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ABSTRACT 

Graphene, with its outstanding material properties, including high carrier mobility, 

atomically thin nature, and ability to tolerate mechanical deformation related strain up to 

20% before breaking, make it very attractive for developing highly sensitive and 

conformable strain/pressure sensor for wearable electronics. Unfortunately, graphene by 

itself is not piezoresistive, so developing a strain sensor utilizing just graphene is 

challenging. Fortunately, graphene synthesized on Cu foil can be transferred to arbitrary 

substrates (preserving its high quality), including flexible polymer substrates, which will 

allow the overall flexibility and conformability of the sensing element, to be maintained. 

Furthermore, a graphene/polymer based sensor devices can be easily patterned into an 

array over dimensions reaching several feet, taking advantage of large area synthesis of 

graphene, which will make the ultimate sensor very inexpensive. If a piezo-electric 

polymer, such as P(VDF-TrFE), is chosen to form a heterojunction with graphene, it will 

strongly affect the carrier density in graphene, due to the fixed charge developing on its 

surface under strain or pressure. Taking advantage of the high carrier mobility in 

graphene, such a charge change can result in very high sensitivity to pressure and strain. 

Hence, these features, coupled with the flexible nature of the device and ease of 

fabrication, make it a very attractive candidate for use in the growing wearable 

technology market, especially biomedical applications and smart health monitoring 

system as well as virtual reality sensors. 

In this dissertation, various unique properties of graphene and P(VDF-TrFE), and 

their current applications and trends are discussed in chapter 1. Additionally, synthesis of 
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graphene and P(VDF-TrFE) and their characterizations by various techniques are 

investigated in chapter 2. Based on piezoelectric property of P(VDF-TrFE), a highly 

flexible energy harvesters on PDMS as well as PET substrates have been developed and 

demonstrated their performances in chapter 3. As follow-up research, graphene/P(VDF-

TrFE) heterojunction based wearable sensors with integrated piezoelectric energy 

harvester on flexible substrates have also been fabricated and demonstrated for practical 

wearable application in chapter 4. Finally, major findings and future directions of the 

project are discussed in chapter 5.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Graphene 

Graphene has attracted tremendous research interest in transparent electronics [1], 

flexible electronics [2], field effect transistor [3], chemi-diode [4], and high speed and/or 

frequency devices [5] since the graphene was discovered by Novoselove et al. [6] (2004), 

and the discovery was led to a Nobel Prize in physics (2010). The graphene, with its 

outstanding material properties, including high carrier mobility [7], atomically thin nature 

[8], high thermal conductivity [9], high optical transparency in the visible range [10], and 

ability to tolerate mechanical deformation related strain up to 20% before breaking [11], 

is a purely two dimensional (2D) material with an arranged hexagonal lattice of carbon 

atoms (C-C bond length is 1.42 Å ) as shown in Fig. 1.1. In addition, it can be formed into 

wrap in 0D as fullerene molecules, roll in 1D as carbon nanotubes, and 3D as pyrolytic 

carbon [12]. All these structure have superior and unique optical, mechanical, magnetic, 

and electrical properties, making them a strong candidate for future nanotechnology. 

Another part of advantage for graphene with unique properties is inexpensive process of 

synthesizing high quality single or multi-layer graphene by mechanical exfoliation [6] or 

chemical vapor deposition (CVD) [13]. In this chapter, the electrical, optical, mechanical 

properties of graphene, and its applications will be introduced. 
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Figure 1.1 Schematic of periodic repetition of hexagonal unit resulting in 2D honeycomb 

structure of graphene [14]. 

 

1.1.1 Electrical properties 

The hexagonal lattice of carbon atoms for graphene apart from its 3 nearest 

neighbors in a plane and shares a sp
2
 hybridized σ bond with them, the forth orbital (pz, 

single electron) is in z direction which perpendicular to the graphene plane and the pz 

electrons from each carbon atom hybridize to form π and π
*
 bands. These bands are 

responsible for most of the electronic properties of graphene [15]. 

  Figure 1.2 shows the schematic of (a) honeycomb lattice of graphene and (b) 

Brillouin zone. The basis of unit cell consists of two atoms (i.e. A and B), which the two 

interpenetrating triangular lattice that make up the honeycomb lattice. The lattice and 

reciprocal lattice vectors are given by Equation 1.1 and 1.2, respectively. 
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Figure 1.2 Schematic of (a) Honeycomb lattice, and (b) its first Brillouin zone. The 

lattice vectors are denoted by a1 and a2. The reciprocal lattice vectors are represented by 

b1 and b2. The parallelogram formed by a1 and a2 represents the unit cell [16]. 

 

                                    (1.1) 

                                  (1.2) 

The theoretical investigations on the band structure of graphene were first determined by 

Wallace in 1947 [17] who reported tight binding model or linear combination of atomic 

orbitals. 

In addition, it is important to consider the interaction of carbon atoms to nearest 

and next nearest neighboring carbon atoms to obtain dispersion relationship or band 

structure. The nearest neighbor distance a = 142 pm, the lattice constant is a (i.e., 246 

pm), and the M (zone boundary) which is half the reciprocal lattice vectors (b1 and b2) is 

2π/3a. The coordinates of K (corner point) are (2π/3a, π/3 a) so that the distance from 
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the origin to K is 4π/(3 a). We have kF =  and the Fermi wavelength kF = 2π/kF = 

3 a/2 = 369 pm since the conduction and valence bands touch at K. In order to express 

the conduction band and valence band touch each other at Dirac point at 6 places on the 

corner of a graphene’s Brillouin zone referred as K and K’ points with the following 

position vectors in the reciprocal space. 

                                    (1.3) 

The dispersion relation at K and K’ points are given by the following equation.  

                                      (1.4) 

Where vF = 0.9 × 10
6
 m/s which is Fermi velocity calculated by 

                                                               (1.5) 

Therefore, charge particles (i.e., electrons and holes) close to Dirac point in graphene is 

called as Dirac fermions because electrons and hole move with vF as Eq. 1.5 in the 

dispersion relationship at low energy points in reciprocal lattice space. Figure 1.3 shows 

energy bands in monolayer graphene describing the upper and lower bands were derived 

from the 2pz orbital of carbon.  

In general, the mobility is strongly dependent on the quality of graphene and 

corresponding target substrates because of scattering mechanism in graphene. The main 

scattering mechanism in graphene are short range scattering, Coulomb scattering, and 

phonon scattering, resulting from defects in graphene (i.e., vacancies and cracks). 

Moreover, surface polar phonons and defects are main reason of scattering mechanism 

for graphene at the room temperature. Up to date, there are lots of researchers have been  
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Figure 1.3 Schematic of energy bands in monolayer graphene (π and π
*
 bands). The 

upper and lower bands are conduction and valence bands, respectively. The Dirac points 

are the linear energy dispersion, present near the neutral K, K’[15]. 

 

working on graphene and they have improved the quality and mobility of graphene. To 

the best of my knowledge, the graphene with hexagonal boron nitride has high carrier 

mobility and its maximum reported value is ~350,000 cm
2
V

-1
s

-1
 [7], which is about 20 

and 1.75 times higher than SiO2 (10,000 to 15,000 cm
2
V

-1
s

-1
) [18] and Si/SiO2 (~200,000 

cm
2
V

-1
s

-1
) [19], respectively. In addition, graphene has high breakdown current density 

(10
8
 A/cm

2
) [20], which make the graphene a strong candidate for electronic devices with 

high current density, high speed and low power consumption. 

 

1.1.2 Optical properties 
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Graphene also possesses high optical transmittance (~97% transmission of the 

visible light) [10]. This is because monolayer graphene has atomic layer thickness, which 

makes the graphene absorbing ~3% of visible light. It is notable that multilayer of 

graphene does not interact optically because of 2D electron gas (2DEG) properties, and 

the absorbance of multilayer of graphene is proportional to number of layers. In addition, 

in the ultraviolet and infrared region, the graphene absorb ~3% of electromagnetic 

spectrum compared to other transparent materials [21]. Therefore, the graphene with high 

transparency, high carrier mobility is a strong candidate for transparent electronics and 

solar cell.  

 

1.1.3 Mechanical properties 

Graphene has superior mechanical properties and been reported as one of the 

strongest materials in the world. The tensile strength of graphene is 200 times higher than 

steel, with a tensile modulus of 1 TPa [22]. The Young’s modulus of graphene is about 

700 ~ 1000 GPa. The graphene also has ability to tolerate mechanical deformation related 

strain up to 20% before breaking (breaking strength: 40 N/m) [11]. Moreover, the 

graphene is available to have suspended structure using its unique mechanical properties, 

which is different with bulk graphite. Hence, the graphene is suitable for 

nanoelectromechanical system (NEMS) and flexible electronics such as strain/pressure 

sensor and resonators.  

 

1.1.4 Applications and trends 



 7 

The unique electrical, optical, and mechanical properties of graphene combined 

with its cheap and easy synthesis allow the graphene to be used for applications in a 

variety of diverse areas such as optoelectronics, energy harvesting, flexible electronics, 

and NEMS, etc. Here, some of the applications of graphene are briefly discussed, and 

Figure 1.4 shows major graphene applications in a variety of diverse areas. 

Transparent, conductive, and ultra-thin graphene films could be a candidate for 

window electrodes for optoelectronics such as solar cells [23]. Also, the graphene 

transparent electrode with high electrical conductivity can be used for energy harvester 

acoustic actuator [24] combined with piezoelectric properties materials such as P(VDF-

TrFE). In addition, graphene has remarkably superior mechanical strength, which makes 

it suitable for flexible electronics such as strain/pressure sensor [25]. The graphene has an 

ability to be suspended over open cavities; it can be developed for NEMS based pressure 

sensor and high frequency resonator, etc [26]. Furthermore, there are plenty of other 

graphene applications such as batteries [27], ultracapacitors [28], chemical/biological 

sensors [29], and infrared photodetectors [30]. 

Although there are still challenges in the fabrication and transfer of large area 

graphene sheets that must be overcome to succeed in commercial and technological 

devices, graphene has enormous potential in a variety of diverse areas and the graphene 

will lead future technology after controlling and understanding the dependence of its 

unique properties reasonably. 
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Figure 1.4 Overview of major graphene applications in a variety of diverse areas [23-30]. 

 

1.2 Poly(vinylidenefluoride-co-trifluoroethylene) P(VDF-TrFE) 

P(VDF-TrFE) is ferroelectric polymer combined by varying the molar ratio of 

TrFE in proportion to PVDF, offers several advantages compared to PVDF, including 

higher piezoelectric coefficient [31] better crystallinity, higher remnant polarization, and 

higher temperature stability [32,33]. All ferroelectrics are also piezoelectrics due to 

crystal symmetry, and the ferroelectricity in P(VDF-TrFE) is caused by the dipoles that 

polarize spontaneously and align with external electric field. The P(VDF-TrFE), based on 

pure PVDF, has lots of benefits compared to other polymers and other piezoelectric 
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materials such as strong piezoelectric and pyroelectric properties, high mechanical 

flexibility, good chemical inertness, easy synthesis, fully biocompatibility, high dielectric 

strength, high rigidity, resists deformation, stability to radiation (UV, X-ray, Gamma), 

excellent electrical insulator, and high curie point [34-37]. This means that these superior 

properties are suitable for applications in a variety of diverse areas such as sensors 

(strain/pressure, temperature, ultrasound, infrared), speakers, memories, actuators, and 

energy harvesters, resulting from piezo- and pyroelectric responses. In this chapter, the 

ferroelectric, piezoelectric, pyroelectric properties of P(VDF-TrFE), and its applications 

will be introduced.  

 

1.2.1 Ferroelectric and piezoelectric properties 

The most important reason of the use of P(VDF-TrFE) is that pure PVDF as a 

ferroelectric material has severe weakness of phase transition, which PVDF does not 

easily crystallize into the ferroelectric β-phase without specialized processing such as 

uniaxial drawing. The first investigation of PVDF about net polarity was reported by 

several groups in the 1960’s and 1970’s [38-41], and the PVDF has chemical structure of 

(-CH2-CF2-) repeat units, which provide large chain flexibility. Furthermore, a 

piezoelectricity and pyroelectricity in PVDF was firstly discovered in 1969 and 1971 

[42,43]. There has been a lot of research for the crystalline forms of PVDF and it was 

found that the PVDF has at least four different crystal phase such as α-phase, β-phase, γ-

phase, and δ-phase with different molecular conformations and lattice parameters 

[40,41,44-50] as shown in Fig. 1.5. Among these phases, the β-phase possesses a 
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spontaneous lattice polarization resulting in observation of ferroelectricity in PVDF, 

which is the most interesting phase in several applications because of piezo- and pyro-

electric properties. However, α-phase does not show a net lattice polarization due to its 

antiparallel chain arrangement (i.e., the dipole oppose each other, no piezoelectric 

properties) while γ-phase is intermediate between the α- and β-phase. Lastly, δ-phase of 

PVDF, which is a lack of study of δ-phase and difficult distinguishing its phase from the 

α-phase, is a polar version of the α-phase with the same unit cell (but a varying 

symmetry). The most common measurements of the different phases for PVDF are x-ray 

diffraction (XRD) or Fourier-transform infrared spectroscopy (FTIR), and they will be 

discussed in next chapter.  

 

Figure 1.5 Schematic of crystalline α, β, γ, and δ conformations of PVDF [50]. 
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Yadi et. al. [51] firstly reported phase transition in a polymeric materials and phase 

diagram for the compositions of P(VDF-TrFE) in the early 1980’s. Since the 1980’s there 

has been a plenty of research regarding the P(VDF-TrFE) [52-54], it has been found that 

the crystalline structure of P(VDF-TrFE) can be converted between the paraelectric and 

ferroelectric form with an external electric field or with a change in temperature (50~150 

o
C) while pure PVDF does not have a phase transition at temperature below that melt as 

shown in Fig. 1.6 [55]. Moreover, the size of the additional fluorine atom from TrFE 

make the copolymer of P(VDF-TrFE) crystallizing directly in beta phase, and thus the 

P(VDF-TrFE) can produce final structure from the solution without any extra processing 

[56]. The phase transition behavior and ferroelectric properties of P(VDF-TrFE) are 

strongly dependent on the ratio of TrFE content and the condition of synthesis [57]. The 

β-phase of P(VDF-TrFE) needs to be poled to obtain piezoelectric properties in films. 

