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Abstract 

Along with the 4th industrial revolution, the great advance in wearable electronics has led a new 

paradigm in our life. Especially, wearable sensor technology has received great attention as promising 

candidates to improve the quality of life by realizing the “Internet of Things” which can be utilized in 

daily healthcare, intelligent control, daily activity monitoring, and human-machine interface systems.  

The ideal wearable devices require several characteristics providing light weight, flexible, unobtrusive, 

autonomously powered for the convenience of user and sustainable uses. Although various emerging 

technologies have been suggested to meet these requirements, there are still challenges for highly 

flexible and unobtrusive forms, multifunctionality, and sustainable uses, which are directly related to 

widespread practical applications. In response to these requirements, several approaches to explore 

functional materials and to design the effective structures for advanced sensor performances with 

sustainable uses, high sensitivity, and multifunctionality. For sustainable uses, self-powered sensing 

system can be developed by triboelectric/piezoelectric/pyroelectric effect, which can rule out any 

problems with power sources. For wearable and flexible form factors, textile and extremely thin films, 

which are mountable and attachable on the human body, are used instead of conventional obtrusive 

devices, improving the wearing sensing of devices. Moreover, the selection of multifunctional 

materials and modification of material characteristics can realize multifunctionality which can 

respond to different stimuli (pressure and temperature) simultaneously. Furthermore, soft/hard and 

organic/inorganic hybrid materials can be used for effective design of high performance wearable 

sensor by distribution control in dissimilar materials, which is attributed to effectively localized strain 

and large contrast of dielectric properties. Therefore, self-powered wearable sensors can be developed 

with functional materials, unique design and novel approach for characteristic modification, which 

can provide a promising platform to realize ideal wearable sensors for future applications such as 

daily healthcare, intelligent control, daily activity monitoring, and human-machine interface systems. 

 In this thesis, we suggest the strategy for advanced sustainable wearable sensors with better wearing 

sensation, multimodality, and enhanced sensory functions through structure design and modification 

of material characteristics. Firstly, we briefly summarize the fundamental working principles, the 

latest research trends, and potential applications in Chapter 1. In Chapter 2, we demonstrate as-spun 

P(VDF) fiber-based self-powered textile sensors with high sensitivity, mechanical stability, and 

washing durability. In Chapter 3, we introduce multimodal wearable sensors without signal 

interference based on triboelectric and pyroelectric effect, which is attributed to controllable polarity 

of P(VDF-TrFE) via ferroelectric polarization. In Chapter 4, we suggest a novel method for high 

performance of triboelectric sensors based on alternating P(VDF-TrFE)/BaTiO3 multilayer 

nanocomposites, which is attributed to the efficient stress concentration and large contrast of dielectric 

properties. Lastly, we summarize this thesis with future prospects in Chapter 5.   
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List of Figures 

 

Chapter 1. 

Figure 1.1. Recent advances in wearable electronics with the fourth industrial revolution. (left) 

History of industrial revolution; 1st revolution with mechanization, 2nd revolution with mass 

production, 3rd revolution with automation, 4th revolution with cyber physical system. (right) various 

future wearable electronics. Reproduced from Ref.[25-34].  

Figure 1.2. Summarized key requirements for advanced wearable tactile sensors on the aspects of 

functionality and sensing capability. (Digital free images, Reproduced from Ref.[35])  

Figure 1.3. Research strategies to achieve the required technologies for advanced wearable sensors in 

terms of (a) materials (J. Mater. Chem. A 2017, 5, 3091.; Chem. Soc. Rev. 2019, 48, 1194.), (b) 

structures (Nature 2019, 569, 698.; Nat. Mater. 2013, 12, 938.; Adv. Mater. 2018, 30, 1803388.), 

sensing target stimuli (Nature 2018, 555, 83.; Nat. Biomed. Eng. 2018, 2, 687.; Nat. Electron. 2018, 1, 

183.; Adv. Mater. 2019, 1905527.), and working mechanism (Adv. Mater. 2019, 31, 1802898.).  

Figure 1.4. Wearable flexible sensors. (a-c) fiber/textile based sensor; (a) integration of sensor in the 

commercial textiles (Adv. Mater. 2017, 29, 1703700.), (b) woven sensor based on functional fibers 

(ACS Nano 2015, 9, 6394.), (c) knitted sensor based on functional fibers (ACS Nano 2017, 11, 9490.). 

(d-g) thin-film based skin-attachable sensors; (d) tattoos-like attachable sensor by transfer method 

(Science 2011, 333, 838.), (e) highly stretchable body-attachable sensor based on organic materials 

(Nature 2013, 499, 458.), (f) highly sensitive attachable sensors with microstructures (Nat. Commun. 

2013, 4, 1.), (g) sustainable wearable sensor based on triboelectric effect (Adv. Mater., 2014, 26, 

5851.).  

Figure 1.5. Working mechanism of self-powered wearable sensors; (a) Triboelectric, (b) Piezoelectric 

(Chem. Soc. Rev. 2019, 48, 1787.), (c) Pyroelectric (Chem. Soc. Rev. 2019, 48, 1787.), (d) 

Thermoelectric effect.  

Figure 1.6. Schematics of representative ferroelectric polymer, PVDF. (a) Chin conformation for the 

α and β phases of PVDF (OMNEXUS home page, https://omnexus.specialchem.com/selection-

guide/polyvinylidene-fluoride-pvdf-plastic, accessed: May 2020.). (b) D-E loops and domain 

structures of ferroelectric and paraelectric states (Polymer 2012, 53, 728). (c) Electrical poling 

procedure of ferroelectrics; ⅰ. Initially random arrangement of domains, ⅱ. Aligned domains under the 

applied electric field, ⅲ. A remnant polarisation under removing the electric field (J. Mater. Chem. A 

2017, 5, 3091.).  
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Figure 1.7. PVDF and its copolymer-based self-powered sensors. (a-c) High performance of 

piezoelectric sensors with (a) composite materials (ACS Nano 2014, 8, 2766.), (b) micropatterned 

structure (Adv. Funct. Mater. 2015, 25, 3203.), and (c) textile form (Energy Environ. Sci. 2014, 7, 

1670.). (d-f) Enhanced pyroelectric sensing performances with (d, e) effective thermal energy 

absorption (Adv. Energy Mater. 2015, 5, 1401891.; Adv. Mater. 2014, 26, 765.), and (f) material 

modification (Adv. Funct. Mater. 2017, 27, 1700702.). (g-i) Performance-modulated triboelectric 

sensors with (g) microstructures (ACS Nano 2018, 12, 3964), (h) composite materials (Adv. Energy 

Mater. 2017, 7, 1600988.), and (i) ferroelectric polarisation (Adv. Funct. Mater. 2016, 26, 3067.).  

Figure 1.8. Applications based on self-powered wearable sensors; daily healthcare for (a) pulse 

pressure detection (Nat. Biomed. Eng. 2018, 2, 687.) and (b) real-time gait patterns monitoring (ACS 

Nano 2018, 12, 4045.), biometric security systems with (c) voice patterns (Sci. Adv. 2018, 4, 

eaas8772.) and (d) fingerprint (Nat. Commun. 2018, 9, 1.).  

Figure 1.9. Summary of this thesis; engineering of hybrid materials for self-powered flexible sensors 

(J. Mater. Chem. A 2018, 6, 22879.; Nano Energy 2020, 104671.).  

 

Chapter 2. 

Figure 2.1. PVDF stitch-based triboelectric textile sensors. (a) Schematic illustration of the 

fabrication procedure of textile sensors by a sewing machine. (b–c) Photographic and SEM images of 

PVDF-based stripe stitch; (d, g) SEM images of the twisted 5-ply PVDF threads composed of mono 

fibers of diameter ~50 μm. Photographic images of (e-f) PVDF-based embroidery, (h) PVDF-based 

embroidered line stitches, and (i) PVDF-based letter stitches. (j-m) Photographic images of textile 

sensor demonstrating effects of different mechanical forces, including folding, stretching, twisting, 

and crumpling. 

Figure 2.2. A schematic illustration of the lab scale dry-jet wet spinning procedure.  

Figure 2.3. Mechanical characteristics of dry-jet wet-spun PVDF in this work; (a) Strain-stress curves, 

and (b) comparison of tensile modulus and strength based on this work and previous reports. 

Figure 2.4. Working mechanism and triboelectric output performances of the PVDF stitch-based 

textile sensor. (a) Photographic and (b) optical cross-section images of the textile sensor. SEM images 

of (c) the nylon fabric for a positive triboelectric object and (d) PVDF stitch for a negative 

triboelectric object. (e) Schematic illustration of triboelectric charge generation and electron flow 

mechanism between the PVDF stitch and nylon fabric. Triboelectric output (f) current and (g) voltage 

under 9.8 N. 
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Figure 2.5. Triboelectric output current profiles of PVDF stitch textile sensor with relative contact-

separation motion to different materials. 

Figure 2.6. Evaluation of the PVDF stitch-based textile sensor for self-powered force sensing and 

washing durability. (a) A photographic image of the PVDF stitch for force sensing; the red rectangular 

region is under pressure (area 3 × 10 mm2) (scale bar: 10 mm). (b) Triboelectric output current as a 

function of time under different applied pressures. (c) Linear fitting between the triboelectric current 

variations and the applied pressure (326 Pa to 326 kPa). (d) A photographic image of the PVDF for 

the embroidery stitch washing durability test (scale bar: 10 mm). (e) Triboelectric output current of 

the device after 50 cycles of washing. (f) Linear fitting between the triboelectric current retention ratio 

and the number of washing times. 

Figure 2.7. Evaluation of the PVDF stitch-based textile sensor for self-powered force sensing; (a) 

Triboelectric output voltage as a function of time at different pressures applied on the device. (b) 

Linear fitting between the triboelectric voltage variations and the applied pressure (326 Pa ~ 326 kPa). 

Figure 2.8. Triboelectric output signals in the low-pressure region (a) Triboelectric output current as a 

function of time and (b) the applied pressures from 326 Pa to 3.26 kPa in the low-pressure region. 

Figure 2.9. Comparison of the detectable pressure range of the results achieved in this work with 

previously reported triboelectric pressure sensor. 

Figure 2.10. Washing durability of PVDF stitch textile sensor; Demonstration of the washing 

environment with commercial detergent by magnetic stirring. 

Figure 2.11. Evaluation of the PVDF stitch-based textile sensor for mechanical stability. (a, b) 

Triboelectric output current of the device after 100 cycles of mechanical deformation by folding and 

twisting. (c, d) Linear fitting between the triboelectric current retention ratio and the number of 

mechanical deformation times. 

Figure 2.12. Experimental image of contact-separation motion between PVDF stitch and nylon fabric. 

Figure 2.13. Outstanding triboelectric output performance of the PVDF stitch-based textile sensor. 

Comparison of the output currents from the PVDF stitch-based device with (a) PVDF film and (b) 

other commercial thread stitch. (c) The output current independent of the supportive stitch and 

substrate fabric. 

Figure 2.14. Comparison of both types of PVDF sensor. (a, b) Photographic images of (a) the stitch-

based sensor and (b) the film-based sensor. 



8 

 

Figure 2.15. Real-time detection of different body motions and hand gestures using the self-powered 

PVDF-textile sensor. (a) A schematic illustration of the working mechanism of the PVDF stitch-based 

textile sensor attached to the joint pad. (b) Photographic images and intrinsic output current signals 

obtained by detecting various motions of the wrist, elbow, ankle, and knee; the body motion 

monitoring patch (40 × 60 mm2) was composed of 3-lines of stitch with 3 × 45 mm2. (c, d) 

Photographic images and intrinsic output current signals by detecting (c) various body motions (the 

wrist, elbow, ankle, and knee) and (d) various hand gestures for different numbers; the smart glove 

was composed of 6-lines of stitch with 3 × 50 mm2. (e) Demonstration of the self-powered human-

system interaction interface with Morse codes by touching the triboelectric stitch with finger, 

representing a word “UNIST.” 

Figure 2.16. Working mechanism of PVDF stitch-based textile sensor as a body-motion sensor; 

Schematic illustration of triboelectric charge generation and electrons flow mechanism with single 

electrode system. 

Figure 2.17. Real-time detection of body motion with different strength; (a) Output current signals 

from wrist movements with weak and strong motion. (b) Output current signals from elbow 

movements with weak and strong motion. 

Figure 2.18. Self-powered foot pressure mapping based on the PVDF stitch sensor array. (a) A 

schematic illusstration of the PVDF stitch sensor array device. (b) Photograph of 3 × 4 pixel arrays of 

PVDF stitch sensor with fish-shaped embroidery; the foot pressure sensor (150 × 230 mm2) was 

composed of 12 pixels with 10 × 30 mm2. (c) Schematics of walking motions on PVDF stitch sensor 

array and their corresponding contour mapping images. 

Figure 2.19. Real-time detection of pulse pressure using the self-powered PVDF-textile sensor. (a) 

Photographic images of the fashionable garment-type triboelectric sensor with arbitrary stitch patterns 

for pulse pressure detection; the pulse pressure sensor (70 × 30 mm2) was composed of 11 diamond 

patterned stitches (20 × 5 mm2). (b) Real-time monitoring of the pulse pressure and (c) expanded 

pulse wave consisting of three peaks corresponding to the pulse pressure (P1) and reflected wave 

pressures from the hand (P2) and lower body (P3). (d–e) Variation in the pulse pressure wave before 

and after physical exercise. 

Figure 2.20. Comparison of augmentation index (AIr) before and after physical exercise. 

 

  



9 

 

Chapter 3. 

Figure 3.1. Structural and PFM analysis of P(VDF-TrFE) film. (a) FT-IR result for the β phase of 

P(VDF-TrFE) (b) XRD result for the β phase (110/200) of P(VDF-TrFE). (c-e) PFM images of 

P(VDF-TrFE) film with different direction of bias. (c) Topology, (d) phase, and (e) amplitude images 

of P(VDF-TrFE) films; the white dotted square indicates positively (negatively) poled area by 

applying + 20 V (−20 V). 

Figure 3.2. Switchable triboelectric polarity of identical P(VDF-TrFE) film by electrical polarization. 

(a) Schematic illustration of P(VDF-TrFE) films with different surface charge depending on the 

direction of dipoles. (b) Output current and voltage of surface charge-tuned P(VDF-TrFE) films. (c) 

KPFM images of the different surface chare potential distribution of non-, negatively and positively 

poled P(VDF-TrFE). (d) Modified triboelectric series with surface-charge-tuned P(VDF-TrFE) by 

ferroelectric polarization. 

Figure 3.3. Triboelectric charge density of the polarization-tuned PVDF-TrFE films; (a) negatively, (b) 

positively polarized films. 

Figure 3.4. Evaluation for the duration of the tuned triboelectric performances. Triboelectric output 

current right after and 24 h after electrical poling from (a) negatively polarized and (b) positively 

polarized PVDF-TrFE films. 

Figure 3.5. Comparison of triboelectric and piezoelectric output performances under the same 

pressure with 98 kPa. 

Figure 3.6. Identification of charges from both surfaces of P(VDF-TrFE) film with different 

polarization conditions. (a) Schematic procedure illustration of measurement of opposite bottom 

surface of P(VDF-TrFE) film. Output current of top surface of (b) non poled, (c) negatively poled, 

and (d) positively poled P(VDF-TrFE) films. Output current of bottom surface of (e) non poled, (f) 

negatively poled, and (g) positively poled P(VDF-TrFE) films. 

Figure 3.7. Triboelectric working mechanism and output performances of the inversely polarized 

P(VDF-TrFE) based sensor. (a) Schematic illustration of triboelectric charge generation and electron 

flow mechanism between the inversely polarized P(VDF-TrFE) films. Triboelectric output (b) current 

and (c) voltage under 98 kPa. (d) Triboelectric output current as a function of time under different 

applied pressures. (e) Linear fitting between the triboelectric current variations and the applied 

pressure (98 Pa to 98 kPa). 

Figure 3.8. Evaluation of surface charge tuned P(VDF-TrFE) based triboelectric sensor for self-

powered force sensing and output power performances. (a) Triboelectric output voltage as a function 
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of time under different applied pressures. (b) Linear fitting between the triboelectric voltage variations 

and the applied pressure (98 Pa to 98 kPa). (c) Triboelectric output variations of current density, 

voltage, and power density with an external load resistance from 103Ω to 109 Ω. (d) Rectified 

triboelectric voltage connected with rectifier and the inset image of capability for lighting LED driven 

by self-powered triboelectric sensor. 

Figure 3.9. Pyroelectric working mechanism and performances of the inversely polarized P(VDF-

TrFE) based sensor. (a) Schematic illustration of pyroelectric charge generation and electron flow 

mechanism between the inversely polarized P(VDF-TrFE) films. Pyroelectric output currents from (b) 

heating and (c) cooling states. (d) Pyroelectric output current as a function of time under different 

applied temperatures (ΔT) from −20 to 20 ℃. (e) Linear fitting between the pyroelectric current 

variations and the applied temperatures. 

Figure 3.10. Highly responsive pyroelectric performance under real-time temperature gradient. (a, b) 

Pyroelectric output current as a function of time under gradually (a) decreased temperature (5 ℃ < ΔT 

< 20 ℃) and (b) increased temperature (−20 ℃ < ΔT < −5 ℃). 

Figure 3.11. Evaluation of the pyroelectric performances of the inversely polarized P(VDF-TrFE)-

based sensors with different distances between the sensor and thermal source. (a) Pyroelectric output 

current as a function of time under different distances. (b) Comparison of pyroelectric performances 

from different distances. 

Figure 3.12. Pyroelectric output performances depending on the device compositons. Pyroelectric 

ouput signals under different temperature from (a-c) standard device composed of positively and 

negatively polarized P(VDF-TrFE) films as a bottom and top components, respectively, and (d-f) 

device with non-polarized films. Opposite directional pyroelectric signals from (g-i) reverse 

connection and (j-l) opposite composition of device compared to ones from standard device in 

forward connection. 

Figure 3.13. Comparison of triboelectric and pyroelectric performances from different compositions 

of P(VDF-TrFE) based sensors. (a) Schematic illustration of diverse devices composed with two 

P(VDF-TrFE) films; non poled, negatively poled, and positively poled P(VDF-TrFE) films. Output 

currents of different composition of (b) triboelectric and (d) pyroelectric devices based on surface 

charge-tuned P(VDF-TrFE) films. (c) Triboelectric and (e) pyroelectric output currents as a function 

of time with different composition of devices. 

Figure 3.14. Comparison of triboelectric performances from different compositions of P(VDF-TrFE) 

based sensors. (a) Output voltages of different composition of triboelectric devices based on surface 
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charge-tuned P(VDF-TrFE) films. (b) Triboelectric output voltages as a function of time with different 

composition of devices. 

Figure 3.15. KPFM of various combinations before and after contact-separation with different 

compositions of P(VDF-TrFE films; (a) both non polarized films, (b) both negatively polarized films 

and (c) oppositely polarized films (negatively and positively poled films). 

Figure 3.16. Pyroelectric coefficient with different combinations of sensors. 

Figure 3.17. Working mechanism of multimodal sensing performance of inversely polarized P(VDF-

TrFE) based sensors. (a) Schematic illustration of both triboelectric and pyroelectric charge generation 

and electron flow mechanism between the inversely polarized P(VDF-TrFE) films. Multimodal output 

currents and enlarged peaks from (b) heating and (c) cooling states under 98 Pa; the gradual 

pyroelectric signals are cut by the followed next spike triboelectric signals. 

Figure 3.18. Decoupled signals of multimodal sensor under simultaneously applied pressure and 

temperature. (a) Schematic illustration of multimodal sensing of inversely polarized P(VDF-TrFE) 

based sensor. (b-e) Multimodal output currents as a function of time and enlarged each peak to 

respond the simultaneous stimuli; the output currents depending on (b, c) the pressure under −20 ℃ 

(ΔT) and (d, e) the temperature under 490 Pa.  

Figure 3.19. Pressure-dependence of the multimodal output signals under different temperature 

changes; (a-c) heating and (d-f) cooling. 

Figure 3.20. Temperature-dependence of the multimodal output signals from (a-d) heating and (e-h) 

cooling process under different pressures. 

Figure 3.21. Simultaneous monitoring of weak pulse pressure from carotid artery and different 

temperatures of finger touch. (a) Photographic images of real-time detection of pulse pressure with the 

inversely polarized P(VDF-TrFE) based sensor. (b) Real-time monitoring of the pulse pressure and (c) 

expanded pulse wave with three peaks (P1, P2, P3). (d, e) Variation in the pulse pressure waves before 

and after physical exercise. (f, h) Schematic illustrations of finger touch monitoring from warm and 

cold hands with each infrared image of hand. Real-time monitoring of (g) the warm and (i) cold finger 

touches and enlarged responsive signal consisting of two peaks from finger pressure (I1) and 

temperature (I2). 

Figure 3.22. Validation of the real-time detection of pulse pressure. (a) Comparison of the pulse-

pressure responsive signals from inversely polarized, non-polarized sensors and electrode only; the 

enlarged responsive signals from (b) inversely polarized PVDF-TrFE sensor and (c) non polarized 

PVDF-TrFE sensor. 
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Figure 3.23. Comparison of augmentation index (AIr) before and after physical exercise. 

 

Chapter 4. 

Figure 4.1. Multilayered TESs with aligned BTO NPs. (a) Schematic of the multilayered PVDF-

TrFE/BTO based TESs. (b) Cross-sectional SEM image of the 4-layered film. (c) Photo of the 4-

layered PVDF-TrFE/BTO film. (d) Working mechanism of the TESs with multilayered ferroelectric 

materials. (e) Output current density and voltage of multilayered TESs (4-layered film). 

Figure 4.2. (a) Schematic illustrating the fabrication process of the multilayered PVDF-TrFE/BTO 

film. (b) SEM image of the BTO NPs coated on the PVDF-TrFE layer. 

Figure 4.3. (a) X-ray diffraction (XRD) result of the PVDF-TrFE film with strong β-phase (110/200); 

(b) XRD patterns of the tetragonal BTO NPs; and (c) FT-IR spectrum of PVDF-TrFE and PVDF-

TrFE/BTO film. 

Figure 4.4. (a) Schematic of the three different TESs: non-poled PVDF-TrFE, poled PVDF-TrFE, and 

poled PVDF-TrFE/BTO. Comparison of (b) the output current density and (c) voltage of the above 

three different types of 4-layered films under a vertical pressure of 98 kPa with 2 Hz. (d) Surface 

potential of different types of films measured by SKPM.  

