54 research outputs found

    Energy aware hybrid flow shop scheduling

    Get PDF
    Only if humanity acts quickly and resolutely can we limit global warming' conclude more than 25,000 academics with the statement of SCIENTISTS FOR FUTURE. The concern about global warming and the extinction of species has steadily increased in recent years

    Energy-Aware Multi-Objective Job Shop Scheduling Optimization with Metaheuristics in Manufacturing Industries: A Critical Survey, Results, and Perspectives

    Get PDF
    In recent years, the application of artificial intelligence has been revolutionizing the manufacturing industry, becoming one of the key pillars of what has been called Industry 4.0. In this context, we focus on the job shop scheduling problem (JSP), which aims at productions orders to be carried out, but considering the reduction of energy consumption as a key objective to fulfill. Finding the best combination of machines and jobs to be performed is not a trivial problem and becomes even more involved when several objectives are taken into account. Among them, the improvement of energy savings may conflict with other objectives, such as the minimization of the makespan. In this paper, we provide an in-depth review of the existing literature on multi-objective job shop scheduling optimization with metaheuristics, in which one of the objectives is the minimization of energy consumption. We systematically reviewed and critically analyzed the most relevant features of both problem formulations and algorithms to solve them effectively. The manuscript also informs with empirical results the main findings of our bibliographic critique with a performance comparison among representative multi-objective evolutionary solvers applied to a diversity of synthetic test instances. The ultimate goal of this article is to carry out a critical analysis, finding good practices and opportunities for further improvement that stem from current knowledge in this vibrant research area.Javier Del Ser acknowledges funding support from the Basque Government (consolidated research group MATHMODE, Ref. IT1294-19). Antonio J. Nebro is supported by the Spanish Ministry of Science and Innovation via Grant PID2020-112540RB-C41 (AEI/FEDER, UE) and the Andalusian PAIDI program with Grant P18-RT-2799

    From metaheuristics to learnheuristics: Applications to logistics, finance, and computing

    Get PDF
    Un gran nombre de processos de presa de decisions en sectors estratègics com el transport i la producció representen problemes NP-difícils. Sovint, aquests processos es caracteritzen per alts nivells d'incertesa i dinamisme. Les metaheurístiques són mètodes populars per a resoldre problemes d'optimització difícils en temps de càlcul raonables. No obstant això, sovint assumeixen que els inputs, les funcions objectiu, i les restriccions són deterministes i conegudes. Aquests constitueixen supòsits forts que obliguen a treballar amb problemes simplificats. Com a conseqüència, les solucions poden conduir a resultats pobres. Les simheurístiques integren la simulació a les metaheurístiques per resoldre problemes estocàstics d'una manera natural. Anàlogament, les learnheurístiques combinen l'estadística amb les metaheurístiques per fer front a problemes en entorns dinàmics, en què els inputs poden dependre de l'estructura de la solució. En aquest context, les principals contribucions d'aquesta tesi són: el disseny de les learnheurístiques, una classificació dels treballs que combinen l'estadística / l'aprenentatge automàtic i les metaheurístiques, i diverses aplicacions en transport, producció, finances i computació.Un gran número de procesos de toma de decisiones en sectores estratégicos como el transporte y la producción representan problemas NP-difíciles. Frecuentemente, estos problemas se caracterizan por altos niveles de incertidumbre y dinamismo. Las metaheurísticas son métodos populares para resolver problemas difíciles de optimización de manera rápida. Sin embargo, suelen asumir que los inputs, las funciones objetivo y las restricciones son deterministas y se conocen de antemano. Estas fuertes suposiciones conducen a trabajar con problemas simplificados. Como consecuencia, las soluciones obtenidas pueden tener un pobre rendimiento. Las simheurísticas integran simulación en metaheurísticas para resolver problemas estocásticos de una manera natural. De manera similar, las learnheurísticas combinan aprendizaje estadístico y metaheurísticas para abordar problemas en entornos dinámicos, donde los inputs pueden depender de la estructura de la solución. En este contexto, las principales aportaciones de esta tesis son: el diseño de las learnheurísticas, una clasificación de trabajos que combinan estadística / aprendizaje automático y metaheurísticas, y varias aplicaciones en transporte, producción, finanzas y computación.A large number of decision-making processes in strategic sectors such as transport and production involve NP-hard problems, which are frequently characterized by high levels of uncertainty and dynamism. Metaheuristics have become the predominant method for solving challenging optimization problems in reasonable computing times. However, they frequently assume that inputs, objective functions and constraints are deterministic and known in advance. These strong assumptions lead to work on oversimplified problems, and the solutions may demonstrate poor performance when implemented. Simheuristics, in turn, integrate simulation into metaheuristics as a way to naturally solve stochastic problems, and, in a similar fashion, learnheuristics combine statistical learning and metaheuristics to tackle problems in dynamic environments, where inputs may depend on the structure of the solution. The main contributions of this thesis include (i) a design for learnheuristics; (ii) a classification of works that hybridize statistical and machine learning and metaheuristics; and (iii) several applications for the fields of transport, production, finance and computing

