225 research outputs found

    Ultra conformable and multimodal tactile sensors based on organic field-effect transistors

    Get PDF
    Cognitive psychology is the branch of psychology related to all the processes by which sensory input is transformed, processed and used. Academic and industrial research has always invested time and resources to develop devices capable to simulate the behavior of the organs where the perceptions are located. In recent years, in fact, there have been numerous discoveries related to new materials, and new devices, capable of reproducing, in a reliable manner, the sensory behavior of humans. Particular interest in scientific research has been aimed at understanding and reproducing of man's tactile sensations. It is known that, through the receptors of the skin, it is possible to detect sensations such as pain, changes in pressure and/or temperature. The development of tactile sensor technology had a significant increase in the last years of 1970s, thanks to the important surveys of Stojiljkovic, Harmon and Lumelsky who presented the firsts prototype of sensors for artificial skin applications, and summarized the main characteristics and requirements of tactile sensors. Recently, organic electronics has been deeply investigated as technology for the fabrication of tactile sensors using biocompatible materials, which can be deposited and processed on ultra flexible and ultra conformable substrates. In general, the most attractive property of these materials is mainly related to their high mechanical flexibility, which is mandatory for artificial skin applications. The main object of this PhD research activity was the development and optimization of an innovative technology for the realization of physical sensors able to detect pressure and temperature variations, which can be applied in the field of biomedical engineering and biorobotics. By exploiting the particular characteristics of the employed materials, such as mechanical flexibility, the proposed sensors are very suitable to be integrated with flexible structures (for example plastics) as a pressure and temperature sensor, and therefore, ideal for the realization of an artificial skin like. In Chapter 1, the basics of humans somatosensory system will be introduced: after a brief description of tactile thermoreceptors, mechanoreceptors and nociceptors, a definition of electronic skin and its characteristics will be provided. In Chapter 2, a wide analysis of the state of the art will be reported. Several and different examples of tactile sensor (in inorganic and organic technology) will be presented, underlining advantages and disadvantages for each approach. In Chapter 3, the firsts experimental results, obtained in the first part of my PhD program, will be presented. All the steps of the fabrication process of the devices will be described, as well as the measurement setup used for the electrical characterization of the sensors. In Chapter 4, the sensor structure optimization will be presented. It will be demonstrated how the presented devices are able to sense simultaneously thermal and mechanical stimuli. Moreover, it will be demonstrated that, thanks to an alternative and innovative fabrication process, the sensors can be transferred directly on skin, thus proving the suitability of the proposed sensor architecture for tactile applications

    Flexible Multifunctional Sensors for Wearable and Robotic Applications

    Get PDF
    This review provides an overview of the current state-of-the-art of the emerging field of flexible multifunctional sensors for wearable and robotic applications. In these application sectors, there is a demand for high sensitivity, accuracy, reproducibility, mechanical flexibility, and low cost. The ability to empower robots and future electronic skin (e-skin) with high resolution, high sensitivity, and rapid response sensing capabilities is of interest to a broad range of applications including wearable healthcare devices, biomedical prosthesis, and human–machine interacting robots such as service robots for the elderly and electronic skin to provide a range of diagnostic and monitoring capabilities. A range of sensory mechanisms is examined including piezoelectric, pyroelectric, piezoresistive, and there is particular emphasis on hybrid sensors that provide multifunctional sensing capability. As an alternative to the physical sensors described above, optical sensors have the potential to be used as a robot or e-skin; this includes sensory color changes using photonic crystals, liquid crystals, and mechanochromic effects. Potential future areas of research are discussed and the challenge for these exciting materials is to enhance their integration into wearables and robotic applications.</p