This process includes applying a high external electric field (~100 MV/m) to the film in 

order to align dipoles in the same direction. However, the β-phase converts back to the 

more favorable α-phase with a hysteresis curve after polling is done. Figure 1.7 shows a 

typical P(VDF-TrFE) hysteresis curve. This curve exhibits a remnant polarization can be 

inverted for [E]>EC (coercive field) [55].  

Piezoelectric energy harvesting is one of interest applications with P(VDF-TrFE) 

due to piezoelectric properties, thus it is important to know the piezoelectric properties of 

P(VDF-TrFE) with different ratio of TrFE content as shown in Table 1 [Piezotech 

ARKEMA]. 
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Figure 1.6 Phase diagram of P(VDF-TrFE) [55]. 

 

 

Figure 1.7 Polarization hysteresis loops at various electric field of P(VDF-TrFE) [55]. 
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Table 1.1 Typical properties of the P(VDF-TrFE) with different ratio of TrFE content 

[Piezotech ARKEMA]. 

 

 

Furthermore, it is also possible to investigate expected value of deformation, 

applied mechanical stress, and generated voltage with different thickness of P(VDF-
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TrFE) films using Table 1. The deformation (Si) caused by the applied electric field can 

be calculated by Equation 1.6 as follows: 

                                            (1.6) 

where d3i is the piezoelectric strain constant which is perpendicular direction with respect 

to the applied electric field. The applied mechanical stress and generated voltage can be 

calculated by Equation 1.7 as follows: 

                                    (1.7) 

where E is the electric field output, gij is the piezoelectric voltage constant (Vm/Nm
2
), σi 

is the applied mechanical stress (N/m
2
), and V0 is generated output voltage (V).  

 

1.2.2 Pyroelectric properties 

P(VDF-TrFE) also possess pyroelectric properties which can generate a certain 

voltage under the condition of fluctuations in thermal energy (i.e., temporal temperature 

changes), existing everywhere due to sun light and various heating/cooling sources. The 

pyroelectricity strongly depends on the change of spontaneous polarization which results 

in charges separation, and its coefficient could be described by Equation 1.8. 

                                                     (1.8) 

where pi [C/m
2
K] is the vector of pyroelectric coefficients. Although lots of energy 

harvesting systems such as piezoelectric, triboelectric, electrostatic, electromagnetic, and 

photovoltaic based devices have been tremendously researched and reported significant 

results [58-62], there is a lack of research on pyroelectric properties based energy 
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harvesting systems. The most interesting advantage of pyroelectric properties is that it 

can be used for multimodal energy harvesting applications in combinations with 

piezoelectric and triboelectric properties. Furthermore, pyroelectric properties are 

commonly used for infrared thermal imaging and uncooled based infrared radiation (IR) 

sensors. 

 

1.2.3 Applications and trends 

P(VDF-TrFE), with superior ferroelectric, piezoelectric, and pyroelectric properties, 

is a strong candidate for variety applications such as sensors (strain/pressure, temperature, 

ultrasound, infrared), speakers, memories, actuators, and energy harvesters etc. Here, 

some of the applications of P(VDF-TrFE) are briefly discussed, and Figure 1.8 shows 

major applications in a variety of diverse areas. 

Bae et. al. [24] reported a flexible, transparent acoustic actuator and nanogenerator 

on graphene/P(VDF-TrFE)/graphene multilayer films. The acoustic actuator worked over 

a broad range of frequency, and the output voltage and the current density of the 

nanogenerator are estimated to be ~3 V and ~0.37 µAcm
-2

, respectively, upon the 

application of pressure. It is notable that they demonstrated the possibility of rollable 

devices based on P(VDF-TrFE) film using highly transparency and mechanical flexibility. 

Lee et. al. demonstrated several types of P(VDF-TrFE) based nanogenerators (NG) such 

as micropatterned (i.e., trigonal and pyramid shape) based piezoelectric NG (output 

voltage: 4.4V, output current: 3.4 µA) [63], pyroelectric NG (output voltage: 2.5 V, 

output current density: 570 nA cm
-2

) [64], and piezoelectric-pyroelectric hybrid NG 
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(output voltage:1.4 V, output current: 150 nA) [65]. It is interesting that P(VDF-TrFE) 

could be patterned by photolithography and have micropatterned which allow them to be 

highly sensitive self-powered pressure sensor as well. Another novelty of their work is 

that they fabricated piezoelectric-pyroelectric hybrid NG which can be attachable to 

human body. 

 

Figure 1.8 Overview of major P(VDF-TrFE) applications in a variety of diverse areas 

[24,63-72]. 

P(VDF-TrFE) is also good candidate for memory applications. Fujisaki et. al. [66] 

reported low-voltage operation of ferroelectric P(VDF-TrFE) capacitor. They fabricated 
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metal-ferroelectric-metal capacitor with thin film of P(VDF-TrFE) (60 nm) and 

demonstrated coercive voltage (VC), coercive field (EC), and remanent polarization (Pr) 

were 2.0 V, 33 V/µm, and 11.9 µC/cm
2
, respectively. Also, Asadi et. al. [67] presented 

organic non-volatile memories from ferroelectric phase-separated blends. Measurements 

on pure P(VDF-TrFE) capacitors with a Sawyer-Tower circuit showed a EC of 50 MV/m, 

and a remanent Pr of 60 mC/m
2
.  

Furthermore, P(VDF-TrFE) is able to be composite materials with other 

piezoelectric materials. Chen et. al. [68] fabricated self-powered flexible sensors using 

imprinted P(VDF-TrFE)/BaTiO3 nanocomposite micropillars. The piezoelectric device 

exhibits enhanced voltage of 13.2 V and a current density of 0.33 µA/cm
2
 with 

nanocomposite micropillars, which an enhancement by a factor of 7.3 relatives to the 

pristine P(VDF-TrFE) film. Additionally, the device can be applied as self-powered 

flexible sensor work in a noncontact mode for detecting air pressure and wearable sensors 

for detecting human vital signs (i.e., breath and heartbeat pulse). Wu et. al. [69] 

fabricated PZT/P(VDF-TrFE) composite film pyroelectric infrared sensor with patterned 

polyimide (PI) thermal isolation layer. Performance of the infrared sensor such as voltage 

responsivity (RV), noise voltage (Vnoise), noise equivalent power (NEP), detectivity (D
*
), 

and thermal time constant of the sensor (τT) are 1.2 × 10
3
 V/W, 1.25 × 10

-6
 VHz

1/2
, 1.1 × 

10
-9 

W, 1.9 × 10
8 

cmHz
1/2

W
-1

 at 137.3 Hz modulation frequency, and 15 ms, respectively. 
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CHAPTER TWO 

SYNTHESIS OF GRAPHENE AND P(VDF-TRFE) 

 

2.1 Synthesis of graphene 

Since the first technique, i.e., mechanical exfoliation (also called scotch tape 

method), reported by Geim and Novoselove [73] to obtain graphene, there are broadly 

three methods such as epitaxial growth, chemical vapor deposition (CVD) growth, and 

reducing graphene oxide have been introduced to synthesize the graphene. The epitaxial 

and CVD growth methods have been used to synthesize large area and high quality of 

graphene, while reducing graphene oxide produce poor quality of graphene although it is 

available to synthesize large area of graphene. Table 2.1 and Figure 2.1 show comparison 

of different synthesis techniques of graphene. Here, some of the techniques for synthesis 

of graphene such as mechanical exfoliation and CVD growth are briefly discussed. 

 

Figure 2.1 Various synthesis techniques of graphene 
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Table 2.1 Comparison of different synthesis techniques of graphene. 

 

 

2.1.1 Mechanical exfoliation 

Noveselov et. al. [73] reported mechanical exfoliation to obtain micron sized 

atom thick flakes of graphene from graphite using scotch tape as shown in Fig. 2.2. First 

of all, a piece of scotch tape is used to peel off a layer of graphite from the flat surface of 

highly ordered pyrolytic graphite. And then, another piece of scotch tape is used to 

remove a layer of graphite from the first tape. Next, new piece of scotch tape is used to 

remove a layer from the second piece of scotch tape repeatedly to further thin down the 

number of layers of graphite on the tape. Eventually, a single-, bi-, or few-layer of 

graphene can be obtained on the substrate. Although this mechanical exfoliation 

technique produces high quality of graphene flakes, it is not capable of large area 

synthesis of graphene unfortunately. 
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Figure 2.2 Mechanical exfoliation of graphene [73]. 

 

2.1.2 Chemical vapor deposition (CVD) growth 

The chemical vapor deposition (CVD) involves the decomposition of hydrocarbons 

at high temperature, and the carbon from decomposed gasses gets adsorb on transition 

metal and synthesize the large area of graphene with high quality. Ruoff et. al. [74] 

reported CVD growth technique to synthesize large area of high quality graphene on Cu 

foils unlike mechanical exfoliation method. Since then, CVD growth technique reported 

various transition metal have been used, but Cu and Ni have been studied widely [1,74-

76]. However, synthesizing graphene on Cu foil is better option for thinner graphene 

compared to Ni because carbon is less soluble in it which is reported by Li et. al. [77]. 

They used carbon isotope labeling in conjunction with Raman spectroscopic mapping to 

track carbon during the CVD growth process on Cu and Ni. They found the solubility of 
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C in Cu is much lower than that in Ni, which means that the source (CH4) is catalytically 

decomposed on the Cu surface with minimal carbon diffusion into the Cu since only a 

small amount of carbon can be dissolved in Cu. In contrast, Ni can dissolve more carbon 

atoms and hence it is difficult to get uniform graphene films due to precipitation of extra 

C during the cool down.  

A typical CVD growth includes three steps: (i) Annealing of the metal film, (ii) 

Exposure to CH4, and (iii) Cooling of the metallic film. To be specific, first of all, after 

pursing a quartz tube reactor, the catalyst film is annealed at high temperature between 

900 
o
C

 
and 1000 

o
C under the gas mixtures of Ar and H2 to induce not only 

recrystallization on the film but also a preferential texture of the film. After the annealing 

the diluted CH4, main source to synthesize graphene, expose to the surface of metal film. 

They hydrocarbon gas can also be introduced with a mixture of Ar and H2. At this 

process, methane is decomposed catalytically on the surface of the metal film to 

synthesize carbon atoms on the film, and its reaction can be described the Equation 2.1.  

                                           (2.1) 

Additionally, other hydrocarbons such as C2H4 (ethylene) and C2H2 (acetylene) may 

involve the transitional steps for the decomposition. And then, the carbon from 

decomposed gasses diffuses to the surface of metal film and adsorb on the film. Lastly, 

the sample should be cooling to promote the separation of C stored inside the film, and 

the carbon isolated to the surface initiating the growth of monolayer graphene or few 

layer graphene. 
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2.1.3 Process of CVD growth graphene 

In our group, we are able to grow our own high quality of graphene on Cu foil by 

CVD growth technique (see Fig. 2.3) and it can be transferred to various substrates for 

many different device fabrications. Figure 2.4 shows the process of CVD graphene 

growth on Cu foil. Frist of all, the Cu foil (25 µm thick, 99.999%, Alfa Aesar) was 

cleaned by ultra-sonication for 2 min in acetone to remove organic particles on surface, 

and then rinsed it by isopropanol (IPA). Next, the diluted nitric acid (HNO3) (30%) was 

used for 60 s for flattening Cu and oxidizing. After drying with N2 gun, the Cu foil was 

sonicated for 10 min with acetic acid to remove the existing copper oxides such as CuO 

and Cu2O, which were present in rolled Cu foils. Lastly, the Cu foil was rinsed by IPA to 

remove residue of chemical particles on the surface, and dried with N2 gun again. Figure 

2.5 shows the schematic of all cleaning process of Cu foil. 

 

Figure 2.3 CVD growth system. 
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Figure 2.4 Process of CVD graphene growth. 

 

 

Figure 2.5 Cleaning process of Cu foil. 

 

After cleaning process of Cu foil, it is placed into quartz chamber (1/4” size) in Ar 

atmosphere. Next, the temperature of quartz chamber in CVD system is increased up to 
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250 
o
C for baking in Ar (1000 sccm) atmosphere. H2 (200 sccm) is flown for 2 h after 

increasing the temperature from 250 
o
C to 1000 

o
C in order to anneal Cu foil to increase 

its crystalline quality and remove any remaining and newly formed oxide on the surface. 

After that, the temperature of chamber is increased up to 1035
o
C to start actual growth of 

graphene in presence of CH4 (50 sccm). After 20 min of growth, the ramp is turned off to 

cool down naturally until the temperature of chamber reached 100 
o
C. Then, the lid of 

furnace in CVD system is opened to expedite the cooling process. Finally, we can get 

high quality of monolayer or few layer graphene by CVD technique. The optimized 

process parameters and sequence of steps for CVD growth graphene as shown in Fig. 2.6. 

The CVD growth system is a semi-automated with LabVIEW software. For three gasses 

such as CH4, H2, and Ar are controlled by mass flow controller (MFC), its valve are 

opened by manually and controlled by LabVIEW. To monitor the pressure of the CVD 

growth system, a Pirani gauge (901P Micro Pirani/Piezo Loadlock Vacuum Transducer) 

are placed at downstream line of stainless tube, which is connected to a Dual Stage 

Rotary Vane Mechanical Vacuum Pump from Ideal Vacuum (Alcatel 2021 2021SD 

Pascal SD) with a capability of 10 mTorr ultimate pressure. In order to reduce part of the 

vacuum pump’s exhausted oil fumes and organic chemical and an inlet trap (Foreline 

Trap for Inlet KF25 Rotary Vane Vacuum Pumps up to 18 CFM), which is for preventing 

contaminants from inlet of pump and protecting the system from pump fluid or 

particulate migration, Oil Mist Eliminator (Pfeiffer ONF 10-12, ONF 25 S for Duo 10M, 

DN/ISO/KF 25 Outlet Flange) is located alongside the rotary pump. The working 

pressure for synthesis of graphene in the CVD system is 500 mTorr. The temperature of 
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the furnace was controlled by Temperature Control System for Controlling MTI Furnaces 

with Computer (EQ-MTS02). The furnace in the CVD system is able to operate at 1200 

o
C for prolonged hours, and reach that temperature in 48 min with 25 

o
C/min rate. 

Figure 2.6 The optimized process parameters and sequence of steps for CVD growth 

graphene.  