Figure 4.5. (a) SEM images of BTO interlayers coated on the PVDF-TrFE layer with a different 

surface density of BTO NPs; (b) output current density and (c) dielectric constant for the 4-layered 

PVDF-TrFE/BTO films with a different surface density. (d) Average size of BTO NPs at different 

surface densities of BTO NPs; ImageJ was used to approximate the surface densities.  

Figure 4.6. (a) Output current density and (b) voltage of the multilayered PVDF-TrFE films with and 

without BTO interlayers by increasing the number of layers, which range from 1 to 7. (c, d) Dielectric 

constant of the poled PVDF-TrFE/BTO for a various number of layers.  

Figure 4.7. Comparison of (a) the output current density and (b) voltage of the 1-layered (black) and 

4-layered PVDF-TrFE/BTO film (red).  

Figure 4.8. (a) Schematic of the three different types of samples with the same thickness: a PVDF-

TrFE film, single PVDF-TrFE/BTO composite, and multilayered PVDF-TrFE/BTO film. Comparison 

of (b) the output current density and voltage under a vertical pressure of 98 kPa with 2 Hz. (c) FEM 

simulations of electric field distribution in the single and multilayered PVDF-TrFE/BTO composite 

films under Dirichlet boundary condition. (d) Comparison of the dielectric constant of the three 

different types of films.  

Figure 4.9. Thermogravimetric analysis (TGA) of the PVDF-TrFE and the PVDF-TrFE/BTO film.  

Figure 4.10. The contour plot of simulated electric field distribution in the single PVDF-TrFE/BTO 

composite and the multilayered PVDF-TrFE/BTO film having plate electrodes.  
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Figure 4.11. FEM Simulations of interfacial polarization in the single PVDF-TrFE/BTO composite 

and multilayered PVDF-TrFE/BTO film using Gauss’s law under Dirichlet boundary condition. 

Figure 4.12. Simulations of capacitance in the single PVDF-TrFE/BTO composite and multilayered 

PVDF-TrFE/BTO film at frequency ranging from 102–105 Hz. 

Figure 4.13. Dielectric loss of poled films for pure PVDF-TrFE, single PVDF-TrFE/BTO composite, 

and multilayered PVDF-TrFE/BTO composite films. 

Figure 4.14. (a) Schematics of the three different types of samples: single PVDF-TrFE, single PVDF-
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Chapter 1. Introduction 

 

Wearable sensing technologies have evolved to become one of the biggest industries in the world 

along with the recent development of the “Internet of Things (IoT)”, which interconnects the user with 

surrounding smart devices and communicates for the quality of life. The rapid development of 

wearable technology can be used for tracking information on real time basis and bring a new 

paradigm in daily life healthcare,1-3 daily activity monitoring,2, 4 intelligent control,5 and human-

machine interface systems6 (Figure 1.1). The ideal wearable devices require characteristics providing 

light weight, flexible, unobtrusive, autonomously powered for the convenience of user and sustainable 

uses.3, 7-8 However, current wearable devices mostly in the forms of glasses, wristbands, or watches, 

which are composed of obtrusive, hard supports or additional flexible strips to be mounted on the 

human body, have restrictions in practical uses and problems caused by mechanical and thermal 

loading under long-time uses.9 Moreover, conventional power supplying components are limited in 

ubiquitous sensing due to its several challenges such as inflexibility, large volume, and periodic 

replacement or recharging.10  

To overcome these limitations, academic and industrial researchers have been seeking for the 

development of wearable devices with highly flexible, multifunctional, sustainable forms and high 

performances. For wearable and flexible form factors, textile and extremely thin films which are 

mountable and attachable on human body are used instead of the conventional obtrusive devices.3-4, 11-

13 For sustainable sensors, the working mechanism is based on energy harvesting system such as 

triboelectric,14-17 piezoelectric,18-19 pyroelectric,20-21 thermoelectric,22-23 photovoltaic effects which use 

green energy sources such as solar, wind, wave, heat, and vibrations.24 In practical applications of 

wearable sensors, multifunctional sensing performances are required under multiple stimuli such as 

pressure, temperature, chemical, and light. For high performances of wearable sensors, high 

sensitivity to target stimulus and high durability in harsh conditions are required (Figure 1.2). The 

main strategy for highly flexible wearable sensors is to fabricate the textile-based and ultra-thin film-

based structure using ferroelectric polymer and functional nanoparticles. Moreover, to realize the 

multifunctional sensing capability under pressure and temperature, working mechanism is based on 

triboelectric, piezoelectric and pyroelectric effects, which could also realize self-powered sensing 

system (Figure 1.3).  
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Figure 1.1. Recent advances in wearable electronics with the fourth industrial revolution. (left) 

History of industrial revolution; 1st revolution with mechanization, 2nd revolution with mass 

production, 3rd revolution with automation, 4th revolution with cyber physical system. (right) various 

future wearable electronics. Reproduced from Ref.[25-34]. 25-34 

 

Figure 1.2. Summarized key requirements for advanced wearable tactile sensors on the aspects of 

functionality and sensing capability. (Digital free images, Reproduced from Ref.[35])35  
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Figure 1.3. Research strategies to achieve the required technologies for advanced wearable sensors in 

terms of (a) materials (J. Mater. Chem. A 2017, 5, 3091.; Chem. Soc. Rev. 2019, 48, 1194.),36-37 (b) 

structures (Nature 2019, 569, 698.; Nat. Mater. 2013, 12, 938.; Adv. Mater. 2018, 30, 1803388.),38-40 

sensing target stimuli (Nature 2018, 555, 83.; Nat. Biomed. Eng. 2018, 2, 687.; Nat. Electron. 2018, 1, 

183.; Adv. Mater. 2019, 1905527.),41-44 and working mechanism (Adv. Mater. 2019, 31, 1802898.).24  
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1.1 Wearable sensors  

Wearable electronics are defined as electronic devices which are tightly attached to the human body 

surface to provide a user-oriented monitoring system without distracting the users.9 This superior 

performance can be attributed to those mechanically soft, flexible, and stretchable forms. Wearable 

flexible sensors can be categorized according to their forms by fiber/textile-based sensors which are 

worn onto the human body and thin film-based sensors which are attachable on the skin.    

Fiber/textile-based sensors: Textile based wearable sensors can be classified into three types 

according to the fabrication approaches; (1) integration of sensors in the commercial textiles, (2) 

weaving and (3) knitting based on one dimensional (1D) fibers contained functionality. The integrated 

sensors in commercially available fabrics or threads are the most-used approaches for textile-based 

wearable sensors. By carbonization or simple coating of commercial fabrics or threads with functional 

materials, active layers can be formed on these commercial substrates.45-47 For examples, these facile 

methods fabricate the smart textile based on the functional materials such as Ni/carbon nanotube 

(CNT),45 Ag/fluoroelastomer composite,46 and Ag/polydimethylsiloxane (PDMS)/CNT,47 enabling 

detection of diverse body motions (Figure 1.4a). Another type is the woven textile-based electronics, 

which have mechanically stable structure but less-stretchable.48-49 Nonetheless, several researches 

demonstrated the stretchable sensors by weaving the elastomer-based fibers (Figure 1.4b).50-51 

Meanwhile, a variety of knitted sensors have been developed for stretchable textile sensors due to 

their structural characteristics (Figure 1.4 c).52-53 Moreover, these fabrications from 1D functional 

fibers by weaving or knitting have advantages in terms of relatively diverse structures. 

Thin film-based skin-attachable sensors: Skin-attachable wearable sensors which can be directly 

mounted on the skin essentially require flexibility, stretchability, and chemical stability to pick up 

vital signals without limiting motions such as bending, stretching, and swelling. In this regard, 

conventional stiff substrate-based electronics have restrictions to be utilized as the wearable sensors.54 

‘Epidermal electronic’ which is defined by the flexible stick-on patches with diverse sensing 

capability have been advanced by a number of researchers.6, 55-57 Rogers’s group developed the 

temporary tattoos-like attachable sensor which is based on the transfer methods using a rubber stamp 

starting from the conventional silicon-based fabrication (Figure 1.4d).6 Contrary to the relatively 

small sensor developed by Rogers’s group, Someya’s group suggested a much larger electronic device 

which exhibits ultra-thin (1 micron), light, but also robust enough characteristics. This device can 

endure stretching and crumpling on human body such as an elbow or knee, which is attributed to the 

fabrication based on the soft organic materials (Figure 1.4e).55 To enhance the sensitivity of attachable 

sensors, Bao’s group developed the micro-patterned pressure sensors, which can be used to monitor 

heart motions through real-time sensing of artery pulse pressure (Figure 1.4f).56 Furthermore, for 
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sustainable use of wearable sensors, Wang’s group suggested the self-powered systems through 

electricity transduction from mechanical body movements such as walking, jumping, and running and 

organ motions such as heartbeat and respiration (Figure 1.4g).57 In spite of recent great achievement 

of wearable sensors, there are still many aspects which should be further developed to meet a great 

demand for next-generation technology such as the IoT, artificial intelligence (AI), and human-

machine interfaces. 

 

 

Figure 1.4. Wearable flexible sensors. (a-c) fiber/textile based sensor; (a) integration of sensor in the 

commercial textiles (Adv. Mater. 2017, 29, 1703700.),45 (b) woven sensor based on functional fibers 

(ACS Nano 2015, 9, 6394.),50 (c) knitted sensor based on functional fibers (ACS Nano 2017, 11, 

9490.).52 (d-g) thin-film based skin-attachable sensors; (d) tattoos-like attachable sensor by transfer 

method (Science 2011, 333, 838.),6 (e) highly stretchable body-attachable sensor based on organic 

materials (Nature 2013, 499, 458.),55 (f) highly sensitive attachable sensors with microstructures (Nat. 

Commun. 2013, 4, 1.),56 (g) sustainable wearable sensor based on triboelectric effect (Adv. Mater., 

2014, 26, 5851.).57 
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1.2. Working mechanism of self-powered wearable sensors 

For a sustainable sensing performance, it is crucial to realize the self-powered system which converts 

ambient environmental stimuli into valuable electric signals without external energy sources.24 These 

self-powered systems have been receiving considerable attention due to the realization of a wireless 

system, eco-friendly technology without any pollutant, as well as operation without energy source.3, 14 

The detailed self-powered sensing systems are categorized by target stimuli such as mechanical 

stimuli and temperature as described below. 

 

1.2.1. Working principle for mechanical stimuli 

Self-powered mechanical sensors monitoring mechanical stimuli such as strain, stress, and vibration 

can be driven by piezoelectric and/or triboelectric effects which convert mechanical energy into 

electricity.  

Triboelectric effect: Triboelectric effect is caused from friction between two different materials, 

which are easily experienced in our daily life.58 Specifically, triboelectricity is driven by coupling the 

contact electrification and electrostatic induction during the repeated contact and separation cycles 

(Figure 1.5a),59-60 and triboelectric device was firstly invented by Wang’s group in 2012. The output 

voltage at open-circuit (OC) condition, 𝑉𝑂𝐶 is given by 

𝑉𝑂𝐶 =
𝜎𝑥(𝑡)

𝜀0
 

where 𝜎, 𝑥(𝑡), 𝜀0 are surface charge density, gap distance between two triboelectric materials, and 

vacuum permittivity, respectively.60 At short-circuit (SC) condition, the transferred charges, 𝑄𝑆𝐶  are 

given by 

𝑄𝑆𝐶 =
𝐴𝜎𝑥(𝑡)

𝑑0 + 𝑥(𝑡)
 

where A is area and 𝑑0 is effective thickness.60 Therefore, for high performance triboelectric devices, 

surface charge density and contact area have to be improved to achieve the enhanced contact 

electricity.58 Moreover, effective electrostatic induction can be related to the dielectric constant of the 

materials.61-62 Therefore, the selection of triboelectric contact pair materials is crucial to develop the 

high performance triboelectric devices since surface charge density is relied on the large differences 

of two materials in charge polarities in triboelectric series. In addition, dielectric constant which is one 

of the intrinsic material characteristic is determined by the selection of materials. To this end, the 
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strategy can be classified into two types to improve the triboelectric performances.63 One involves 

chemical modification to modulate the surface charge by doping,64-65 copolymerization,66-67 and 

surface functionalization.68-71 And the other involves surface patterning to increase in contact area 

between triboelectric contact pairs by increasing surface roughness, generating a larger amount of 

charge.72-76  

Piezoelectric effect: Piezoelectric effect converts mechanical energy into electricity, which is driven 

by the generation of electrical polarization due to deformation of the oriented non-centrosymmetric 

crystal structures in certain materials under mechanical force (Figure 1.5b).77 Wang’s group pioneered 

the self-powered systems based on piezoelectric effect by vertically pressing a ZnO nanowire using an 

atomic force microscope (AFM) tip.18 Piezoelectric performance is determined by the piezoelectric 

polarization charge density (𝜌𝑃) which is expressed as  

𝜌𝑃 = 𝑑𝑃𝑋 

where 𝑑𝑃 is the piezoelectric coefficient, and X is the applied stress.24 Therefore, it is crucial to 

enhance the piezoelectric coefficient and transfer the applied force more effectively for the high 

performance piezoelectric devices.   

 

1.2.2. Working principle for temperature 

Pyroelectric effect: Pyroelectric effect converts temporal temperature change into electricity, which is 

driven by the generation of spontaneous polarization in certain materials depending on the applied 

temperature (Figure 1.5c).77-79 The electric dipoles randomly oscillate within a degree from their 

aligned axes under ambient temperature due to thermal fluctuations. Nonetheless, no output current is 

generated since the total average of spontaneous polarization is a constant at a fixed temperature (ΔT 

= 0). The change of spontaneous polarization causes the pyroelectricity under temporal temperature 

change (ΔT ≠ 0). When pyroelectric devices are in heating state (ΔT > 0), spontaneous polarization 

can decrease, which is attributed to a larger degree of oscillation of electric dipoles from their aligned 

axes. Meanwhile, spontaneous polarization can increase under cooling state (ΔT < 0), which is 

induced by a smaller degree of oscillation of electric dipoles from their aligned axes.20, 79 The 

generated pyroelectric current (𝑖𝑝) is expressed as 

𝑖𝑝 =
𝑑𝑄

𝑑𝑡
= pA

𝑑𝑇

𝑑𝑡
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where Q, p, A, 𝑑𝑇 𝑑𝑡⁄  are pyroelectric charge, pyroelectric coefficient, surface area of the material, 

and the temperature change rate, respectively.78 Therefore, it is crucial to enhance the pyroelectric 

coefficient, surface area, and temperature change rate for the high performances of pyroelectric 

devices. Pyroelectric devices can be categorized by polymer based and ceramic based materials. 

Polymer-based pyroelectric devices are more suitable for wearable technology due to flexible, 

biocompatible, and those easy of processing, but there are limitations with relatively low pyroelectric 

coefficient. On the other hand, ceramic-based pyroelectric devices have much higher pyroelectric 

performances due to those higher pyroelectric coefficients, but they are less suitable for wearable 

devices. To this end, organic/inorganic composite-based devices have been developed to make up for 

each weakness and amplify the synergy effect.20-21, 79  

 

Thermoelectric effect: Thermoelectric effect also converts thermal energy into electricity, and it is 

driven by the diffusion of charge carriers due to temperature difference between the two ends of 

device, which is based on the ‘Seebeck effect’ (Figure 1.5d).80 The efficiency of thermoelectric 

devices relies on the thermoelectric material’s figure of merit (ZT), which is expressed as 

ZT =
𝜎𝑆2𝑇

𝜅
 

where 𝜎, 𝑆, 𝑇, 𝜅 are electrical conductivity, Seebeck coefficient, mean operating temperature, and 

thermal conductivity, respectively. For high performances of thermoelectric devices, it is important to 

improve the ZT of thermoelectric materials.81  
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Figure 1.5. Working mechanism of self-powered wearable sensors; (a) Triboelectric, (b) Piezoelectric 

(Chem. Soc. Rev. 2019, 48, 1787.),77 (c) Pyroelectric (Chem. Soc. Rev. 2019, 48, 1787.),77 (d) 

Thermoelectric effect.  
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1.3. Ferroelectric polymer-based self-powered sensors  

Ferroelectric polymers are regarded as an ideal candidate for self-powered wearable sensors, which 

is attributed to its multimodality based on piezoelectric and pyroelectric transduction, mechanical 

flexibility, self-powering capability, and those easy of processing.77 Ferroelectricity is defined by a 

spontaneous electric polarization and reversible polarization through the applied electric field, which 

is manifested in certain materials.82 Generally, among 21 non-centrosymmetric crystal classes, 20 

classes show piezoelectric effect, within which 10 classes are pyroelectric. Some of the pyroelectric 

materials exhibit ferroelectrics.77 Poly(vinylidene fluoride) (PVDF) are the most representative 

ferroelectric material, which is composed of vinylidene (VDF) monomer with two fluorine and two 

hydrogen atoms bonded to its carbon backbone.83 This semi-crystalline polymer shows five distinct 

crystalline phases, among which β crystalline phase has the highest spontaneous polarization per unit 

cell and the highest dielectric constant while α crystalline phase which is thermodynamically more 

stable than β phase, is nonpolar and paraelectric phase (Figures 1.6a, b). This ferroelectric polymer 

can lose its ferroelectric phase when the material is heated above the Curie temperature (Tc).
84-86 

When a ferroelectric material is cooled below Tc, domains which have unit cells with equal 

polarisation directions are randomly distributed, which results in no net polarization even with β 

crystalline phase. In this regard, the randomly orientated electrical dipoles should be aligned in a 

common direction by electric field to achieve a net polarization, which is called ‘electric poling’ 

process. The electrical dipole alignment by poling process is crucial to convert an inactive 

ferroelectric material to electromechanically active material (Figure 1.6c).36 For high performance of 

ferroelectric polymer-based devices, it is important to enhance the β crystalline phase and induce the 

electromechanically active state. To this end, to improve the PVDF characteristic, PVDF based 

copolymer has been developed. Poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) is the 

most studied copolymer, which presents ferroelectric β crystalline phase owing to the third fluoride in 

the TrFE monomer unit with a large steric hindrance.87-88 Due to its promising characteristics, 

ferroelectric polymers, especially PVDF and its copolymers, have been exploited extensively for 

piezoelectric, pyroelectric, even triboelectric sensors.36, 87 

 

1.3.1. Piezoelectric devices based on ferroelectric polymer  

 Piezoelectric effect based on PVDF and its copolymer has been studied for the detection of 

mechanical stimuli such as compressive and tensile strain, tactile sensation, acoustic waves and 

vibration.77 Contrary to piezoresistive and capacitive effect, piezoelectric effect is suitable for self-

powered devices due to energy transduction properties without any external power source.  
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A variety of approaches have been suggested to achieve the high performances of piezoelectric 

sensors through the composite with fillers,89-92 the micro/nano structured films,92-93 and the form of 

fibers94-95 or fabrics.96-97 For enhanced piezoelectric properties, ceramic materials such as barium 

titanate (BaTiO3),
89 titanium dioxide (TiO2)

91 and carbon-based materials such as rGO,92 CNT98-99 

have been used for filler materials in PVDF-based ferroelectric polymer matrix (Figure 1.7a). 

Micro/nano patterned structures have been proposed for high sensitivity due to effectively transferred 

force and localized strain (Figure 1.7b).92-93 Moreover, Fibrous sensor and textile sensor based on as-

spun fiber have shown high performance piezoelectric performances, which is attributed to in situ 

alignment by the applied strain or electric-field during fabrication process such as wet-spinning, melt-

spinning,95, 97 and electrospinning (Figure 1.7c).94, 96, 100  

 

1.3.2. Pyroelectric devices based on ferroelectric polymer 

To date, pyroelectric effect from PVDF-based polymer was utilized for diverse sensors such as IR-

sensor arrays for human proximity detection, heat-sensing, fire alarms, and pollution monitoring.78-79, 

101-103 For the high performance of pyroelectric sensors, a number of approaches have been proposed, 

which is categorized by structure modification for effective thermal energy absorption104-108 and 

material modification for enhanced pyroelectric coefficient.109-111 Zabek et al. introduced a partially 

covered micropatterned top electrode for effective heat transfer and larger temperature fluctuation. 

The pyroelectric performances depended on the electrode coverage rate due to different temperature 

change rate (Figure 1.7d).104 Moreover, Zabek et al. demonstrated asymmetric electrodes in the 

pyroelectric devices for effective radiation absorption. Graphene ink was used for asymmetric top 

electrodes for the improved pyroelectric performance which is induced by faster and larger 

temperature changes.105 Zhao et al. reported noncontact nIR-driven pyroelectric devices depending on 

the electrodes such as Al, ITO, graphene, and CNT. Due to the high infrared absorption, CNT 

electrode on both sides of PVDF film showed the highest pyroelectric performances.106 Lee et al. 

utilized graphene electrode with high thermal conductivity for fast thermal gradient which results in 

high performance pyroelectric devices (Figure 1.7e).108 In order to enhance the pyroelectric 

coefficient, several approaches have been introduced such as material modification and crystallinity 

modulation. Gan et al. reported approach to enhance the pyroelectric property based on PVDF and 

TiO2 composite materials through an interfacial relaxation phenomenon (Maxwell-Wagner effect). 

The heterogenetic structure of composite material induced an efficient poling process by this 

phenomenon, which results in the enhancement of pyroelectric coefficient at a much lower poling 

electric field.109 Mokhtari et al. reported the electrospun PVDF fiber-based pyroelectric devices which 

showed high β crystalline phase without additional poling process due to in situ alignment during 
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electrospinning procedure.110 Kim et al. induced the high crystallinity and dipole alignment of P(VDF-

TrFE) by using high dipole moment solvent, which results in highly enhanced pyroelectric 

performances (Figure 1.7f).111   

 

1.3.3. Triboelectric devices based on ferroelectric polymer 

PVDF-based ferroelectric polymers have been used for triboelectric devices due to its strong electro-

negativity in the triboelectric series and its ease of processing as well as flexibility. Moreover, the 

applied external electric field decides the polarization states that rely on aligned dipoles in 

ferroelectric polymers.36, 87 For the high performance of triboelectric sensors based on PVDF-based 

polymer, a variety of reports have been introduced, which is categorized by structure modification for 

the improved surface contact area, the internal polarization modulation based on ferroelectric 

characteristics, and material modification for higher surface charge density.  

