ 
/* *(r) = starting address of table */ 
/*Noofpomts = 2 m */ 
/* _ . . */ 
/* After transformation, output data is stored in */ 
/* the same address. */ 

rft(complex huge *a, int m, float huge *r) 
{ 
float randomj; 
complex huge *b; 
double sign; 
double Cr,Ci, PI; 

N = (long)pow(2.0,(double)m); 
PI = 4.0*atan(1.0); 

/* Get the memory for temporary storage */ 
b = (complex huge *) _fcalloc ((N-M),sizeof(complex)); 
if (!b) { printf ("\nNot enough memory for temporary buffer"); 

exit(l);} 

/* evaluating the D F T */ 
for ( i = 0 ; i < N;i-H ) 
{ *(b-l-i) = complex(0,0); /* Initiahzation */ 

for( j = l ; j < N / 4 ; j + + ) 
{ randomj = (float)j -I- *(r-fj); 

if ((i%2) = = 0 ) sign = 1.0; else sign = -1.0; 
Cr = real((*a + sign * *(a-fN/2)) + 

(*(a + N/4) + *(a + (3*N/4)))* cos(2*PI*i/4)); 
Ci = real((*(a + N/4) - *(a-l-(3*N/4))) * -sb(2*PI*i/4)); 
*{h + i) + = complex(real(*(a-l-j) -f *(a-^N-j) + sign * (*(a-KN/2-j) + 

*(a-^N/2-^j))) * cos(2*PI*i*randomj/N), 
real(*(a+j) - *(a + N-j) + sign * (*(a-l-N/2+j) -

*(a + N/2-j))) * -sm(2*PI*i*randomj/N)); 
Number_Add - I - = (4-t-6); 
Number_Mult + = (4 + 3); 

*(b-l-i) + = complex(Cr,Ci); 
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Number_Add -I- = 1; 
} 

/* Transfer Data */ 
for ( i = 0 ; i < N ; i - I - - ) - ) 
*(a-fi) = *(b-Hi); 

free (b); 
return 0; 
} 

/* Random number generator */ 

Gen_Random(float huge *Random_Number, int length) 
{ int i; 
randomizeO; 

for ( i = 1; i<length/4 ; i + +) 
{ *(Random_Number + i) = (float) (random(length) - (length > > l))/length; 

* (Random Number -f length/2-i) = - * (Random Number + i); 
* (Random Number -I- length/2 -I- i) = * (Random_Number -I- i); 
*(Random_Number-F length -i) = -*(Random_Number-l-i); 

} 
for ( i = 0 ; i < length ; i -I- = length/4) 

*(Random_Number -I- i) = 0; 

retiu-n 0; 
} 

Remarks: 
(i) The header < complex.h > contains a type definition : 

typedef struct { 
float real, imag; 

} complex; 

(ii) In the second routine, Gen_Random(), randomize() and random() are functions of Borland C. 

Appendix 3 ; Program Listing 

C routines for computing circular auto-correlation 
y * * * * * * * * * * * * * * * * * * * * * ^ 
/* 7 
/* C C O R . C */ 
/* */ ^*********************^ 

#include <stdio.h> 
#include <stdlib.h> 
#include <conio.h> 
#include <math.h> 

/* Inputs : tuning file, data file, step size and % tolerance */ 

float match (int k, float step, double frac); 
float *tim, *input, *dtime, *dmput, *output, *temp; 
int len, N; 

main (void) 
{ int i,j,ch,divn; 

float St; 
double t,fr; 
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char fnameipO], fname2[20]; 
F I L E *ti, *in, *out; 
tim = malloc(1024*sizeof(float)); 
if (!tim) { printf Cannot allocate tim \n"); 

exit (1); 
} 

input = malloc(1024*sizeof(float)); 
if (linput) { printf ("\n Cannot allocate input \n"); 

exit (1); 
} 

dtime = malloc(2048*sizeof(float)); 
if (Idtime) { printf ("\n Cannot allocate dtime \n"); 

