
Two-Stage Vehicle Routing Problems
with Profits and Buffers

Analysis and Metaheuristic Optimization Algorithms

Von der Fakultät für Mathematik und Informatik

der Universität Leipzig angenommene

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

DOCTOR RERUM NATURALIUM

(Dr. rer. nat.)

im Fachgebiet

Informatik

vorgelegt

von M. Sc. Hoang Thanh Le

geboren am 21.10.1993 in Köthen (Anhalt)

Die Annahme der Dissertation wurde empfohlen von:

1. Professor Dr. Martin Middendorf, Universität Leipzig

2. Professor Dr. Thomas Weise, Hefei University, China

Die Verleihung des akademischen Grades erfolgt mit Bestehen der

Verteidigung am 01.06.2023 mit dem Gesamtprädikat summa cum laude.

Abstract

This thesis considers the Two-StageVehicle Routing Problem (VRP)with Profits andBuffers,

which generalizes various optimizationproblems that are relevant for practical applications,

such as the Two-Machine Flow Shop with Buffers and the Orienteering Problem. Two opti-

mization problems are considered for the Two-Stage VRP with Profits and Buffers, namely

the minimization of total time while respecting a profit constraint and the maximization of

total profit under a budget constraint. The former generalizes the makespan minimization

problem for the Two-Machine Flow Shop with Buffers, whereas the latter is comparable to

the problem of maximizing score in the Orienteering Problem.

For the three problems, a theoretical analysis is performed regarding computational

complexity, existence of optimal permutation schedules (where all vehicles traverse the

same nodes in the same order) and potential gaps in attainable solution quality between

permutation schedules and non-permutation schedules. The obtained theoretical results

are visualized in a table that gives an overview of various subproblems belonging to the

Two-Stage VRP with Profits and Buffers, their theoretical properties and how they are

connected.

For the Two-Machine Flow Shop with Buffers and the Orienteering Problem, two meta-

heuristics 2BF-ILS and VNSOP are presented that obtain favorable results in computational

experiments when compared to other state-of-the-art algorithms. For the Two-Stage VRP

with Profits and Buffers, an algorithmic framework for Iterative Search Algorithms with

Variable Neighborhoods (ISAVaN) is proposed that generalizes aspects from 2BF-ILS as

well as VNSOP. Various algorithms derived from that framework are evaluated in an ex-

perimental study. The evaluation methodology used for all computational experiments in

this thesis takes the performance during the run time into account and demonstrates that

algorithms for structurally different problems, which are encompassed by the Two-Stage

VRP with Profits and Buffers, can be evaluated with similar methods.

The results show that the most suitable choice for the components in these algorithms

is dependent on the properties of the problem and the considered evaluation criteria.

However, a number of similarities to algorithms that perform well for the Two-Machine

Flow Shop with Buffers and the Orienteering Problem can be identified. The framework

unifies these characteristics, providing a spectrum of algorithms that can be adapted to the

specifics of the considered Vehicle Routing Problem.

Acknowledgments

First and foremost, Iwant to expressmygratitude tomy supervisor, Prof. Dr. Martin

Middendorf, for his guidance and advice throughout the years, for the inspiring

discussions with him and for providing an environment that allows me to focus on

research.

Many thanks to mywonderful colleagues from the Swarm Intelligence and Com-

plex Systems Group, to Nicolas Wieseke for helping me with the various troubles

I had over the years, to Özhan Kayacan and Fatma Turna for their advice and for

always listening to my worries, to all the people from the research group who I first

got to know as fellow “Doktoranden”, some of whom I even saw completing their

doctoral degree: Thanks to Tobias Jagla, Deisy Gysi, Tom Hartmann, Felix Brei,

Lisa Fiedler, Dominik Vietinghoff, Daniel Abitz, Stefan Preußner and Jan Witte.

The conversations I hadwith you showedme that I was not alonewithmy struggles

and reminded me not to get too absorbed in my research bubble.

I want to express my gratitude to Bernd Krause for his help and advice during

my time as an undergraduate student and for teaching me many things that I still

use to this day.

A special thanks all of my friends. Whenever I spend time with you, I can take a

break away from research and have fun while still learning new things outside my

area of research.

Also, I want to thank my family. Thanks to my brother Ngoc Le Dang for always

lending an ear when I had problems and for all the laughs we had about the most

trivial of things. And finally, many thanks tomy parents Nguyen ThiMai and Chau

Le Dang for their continued support throughout my life. Without you, I would not

be a part of this world; I would not be in the here and now. Thank you.