One of the strategies for the enhanced triboelectric performance is to increase the surface contact 

area which is directly proportional to triboelectric output. To this end, a number of researchers have 

made a lot of effort to increase the surface area using micro/nano patterned structures. Ha et al. 

demonstrated highly sensitive triboelectric sensors based on the hierarchical nanoporous and 

interlocked microstructures by mimicking the gradient stiffness of human skin. This innovative 

structure induces efficient stress concentration and transfer, and the effective contact-separation 

between opposing surfaces without additional bulky spacers, leading to highly sensitive triboelectric 

performances (Figure 1.7g).75 Qin et al. fabricated PVDF-HFP nanofibers-based wearable sensors by 

electrospinning. Due to the ultrahigh specific surface area from electrospun nanofiber, the triboelectric 

device possesses noticeable triboelectric output performances. Moreover, this structural innovation 

provides the solution to overcome the delamination problem with electrode layer during long-term 

uses.112 

Several researchers have suggested approach to boost output power using PVDF-based composites 

with inorganic nanoparticles and electrical poling process that enhance triboelectric charge density.62, 

113 Seung et al. reported high triboelectric output performances from P(VDF-TrFE)/BTO nanoparticles, 

which is attributed to the increased capacitance due to a large charge-trapping capability by high 

dielectric ceramic nanoparticles. They optimized fraction of nanoparticles into polymer matrix 

through contact potential difference (CPD) measurements (Figure 1.7h).62 Kim et al. presented a 

method for the maximized frictional surface charge density by doping of P(VDF-TrFE) and Nylon-11 

with MoS2 flakes. Both ferroelectric composite materials can be negative and positive triboelectric 

contact pairs, which results in high triboelectric output performances.113  
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Many research groups have demonstrated triboelectric phenomena based on polarization states-tuned 

ferroelectric polymers.111, 114-117 Kim et al. demonstrated that the higher dipole moment solvent 

considerably enhances the triboelectric output power since higher crystallinity and better dipole 

alignment of the polymer can be induced.111 Bai et al. effectively modulated the triboelectric 

properties of PVDF by using the dipole moment in polarized ferroelectric polymer, which results in 

considerably enhanced triboelectric outputs.114 Lee et al. reported the higher positive triboelectric 

properties compared to skin which is regarded as the highest position in the triboelectric series. This 

research demonstrated the controllable triboelectric properties of ferroelectric materials depending on 

their polarization direction and intensity, which was explored by triboelectric output measurement as 

well as Kelvin probe force microscope (KPFM).115 Moreover, same group also monitored both the 

amount and direction of charge transfer in P(VDF-TrFE), which was investigated using atomic force 

microscopy (AFM). According to this research, ferroelectric polarization state can modulate the 

amount and direction of the charge transfer in triboelectricity (Figure 1.7i).116  
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Figure 1.6. Schematics of representative ferroelectric polymer, PVDF. (a) Chin conformation for the 

α and β phases of PVDF (OMNEXUS home page, https://omnexus.specialchem.com/selection-

guide/polyvinylidene-fluoride-pvdf-plastic, accessed: May 2020.).118 (b) D-E loops and domain 

structures of ferroelectric and paraelectric states (Polymer 2012, 53, 728).86 (c) Electrical poling 

procedure of ferroelectrics; ⅰ. Initially random arrangement of domains, ⅱ. Aligned domains under the 

applied electric field, ⅲ. A remnant polarisation under removing the electric field (J. Mater. Chem. A 

2017, 5, 3091.).36 
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Figure 1.7. PVDF and its copolymer-based self-powered sensors. (a-c) High performance of 

piezoelectric sensors with (a) composite materials (ACS Nano 2014, 8, 2766.),89 (b) micropatterned 

structure (Adv. Funct. Mater. 2015, 25, 3203.),93 and (c) textile form (Energy Environ. Sci. 2014, 7, 

1670.).97 (d-f) Enhanced pyroelectric sensing performances with (d, e) effective thermal energy 

absorption (Adv. Energy Mater. 2015, 5, 1401891.; Adv. Mater. 2014, 26, 765.),104, 108 and (f) material 

modification (Adv. Funct. Mater. 2017, 27, 1700702.).111 (g-i) Performance-modulated triboelectric 

sensors with (g) microstructures (ACS Nano 2018, 12, 3964),75 (h) composite materials (Adv. Energy 

Mater. 2017, 7, 1600988.),62 and (i) ferroelectric polarisation (Adv. Funct. Mater. 2016, 26, 3067.).116 
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1.4 Applications of self-powered wearable sensors 

 Self-powered wearable sensors have been intensively researched and achieved rapid advancement to 

keep up with the recent surge in demand. Benefiting from their superior performances, these self-

powered wearable sensors are regarded as promising candidates for the future applications such as 

daily healthcare,119-120 biometric security systems,121-122 soft robotics,123 and smart tactile sensors.124-125 

Healthcare: High sensitivity of wearable sensors has an advantage in monitoring the biomechanical 

signals of the human body, enabling diagnosis and prevention of several diseases in advance.8 To 

realize the ubiquitous health care, wireless system is essentially required, which could be possible by 

the self-powered sensors.9 The real-time monitoring of arterial pulse pressure can diagnose early 

cardiovascular diseases like arteriosclerosis, diabetes, and hypertension using information such as 

blood pressure as well as heart rate (Figure 1.8a).42, 126 Moreover, the real-time monitoring of gait 

patterns can be used for early diagnosis and prevention of several diseases, for examples, abnormal 

gait pattern is one of the symptom of Parkinson’s disease, and diabetic foot ulcers can caused by 

abnormal plantar pressure distribution (Figure 1.8b).125, 127 Furthermore, the monitoring of body 

motion can be used for long term rehabilitation after stroke, which is an important factor to ensure 

motor function recovery. The real-time monitoring of upper and lower extremities such as wrist, arm, 

and leg provides clinically relevant information which can be used for home-based rehabilitation 

technology.128-129 

Biometric security systems: Due to the low risk of loss, copying, and sharing, biometric systems have 

been regarded as one of the ideal security system. Everyone has unique fingerprint as well as voice 

pattern, which can be utilized for personal passwords.121, 130 High performance acoustic sensor can be 

used for this voice-based security system, and several researches suggested eardrum-inspired acoustic 

sensors which show high sensitivity, fast response, and detection capability in wide range of 

frequency (Figure 1.8c).122, 131-132 In addition, wearable tactile sensors have been intensively studied, 

which suggests biometric security systems based on fingerprint recognition. The fingerprint sensors 

within a display require the advanced properties such as high resolution, transparency, as well as 

flexibility. Recently, higher performance sensor enabling multifunctional detection of finger pressure 

and skin temperature is developed based on transparent electrodes. Their resolution of sensor array 

sufficiently meets the criteria set by the Federal Bureau of Investigation (FBI) for extracting 

fingerprint patterns (Figure 1.8d).133-135 
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Figure 1.8. Applications based on self-powered wearable sensors; daily healthcare for (a) pulse 

pressure detection (Nat. Biomed. Eng. 2018, 2, 687.)42 and (b) real-time gait patterns monitoring (ACS 

Nano 2018, 12, 4045.),125 biometric security systems with (c) voice patterns (Sci. Adv. 2018, 4, 

eaas8772.)122 and (d) fingerprint (Nat. Commun. 2018, 9, 1.).133 
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1.5 Challenges of current self-powered wearable sensors 

In the introduction, we summarized recent progress in wearable sensors, including fundamental 

working principles, advanced research strategies, and potential applications. In spite of recent great 

achievement of wearable sensors, there are still challenges to meet a great demand for practical 

applications. Wearable sensors should be further advanced by miniaturization, simplification, as well 

as self-powered operation, which will realize the ideal wearable sensors enabling unobtrusive, 

personalized, pre-diagnosable, and sustainable.  

First, a wearable sensation is one of the crucial factors for the ultimate goal of future electronics, 

which could be achieved by highly flexible and high performance sensor design.9, 124 Textiles have 

been considered for promising platform due to its ubiquitous nature in our daily life. Although textile-

based sensors have been developed through various traditional textile fabrication techniques, most 

approaches have insufficient mechanical properties, which restrict their practical uses.48-53, 136-139  

Second, multimodality in sensing multiple stimuli can accelerate to downsize and simplify wearable 

sensing devices. Multimodal sensing capability from most conventional self-powered sensors has 

been demonstrated by integrating the single elements for each stimulus,111, 140-143 which can restrict 

practical uses. Although there have been efforts to develop the simultaneous multimodal sensors, most 

sensors have problems with external power sources11, 92, 141, 143-144 and signal interference between 

multiple stimuli.140, 142, 144-145 

Third, the self-powered wearable sensors have been enhanced considerably in recent years through 

various approaches using diverse materials and structures, among which dissimilar hybrid materials 

have been widely used to boost triboelectric output performances. Especially, soft/hard hybrid 

materials have been utilized to make up for each weakness and amplify the synergy effect.62, 146-147 

Nonetheless, there are still challenges in precise control of dissimilar material distribution148-150 to 

maximize the synergy effect, leading to high performance of triboelectric wearable sensors.  

To address these issues, the ultimate goal of this work is to develop advanced sustainable wearable 

sensors with multimodality and high performances via structure design and modification of the 

material characteristics (Figure 1.9). In Chapter 2, we demonstrate the textile-based self-powered 

wearable sensors with high sensitivity, mechanical stability, and washing durability, enabling the 

practical uses. Chapter 3 describes triboelectric/pyroelectric effect-based multimodal sensors without 

signal interference, which is attributed to switchable triboelectric polarity via ferroelectric polarization. 

In Chapter 4, a novel approach is suggested for high performance of triboelectric sensors using layer-

by-layer structure with soft/hard ferroelectric materials. Lastly, we summarize this thesis with future 

prospects and challenges of this research field in Chapter 5.  
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In this thesis, we suggest three strategies of self-powered wearable sensors with advanced wearing 

sensation, multimodality, and enhanced sensory functions, which can address aforementioned issues 

of current self-powered wearable sensors. We believe that our research provides a great opportunity to 

further develop wearable electronics which can be utilized in various practical applications for smart 

life and wellness. 

 

  

Figure 1.9. Summary of this thesis; engineering of hybrid materials for self-powered flexible sensors 

(J. Mater. Chem. A 2018, 6, 22879.; Nano Energy 2020, 104671.).151-152 

  



36 

 

Chapter 2. Self-powered textile sensors with programmable stitch patterns 

based on PVDF fibers for realization of practical uses 

 

2.1 Introduction 

Smart textiles have great potential as next-generation wearable electronics in diverse fields such as 

those related to sensors,45, 153-154 energy generators,50, 53 transistors,155-156 and capacitors157-158 owing to 

their inherent characteristics of flexibility, deformability, comfort, breathability, and washability.136, 159-

161 Moreover, textiles are essential in our daily life, and this ubiquitous nature makes them a promising 

platform for sensors that can be in direct contact with human beings. In particular, textile-based 

sensors have been widely explored for intelligent control, daily activity monitoring and medical 

diagnostics with diverse operation types such as capacitive,154 piezoelectric,162 piezo resistive,45-46, 153, 

163 and triboelectric.47-53, 137-139, 164-167 In particular, self-powered triboelectric sensors that do not rely 

on an external power source have been considered for electronic textile (e-textile) sensors because 

these systems have advantages of high efficiency, low cost, versatility in material choices and stability 

without the problems related to safety and weight of batteries.168-172 

Various approaches have been suggested for textile-based sensors, which can be classified into three 

types; (1) integration of sensors with the existing two dimensional (2D) fabrics or threads, (2) woven 

textile sensors based on one dimensional (1D) electronic fibers, and (3) knitted sensors based on 1D 

functional fibers. The most-used approach is to functionalize the existing 2D fabrics or 1D threads by 

carbonization1 and simple coating such as Ni/carbon nanotube (CNT) coating,45 Ag-fluoroelastomer 

composite coating,46 polydimethylsiloxane (PDMS)-Ag nanowire composites/polytetrafluoroethylene 

(PTFE)/polyurethane (PU)-Ag nanowire layered coating,166 and PDMS/CNT/Ag layered coating.47 

However, these approaches have a limitation in fabricating more delicate structures on a large scale 

because of the mechanically weak conductor and polymer coatings on existing fabrics and threads. In 

addition, such fabrics are less suitable for daily life situations because the coated materials can detach 

from fabrics or threads during washing and repeated usage. Weaving and knitting are commonly used 

techniques in the textile industry. Woven textiles are typically produced by the interlacing of wefts 

(transverse threads) and warps (longitudinal threads) threads. Meanwhile, knitted textiles are typically 

composed of looped interconnections of courses (horizontal rows) and wales (vertical rows) with a 

series of yarns. Hence, woven textiles usually maintain stable structures but are not suitable for 

stretchable e-textile, while knitted textiles have better stretchability but are less stable.136 In 

comparison with the approach of sensor embedment in commercial textiles, weaving and knitting by 

1D functional fiber have the advantage of fabrication of relatively diverse structures. There have been 

many studies on the fabrication of woven 2D textile based on 1D electronic fiber.48-51, 137-138 Diverse 
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knitted fabrics based on 1D functional fiber have been developed for stretchable textile sensors, 

considering their structural characteristics.52-53, 139 However, owing to the weak mechanical properties 

of fibers, most of the approaches are incompatible with the machine processes used in the traditional 

textile industry, preventing the widespread application of e-textiles. Particularly, the traditional 

weaving and knitting techniques have the limitation that the sophisticated textile structures cannot be 

fabricated for e-textiles. On the other hand, sewing machine stitching or embroidery techniques can be 

used to fabricate sophisticated textile structures because these approaches enable realizing 

computerized 1D or 2D structures on 2D substrates. The stitching technique has been used for 

realizing conductive stitches for chemical sensors,173 circuits,174 and antennas175 and for insulating 

stitches for photonic sensors176 and printed circuit boards (PCBs).177 However, most of the stitched 

devices are not washable and need external light or electrical power sources for operation.173-177 

Herein, for the first time, we report the sewing machine stitching of polyvinylidene fluoride (PVDF) 

fibers into programmable textile patterns for wearable self-powered triboelectric sensors. 

Mechanically strong fibers are necessary for sewing machine stitching, as the fibers have to withstand 

the mechanical stress and breakage during the stitching process. Although diverse polymers such as 

PTFE,178 PDMS,179 and parylene165 have been used for developing triboelectric devices, only a few 

choice of polymers, including nylon,180 polyethylene terephthalate (PET),181 and silk182 can be used in 

the fiber-spinning process and applications in textile-based triboelectric devices. The PVDF fiber has 

been widely used in triboelectric devices because of its strong electro-negativity in the triboelectric 

series and its ease of processing.183-185 However, conventional as-spun PVDF fibers that have been 

fabricated by melt-spinning97, 186 or electro-spinning183, 187 processes are not suitable for stitching by a 

sewing machine. The melt-spinning process cannot provide high-strength fibers owing to inadequate 

structural development.186, 188 In the electro-spinning process, electro-spun PVDF fibers are commonly 

in a 2D-web state that is not suitable for sewing machine stitching, which requires continuous 1D 

fibers.189-190 In this work, for the sewing machine stitching of e-textiles, we obtained mechanically 

strong PVDF fibers by a dry-jet wet spinning process. “Dry-jet wet spinning” is similar to “wet-

spinning”, and there is a small difference in the position of spinneret; spinneret of dry-jet wet spinning 

is outside the coagulation bath while spinneret of wet-spinning is inside the coagulation bath. 

Therefore, the extruded dope passes through an air gap before entering a coagulation bath.191-192 This 

air gap could induce the drawing of the jet that is the stable stream of dope in air, which results in the 

strong PVDF fibers. To the best of our knowledge, while there are several literatures about wet-spun 

PVDF fibers,193-194 the dry-jet wet spun PVDF fiber has not been reported. Owing to the facile sewing 

machine process of various stitch patterns, the proposed stitching of PVDF fiber threads enables 

realizing triboelectric wearable devices with diverse patterns and form factors for human motion 

sensing and bio-signal detection when stitched on the desired apparel. Our e-textile sensors provide a 
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broad range (326 Pa–326 kPa) of pressure detection capability, while previous textile sensors have a 

narrow detectable pressure range of tens of kilopascal to hundreds of kilopascal,47 or can detect only 

high pressure in the kilopascal range162 and several megapascals.154 Owing to this broad pressure 

detection range, our e-textile sensors enable diverse applications from biomechanical applications to 

health monitoring pressure detection. We demonstrated PVDF stitch-based triboelectric sensors for 

detecting various hand gestures and for real-time pulse monitoring. In particular, the sensing 

performance can be maintained even after dozens of washings. The washability of textile-based 

devices is one of the crucial factors for the practical applications of e-textiles. 
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2.2 Experimental details 

Preparation of dry-jet wet spun PVDF fiber 

PVDF with an average molecular weight of 534,000 g/mol and 99.5% N,N-dimethylformanide 

(DMF) were purchased from Sigma Aldrich, Co. and Samchun, Co., respectively. The PVDF polymer 

solution was prepared by dissolving PVDF in DMF at a concentration of 31 wt%. Dry-jet wet 

spinning was conducted using a custom-designed fiber spinning unit manufactured by Dissol, Co. 

(Republic of Korea) with an air-gap of 1 cm. The coagulation medium was deionized water 

maintained at 10 ℃ and the fiber was taken up at 10 m/min (spin-draw ratio: 2). The collected fibers 

were immersed in deionized water at room temperature for a day to remove the residual DMF in the 

fiber. Then, the fibers were further drawn in few steps using a heated godet roller at 50 and 90 ℃. The 

maximum achievable draw ratio in the post-spin drawing process was 3.05, leading to a total draw 

ratio of 6.1 (including spin-draw ratio). 

 

Fabrication of sewing machine stitching of the PVDF fiber 

Multi-ply threads were prepared from the mono-ply as-spun PVDF fiber to use for sewing-machine 

operation and its diameter was similar to that of the commercial sewing thread. Various stitches were 

sewn on the conductive fabric (silver), which was sandwiched between supportive insulating fabrics 

by a commercial sewing machine (INNOVIS-950, Zhuhai Brother Industries Co. Ltd., China). For the 

textile sensor with two electrodes, we used nylon fabric with Al electrode as an opposite triboelectric 

part. And, for the textile sensor with single electrode, we used nylon fabric or skin without electrode 

as an opposite triboelectric part. 

 

Characterization 

The mechanical properties of the fibers were measured using a single filament tensile tester 

(FAVIMAT+, Textechno, GmbH, Germany) at a gauge length of 25 mm and a strain rate of 1 %/s with 

a pre-tension of 0.5 cN. The SEM images of the stitches and coaxial thread were characterized by 

using a field emission scanning electron microscope (FE-SEM, S-4800, Hitachi, Japan). The open-

circuit voltage and short-circuit current were measured by using an oscilloscope (DPO 2022B, 

Tektronix, US) and a source meter (2450-SCPI, Keithley, US), respectively. The output characteristics 

of the sensor were measured by applying a periodic force using a pushing tester (JIPT-100, JUNIL 

TECH, Korea).  
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2.3 Results and discussion 

Structure of the sewing machine stitching sensor based on the PVDF fiber 

Figure 2.1a shows schematic and photographic images of the sewing machine stitching of PVDF 

fibers. For the PVDF stitching process, multi-ply PVDF threads were fabricated from mono-ply 

PVDF fibers (8 filaments) that were spun by a dry-jet wet spinning process (Figure 2.2). PVDF was 

chosen as the main triboelectric material for fabricating triboelectric sensors because of its good 

biocompatibility, spinnability, and strong tendency to gain electrons.114 The mechanical properties of 

the PVDF fibers are shown in Figure 2.3a. The tensile strength and tensile modulus of the PVDF 

fibers are 0.24 ± 0.02 Gpa and 4.08 ± 0.29 Gpa, respectively, which are remarkably higher than those 

of the conventional PVDF fibers (Figure 2.3b, Table 2.1). Owing to the high mechanical strength of 

the prepared PVDF thread, it could be sewed by hand and even by a sewing machine. To the best of 

our knowledge, there is no existing report on fabricating a textile device with PVDF-based stitches by 

a sewing machine owing to the weak mechanical property of PVDF fibers. For sewing machine 

stitching, it is necessary to prepare two threads that compose the upper and lower stitches on both 

sides of the fabric. In our work, PVDF thread was used as the lower thread for stable sewing since the 

lower one is under relatively less tension than the upper one. A commercial PET thread was used as 

the upper thread to support PVDF stitching on the electrode fabrics. For the electrodes, knitted 

conductive fabrics composed of silver were utilized due to their softness, tactile comfort, and high 

conductivity. The conductive fabric was sandwiched between supportive cotton fabrics which were 

used as insulating layers for stable sensing. Then, the conductive fabric was connected with stainless 

steel conductive threads by knots, which play the role of wire electrodes similar to the conventional 

Cu wire electrodes.  

Consequently, various PVDF stitch patterns could be easily fabricated by facile sewing machine 

stitching, resulting in e-textiles with all-stitched structures. Figures 2.1b-i show photographic and 

scanning electron microscopy (SEM) images of diverse stitch patterns such as the simple stripe 

(Figures 2.1b, c), embroidered pattern (Figures 2.1e, f), embroidered lines (Figure 2.1h), and even 

letters (Figure 2.1i), indicating that PVDF threads are mechanically strong enough to be sewed into 

arbitrary patterns. The stitch pattern is composed of twisted 5-ply PVDF threads (40 filaments), which 

comprise mono fibers of diameter ~50 μm (Figures 2.1d, g). When stitched on stretchable fabric, 

PVDF stitch patterns show a good mechanical stability for the folding, stretching, twisting and 

crumpling deformations (Figures 2.1j-m). This capability of sewing machine stitching of various 

patterns facilitates the fabrication of sophisticated textile structures for e-textile applications.   
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Figure 2.1. PVDF stitch-based triboelectric textile sensors. (a) Schematic illustration of the 

fabrication procedure of textile sensors by a sewing machine. (b–c) Photographic and SEM images of 

PVDF-based stripe stitch; (d, g) SEM images of the twisted 5-ply PVDF threads composed of mono 

fibers of diameter ~50 μm. Photographic images of (e-f) PVDF-based embroidery, (h) PVDF-based 

embroidered line stitches, and (i) PVDF-based letter stitches. (j-m) Photographic images of textile 

sensor demonstrating effects of different mechanical forces, including folding, stretching, twisting, 

and crumpling. 
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Figure 2.2. A schematic illustration of the lab scale dry-jet wet spinning procedure.  