 

To use synthesized graphene on Cu foil by CVD technique, the graphene must be 

transferred on different target substrates to investigate its characterization and fabricate 

devices. The first step for transferring graphene is removing back side of synthesized 

graphene on Cu foil using Reactive ion Etching (RIE) chamber (with O2 plasma) to 

oxidize and remove graphene layer because graphene is normally deposited on both sides 

of Cu foil, and the quality for bottom side of graphene on Cu foil is not good. After that, 

polymethyl methacrylate (PMMA) is spin-coated at 2000 rpm for 30 s twice, and directly 
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moves to hot plate to bake at 150 
o
C for 1 min. The PMMA coated Cu foil with graphene 

is then kept in 0.5 M of Cu etchant (ammonium persulfate) over 12 h. Once the Cu foil 

etched, the solution of etchant becomes bluish because of Cu (II) ions, and the PMMA 

coated graphene is floating on the solution. Deionized (DI) water is used several times to 

deionize the solution, and the solution is taken away and IPA is poured by pipette. Then, 

the target substrate is slid under the floating PMMA coated graphene to transfer, and 

move to hot place to dry the sample at 40 
o
C for 30 min. Finally, the coated PMMA is 

removed from top of transferred graphene by few droplets of 1,2-dichloroethane (99%, 

Alfa Aesar). All the process of transferring graphene is shown in Fig. 2.7.  

 

Figure 2.7 The process of transferring graphene on target substrate [78]. 

 

2.1.4 Raman spectroscopy 
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To investigate the quality of graphene, Raman spectroscopy is the one of options 

and it gives quick and immediate feedback on graphene without any sample preparation. 

Raman spectroscopy is based on vibrational spectrum of a material system, and it is 

important to detect in-/organic species and crystallinity of the material. Stress of 

materials in very small area is also able to be detected because Raman spectroscopy can 

focus in very small area using laser beam.  

     Figure 2.8 shows the Raman spectrum of graphene transferred on SiO2/Si. The 

interested Raman peaks of graphene lies in the range of 1200 to 3000 cm
-1

, and the 

important peaks of graphene in the Raman spectra are G and 2D bands corresponding at 

~1580 cm
-1 

and ~2700 cm
-1

, respectively. The G band corresponds doubly degenerate in-

plane transverse optic (iTO) and longitudinal optic (LO) phonon mode, which 

corresponds to E2g symmetry at the Brillouin zone [79], and it confirms the presence of 

carbonaceous material with sp
2
 bonding. Additionally, the intensity of G band is 

proportional to the thickness of the material. The origin of 2D is a second order scattering 

process which involves double resonance and two iTO phonons near K point. There are 

two more peaks related with defects in graphene such as D and D’. The peak of D 

corresponds to the double resonance radial breathing modes of sp
2
 bonded atoms, while 

the peak of D’ corresponds to sp
3
 hybridization. Therefore, the ratio of ID/IG (in Fig. 2.8) 

is 0.13 which means the graphene possess low defect density, while the ratio of I2D/IG (in 

Fig. 2.8) is 2.1 with 2D FWHM of 26.4 cm
-1

, which indicate the presence of monolayer 

graphene.  



 28 

 

Figure 2.8 Raman spectrum of graphene after transferred on SiO2/Si substrate. The inset 

shows the optical image of the graphene. 

 

2.1.5 Hall-effect measurement 

Hall-effect measurement is a technique for investigating transport properties of a 

material such as resistivity (ρ), carrier density (Nb), sheet resistance (RS), hall coefficient 

(RH), and mobility (µ) when magnetic field is applied perpendicular to the material which 

carries a current across it.  

Table 2.2 shows the results of Hall-effect measurement of graphene transferred on 

SiO2/Si. The bulk carrier density (cm
-3

), mobility (cm
2
/Vs), resistivity (Ωcm), sheet Hall 

coefficient (m
2
/C), sheet carrier density (cm

-2
), and sheet resistance (Ω/sq) are 
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investigated by Hall-effect measurement (HMS-3000) as shown in Fig. 2.9, which 

indicate the measured graphene has high quality and low defect density. 

 

 

Figure 2.9 A photo image of Hall-effect measurement (Model No.: Ecopia HMS3000) 

 

Table 2.2 Various characteristics of monolayer graphene by Hall-effect measurement. 

 

 

2.2 Synthesis of P(VDF-TrFE) film 

To prepare P(VDF-TrFE) thin films, most popular technique is spin-coating 

because it is easy to control its thickness and deposit large area of film with low cost on 
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many different substrate. For spin-coating, a solution of P(VDF-TrFE) should be 

synthesized, and there are lots of solvents such as tetrahydrojuran (THF), methylethyl 

ketone (MEK), dimethylformamide (DMF), and dimethylsulfoxide (DMSO) to dissolve 

powder of P(VDF-TrFE) [80]. Among them, DMF and DMSO are good solvent to 

produce high performance of P(VDF-TrFE) when it is spin-coated. Here, in this 

dissertation, the solution was prepared by dissolving powder of P(VDF-TrFE) (50/50, 

Piezotech) in N,N-dimethylformamide (DMF) solvent and stirring for 12 h at 40 °C to 

synthesize 13 wt % of P(VDF-TrFE) solution. To obtain a target thickness, the prepared 

solution of P(VDF-TrFE) was spin-coated at a certain rpm for 60 s as shown in Fig. 2.10. 

The specific thickness was measured by profilometer. After spin-coating, the film was 

dried at 60 
o
C for 10 min to remove the DMF solvent, and then the P(VDF-TrFE) film 

 

Figure 2.10 Various thickness of spin-coated P(VDF-TrFE) for 60s with different 

rotational speed. The inset shows the 2 µm thick of P(VDF-TrFE) measured by 

profilometer. 
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Figure 2.11 The process for synthesis of P(VDF-TrFE) thin film. 

 

was subsequently heated in air at 140 
o
C for 2 h to develop the β-phase of P(VDF-TrFE), 

followed by natural cooling to room temperature. Figure 2.11 shows the process of 

P(VDF-TrFE) thin film. 

 

2.2.1 Fourier-transform infrared spectroscopy (FTIR) 

Fourier-transform infrared spectroscopy (FTIR) as shown in Fig. 2.12 is good 

method to investigate organic, polymeric, and in some cases, inorganic materials . 

Infrared radiation (10,000 to 100 cm
-1

) is used to scan test samples when the materials 

absorb/pass through some radiation, and observe chemical properties in FTIR analysis. 
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Figure 2.12 A photo image of Fourier-transform infrared spectroscopy (Model No.: 

Thermo Scientific Nicolet380) 

 

 

Figure 2.13 (a) FTIR spectrum and (b) the characteristic of P(VDF-TrFE) film. 

 

The absorbed radiation is converted into rotational or vibrational energy by the 

materials molecules, presenting as a spectrum (4000 to 400 cm
-1

) from the resulting 

signal at the detector. The molecule or chemical structure will produce unique spectral 
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fingerprints, resulting in strong technique for chemical identification. Figure 2.13(a) 

shows FTIR result of β-phase of P(VDF-TrFE) film. There are three major peaks at 840, 

1290, and 1400 cm
-1

. The peak of 840 and 1290 cm
-1

 is characteristic of CF2 symmetric 

stretching in β-phase of P(VDF-TrFE), while the peak of 1400 cm
-1

 is that of CH2 

wagging in β-phase of P(VDF-TrFE) [33] as shown in Fig. 2.13(b). 

 

2.2.2 X-ray diffraction (XRD) 

X-ray diffraction (XRD) as shown in Fig. 2.14 is a powerful method in 

determination of crystalline materials and fingerprint of different polymorphic forms, and 

also distinguishing between amorphous and crystalline material. XRD technique is based 

on constructive interference of monochromatic X-rays and a crystalline material. The 

constructive interference is produced by the interaction of the incident rays when Bragg’s 

Law (nλ=2dsinθ) is satisfy with the condition. The strongest advantage of XRD is that 

there is fingerprint of the crystals present in the material for the generated spectra of 

XRD pattern, which allows identification of the crystalline form.  

Figure 2.15 shows the XRD results of P(VDF-TrFE) film. The orientation planes 

(110) and (200) shown in the XRD spectra are related to the polar β-phase, since the 

diffraction peak position is shown at a 2θ value of 19.7 [81]. 
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Figure 2.14 A photo image of X-ray diffraction (Model No.: Rigaku ULTIMA IV, 

Department of Chemistry in Clemson University) 

 

Figure 2.15 XRD spectrum of P(VDF-TrFE) film 
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2.2.3 Polling of P(VDF-TrFE) film 

A polling process of P(VDF-TrFE) film is needed to use its properties such as 

piezoelectric and pyroelectric for several applications. In this dissertation, an extra 

electric field of 100 MV/m was applied to the P(VDF-TrFE) film for 1h using DC power 

supply as shown in Fig. 2.16. The process time of polling was found to be optimal as 1 h 

because further increase in time up to 2 h only resulted in less than 5% increase in the 

voltage generated across the film when similarly strained as shown in Fig. 2.17. 

Additionally, it should be noted that the degree of alignment of the dipoles decreases with 

time after the poling. In Fig. 2.18, we show the Vgen (under similar strain) vs. TE (the time 

elapsed after poling), which indicates that the degree of poling reduces with time, but at a 

decreasing rate, and becomes steady after a few days at a value of ~55% of the maximum 

value achieved immediately after poling. This observation of decrease in the degree of 

poling and percentage of steady state value is consistent with earlier reports [82-84]. 

 

 

Figure 2.16 A polling process of P(VDF-TrFE) film with DC power supply. 
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Figure 2.17 Generated output voltage (%) vs the process time of polling. 

 

 

Figure 2.18 Generated output voltage (%) vs the time elapsed after polling. 
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CHAPTER THREE 

ENERGY HARVESTING APPLICATIONS OF P(VDF-TRFE) ON FLEXIBLE 

SUBSTRATES  

 

3.1 PDMS substrate based energy harvester 

  We have developed and demonstrated a highly flexible P(VDF-TrFE) film-based 

energy harvesting device on a PDMS substrate, avoiding any complex composites and 

patterned structures. The structural and electrical properties of the P(VDF-TrFE) film was 

investigated using multiple characterization techniques and an optimized film of 7 µm 

thickness was used for the energy harvesting application. The device, with Ti/Ni metal 

contacts, was driven by a shaker providing an acceleration of 1.75 g, and frequencies 

varying from 5 to 30 Hz. The energy harvesting performance of the final fabricated 

device was tested using the shaker, and resulted in a maximum output capacitor voltage 

of 4.4 V, which successfully powered a set of 27 LEDs after several minutes of charging. 

 

3.1.1 Introduction 

  Energy harvesting devices have attracted immense research interest over the 

years due to the need for powering remote and unattended sensors, as well as low-power 

electronics [63,85,86]. Several different types of energy harvesting devices have been 

investigated over the past decade, of which electromagnetic, electrostatic, and 

piezoelectric ones have received the most attention [87-89]. Piezoelectric energy 

harvesting devices are especially attractive due to their compact size and easy scalability 
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and manufacturability. Among them, flexible piezoelectric material-based energy 

harvesters offer the advantage of being used in implantable or wearable bio-electronic 

devices and sensors, combined with the other advantages of piezoelectric generators, 

including high energy density, low mechanical damping, and easy voltage rectification 

[90]. Thus, they find usage in many applications including biometrics, strain monitoring, 

and mobile devices. While inorganic piezoelectric materials such as ZnO [91,92], 

ZnSnO3 [93,94], and PZT [95,96] have been used extensively for harvesting energy, 

flexible piezoelectric materials such as poly(vinylidenefluoride-co-trifluoroethylene) 

P(VDF-TrFE) [34,35] have been investigated recently due to their high piezoelectric 

coefficient, flexibility, sensitivity, and mechanical durability. In addition, P(VDF-TrFE) 

is fully bio-compatible, making it suitable for energy harvesting applications when 

implanted. P(VDF-TrFE), which can be simply obtained by varying the molar ratio of 

TrFE in proportion to PVDF, offers several advantages compared to PVDF, including 

higher piezoelectric coefficient [31], better crystallinity, higher remnant polarization, and 

higher temperature stability [32,33].  

  Since P(VDF-TrFE) is a film with a thickness of several microns, typically a 

substrate is utilized as mechanical support. Among the substrates used, 

polydimethylsiloxane (PDMS) substrate has proven to be particularly useful because of 

advantages such as high elasticity, easy molding capability, and biocompatibility. The 

flexibility and bio-compatibility of the PDMS substrate make the energy harvester 

attractive for usage in implantable or wearable devices, i.e., monitoring and tracking 

intrinsic (such as muscle fatigue) and extrinsic (such as twisting and bending of limbs) 
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human parameters as part of biomedical applications, and smart monitoring systems 

including temperature sensors or low power microprocessors. Lee et al. [65] fabricated a 

nanogenerator (NG) using P(VDF-TrFE) film (active material, 7 µm) and a patterned 

PDMS-CNT composite as the bottom electrode, demonstrating maximum output voltage 

and current of 1.4 V and 150 nA, respectively. Wang et al. [97] developed patterned 

PDMS-MWCNT composite-based P(VDF-TrFE) (active material, 85 µm) hybrid energy 

harvester, and demonstrated piezoelectric output voltage and current of 2.5 V and 2.5  A, 

respectively. Han et al. [98] reported that patterned PDMS used as micro/nano dual scale 

can increase the surface roughness and provide more strain to the PVDF film (active 

material, 100  m) enhancing its power generation capacity. The resulting output voltage 

and current density reported from their devices were 52.8 V and 20.75 µA/cm
2
, 

respectively. Ding et al. [99] developed PDMS/polyethylene terephthalate (PET)-based 

PVDF (active material, 5 µm) energy harvester, and the demonstrated output voltage and 

current were 150 mV and 4 nA, respectively. The output performance PVDF and P(VDF-

TrFE) energy harvesters are shown in Table 3.1 [35,65,97-101].  

  In spite of their promise, PDMS-based composites (with other materials, such as 

CNT) or patterned structures, as reported earlier, pose several challenges, including 

complicated fabrication processes, low reproducibility, non-uniform output, difficulty in 

interfacing with active layers like the P(VDF-TrFE) matrix, and degradation of structures 

over long-term usage in strong vibrational environments. An additional issue with the 

structure of PDMS-based composites (i.e., PDMS/CNT) is that, due to their higher  
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Table 3.1 Comparison of the output performance of piezoelectric energy harvesters in 

recent years. The current work is shown in bold. 

 

 

resistance, the output current and voltage are usually much lower, strongly degrading 

energy harvesting performance. In this study, we have developed a flexible P(VDF-TrFE) 

film-based energy harvesting device on a simple PDMS substrate, avoiding any complex 
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composites and patterned structures, while demonstrating performance comparable to or 

higher than the other devices reported on PDMS substrate. We have utilized profilometer, 

optical microscope, Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction 

(XRD) to investigate the thickness, surface and structural properties of the P(VDF-TrFE) 

film. A COMSOL simulation was also performed to determine the strain and estimate the 

device performance. A shaker was used to measure the performance of the device at 

various frequencies, and power a set of LEDs as a simple application. 