Contents

1 Introduction 9

2 Background 13
2.1 Problem Motivation . 13

2.2 Formal Definition of the Two-Stage VRP with Profits and Buffers . . . 16

2.3 Review of Literature on Related Vehicle Routing Problems 23

2.3.1 Two-Stage Vehicle Routing Problems 24

2.3.2 Vehicle Routing Problems with Profits 26

2.3.3 Vehicle Routing Problems with Capacity- or Resource-based

Restrictions . 28

2.4 Preliminary Remarks on Subsequent Chapters 31

3 The Two-Machine Flow Shop Problem with Buffers 35
3.1 Review of Literature on Flow Shop Problems with Buffers 36

3.1.1 Algorithms and Metaheuristics for Flow Shops with Buffers . 36

3.1.2 Two-Machine Flow Shop Problems with Buffers 39

3.1.3 Blocking Flow Shops . 40

3.1.4 Non-Permutation Schedules . 42

3.1.5 Other Extensions and Variations of Flow Shop Problems . . . 43

3.2 Theoretical Properties . 44

3.2.1 Computational Complexity . 44

3.2.2 The Existence of Optimal Permutation Schedules 57

3.2.3 TheGapBetweenPermutationSchedules anNon-Permutation

Schedules . 58

3.3 A Modification of the NEH Heuristic 72

3.4 An Iterated Local Search for the Two-Machine Flow Shop Problem

with Buffers . 74

5

Contents

3.5 Computational Evaluation . 77

3.5.1 Algorithms for Comparison . 77

3.5.2 Generation of Problem Instances 77

3.5.3 Parameter Values . 78

3.5.4 Comparison of 2BF-ILS with other Metaheuristics 79

3.5.5 Comparison of 2BF-OPT with NEH 86

3.6 Summary . 87

4 The Orienteering Problem 89
4.1 Review of Literature on Orienteering Problems 92

4.2 Theoretical Properties . 96

4.3 A Variable Neighborhood Search for the Orienteering Problem 102

4.4 Computational Evaluation . 106

4.4.1 Measurement of Algorithm Performance 106

4.4.2 Choice of Algorithms for Comparison 107

4.4.3 Problem Instances . 109

4.4.4 Parameter Values . 110

4.4.5 Experimental Setup . 110

4.4.6 Comparison of VNSOP with other Metaheuristics 111

4.5 Summary . 116

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers 119
5.1 Theoretical Properties of the Two-Stage VRP with Profits and Buffers 119

5.1.1 Computational Complexity of the General Problem 120

5.1.2 Existence of Permutation Schedules in the Set of Optimal So-

lutions . 120

5.1.3 TheGapBetweenPermutationSchedules anNon-Permutation

Schedules . 126

5.1.4 Remarks on Restricted Cases 135

5.1.5 Overview of Theoretical Results 156

5.2 A Metaheuristic Framework for the Two-Stage VRP with Profits and

Buffers . 164

5.3 Experimental Results . 173

5.3.1 Problem Instances . 173

6

Contents

5.3.2 Experimental Results for Omax R, Cmax≤B 175

5.3.3 Experimental Results for Omin Cmax, R≥Q 181

5.4 Summary . 186

Bibliography 189

List of Figures 211

List of Tables 215

List of Algorithms 217

7

1 Introduction

The term “Vehicle Routing Problem” refers to a variety of combinatorial optimiza-

tion problems that occur in many practical applications and play an important role

in the area of operations research. The general idea common to all of these prob-

lems is that routes need to be planned for a set of vehicles such that certain criteria

(so-called “optimization criteria”) are maximized or minimized.

There exist a variety of performance indicators that can be potentially used as

optimization criteria, such as the travel time, route length, travel cost, number

of used vehicles or vehicle emissions as examples for optimization criteria to be

minimized, or the number of visited customers, the profit from customers or the

coverage of an area by vehicles as examples for maximization criteria. Furthermore,

it is possible that various restrictions (so-called “constraints”) are imposed on the

problem that need to be taken into account, for example limited capacities for

vehicles, length restrictions for routes or time windows that limit the time when

customers are available. This shows that Vehicle Routing Problems can occur in

a variety of forms and with a multitude of additional conditions. Due to the

breadth of this research area, it is not uncommon that review articles for Vehicle

Routing Problems only focus on selected aspects, such as certain types of vehicles

(for example, [175]), vehicle routing problems with certain types of constraints (two

examples being [121, 3]) or routing in a specific application (for example, [154]).

This thesis considers a type of Vehicle Routing Problemwith exactly two vehicles

where the locations that are visited by the vehicles have tasks (which are also called

“jobs”). The work on these tasks is done by these two vehicles in two stages with

each stage taking a certain amount of time. Fully processing both stages yields a

profit, but it is not possible to freely process jobs as potential time limits or budget

constraints limit the number of jobs that can be processed. Or alternatively, it is

possible that routes need to be calculated that take the least amount of time while

collecting a minimum profit. In addition, there is a “buffer constraint” that needs

9

1 Introduction

to be taken into account, which, intuitively speaking, states that there cannot be

too many jobs that have only finished one of the two processing stages. This is

interpreted in the sense that jobs in that state take up space in a “buffer” with

limited capacity.

In the following, this type of Vehicle Routing Problem is referred to as the Two-
Stage Vehicle Routing Problem with Profits and Buffers (or short, Two-Stage

VRP with Profits and Buffers). At first glance, this problem might appear to be

an arbitrarily restricted problem with additional special conditions, but later in

this thesis it is shown that it encompasses various optimization problems that are

actively researched in the literature and important for practical applications, such

as the Orienteering Problem or even the Two-Machine Flow Shop with Buffers,

the latter being a scheduling problem that is not directly connected to vehicle

routing. For this reason, investigating this Vehicle Routing Problem in this thesis

not only aims to improve understanding of the general problem, but also provide

new insights into other problems contained in the Two-Stage VRP with Profits and

Buffers.

To this end, theoretical and empirical analyses are performed in this thesis. On

the theoretical side, the analysis focuses on several aspects that can be informally

stated as follows:

• Is this optimization problem a hard or an easy problem?

• Is it possible to calculate “optimal” solutions when the routes for all vehicles

are identical?

• If that is not the case, howmuch “quality” is lostwhen all vehicles are required

to traverse the same route?