  

 
60℃

As-spun 

fiber

Heating 

roller

90℃

Drawn

fiber

Coagulation bath



43 

 

 

Figure 2.3. Mechanical characteristics of dry-jet wet-spun PVDF in this work; (a) Strain-stress curves, 

and (b) comparison of tensile modulus and strength based on this work and previous reports.186, 188-190  

 

Table 2.1. Comparison of mechanical characteristics of the results achieved in this work with 

previously reported as-spun PVDF fibers. 

Fiber Strength (GPa) Young’s modulus (GPa) 

Melt-spun PVDF186 0.12 1.65 

Melt-spun PVDF189 0.24 1.33 

Electro-spun PVDF188 0.39 1.69 

Electro-spun PVDF190 0.002 0.25 

Dry-jet wet-spun PVDF 
(this work) 

0.24 4 
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Working mechanism and device performance 

Figures 2.4a and b show the photographic images of PVDF stitch sensors on layered fabrics, which 

are in contact with the nylon fabric on the Al electrode. Figures 2.4c and d show the SEM images of 

each surface of the nylon fabric and PVDF stitch. In our sensor structure, the effective contact area of 

PVDF stitches with opposite surfaces depends on the applied force since the stitch patterns can play 

the role of a spacer due to their own sub-millimeter height (Figure 2.4d). In addition, as an opposite 

triboelectric material, the knitted nylon fabric with entangled nylon microfiber structures can provide 

high surface area and large compressibility (Figure 2.4c). This unique combination of structures can 

increase the pressure sensitivity of triboelectric sensors. The working mechanism of PVDF-stitch-

based triboelectric sensors is illustrated in Figure 2.4e, and it is based on the conjunction of contact 

electrification and electrostatic induction during the contact and separation with nylon. According to 

the triboelectric series, PVDF has a higher electron affinity than nylon.195 Therefore, when the two 

materials make contact with each other under compressive force, the PVDF stitch is negatively 

charged by obtaining electrons while the nylon fabric is positively charged by losing electrons. Once 

the two materials are separated by releasing the pressure, an electric potential difference is created 

between the two electrodes. Therefore, electrons flow from the electrode of the PVDF stitch to the 

electrode of the nylon fabric until the equilibrium state is reached by the accumulated charges. When 

the two materials approach each other again, electrons flow inversely to realize charge balance. Then, 

charge neutralization occurs again when the PVDF stitch is fully in contact with the nylon fabric. 

Repeated contact–separation movements between two objects (10 × 10 mm2) induce continuous 

alternating current and voltage outputs (Figures 2.4f and, g). Figure 2.5 shows triboelectric signals of 

PVDF-stitch-based triboelectric sensors induced by using various opposite materials with lower (silk, 

Al, cotton, and PI) or higher (PDMS and PTFE) electron affinity in the triboelectric series. Nylon has 

the highest triboelectric signal owing to the largest difference in electron affinity between nylon and 

PVDF. Compared to the signals induced by materials with lower electron affinity, the opposite shapes 

of signals can be observed for PDMS and PTFE materials owing to their higher electron affinity as 

compared to PVDF. Figure 2.6a shows photographic images of the front and backside of PVDF stripe 

patterns (3 and 10 mm in width and length, respectively) stitched by a sewing machine Figure 3b 

shows the real-time pressure sensing of PVDF stitch/nylon fabric triboelectric sensors (device area: 3 

× 10 mm2) under different applied pressures, where the triboelectric current increases with the 

increase in pressure. The triboelectric sensors can detect the applied pressure over a broad range, from 

326 Pa to 326 kPa (Figure 2.6c), and exhibit two different sensitivities of 0.66 nA kPa−1 and 0.1 nA 

kPa−1 in the low-pressure region (<16.3 kPa) and high-pressure region (from 16.3 kPa to 326 kPa). In 

terms of the triboelectric voltage unit, the sensitivities are 6.23 mV kPa−1 and 1.12 mV kPa−1 in the 

low- and high-pressure regions, respectively (Figure 2.7). In addition, Figure 2.8 shows the force 
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sensing capability in low pressure region from 326 Pa to 3.26 kPa with narrow range, and the 

minimum detection limit of our sensor is 326 Pa. This is significantly better than the conventional 

textile force sensors that can only detect a narrow range of high pressure from tens of kilopascals to 

hundreds of kilopascals,47 or enable only large-area pressure detection for tens of kilopascals162 and 

several megapascals.154 Many of the previous textile sensors did not provide a broad pressure 

detection range and any specific detectable pressure value (Figure 2.9, Table 2.2).48, 138-139, 167 In 

addition, the sensitivity of our textile sensor is comparable to the sensitivity reported in the literatures 

on conventional film-type triboelectric force sensors (Table 2.3).47, 196-197 The washability of textile-

based devices is one of the important properties for the practical applications of e-textiles. For the 

washability test, the triboelectric sensors (area: 26 × 27 mm2) were prepared based on PVDF-based 

embroidery on conductive fabric sandwiched between cotton fabrics (Figure 3d). Then, the sensors 

were vigorously stirred in detergent-diluted solution (1 %) by magnetic stirring for 1 h, followed by 

drying at 60 ℃ (Figure 2.10). Figure 2.6e shows the variation in triboelectric currents after different 

cycles of washing. Although the triboelectric outputs of the stitch fabric decreased slightly after 10 

times of washing, the output signals were well retained without a significant decrease in current, even 

after 50 times of washing (Figure 2.6e). The current retention ratio after repeated washing is 97% of 

the initial current after 50 times of washing (Figure 2.6f), indicating the mechanical stability of the 

stitch sensor against repeated washing. Moreover, Figure 2.11 shows the mechanical stability of the 

stitch sensor after different cycles of folding and twisting. The triboelectric outputs of stitch fabric 

were well retained without a significant decrease in current, even after 100 times of mechanical 

deformation by folding and twisting, respectively (Figure 2.11a, b). The current retention ratio after 

repeated folding and twisting is 95% and 91% of the initial current (Figure 2.11c, d), respectively. It 

indicates the mechanical stability of the stitch sensor against repeated mechanical deformations. 

To investigate the force sensing capability, PVDF stiches (Figure 2.6a) underwent contact and 

separation cycles with nylon fabrics as the opposite triboelectric materials (Figure 2.12). For 

comparison, the PVDF film sensor was also fabricated on a conductive fabric. The output current of 

the PVDF stitch sensor is approximately four times that of the PVDF film (Figure 2.13a). This result 

is attributed to the better contact between the PVDF stitch and the electrode fabric due to tight 

stitching by a sewing machine, compared to the PVDF film (Figure 2.14). Interconnection of the 

fabric to the signal acquisition elements directly affects the performance of the textile sensor.158 

Moreover, the output current of the PVDF stitch is much higher than the output currents of 

commercial PET and nylon stitches (Figure 2.13b). PET and nylon have lower electron affinity than 

PVDF, leading to a much smaller triboelectric signal during the contact–separation process with a 

nylon fabric.14 To check the effect of supportive upper stitches and fabrics, PVDF stitches were 

fabricated with different commercial threads (PET and nylon) as the upper stitches on different 
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supportive fabrics (cotton and silk). The resulting triboelectric signals did not depend on the 

supportive upper stitches and fabrics (Figure 2.13c). This result can be attributed to two reasons. First, 

the supportive stitches are barely exposed on the PVDF stitched surface, as seen in the SEM image of 

the stitch (Figure 2.1c). Second, PVDF stitches with submillimeter height act as a spacer to generate 

triboelectric charges, preventing the supportive fabrics from making contact with the upper nylon 

fabric.  

 

 

Figure 2.4. Working mechanism and triboelectric output performances of the PVDF stitch-based 

textile sensor. (a) Photographic and (b) optical cross-section images of the textile sensor. SEM images 

of (c) the nylon fabric for a positive triboelectric object and (d) PVDF stitch for a negative 

triboelectric object. (e) Schematic illustration of triboelectric charge generation and electron flow 

mechanism between the PVDF stitch and nylon fabric. Triboelectric output (f) current and (g) voltage 

under 9.8 N. 
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Figure 2.5. Triboelectric output current profiles of PVDF stitch textile sensor with relative contact-

separation motion to different materials. 
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Figure 2.6. Evaluation of the PVDF stitch-based textile sensor for self-powered force sensing and 

washing durability. (a) A photographic image of the PVDF stitch for force sensing; the red rectangular 

region is under pressure (area 3 × 10 mm2) (scale bar: 10 mm). (b) Triboelectric output current as a 

function of time under different applied pressures. (c) Linear fitting between the triboelectric current 

variations and the applied pressure (326 Pa to 326 kPa). (d) A photographic image of the PVDF for 

the embroidery stitch washing durability test (scale bar: 10 mm). (e) Triboelectric output current of 

the device after 50 cycles of washing. (f) Linear fitting between the triboelectric current retention ratio 

and the number of washing times. 
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Figure 2.7. Evaluation of the PVDF stitch-based textile sensor for self-powered force sensing; (a) 

Triboelectric output voltage as a function of time at different pressures applied on the device. (b) 

Linear fitting between the triboelectric voltage variations and the applied pressure (326 Pa ~ 326 kPa). 

 

 

Figure 2.8. Triboelectric output signals in the low-pressure region (a) Triboelectric output current as a 

function of time and (b) the applied pressures from 326 Pa to 3.26 kPa in the low-pressure region. 
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Figure 2.9. Comparison of the detectable pressure range of the results achieved in this work with 

previously reported triboelectric pressure sensor.48, 51, 138, 154, 162, 167, 198-201  
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Table 2.2. Comparison of detection range of the results achieved in this work with previously 

reported textile-based sensors. 

Textile fabrication Basic materials Detection range Sensor type 

Embedment 

Cotton fabric coated CNT & Ni 2 Pa ~ 15 kPa Resistive45 

Electrically Cu, Ni plating fabric,  

PE fabric 
0.69 MPa ~ 4.9 MPa Resistive198 

PET fabric with PDMS, CNT, 
Ag 

40 kPa ~ 240 kPa Triboelectric47 

Conductive thread stripes,  
synthetic elastic foam 

~13.6 kPa Capacitive199 

Conductive fabric,  
3D textile 

~ 7.8 kPa Capacitive202 

Ag-coated textile,  

Proprietary Closed Cell Resin 
~ 300 kPa Capacitive200 

Hand weaving 

Kevlar coaxial thread  
coated with SBS/AgNP 

~ 3.9MPa Capacitive154 

PVDF strap with electrode 
Hollow PDMS tube 

~ 80kPa 
Piezoelectric,  
Capacitive162 

Commercial stainless steel/PET 

fiber coated with PDMS 
- Triboelectric48 

PET fabric  
coated with Ni & Parylene 

- Triboelectric167 

Machine-weaving 

PET thread coated with Cu & PI - Triboelectric138 

Metallic stripes, semi conductive 
fabric 

25 kPa ~ 500 kPa Resistive203 

Machine-knitting 
Nylon fiber  
coated with graphene & nylon 

- Triboelectric139 

Sewing machine 

stitching 

Ag-coated conductive thread,  
3D textile 

~ 120 kPa Capacitive204 

As-spun PVDF on conductive 

fabric 
326 Pa ~ 326 kPa 

Triboelectric 

(This work) 
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Table 2.3. Comparison of detection range and sensitivity of the results achieved in this work with 

previously reported triboelectric pressure sensors. 

Type Basic materials Detection range Sensitivity 

Film205 PDMS, Al 0.6 ~ 30 MPa 
6 MPa

−1
  (0.6 ~ 200kPa ), 

0.037 MPa
−1

 (350 kPa ~ 30 MPa) 

Film206 PDMS, Liquid 0.4 ~ 40 N 0.036 nA N
−1

  

Film197 PDMS, Al 1 ~ 150 kPa 0.06 kPa
−1

 (1~80 kPa) 

Film201 PVDF-TrFE, PDMS 0.05 ~ 600 kPa 

104 mV kPa
−1

 (0.05~5 kPa), 

55 mV kPa
−1

 (5~60 kPa), 

49 mV kPa
−1

 (60~600 kPa) 

Film196 Cu/PDMS, PTFE ~50N 0.019 μA N
−1

 (0 ~ 40 N) 

Film207 PDMS 40 ~ 140 N 28 mV N
−1

  

Textile47 
(embedment) 

PET fabric  
with PDMS, CNT, 

Ag 
40 kPa ~ 240 kPa - 

Textile 

(sewing machine 

stitching) 

As-spun PVDF on 

conductive fabric 

326 Pa ~ 326 kPa 

(9.8 mN ~ 9.8 N) 

0.66 nA kPa
−1

, 6.23mV kPa−1  

(0.326 ~ 16.33 kPa), 

0.1 nA kPa
−1

, 1.12 mV kPa
−1

  

(16.33 ~ 326 kPa) 
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Figure 2.10. Washing durability of PVDF stitch textile sensor; Demonstration of the washing 

environment with commercial detergent by magnetic stirring. 

 

 

Figure 2.11. Evaluation of the PVDF stitch-based textile sensor for mechanical stability. (a, b) 

Triboelectric output current of the device after 100 cycles of mechanical deformation by folding and 

twisting. (c, d) Linear fitting between the triboelectric current retention ratio and the number of 

mechanical deformation times. 
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Figure 2.12. Experimental image of contact-separation motion between PVDF stitch and nylon fabric. 

 

 

Figure 2.13. Outstanding triboelectric output performance of the PVDF stitch-based textile sensor. 

Comparison of the output currents from the PVDF stitch-based device with (a) PVDF film and (b) 

other commercial thread stitch. (c) The output current independent of the supportive stitch and 

substrate fabric. 

 

 

Figure 2.14. Comparison of both types of PVDF sensor. (a, b) Photographic images of (a) the stitch-

based sensor and (b) the film-based sensor. 
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Applications for self-powered diverse sensing 

The facile fabrication of programmable PVDF stitch patterns by a sewing-machine enables realizing 

textile-based triboelectric devices with application-specific stitch patterns, which are advantageous for 

diverse applications in self-powered sensors. In this work, we demonstrated a smart textile pad for 

body motion and hand gesture recognition using PVDF-stitch triboelectric sensors. Figure 2.15a 

shows the PVDF stitch sensor that can be sewn on the elbow part of a cloth for monitoring elbow 

movements. The PVDF stitch and the nylon cloth on the skin can function as negative and positive 

triboelectric materials, respectively. The PVDF thread was stitched on a multi-layered fabric pad 

composed of supportive cotton fabric, conductive fabric, and nylon joint pad 1. Then, the multi-

layered fabric pad with PVDF stitches can be worn over joint pad 2 for forming opposite triboelectric 

contact surfaces. For the stitch sensor, we used a single electrode-based triboelectric system that is 

widely used for wearable electronics owing to its facile fabrication process and high efficiency for 

moving objects.208-209 The working mechanism of the PVDF-stitch-based single electrode sensors is 

illustrated in Figure 2.16 Owing to the difference in electron affinity between PVDF and nylon, 

electrons were injected from the nylon fabric to the PVDF stitch when the two materials came in 

contact with each other owing to the contact electrification. When the PVDF stitches are separated 

from the nylon fabric, the negative charges of the PVDF stitches can induce positive charges on the 

electrode, driving free electrons to flow from the electrode to the ground. When the two objects 

approach each other again, electrons flow inversely to attain a charge balance. Then, charge 

neutralization occurs again when the PVDF stitch is fully in contact with the nylon fabric. Repeated 

contact-separation movements between the two materials by hand gestures and body motions induce 

intrinsic current outputs. As a result, various motions of the wrist, elbow, ankle, and knee can be 

detected (Figure 2.15b). For the recognition of different motions in each joint, our sensor can be used 

for the recognition of motion strength by analyzing different intensity signals depending on the 

motion strength (Figure 2.17). 

In another application, when the PVDF threads are stitched into the knuckle regions of a textile 

glove, a smart glove can be fabricated for the hand gesture-recognition. Figures 2.15c and d show that 

the smart glove can detect and distinguish various hand gesture signals for different numbers as well 

as gestures indicating rock, paper, scissors, etc. When repeating the hand gestures from ⅰ to ⅵ, the 

smart glove generated an intrinsic triboelectric output current that can discriminate the hand gesture 

signals for different numbers. This result demonstrates that the smart glove with PVDF-stitch-based 

triboelectric sensors can distinguish specific hand gestures in real time. In addition, the PVDF stitches 

can be used for identifying Morse code by detecting the triboelectric output current when a user 

touches the PVDF stitches on the smart glove. Temporal or static touches on the PVDF stitches can 
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induce short or long triboelectric signals that can signify the sequences of dot and dash signals in 

Morse code. Therefore, the simple touch of the smart glove with PVDF stitches can   transmit 

specific information of a user as electronic signals. Figure 2.15e shows the generated signals that 

represent the phase of “UNIST” in Morse code. For example, the Morse code of “U” is composed 

using two successive dots and one dash. When applying two successive temporal touches and 

following a static touch on the smart glove, we can obtain two short and one long triboelectric signal 

that can transmit the letter “U” as electronic signals. To dissociate the last signal of the specific letter 

from the first signal of the following letter, we used an obvious time interval between each letter.  

Monitoring of foot pressure distribution is important in gait and posture analysis for the foot wear 

design, sports biomechanics, and wearable healthcare systems.127 In particular, it can be used in 

diagnosing several diseases such as diabetic foot ulcers and Parkinson’s disease from abnormal gait 

patterns.210-211 Wearable pressure sensors enable the monitoring of the walker’s gait patterns and 

posture.125, 212 Our stitch sensor can be also used for the monitoring of foot pressure distribution. In 

particular, compared to previous wearable pressure sensors, our stitch sensor is more appropriate for 

wearable foot pressure monitoring system because of its inherent characteristics of deformability, 

comfort, and breathability. Moreover, it is suitable to fabricate stitch sensors with programmable 

patterns for both aesthetic and functional form factors. Figure 2.18a shows a schematic illustration of 

the PVDF stitch sensor array for the monitoring of foot pressure. The PVDF stitch sensor array (3 × 4 

pixel) with programmed textile patterns can be readily fabricated by a sewing machine (Figure 2.18b). 

Figure 2.18c shows the schematic of walking motions on the PVDF stitch sensor array and their 

corresponding contour mapping images of foot pressure distribution. Our PVDF stitch sensor array 

was capable of monitoring of foot pressure distribution during walking, where red and blue areas 

indicate high and low pressure, respectively. This foot pressure monitoring capability of our stitch 

sensor can be used for the posture correction and rehabilitation in wearable medical devices and sports 

industry. 

The PVDF stitch sensor can also monitor artery pulse pressure when attached to the neck. The artery 

pulse signal is used as one of the vital signs to monitor the physical and mental state of a person.2 Our 

stitch sensor enables the simultaneous monitoring of artery pulse pressure when attached to the neck 

skin above the carotid artery (Figure 2.19a). One advantage of sewing machine stitching is that 

arbitrary stitch patterns can be generated for the desired fashionable patterns on the triboelectric 

sensors, as seen in Figure 2.19a. Figures 2.19b, c show the resulting triboelectric output of pulse 

pressure with three distinguishable peaks (P1, P2, and P3). Herein, P1 is the main pulse pressure which 

is the difference between the systolic (PSys) and diastolic (PDia) pressures and is generated from the 

blood flow ejected by heart contraction. P2 and P3 are the reflected wave pressures caused by the 
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waves reflected from the peripheral sites (P2 from the hand and P3 from the lower body).213 These 

parameters can be used to extract the radial artery augmentation index (AIr = P2/P1) and round-trip 

time of a reflected wave from the hand periphery (Tr); these quantities are related to arterial stiffness 

depending on the age of people.213 Figures 2.19d and e exhibit the artery pulse signals of a healthy 

female in her early thirties before and after physical exercise. After physical exercise, the pulse rate 

increased from ~69 beats per minute (BPM) to ~137 BPM and the signal intensity also increased 

owing to the increased cardiac output to rapidly supply blood to the activated muscles. Moreover, the 

average values of the augmentation index (AIr = 0.55) are consistent with the literature data of healthy 

females in their early thirties; the value decreased to 0.27 after physical exercise (Figure 2.20). This 

decrease in the augmentation index indicates the decreased arterial stiffness owing to the vasodilation 

of the muscular arteries.213-214 This result demonstrates that our stitch sensors have potential as a self-

powered wearable diagnostic sensor to monitor human health in real time. Table 2.4 (Supporting 

Information) compares the specifications of our sensor with the other textile-based sensors fabricated 

by embedding sensors in commercial textiles1,45-47, 166, 215 and conventional textile fabrication 

techniques such as weaving,48, 50-51, 138, 154, 162, 164, 167 knitting,52-53, 139, 216 and sewing.163, 173, 176 Most of 

the conventional textile sensors are not washable owing to the lack of mechanical strength and 

coating-detachment issues. Moreover, sophisticated textile sensors cannot be fabricated by most 

approaches except for metal patterning with electroless deposition,45 stencil printing,46 industrial 

machine-knitting4 and computerized sewing techniques.173, 176 However, these approaches involve 

expensive and complicated processes to fabricate sophisticated e-textile sensors. Although existing 

stitch sensors can be fabricated by relatively low-cost and simple processes, they need external power 

sources for operation. On the other hand, our self-powered PVDF stitch sensors do not need an 

external power source. In addition, our all-textile structure with washability and arbitrary textile 

patterns is advantageous in diverse wearable sensor applications.   
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Figure 2.15. Real-time detection of different body motions and hand gestures using the self-powered 

PVDF-textile sensor. (a) A schematic illustration of the working mechanism of the PVDF stitch-based 

textile sensor attached to the joint pad. (b) Photographic images and intrinsic output current signals 

obtained by detecting various motions of the wrist, elbow, ankle, and knee; the body motion 

monitoring patch (40 × 60 mm2) was composed of 3-lines of stitch with 3 × 45 mm2. (c, d) 

Photographic images and intrinsic output current signals by detecting (c) various body motions (the 

wrist, elbow, ankle, and knee) and (d) various hand gestures for different numbers; the smart glove 

was composed of 6-lines of stitch with 3 × 50 mm2. (e) Demonstration of the self-powered human-

system interaction interface with Morse codes by touching the triboelectric stitch with finger, 

representing a word “UNIST.” 
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Figure 2.16. Working mechanism of PVDF stitch-based textile sensor as a body-motion sensor; 

Schematic illustration of triboelectric charge generation and electrons flow mechanism with single 

electrode system. 