 

3.1.2 Experimental Details 

Fabrication of the Flexible Piezoelectric Energy Harvester 

  To fabricate the P(VDF-TrFE) films, first the co-polymer powder of P(VDF-

TrFE) (50/50, Piezotech) was dissolved in N,N-dimethylformamide (DMF) solvent. The 

solution was then stirred for 12 h at 40 °C to synthesize 13 wt. % of P(VDF-TrFE) 

solution. To make polydimethylsiloxane (PDMS) substrate (3.5 cm (W) × 3.5 cm (L) × 

0.15 cm (H)), the liquid PDMS (weight ratio of elastomer to cross linker used was 10:1) 

was poured into square mold and then directly degassed to remove bubbles in a vacuum 

desiccator for 1 h. After that, it was heated in air at 100 °C for 30 min. Ti/Ni (30 nm/150 

nm) metal stack (2 cm × 2 cm) was deposited at 100 °C by electron beam evaporation on 

the PDMS substrate to form the bottom electrode. Heat plays an important role in this 

fabrication process, as it improves the conductivity (by lowering resistance) when the 

Ti/Ni metal stack (2 cm × 2 cm) is deposited on the PDMS substrate directly. The PDMS 

substrate, owing to its tensile strength, was stretched while it was exposed to heat 
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Figure 3.1 (a) PDMS substrate (3.5 cm (W) × 3.5 cm (L) × 0.15 cm (H)) was made by 

elastomer and cross linker (weight ratio 10:1); (b) Ti/Ni (30 nm/150 nm) was deposited 

on the PDMS substrate by electron beam evaporator; (c) P(VDF-TrFE) was spin-coated 

on Ni/Ti/PDMS at 3500 rpm for 60 s; (d) Ti/Ni (30 nm/150 nm) was deposited on the 

P(VDF-TrFE)/Ni/Ti/PDMS by electron beam evaporator. After that an electric field of 

100 MV/m was applied for 1 h to align the dipoles in the P(VDF-TrFE) film uniformly. 

 

 (100 °C), and first metal (Ti, 30 nm) was permeated into the surface of PDMS substrate, 

and then second metal (Ni, 150 nm) was finally deposited on the Ni/PDMS. Since 

cooling produces metal layer overlap, it makes the metal stack more stable under bending 

and vibration conditions from external force. 

  Next, a solution of the P(VDF-TrFE) was spin-coated on the PDMS substrate.  
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A thickness of 7 μm was obtained by rotating the spin coater at 3500 rpm for 60 s. The 

DMF solvent was evaporated by pre-heating the device at 60 °C for 10 min. The film was 

subsequently heated in air at 140 °C for 2 h. A second layer of Ti/Ni (30 nm/150 nm) was 

deposited at 100 °C by electron beam evaporation to form the top electrode. To perform 

“poling” of the P(VDF-TrFE) film, an electric field of 100 MV/m was applied for 1 h to 

align the dipoles in the film [102]. The electric field of 100 MV/m was reached gradually 

by increasing the field by 10 MV/m in every 5 min to avoid breakdown due to sudden 

application of voltage. All the fabrication steps are shown in Figure 3.1. 

 

Measurement and Characterization 

  The thickness, surface, and structural properties of the sample were investigated 

using profilometer (Tencor AS-200), optical microscopy (Micromanipulator Corp. 

MODEL No. 6000), Fourier transform infrared (FTIR) spectroscopy and X-ray 

diffraction (XRD). A shaker (LDS V203) was used to strain the P(VDF-TrFE) layer and 

a digital force gauge (Shimpo FG-3000) was used to measure the force from the shaker, 

which was converted to acceleration based on the mass moved. A digital phosphor 

oscilloscope (Tektronix TDS 5054), data acquisition (Agilent 34970A), and low-noise 

current preamplifier (Stanford Research Systems Model SR570) were used to measure 

the electrical signal from the device. In our experiment, the device was clamped to 

subject it to variable frequency excitation from the shaker attached with an extended arm, 

to investigate its performance (shown clearly in Figure 3.4(a)). 
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Simulations: Strain, Stress, and Potential 

The strain and stress distribution on the P(VDF-TrFE) film was simulated using 

the COMSOL finite-element simulation software. A solid mechanics module was used to 

simulate the stress and deformation of the device. The Young’s Modulus used in the 

simulation was 2.3 × 10
6
 Pa for P(VDF-TrFE) and 2.6 × 10

6
 Pa for PDMS. The 

simulation used the same dimensions as in the fabricated device (3.5 × 3.5 cm for PDMS, 

and 2 × 2 cm for P(VDF-TrFE)), as shown in Figure 3.4(b). An acceleration of 1.75 g 

was applied onto half of the bottom surface of this device. Considering PDMS comprises 

more than 99.9% of the thickness of the entire structure, the strain distribution is mainly 

dependent on PDMS layer. Hence the deformation of active material P(VDF-TrFE) can 

be assumed to be same as the deformation of the upper surface of the PDMS layer where 

it is attached. Since the edge of the shaker will first hit the center-line of the device, this 

point will experience the most strain during the process. When the shaker is in contact 

with the device, the active material experiences a uniform acceleration for a short period 

of time. Then strain is mainly formed within the stretched (overhanging) half of the 

device, as shown in Figure 3.4(c). The potential simulation of COMSOL was performed 

using the information provided by the P(VDF-TrFE) powder manufacturer (Piezotech) 

with regard to the piezoelectric voltage constants g31, g32 and g33, which were 216, 19 and 

-339 × 10
-3

 Vm/Nm
2
, respectively. These results are shown in Figure 3.4(d). The 

resonancemodeswere investigated both analytically and through simulations. The 

fundamental resonant frequency (f0) of the device was found to be ~10.1 Hz from the 

equation:  
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 ,                                                          (1) 

where E is Young’s Modulus, r is density, t is thickness, w is width, and l is length. The 

resonant frequencies were also simulated using COMSOL, and f0, f1, and f2, turned out to 

be 11.77 Hz, 25.55 Hz, and 68.93 Hz, respectively. We excited the device at frequencies 

of 5, 10, 20 and 30 Hz, overlapping the range of frequency of fundamental and first order 

modes. 

 

3.1.3 Results and discussion 

  The schematic diagram of our flexible piezoelectric energy harvester is shown in 

Figure 3.2(a). The device comprises four layers with the Ti/Ni as the top and bottom 

electrodes, the P(VDF-TrFE) piezoelectric film, and the PDMS substrate. Previously, a 

nanogenerator (NG) fabricated by Lee et al. [65] made use of the patterned PDMS-CNT 

composite to form the bottom electrode, while patterned PDMS was used as micro/nano 

dual scale by Han et al. [98] to increase the surface roughness of the NG. Wang et al. [97] 

also used patterned PDMS-MWCNT composite to obtain increased roughness and lower 

internal resistance in the device. As mentioned above, these methods included complex 

fabrication steps, such as chemical etching, photolithography, and plasma treatment, 

which add more cost and increase the complexity of fabrication. An optical image of our 

device, which is much simpler in construction, is shown in Figure 3.2(b). All the 

materials, such as Ti/Ni for electrodes and P(VDF-TrFE) film for active area, were found 

to adhere well onto the PDMS substrate and withstand repeated cycles of bending and 

stretching. 
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Figure 3.2 (a) Schematic illustration; (b) optical microscopy image; and (c) photographic 

image of the proposed device. 

 

  Once the composition and thickness had been optimized, we performed 

structural characterization using the XRD technique on the prepared P(VDF-TrFE) film, 

and the results are shown in Figure 3.3(a). We found that the orientation planes (110) and 

(200) shown in the XRD spectra are related to the polar β-phase, since the diffraction 

peak position is shown at a 2θ value of 19.7° [81,103]. FTIR measurements were also 

carried out to further confirm the presence of β-phase P(VDF-TrFE). Figure 3.3(b) 

indicates the signature FTIR spectra of the film, with 3 peaks corresponding to the β-

phase P(VDF-TrFE): 842 (CH2 rocking), 1286 (trans band) and 1400 (CH2 wagging) 

cm
-1

 [33,104]. Taken together, these tests clearly indicate that the synthesized film is 

indeed P(VDF-TrFE). 

  To determine the efficacy of the layered energy harvesting structure prepared, it 

was exposed to external strain using a mechanical shaker, and the output voltage and 

power were recorded. Figure 3.4(a) shows a photographic image of the basic 

experimental setup for energy harvesting, which consists of an oscilloscope 
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Figure 3.3 (a) XRD and (b) FTIR result of b-phase of P(VDF-TrFE) film. The XRD peak 

at 19.7 degrees and the transmittance peaks at 842, 1286 and 1400 cm
-1

 confirm the 

material is β-phase P(VDF-TrFE). 

 

(Tektronix TDS 5054), a Shaker (LDS V203), and the device attached to the shaker. The 

output voltages were obtained from the device under application of an external force at 

frequencies of 5, 10, 20 and 30 Hz at 1.75 g acceleration. The force was provided by the 

shaker. An extended metal arm from the shaker was attached to the bottom center of the 

device to provide the oscillatory force (see Figure 3.4(a)). The active area of the 

harvesting device is estimated to be ~4 cm
2
 (2 × 2 cm). 

  A COMSOL-based finite element simulation was performed to theoretically 

estimate the stress, strain, and voltage output from the device. From the simulation results 

(see Figure 3.4(c)) the peak and average stresses were found to be 8.42 × 10
6
 and 2.45 × 

10
6
 N/m

2
, respectively, for the P(VDF-TrFE) films over the active area. The output 

voltage calculated from the relation V = g33 × σ3t (g33: piezoelectric voltage constant, σ3: 
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applied mechanical stress, and t: thickness of film) yields the peak and average voltages 

of 20 and 5.8 V, respectively. Moreover, the peak and average surface charge densities of 

~355 and 105  µC/m
2
 for 20 and 5.8 V, respectively, were obtained using the equation V 

= σt/ɛ (V: voltage, σ: surface charge density, t: thickness, and ɛ: dielectric constant). The 

calculated values of the voltages are well matched with the experimental data (see Figure 

3.5), as well as simulation data for potential (see Figure 3.4(d)). The simulation figures  

 

Figure 3.4 (a) Photographic image of the basic experimental setup and (b) image of the 

device under test; (c) Finite element (COMSOL) simulation of strain and stress 

distribution and (d) piezoelectric output voltages and surface charge densities over the 

active area (2 × 2 cm
2
). 
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show positive charge (and voltage) developing on the P(VDF-TrFE) positioned on top of 

the PDMS substrate, with negative charge and voltage at the interface of P(VDF-TrFE) 

and PDMS. The charges on the top surface of the P(VDF-TrFE) meet air, while the 

bottom surface has PDMS, so although the charge densities are the same, the voltage 

magnitudes generated are different. 

  Figure 3.5(a)-(d) shows the frequency-dependent output voltage and current of 

the device under an external force at the various frequencies. The oscilloscope and low-

noise current preamplifier were used to measure the electrical signal from the device. It is 

evident that the average voltage and current (solid parts of peaks in each figure) gradually 

increase with the increase of frequency, while the maximum upper peak voltage remains 

almost same at around 20 V. The increase in average voltage and current is attributed to 

the increase in the average surface charge as the bending frequency is increased. This 

occurs due to the slower discharge rate of the device as compared to the input pulse rate, 

resulting in a continuous rise in the output voltage and current as frequency is increased 

[105,106]. At 30 Hz, the peak value of average voltage and current is 5.8 V and 3.2 µA 

(see Table 3.2), while the maximum upper peak value of voltage and current is 20 V and 

6.5 µA. These voltages are well matched with the calculated output potential, as 

mentioned above. Additionally, the value of average voltage of 5.8 V matches the final 

output voltage available across the full wave bridge rectifier circuit of 4.4 V (steady-state 

voltage value on the capacitor), considering a total drop across two diodes of ~1.4 V. 

This result is further discussed below. 

  The aforementioned energy harvesting performance is quite impressive, 
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Figure 3.5 (a–d) the frequency-dependent (5, 10, 20 and 30 Hz, respectively) output (i) 

voltage and (ii) current of the device under application of an external force. 
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Table 3.2 Average output voltage, current, and power of the device for various excitation 

frequencies. 

 

 

compared to the previously reported performance of flexible energy harvesters on PDMS 

substrate. Ding et al. [99] developed PDMS/PET-based PVDF (5 µm thick) piezoelectric 

NG with an output voltage of 150 mV. Wang et al. [97] fabricated patterned PDMS-

MWCNT composite-based P(VDF-TrFE) (85 µm thick) hybrid NG, and piezoelectric 

output voltage was 2.5 V. Micropatterned (pyramid-shaped) P(VDF-TrFE) piezoelectric-

pyroelectric NG (7 µm thick) on the CNT/PDMS composite substrate demonstrated by 

Lee et al. [65] led to an output voltage of only 1.4 V. By comparison, our device provides 

a significantly better performance, while requiring a much simpler fabrication process. 

Table 3.1 compares the output performance of the current device with various PVDF and 

P(VDF-TrFE) based NG reported earlier.  

  The output voltage transient across the output capacitors with different 

capacitance values of 4.7 µF, 10 µF, and 47 µF, under an external force with 30 Hz 
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frequency, is shown in Figure 3.6(a). The inset shows a magnified plot of charging 

transients up to 100 s. We found that the output voltage on the 4.7 µF capacitor terminals 

reached 4.4 V in ~60 s, while it took ~145 s and ~1085 s, respectively, to charge the 10 

µF and 47 µF capacitors to the same voltage (4.4 V). The maximum stored energy and 

average power values were determined to be 113.74 µJ and 370 nW, respectively. Based 

on the active area and thickness of the sample (4 cm
2
 and 7 × 10

4
 cm), the maximum 

output power density can be calculated as 6.62 mW/cm
3
, which is comparable to the 

state-of-the-art performance across all energy harvesting device technologies 

[35,65,88,97-101,107-114]. Although the power from the device is in the sub µW range, 

just a single device can still provide sufficient power to operate structural health 

monitoring devices, such as a 100 nW temperature sensor, or a low-power 4 kB 80 nW 

microprocessor [115-117]. 