For the two aforementioned special cases of the problem, which are encom-

passed by the Two-Stage VRP with Profits and Buffers and relevant for practical

applications, two algorithms 2BF-ILS and VNSOP are presented in this thesis and

empirically evaluated. Since the Two-Stage VRP with Profits and Buffers contains

other problems, a framework for metaheuristics is proposed from which various

algorithms can be derived. The so-called “ISAVaN” framework generalizes aspects

of 2BF-ILS and VNSOP and can be used to fit an algorithm to the specifics of the

problem. The heuristics developed for the special cases as well as the algorithms for

10

the general Two-Stage VRPwith Profits and Buffers are evaluated using a consistent

methodology in order to demonstrate that algorithmsdeveloped for structurally dif-

ferent problems (that are actually encompassed by the Two-Stage VRP with Profits

and Buffers) can be analyzed using similar methods. This methodology can also be

easily extended due to its general formulation for optimization algorithms of this

type. In short, this thesis aims to contribute new insights into theoretical aspects

as well as new heuristic and empirical methods for this type of Vehicle Routing

Problem.

Parts of this thesis are based on published research of the author, in particular [93,

57, 96, 97]. However, all computational experiments from these works were redone

on a larger scale and their evaluation has been extended to cover additional aspects.

Their results are restructured in a coherent framework, so that this thesis also

aims to illustrate the relationships between these works and the research problems

considered in them.

The following chapters of this thesis are structured as follows. An introduction

to the Two-Stage VRP with Profits and Buffers is given in Chapter 2 where the

problem is formally described and an overview of related Vehicle Routing Problems

is presented. Chapter 3 and Chapter 4 deal with two important special cases of the

problem that are relevant for practical applications and actively researched in the

literature, namely the Two-Machine Flow Shop with Buffer and the Orienteering

Problem. Both of these chapters have a similar structure: First, an overview of

research literature for these problems is given, after which theoretical properties

are analyzed. The analysis focuses on the aspects outlined in the informal questions

above which are further specified in the following chapters. Afterwards, heuristic

algorithms are presented for these problems and evaluated in experimental studies.

Finally, Chapter 5 considers the general case of the Two-Stage VRP with Prof-

its and Buffers. In that chapter, the theoretical analysis is further expanded to

consider additional related aspects, after which the findings are presented in a

systematic overview to illustrate how the theoretical results obtained in this the-

sis are connected. Furthermore, the aforementioned metaheuristic framework for

the Two-Stage VRP with Profits and Buffers is presented and various algorithms

derived from this framework are compared in an experimental study.

11

2 Background

In this chapter, a backgroundon theTwo-StageVRPwithProfits andBuffers is given.

Afterwards, the problem is formally defined and a literature overview regarding

related Vehicle Routing Problems is presented.

2.1 Problem Motivation

In order to gain an intuitive understanding of the problem, it is reasonable to first

provide an informal description. As described in the previous chapter, in the “Two-

Stage VRP with Profits and Buffers” there are 2 vehicles for which routes need to be

planned. On these routes, locations (or “customers”) are visited that are serviced in

two stages (or “steps”), which each stage (as well as the routes between customers)

taking a certain amount of time. The servicing done by the two vehicles is split

between them so that one vehicle can only do the servicing for the first stage and

the other vehicle can only do the servicing for the second stage. It is possible that

both vehicles visit the locations in a different order, but the second servicing stage

at a given location can only be started after the first one has been completed. In

addition, it is assumed that the service for the second stage always takes the same

amount of time at each location.

Completing both stages at a location yields a profit, so it is desirable to collect a

high profit without having the routes for each vehicle take too much time. More

precisely, two problems can be informally stated based on this description:

1. Collect as much profit as possible within a given time budget.

2. Obtain a certain minimum profit in the shortest time possible.

In addition, there is a constraint that is referred to as the “buffer constraint”

in the following. It states that at any point in time there cannot be too many

13

2 Background

customers where only the first servicing stage is done, but not the second. This can

be interpreted in the sense that such customers occupy “space” in a buffer (similar

to a “waiting list” or “waiting space”) with limited capacity and it is not allowed

that the buffer is overfilled.

As mentioned previously, this Vehicle Routing Problem contains various condi-

tions and constraints that appear to be arbitrarily chosen, in particular with respect

to the buffer and the constant servicing times for the second stage. However, vari-

ous interpretations are conceivable to illustrate how these concepts can potentially

occur in an application.

For example, the buffer constraint can also be interpreted as a limited resource that

is shared by both vehicles (or their drivers). This means that servicing a location

(or a customer) during the first stage takes up resources which are regained or

replenished when the service for the second stage is performed, and some services

might have to be delayed if insufficient resources are available. In that sense the

buffer constraint shares aspects from resource allocation problems. Examples for

limited resources of this type can be found in computer networks, where computers

(that correspond to “vehicles” in the Vehicle Routing Problem) perform calculations

or process jobs. In this context, the buffer constraint can refer to a shared memory

between computers or shared computing power on a server cluster that is accessed

by clients.

Another interpretation is from the perspective of financial credit. In this case,

the service for the first stage incurs a certain cost or debt that is repaid at a later

time during the second stage. In this sense, occupying the buffer can be seen as

overdrawing resources and the buffer constraint means that the overdraft cannot

exceed a certain value.

Regarding the restriction that the service for the second stage takes the same

amount of time, it is conceivable in a variety of applications that the second stage

only consists of a routine task that approximately takes the same amount of time

(e.g., routine checks or maintenance services), whereas the service done during

the first stage is specific to the customer or location taking a variable amount of

time (e.g., repair services, consultation or medical treatment). Other examples for

routine tasks can be the packaging of manufactured products, customer billing,

clean-ups or the loading and unloading of objects from the vehicle. Based on these

examples, various application scenarios are conceivable where the Two-Stage VRP

14

2.1 Problem Motivation

with Profits and Buffers plays an important role. Some scenarios are described in

the following to gain an intuitive understanding of the considered Vehicle Routing

Problem.