 

 

Figure 2.17. Real-time detection of body motion with different strength; (a) Output current signals 

from wrist movements with weak and strong motion. (b) Output current signals from elbow 

movements with weak and strong motion.  
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Figure 2.18. Self-powered foot pressure mapping based on the PVDF stitch sensor array. (a) A 

schematic illusstration of the PVDF stitch sensor array device. (b) Photograph of 3 × 4 pixel arrays of 

PVDF stitch sensor with fish-shaped embroidery; the foot pressure sensor (150 × 230 mm2) was 

composed of 12 pixels with 10 × 30 mm2. (c) Schematics of walking motions on PVDF stitch sensor 

array and their corresponding contour mapping images. 

  

 



61 

 

 

Figure 2.19. Real-time detection of pulse pressure using the self-powered PVDF-textile sensor. (a) 

Photographic images of the fashionable garment-type triboelectric sensor with arbitrary stitch patterns 

for pulse pressure detection; the pulse pressure sensor (70 × 30 mm2) was composed of 11 diamond 

patterned stitches (20 × 5 mm2). (b) Real-time monitoring of the pulse pressure and (c) expanded 

pulse wave consisting of three peaks corresponding to the pulse pressure (P1) and reflected wave 

pressures from the hand (P2) and lower body (P3). (d–e) Variation in the pulse pressure wave before 

and after physical exercise. 

 

 

Figure 2.20. Comparison of augmentation index (AIr) before and after physical exercise. 
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Table 2.4. Comparison of fabrication conditions and washability of the results achieved in this work 

with previously reported textile-based sensors. 

Method Key materials Electrode Substrate 
Delicate 

pattern 
Washable Sensor type 

Embedment in commercial thread or fabric 

Coating Carbonized silk  - Silk fabric - - Resistive153 

CNT coating  
& Ni plating 

CNT coated fabric  
& Ni 

- Cotton fabric △  - Resistive45 

Stencil 

printing 
Ag-fluoroelastomer - 

Knitted 
fabric 

(Nylon/PU) 
△ ○ Resistive46 

Coating PDMS, PET,  
Aligned 
CNT, Ag 

paste 
PET fabric - - Triboelectric47 

Coating 
PDMS-AgNW, PTFE,  

PU-AgNW 
AgNW PU fiber - - 

Triboelectric16

6 

Layering 
Cu, Ni- electroplating 

fabric, PE 
Cu, Ni PE fabric - - Capacitive198 

Layering 
Conductive thread 

stripes,  
synthetic elastic foam 

Conductive 
thread 

Synthetic 
elastic foam 

- - Capacitive199 

Layering 
Conductive fabric, 3D 

textile 
Conductive 

fabric 

Conductive 

fabric,  
3D textile 

- - Capacitive202  

Layering 
Ag-coated textile,  
Proprietary Closed 

Cell Resin 
Ag - - ○ Capacitive200 

Conventional textile fabrication technique 

Weaving 

(by hand) 

PDMS SBS/AgNP Kevlar fiber - - Capacitive154 

PVDF, PET Metal  
Elastic 

hollow tube 
- - 

Piezoelectric, 
Capacitive162 

CNT & PTFE CNT Cotton thread - - Triboelectric164 

PDMS,  
Au-coated Al 

Au-coated 
ZnO NWs/Al 

wire 

Al wire, Al 
foil 

- - Triboelectric50 

PVDF-TrFE, Ag 
CNT, Ag-

coated nylon 
yarn 

PU fiber - - Triboelectric51 

PDMS, stainless-
steel/PET thread 

Stainless-
steel/PET 

thread 

Stainless-
steel/PET 

thread 
- ○ Triboelectric48 

Ni & parylene Ni PET fabric - - Triboelectric167 

Weaving 
(by Industrial 

weaving 
loom) 

Cu, PI Cu PET thread - ○ Triboelectric138 

Metallic stripes, 
semi-conductive 

fabric 

Metallic 
stripes 

Normal 
fabric 

- - Resistive203  
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Conventional textile fabrication technique 

Knitting  
(by hand) 

PDMS, stainless-
steel/PET thread 

Stainless 
steel/PET 

thread 

Stainless 
steel/PET 

thread 
- ○ Triboelectric52 

Knitting 
(by Harry 

Lucas 

circular 
knitting 

machine) 

CNT-wrapped 

spandex fiber 
- 

Spandex 

fiber 
- - Resistive216 

Knitting 
(by Industrial 

knitting 
machine) 

PTFE thread,  
Ag thread 

Ag thread - 
Plain-, double-,  

rib patterns 
- Triboelectric53 

Knitting 

(by STOLL 
computerized 
flat  knitting 

machine 

PTFE, Nylon Graphene Nylon fiber - - Triboelectric139 

Sewing 
(by hand) 

Graphene nano 
platelets 

- 
Commercial 

yarn 
- - Resistive163 

Stitching 

(by sewing 

machine) 

Ag/AgCl or 
carbon coated 

PET thread 

Ag/AgCl  
or carbon 

coated PET 
thread 

PET thread △ - 
Electro-

chemical173 

Melt-spun 
coaxial polymer 

optical fiber 
- 

Polymer 
optical fiber 

△ ○ Photonic176 

Ag-coated 
conductive 

thread, 3D textile 

Ag-coated 
conductive 

thread 

Non- 
conductive 

textile 
- ○ Capacitive204 

As-spun PVDF 

fiber 

Ag 

conductive 

fabric 

Various 

fabric 

(Cotton, 

Silk) 

Various 

patterns, 

Letters, 

Embroidery 

○ 
Triboelectric 

(This work) 
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2.4 Conclusions 

In summary, PVDF-stitch-based triboelectric sensors have been demonstrated by using a sewing 

machine for the first time. We showed that the operation of a sewing machine with the dry-jet wet 

spun PVDF fibers was feasible owing to the strong mechanical properties. The resulting PVDF 

stitches on commercial fabric can generate the triboelectric output signals through contact and 

separation with another commercial fabric (nylon) owing to different electron affinity. Because of the 

all-stitched structures, PVDF stitch sensors are not only flexible, lightweight, and wearable but also 

comfortable. In addition, the sensing performances of the stitch sensor were well retained without 

significant decrease even after repeated washing cycles, demonstrating that the suggested PVDF stitch 

sensor can be utilized for practical applications. For active sensing applications, a smart glove and 

joint pads with PVDF stitches were fabricated based on commercial clothing products. These active 

sensors based on PVDF stitches can detect and distinguish various hand gestures and body motions. 

In addition, the self-powered stitch sensor can monitor the pulse signal in real time. We demonstrated 

that PVDF stitch sensors can be readily fabricated onto commercial fabrics using a sewing machine. 

Our proposed strategy can be easily extended for other functional applications when integrating with 

diverse stitch patterns, and functional materials, paving a new way for the facile, low-cost and large-

scale fabrication of self-powered wearable sensors in commercial clothes and garments. 
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Chapter 3. Triboelectric/pyroelectric multimodal sensors with decoupled 

pressure and temperature multiple stimuli via ferroelectric polarization 

 

3.1 Introduction 

Internet of things (IoT) have attracted great interest and boosted the rapid development of wearable, 

wireless and self-powered sensors, which bring great benefits in the daily life healthcare,1-3 intelligent 

control,5 daily activity monitoring,2, 4 and human-machine interface systems.6 Accordingly, 

multimodality in simultaneous sensing of pressure and temperature without energy loss and signal 

interference has been investigated to meet the requirements of smart wearable sensors.11-12 For these 

applications, piezoelectric,18-19 pyroelectric,20-21 thermoelectric,22-23 and triboelectric14-17, 172, 217 effects 

have been extensively studied to develop self-powered multifunctional devices. However, most of 

conventional self-powered sensors realize multifunctional sensing by integrating individual sensors 

for each pressure and temperature, which can limit their applications.140-143 Although simultaneous 

multimodal sensors have been developed, most sensor needs external working bias.11-12, 92, 141, 143-144 

Therefore, new approaches to develop self-powered multimodal sensors are necessary, which enables 

the discrimination of multiple pressure and temperature without signal interference. 

P(VDF-TrFE), a ferroelectric polymer with a good piezoelectric and pyroelectric response, has been 

widely used for multimodal sensing devices due to its ease of processing as well as flexibility. 

However, conventional multimodal sensors based on ferroelectric polymer cannot clearly distinguish 

the simultaneously applied pressure and temperature due to the signal interference resulting from low 

piezoelectric output performances.140, 142 Meanwhile, P(VDF-TrFE) have frequently been used for 

triboelectric devices due to its strong electro-negativity in the triboelectric series. Because the applied 

external electric field greatly affects the polarization state which relies on the aligned dipoles in 

ferroelectric polymers,36, 87 triboelectric devices have been demonstrated based on polarization-tuned 

ferroelectric polymers.62, 111, 113-117 Several researchers have suggested approaches to boost the output 

power of PVDF-based composites by the electrical poling process, enhancing the triboelectric charge 

density.62, 113 Another approach is the use of high dipole moment solvent to induce the high 

crystallinity and dipole alignment of the polymer, which considerably enhances the triboelectric 

output power.111 In addition, several researches have suggested approaches to modulate the direction 

as well as the amount of charge transfer in triboelectricity by ferroelectric polarization.114, 116-117, 218 

However, contact electrification has not been demonstrated between identical materials with identical 

triboelectric polarity. Generally, output performance of triboelectric devices relies on the selection of 

triboelectric contact pair materials with large differences in polarity in triboelectric series.218-220 

Although triboelectric devices based on identical materials in contact pairs enable the facile 
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fabrication of triboelectric devices without complicated additional processes on the selected pair 

materials, identical materials have not been considered for triboelectric contact pairs because the 

contact electrification is usually not observed between identical materials. Therefore, further research 

is necessary for the high performance self-powered devices through the facile fabrication approach 

based on identical materials in triboelectric contact pairs, which are capable of sensing and 

discriminating temperature as well as mechanical force variations via pyroelectric and triboelectric 

effects. 

Herein, we report the fabrication of self-powered multimodal pressure and temperature sensors based 

on polarity-modulated ferroelectric P(VDF-TrFE). Although an identical material is used for 

triboelectric contact pairs, remarkable triboelectric output performance can be obtained because 

contact electrification can be controlled by switching the aligned direction of dipoles depending on 

the applied polarization bias. Moreover, noticeable pyroelectric output performance can be achieved 

by ferroelectric polarization even with the triboelectric device structure that is different from the 

conventional pyroelectric devices with the ferroelectric films sandwiched between two electrodes. To 

the best of our knowledge, multimodal triboelectric and pyroelectric devices using an identical 

material with easily switchable polarity by electrical polarization have not been reported yet. Our 

sensor provides a broad range of pressure detection capability (98 Pa to 98 kPa) and high sensitivity 

(40 nA kPa-1 and 1.4 V kPa-1) in the subtle pressure range (< 19.6 kPa) as well as temperature 

detection capability with high sensitivities of 0.38 nA ℃-1 and 0.27 nA ℃-1 in the cooling (-20℃ < 

ΔT < -2.5℃) and heating (2.5℃ < ΔT < 20℃) state, respectively. In addition, our sensor can provide 

two different approaches for simultaneous temperature and pressure sensing and discrimination. One 

is based on the opposite directional signals to respond the simultaneously applied pressure and 

temperature, especially under negative temperature change (ΔT < 0), which is due to the opposite 

electron flow from triboelectric and pyroelectric effects. The other is the use of different response and 

saturation times of triboelectric and pyroelectric effects. Owing to the high sensing performances and 

unique structure, our sensor can be utilized for the monitoring of weak pulse pressure of carotid artery 

as well as multimodal finger touch. Our work provides a feasible approach to develop high-

performance triboelectric and pyroelectric hybrid devices based on identical contact pair materials via 

ferroelectric polarization. 
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3.2 Experimental details 

Synthesis of β phase of P(VDF-TrFE) film and fabrication of devices 

P(VDF-TrFE) solution (20 wt%) was prepared by dissolving 70/30 P(VDF-TrFE) copolymer 

powder (PIEZOTECH, France) in 99.5% N,N-dimethylformamide (DMF). P(VDF-TrFE) solution 

was spin-coated on Cu substrate (1000 rpm, 60 s) (~22 ℃, ~23 %RH), followed by drying at 70 ℃ 

for 1 h to remove the DMF solvent. P(VDF-TrFE) film thickness (~15 μm) was optimized for the 

stable electrical polarization without leakage current, which enhanced the output performance of our 

multimodal sensor. For enhancement of crystallinity of β phase, the film was annealed at 140 ℃ for 2 

h and followed by gradual natural cooling to room temperature. The electrical poling was carried out 

under an external electric field (50 MVm-1) for 30 minutes to align the electric dipoles. For the 

fabrication of free-standing triboelectric devices (~ 2 × 2 cm2), as-prepared P(VDF-TrFE) films on 

electrodes were attached to each other using polyimide double-sided tape which was also used as 

spacer.  

 

Characterization  

The structural analysis of the β phase of P(VDF-TrFE) films were verified by X-ray diffractometer 

(D8 Advance, Bruker) with monochromatic Cu Kα radiation (λ = 0.15406 nm) and Fourier transform 

infrared (FT-IR) equipment (670-IR, Varian). All of the topography, piezoresponse force microscopy 

(PFM) and Kelvin probe force microscopy (KPFM) measurements were acquired using a commercial 

atomic force microscope (XE-70, Park Systems Corp.) at room temperature. PFM images were 

measured in dynamic-contact electrostatic force microscopy (DC-EFM) mode. The KPFM images 

were obtained in non-contact mode. The Au coated conducting tip was modulated by applying 

sinusoidal voltage of 1.5 V (rms) at a frequency of 15 kHz using a lock-in amplifier (SR-830, 

Stanford Research Systems). The contact potential difference (CPD) was obtained by applying DC 

feedback voltage to nullify the first harmonic signal, which is proportional to the electrostatic force 

component between the tip and the sample. We employed the frequency modulation (FM) mode for 

feedback. In each measurement, we compared the surface potential difference between the AFM tip 

and highly oriented pyrolytic graphite (HOPG) to normalize the tip effect. The open-circuit voltage 

and short-circuit current were measured by using an oscilloscope (DPO 2022B, Tektronix, US) and a 

source meter (2450-SCPI, Keithley, US), respectively. The output characteristics of the sensor were 

measured by applying a periodic force using a pushing tester (JIPT-100, JUNIL TECH, Korea). 
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3.3 Results and discussions 

Modulation of identical P(VDF-TrFE) for inverse triboelectric series materials 

P(VDF-TrFE) has distinct dipoles when it has the all trans (TTT) planar zigzag structure (β phase), 

inducing a net charge,87, 114, 221 which can be confirmed by Fourier transform infrared spectroscopy 

(FTIR) and X-ray diffraction. The absorption bands at 1288 cm-1 and 850 cm-1 are related to the 

ferroelectric β phase in the FTIR spectrum (Figure 3.1a), and the outstanding XRD peak at 2θ = 19.9° 

is associated with (110) and (200) reflection of the crystalline β-phase (Figure 3.1b).87, 116, 222 Further 

alignment of the polymer chains in β phase P(VDF-TrFE) films can be performed by the post 

electrical poling process. Figures 3.1c-e show piezo response force microscopy (PFM) topology, 

phase and amplitude analysis of in-situ β-phase polarized P(VDF-TrFE) films. Figures 3.1d and e 

show a clear contrast in the phase and amplitude between the positively and negatively polarized 

P(VDF-TrFE) films. PFM results indicate that P(VDF-TrFE) films could be negatively and positively 

polarized depending on the applied bias direction. Before the electrical polarization of P(VDF-TrFE), 

the net charge is zero when dipoles are randomly arranged in β phase. When a large bias is applied 

across the films, the dipoles are aligned in P(VDF-TrFE) films, inducing the net charge in the films.221 

Electrically polarized P(VDF-TrFE) films have aligned dipoles in a certain direction while non-

polarized one has randomly oriented dipoles (Figure 3.2a). Negative polarized P(VDF-TrFE) film is 

negatively charged, while positive polarized one is positively charged when rubbed with Al surface. 

Figure 3.2b and 3.3 show the triboelectric output signals with different polarization. Polarized films 

induce noticeably enhanced triboelectric output signals due to the aligned dipoles compared to non-

polarized one. In addition, different polarization directions cause different shapes of triboelectric 

output signals. An upside peak appears when negatively polarized film is pressed with Al, while a 

downside peak appears when released. On the other hand, opposite behaviors were observed with 

positively polarized films. This result indicates that the triboelectric polarity of identical P(VDF-TrFE) 

film could be switched to the opposite directions through electrical polarization. Figure 3.4 shows the 

duration of the tuned triboelectric polarity. The opposite shape of signals from both negatively (Figure 

3.4a) and positively (Figure 3.4b) polarized films can be maintained even after 24 hours. In addition, 

Figure 3.5 shows negligible piezoelectric output signals compared to triboelectric ones from the 

polarized PVDF-TrFE film under the same condition (98 kPa), indicating that the signals mainly 

come from the triboelectric outputs rather than piezoelectric ones. 

The Kelvin probe force microscope (KPFM) surface potential measurements exhibited surface 

potentials of −1.5 V, + 0.8 V, and −2.7 V for non-polarized, negatively and positively polarized ones, 

respectively (Figure 3.2c). This result supports that the triboelectric polarity of P(VDF-TrFE) could be 

tuned by the electrical polarization, which is shown in the schematic illustration of triboelectric series 



69 

 

(Figure 3.2d). In addition, for the aligned dipoles in a polarized P(VDF-TrFE) film, it is assumed that 

the surface charges are opposite to each other for the two sides of the film since dipoles are 

perpendicularly aligned to the film after the electrical poling,113-117 but there has been no direct 

experimental evidence. The triboelectric performances for the opposite-charged sides of polarized 

P(VDF-TrFE) films were investigated in Figure 3.6, indicating the surface charges are opposite to 

each other for the two sides of the polarized P(VDF-TrFE) film. 
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Figure 3.1. Structural and PFM analysis of P(VDF-TrFE) film. (a) FT-IR result for the β phase of 

P(VDF-TrFE) (b) XRD result for the β phase (110/200) of P(VDF-TrFE). (c-e) PFM images of 

P(VDF-TrFE) film with different direction of bias. (c) Topology, (d) phase, and (e) amplitude images 

of P(VDF-TrFE) films; the white dotted square indicates positively (negatively) poled area by 

applying + 20 V (−20 V). 
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Figure 3.2. Switchable triboelectric polarity of identical P(VDF-TrFE) film by electrical polarization. 

(a) Schematic illustration of P(VDF-TrFE) films with different surface charge depending on the 

direction of dipoles. (b) Output current and voltage of surface charge-tuned P(VDF-TrFE) films. (c) 

KPFM images of the different surface chare potential distribution of non-, negatively and positively 

poled P(VDF-TrFE). (d) Modified triboelectric series with surface-charge-tuned P(VDF-TrFE) by 

ferroelectric polarization. 
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Figure 3.3. Triboelectric charge density of the polarization-tuned PVDF-TrFE films; (a) negatively, (b) 

positively polarized films. 
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Figure 3.4. Evaluation for the duration of the tuned triboelectric performances. Triboelectric output 

current right after and 24 h after electrical poling from (a) negatively polarized and (b) positively 

polarized PVDF-TrFE films. 
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Figure 3.5. Comparison of triboelectric and piezoelectric output performances under the same 

pressure with 98 kPa. 
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Figure 3.6. Identification of charges from both surfaces of P(VDF-TrFE) film with different 

polarization conditions. (a) Schematic procedure illustration of measurement of opposite bottom 

surface of P(VDF-TrFE) film. Output current of top surface of (b) non poled, (c) negatively poled, 

and (d) positively poled P(VDF-TrFE) films. Output current of bottom surface of (e) non poled, (f) 

negatively poled, and (g) positively poled P(VDF-TrFE) films. 
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Triboelectric and pyroelectric performances of polarization-tuned P(VDF-TrFE) film 

Figures 3.7a-e show the working mechanism and performances of triboelectric devices based on 

polarization-manipulated P(VDF-TrFE) films. The triboelectric device is based on the conduction of 

contact electrification and electrostatic induction during the repeated contact and separation cycles 

(Figure 3.7a). Once the two films with opposite polarization directions come in contact with each 

other, triboelectric surface charges are generated at the interface of the two films, resulting in positive 

and negative charged surfaces at positively and negatively polarized films, respectively. During the 

separation of the two films, compensating charges are built up on each side of the electrodes, 

generating an electron flow through the external circuit until the equilibrium state is reached by the 

accumulated charges. When the two films approach each other again, electrons flow inversely for the 

charge balance. Therefore, continuous alternating triboelectric current and voltage signals appear in 

response to the repeated contact-separation movements between two films as shown in Figures. 3.7b 

and c. Figures 3.7d and 3.8a show the real-time pressure sensing of triboelectric sensors with 

inversely polarized P(VDF-TrFE) films under a broad range of pressures from 98 Pa to 98 kPa (sensor 

area of 10 × 10 mm2). Triboelectric output signals increase with the increase in pressure and are 

distinguishable with each other even under subtle pressure range (inset in Figure 3.7d). Triboelectric 

sensors exhibit three different sensitivities of 40, 11.5, and 3.7 nA kPa-1 in the low-pressure (< 19.6 

kPa), middle-pressure (19.6–58.8 kPa), and high-pressure regions (58.8–98 kPa), respectively (Figure 

3.7e). In terms of the triboelectric voltage unit, the sensitivities are 1.4, 0.4, and 0.1 V kPa-1 in the 

low-, middle- and high-pressure regions, respectively (Figure 3.8b). In particular, the sensitivity (40 

nA kPa-1, 1.4 V kPa-1) in the low pressure range (< 19.6 kPa) is the highest compared to those 

sensitivities of previous PVDF-based triboelectric sensors with similar range of pressure detection and 

competitive with those sensitivities of other polymer-based triboelectric sensors (Table 3.1). Figure 

3.8c shows the output current density and voltage as a function of load resistance. The current density 

decreases and the voltage increases as the load resistance increases, and the maximum power density 

(147 μW/cm2) was obtained for the 100 MΩ load resistance. This self-powered triboelectric device is 

sufficient to light up a green LED using a rectifying system (Figure 3.8d). The power density from our 

sensor is the highest compared to those of previous self-powered triboelectric pressure sensors (Table 

3.1). In addition, the sensitivity and output performances of our sensors are competitive with those 

from identical materials with additional chemical functionalization.68, 70, 117 

The polarized P(VDF-TrFE) films also exhibit pyroelectricity due to the spontaneous polarization 

change by different dipole oscillation depending on the applied temperature (Figure 3.9a). When the 

device is in heating state (ΔT > 0), the electric dipoles in P(VDF-TrFE) oscillate within a larger 

degree from their aligned axes compared to one in the ambient state (ΔT = 0), resulting in a lower 
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level of spontaneous polarization. Consequently, the quantity of induced charges in the electrodes is 

reduced, leading to an electron flow from the bottom electrode to the top electrode. Meanwhile, when 

the device is in the cooling state (ΔT < 0), the electric dipoles in P(VDF-TrFE) oscillate within a 

smaller degree from their aligned axes, resulting in a higher level of spontaneous polarization. 