To demonstrate a simple practical application of the energy harvester, we used it 

to light a set of 27 commercial LEDs connected in parallel. The overall circuit schematic, 

including 4 diodes, a switch, a capacitor, and 27 LEDs is shown in Figure 3.6(b). As the 

capacitor reaches the threshold voltage (2.2 V), it turns on the LEDs, which then begin to 

glow. A picture of the lighted LEDs after the threshold voltage from the output capacitor 

was reached is shown in Figure 3.6(b). This device can be used to charge many 

capacitors sequentially over a longer period to obtain a much higher stored energy that 

can be used for various applications, such as powering wireless sensors, 

wearable/implantable bio-electronic devices, or smart monitoring devices [118-120]. 
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Figure 3.6 (a)Voltage-time charging curve of storage capacitors with different 

capacitances (4.7 μF, 10 μF, and 47 μF) under application of an external force with 30 Hz 

frequency. The inset shows an enlarged plot of voltage-time charging curves; (b) Electric 

charging circuit for the storage capacitor, and a picture of an LED assembly that glows by 

drawing power from the storage capacitor after energy harvesting is done. 

 

3.1.4 PET substrate based energy harvester 

  In spite of the simple design of PDMS based energy harvester, the performance 

of the device was found to be superior compared to other flexible energy harvesters on 

PDMS substrate. However, there was a challenge (i.e., metal contact issue for long term 

usage) on the PDMS based energy harvester due to the cleaved surface of PDMS 

substrate under the strain or pressure, which made cracks on bottom electrode. This crack 

results in reducing the performance of energy harvester seriously and limiting it for only 

less strain or pressure condition. To solve this issue, polyethylene terephthalate (PET) is a 

good candidate for the next version of P(VDF-TrFE) energy harvester due to the high 

mechanical durability under the bending and vibration conditions. In addition, PET based 
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energy harvester can be used for triboelectric energy harvester using back side of the 

device because P(VDF-TrFE) piezoelectric energy harvester has friction inevitably when 

the active layer is bent and recovered to generate power. Thus, we have developed a 

device with P(VDF-TrFE) film for multiple energy harvesting applications based on 

piezoelectric and hybrid (tribo-/piezo- electric) structures. 

           

Figure 3.7 (a) Optical image of type 1, (b) Schematic illustration of the design (type 1), 

and (c) schematic illustration of the design (type 2). 

 

  Figure 3.7 shows schematic illustrations of the device. The device (Type 1), with 

PET (50 µm), two layers of Ti/Ni (30 nm/150 nm), and P(VDF-TrFE) (4 µm), was 

simply fabricated and also highly flexible as shown in Fig. 3.7(a). Bottom and top 

electrodes (Ti/Ni) was deposited by electron beam evaporation. A layer of P(VDF-TrFE) 

was spin-coated with 13 wt% of its solution at 1500 rpm for 60 s. The coated film were 
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pre-heated at 60 °C for 10 min, and then subsequently post-heated in air at 140 °C for 2 h. 

After that, an electric field of 100 MV/m was applied for 1 h to align the dipoles in the 

P(VDF-TrFE) film uniformly. To fabricate another device (type 2), we printed graphene 

high impact polystyrene (G-HIP) (3 cm × 2 cm × 1 mm) by 3D printer, and Ti/Ni 

electrode was deposited on G-HIP by electron beam evaporation. Finally, two PDMS 

spacers were placed between type 1 and G-HIP with metal electrode to support 

mechanical force from air gap for triboelectricity. 

  We demonstrated the devices in multiple energy harvesting applications to 

generate voltage using wind power (type 1) and mechanical force (type 2). Figure 3.8(a) 

shows voltage performance of the type 1 under wind power, and inset shows a photo 

image of the device as flag application. The device was fluttered and generated the peak 

to peak voltage of 2 V when subjected to air flow. This device can be placed on windmill, 

roof, or running car to generate a certain power ranges (µW ~ mW) to support electric 

loads such as low power temperature sensor or microprocessor [115-117] after adding 

multiple devices on flagpole. Another device (type 2) generated two different types of 

voltage from hybrid structures such as piezoelectricity and triboelectricity under the 

mechanical force as shown in Fig. 3.8(b) and (c), respectively. The triboelectric part in 

hybrid energy harvester (type 2) generated voltage from the friction between G-HIP and 

PET, which results from the piezoelectric energy harvester (type 1) when it was bent and 

recovered to generate voltage. The generated voltages of the piezoelectric part and the 

triboelectric part are 2 and 5 V, respectively. This type of device can be used in shoes 
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soles to generate a certain voltage and support electric loads, or monitor steps as gait 

analysis as shown in Fig. 3.9.  

 

Figure 3.8 (a) Output voltage of type 1 under wind power, (b) output voltage of 

piezoelectric part, and (c) triboelectric part in type 2 under mechanical force. 
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Figure 3.9 (a) A photo image of 3D printed shoe sole for hybrid structure based energy 

harvester, (b) demonstration of shoes application by hybrid structure based energy 

harvester with shoe sole. 

 

3.1.5 Conclusions 

In this work, we have demonstrated a highly flexible, biocompatible PDMS-based 

piezoelectric energy harvester with P(VDF-TrFE) film utilizing a simple fabrication 

process. The device with an active area of 4 cm2 was found to have a power density of 

6.62 mW/cm
3
 and average voltage and current of 5.8 V and 3.2 μA, respectively at 30 Hz 

vibration frequency at 1.75 g acceleration. Using a full wave bridge rectifier, a capacitor 

was charged and could deliver 370 nW, which was capable of lighting 27 LEDs 
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simultaneously. With this power output, a wide range of wearable electronics and smart 

monitoring devices are within the realm of possible applications. In spite of the simple 

design, the performance of the present device was found to be superior compared to other 

flexible energy harvesters on PDMS substrate. 

  We have also developed the piezoelectric energy harvester on PET substrate to 

solve metal contact issue for PDMS based energy harvester. Under severe bending and 

vibration condition, the device generated a voltage uniformly. Furthermore, the hybrid 

energy harvester (i.e., based on piezoelectric and triboelectric) was fabricated with 

P(VDF-TrFE) (spin-coating) and G-HIP (3D printing). It was successfully generated few 

voltages by various stimuli such as wind and tapping, which highlight the feasibility of 

multiple energy harvesting applications such as flags in renewable technology and shoes 

soles  in wearable electronics. 
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CHAPTER FOUR 

SENSING APPLICATIONS OF GRAPHENE/P(VDF-TRFE) HETEROJUCTION ON 

FLEXIBLE SUBSTRATES 

 

4.1 PDMS substrate based sensor 

  The world of wearable technology is making use of strain and pressure sensors 

in human monitoring and the use of data can range from improving the lifestyle of people 

to using it in the workplace for improving safety. High sensitivity, fast response time, 

low-pressure range of operation, low cost and simplicity of the fabrication process are the 

preferred attributes in strain/pressure sensors. We have developed a highly sensitive 

strain/pressure sensor based on PDMS, P(VDF-TrFE), metal electrode, and monolayer 

graphene. The device is very responsive to even small differentials of pressure mainly 

because there are multiple factors contributing to the response. The piezoelectric nature 

of P(VDF-TrFE), the structure of metal electrode, lower Young’s modulus of the PDMS, 

and monolayer graphene contribute in making the device highly responsive even under 

small stimuli. The sensor demonstrates high sensitivity (average = 0.76 kPa
-1

, maximum 

= 0.89 kPa
-1

, and gauge factor = 481.6) in the range of pressure up to 45 mmHg. The 

sensor has low detectable strain of 0.016%, SNR of 26.4 dB, and a fast response time of 

~100 ms. These features, coupled with the flexible nature of the device and ease of 

fabrication, make it a very attractive candidate for use in the growing wearable 

technology market, especially biomedical applications and smart monitoring systems. 

 

4.1.1 Introduction 
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  Highly sensitive, flexible and conformable strain/pressure sensors have attracted 

tremendous research interest in recent years for their applications in health care [121,122], 

gait analysis [123,124], and smart monitoring systems [125,126], Several material 

systems and device configurations have been investigated to develop these types of 

sensors including, piezoelectric (i.e. ZnO thin films and nanowires [127,128], BaTiO3 

thin films and composites [129,130], PVDF and PVDF-TrFE [131,132]), piezoresistive 

(thin Si [133,134] piezoresistive polymer [135,136], or carbon nanotube based [137,138]), 

transistive, (integrating a flexible transistor as a sensing element [139-142]) and 

capacitive [143-145]. Although, several of these approaches are promising, and results in 

high sensitivity devices [138-144], they are either not completely flexible and 

conformable [139,141,142], or suffer from complex and expensive fabrication process 

[138,139,140,143,144]. On the other hand, graphene, with its outstanding material 

properties, including high carrier mobility, atomically thin nature, and ability to tolerate 

mechanical deformation related strain up to 20% before breaking [146,147], making it 

very attractive for developing highly sensitive and conformable strain/pressure sensor. 

Unfortunately, graphene by itself is not piezoresistive, so developing a strain sensor 

utilizing just graphene is challenging. Fortunately, graphene synthesized on Cu foil can 

be transferred to arbitrary substrates (preserving its high quality), including flexible 

polymer substrates, which will allow the overall flexibility and conformability of the 

sensing element, to be maintained. Furthermore, a graphene/polymer based sensor 

devices can be easily patterned into an array over dimensions reaching several feet, 

taking advantage of large area synthesis of graphene, which will make the ultimate sensor 
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very inexpensive. If a piezo-electric polymer, such as P(VDF-TrFE), is chosen to form a 

heterojunction with graphene, it will strongly affect the carrier density in graphene, due 

to the fixed charge developing on its surface under strain or pressure. Taking advantage 

of the high carrier mobility in graphene, such a charge change can result in very high 

sensitivity to pressure and strain.  

  For mechanical stability and ease of handling, the sensing layer normally 

needs to be put on a flexible substrate. To date, strain/pressure sensors have been 

fabricated on a variety of flexible substrates including polyethylene terephthalate (PET) 

[139], polyethylene naphthalate (PEN) [148], polycarbonate (PC) [149], and 

polyurethane (PU) [150] for flexible and wearable electronics due to their high optical 

transparency (except for PU), ease of use, and superior durability. In addition, other type 

of substrates, such as, polydimethylsiloxane (PDMS) [144], EcoFlex [151], DragonSkin 

[152], and hydrogel [145] have recently attracted extensive interest for developing “skin 

electronics” because of their unique properties of high deformability, along with chemical 

inertness and biocompatibility. In particular, these substrates support superior 

conformability on any geometry and are able to attach well to skin, during deformation 

and recovery, making them strong candidates for flexible substrate. Among these, PDMS 

combines the advantages of relatively high operational temperature (up to 350 ºC), high 

permeability to oxygen, ease of molding, compositional control, and low Young’s 

modulus [153-155]. Thus, very high sensitivity can be obtained (especially for low 

pressure operation) for sensor devices integrated on PDMS substrates, making it very 

attractive for biomedical [156] and artificial skin [157] applications. Examples of high 
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sensitivity PDMS based sensors include demonstration of a sensitivity of 0.7 kPa
-1

 in a 

capacitive sensing configuration in the low pressure regime (2.5 Pa ~ 20 kPa) [144], and 

organic field-effect transistors (OFET) based sensor with microstructured PDMS as a 

gate dielectric layer with sensitivity up to 0.55 kPa
-1 

[140]. 

  In this work, we report on the development of an ultra-high sensitivity pressure 

sensor by marrying the high deformability of PDMS substrate with the high responsivity 

of the graphene/PVDF-TrFE composite. Although there are many reports on P(VDF-

TrFE) based sensors including several on PDMS substrate, there is only one other report 

to our knowledge that utilized graphene and P(VDF-TrFE) together in the sensor 

configuration. Sun et. al. [139] developed graphene transistor based sensor that is gated 

by piezopotential generated across a P(VDF-TrFE) film, which was coupled to the 

graphene transistor channels via an ion gel. The strain sensor resulted in a gauge factor 

(GF) of 389, which is one of the highest ever reported on a flexible substrate. However, 

this sensor suffers from fabrication complexity, ion gel charge coupling issues that 

includes limited response time and device lifetime. In contrast, our sensor directly 

couples the charge generated by the P(VDF-TrFE), much easier to fabricate, have lower 

thickness, and do not have gel lifetime issues, and exhibited significantly superior 

performance including ultra-high sensitivity (average = 0.76 kPa
-1

, maximum = 0.89 kPa
-

1
) and gauge factor = 481.6. A theoretical model, supported by COMSOL Multiphysics 

simulation, has been developed to explain the device performance. 

 

4.1.2 Experimental details 
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Fabrication of the flexible and self-powered strain/pressure sensor 

To fabricate the sensor device, we separately optimized the PDMS substrate and 

the P(VDF-TrFE) piezoelectric polymer, and utilized high quality graphene synthesized 

on Cu foil through a well-developed recipe in our lab [158-160]. The sensor was 

fabricated following the sequential steps shown in Fig. 4.1.1, and is described in detail 

below. 

 

Preparation of PDMS substrate 

  The preparation of liquid PDMS was done by mixing elastomer with a cross 

linker (Sylgard 184 silicon elastomer kit) in the weight ratio 10:1, followed by degasing 

to remove bubbles in a vacuum desiccator for 1 h. In the first step of the fabrication 

process, liquid PDMS was spin-coated at 800 rpm for 20 s on a rectangular copper plate 

(2.5 cm (W) x 2.5 cm (L) x 0.0175 cm (H)) (Fig. 4.1.1(a)) to make the PDMS substrate 

on top of it. After spin-coating, it was heated at 100 °C for 30 min in ambient conditions, 

which was followed by deposition of the the bottom electrode for the sensor (radius = 0.8 

cm), Ti/Ni (30 nm/150 nm) at 100 °C by electron beam evaporation on the PDMS/Cu 

(Fig. 4.1.1(b)). In the fabrication process, thermal treatment plays an important role to 

improve the conductivity and homogeneity of the Ti/Ni metal stack deposited on the 

PDMS. Since the PDMS substrate was stretched while it was exposed to heat (and the Cu 

substrate underneath spreads the heat uniformly), which also allowed the Ti (first metal, 

30 nm) to permeate into the PDMS, the subsequent Ni layer (second metal, 150 nm) 
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deposition led to the overall metal electrode contact to become more stable and reliable 

during repeated bending and stretching from external strain. 