Apart from the obvious scenario with “customers” being visited by “vehicles”

where the second stage consists of routinework not specific to the customer, another

scenario is connected to the aforementioned computer network. In this case, the

vehicles correspond to two computers with a shared memory (which acts as the

“buffer”). In this example, the first “stage” can be the query of a database and

saving the query results, whereas the second “stage” can be a routine task, such as

the addition of metadata and moving the data to another location outside of the

memory (to free buffer space). The “times to travel between locations” in the original

formulation can correspond to the loading and unloading of different databases for

the queries and the “profits” can be used to represent the importance of queries or

the payment for their processing.

Alternatively, when using the aforementioned example with computing power,

the client responsible for the first stage (the “first processing step”) allocates re-

sources from a server cluster to perform computing tasks, whereas another com-

puter checks the validity of the results and deallocates these resources (the second

stage) so that they can be used for different tasks. In this scenario, it is not hard to see

the the buffer with limited capacity corresponds to the server cluster where it is not

allowed that more resources are allocated than available. The “travel times between

customers” can correspond to loading or preparation times for these tasks, whereas

profit values can be used to represent the monetary value or the importance of a

computing task.

Another scenario is conceivable where the first stage corresponds to a vehicle or

a driver performing jobs at a chemical plant where these jobs also lead to waste

products. These unwanted byproducts need to be disposed of by a second vehicle

before the amount of waste products exceeds a limit set by regulations. This reg-

ulation corresponds to the buffer constraint, the travel times to the driving times

between locations and the profits can represent the priority of jobs, the payment for

these jobs or the financial compensation for the disposal of waste products.

Practical applications can also be found in special cases that are contained in the

Two-Stage VRP with Profits and Buffers. One such example is the Two-Machine

FlowShopwith Buffers due to its structural similarities (which are further described

15

2 Background

below, see Chapter 3). This problem originally comes from the area of scheduling,

but it also has applications in other areas, such as the streaming of multimedia files

[86, 88, 107, 108]. In this scenario, the “customers” are themedia files, the two stages

are represented by the preloading (also called “prefetching”) and the playback

of media files, respectively, and the buffer corresponds to a limited storage on a

computer. This can also be extended to incorporate times for loading and unloading

different media sources (which form the “times to travel between locations”) and

scores which describe the priority or the cost for downloading media files, in which

case this scenario would also be related to the general Two-Stage VRP with Profits

and Buffers.

The examples given above demonstrate that a variety of practical scenarios are

conceivable for the Vehicle Routing Problem considered in this thesis, including

some that are not directly related to the routing of actual “vehicles”. For this

reason, research on this problem is relevant not only for academic reasons, but

also for practical applications. Furthermore, these examples illustrate different

forms of the Two-Stage VRP with Profits and Buffers in order to give an intuitive

understanding of this problem which is formally described in the following.

2.2 Formal Definition of the Two-Stage VRP with Profits and
Buffers

An instance of the Two-Stage VRP with Profits and Buffers is characterized by

several problem components. First, the basic terms are introduced.

• A directed, complete and simple graph G = (V, E) is given with nodes V =

{v0, v1, . . . , vn} where v0 is the start node (or “depot node”).

• Assigned to every non-depot node vi with i ∈ {1, 2, . . . , n} is a job Jvi (or

“task, customer”) that is processed in two steps (or “two stages”). For the first
stage, a time aJvi

≥ 0 is needed, whereas for the second stage bJvi
≥ 0 time

units are required. As described above, the special case is studied where for

all Jvi it holds that bJvi
= c with a non-negative constant c ≥ 0. If the node

vi underlying the job Jvi is clear from the context, the abbreviations Ji = Jvi ,

aJi = aJvi
, bJi = bJvi

are also used. In the following, the values aJi , bJi are referred

16

2.2 Formal Definition of the Two-Stage VRP with Profits and Buffers

to as processing times (or “service times”). The set of all jobs {J1, J2, . . . , Jn}
is denoted J . Note that graph G contains n + 1 nodes, whereas the number

of jobs is n since the depot node v0 has no job.

• Two vehicles M1, M2 are given which traverse G starting from the depot node

v0. The notation M1, M2 is based on the notion of “machines” or “workers”

in scheduling problems that process jobs or tasks. In the context of the prob-

lem considered in this thesis, M1 and M2 can be considered to be “movable

machines” (or machines for short) that traverse the graph and process jobs

Ji. More precisely, vehicle M1 is only responsible for the first processing step

of a job Ji (which takes aJi time units), whereas M2 is only responsible for the

second processing step of Ji (which takes bJi time units). For this reason, the

values aJi and bJi can be interpreted as “the processing time of job Ji on M1

and M2”, respectively.

• For the processing of jobs Ji by M1 and M2, the following rules must be

followed:

– A machine Mk (k ∈ {1, 2}) needs to be at the node vi in order to start

the processing of the job Ji = Jvi . A machine cannot move while it is

processing a job.

– It is not allowed for oneof themachines M1, M2 to process a job Ji multiple

times. The processing of a job by a machine cannot be interrupted once

it has started (i.e., the processing is non-preemptive).