Consequently, the quantity of induced charges in the electrodes is increased, leading to an inverse 

electron flow. Therefore, continuously alternating pyroelectric current signals appear in response to 

the repeated temperature change cycles. In addition, the output signal directions of pyroelectric 

signals in heating and cooling states are opposite with each other (Figures 3.9b, c). The response times 

of pyroelectric output signals for the applying and withdrawing thermal source are 0.16 and 0.09 s, 

respectively, which are noticeably fast compared to conventional pyroelectric devices.223-224 Figure 

3.9d shows the real-time temperature sensing capability of pyroelectric sensors with inversely 

polarized P(VDF-TrFE) films for the ΔT from −20 to 20 ℃ (~177 mm2). Pyroelectric output current 

is highly responsive to the applied temperature change (ΔT) and increases with the increase in the 

absolute value of temperature change (|ΔT|). Figure 3.10 shows the highly responsive pyroelectric 

performance of our sensor in real time when the object with gradually changing temperature was 

repeatedly contacted and separated from the sensor. The dotted graphs of gradually decreasing 

temperature of the hot object (Figure 3.10a) and increasing temperature of the cold object (Figure 

3.10b) are highly coincident with the gradually changing graphs of corresponding pyroelectric signals, 

respectively. Moreover, pyroelectric output signals appear even in non-contact mode, which depends 

on the distance between the sensor and thermal source (Figure 3.11). Pyroelectric output signals 

highly decrease in non-contact (0.5 cm) than contact mode (0 cm), and further decrease with the 

increased distance up to 2 cm. In addition, our pyroelectric sensors exhibit high sensitivities of 0.38 

and 0.27 nA ℃-1 in cooling and heating states, respectively (Figure 3.9e), which are competitive with 

those sensitivities of previous multimodal sensors (Table 3.2). We notice that the pyroelectric 

sensitivity and response time are different in heating and cooling states, which can be attributed to the 

temperature dependent atomic and molecular motions of polymer chains at different temperatures 

during heating and cooling processes.225-227 To verify the signals induced by pyroelectric effects of 

polarization-tuned P(VDF-TrFE) films, pyroelectric output signals were compared for different 

combinations of devices (Figure 3.12). Compared to the standard sensor composed of positively and 

negatively polarized P(VDF-TrFE) films as a bottom and top components, respectively (Figure 3.12a-

c), the device with both non-polarized films shows negligible output signals (Figure 3.12d-f). When 

the connection of electrode polarity is switched (Figure 3.12g-i) or when the device has an opposite 

composition with negatively and positively polarized P(VDF-TrFE) films as a bottom and top 

components, respectively (Figure 3.12j-l), opposite directional output signals were observed 
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compared to ones from the standard devices. Therefore, the possible artifacts from the measurement 

system can be ruled out.  

To further investigate the inversely polarized P(VDF-TrFE) films, the triboelectric and pyroelectric 

output performances were compared from the devices composed of different combination of non-

polarized (0), positively (+) and negatively (−) polarized P(VDF-TrFE) films (Figure 3.13a). Figures 

3.13b-c and 3.14a-b show triboelectric output current and voltage depending on the device 

combinations, respectively. Compared to the negligible outputs (~22 nA, ~0.9 V) for the device with 

both non-polarized films (0/0), the device with inversely polarized films (−/+) exhibits ~106 and ~126 

times higher output current (~2.4 μA) and voltage (~111 V), respectively. This result can also be 

confirmed by the analysis of surface potential change before and after the contact of different 

combinations of P(VDF-TrFE) films (Figure 3.15). There were negligible (ΔV = − 0.07 V) or small 

(ΔV = + 0.92 V) surface potential changes for the contact between non-polarized films (Figure 3.15a) 

and negatively polarized films (Figure 3.15b), respectively. On the other hand, the contact between 

oppositely polarized films induced noticeably large change of surface potential (ΔV = + 9.4 V) 

(Figure 3.15c). Pyroelectric output performances also show similar trends depending on the device 

combinations (Figures 3.13d, e and Figure 3.16). The device with inversely polarized films (−/+) 

exhibits noticeably enhanced output current and pyroelectric coefficient (4.7 nA, 66.9 pC/cm2K), 

which are ~12 and ~2230 times higher than those (0.4 nA, 0.03 pC/cm2K) for the device with both 

non-polarized films (0/0). 
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Figure 3.7. Triboelectric working mechanism and output performances of the inversely polarized 

P(VDF-TrFE) based sensor. (a) Schematic illustration of triboelectric charge generation and electron 

flow mechanism between the inversely polarized P(VDF-TrFE) films. Triboelectric output (b) current 

and (c) voltage under 98 kPa. (d) Triboelectric output current as a function of time under different 

applied pressures. (e) Linear fitting between the triboelectric current variations and the applied 

pressure (98 Pa to 98 kPa). 
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Figure 3.8. Evaluation of surface charge tuned P(VDF-TrFE) based triboelectric sensor for self-

powered force sensing and output power performances. (a) Triboelectric output voltage as a function 

of time under different applied pressures. (b) Linear fitting between the triboelectric voltage variations 

and the applied pressure (98 Pa to 98 kPa). (c) Triboelectric output variations of current density, 

voltage, and power density with an external load resistance from 103Ω to 109 Ω. (d) Rectified 

triboelectric voltage connected with rectifier and the inset image of capability for lighting LED driven 

by self-powered triboelectric sensor. 
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Table 3.1. Comparison of triboelectric sensitivity and output performances of the results achieved in 

this work with previously reported self-powered sensors. 

Ref. Major materials Pressure range Sensitivity Output 

PVDF-based 

This 
work 

PVDF-TrFE with 
inverse polarization 

98 Pa ~ 98 kPa 
40 nA, 1.4 V/kPa  

(0.4 μA/N, 14 V/N) 
; 98 Pa ~ 19.6 kPa 

105 V 
3 μA/cm2 

147 μW/cm2 

201 
PVDF-TrFE sponge 

& PDMS 
50 Pa ~ 600 kPa 

0.104 V/kPa 
; 0.05 ~ 5 kPa  

47.25 μW/cm2 

228 

Core-shell fiber 
; PVDF-HFP (shell) 

; PDMS-ion gel 
(core) 

100 kPa~700 kPa 
0.068 V/kPa 

; 100 ~700 kPa 
90 μW/cm2 

229 
PVP & PVDF fiber 
by electrospinning 

200 Pa ~ 1.4 kPa 
0.94 nA, 8.8 V/kPa 

; 200 ~ 800 Pa 

13.2 V 
1.4 μA 

~1.15 μW/cm2 

75 
Porous PVDF/ 

porous PDMS 
< 100 kPa 

0.55 V/kPa 

; Below 19.8 kPa 
~46.7 μW/cm2 

151 
PVDF stitches & 

Nylon 
326 Pa ~ 326 kPa 

0.66 nA, 6.23 mV/kPa 
; 326 Pa ~ 16.3 kPa 

- 

Other polymer-based 

206 Liquid & PDMS < 40N 0.035 nA/N 
3.15 V 
2.5 nA 

7.8 nW/cm2 

230 CNT & PDMS - 1 V/N 
60 V 

180 nA 
1.7 μA/cm2 

231 ITO & PDMS 0.3 ~ 429 kPa 2.82 mV/kPa 
1.6 V 

47.3 μA/cm2 
0.13 μW/cm2 

196 
Cu on PDMS 

& PTFE 
< 40N 0.04 μA/N, 0.5 V/N 

25 V 
1.3 μA 

2.45 μW/cm2 

207 Al & PDMS 40 ~ 140 N 28 mV/N 
90 V 
9 μA 

205  
PDMS 

(single mode) 
0.6 Pa ~ 30 MPa 

6 MPa-1 
; 0.6 Pa ~ 200 kPa 

- 

72 PET & PDMS 13 mPa < - 
18 V 

~0.13 μA/cm2 
~2.34 μW/cm2 

232 
FEP 

(single mode) 
1 ~ 250 kPa 

2.79 V/kPa 
; < ~10 kPa 

- 
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233 
FEP  

& foreign object 
< 10kPa 

44 V/kPa 
; Below 150 Pa  

50 V  
(10 kPa) 

197 PDMS & Al 1 kPa ~ 80 kPa 0.06 kPa-1 - 

234 PDMS & glass 63 Pa < 25kPa 
0.29 kPa-1 (9.54 V/kPa) 

; 63 Pa ~ 5 kPa 
~30 V  

(4.5 kPa) 

131 PTFE & Nylon 2.5 Pa ~ 6 kPa 
51 V/kPa 

; 2.5 Pa ~ 1.2 kPa; 
~37 V  

(0.8 kPa) 

235 FEP & PDMS < 180 Pa 150 V/kPa 
~70V 

(1 kPa) 
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Figure 3.9. Pyroelectric working mechanism and performances of the inversely polarized P(VDF-

TrFE) based sensor. (a) Schematic illustration of pyroelectric charge generation and electron flow 

mechanism between the inversely polarized P(VDF-TrFE) films. Pyroelectric output currents from (b) 

heating and (c) cooling states. (d) Pyroelectric output current as a function of time under different 

applied temperatures (ΔT) from −20 to 20 ℃. (e) Linear fitting between the pyroelectric current 

variations and the applied temperatures. 
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Figure 3.10. Highly responsive pyroelectric performance under real-time temperature 

gradient. (a, b) Pyroelectric output current as a function of time under gradually (a) decreased 

temperature (5 ℃ < ΔT < 20 ℃) and (b) increased temperature (−20 ℃ < ΔT < −5 ℃). 

 

 

Figure 3.11. Evaluation of the pyroelectric performances of the inversely polarized P(VDF-

TrFE)-based sensors with different distances between the sensor and thermal source. (a) 

Pyroelectric output current as a function of time under different distances. (b) Comparison of 

pyroelectric performances from different distances. 
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Table 3.2. Comparison of multimodal sensing performances of the results achieved in this work with 

previously reported multimodal sensors. 

Ref. Type Major materials Performances Structure 
Simultaneous 

detection 

Zero-

bias 

This 
work 

Pyroelectric 
/Triboelectric 

PVDF-TrFE 

ΔT ± 20 ℃ (3 ~ 43℃) 
0.27 nA/℃ @  ΔT > 0 
0.38 nA/℃ @  ΔT < 0 

Response time 0.16s 

Single 
device 

○ ○ 

224 
Triboelectric 
/Piezoelectric 
/Pyroelectric 

PVDF,  
Ag NWs @ PTFE 

0.11 V/℃ @ 0~58℃ 
Response time 0.53 s 

Single 
device 

○ ○ 

92 
Piezo resistive 
/Piezoelectric 
/Pyroelectric  

PDMS/MWNT 
composite 

-2 ~ 100℃ 
2.93 E-2/℃ 

Single 
device 

○ Ｘ 

11 
Piezoelectric 

/Capacitive 

CNT micro yarn, 

Ecoflex, PDMS 
- 

Single 

device 
○ Ｘ 

141 Thermo-conductive 
Different R of Pt & 

porous PDMS 
20 ~ 80℃ 

Integrated 
device 

○ Ｘ 

144 
Piezo-resistive 

/ NTC of rGO 

Graphene 
Nanoplatelet, 

PDMS 

25 ~ 100℃ 

4.8 E-4/℃ 

Single 

device 
△a) Ｘ 

143 
Resistive 

/Capacitive 
CVD-Graphene, 

 GO, rGO, PDMS 
0 ~ 95℃ 

Integrated 
device 

Ｘ Ｘ 

236 Thermoelectric rGO porous foam ΔT < 97 ℃ 
Single 
device 

Ｘ ○ 

111 
Pyroelectric 

/Piezoelectric 
/Triboelectric 

PVDF-TrFE 
with different 

solvent 

ΔT 13 ℃ (23 ~ 36℃) 
315.8 mV & 36.29 nA 

Not single 
device 

Ｘ ○ 

223 
Pyroelectric 

/Piezoelectric 

Methylammonium 
lead iodide 

incorporated 

electro-spun PVDF 
nanofibers 

ΔT 38 ℃ (298 ~ 336 K) 

15.7 pA 

Response time ∼1.14 s 

Single 
device 

 

Ｘ ○ 

140 
Pyroelectric 

/Piezoelectric 
/Triboelectric 

Al/PTFE/Cu 
Cu/PVDF/Cu 

ΔT 10 ℃ (25 ~ 35℃) 
Integrated 

device 
 

△b) ○ 

142 

Pyroelectric 
/Piezoelectric 
/Triboelectric 

& Electromagnetic 

shielding 

PVDF  
& Rubber-coated 

antimagnetic 
radiation fabric 

ΔT 27 ℃ (23 ~ 50℃) 
ΔT of finger touch; ~2 ℃ 

Integrated 
device 

△b) ○ 

145 
Pyroelectric 

/Piezoelectric 
BTO/PDMS 

ΔT 2.03 ~ 13.57 ℃  
(27 ~ 40℃) 0.96 nA/℃ 

ΔT −1.8 ~ −7℃  

(19~27℃) 1.33 nA/℃ 

Single 
device 

△c) ○ 

a) Simultaneous detection is possible, but output signals are overlapped because of same directional signal. So, 

peak deconvolution is necessary. 

b) Output signal is simultaneously responsive to applied stimuli, but it’s hard to distinguish each stimulus. 

c) Simultaneous detection is possible, but each stimulus was applied with different frequency. 
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Figure 3.12. Pyroelectric output performances depending on the device compositons. Pyroelectric 

ouput signals under different temperature from (a-c) standard device composed of positively and 

negatively polarized P(VDF-TrFE) films as a bottom and top components, respectively, and (d-f) 

device with non-polarized films. Opposite directional pyroelectric signals from (g-i) reverse 

connection and (j-l) opposite composition of device compared to ones from standard device in 

forward connection. 

  



87 

 

 

Figure 3.13. Comparison of triboelectric and pyroelectric performances from different compositions 

of P(VDF-TrFE) based sensors. (a) Schematic illustration of diverse devices composed with two 

P(VDF-TrFE) films; non poled, negatively poled, and positively poled P(VDF-TrFE) films. Output 

currents of different composition of (b) triboelectric and (d) pyroelectric devices based on surface 

charge-tuned P(VDF-TrFE) films. (c) Triboelectric and (e) pyroelectric output currents as a function 

of time with different composition of devices. 
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Figure 3.14. Comparison of triboelectric performances from different compositions of P(VDF-TrFE) 

based sensors. (a) Output voltages of different composition of triboelectric devices based on surface 

charge-tuned P(VDF-TrFE) films. (b) Triboelectric output voltages as a function of time with different 

composition of devices. 
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Figure 3.15. KPFM of various combinations before and after contact-separation with different 

compositions of P(VDF-TrFE films; (a) both non polarized films, (b) both negatively polarized films 

and (c) oppositely polarized films (negatively and positively poled films). 

 

 

Figure 3.16. Pyroelectric coefficient with different combinations of sensors. 

  

0/0 0/− 0/+ −/+ +/+ −/−

0

20

40

60

80

P
y
ro

e
le

c
tr

ic
 c

o
e
ff

ic
ie

n
t 

[n
C

/c
m

2
K

]

Combination



90 

 

Multimodal sensing performances of polarization-tuned P(VDF-TrFE) based devices under 

simultaneously applied pressure and temperature  

Our device with the simultaneous triboelectric and pyroelectric effects exhibits multimodal 

performances (Figure 3.17). The pressure detection is based on the conduction of contact 

electrification and electrostatic induction during the repeated contact and separation of inversely 

polarized two P(VDF-TrFE) films. Meanwhile, the temperature detection is based on the spontaneous 

polarization change by different dipole oscillation during the repeated contact and separation between 

the sensor and temperature-controlled external object. When the pressure is applied simultaneously 

with the higher temperature than the room temperature (RT), the same direction of electron flow 

arises from the bottom to the top electrodes (Figure 3.17a-ⅰ), followed by both sharp triboelectric and 

gradual pyroelectric signals in the same direction (Figure 3.17b). Meanwhile, when a lower 

temperature than RT is applied simultaneously with the pressure on the sensor, the opposite directions 

of electron flows arise from triboelectric and pyroelectric effects; triboelectric electron flow is 

induced from the bottom to the top electrodes while pyroelectric electron flow is induced from the top 

to the bottom electrodes (Figure 3.17a-ⅱ). Consequently, decoupled bimodal signals are shown with 

sharp triboelectric and gradual pyroelectric signals (Figure 3.17c). Due to the different response time 

of triboelectric and pyroelectric effects, both signals show different saturation time. The gradual 

pyroelectric signals are cut by the followed next spike triboelectric signals because pyroelectric 

signals have a longer saturation time than the triboelectric signal under the repeated contact-separation 

cycle with 0.5 Hz. Herein, Pc (point in the contact) and Ps (point in the separation) in Figures 3.17b 

and c are cut points by the followed signals from applying and releasing the stimuli, respectively. 

Our sensor can be utilized to differentiate the simultaneously applied pressure and temperature by 

the decoupled signals under the negative temperature change (ΔT < 0) due to the opposite electron 

flow from triboelectric and pyroelectric effects (Figure 3.18a). Figures 3.18b and c show the pressure 

dependent output signal when ΔT is −20 ℃. The triboelectric spike signals increase with the 

increased pressure, while the opposite directional pyroelectric signal is constant under the same 

temperature. Figures 3.18d and e show the temperature dependent output signal under 490 Pa. The 

pyroelectric signals decrease with the decreased absolute value of temperature change (|ΔT|). Here, 

the gap distance between Pc and Ps (Figures 3.17 b and c) can be used to distinguish the applied 

temperature from the simultaneously applied pressure regardless of the sign of ΔT. Figures 3.19 a-c 

and d-f show pressure-dependent output signals under heating and cooling conditions, respectively. 

The spike signals increase as the applied pressure is increased, while the gap distance between Pc and 

Ps is constant under the same temperature change even with a different pressure. Figures 3.20 a-d and 

e-h show heating and cooling temperature-dependent output signals under different pressure. The 
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spike signals change depending on the pressure while the gap distances between Pc and Ps depend on 

the temperature change. Therefore, the simultaneously applied temperature and pressure can also be 

discriminated by the gap distance between Pc and Ps, and the height of spike signals, respectively. The 

ability of our sensor to differentiate the simultaneously applied stimuli without external bias is 

advantageous for sustainable wearable devices compared to previous multimodal devices (Table 3.2). 

 

 

Figure 3.17. Working mechanism of multimodal sensing performance of inversely polarized P(VDF-

TrFE) based sensors. (a) Schematic illustration of both triboelectric and pyroelectric charge generation 

and electron flow mechanism between the inversely polarized P(VDF-TrFE) films. Multimodal output 

currents and enlarged peaks from (b) heating and (c) cooling states under 98 Pa; the gradual 

pyroelectric signals are cut by the followed next spike triboelectric signals. 
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Figure 3.18. Decoupled signals of multimodal sensor under simultaneously applied pressure and 

temperature. (a) Schematic illustration of multimodal sensing of inversely polarized P(VDF-TrFE) 

based sensor. (b-e) Multimodal output currents as a function of time and enlarged each peak to 

respond the simultaneous stimuli; the output currents depending on (b, c) the pressure under −20 ℃ 

(ΔT) and (d, e) the temperature under 490 Pa.  
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Figure 3.19. Pressure-dependence of the multimodal output signals under different temperature 

changes; (a-c) heating and (d-f) cooling. 
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Figure 3.20. Temperature-dependence of the multimodal output signals from (a-d) heating and (e-h) 

cooling process under different pressures.  
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Healthcare and human-machine interface applications  

Our triboelectric sensor is promising for applications in self-powered diagnostic sensors to monitor 

human health in real time. In particular, the high pressure sensitivity of our sensor in the low pressure 

region is advantageous in the monitoring of weak pulse pressure of carotid artery (Figure 3.21a). 

Figures 3.21b and c show the triboelectric output signals for the pulse pressure with three 

distinguishable peaks (P1, P2, and P3). Herein, P1 is the main pulse pressure by the blood flow ejected 

by the contraction of the heart, and P2 and P3 are the reflected wave pressures by the waves reflected 

from the peripheral sites.213 These parameters can be used to extract the radial artery augmentation 

index (AIr = P2/P1) and round-trip time of a reflected wave from the hand periphery (Tr), which are 

related to the arterial stiffness depending on the person’s age.201 When the devices with non-polarized 

PVDF-TrFE films and only electrode are used for pulse pressure detection instead of the device with 

inversely polarized films, the much smaller responsive output signals and negligible noise signals are 

observed, excluding the possible signal artifacts from the measurement system and the environmental 

interference (Figure 3.22). Figures 3.21d and e exhibit the artery pulse signals of a healthy female 

before and after physical exercise. After the physical exercise, the pulse rate increases from ~86 beats 

per minute (BPM) to ~97 BPM and the signal intensity also increases due to the increased cardiac 

output to rapidly supply blood to the activated muscles. The average value of the augmentation index 

(AIr = 0.48) is consistent with the literature data of healthy females in their ages.213-214 AIr value 

decreased to 0.16 after physical exercise (Figure 3.23), which indicates the decreased arterial stiffness 

owing to the vasodilation of the muscular arteries.213-214 In addition, our polarity-switchable P(VDF-

TrFE) multimodal sensors can simultaneously monitor the pressure and temperature of the fingertip 

touch in real-time (Figures 3.21f-i). When our sensor was forced with different temperatures by warm 

(~29 ℃) and cold (~16 ℃) fingers (Figures 3.21f and h), the sensor shows temperature-dependent 

output signals (Figures 3.21g and i). The output signal for the cold finger is comprised of two opposite 

directions of peaks (I1, I2), while the output signal for the warm finger is comprised of the same 

direction of two peaks (I1, I2). Herein, the sharp current peak (I1) is a triboelectric signal generated by 

the touching pressure and the gradual current peak (I2) is the pyroelectric signal generated by the 

applied temperature. This result demonstrates that our triboelectric-pyroelectric hybrid sensor is 

promising for applications in wearable artificial intelligent systems and human-machine interfaces. 
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Figure 3.21. Simultaneous monitoring of weak pulse pressure from carotid artery and different 

temperatures of finger touch. (a) Photographic images of real-time detection of pulse pressure with the 

inversely polarized P(VDF-TrFE) based sensor. (b) Real-time monitoring of the pulse pressure and (c) 

expanded pulse wave with three peaks (P1, P2, P3). (d, e) Variation in the pulse pressure waves before 

and after physical exercise. (f, h) Schematic illustrations of finger touch monitoring from warm and 

cold hands with each infrared image of hand. Real-time monitoring of (g) the warm and (i) cold finger 

touches and enlarged responsive signal consisting of two peaks from finger pressure (I1) and 

temperature (I2). 
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Figure 3.22. Validation of the real-time detection of pulse pressure. (a) Comparison of the pulse-

pressure responsive signals from inversely polarized, non-polarized sensors and electrode only; the 

enlarged responsive signals from (b) inversely polarized PVDF-TrFE sensor and (c) non polarized 

PVDF-TrFE sensor. 