 

Preparation of P(VDF-TrFE) film  

A solution of P(VDF-TrFE) was prepared by dissolving Co-polymer powder of 

P(VDF-TrFE) (50/50, Piezotech) in N,N-dimethylformamide (DMF) solvent and stirring 

for 12 h at 40 °C to synthesize 13 wt % of P(VDF-TrFE) solution. The prepared solution 

of P(VDF-TrFE) was then spin-coated on the Ni/Ti/PDMS/Cu at 6500 rpm for 60 s to 

obtain a thickness of 2 µm as shown in Fig. 4.1.2(a), and was dried at 60 
o
C for 10 min to 

remove the DMF solvent. The P(VDF-TrFE) film on the Ni/Ti/PDMS/Cu was 

subsequently heated in air at 140 
o
C for 2 h to develop the β-phase of P(VDF-TrFE), 

(which is it’s most stable form with the highest piezoelectric constant) [31-36] followed 

by natural cooling to room temperature (Fig. 4.1.1(c)). Another layer of Ti/Ni (30 nm/150 

nm) was deposited to form the top metal electrode (in the form of two semicircular halves 

of 7 mm radius, with a gap of 2 mm in between), by e-beam evaporation as shown in Fig. 

4.1.1(d)). After that, the Cu layer was removed from underneath of the overall device 

structure by dissolving in a solution of 0.5 M ammonium persulfate as shown in Fig. 

4.1.1(e). The device was floated in the solution while Cu layer was etched. After that, the 

bottom of floated device (PDMS substrate) was rinsed multiple times in deionized (DI) 

water. Although not shown as a formal step in Fig. 4.1.1, a very important part of the 

fabrication process is poling of the P(VDF-TrFE) film to align the dipoles to an external 

electric field. These aligned dipoles will generate fixed surface charge when the film is  
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Figure 4.1.1 Schematic demonstration of the processes in fabrication of the sensor. (a) 

PDMS was spin-coated on Cu. (b) Deposition of Ti/Ni as bottom electrode using electron 

beam evaporator. (c) P(VDF-TrFE) was spin-coated on Ni/Ti/PDMS/Cu. (d) Deposition 

of Ti/Ni as top electrode using electron beam evaporator. (e) Removing Cu from 

Ni/Ti/P(VDF-TrFE)/Ni/Ti/PDMS/Cu using ammonium persulfate etchant. (f) 

Transferring graphene on Ni/Ti/P(VDF-TrFE)/Ni/Ti/PDMS. 
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Figure 4.1.2 (a) Various thickness of P(VDF-TrFE) films by spin-coating at different 

rotational speed for 60 s. The inset shows the thickness of P(VDF-TrFE) at 6500 rpm. (b) 

Various thickness of PDMS by spin-coating at 800 rpm for different time. The inset 

shows the thickness of PDMS for 20 s. 

   

 

Figure 4.1.3 (a) Voltage generated (Vgen) vs time duration of poling (TD), and (b) 

Voltage generated (Vgen) vs time elapsed after polling (TE) 
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subjected to external strain, the magnitude of which directly affects sensitivity of the 

overall device. Poling of the P(VDF-TrFE) was performed by subjecting it to an electric 

field of 100 MV/m for 1 hour, by applying a voltage of 200 V across the Ti/Ni metal 

layer underneath, and the two halves of the Ti/Ni metal layer connected at the top. The 

one hour duration was found to be optimal and further increase in time up to 2 hours only 

resulted in less than 5% increase in the voltage generated across the film when similarly 

strained. The plot of voltage generated Vgen vs. TD (duration of poling) is shown in the 

supplemental Fig. 4.1.3(a). Additionally, it should be noted that the degree of alignment 

of the dipoles decreases with time after the poling. In Fig. 4.1.3(b) we show the Vgen 

(under similar strain) vs. TE (the time elapsed after poling), which indicates that the 

degree of poling reduces with time, but at a decreasing rate, and becomes steady after a 

few days at a value of ~55% of the maximum value achieved immediately after poling. 

This observation of decrease in the degree of poling and percentage of steady state value 

is consistent with earlier reports [164,165,166]. 

 

Synthesis and transfer of graphene 

In the next step, high quality monolayer graphene, synthesized through an 

optimized chemical vapor deposition (CVD) process, was transferred onto the 

Ni/Ti/P(VDF-TrFE)/Ni/Ti/PDMS layer structure using a wet transfer process developed 

in our lab (Fig. 4.1.1(f)). Details of the CVD synthesis and transfer process of graphene 

are discussed in detail elsewhere [158-160]. Briefly, graphene was grown on a copper foil 

(which acted as the substrate as well as the catalyst) at 1035 
o
C for 20 min using CH4 as 
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the precursor gas after the Cu foil was baked out in Ar environment at 250 
o
C followed 

by a 2 hour anneal at 1000 
o
C. The wet transfer process involved 2 layers of PMMA 

coating of the graphene by spin-coating at 2000 rpm for 60 s, followed by oxygen plasma 

etch from the backside graphene grown on the Cu foil, which was then followed by Cu 

removal by etching in the solution of 0.5 M ammonium persulfate. The floated 

PMMA/graphene was rinsed multiple times in DI water, and then the PMMA/graphene 

can be transferred on the device as shown in Fig. 4.1.1(f). The device with transferred 

PMMA/graphene was dried at 40 
o
C for 10 min in air. Finally, the coated PMMA was 

removed from top of transferred graphene by few droplets of 1,2-dichloroethane (99%, 

Alfa Aesar). 

 

Measurement and characterization 

  The structural and optical transmission properties of the P(VDF-TrFE) were 

investigated using Fourier transform infrared (FTIR) spectroscopy (Model # Thermo 

Scientific Nicolet380), X-ray diffraction (XRD, Model # Rigaku ULTIMA IV). The 

graphene was characterized using Raman spectroscopy (Model # CrystaLaser CL-2000) 

to determine its quality and verify monolayer nature. The carrier mobility and density in 

the graphene in the device layer structure were measured by a Hall Effect measurement 

system (Model # Ecopia HMS3000) both in relaxed condition and under external strain 

of 0.0075. The performance of the sensor was measured by attaching it to a printed 

circuit board (PCB), specifically designed to hold the sensor, and utilizing a data 

acquisition unit (Agilent 34970A) to collect the data and store it in computer. A semi-
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automatic wire/ball bonder from Kulicke and Soffa (Model # KS 4524A) was used to 

make gold wire bonds between the PCB pads and the Ti/Ni contacts of the sensor device. 

 

Monitoring of human activities with wireless data transmission 

To monitor human movement using the sensor, a circuit board from Adafruit 

(Model # ESP8266MOD) was used to collect the data and transmit through Wi-Fi in real-

time, while the movement was performed. The data was transmitted from the sensor 

every 5 secs using the ESP8266 Wi-Fi module which used the message queuing 

telemetry transport (MQTT) protocol for transmitting the data. The response of the sensor 

was read in terms of variation of voltage across a 10 kΩ resistor connected in series with 

the sensor. The sensor resistance varied with application of an external strain or pressure, 

which altered the voltage across the 10 kΩ resistor that was read on the analog pin of the 

ESP8266 chip, and subsequently transmitted to cloud. The maximum range of analog 

voltage across the 10 Kohm resistor (0 to 3.3 V), and was mapped between 0 and 1024 by 

a 10 bit analog to digital converter (ADC) in the ESP8266 Wi-Fi module. These ADC 

values were then sent to the cloud and to be plotted on the Y-axis of the response graph 

(as a function of time), which will be discussed later. 

 

4.1.3 Results and discussion 

Figures 4.1.4(a) and (b) show schematic views of the strain/pressure sensor and its 

layer structure. As discussed above, the sensor consists of five layers: the PDMS 

substrate, the Ti/Ni top and bottom contact electrodes, the P(VDF-TrFE) film, and 
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graphene. The thickness of PDMS substrate is one of the most important parameters for 

sensor design, since it determines the range of force/strain that can be applied (dynamic 

range) without damaging the physical structure, as well as, critical device attributes such 

as sensitivity. While thinner PDMS substrate results in higher sensitivity as it experiences 

higher deformation for a given magnitude of external force/strain, it also limits the 

dynamic range by making the PDMS metal electrode more susceptible to damage. The 

maximum applicable strain in PDMS without introducing significant cracks in the metal 

layer deposited on top, is reported to be ~0.8 % [167,168], and in a previous study we 

found that the thickness of PDMS of ~175 µm will result in a maximum strain of ~0.8 % 

for an applied pressure of ~50 mm Hg for a square membrane with sides of 3 mm [153]. 

Since a comparable diameter of 5 mm was used in this study, the thickness of PDMS 

substrate was chosen to be 175, to simultaneously achieve the high sensitivity as well as 

good dynamic range. The Ti/Ni as the top and bottom electrodes and P(VDF-TrFE) as 

active film were deposited on the PDMS substrate sequentially, and a monolayer 

graphene was transferred on top of them. A top view schematic is shown in Fig. 4.1.5(b), 

while Fig. Fig. 4.1.5(c) shows photos of the fabricated device as it is laid flat and is 

folded (using a tweezer, which underlines its flexibility) across the diagonal. Top view, 

optical microscope image of the sensor is shown in Fig. 4.1.5(d). The cracks seen at the 

center of the optical image in Fig. 4.1.5(d), is formed on the bottom electrode, during its 

deposition on the PDMS substrate and deformations afterwards. Despite the presence of 

cracks, the bottom electrode shows good electrical continuity as shown in Fig. 4.1.5(e), 

where the current-voltage characteristics of both the top and bottom electrodes are plotted 
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by applying voltage across two point contacts established at the ends of the metal contact 

pads. 

 

Figure 4.1.4 (a) and (b) show schematic illustrations of the design, (c) photographic 

images, and (d) optical microscopy image for the sensor. (e) and (f) show the electrical 

continuity of bottom electrode and top electrode on the sensor, respectively. 

 

The structure of the P(VDF-TrFE) film was confirmed using FTIR spectroscopy. Figure 

4.1.6(a) presents the FTIR spectrum of the P(VDF-TrFE) film at room temperature. 

Presence of the three absorption peaks at 840, 1290, and 1400 cm
-1

 correspond to the CH2 
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rocking, trans band, and CH2 wagging, respectively, for the β-phase of the P(VDF-TrFE) 

film, confirming its formation [33,104]. In addition, the observation of diffraction peak at 

 

 

Figure 4.1.5 (a) FTIR and (b) XRD result of β-phase of P(VDF-TrFE) film. (c) Raman 

spectrum of graphene after transferred on SiO2/Si substrate and the inset shows the 

optical image of the graphene. 

 

2θ = 19.7
o
 (Fig. 4.1.6(b)), which is generally attributed to the orientation planes (110) and 

(200) for the polar β-phase [81,103] of P(VDF-TrFE), once again confirms its formation. 
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Therefore, we conclude that our synthesis method yielded high crystalline quality β-phase 

of P(VDF-TrFE) film, as desired. Figure 4.1.6(c) presents the Raman spectrum of a 

typical graphene layer transferred on SiO2/Si substrate, while the inset shows an optical 

image of the graphene layer (demarcated by the white dashed line). From the Raman 

spectra, the ID/IG ratio is calculated as 0.13, which indicates very low defect density in 

the transferred graphene. In addition, the I2D/IG ratio is calculated to be 2.1, which along 

with the FWHM (2D peak) of 26.7 cm
-1

, clearly indicates the presence of monolayer 

graphene [169]. To investigate the electrical properties, including sheet carrier density 

and mobility, on graphene transferred to PDMS substrate, Hall measurements were 

performed on it by putting indium press contacts at the four corners. The results are 

shown in Table 4.1.1. The Hall mobility and carrier density were found to be 3120 

cm
2
/Vs and and 9.1 × 10

11
 cm

-2
, respectively, which is indicative of high quality of the 

graphene layer [170]. 

 

Table 4.1.1 Characterizations of graphene such as mobility, sheet carrier density, and 

sheet resistance.  
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Figure 4.1.6 Photographic image of the basic measurement setup and inset shows image 

of the sensor mounted on the PCB. 

 

Figure 4.1.6 shows a picture of the measurement setup, which basically consists of 

a computer controlled data acquisition system (Agilent 34970A), a nitrogen tank to apply 

gaseous pressure, the sensor connected to the gas line from the tank, and a gauge (Yash 

Flowmeters YG309) to measure the applied pressure. The inset shows a photo of the 

sensor attached to a custom built printed circuit board (PCB) designed using EAGLE 

software. The PCB terminals were connected to the Ti/Ni metal contact pads on the 

sensor using Au wire bonds put in place using a semi-automatic wire/ball bonder. The 

output of the sensor, which simply constitutes the resistance change of the graphene strip  
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Figure 4.1.7 COMSOL simulation of strain distribution on the active area (diameter = 10 

mm) on each layers such as (a) PDMS substrate, (b) bottom electrode, (c) P(VDF-TrFE) 

film, (d) top electrode, and (e) entire structure of the sensor. 

 

between the semicircular metal contact pads, was recorded for various pressures up to 45 

mmHg in small steps of a few mm Hg. The pressure applied to the sensor was manually 

adjusted using the pressure regulator on the nitrogen tank.  

In order to determine the performance parameters of the sensor (see discussion 

below) we need to determine the strain distribution on the graphene sensing element due 

to applied pressure. The stress and strain distribution across the sensor membrane (radius 

= 5 mm) was simulated using COMSOL finite-element simulation (Solid Mechanics 

module) software.  The outer edge of the active area was assumed to be fixed for the 
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simulations, and a uniform pressure of 15 mmHg (2 kPa) was assumed to be applied on 

the bottom surface of the membrane. Figure 4.1.7 shows the strain distribution for the 

P(VDF-TrFE) layer of the sensor, which is responsible for producing electrical charge in 

response to strain. The strain distribution in the PDMS, bottom electrode and the top 

electrode are included in the Fig 4.1.7. These values will be used to calculate the gauge 

factor for the sensor as discussed below.    

Figure 4.1.8(a) shows the change in resistance with externally applied pressures for 

the sensor. The sensitivity (S) of a sensor is generally calculated from the equation 

                           S = (ΔR/Ro)/ΔP,                                                           (1) 

where ΔR is the change in resistance, Ro is the original resistance, and ΔP is the change 

in applied pressure on the sensor. The slope of the least square line fitted to the ΔR/Ro vs. 