– For a job Ji the second processing step (the servicing in the second stage)

can only start if its first processing step has already been completed. In

other words, machine M2 can only start processing a job Ji if M1 has

already finished the processing of Ji.

• In addition, every job Ji yields a profit rJi > 0 (or “score”, “reward”). The

profit rJi of a job Ji is only considered to be “obtained” once both processing

steps of Ji are completed. Due to the rules for processing jobs described

above, it is equivalent to say that the profit is obtained when M2 finishes the

processing of Ji.

• The edges eij = (vi, vj) of G are weighted with non-negative values di,j ≥ 0

17

2 Background

where di,j corresponds to the travel time, i.e., the time needed to traverse the

edge eij. Note that the travel time di,j is independent from the machine that

traverses the edge eij.

v1

J1

aJ1 = 4 sJ1 = 4
bJ1 = 5 rJ1 = 2

v2

J2

aJ2 = 3 sJ2 = 3
bJ2 = 5 rJ2 = 3

v0
(start node)

v3

J3

aJ3 = 7 sJ3 = 7
bJ3 = 5 rJ3 = 5

d0,1 = 5 d1,0 = 5

d2,0 = 5

d0,2 = 6

d3,0 = 5

d0,3 = 4

d1,2 = 3
d2,1 = 2

d1,3 = 7
d3,1 = 6

d2,3 = 7

d3,2 = 5

Figure 2.1: Visualization of an example graph with jobs for the Two-Stage VRPwith

Profits and Buffers. The jobs assigned to each node are shown inside

the nodes, along with their processing times aJ , bJ on M1 and M2 as well

as the profits rJ obtained for processing them. The notation “sJ” refers

to the amount of buffer space occupied by a job J. The labels on the

directed edges indicate their travel times.

An example graph for the Two-Stage VRPwith Profits and Buffers with one depot

node, three non-depot nodes and three jobs is shown in Figure 2.1. Next, some terms

are introduced to describe the movement of vehicles M1, M2 in the graph.

• A schedule σ specifies a pair of paths (P1(σ), P2(σ)) through nodes of G
(starting at the depot node v0) describing the sequence in which M1 and M2

visit nodes v and process the corresponding jobs Jv. For a path Pk(σ) =

(v0, v(k)1 , v(k)2 , . . . , v(k)`k
) with k ∈ {1, 2}, it is required that `1 = `2 = ` (i.e.,

both paths contain the same number ` ≤ n of nodes) and that each node

18

2.2 Formal Definition of the Two-Stage VRP with Profits and Buffers

in Pk(σ) occurs at most once in Pk(σ), i.e., it is not possible for Mk to visit

the same node v and process the corresponding job Jv twice. Furthermore,

the sets of nodes visited by M1 and M2 whose jobs are processed must be

equal: {v0, v(1)1 , v(1)2 , . . . , v(1)` } = {v0, v(2)1 , v(2)2 , . . . , v(2)` }. This set is denoted

VisitedNodes(σ) in the following. It is not required for M1 or M2 to return to

the depot node at the end.

• The sequence πk(σ) of processed jobs corresponding to a path Pk(σ) is defined

as πk(σ) = (J
v(k)1

, J
v(k)2

, . . . , J
v(k)`

). Similarly, it is required that the sets of jobs

processed by M1 and M2 are equal:

{J
v(1)1

, J
v(1)2

, . . . , J
v(1)`

} = {J
v(2)1

, J
v(2)2

, . . . , J
v(2)`

} ⊆ J

Note that it is possible that ` ≤ n, which means that only a subset of

the available jobs is processed in σ. The set of processed jobs is denoted

ProcessedJobs(σ).

• In a schedule σ, the time when Mk starts the processing of Ji is denoted by

Sk
Ji
(σ) (starting time). If the considered schedule σ is understood from the

context, the abbreviation Sk
Ji
is used.

• The time when Mk finishes the processing of Ji (completion time) is denoted
by Ck

Ji
(σ). For M1, the completion time for a job Ji is equal to C1

Ji
(σ) = S1

Ji
+ aJi ,

whereas for M2 it can be calculated using the formula C1
Ji
(σ) = S2

Ji
+ bJi . The

notation Ck
Ji
is also used in the following if the considered schedule σ is clear

from the context.

• Using this notation, the condition that M2 can only process jobs which have

been completed on M1, can be expressed as S2
Ji
(σ) ≥ C1

Ji
(σ). Note that S2

Ji
(σ) =

C1
Ji
(σ) is allowed which means that M2 immediately starts the processing of

Ji after Ji has been finished on M1.

• A schedule σ is valid if the starting times and completion times specified by

σ satisfy the rules described above for the processing of jobs.

• A schedule σ is a permutation schedule if the paths P1(σ), P2(σ) traversed

by M1 and M2 through the graph G are equal, i.e., they visit the same nodes

19

2 Background

in the same order so that the notation P(σ) can be used instead of P1(σ) or

P2(σ). This also implies that the sequences π1(σ), π2(σ) of jobs processed by

M1 and M2 are equal, in which case the notation π(σ) is used to refer to the

order of jobs on M1 and M2.

In order to describe the constraints of this problem, the notion of a buffer is

introduced. As outlined in the examples presented in the previous section, the

buffer can correspond to various concepts, such as a shared pool of resources with

limited capacity, computational resources (e.g., a sharedmemoryor a server cluster),

regulations imposed on byproducts generated during the processing of jobs, or even

overdraft limits on bank accounts, depending on the considered application.

• There is a buffer with limited capacity Ω which is occupied by jobs Ji and the

amount of buffer space taken by Ji is denoted sJi . Regarding the duration in

which a job takes up space in the buffer, two buffer models are considered.