    Aproximações heurísticas para um problema de escalonamento do tipo flexible job-shop

    Get PDF
    Mestrado em Engenharia e Gestão IndustrialEste trabalho aborda um novo tipo de problema de escalonamento que pode ser encontrado em várias aplicações do mundo-real, principalmente na indústria transformadora. Em relação à configuração do shop floor, o problema pode ser classificado como flexible job-shop, onde os trabalhos podem ter diferentes rotas ao longo dos recursos e as suas operações têm um conjunto de recursos onde podem ser realizadas. Outras características de processamento abordadas são: datas possíveis de início, restrições de precedência (entre operações de um mesmo trabalho ou entre diferentes trabalhos), capacidade dos recursos (incluindo paragens, alterações na capacidade e capacidade infinita) e tempos de setup (que podem ser dependentes ou independentes da sequência). O objetivo é minimizar o número total de trabalhos atrasados. Para resolver o novo problema de escalonamento proposto um modelo de programação linear inteira mista é apresentado e novas abordagens heurísticas são propostas. Duas heurísticas construtivas, cinco heurísticas de melhoramento e duas metaheurísticas são propostas. As heurísticas construtivas são baseadas em regras de ordenação simples, onde as principais diferenças entre elas dizem respeito às regras de ordenação utilizadas e à forma de atribuir os recursos às operações. Os métodos são designados de job-by-job (JBJ), operation-by-operation (OBO) e resource-by-resource (RBR). Dentro das heurísticas de melhoramento, a reassign e a external exchange visam alterar a atribuição dos recursos, a internal exchange e a swap pretendem alterar a sequência de operações e a reinsert-reassign é focada em mudar, simultaneamente, ambas as partes. Algumas das heurísticas propostas são usadas em metaheurísticas, nomeadamente a greedy randomized adaptive search procedure (GRASP) e a iterated local search (ILS). Para avaliar estas abordagens, é proposto um novo conjunto de instâncias adaptadas de problemas de escalonamento gerais do tipo flexible job-shop. De todos os métodos, o que apresenta os melhores resultados é o ILS-OBO obtendo melhores valores médios de gaps em tempos médios inferiores a 3 minutos.This work addresses a new type of scheduling problem which can be found in several real-world applications, mostly in manufacturing. Regarding shop floor configuration, the problem can be classified as flexible job-shop, where jobs can have different routes passing through resources and their operations have a set of eligible resources in which they can be performed. The processing characteristics addressed are release dates, precedence constraints (either between operations of the same job or between different jobs), resources capacity (including downtimes, changes in capacity, and infinite capacity), and setup times, which can be sequence-dependent or sequence-independent. The objective is to minimise the total number of tardy jobs. To tackle the newly proposed flexible job-shop scheduling problem (FJSP), a mixed integer linear programming model (MILP) is presented and new heuristic approaches are put forward. Three constructive heuristics, five improvement heuristics, and two metaheuristics are proposed. The constructive heuristics are based on simple dispatching rules, where the main differences among them concern the used dispatching rules and the way resources are assigned. The methods are named job-by-job (JBJ), operation-by-operation (OBO) and resource-by-resource (RBR). Within improvement heuristics, reassign and external exchange aim to change the resources assignment, internal exchange and swap intend changing the operations sequence, and reinsert-reassign is focused in simultaneously changing both parts. Some of the proposed heuristics are used within metaheuristic frameworks, namely greedy randomized adaptive search procedure (GRASP) and iterative local search (ILS). In order to evaluate these approaches, a new set of benchmark instances adapted from the general FJSP is proposed. Out of all methods, the one which shows the best average results is ILS-OBO obtaining the best average gap values in average times lower than 3 minutes

    Two-Stage Vehicle Routing Problems with Profits and Buffers: Analysis and Metaheuristic Optimization Algorithms