    Flexible Multifunctional Sensors for Wearable and Robotic Applications

    Get PDF
    This review provides an overview of the current state-of-the-art of the emerging field of flexible multifunctional sensors for wearable and robotic applications. In these application sectors, there is a demand for high sensitivity, accuracy, reproducibility, mechanical flexibility, and low cost. The ability to empower robots and future electronic skin (e-skin) with high resolution, high sensitivity, and rapid response sensing capabilities is of interest to a broad range of applications including wearable healthcare devices, biomedical prosthesis, and human–machine interacting robots such as service robots for the elderly and electronic skin to provide a range of diagnostic and monitoring capabilities. A range of sensory mechanisms is examined including piezoelectric, pyroelectric, piezoresistive, and there is particular emphasis on hybrid sensors that provide multifunctional sensing capability. As an alternative to the physical sensors described above, optical sensors have the potential to be used as a robot or e-skin; this includes sensory color changes using photonic crystals, liquid crystals, and mechanochromic effects. Potential future areas of research are discussed and the challenge for these exciting materials is to enhance their integration into wearables and robotic applications.</p

    Engineering of hybrid materials for self-powered flexible sensors

    Get PDF
    Department of Energy Engineering (Energy Engineering)Along with the 4th industrial revolution, the great advance in wearable electronics has led a new paradigm in our life. Especially, wearable sensor technology has received great attention as promising candidates to improve the quality of life by realizing the ???Internet of Things??? which can be utilized in daily healthcare, intelligent control, daily activity monitoring, and human-machine interface systems. The ideal wearable devices require several characteristics providing light weight, flexible, unobtrusive, autonomously powered for the convenience of user and sustainable uses. Although various emerging technologies have been suggested to meet these requirements, there are still challenges for highly flexible and unobtrusive forms, multifunctionality, and sustainable uses, which are directly related to widespread practical applications. In response to these requirements, several approaches to explore functional materials and to design the effective structures for advanced sensor performances with sustainable uses, high sensitivity, and multifunctionality. For sustainable uses, self-powered sensing system can be developed by triboelectric/piezoelectric/pyroelectric effect, which can rule out any problems with power sources. For wearable and flexible form factors, textile and extremely thin films, which are mountable and attachable on the human body, are used instead of conventional obtrusive devices, improving the wearing sensing of devices. Moreover, the selection of multifunctional materials and modification of material characteristics can realize multifunctionality which can respond to different stimuli (pressure and temperature) simultaneously. Furthermore, soft/hard and organic/inorganic hybrid materials can be used for effective design of high performance wearable sensor by distribution control in dissimilar materials, which is attributed to effectively localized strain and large contrast of dielectric properties. Therefore, self-powered wearable sensors can be developed with functional materials, unique design and novel approach for characteristic modification, which can provide a promising platform to realize ideal wearable sensors for future applications such as daily healthcare, intelligent control, daily activity monitoring, and human-machine interface systems. In this thesis, we suggest the strategy for advanced sustainable wearable sensors with better wearing sensation, multimodality, and enhanced sensory functions through structure design and modification of material characteristics. Firstly, we briefly summarize the fundamental working principles, the latest research trends, and potential applications in Chapter 1. In Chapter 2, we demonstrate as-spun P(VDF) fiber-based self-powered textile sensors with high sensitivity, mechanical stability, and washing durability. In Chapter 3, we introduce multimodal wearable sensors without signal interference based on triboelectric and pyroelectric effect, which is attributed to controllable polarity of P(VDF-TrFE) via ferroelectric polarization. In Chapter 4, we suggest a novel method for high performance of triboelectric sensors based on alternating P(VDF-TrFE)/BaTiO3 multilayer nanocomposites, which is attributed to the efficient stress concentration and large contrast of dielectric properties. Lastly, we summarize this thesis with future prospects in Chapter 5.clos

    Printable stretchable interconnects

    Get PDF
    This article presents recent progress and a comprehensive overview of stretchable interconnects based on printable nanocomposites. Nanocomposite-based inks for printed stretchable interconnects have been categorized according to dispersed filler materials. They comprise of carbon-based fillers and metal-based fillers. Benefits in terms of excellent electrical performance and elastic properties make nanocomposites the ideal candidates for stretchable interconnect applications. Deeper analysis of nanocomposites-based stretchable interconnects includes the correlation between the size of fillers, percolation ratio, maximum electrical conductivity and mechanical elasticity. The key trends in the field have been highlighted using curve fitting methods on large data collected from the literature. Furthermore, a wide variety of applications for stretchable interconnects are presented

    The role of printed electronics and related technologies in the development of smart connected products