• In the intermediate buffer model, a job Ji takes up buffer space when it

finishes its processing on M1 without immediately starting its processing on

M2. It leaves the buffer when M2 starts to process Ji. Formally, buffer space

is occupied from C1
Ji
until S2

Ji
. If M1 finishes a job Ji while M2 is not ready to

process Ji and the free capacity in the buffer is smaller than sJi , machine M1 is

blocked, i.e., the processing is finished, but M1 cannot move to another node

or process other jobs until M2 starts to process Ji or until enough buffer space

is freed to store Ji. In the following, this is indicated by the parameter bufType

(“buffer type”) having the value bufType = intermediateBuffer.

• In the spanning buffermodel, a job Ji takes up buffer space during the entirety

of its processing, i.e., from S1
Ji
untilC2

Ji
. If M1 arrives at a node vi where starting

the processing of the corresponding job Ji would lead to the buffer capacity

being exceeded (and where Ji is the next job to be processed in the schedule),

M1 is forced towait until enoughbuffer space becomes available to store Ji. The

corresponding value for the parameter bufType is bufType = spanningBuffer.

• For the values sJi , two choices are common in the literature regarding schedul-

ing problemswith buffers: Onemethod is to interpret the buffer as a “counter”

for the number of stored jobs where Ω is the maximum number of jobs that

20

2.2 Formal Definition of the Two-Stage VRP with Profits and Buffers

can be stored at a time. This corresponds to setting sJi = 1 for all jobs. This

case is investigated in the scheduling literature, e.g., by [191, 200] and [96] and

indicated by the buffer usage parameter bufUsage having the value “sJ = 1”.

The second method for defining sJi is to set this value equal to the processing

times on the first machine, i.e., sJi = aJi for all jobs Ji. The intuition behind

this method is that the “size” of the job Ji is interpreted as being proportional

to the “amount of work” during its first processing stage. Examples for this

choice in scheduling problems are found in [50, 88, 86] and [107]. Using the

parameter bufUsage, this case is indicated by the value “sJ = aJ”.

• A schedule σ is feasible if it is valid and if the buffer capacity is not exceeded

at any time. In the following, it is assumed that only feasible schedules are

considered, so that in the following the term “schedule” refers to feasible

schedules, unless noted otherwise.

• For schedules σ it is assumed in the following that all jobs are processed

“as early as possible”, i.e., if it is possible for Mk (k ∈ {1, 2}) to start the

processing of a job Ji without violating the buffer constraint (and if for Mk the

job Ji is the next job to be processed according to σ), then it is assumed that

Mk immediately starts the processing of Ji.

An example solutionwith the visualization of the processing times and the buffer

usage is shown in Figure 2.2. Using the notation introduced above, the schedule

σ depicted in that figure specifies the paths P1(σ) = (v0, v1, v2, v3) and P2(σ) =

(v0, v2, v1, v3) and the sequence of processed jobs is π1(σ) = (J1, J2, J3) and π2(σ) =

(J2, J1, J3) for M1 and M2, respectively. Note the time intervals in which buffer space

is occupied for the two different buffer models. In the case where a spanning buffer

is used (bottom right in Figure 2.2), note how M1 has to wait before processing

J3 or else the buffer capacity would not exceeded. The jobs processed in σ are

ProcessedJobs(σ) = {J1, J2, J3}, i.e., all available jobs are processed in this example.

21

2 Background

v1

J1

aJ1 = 4 sJ1 = 4
bJ1 = 5 rJ1 = 2

v2

J2

aJ2 = 3 sJ2 = 3
bJ2 = 5 rJ2 = 3

v0
(start node)

v3

J3

aJ3 = 7 sJ3 = 7
bJ3 = 5 rJ3 = 5

d0,1 = 5 d1,0 = 5

d2,0 = 5

d0,2 = 6

d3,0 = 5

d0,3 = 4

d1,2 = 3
d2,1 = 2

d1,3 = 7
d3,1 = 6

d2,3 = 7

d3,2 = 5

0 10 20 30 40

Buffer

M2

M1

Time

J1

J3

d0,1 J1
d1,2 J2

d2,3 J3

d0,2 J2
d2,1 J1

d1,3 J3

0 10 20 30 40

Buffer

M2

M1

Time

J1

J2

J3

d0,1 J1
d1,2 J2

d2,3 J3

d0,2 J2
d2,1 J1

d1,3 J3

Figure 2.2: Top: Visualization of an example route for the instance of the Two-

Stage VRP with Profits and Buffers from Figure 2.1. The blue edges are

the edges traversed by M1, whereas the red edges indicate the edges

traversed by M2. Bottom left: The resulting schedule for the depicted

route in the case of an intermediate buffer with capacity Ω = 10. Bottom
right: Resulting schedule for the same route when a spanning buffer

with capacity Ω = 10 is used.

22

2.3 Review of Literature on Related Vehicle Routing Problems

Finally, some terms regarding the optimization criterion are introduced.

• Given a schedule σ, the total length Cmax(σ) (or makespan) of σ is the time

when M2 finishes the processing of the last job, i.e., Cmax(σ) = maxJ C2
J (σ),

where the maximum is taken over all jobs J in ProcessedJobs(σ). Regarding the

example schedule σ shown in Figure 2.2, its makespan is Cmax(σ) = 39 for

both buffer models.