exit (1); 
} 

dinput = malloc(2048*sizeof(float)); 
if (Idinput) { printf ("\n Cannot allocate dinput \n"); 

exit (1); 
} 

output = malloc(4096*sizeof (float)); 
if (loutput) { printf ("\n Cannot allocate output \n"); 

exit (1); 
} 

temp = malloc(1024*sizeof(float)); 
if (!temp) { printf ("\n Cannot allocate temp in sub.\n"); 

exit (1); 
} 

printf("\n input timing file = "); 
gets(fnamel); 
if ((ti= fopen(fnamel, "r")) = = N U L L ) 
{ printf ("\n Cannot open %s \n", fnamel); 

exit(l); 
} 
for (i = 0 ; ; i + + ) 
{ fscanf(ti, "%f', &tim[i]); 

if(feof(ti) != 0) break; 
} 
fclose (ti); 
len = i; 
printf("\n length = %d\n", len); 

printf ("\n input data file = "); 
gets(fname2); 
if ((in = fopen(fname2, "r")) = = N U L L ) 
{ printf ("\n Caimot open %s \n", fname2); 

exit(l); 
} 
for (i = 0; ; i + +) 
{ fscanf(in, "%f', &input[i]); 

if(feof(ti) != 0) break; 
} 
fclose (in); 

/* repeat the input sequences */ 
for (i = 0; i < len; i + +) dtmie[i] = tim[i]; 
for(i = len;i<2*len;i++) dtimefi] = LO + tmi[i-len]; 
for (i = 0; i < len; i + +) dinput[i] = input[i]; 
for (i = len; i<2*len;i+ +) dinput[i] = input[i-len]; 

/* for(i = 0;i<2*len;i+ +) 
printf(" dinput[%d] = %f\n", i, dinput[i]); */ 

/* correlate input and dinput with STEP size */ 
printf("\n Input division = "); 
scanf("%d",&divn); 
printf("\n"); 
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} 

printf(" Input tolerance as a percentage of step size = "); 
scanf("%lf',&t); 
prmtf("\n"); 

N = divn*len; 
St = 1.0/(float)N; 
fr = (double)st*t/200.0; 
printf(" divn = %d, N = %d , st = %f, fr = +- %lf\n",divn,N,st,fr); 

output[0] = 0.0; 
for (i = 0;i < len; i + +) 

output[0] = output[0] + mput[i]*input[i]; 
for (i = l ; i<N; i + +) 

output[i] = match(i, st, fr); 
prmtf("\n"); 
for (i = 0;i< N; i+ = N-2) 

printf(" output[%d] = %foutput[%d] = %f\n",\ 
i,output[i],i + l,output[i +1]); 

if ((out = fopen ("output.prn", "w")) = = N U L L ) 
{ printf(" Cannot open output.prn for writing.\n"); 

exit(l); 
} 

for (i = 0 ; i < N ; i + + ) 
fprintf (out, "%f\n", output[i]); 

^*********************************^ 

float match (int k, float step, double tol) 
{ float result, dt; 

double apart, diff; 
int i,j,ch, back; 

printf(" %d\r",k); 
for (i = 0;i<len;i+ +) 

temp[i] = tim[i] + (float)(k*step); /* time shift by k steps */ 
result = 0.0; 
apart = (double)step; 
j = 0; 

for (i = 0;i<len;i+ +) 
{ dt = temp[i]; 

while (j<2*len) 
{ diff = dtimeU] - dt; 

if (diff > apart) 
{ back = j - 2; 

if (back > 0) 
j = back; /* set pointer back */ 

else 
j =0; 

break; 
} 

/* dtimeU] passes target temp[i]; next i */ 

if(fabs(diff) < tol) /* match */ 
{ result = result + input[i]*dinput[j]; 

break; 
} /* next i */ 

j + + ; /*nextj*/ 
} 

} 
return result; 
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