    Get PDF
    This thesis considers the Two-Stage Vehicle Routing Problem (VRP) with Profits and Buffers, which generalizes various optimization problems that are relevant for practical applications, such as the Two-Machine Flow Shop with Buffers and the Orienteering Problem. Two optimization problems are considered for the Two-Stage VRP with Profits and Buffers, namely the minimization of total time while respecting a profit constraint and the maximization of total profit under a budget constraint. The former generalizes the makespan minimization problem for the Two-Machine Flow Shop with Buffers, whereas the latter is comparable to the problem of maximizing score in the Orienteering Problem. For the three problems, a theoretical analysis is performed regarding computational complexity, existence of optimal permutation schedules (where all vehicles traverse the same nodes in the same order) and potential gaps in attainable solution quality between permutation schedules and non-permutation schedules. The obtained theoretical results are visualized in a table that gives an overview of various subproblems belonging to the Two-Stage VRP with Profits and Buffers, their theoretical properties and how they are connected. For the Two-Machine Flow Shop with Buffers and the Orienteering Problem, two metaheuristics 2BF-ILS and VNSOP are presented that obtain favorable results in computational experiments when compared to other state-of-the-art algorithms. For the Two-Stage VRP with Profits and Buffers, an algorithmic framework for Iterative Search Algorithms with Variable Neighborhoods (ISAVaN) is proposed that generalizes aspects from 2BF-ILS as well as VNSOP. Various algorithms derived from that framework are evaluated in an experimental study. The evaluation methodology used for all computational experiments in this thesis takes the performance during the run time into account and demonstrates that algorithms for structurally different problems, which are encompassed by the Two-Stage VRP with Profits and Buffers, can be evaluated with similar methods. The results show that the most suitable choice for the components in these algorithms is dependent on the properties of the problem and the considered evaluation criteria. However, a number of similarities to algorithms that perform well for the Two-Machine Flow Shop with Buffers and the Orienteering Problem can be identified. The framework unifies these characteristics, providing a spectrum of algorithms that can be adapted to the specifics of the considered Vehicle Routing Problem.:1 Introduction 2 Background 2.1 Problem Motivation 2.2 Formal Definition of the Two-Stage VRP with Profits and Buffers 2.3 Review of Literature on Related Vehicle Routing Problems 2.3.1 Two-Stage Vehicle Routing Problems 2.3.2 Vehicle Routing Problems with Profits 2.3.3 Vehicle Routing Problems with Capacity- or Resource-based Restrictions 2.4 Preliminary Remarks on Subsequent Chapters 3 The Two-Machine Flow Shop Problem with Buffers 3.1 Review of Literature on Flow Shop Problems with Buffers 3.1.1 Algorithms and Metaheuristics for Flow Shops with Buffers 3.1.2 Two-Machine Flow Shop Problems with Buffers 3.1.3 Blocking Flow Shops 3.1.4 Non-Permutation Schedules 3.1.5 Other Extensions and Variations of Flow Shop Problems 3.2 Theoretical Properties 3.2.1 Computational Complexity 3.2.2 The Existence of Optimal Permutation Schedules 3.2.3 The Gap Between Permutation Schedules an Non-Permutation 3.3 A Modification of the NEH Heuristic 3.4 An Iterated Local Search for the Two-Machine Flow Shop Problem with Buffers 3.5 Computational Evaluation 3.5.1 Algorithms for Comparison 3.5.2 Generation of Problem Instances 3.5.3 Parameter Values 3.5.4 Comparison of 2BF-ILS with other Metaheuristics 3.5.5 Comparison of 2BF-OPT with NEH 3.6 Summary 4 The Orienteering Problem 4.1 Review of Literature on Orienteering Problems 4.2 Theoretical Properties 4.3 A Variable Neighborhood Search for the Orienteering Problem 4.4 Computational Evaluation 4.4.1 Measurement of Algorithm Performance 4.4.2 Choice of Algorithms for Comparison 4.4.3 Problem Instances 4.4.4 Parameter Values 4.4.5 Experimental Setup 4.4.6 Comparison of VNSOP with other Metaheuristics 4.5 Summary 5 The Two-Stage Vehicle Routing Problem with Profits and Buffers 5.1 Theoretical Properties of the Two-Stage VRP with Profits and Buffers 5.1.1 Computational Complexity of the General Problem 5.1.2 Existence of Permutation Schedules in the Set of Optimal Solutions 5.1.3 The Gap Between Permutation Schedules an Non-Permutation Schedules 5.1.4 Remarks on Restricted Cases 5.1.5 Overview of Theoretical Results 5.2 A Metaheuristic Framework for the Two-Stage VRP with Profits and Buffers 5.3 Experimental Results 5.3.1 Problem Instances 5.3.2 Experimental Results for O_{max R, Cmax≤B} 5.3.3 Experimental Results for O_{min Cmax, R≥Q} 5.4 Summary Bibliography List of Figures List of Tables List of Algorithm