• The total profit R(σ) (or “total score”, “total reward”, “total value”) of a

schedule σ is the sum over all rewards rJi belonging to the jobs Ji processed

in σ. It is defined as R(σ) = ∑ rJ , where the sum is taken over all jobs J in

ProcessedJobs(σ). In the example schedule σ shown in Figure 2.2, the total

profit of σ is R(σ) = 10.

• Using the terms above, two optimization problems are considered in this

thesis:

– Omax R, Cmax≤B: Given a budget B, find a schedule σ with Cmax(σ) ≤ B
(budget constraint) that maximizes the total profit R(σ).

– Omin Cmax, R≥Q: Given aminimum score Q, find a schedule σ with R(σ) ≥
Q (minimum score constraint) that minimizes the makespan Cmax(σ).

Note that even though these optimization problems have different target criteria,

both entail the problem of selecting a suitable subset of nodes (and jobs) as well as

the problem of calculating a short route through the selected nodes. The concepts

and notation introduced above are used throughout this thesis.

2.3 Review of Literature on Related Vehicle Routing Problems

There already exists a vast amount of literature regarding vehicle routing problems

and their variants. In this section, an overview of literature on vehicle routing

problems related to the Two-Stage VRP with Profits and Buffers is given. This

overview is divided into multiple sections where in each section a different aspect

of the Two-Stage VRPwith Profits and Buffers is considered forwhich relatedworks

are presented.

23

2 Background

2.3.1 Two-Stage Vehicle Routing Problems

An interesting type of routing problem occurs when it consists of two layers that in-

teractwith each other. This property usually occurswhen a vehicle routing problem

is combined with additional aspects that arise in practical scenarios. One exam-

ple is a two-stage problem with time windows for arcs considered by Çetinkaya,

Karaoglan, and Gökçen [30]. The first stage deals with a routing problem from a

“facility” to multiple depots, whereas the second stage is to route vehicles from the

depots to the customers in a tripartite graph. Each stage has its own vehicle fleet and

the timewindows on the arcs cause the two stages to affect each other. This problem

is inspired frommilitary applications where some of the roads are only safe during

daytime, but it can also be applied to routing in public transportation where certain

roads should be avoided during rush hours. They present a mixed-integer linear

program and propose a Memetic Algorithm for this problem.

A similar problem is investigated in [133] where the freight transportation is to

be planned (i) from an origin point to one of multiple depots (that have limited

capacity) and (ii) from a depot to a customer using vehicles with limited capacity.

While it is possible that each vehicle in the first stage transports freight designated

for multiple customers, it is not possible for customers in the second stage to receive

freight from multiple vehicles. In addition, each depot has its own cost factor

and costs are incurred for each freight unit delivered to that depot. The authors

proposemath-heuristics for the cost-minimization problemandpresent inequalities

allowing for cuts in the corresponding mixed linear program.

An interesting application is presented by Shen, Dessouky, and Ordóñez [155]

who consider a routing problem in the scenario of a bio-terrorism emergency. In

their work, the first stage is the “planning stage” where routes are planned in ad-

vance based on stochastic information. The second stage is the “operational stage”

where the emergency occurs, the stochastic information is replaced by concrete

values and the previously calculated routes are to be adapted. The problem is to

minimize the unmet demand, and a Tabu Search is proposed as well as multiple

approximation heuristics for the second stage. A similar application is presented

in [6] which deals with the 2015 earthquake in Nepal (with magnitude 7.8 MW

on the moment magnitude scale) and the logistics for disaster relief. In the first

stage, nodes are assigned to vehicles and different metaheuristics, such as a greedy

24

2.3.1 Two-Stage Vehicle Routing Problems

algorithm or Simulated Annealing are used to calculate paths for each vehicle in

the second stage.

A slightly different, but nonetheless relevant two-stage routing problem is inves-

tigated by Zhong, Hall, and Dessouky [204], where in the first stage “core areas”

of the network are assigned to drivers and in the second stage concrete tours for

each driver are planned on a network with stochastic components that change over

time. This is comparable to a two-step planning procedure presented above [155]

where “general routes” are planned in the first step from which actual routes are

derived in the second step. The optimization problem they consider is to minimize

the number of drivers utilized, the total route duration and route length as well as

the variation of routes over time for each driver, and a two-stage planning algorithm

with Tabu Search is proposed.

Two-stage problems also occur when a vehicle routing problem is combined

with another optimization problem. For example, Bortfeldt and Homberger [22]

consider the combination of three-dimensional packing and vehicle routing where

the number of used vehicles and the traversed distance is to be minimized while

taking loading constraints for each vehicle into account. They develop a two-stage

heuristic that combines routing methods with Tabu Search. Another example is

the combination of production scheduling with a vehicle routing problem in [206].

In this problem, the production of goods is to be scheduled in addition to their

delivery to customers, and a two-stage algorithm is proposed that incorporates a

Genetic Algorithm. A combination with a picking problem from a storage hall is

investigated in [126] and a literature review on similar problems with a focus on

picking problems can be found in [154].

The works presented above show that there are many types of two-stage op-

timization problems related to vehicle routing. However, the two-stage problem

considered in this thesis differs from these works in that there are exactly two “ve-

hicles” and the two stages are formed by their respective routes where nodes vi (or

customers) need to be visited twice before they are considered to be “fully serviced”

(and the corresponding profit rJvi
is collected).

25

2 Background

2.3.2 Vehicle Routing Problems with Profits

The vehicle routing with profits (VRPP) is a variant of the VRP of which many

variations can be found in the literature. In this type of problem profit values are

assigned to the nodes (that, e.g., correspond to customers) and the profit collected

in a tour is integrated into the optimization criterion or the constraints of a problem.