    Get PDF
    The emergence of novel materials with flexible and stretchable characteristics, and the use of new processing technologies, have allowed for the development of new connected devices and applications. Using printed electronics, traditional electronic elements are being combined with flexible components and allowing for the development of new smart connected products. As a result, devices that are capable of sensing, actuating, and communicating remotely while being low-cost, lightweight, conformable, and easily customizable are already being developed. Combined with the expansion of the Internet of Things, artificial intelligence, and encryption algorithms, the overall attractiveness of these technologies has prompted new applications to appear in almost every sector. The exponential technological development is currently allowing for the ‘smartification’ of cities, manufacturing, healthcare, agriculture, logistics, among others. In this review article, the steps towards this transition are approached, starting from the conceptualization of smart connected products and their main markets. The manufacturing technologies are then presented, with focus on printing-based ones, compatible with organic materials. Finally, each one of the printable components is presented and some applications are discussed.This work has been supported by NORTE-06-3559- FSE-000018, integrated in the invitation NORTE59-2018-41, aiming the Hiring of Highly Qualified Human Resources, co-financed by the Regional Operational Programme of the North 2020, thematic area of Competitiveness and Employment, through the European Social Fund (ESF), and by the scope of projects with references UIDB/05256/2020 and UIDP/05256/2020, financed by FCT—Fundação para a Ciência e Tecnologia, Portugal

    Graphene/P(VDF-TrFE) Heterojunction Based Wearable Sensors with Integrated Piezoelectric Energy Harvester

    Get PDF
    Graphene, with its outstanding material properties, including high carrier mobility, atomically thin nature, and ability to tolerate mechanical deformation related strain up to 20% before breaking, make it very attractive for developing highly sensitive and conformable strain/pressure sensor for wearable electronics. Unfortunately, graphene by itself is not piezoresistive, so developing a strain sensor utilizing just graphene is challenging. Fortunately, graphene synthesized on Cu foil can be transferred to arbitrary substrates (preserving its high quality), including flexible polymer substrates, which will allow the overall flexibility and conformability of the sensing element, to be maintained. Furthermore, a graphene/polymer based sensor devices can be easily patterned into an array over dimensions reaching several feet, taking advantage of large area synthesis of graphene, which will make the ultimate sensor very inexpensive. If a piezo-electric polymer, such as P(VDF-TrFE), is chosen to form a heterojunction with graphene, it will strongly affect the carrier density in graphene, due to the fixed charge developing on its surface under strain or pressure. Taking advantage of the high carrier mobility in graphene, such a charge change can result in very high sensitivity to pressure and strain. Hence, these features, coupled with the flexible nature of the device and ease of fabrication, make it a very attractive candidate for use in the growing wearable technology market, especially biomedical applications and smart health monitoring system as well as virtual reality sensors. In this dissertation, various unique properties of graphene and P(VDF-TrFE), and their current applications and trends are discussed in chapter 1. Additionally, synthesis of graphene and P(VDF-TrFE) and their characterizations by various techniques are investigated in chapter 2. Based on piezoelectric property of P(VDF-TrFE), a highly flexible energy harvesters on PDMS as well as PET substrates have been developed and demonstrated their performances in chapter 3. As follow-up research, graphene/P(VDF-TrFE) heterojunction based wearable sensors with integrated piezoelectric energy harvester on flexible substrates have also been fabricated and demonstrated for practical wearable application in chapter 4. Finally, major findings and future directions of the project are discussed in chapter 5