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    Many-Objective Genetic Programming for Job-Shop Scheduling

    Get PDF
    The Job Shop Scheduling (JSS) problem is considered to be a challenging one due to practical requirements such as multiple objectives and the complexity of production flows. JSS has received great attention because of its broad applicability in real-world situations. One of the prominent solutions approaches to handling JSS problems is to design effective dispatching rules. Dispatching rules are investigated broadly in both academic and industrial environments because they are easy to implement (by computers and shop floor operators) with a low computational cost. However, the manual development of dispatching rules is time-consuming and requires expert knowledge of the scheduling environment. The hyper-heuristic approach that uses genetic programming (GP) to solve JSS problems is known as GP-based hyper-heuristic (GP-HH). GP-HH is a very useful approach for discovering dispatching rules automatically. Although it is technically simple to consider only a single objective optimization for JSS, it is now widely evidenced in the literature that JSS by nature presents several potentially conflicting objectives, including the maximal flowtime, mean flowtime, and mean tardiness. A few studies in the literature attempt to solve many-objective JSS with more than three objectives, but existing studies have some major limitations. First, many-objective JSS problems have been solved by multi-objective evolutionary algorithms (MOEAs). However, recent studies have suggested that the performance of conventional MOEAs is prone to the scalability challenge and degrades dramatically with many-objective optimization problems (MaOPs). Many-objective JSS using MOEAs inherit the same challenge as MaOPs. Thus, using MOEAs for many-objective JSS problems often fails to select quality dispatching rules. Second, although the reference points method is one of the most prominent and efficient methods for diversity maintenance in many-objective problems, it uses a uniform distribution of reference points which is only appropriate for a regular Pareto-front. However, JSS problems often have irregular Pareto-front and uniformly distributed reference points do not match well with the irregular Pareto-front. It results in many useless points during evolution. These useless points can significantly affect the performance of the reference points-based algorithms. They cannot help to enhance the solution diversity of evolved Pareto-front in many-objective JSS problems. Third, Pareto Local Search (PLS) is a prominent and effective local search method for handling multi-objective JSS optimization problems but the literature does not discover any existing studies which use PLS in GP-HH. To address these limitations, this thesis's overall goal is to develop GP-HH approaches to evolving effective rules to handle many conflicting objectives simultaneously in JSS problems. To achieve the first goal, this thesis proposes the first many-objective GP-HH method for JSS problems to find the Pareto-fronts of nondominated dispatching rules. Decision-makers can utilize this GP-HH method for selecting appropriate rules based on their preference over multiple conflicting objectives. This study combines GP with the fitness evaluation scheme of a many-objective reference points-based approach. The experimental results show that the proposed algorithm significantly outperforms MOEAs such as NSGA-II and SPEA2. To achieve the second goal, this thesis proposes two adaptive reference point approaches (model-free and model-driven). In both approaches, the reference points are generated according to the distribution of the evolved dispatching rules. The model-free reference point adaptation approach is inspired by Particle Swarm Optimization (PSO). The model-driven approach constructs the density model and estimates the density of solutions from each defined sub-location in a whole objective space. Furthermore, the model-driven approach provides smoothness to the model by applying a Gaussian Process model and calculating the area under the mean function. The mean function area helps to find the required number of the reference points in each mean function. The experimental results demonstrate that both adaptive approaches are significantly better than several state-of-the-art MOEAs. To achieve the third goal, the thesis proposes the first algorithm that combines GP as a global search with PLS as a local search in many-objective JSS. The proposed algorithm introduces an effective fitness-based selection strategy for selecting initial individuals for neighborhood exploration. It defines the GP's proper neighborhood structure and a new selection mechanism for selecting the effective dispatching rules during the local search. The experimental results on the JSS benchmark problem show that the newly proposed algorithm can significantly outperform its baseline algorithm (GP-NSGA-III)
    corecore