ΔP plot in Fig. 6 gives the average sensitivity over the entire range of pressure of 45 

mmHg. The response of the sensor is quite linear and the value of sensitivity is obtained 

as 0.101/mmHg (0.76/kPa) which is one of the best values reported on graphene based 

strain/pressure sensors with PDMS or P(VDF-TrFE) substrates as can be seen from Table 

4.1.2. The Gauge Factor (GF) of the sensor can be calculated to compare the performance 

of the sensor with other strain sensors. This allows a more direct comparison between 

technologies, since possible variation in strain due to dimensional variations is accounted 

for. The GF of the sensor calculated from the equation GF = (ΔR/Ro)/εav, turns out to be 

481.6 using the average values of strain in these directions calculated above, and using a 

fractional change is resistance ΔR/Ro = 1.5 for an applied pressure of 15 mmHg. The 

resulting value of GF is at least an order of magnitude higher than those of the flexible  
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Figure 4.1.8 Relative change in resistance with applied (a) various pressures and (b) 

average strain for the sensor. The inset shows average strains versus various pressures, 

computed by COMSOL simulation. 

 

strain sensors reported so far as shown in Table 4.1.2, which clearly highlights the 

benefits of using a graphene/ P(VDF-TrFE) composite to perform highly sensitive 

detection of strain, pressure or force.  

The ultra-high sensitivity of our sensor device originates in the graphene/P(VDF-

TrFE) heterostructure composite. Poling of the P(VDF-TrFE) film causes its C-H and C-

F bonds in graphene/P(VDF-TrFE) to orient their positive and negative charges along the 

direction of applied poling field, resulting in a net polarization in the film [24,171]. This 

net polarization varies in strength under the influence of mechanical strain which induces 

a change in carrier density in graphene. CVD grown graphene is typically p-type when 

transferred to different substrates, which can be attributed to the presence of charged 

surface impurities during wet-etching of copper and subsequent transfer process on  
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Table 4.1.2 Sensor performance comparison of PDMS, P(VDF-TrFE), and graphene 

based strain/pressure sensors reported in recent years.  
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various substrates. The p-type nature of the graphene layer transferred on P(VDF-TrFE) 

was confirmed from Hall measurements, as discussed below. Figure 4.1.9(a) 

schematically shows that as the graphene/P(VDF-TrFE) layer is subjected to strain, a 

differential positive surface charge + is generated on the P(VDF-TrFE) top surface 

(this is the side that graphene is deposited). This positive charge repels holes in graphene 

reducing its p-type nature. On the other hand, the bottom side of the P(VDF-TrFE) 

undergoes a compressive strain, forming a differential negative surface charge -, 

which induces a positive charge on the bottom metal electrode. The total top surface 

charge becomes a stronger positive (σ++), and the total bottom charge becomes a 

stronger negative charge (σ--). As the hole density is reduced, the Fermi level of 

graphene moves upwards compared to the unstrained graphene, as shown in the bottom 

panel of Fig.4.1.9(a). Such a reduction in hole density resulted in an increase in resistance 

as observed in Fig.4.1.10 (as discussed below the mobility also decreased significantly 

leading to a much higher variation in resistance than simply carrier density change). The 

increased resistance was maintained in the strained graphene, and returned back to its 

original value when the P(VDF-TrFE) film was allowed to relax. We note here once 

again that by utilizing the graphene/P(VDF-TrFE) composite, we have converted a 

piezoelectric sensing element (P(VDF-TrFE) by itself) to an ultra-high sensitivity 

piezoresistive sensing element that can be used much more easily to transduce pressure, 

and which can respond accurately to step and low frequency changes very accurately. 

To independently verify the change in carrier density in graphene induced by 

strain in P(VDF-TrFE), we performed Raman spectroscopy on the device, in strained and 
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unstrained conditions, since variation in carrier density is correlated with the G-peak shift 

in the Raman spectrum. Figure 4.1.9(b) shows the spot was chosen to perform the Raman 

spectroscopy measurements. The top panel in Fig.4.1.9(b) (black line plot) indicates the 

G-peak before bending, and bottom panel (red line plot) shows the G-peak after the 

device was subjected to strain. The Raman shifts of G-peak for before and after bending 

were found to be 1588 and 1578 cm
-1

, respectively. A red shift in the G-peak confirms 

the upward movement of the Fermi level for graphene under strained condition [172, 

173], which supports the electrical measurements discussed above.  

Figure 4.1.10(a) shows the response and relaxation times of the sensor which is 

corresponding to the pressures on and off, respectively. The pressure was adjusted 

manually on nitrogen tank from 0 to 15 mmHg in this measurement and it was kept at 15 

mmHg for 20 s and then released to 0 for 20 s. It is clear that the performance of the 

sensor is very consistent over the various cycles. Figure 4.1.10(b) presents a single pulse 

of response (pressure on) and relaxation (pressure off) times of the sensor which is 

between 25 and 70 s from Fig. 1.8(a). The response time of the strain/pressure sensor and 

signal-to-noise (SNR) ratios are very important parameters in obtaining accurate 

information from the pressure sensors in a commercial setting. Both need to be high for a 

more accurate detection and calculation of pressure. The common limitation of pressure 

sensors is the less SNR which essentially prevents them from measuring small pressure 

changes [174-176]. In general, piezoresistive sensors often suffer from poor signal-to-

noise ratios, limiting their use for measuring small pressure differentials. Our sensor, 

based on PDMS, P(VDF-TrFE), and graphene, exhibits a high SNR of 26.4 dB with a 
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Figure 4.1.9 (a) An illustration for proposed mechanism of the carrier doping in 

graphene/P(VDF-TrFE) for before and after bending. (b) Raman spectra of graphene for 

G peak position before and after bending graphene/P(VDF-TrFE). 
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fast response time (~100 ms). These results make the sensor very attractive for use in 

wearable electronics such as biomedical applications and smart monitoring systems to 

monitor strain and pressure in real-time.  

Flexible and self-powered strain/pressure sensor in practical wearable application 

was demonstrated by monitoring the motions of a human hand as shown in Fig. 4.1.11(a). 

The sensor was physically attached to the hand and activities involving hand motion were 

performed. The thickness of PDMS for the sensor was increased (up to 1.5 mm) to 

prevent severe cracking of the bottom electrode on the PDMS substrate under the 

influence of high pressure. Figure 4.1.11(a) shows the response corresponding to the 

movement of the hand. The graph shows the amplitude and relaxation time for the 

bending, deformation and straightening, respectively. The physical motion of the hand is 

clearly evident in the response graph. In addition, we have demonstrated an application of 

the self-powered strain/pressure sensor in human activity monitoring by attaching the 

sensor to a human knee. Multiple activities, involving physical human motion, were 

performed and the corresponding response of the sensor was obtained on the data cloud 

in the form of a graphical representation as shown in Fig. 4.1.11(b). This sensor could 

function as a wearable human activity monitor and recorded multiple motions ranging 

from simple standing to walking and running. The variation in motion corresponding to 

different activities was captured well in the sensor response. The peaks in the real-time 

graphs that occur with multiple motions that clearly demonstrate the efficiency of our 

sensor in identifying human activities, making it a candidate for a wearable activity 

tracking device. One application of this self-powered strain/pressure sensor is active 
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sports monitoring. Statistics like steps taken and energy expenditure could be recorded 

from the sensor being placed on anatomical regions that are most active during physical 

movement, such as joints. Because of the thin profile and flexibility of the sensor it could 

replace other monitoring systems and be implemented neatly into active wear, like knee 

braces to acquire data without being a hazard during athletics. 

 

 

Figure 4.1.10 (a) Response (pressure on) and relaxation (pressure off) times of the sensor 

between 0 and 15 mmHg pressure. (b) A single pulse of response and relaxation times of 

the sensor between 25 and 70 s in the Fig. 4.1.10(a). 
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Figure 4.1.11 (a) Demonstration of human hand movement by the self-powered 

strain/pressure sensor. (b) Output response of the self-powered stain/pressure sensor in 

terms of analog to digital converted (ADC) values transmitted wirelessly via the 

ESP8266 Wi-Fi module. The response is updated every 5 seconds on the cloud. (c) 

Electronic circuit for connecting the sample terminals to the ESP8266 Wi-Fi module. 

 

4.1.4 Conclusions 

  We have developed a highly sensitive strain/pressure sensor based on the 

P(VDF-TrFE) film and monolayer graphene on a plain PDMS substrate using a simple 
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fabrication process. The response of the sensor were quite linear with various pressures 

and it demonstrated high sensitivity response (average = 0.76 kPa
-1

, maximum = 0.89 

kPa
-1

, and gauge factor = 481.6) in the entire range of pressure up to 45 mmHg. In 

addition, the sensor has low detectable strain of 0.016%, SNR of 26.4 dB, and a fast 

response time of ~100 ms. This was because the piezoresistive response was effectively 

caused by the hybrid structure of P(VDF-TrFE) film, monolayer graphene, and metal 

electrode on PDMS substrate. Hence, our self-powered strain/pressure sensor include 

features of high sensitivity, low detectable strain, simple and ease of fabrication and 

biocompatibility, making it immensely promising for wearable electronics such as 

biomedical applications and smart monitoring systems. 
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4.2 PET substrate based sensor 

  We have developed a graphene/P(VDF-TrFE) heterojunction based self-powered 

strain/pressure sensor on polyethylene terephthalate (PET) substrate. The sensor is 

responsive to variable pressures from 1 kPa to 100 kPa, which result in the strain-induced 

change of the resistance due to the piezoresistive graphene/P(VDF-TrFE) heterojunction. 

The range of detectable strain for the sensor was from 0.0075 (1 kPa) to 7.5 % (100 kPa), 

and the average sensitivity and gauge factor of the sensor were 0.00123/kPa and 16.4, 

respectively. We also successfully demonstrated the flexible self-powered strain/pressure 

sensor in a practical wearable application by monitoring the motions of a human hand. 

The mechanism of the sensor is discussed and illustrated in terms of piezoresistive 

graphene/P(VDF-TrFE) heterojunction converted from piezoelectric property of P(VDF-

TrFE). 

 

4.2.1 Introduction 

  In recent years, flexible pressure sensors have drawn enormous attention due to 

their potential applications in smart monitoring systems [125.126], wearable bio-medical 

health care [121,122], and real-time gait analysis [123,124]. Several different types of 

pressure sensors such as capacitance [143,144], piezoelectricity [128,132], and 

piezoresistivity [133,134] have been investigated over the past decade. Among them, 

piezoresistive based pressure sensors are more suitable for implantable or wearable bio-

medical devices owing to its advantages, i.e. step measurement and self-powered 

operation, including low cost, easy fabrication, simple structure, long-term stability, and 
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fast response/relaxation time. Typically, piezoresistive based pressure sensors detect the 

change in resistance caused by the pressure-induced deformation of the active materials 

such as patterned nano-/micro-structures [143,144], metal films [153], nanowires 

[127,128], CNTs [137,138], graphene [177,178], and polymers [135,136]. To date, 

patterned nano-/micro-structures with/without nanowires, CNT, graphene, and polymers 

as active materials on flexible substrates have been developed for many applications 

including wearable electronics and artificial electronic skins. However, patterned 

structures on flexible substrates were fabricated by chemical etching, plasma treatment, 

and photolithography process which are complicated and add more cost. In addition, the 

piezoresistive based pressure sensors have limited measurement range, and adhesion 

between metal films or nanowires and flexible substrate is not durable for long-term 

operation under bending and vibration conditions. To solve above issues, therefore, new 

structure of sensor without any complex patterning, i.e. heterojunction, and additional 

fabrication technique for good adhesion, i.e. annealing, are needed.  

  Poly(vinylidenefluoride-co-trifluoroethylene), P(VDF-TrFE), have been used as 

flexible piezoelectric materials recently for pressure sensors due to their high 

piezoelectric coefficient, flexibility, sensitivity, dielectric strength, mechanical durability, 

and bio-compatibility. Moreover, P(VDF-TrFE), which can be enhanced the electric 

charges on surface when tensile strain is increased, offering electrostatic doping to 

adjacent conductive materials that make it suitable for heterojunction structure with 

graphene layer. The graphene has high mobility of carriers, mechanical strength 

flexibility, and tunable Fermi level based on surface charge. Hence, graphene/  



 88 

heterojunction can give rise to piezoresistive sensors instead of piezoelectric ones. 

  Herein, we report on the new structure of piezoresistive sensor using 

graphene/P(VDF-TrFE) heterojunction for self-powered strain/pressure sensor on 

polyethylene terephthalate (PET) substrate without any complex patterning. We also have 

utilized optical microscope (Micromanipulator Corp. MODEL No. 6000), X-ray 

diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy (Thermo Scientific 

Nicolet380), Raman spectroscopy (CrystaLaser CL-2000), and Hall-effect measurement 

(Ecopia HMS3000) to investigate the properties of the graphene and the β-phase of 

P(VDF-TrFE). A COMSOL simulation was performed to theoretically examine the 

change in strain from the sensor with different pressures. Several pressures are applied 

and the changes in resistance are measured. The range of detectable strain for the sensor 

was from 0.0075 (1 kPa) to 7.5 % (100 kPa), and the average sensitivity and gauge factor 

of the sensor were 0.00123/kPa and 16.4, respectively. We successfully demonstrated the 

flexible self-powered strain/pressure sensor in a practical wearable application by 

monitoring the motions of a human hand. 

 

4.2.2 Experimental details 

To fabricate the sensor, bottom electrode (radius = 0.8 cm), Ti/Ni (30 nm/150 nm) 

was deposited by electron beam evaporation on PET substrate (100 µm) (Fig. 4.2.1(a)). 