 

 

Figure 3.23. Comparison of augmentation index (AIr) before and after physical exercise.  
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3.4 Conclusions 

In summary, we demonstrated an efficient approach to fabricate high-performance triboelectric and 

pyroelectric-based multimodal sensors with the identical contact pair material via modulation of 

triboelectric polarity of the ferroelectric copolymer (P(VDF-TrFE)) by electrical polarization. We 

observed that the aligned direction of dipoles in P(VDF-TrFE) can be easily switchable depending on 

the applied polarization bias direction. Consequently, the device with inversely polarized films has 

noticeably enhanced triboelectric output performance with ~106 and ~126 times higher output current 

and voltage values compared to the device with non-polarized ones. Our triboelectric sensor exhibited 

the pressure sensitivity of 40 nA kPa-1 (1.4 V kPa-1) and output power of 147 μW/cm2, which are the 

highest values among the PVDF-based self-powered sensors. In addition, our sensor with inversely 

polarized films shows remarkable pyroelectric output performance with ~12 times higher output 

current value compared to the device with non-polarized ones. Our sensor displayed the high 

sensitivity of 0.38 and 0.27 nA ℃-1 in cooling and heating states, respectively, which are the 

competitive values among previous temperature sensors. The ultrahigh sensitivity of our sensor can be 

used for the simultaneous monitoring of weak pulse pressure of carotid artery. Moreover, our sensor 

can be utilized for the multimodal finger touch monitoring due to the multimodality in simultaneous 

sensing of pressure and temperature in real time. Our approach on the modulation of triboelectric 

polarity provides a feasible route to remarkably enhance the output performances of multimodal 

devices based on identical contact pair materials even without any additional chemical 

functionalization or mechanical modification on the opposite materials in a contact pair. We anticipate 

that our strategy can also be effective for other ferroelectric materials such as other PVDF-based 

copolymers such as poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), poly(vinylidene 

fluoride-chlorotrifluoro ethylene) (PVDF-CTFE), poly(vinylidene fluoride-trifluoroethylene-

clorotrifluoroethylene) (PVDF-TrFE-CTFE) and inorganic ferroelectric materials (BaTiO3, PZT, etc.). 

In addition, our self-powered sensor provides new approaches for the discrimination of multiple 

pressure and temperature without signal interference, which can find diverse applications in self-

powered multimodal healthcare sensors, artificial intelligent systems and human-machine interfaces. 
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Chapter 4. Alternating PVDF-TrFE/BaTiO3 multilayer nanocomposites for 

enhanced triboelectric performances 

 

4.1 Introduction 

Energy harvesting systems can scavenge abundant energy from solar power, thermal energy, and 

wind energy. Among various energy harvesting systems, triboelectric nanogenerators (TENGs) can 

produce electrical energy from mechanical energy via triboelectrification and electrostatic induction. 

In particular, the TENG generates electrical outputs that are proportional to the intensity of 

mechanical strength, which is beneficial for applications in triboelectric sensors (TESs).75, 171 TESs, 

possessing the merits of high power density, flexibility, low-cost, and an easy fabrication process, 

have been applied to self-powered pressure sensors,75, 168, 237-238 wearable and body-implantable 

electronics,237, 239 and healthcare monitoring devices.151, 240-241 As the triboelectric output performances 

are proportional to the surface charge density, various approaches that increase the surface area or 

triboelectric polarity difference between opposite triboelectric materials through surface physical or 

chemical modifications68, 242-244 have been proposed to increase the surface charge density of materials. 

The use of materials with high dielectric constant (k) could also increase the surface charge density 

owing to the enhanced capacitance of the dielectric layer.147, 245 To further enhance the surface charge 

density, various attempts have been made to use ferroelectric polarization.62, 113, 115-116 Ferroelectric 

materials can improve the triboelectric output performance by enhancing the quantity of triboelectric 

charges on the surface through the coupling of residual dielectric polarization and surface polarization 

during the triboelectrification.246  

Triboelectric devices with ferroelectric organic materials such as PVDF and PVDF-TrFE have the 

advantage of high flexibility and controllable ferroelectric polarization, which leads to high surface 

charge density and thereby improved triboelectric output.114-116 However, triboelectric devices with 

organic dielectrics exhibit a limited output performance owing to their relatively low dielectric 

constants. On the contrary, triboelectric devices containing high-k inorganic materials such as ZnO,247 

CsPbBr3,
248 and TiO2

249 exhibit high output performances, but the brittleness of inorganic materials 

prevents their applications in flexible devices. To address this issue, hybrid organic/inorganic 

materials with the properties of both high dielectric constants and flexibility have been utilized to 

develop high-performance and flexible triboelectric devices.62, 146-147 However, triboelectric devices 

based on composites containing randomly distributed inorganic particles require precise control of the 

quantity of nanoparticles and their dispersion owing to the issue of nonuniform nanoparticle 

agglomeration, which results in deteriorated performances.149  
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The stress-induced polarization of ferroelectric materials can be enhanced by controlling effective 

transfer of applied mechanical stress to them. Previously, stress concentration structures have been 

reported in various micro/nanostructures, including porous structures,250-251 surface microstructures,92 

and composites with mechanically reinforcing fillers.90, 148 For example, Park et al. reported a high-

performance piezoelectric sensor based on well-dispersed BTO NPs in the PDMS polymer matrix.148 

The concentrated stress between the high modulus ceramic nanoparticles and low modulus polymer 

induced a large deformation of the BTO/PDMS composite, thus leading to a high piezoelectric 

potential. In addition, Gao et al. demonstrated vertically-aligned ceramic particles in a 

polydimethylsiloxane (PDMS) matrix.150 The aligned ceramic particles in the polymer matrix 

exhibited a higher stress transfer capability than the randomly dispersed particles, which increased the 

polarization of ferroelectric nanoparticles, generating a high piezoelectric potential.  

Herein, we introduce high-performance TESs based on ferroelectric multilayer composites 

consisting of alternating organic PVDF-TrFE and inorganic BTO NP layers. Compared to random 

composite TESs, the organic/inorganic multilayer structure with alternating soft/hard layers can 

effectively transfer the applied vertical stress to the inorganic nanoparticles, leading to significantly 

improved triboelectric output. Moreover, the multilayered structure provides superior interfacial 

polarization compared to random composites, resulting from the reduced leakage current induced by 

the PVDF-TrFE barrier layers between inorganic BTO NP layers. In addition, the introduction of an 

electrical poling process induces alignment of dipoles in the multilayer ferroelectric films and a large 

surface potential, leading to an additional increase in triboelectric output. 
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4.2 Experimental details 

Preparation of materials 

BaTiO3 nanoparticles (BTO NPs) coated with polyvinylpyrrolidone (PVP) (average size of 200 nm) 

were purchased from U.S. Research Nanomaterials, Inc. The PVP coated BTO NPs were used to 

achieve uniform dispersion of nanoparticles in EtOH.252-253 The Poly(vinylidenefluoride-co-

trifluoroethylene) (70/30) powder was obtained from Piezotech, France. The PVDF-TrFE powder (2 g) 

was dissolved in N,N-dimethylformamide (DMF) solvent (8 g) to prepare a 20 wt% solution. The 

PVDF-TrFE solution was stirred for 2 h at 40 °C to ensure uniform distribution. The PVP-coated BTO 

NPs powder was dispersed in EtOH to prepare a 3 wt% solution using bath-sonication for 1 h.  

 

Fabrication of PVDF-TrFE/BaTiO3 multilayered film 

The PVDF-TrFE/DMF (20 wt%) solution was coated onto the Cu electrode using a bar coater with a 

coating speed of 6 mm/s, where a standard Meyer rod (RSD 3, RD Specialties, Inc.) with a diameter 

of 76 µm was used. To control the thickness of the films, PI tapes were rolled onto the Meyer rod. The 

controlled thickness of the PVDF-TrFE film was measured as approximately 10 µm. After coating, 

the films were dried for 30 min at 35 °C to reduce the surface roughness and then for 30 min at 60 °C 

to remove the remaining DMF. The BTO-PVP/EtOH suspension was coated onto the PVDF-TrFE 

coated Cu electrode using a bar coater with the same coating speed. Here, the Meyer rod RSD 2 with 

a diameter of 51 µm was used. After that, the coating and drying processes of PVDF-TrFE were 

repeated one more time. Then the sandwich structured PVDF-TrFE/BTO films were fabricated. To 

fabricate a multilayered PVDF-TrFE/BTO film, this fabrication process was repeated. Then, the film 

was annealed at 140 °C for 2 h. To align the dipole of ferroelectric material, an electric field of 30 

MV/m was applied to the sample at 80 °C.  

 

Characterization of material and device 

All the experiments were performed under ambient conditions. The crystallinity of the PVDF-TrFE 

film and BaTiO3 NPs were characterized using X-ray diffraction (XRD D8 ADVANCE, Bruker AXS, 

US) and the morphologies of the PVDF-TrFE/BTO multilayered film were investigated by field 

emission scanning electron microscopy (FE-SEM S-4800, Hitachi). A Fourier transform infrared (FT-

IR 670/620, Varian, US) measurement was used to analyze the crystal structure conversion of the β-

phase PVDF-TrFE film. Thermogravimetric analysis (TGA Q500, TA instruments, US) was 

performed to measure the BTO concentration inside the PVDF-TrFE/BTO multilayered film. The 
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triboelectric output voltage and current were measured using an oscilloscope (DPO 2022B, Tektronix, 

US) and source meter (2450-SCPI, Keithley, US), respectively, under the vertical pressure that was 

applied by the pushing tester (JIPT, JUNIL TECH, Korea). The contact area between Al and 

multilayer was 1×1 cm2. The capacitance was measured by an impedance analyzer (4192A, Agilent, 

US) to obtain the dielectric constant. The surface potential was characterized by a scanning Kelvin 

probe microscopy (SKPM MFP-3D, Asylum Research, Santa Barbara, US). The theoretical 

simulation was performed by COMSOL 5.4 multiphysics software. In a measurement system for 

acoustic sound wave detection, we analyzed the characteristics of acoustic sensors using triboelectric 

signals generated from the vibration of films depending on the applied acoustic energy. The sound 

source was applied by a speaker with a different frequency range (0.1–8 kHz) and sound pressure 

level (50–100 dB). The distance between the device and the speaker was fixed at 2 cm.  



103 

 

4.3 Results and discussions 

The schematic in Figure 4.1a shows the multilayered hybrid TESs consisting of alternating PVDF-

TrFE and BTO NP layers. To construct the TES devices, aluminum (Al) and copper (Cu) are used as 

the top and bottom electrodes, respectively. Here, the Al acts as both a top electrode and a positive 

triboelectric material, as it easily donates electrons when it makes contact with the multilayered films. 

The multilayered film is used as a negative triboelectric material, which is fabricated by repetitive 

bar-coating of the PVDF-TrFE solution and BTO NP solution alternatively on the Cu electrode and 

the annealing process (Figure 4.2a). BTO NPs (200 nm) were coated onto the PVDF-TrFE film with a 

surface density of 4.3 % (Figure 4.2b). Figure 4.1b exhibits the cross-sectional SEM image of a 4-

layered PVDF-TrFE film (thickness of ~50 µm) with BTO interlayers. Each PVDF-TrFE layer has a 

regular thickness of approximately 10 µm. The resulting multilayered PVDF-TrFE/BTO film shows a 

high flexibility (Figure 4.1c). The crystalline structures and phases of the ferroelectric PVDF-TrFE 

polymer and BTO NPs were analyzed via XRD and FT-IR measurements. Figure 4.3a shows the 

XRD pattern of the PVDF-TrFE with a single peak at 19.8°, corresponding to the ferroelectric β-phase 

of PVDF-TrFE. The XRD result of PVP-coated BTO NPs indicates a good crystalline structure with a 

ferroelectric tetragonal phase (Figure 4.3b).252, 254 Figure S2c exhibits the FT-IR analysis results of the 

PVDF-TrFE and PVDF-TrFE/BTO films, where three strong peaks at 850 and 1288 cm-1 (CF2 

symmetric stretching), and 1400 cm-1 (CH2 wagging vibration) indicate that both films have strong β-

phase crystals after the annealing process.255-256  

The working mechanism of TESs with the multilayer PVDF-TrFE/BTO film is based on the 

conjugation of triboelectrification and electrostatic induction effects (Figure 4.1d). When the Al 

electrode and PVDF-TrFE/BTO multilayered films are in contact under external forces, the Al surface 

is positively charged, and the multilayered film is negatively charged owing to the triboelectrification 

effect (Ⅰ). Once the external force is released, a potential difference appears between the two materials. 

Owing to the electrostatic induction effect, the free electrons in the bottom electrode will flow to the 

top electrode through the external circuit to compensate for this potential difference, creating an 

output pulse (Ⅱ). This current flow continues until it is neutralized (Ⅲ). When two materials are in 

contact again, the triboelectric potential difference disappears, and the free electrons flow back into 

the circuit, creating an opposite output pulse (Ⅳ). Figure 4.1e exhibits typical output voltage (~45.7 V) 

and current density (~1.92 µAcm-2) signals of the 4-layered TESs.   

Ferroelectric materials such as PVDF-TrFE with a residual dielectric polarization after the electrical 

poling process can improve the triboelectric output performance by enhancing the quantity of 

triboelectric charges on the surface through the coupling of residual dielectric polarization and surface 

polarization during the triboelectrification.246 In addition, BTO NPs with a high dielectric constant 
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additionally enhance the ferroelectric polarization of polymer and increase the capacitance of 

systems.246, 254 To investigate the effect of polarization and the addition of high-k BTO NPs, we 

measured the triboelectric performances of three different types of multilayered films: non-poled 

PVDF-TrFE, poled PVDF-TrFE, and poled PVDF-TrFE/BTO (Figure 4.4a). The current density and 

voltage of poled PVDF-TrFE films are enhanced by approximately 4.5 and 4 times compared to non-

poled PVDF-TrFE films due to the effect of ferroelectric polarization, respectively (Figure 4.4b, c). 

These triboelectric performances match the surface potential analysis (Figure 4.4d), where the poled 

PVDF-TrFE film exhibits a higher surface potential (−2.85 V) than the non-poled PVDF-TrFE film 

(−0.65 V). Because the dipoles of non-poled PVDF-TrFE are randomly orientated, the sum of all 

dipole moments is not large. When an electric field of 30 MV/m is applied on the PVDF-TrFE during 

the poling process, the dipoles are aligned according to the direction of the applied electric field. The 

increased sum of the aligned dipoles provides a high surface potential in the PVDF-TrFE film and 

attract more surface charges to maintain the new equilibrium, leading to the enhanced surface charge 

density.20 When alternating PVDF-TrFE and BTO NP layers are formed into multilayers, the 4-

layered PVDF-TrFE film with BTO interlayers exhibits 2.3 and 1.8 times increased triboelectric 

current density and voltage compared to the one without BTO interlayer due to the high ferroelectric 

polarization induced by the high-k BTO NPs (Figure 4.4b, c). Therefore, the surface potential (−5.15 

V) of poled PVDF-TrFE/BTO film is higher than that of poled PVDF-TrFE film (−2.85 V) (Figure 

4.4d). Owing to the large difference of permittivity between PVDF-TrFE and BTO NPs, the local 

electric field is concentrated in the PVDF-TrFE, resulting in enhanced ferroelectric polarization.257 

Moreover, the high permittivity of BTO NPs increases their ability to attract charges owing to 

increased capacitance of the composite film, leading to the improved triboelectric output 

performance.62, 111  

The triboelectric properties depend on the surface density of the BTO NPs. The surface density of 

BTO NPs can be controlled by the concentration (1, 3, 5 and 7 wt%) of BTO/EtOH solutions (Figure 

4.5). Figure 4.5a shows the SEM images of BTO NP interlayers and the corresponding surface density 

analysis via the ImageJ software program. The average output current density of the multilayered 

PVDF-TrFE/BTO film increases with an increase in the surface density of BTO NPs up to 4.3 %, and 

then decreases up to 11.5 % (Figure 4.5b). The dielectric constant shows the same tendency as the 

output performances (Figure 4.5c). This critical surface density at 4.3% can be attributed to the 

competition between the enhanced dielectric constant with the addition of high-k BTO NPs and the 

increased aggregation with the increase in surface density of BTO NPs. The average size of the BTO 

NPs provides the degree of aggregation of the NPs (Figure 4.5d), which increases with the surface 

density of BTO NPs. The larger aggregation of BTO NPs leads to a decrease in dielectric breakdown 

strength, resulting in a decrease in the dielectric constant.149 Therefore, a high dielectric constant with 
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optimized surface density and homogeneously dispersed BTO NPs with little aggregation enhances 

the triboelectric output performances.   

The number of stacking layers affects the triboelectric property. Figure 4.6a and 4.6b show the 

output current density and voltage of the multilayered PVDF-TrFE films with and without BTO 

interlayers according to the number of stacking layers, which vary from 1 to 7 layers. The output 

performances of multilayered PVDF-TrFE films with BTO interlayers increase up to the 4-layered 

film and then slightly decrease. This result can be attributed to a thickness-dependent dielectric 

constant in the film. The thin dielectric film causes the leakage of current between the top and bottom 

electrodes, leading to a decrease in triboelectric surface charges. While the output is increased with 

increasing thickness of film due to reduced leakage current,258 the output with a thickness above 4 

layers is rather decreased owing to the reduced dielectric constant of the film.245 The dielectric 

constant of the multilayered PVDF-TrFE/BTO film is increased up to that of the 4-layered film owing 

to reduced leakage current and then slightly reduced to a value close to that of the 7-layered film 

(Figure 4.6c, d). Multilayered PVDF-TrFE films without the BTO interlayer displayed a similar 

behavior. These results indicate that the output performances of PVDF-TrFE/BTO films critically 

depend on the thickness of the PVDF-TrFE film. In addition, the output performances of all 

multilayered PVDF-TrFE films with a BTO interlayer were higher than those of those without BTO 

owing to the high-k BTO NPs. The maximum output current density (1.92 µAcm-2) and voltage (45.7 

V) of the 4-layered PVDF-TrFE/BTO film were ~3 times higher than those (0.6 µA, 15 V) of the 1-

layered film (Figure 4.7a, b).  
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Figure 4.1. Multilayered TESs with aligned BTO NPs. (a) Schematic of the multilayered PVDF-

TrFE/BTO based TESs. (b) Cross-sectional SEM image of the 4-layered film. (c) Photo of the 4-

layered PVDF-TrFE/BTO film. (d) Working mechanism of the TESs with multilayered ferroelectric 

materials. (e) Output current density and voltage of multilayered TESs (4-layered film). 
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Figure 4.2. (a) Schematic illustrating the fabrication process of the multilayered PVDF-TrFE/BTO 

film. (b) SEM image of the BTO NPs coated on the PVDF-TrFE layer. 

 

 

 

Figure 4.3. (a) X-ray diffraction (XRD) result of the PVDF-TrFE film with strong β-phase (110/200); 

(b) XRD patterns of the tetragonal BTO NPs; and (c) FT-IR spectrum of PVDF-TrFE and PVDF-

TrFE/BTO film. 
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Figure 4.4. (a) Schematic of the three different TESs: non-poled PVDF-TrFE, poled PVDF-TrFE, and 

poled PVDF-TrFE/BTO. Comparison of (b) the output current density and (c) voltage of the above 

three different types of 4-layered films under a vertical pressure of 98 kPa with 2 Hz. (d) Surface 

potential of different types of films measured by SKPM.  
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Figure 4.5. (a) SEM images of BTO interlayers coated on the PVDF-TrFE layer with a different 

surface density of BTO NPs; (b) output current density and (c) dielectric constant for the 4-layered 

PVDF-TrFE/BTO films with a different surface density. (d) Average size of BTO NPs at different 

surface densities of BTO NPs; ImageJ was used to approximate the surface densities.  

  

103 104 105 106
0

10

20

30

D
ie

le
c
tr

ic
 c

o
n

s
ta

n
t

Frequency (Hz)

 0 %

 1.2 %

 4.3 %

 7.4 %

 11.5 %

0 1.2 4.3 7.4 11.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
u

rr
e
n

t 
d

e
n

s
it

y
 (


A

/c
m

2
)

Surface density of BTO (%)

(d)

(a)

5 µm 5 µm 5 µm 5 µm

11.5 %7.4 %4.3 %1.2 %

1.2 4.3 7.4 11.5
0.00

0.05

0.10

0.15

0.20

A
v

e
ra

g
e

 s
iz

e
 o

f 
B

T
O

 N
P

s
 (


m

2
)

Surface density of BTO (%)

(b) (c)



110 

 

 

Figure 4.6. (a) Output current density and (b) voltage of the multilayered PVDF-TrFE films with and 

without BTO interlayers by increasing the number of layers, which range from 1 to 7. (c, d) Dielectric 

constant of the poled PVDF-TrFE/BTO for a various number of layers.  