    New generation of interactive platforms based on novel printed smart materials

    Get PDF
    Programa doutoral em Engenharia Eletrónica e de Computadores (área de Instrumentação e Microssistemas Eletrónicos)The last decade was marked by the computer-paradigm changing with other digital devices suddenly becoming available to the general public, such as tablets and smartphones. A shift in perspective from computer to materials as the centerpiece of digital interaction is leading to a diversification of interaction contexts, objects and applications, recurring to intuitive commands and dynamic content that can proportionate more interesting and satisfying experiences. In parallel, polymer-based sensors and actuators, and their integration in different substrates or devices is an area of increasing scientific and technological interest, which current state of the art starts to permit the use of smart sensors and actuators embodied within the objects seamlessly. Electronics is no longer a rigid board with plenty of chips. New technological advances and perspectives now turned into printed electronics in polymers, textiles or paper. We are assisting to the actual scaling down of computational power into everyday use objects, a fusion of the computer with the material. Interactivity is being transposed to objects erstwhile inanimate. In this work, strain and deformation sensors and actuators were developed recurring to functional polymer composites with metallic and carbonaceous nanoparticles (NPs) inks, leading to capacitive, piezoresistive and piezoelectric effects, envisioning the creation of tangible user interfaces (TUIs). Based on smart polymer substrates such as polyvinylidene fluoride (PVDF) or polyethylene terephthalate (PET), among others, prototypes were prepared using piezoelectric and dielectric technologies. Piezoresistive prototypes were prepared with resistive inks and restive functional polymers. Materials were printed by screen printing, inkjet printing and doctor blade coating. Finally, a case study of the integration of the different materials and technologies developed is presented in a book-form factor.A última década foi marcada por uma alteração do paradigma de computador pelo súbito aparecimento dos tablets e smartphones para o público geral. A alteração de perspetiva do computador para os materiais como parte central de interação digital levou a uma diversificação dos contextos de interação, objetos e aplicações, recorrendo a comandos intuitivos e conteúdos dinâmicos capazes de tornarem a experiência mais interessante e satisfatória. Em simultâneo, sensores e atuadores de base polimérica, e a sua integração em diferentes substratos ou dispositivos é uma área de crescente interesse científico e tecnológico, e o atual estado da arte começa a permitir o uso de sensores e atuadores inteligentes perfeitamente integrados nos objetos. Eletrónica já não é sinónimo de placas rígidas cheias de componentes. Novas perspetivas e avanços tecnológicos transformaram-se em eletrónica impressa em polímeros, têxteis ou papel. Neste momento estamos a assistir à redução da computação a objetos do dia a dia, uma fusão do computador com a matéria. A interatividade está a ser transposta para objetos outrora inanimados. Neste trabalho foram desenvolvidos atuadores e sensores e de pressão e de deformação com recurso a compostos poliméricos funcionais com tintas com nanopartículas (NPs) metálicas ou de base carbónica, recorrendo aos efeitos capacitivo, piezoresistivo e piezoelétrico, com vista à criação de interfaces de usuário tangíveis (TUIs). Usando substratos poliméricos inteligentes tais como fluoreto de polivinilideno (PVDF) ou politereftalato de etileno (PET), entre outos, foi possível a preparação de protótipos de tecnologia piezoelétrica ou dielétrica. Os protótipos de tecnologia piezoresistiva foram feitos com tintas resistivas e polímeros funcionais resistivos. Os materiais foram impressos por serigrafia, jato de tinta, impressão por aerossol e revestimento de lâmina doctor blade. Para terminar, é apresentado um caso de estudo da integração dos diferentes materiais e tecnologias desenvolvidos sob o formato de um livro.This project was supported by FCT – Fundação para a Ciência e a Tecnologia, within the doctorate grant with reference SFRH/BD/110622/2015, by POCH – Programa Operacional Capital Humano, and by EU – European Union

    A CRITICAL REVIEW ON THE MATERIAL ASPECTS OF TRIBOELECTRIC NANOGENERATORS (TENG)

    Get PDF
    Triboelectric nanogenerators (TENG) take the advantage of coupling effect for harvesting energy in the area of electronics for various self-powered applications. These nanogenerators are capable of converting energy in our surroundings into electrical energy by using the process of electrostatic induction and contact electrification. Triboelectric layers of a TENG are formed basically with the use of various polymers, metals and other inorganic materials like PTFE (Poly tetra fluoro ethylene), PDMS (polydimethyl siloxane), FEP (Fluorinated ethylene propylene) and Kapton. Selection of different materials for the device fabrication is very important since it contribute towards the triboelectric effect and also forms the fundamental structure for the proposed TENG device. In this review article, we emphasis mainly on various triboelectric materials considering factors such as stability, flexibility, power density etc., to improve upon the electrical output of the devices for different applications
    corecore