The solution of P(VDF-TrFE) was prepared by dissolving Co-polymer powder of 

P(VDF-TrFE) (50/50, Piezotech) in N,N-dimethylformamide (DMF) solvent and stirring 

for 12 h at 40 °C to synthesize 13 wt % of P(VDF-TrFE) solution. The solution of 
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P(VDF-TrFE) was spin-coated on the Ni/Ti/PET at 2500 rpm for 60 s to obtain a 

thickness of 2 µm and was dried at 60 
o
C for 10 min to remove DMF solvent. Then, the 

film was subsequently post-heated in air at 140 
o
C for 2 h to develop β-phase of P(VDF-

TrFE) and cooled down to room temperature naturally (Fig. 4.2.1(b)). Another layer of 

top electrodes (semicircle, radius = 0.3 cm), Ti/Ni (30 nm/150 nm), was deposited by 

electron beam evaporation on P(VDF-TrFE)/Ni/Ti/PET (Fig. 4.2.1(c)). After that, poling 

of the P(VDF-TrFE) was performed by subjecting it to an electric field of 100 MV/m for 

1 hour. This helps in the uniform alignment of the dipoles in the film making it more 

piezoresistive. In the next step, monolayer graphene (1.5 cm × 1 cm), grown by the CVD 

technique on a Cu substrate, is transferred onto Ni/Ti/P(VDF-TrFE)/Ni/Ti/PET using wet 

transfer method (Fig. 4.2.1(d)). To grow the monolayer graphene, copper foil was placed 

in a thermal CVD chamber after copper oxides were removed. Then, the system was 

evacuated (base pressure was 500 mTorr), and 800 standard cubic centimeter per minute 

(sccm) of Ar was flown at 250 
o
C to bake out. H2 (100 sccm) was then flown for 2 h at 

1000 
o
C to anneal the copper foil and enlarge the grain size which in turn increases 

crystalline property. The actual graphene growth was done at an elevated temperature 

(1035 
o
C) by flowing the precursor gas CH4 (100 sccm ) for 20 min. The chamber was 

cooled down for 50 min after the growth was completed. To measure the performance of 

the sensor, the sensor was attached on printed circuit board (PCB) designed in EAGLE 

software and we have utilized data acquisition (Agilent 34970A) which was connected 

with a computer for processing. Moreover, wire bonders (KS 4524A) was used to 

connect with gold wire between the sensor and PCB. 
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Figure 4.2.1 Schematic demonstration of the processes in fabrication of the sensor. (a) 

Deposition of Ti/Ni as bottom electrode using electron beam evaporator on PET substrate. 

(b) P(VDF-TrFE) was spin-coated on Ni/Ti/PET. (c) Deposition of Ti/Ni as top electrode 

using electron beam evaporator. (d) Transferring graphene on Ni/Ti/P(VDF-

TrFE)/Ni/Ti/PET. 

 

4.2.3 Results and discussion 

  We have developed the graphene/P(VDF-TrFE) heterojunction based flexible 

self-powered strain/pressure sensor on PET substrate with simple fabrication process. 

Previously, Sun et. al. [139] and Bae et. al. [180] fabricated pressure sensor on PET using 

a coplanar-gate graphene transistor and hierarchically structured graphene/PDMS, 
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respectively, including several photolithography patterned. As mentioned above, 

photolithography process yield more cost and increase the complexity of fabrication to 

obtain nano-/micro patterned structures. A schematic illustration of our sensor, which is 

much simpler in fabrication, is shown in Fig. 4.2.2(a). A layer of PET (100 µm) supports 

self-powered strain/pressure sensor as flexible substrate, and four different layers such as 

the Ti/Ni (bottom and top electrodes), the P(VDF-TrFE) film, and the graphene are 

attached well on the substrate as shown in Fig. 4.2.2(b) and (c).  

 

Figure 4.2.2 (a) show schematic illustrations of the design, (b) photographic images, and 

(c) optical microscopy image for the sensor. 

  

  To confirm high quality of crystallinity for the β-phases of P(VDF-TrFE) film, 

we performed structural characterization using the XRD and FTIR technique on the 
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prepared P(VDF-TrFE) film. Figure 4.2.3(a) shows the XRD pattern of P(VDF-TrFE) 

film. The diffraction peak of 2θ value of 19.7
o
 represents orientation planes (110) and 

(200) for the polar β-phase [81,103]. In addition, three different peaks of FTIR 

spectroscopy spectrum such as 840, 1290, and 1400 cm-1 indicate β-phases of P(VDF-

TrFE) film as shown in Fig. 4.2.3(b) [33,104]. 

 

Figure 4.2.3 (a) XRD and (b) FTIR result of β-phase of P(VDF-TrFE) film. 

 

  Figure 4.2.4 shows the relative change in resistance with applied various 

pressures and simulated average strain for the sensor. The inset shows a photographic 

image after attaching the sensor on the printed circuit board (PCB) designed in EAGLE 

software. To connect with gold wire between the sensor and PCB, a wire bonders (KS 

4524A) was used. The sensor mounted on PCB was placed on vacuum chuck whose were 

connected to a rotary pump. The variable pressures were transmitted to the sensor by the 

rotary pump, and the corresponding changes in resistance were recorded by data 

acquisition (Agilent 34970A) which was connected with a computer for processing. A 

commercial pressure gauge (Yash Flowmeters YG309) was used in order to monitor the 
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Figure 4.2.4 Relative change in resistance with applied various pressures and simulated 

average strain for the sensor. The inset shows image of the sensor mounted on the PCB. 

 

real pressure in the sensor during the test. The active area of the sensing was 78.5 mm
2
 

(radius = 5 mm), and the sensitivity (S) and gauge factor (GF) for the sensor are 

calculated using the following equations, respectively: S = (ΔR/Ro)/ΔP, GF = (ΔR/Ro)/εav,                                     

where ΔR is the relative change in resistance, Ro is the original resistance, ΔP is the 

change in applied pressure, and εav is average strain on the sensor. It is clear that the 

response of the sensor (i.e. ΔR/Ro) is reasonably linear, and the value of sensitivity and 

gauge factor is 0.00123/kPa and 16.4, respectively, over the entire range of pressure up to 

100 kPa. The value of GF for our sensor has more than eight times higher GF than the 

conventional strain gauges based on metal alloys of ~2. In addition, the range of 

detectable strain for the sensor was from 0.0075 (1 kPa) to 7.5 % (100 kPa). The module 
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Figure 4.2.5 COMSOL simulation of strain distribution on the active area (diameter = 10 

mm) on each layers such as (a) PET substrate, (b) bottom electrode, (c) P(VDF-TrFE) 

film, and (d) top electrode. 

 

of solid mechanics was used to simulate the average strain of the sensor using the 

COMSOL finite-element simulation as shown in Fig. 4.2.5. The active area is 10 mm 

(diameter), the outer rim of the active area was perfectly fixed, and 100 kPa of boundary 

load was applied onto the bottom surface of the sensor. The Figure 4.2.5(a) to (d) 

describe each different layers of the sensor such as PET substrate, bottom electrode, 

P(VDF-TrFE), and top electrode, respectively. Most of the average strain is contributed 

by PET layer due to its largest thickness comparing to other layers, and the average strain 

across the sensor was quite linear with various pressures. 

             Figure 4.2.6(a) shows the response (pressure on) and relaxation times (pressure 
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off) of the sensor corresponding to the loading (100 kPa) and unloading. The pressure 

was kept at 100 kPa for 40 s and then reduced back to 0 for 20 s. It is notable that the 

performance of the sensor is reasonably consistent over the various cycles. Additionally, 

the sensor, based on graphene/P(VDF-TrFE) heterojunction, exhibits a high SNR of 29.5 

dB with a fast response time (~100 ms). Furthermore, we demonstrated the flexible self-

powered strain/pressure sensor in a practical wearable application by monitoring the 

motions of a human hand as shown in Fig. 4.2.6(b). The sensor was physically attached 

on the hand to monitor activities, and the motion of the hand is clearly evident in the 

response signal. The resistance was immediately increased with bending, and it reduced 

back its original value when straightened. It is notable that the demonstration of our 

sensor involves human activities, making it a potential candidate for a wearable activity 

tracking devices such as smart monitoring systems, wearable bio-medical health care, and 

real-time gait analysis.  

  Graphene, with high carrier mobility, mechanical strength flexibility, and 

tunable Fermi level based on surface charge, made our sensor a candidate for flexible 

self-powered strain/pressure sensor using graphene/P(VDF-TrFE) heterojunction. 

Interestingly, we found that increased in tensile strain at the top surface of the P(VDF- 

TrFE) film enhances the positive fixed charge density which results in attracting more 

negative charges in graphene. G-peak of graphene on the sensor in Raman spectra (see 

Figure 4.2.7(a)) was red-shifted after bending which indicates upward shift of Fermi level 

and increased electron concentration for graphene. Figure 4.2.7(b) shows an illustration 

for proposed mechanism of the electrostatic doping in graphene/P(VDF- TrFE) 
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Figure 4.2.6 (a) Response (pressure on) and relaxation (pressure off) times of the sensor 

between 0 and 100 kPa pressure. (b) Demonstration of human hand movement by the 

self-powered strain/pressure sensor. 

 

heterojunction for before and after bending. The P(VDF-TrFE) film was positively 

polarized, and σ+ repels holes and attracts electrons at the top surface while σ- induces 

positive charge at the bottom, making hole concentration decrease in graphene due to 

electrostatic doping. Therefore, the proposed sensor mechanism in our sensor is that a 

decrease in hole density (i.e. increase in electron density) contributes to increase in 

graphene resistance, which results in change of resistance by piezoresistive properties of 

graphene/P(VDF-TrFE) heterojunction converted from piezoelectric property of P(VDF-

TrFE) film. Finally, the decreased hole density (i.e. increased electron density) by 

pressure is maintained in the graphene which enables step response of sensor resistance 

as shown in Fig. 4.2.6(a). 
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Figure 4.2.7 (a) Raman spectra of graphene for G peak position before and after bending 

graphene/P(VDF-TrFE).  (b) An illustration for proposed mechanism of the carrier 

doping in the graphene/P(VDF-TrFE) for before and after bending. 

 

4.2.4  Conclusions 

  In summary, we have developed a graphene/P(VDF-TrFE) heterojunction based 

strain/pressure sensor on polyethylene terephthalate (PET) substrate utilizing a simple 

fabrication process. This new structure of self-powered piezoresistive sensor has 

flexibility, mechanically durability, and bio-compatibility. The mechanism of the sensor 

is attributed to the piezoresistive property of the graphene/P(VDF-TrFE) heterojunction 

converted from piezoelectric property of P(VDF-TrFE) film that resulted in changed 

resistance in graphene which enables step response. The response of the sensor was 

reasonably linear with various pressures, and demonstrated a sensitivity of 0.00123/kPa 

and gauge factor of 16.4, over a pressure range of 0 to 100 kPa. The range of detectable 
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strain for the sensor was from 0.0075 (1 kPa) to 7.5 % (100 kPa), and the sensor has a 

high SNR of 29.5 dB and a fast response time of ~100 ms. 
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CHAPTER FIVE 

CONCLUSIONS AND FUTURE DIRECTIONS  

 

5.1 Summary 

  In this dissertation, we have explored the synthesis of graphene and P(VDF-

TrFE), their properties and applications in chapter 1 and 2. The graphene, with its 

outstanding material properties, including high carrier mobility, atomically thin nature, 

and ability to tolerate mechanical deformation related strain up to 20% before breaking, 

make it very attractive for developing highly sensitive and conformable strain/pressure 

sensor. P(VDF-TrFE) have been investigated recently due to their high piezoelectric 

coefficient, flexibility, sensitivity, mechanical durability, and bio-compatibility for 

energy harvesting applications as piezoelectric materials. In addition, P(VDF-TrFE) is 

able to form a heterojunction with graphene, which will strongly affect the carrier density 

in graphene, due to the fixed charge developing on its surface under strain or pressure. 

Taking advantages of two different materials, the graphene/P(VDF-TrFE) heterojunction 

could be used for piezoresistive based strain/pressure sensors which piezoresistive 

property on graphene was converted from piezoelectric property of P(VDF-TrFE) film, 

and the their proposed mechanism was discussed with Raman spectroscopy. The sensor 

was fabricated on two different substrates such as PDMS and PET. The PDMS based 

sensor demonstrated high sensitivity (average = 0.76 kPa
-1

, maximum = 0.89 kPa
-1

, and 

gauge factor = 481.6) in the low pressure range (~6 kPa), while PET based sensor 

demonstrated the sensitivity of 0.00123 kPa
-1

 and gauge factor of 16.4 over the pressure 

range of 0 to 100 kPa. Hence, these features, coupled with the flexible nature of the 
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device and ease of fabrication, make it a very attractive candidate for use in the growing 

wearable technology market, especially biomedical applications and smart health 

monitoring system as well as virtual reality sensors. 

  For energy harvester, P(VDF-TrFE) was spin-coated on PDMS substrate and its 

performance such as power density, average voltage and current were 6.62 mW/cm
3
, 5.8 

V, and 3.2 µA, respectively at 30 Hz vibration frequency at 1.75 g acceleration. Using a 

full wave bridge rectifier, a capacitor was charged and could deliver 370 nW, which was 

capable of lighting set of LEDs simultaneously. With this performance, the energy 

harvester can provide sufficient power to operate structural health monitoring devices, 

such as a 100 nW temperature sensor, or a low-power 80 nW microprocessor. In spite of 

the simple design, the performance of the device was found to be superior compared to 

other flexible energy harvesters on PDMS substrate. However, there was a challenge (i.e., 

metal contact issue for long term usage) on the PDMS based energy harvester due to the 

cleaved surface of PDMS substrate under the strain or pressure. To solve this issue, we 

used PET substrate which has very high mechanical durability under the strain and 

pressure condition while it generated ~2 V with various stimuli such as wind and tapping. 

Furthermore, PET based energy harvester was integrated with G-HIP  based triboelectric 

energy harvester for hybrid structure because P(VDF-TrFE) piezoelectric energy 

harvester has friction inevitably when the active layer is bent and recovered to generate 

power. Triboelectric based energy harvester generated the voltage of ~5 V while the 

generated voltage of piezoelectric part was ~2 V. This type of device can be used in shoes 

soles for wearable electronics as well as flags in renewable technology after adding 
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multiple devices on flagpole, in order to generate a certain voltage and support electric 

loads, or monitor steps as gait analysis.  

 

5.2 Future directions 

  For the future work it would be useful to further develop miniaturized 

multifunctional sensing systems utilizing strain/pressure sensor, chemical sensor, infrared 

sensor, and actuators with integrated energy harvesting and communication systems on 

the same substrate. Graphene and P(VDF-TrFE) materials with their unique properties, 

make them a very strong candidate for these systems, i.e., smart health monitoring and 

drug release, as wearable and bio-implantable devices. The graphene/P(VDF-TrFE) 

heterojunction based multifunctional sensor detect strain/pressure, chemical, and infrared 

while the piezoelectric and pyroelectric properties part generate a certain power to 

operate sensors and transmit the data to laptop or mobile in order to analyze it. In 

addition, it is a very attractive candidate for use in the growing wearable technology 

market, especially a wearable activity tracking device or virtual reality sensors. This 

sensor could function as a wearable human activity monitor and recorded multiple 

motions ranging from simple standing to walking and running. The variation in motion 

corresponding to different activities is captured well in the sensor response. Statistics like 

steps taken and energy expenditure can be recorded from the sensor being placed on 

anatomical regions that are most active during physical movement, such as joints. 

Because of the thin profile and flexibility of the sensor it could replace other monitoring 
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systems and be implemented neatly into active wear, like knee braces to acquire data 

without being a hazard during athletics. 
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