 

 

Figure 4.7. Comparison of (a) the output current density and (b) voltage of the 1-layered (black) and 

4-layered PVDF-TrFE/BTO film (red).  
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Systematic investigation of BTO alignment effect on triboelectric properties 

To investigate the effect of BTO NP interlayers on the triboelectric properties, we compared the 

triboelectric performance of three different types of films: single PVDF-TrFE, single PVDF-

TrFE/BTO composite, and multilayered PVDF-TrFE/BTO films (Figure 4.8a). All the films had the 

same thickness as the 4-layered multilayer films (~50 µm). The BTO concentration of the single 

PVDF-TrFE/BTO composite was the same as that of the multilayered PVDF-TrFE with the 6.5 wt% 

BTO NPs as measured by thermogravimetric analysis (TGA) (Figure 4.9). Figure 4.8b shows the 

average output current density and voltage of PVDF-TrFE and PVDF-TrFE/BTO films with single 

composite and multilayer structures. The multilayered PVDF-TrFE/BTO films exhibit an output 

current density of 1.77 µAcm-2 and voltage of 44.5 V, which are 1.5 and 1.3 times higher than those 

(1.2 µAcm-2 and 35.4 V) of the composite film without a multilayer structure. The higher output 

performance of multilayered PVDF-TrFE/BTO films compared to that of the single composite film is 

attributed to the multilayer structure of alternating PVDF-TrFE/BTO layers, which increases the 

stress-induced polarization. In addition, the enhanced local field induced by the effective interfacial 

polarization in the multilayered PVDF-TrFE/BTO film can enhance the output performances. The 

large difference in dielectric constants between the high-k BTO and low-k PVDF-TrFE polymer 

induces interfacial polarization at the interface between BTO and PVDF-TrFE, resulting in 

concentration of the local field in the PVDF-TrFE near the BTO NPs under the triboelectric field. 

Additionally, the interfacial polarization between polymer and particle intensifies the local field in the 

polymer along the electric field direction, resulting in an increase in the ferroelectric polarization of 

the PVDF-TrFE polymer.257, 259 We simulated the resultant electric field distribution under applied 

voltage of 1.5 kV using the finite element method (FEM) based on COMSOL Multiphysics to 

compare the single and multilayer PVDF-TrFE/BTO composite structures (Figure 4.8c and 4.10). In 

this simulation, the film thickness of 50 µm and BTO particle size of 200 nm are used in the 

simulation in both structures, which are the same as in the experimental results.  From the electric 

field distribution in Figure 4.8c, it is evident that compared to the composites with randomly dispersed 

BTO NPs, the multilayer structure with BTO NPs on the coplanar layer provides more efficiently 

connected interfacial charges with closer distances, resulting in a drastically enhanced local field, and 

thus increasing the ferroelectric polarization of polymer.260 In addition, the polarization simulation 

results in Figure 4.11 show that the interfacial polarization in the multilayer (8.4 mC/m2) is higher 

than the single composite (8.06 mC/m2). Therefore, enhanced polarization increases the dielectric 

constant of the multilayered film. Figure 4.8d shows the dielectric constant versus the frequency for 

different films. While the PVDF-TrFE/BTO films show a higher dielectric constant (15.9 at 10 kHz) 

than the PVDF-TrFE film (13.9 at 10 kHz) due to the high-k BTO NPs, the multilayered PVDF-

TrFE/BTO film exhibits the largest dielectric constant (17.06 at 10 kHz) owing to the alignment and 
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closer distance of BTO NPs on the coplanar layer in the multilayered structure.260 In order to 

understand the effect of particle distribution on dielectric constant, we simulated the capacitance of 

the single and the multilayer structures of PVDF-TrFE/BTO composites with the same particle 

concentration within the frequency range of 102–105 Hz (Figure 4.12). The simulated capacitance of 

a multilayered PVDF-TrFE/BTO film (101.2 pF at 102 Hz) is found to be higher than that of a single 

PVDF-TrFE/BTO composite (89.7 pF at 102 Hz). In addition, the polymer interlayers between 

inorganic NP layers in multilayered films enhance the breakdown strength owing to the reduced 

leakage current in the insulating polymer layers, resulting in higher dielectric property than that of 

single composite (Figure 4.8a, d).257, 259 In this multilayer structure, the interfacial charges effectively 

trap the injected electrons from the metal electrode, preventing the leakage current and enhancing the 

dielectric breakdown strength.259 However, in random composites, when more than three particles 

form a chain with the direction aligned in the external field direction, the local field is further 

enhanced and form hot spots, which lead to the electron pathway for electron tunneling or conduction 

and decrease the dielectric breakdown strength of random composites. Therefore, the multilayer 

structures exhibited lower dielectric loss than the single composite with random NP dispersion (Figure 

4.13).  

The multilayered PVDF-TrFE/BTO films with alternating soft and hard layers can enhance the 

stress transfer and concentration around the BTO NPs. Due to the large difference in Young’s moduli 

between the polymer and ceramic materials, the localized stress can be concentrated at the interface 

between two dissimilar materials, inducing an effective stress-induced polarization. In multilayered 

structures, the vertical stress is effectively transferred to the BTO NP coplanar layers owing to their 

horizontally aligned structure, efficiently enhancing the stress-induced polarization, resulting in the 

formation of increased surface potential in the PVDF-TrFE/BTO film. The enhanced stress-induced 

polarization in multilayer structures can be confirmed by comparing the piezoelectric property, which 

is dominantly affected by the stress-induced polarization.92, 125 For the piezoelectric devices (Figure 

4.14a), the bottom surface of the film is attached on the Cu electrode, and the top surface of the film is 

deposited with the Pt electrode. The ferroelectric films with oriented dipoles produce the piezoelectric 

potential under the external pressure, inducing electron flow between two electrodes to balance the 

piezoelectric potential difference. Figure 4.14b exhibits the piezoelectric output current density of 

three different films. The PVDF-TrFE films including the BTO NPs exhibit higher output 

performance than the pure PVDF-TrFE films owing to the high piezoelectric properties of BTO NPs. 

On the other hand, the multilayer PVDF-TrFE/BTO films show higher output current density (8 

nAcm-2) than the output (1 nAcm-2) of single PVDF-TrFE/BTO films. These results indicate that the 

alternating soft and hard layers can enhance the stress localization around the BTO NPs, resulting in a 

higher stress-induced piezoelectric potential in the multilayered film than in randomly dispersed BTO 
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NPs under the same external force.  

 

 

Figure 4.8. (a) Schematic of the three different types of samples with the same thickness: a PVDF-

TrFE film, single PVDF-TrFE/BTO composite, and multilayered PVDF-TrFE/BTO film. Comparison 

of (b) the output current density and voltage under a vertical pressure of 98 kPa with 2 Hz. (c) FEM 

simulations of electric field distribution in the single and multilayered PVDF-TrFE/BTO composite 

films under Dirichlet boundary condition. (d) Comparison of the dielectric constant of the three 

different types of films.  
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Figure 4.9. Thermogravimetric analysis (TGA) of the PVDF-TrFE and the PVDF-TrFE/BTO film.  
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Figure 4.10. The contour plot of simulated electric field distribution in the single PVDF-TrFE/BTO 

composite and the multilayered PVDF-TrFE/BTO film having plate electrodes.  

 

 

Figure 4.11. FEM Simulations of interfacial polarization in the single PVDF-TrFE/BTO composite 

and multilayered PVDF-TrFE/BTO film using Gauss’s law under Dirichlet boundary condition. 

 

  

Top electrode

Bottom electrode

Single composite Multilayer MV/m

40

30

20

10

0

50

8

6

4

2

0

mC/m2
Single composite

Multilayer

BTO NP

BTO NP



116 

 

 

Figure 4.12. Simulations of capacitance in the single PVDF-TrFE/BTO composite and multilayered 

PVDF-TrFE/BTO film at frequency ranging from 102–105 Hz. 

  

102 103 104 105

89.69

89.70

89.71

C
a

p
a

c
it

a
n

c
e

 (
p

F
)

Frequency (Hz)

 Single composite

102 103 104 105

88

92

96

100

C
a

p
a

c
it

a
n

c
e

 (
p

F
)

Frequency (Hz)

 Multilayer

Single composite Multilayer



117 

 

 

 

Figure 4.13. Dielectric loss of poled films for pure PVDF-TrFE, single PVDF-TrFE/BTO composite, 

and multilayered PVDF-TrFE/BTO composite films. 

 

 

Figure 4.14. (a) Schematics of the three different types of samples: single PVDF-TrFE, single PVDF-

TrFE/BTO composite, multilayered PVDF-TrFE/BTO. (b) Piezoelectric current density of the three 

different types of films. All the samples had the same thickness. 
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Performances of TESs based on multilayered ferroelectric films  

To validate that the measured electrical current truly comes from the triboelectric effects of 

materials,172 we measured the triboelectric current density according to forward and reverse 

connection modes (Figure 4.15), which resulted in opposite peak signals with the same intensity for 

the forward and reverse connection modes. To evaluate the effect of mechanical pressure on power 

generation ability, we measured the output voltage and current of the multilayered PVDF-TrFE/BTO 

film under different loading pressures. Under the application of mechanical pressure with a constant 

frequency of 2 Hz, the output currents increased with pressure sensitivities of 48.7 nA/kPa (< 9.8 kPa) 

and 10.1 nA/kPa (> 9.8 kPa), respectively (Figure 4.16a). Similarly, the output voltage gradually 

increased with sensitivities of 0.94 V/kPa (< 9.8 kPa) and 0.22 V/kPa (> 9.8 kPa) (Figure 4.16b). Our 

TES device exhibited a competitive pressure sensitivity compared to other thin-film based TESs 

(Table 4.1). Although some papers have reported that TESs have higher pressure sensitivity, they have 

a narrow pressure range and a relatively lower power density.261-262 The multilayered PVDF-

TrFE/BTO film exhibited a high reversibility during the cyclic test of 10,000 times. The current 

density under different pressure remains constant without any degradation (Figure 4.17). We further 

investigated the energy harvesting performances of TESs. For loading resistance from 1 kΩ to 750 

MΩ, the current density signal decreased and the voltage increased with increasing load resistance 

(Figure 4.16c). As a result, the output power density reached the maximum value of 29.4 µWcm-2 at a 

load resistance of 100 MΩ (Figure 4.16d). The power density of our TES is comparable with the other 

thin-film based TESs (Table 4.1). For practical applications of the TESs, we connected a commercial 

rectifier to the TESs to convert the AC voltage into a DC voltage output, and a commercial green 

emission light-emitting device (LEDs) is connected to the rectifier. The rectified output voltage is 

displayed in Figure 4.18a. The periodic vertical force turns on the green LED light by using the 

rectified electricity (Figure 4.18b). 
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Figure 4.15. Schematic and output current density of the TESs (a) in the forward connection and (b) 

in the reverse connection. 
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Figure 4.16. (a) Output current and (b) voltage of the four-layered PVDF-TrFE/BTO film depending 

on the applied pushing force up to 98 kPa. (c) Output voltage and current density at loading 

resistances ranging from 1 kΩ to 750 MΩ. (d) Optimized maximum output power density at 100 MΩ.  
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Table 4.1. Summary of thin-film based triboelectric sensors and their pressure sensitivities. 

Ref. Major materials Pressure sensitivity Pressure range 
Power density  

(µW cm-2) 

241 Latex membrane, FEP 0.04 V kPa-1 3–6.2 kPa – 

197 PDMS, Al  0.06 kPa-1 1–80 kPa – 

231 PDMS, ITO 0.00282 V kPa-1 <428.8 kPa 0.13 

196 
PTFE, Cu-deposited 

hemispheres structured film 
0.5 V N-1  0–40 N 2.45 

207 PDMS, Cu NWs 0.028 V N-1 40–140 N – 

240 
Hybridizing elastomer, 

dielectric film 
0.013 kPa-1 1.3–70 kPa 3.5 

201 
Self-polarized PVDF-TrFE, 

PDMS 

0.104 V kPa-1 (0.05–5 kPa) 

0.055 V kPa-1 (5–60 kPa) 
0.049 V kPa-1 (60–600 kPa) 

0.05–600 kPa – 

205 Patterned PDMS, Al 0.006 kPa-1 0.6–200 kPa – 

263 PDMS, metal layer 
0.414 V N-1 (0–100 N) 

0.204 V N-1 (100–200 N)  
<200 N  11 

262 
PDMS, 

PDMS/CNT nanocomposites 
0.51 V kPa-1 5-450 kPa 7 

75 
Hierarchical PDMS, P(VDF-

TrFE) 

0.55 V kPa-1 (< 19.8 kPa) 
0.2 V kPa-1 

(19.8–100 kPa) 
<100 kPa 46.7 

261 PTFE, ITO 1.75 V kPa-1 10–40 kPa 16 

This 

work 

Multilayered PVDF-

TrFE/BTO, Al 
0.94 V kPa-1 (0.098–9.8 kPa) 

0.22 V kPa-1 (9.8–98 kPa) 
<100 kPa 29.4 
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Figure 4.17. Stability of poled PVDF-TrFE/BTO multilayer film for (a) low-pressure of 0.98 kPa (b) 

medium-pressure of 49 kPa, and (c) high-pressure of 117 kPa. 

 

 

Figure 4.18. (a) Rectified voltage of the four-layered PVDF-TrFE/BTO film and (b) a photograph 

showing the ability of TESs to drive LEDs. 
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Application of multilayered TESs in healthcare monitoring devices 

Our thin-film multilayered TESs with a high sensitivity and flexibility are beneficial for applications 

in self-powered and skin-attachable healthcare devices to detect bio-signals such as carotid and radial 

artery pulse pressures, human breath, and an acoustic wave. Figure 4.19a illustrates the triboelectric 

device structure consisting of the multilayered PVDF-TrFE/BTO film sputtered with a Pt electrode 

and an Al-coated PET film, where the triboelectric outputs are achieved by contact and separation 

between Al and the multilayered films. The polyimide (PI) tape as a spacer is attached to each side of 

the film to separate the two contact surfaces. The TES detects the radial artery pressure on the wrist, 

the carotid artery pressure on the neck and the human breath pressure on the nostrils. In Figure 4.19b, 

the periodic electrical signals show a heart rate of 80 beats/min. In addition, three distinct peaks of P1, 

P2, and P3 are observable, where P1 is the pulse wave, P2 and P3 are the reflected wave from the hand 

and lower body, respectively.264-265 From these parameters, we obtained an artery augmentation index 

(AIr = P2/P1) of 0.4 and a radial diastolic augmentation index (DAI = P3/P1) of 0.2, which are similar to 

that of a healthy 25-year-old woman.213 In addition, our sensor can accurately recognize the carotid 

artery pressure and human breath. In Figure 4.19c, distinct peaks of P1 and P2 provide a pressure 

augmentation index (PAI = (P2−P1)/(P2−P0)). The PAI increases linearly with age, providing 

information about cardiovascular conditions. The PAI value obtained was that of the healthy 25-year-

old woman (PAI =−2).266 For repeated human breathing, we observed periodical opposite direction 

peaks indicating inspiration and exhalation (Figure 4.19d). The multilayered film and Al-coated PET 

film contact with each other and generate the output via airflow during the inspiration. Then, the 

opposite direction peak appears due to the separation process during the exhalation. These results 

indicate that our TES has a great potential for applications in health monitoring devices.267 

Multilayered TESs with the capability of high-frequency stimuli detection can be used for flexible 

acoustic sensors (Figure 4.19e). We compared the output voltage with three different types (non-poled 

PVDF-TrFE, poled PVDF-TrFE, and poled multilayered PVDF-TrFE/BTO films) of sensors in the 

frequency range from 100 Hz to 8 kHz (Figure 4.19f). All sensors have a maximum output voltage at 

a resonance frequency of 400 Hz. Similar to the triboelectric output performances, the poled 

multilayered PVDF-TrFE/BTO sensor exhibits a higher output voltage than the non-poled and poled 

PVDF-TrFE sensors. When the sound source of a “Triboelectric sensor” is applied on the sensor, the 

sound waveform and short-time Fourier transform (STFT) signals of multilayered sensors match well 

with those of the original source compared to other non-poled and poled PVDF-TrFE sensors (Figure 

4.19g). We additionally confirmed the detection of different sound pressure levels (SPL) under a fixed 

frequency of 400 Hz (Figure 4.20). The output voltage of the multilayered TESs gradually increased 

with an increase in SPL. These results suggest that multilayered TESs can find various applications in 

self-powered microphones and voice security systems.  
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Figure 4.19. (a) Schematic of the multilayered PVDF-TrFE/BTO TES device. Current signals and 

photographs of the multilayered TESs in response to (b) radial artery pressure on the wrist and (c) 

carotid pulse pressure on the neck. (d) Current signals and photographs of the multilayered TESs in 

response to human breath on the area below the nose. (e) Measurement system for acoustic sound 

wave detection. (f) Voltage signals of three different types of TESs as a function of a sound frequency. 

(g) Time-dependent sound waveforms and short-time Fourier transform (STFT) signals of the sound 

source (“Triboelectric sensor”) and three types of TES: non-poled and poled PVDF-TrFE TES, and 

poled PVDF-TrFE/BTO TES.  
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Figure 4.20. Voltage signals of a poled multilayered PVDF-TrFE/BTO sensor as a function of sound 

pressure level. 
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4.4 Conclusions 

We developed high-performance triboelectric devices through the structural design of ferroelectric 

multilayers with alternating PVDF-TrFE and BTO NP layers for enhanced polarization and stress 

concentration effects. The output performances of the TESs with alternating organic/inorganic 

ferroelectric multilayers were largely increased by the large stress-induced polarization and enhanced 

dielectric constant of ferroelectric multilayers. The ferroelectric multilayers exhibited an enhanced 

dielectric constant (17.06) compared to those of pure PVDF-TrFE films (13.9) and single PVDF-

TrFE/BTO composites (15.9) at 10 kHz. Consequently, the multilayered TESs exhibited 2.3 and 1.5 

times increased triboelectric current density compared to those pure PVDF-TrFE and PVDF-

TrFE/BTO composites without a multilayer structure, respectively. The multilayered TESs exhibited a 

high pressure sensitivity of 0.94 V/kPa (48.7 nA/kPa) and power density (29.4 µWcm-2). For practical 

applications of multilayered TESs, we demonstrated flexible healthcare monitoring devices that can 

precisely detect the pulse pressure and human breath; furthermore, we demonstrated a possibility for 

flexible and high-performance acoustic sensors. The design of ferroelectric multilayers with 

alternating soft and hard layers can be an efficient platform for the development of high-performance 

triboelectric devices for applications in self-powered sensors and wearable devices.  
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Chapter 5. Summary and future perspective 

In this thesis, we demonstrate advanced sustainable wearable sensors with better wearing sensation, 

multimodality, and enhanced sensory functions through structure design and modification of material 

characteristics. Moreover, we suggested promising applications such as body motion detection, 

healthcare monitoring, acoustic detection, and simultaneous multiple tactile sensing. In particular, 

triboelectric sensors which do not rely on an external power source have been intensely studied for 

self-powered wearable sensors, leading to advantages of high efficiency, facile fabrication, as well as 

sustainability. In addition, ferroelectric polymers have been used for enhanced wearing sensation, high 

sensitivity and multimodality. Especially, PVDF and its copolymer have been utilized for advanced 

wearable sensors which are developed via structure design (textile based on as-spun fiber, ultrathin 

film, alternating multilayer structure) and property modification (switchable polarity and controlled 

permittivity).  

In Chapter 1, we provided a brief introduction of wearable sensors including definition of wearable 

sensors, recent research progress and potential applications. Especially, we suggested fundamental 

working principles for self-powered sensing systems, and strategies for enhanced performance to go 

along with each principle. In addition, we explained ferroelectric polymer which is promising mateiral 

for high performance wearable sensors in terms of fundamental characteristics, functionality, and 

potential uses.  

In Chapter 2, PVDF-stitch-based triboelectric sensors were demonstrated by using a sewing machine 

for the practical uses of wearable sensors. Due to the all-stitched structures, PVDF stitch sensors 

exhibited high mechanical properties including flexible, light weight, comfortable, and wearable 

forms. Furthermore, the sensing performances were stable without significant decrease after tens of 

times repeated washing cycle, which provides the possibility for practical uses. The proposed PVDF 

stitch sensor can detect and distinguish various hand gestures, body motions, and pulse pressure in 

real time. Our PVDF stitch sensors can be easily fabricated onto commercial fabrics using a sewing 

machine. Therefore, our suggested strategy can be readily extended for other functional applications 

when integrating with diverse stitch patterns, and functional materials, paving a new way for the facile, 

low-cost and large-scale fabrication of self-powered wearable sensors in commercial clothes and 

garments. 

In Chapter 3, we provided an efficient strategy for high-performance triboelectric and pyroelectric-

based multimodal sensors via modulation of triboelectric polarity of the ferroelectric copolymer by 

electrical polarization. Compared to conventional triboelectric devices, identical material was used as 

the contact pair materials, which is attributed to the switchable triboelectric polarity resulting from the 

aligned dipole direction in P(VDF-TrFE) depending on the applied polarization bias direction. 
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Consequently, the device with inversely polarized films has noticeably enhanced triboelectric and 

pyroelectric output performances compared to the device with non-polarized ones. Our sensor can be 

utilized for the monitoring of weak pulse pressure and simultaneous tactile detection under multiple 

stimuli without interference signals. Our strategy provides a feasible route to remarkably enhance the 

output performances of multimodal sensors based on identical material via modulation of triboelectric 

polarity without any additional chemical functionalization or mechanical modification on the opposite 

materials in a contact pair. 

In Chapter 4, we demonstrated high performance triboelectric sensors through the novel design of 

structure with alternating P(VDF-TrFE) and BTO NP layers for enhanced polarization and stress 

concentration effects. Consequently, the output performances of P(VDF-TrFE)/BTO NP multi-layer 

structures were noticeably increased, which is attributed to the large stress-induced polarization and 

enhanced dielectric constant of ferroelectric multilayers. Due to the high pressure sensitivity of 0.94 

V/kPa (48.7 nA/kPa) and power density (29.4 µWcm-2), we demonstrated the flexible healthcare 

monitoring for pulse pressure as well as respiration. Moreover, our sensor can be used for acoustic 

sensing, resulting from high flexibility and sensitivity. Our strategy provides a novel design of 

ferroelectric multilayers with alternating soft and hard layers, which can be an efficient platform for 

the development of high-performance triboelectric devices for applications in self-powered sensors 

and wearable devices 

Overall, this thesis suggested the strategy for high performance self-powered wearable sensors with 

enhanced wearing sensation, high sensitivity, high stability/durability, and multimodality without 

signal interference, resulting from a unique structure design and facile approach for material 

characteristic modification. For the proof-of-concept, we successfully showed our wearable sensors to 

various applications such as body motion monitoring, real-time gait pattern monitoring, healthcare 

monitoring, acoustic sensing, and simultaneous multiple tactile sensing. We believe that our research 

will contribute to improving the technical advancement in wearable electronics which can be utilized 

in various practical applications for smart life and wellness. 
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