In this section, an overview over two particularly relevant special cases is given.

Related Works with Profit as an Optimization Criterion

In this type of problem the primary optimization criterion is themaximization of the

collectedprofitwithout violating constraints. For example, El-Hajj et al. [66] propose

a Particle SwarmOptimizationAlgorithm (PSO) for aVRPPwhere additional length

constraints are given for segments of each vehicle’s route. Another metaheuristic, a

Differential Evolution algorithm for the VRPP is proposed in [187].

A VRP with vector profits is investigated in [99], where the minimum component

of the total profit vector is to be maximized. According to Lee and Ahn [99], this

problem has applications for the exploration planetary surfaces and the routing

for group tours and they propose a linear programming relaxation and a column-

generation technique to calculate approximate solutions. Another variation is [101]

where orders consist of objects that have to be transported from given pickup

points to given delivery points, with the noteworthy property that orders can be

fulfilled multiple times within a time limit. For this problem, a Genetic Algorithm

is proposed for maximizing the collected profit.

Vidal et al. [186] consider three different VRPswith profits (capacitated profitable

tour problem, VRP with private fleet and common carrier and team orienteering)

and investigate neighborhood structures of these problems. They propose Local

Search algorithms as well as a Hybrid Genetic Algorithm. Two of these problems

(capacitated profitable tour problem and team orienteering) are also investigated in

[12, 11] where a Branch-and-Price algorithm is proposed to calculate approximate

solutions. These two problems are similar in that they consider themaximization of

the collected profit while fulfilling constraints related to the vehicles’ capacities or

their tour lengths, but the capacitated profitable tour problem additionally assumes

that traversing edges in a graph incurs a cost which is subtracted from the collected

profit.

26

2.3.2 Vehicle Routing Problems with Profits

An interesting variation of the VRPP is the “VRPP with consistency constraints”

investigated by Stavropoulou, Repoussis, and Tarantilis [161]. The authors con-

sider the problem where the set of nodes is partitioned into “frequent customers”

(with known profits) and “non-frequent customers” (where profits are only esti-

mated) andwhere routes are calculated over a planning horizonwhile “consistency

constraints” need to be taken into account. These constraints are derived from

the problem of maximizing customer satisfaction and require, for example, that the

same frequent customer is always serviced by the same vehicle. The authors of [161]

list various applications for this problem (and the VRPP in general) and propose an

adaptive Tabu Search for this problem.

A case study for a food importer in Hong Kong is presented in [203] that deals

with a multi-objective VRPP with outsourcing. In this problem, nodes are assigned

to transport companies that each have their own vehicle fleet, and a Local Search

algorithm is developed to minimize the tour costs and maximize the profit of the

transport company that obtains the minimum profit. Another example for an

application regarding blood transportation is presented in [134].

The Prize-Collecting Vehicle Routing Problem

All of the works named above deal with the problem of maximizing profit. A

different, but related problem is to minimize the duration or length of a tour with

the condition that the profit collected must not be lower than a given value. In

the VRP literature this problem is referred to as the Prize-Collecting VRP. Tang
and Wang [170] first introduced this problem based on the Hot Rolling Problem

from the iron and steel industry and proposed an Iterated Local Search. In [27]

a Prize-Collecting VRP is considered where the graph is partitioned into subsets

where in each subset a minimum profit needs to be collected, and a Hybrid Genetic

Algorithm as well as a Branch and Price algorithm are proposed.

Trachanatzi et al. [176] consider the Prize Collecting VRP with a focus on en-

vironmental aspects by incorporating CO2 emissions (that depend on how a ve-

hicle is loaded) into the target criteria and investigate the performance of several

population-based metaheuristics (Firefly Algorithm, Differential Evolution, Parti-

cle Swarm Optimization) for this problem. A multi-objective variant of the Prize-

Collecting VRP is considered in [202] where the length of the route is to be mini-

27

2 Background

mized as well as the number of unvisited nodes, based on data from an iron and

steel production company in China. For this problem an algorithm is presented

that combines Particle Swarm Optimization as well as Tabu Search.

Another scenario for this problem that is inspired by the shipping of small pack-

ages is investigated in [162] where customers (i.e., nodes) can be assigned to sub-

contractors (with a non-linear cost) so that they do not need to be serviced. Stenger

[162] develops a Variable Neighborhood Search for this problem and presents an

extension with multiple depots in [163]. A Variable Neighborhood Search is also

proposed for a Prize-Collecting VRP in [103], based on the scenario of a metal-

cutting machine. The algorithm is compared with a Local Search as well as a

Particle Swarm Optimization algorithm.

The problem of maximizing the profit is similar to the optimization problem

Omax R, Cmax≤B described above for the Two-Stage VRP with Profits and Buffers,

and the problem where a constraint is placed on the collected profit is similar to

Omin Cmax, R≥Q, although some differences should be highlighted: The works named

above for the VRPP consider m ≥ 2 vehicles with their own capacity as well as

“demand” values for each nodewith the additional constraint that the total demand

on a vehicle’s tour cannot exceed its capacity. For the problem considered in this

thesis, there are exactly 2 vehicles, no demand values and instead of capacities for

the vehicles there is a buffer. In addition, it is not possible in the works above to

visit the same node and collect its profit multiple times, whereas for the problem in

this thesis a reward is only connected after a node has been visited by both vehicles

in the order M1, M2.

2.3.3 Vehicle Routing Problems with Capacity- or Resource-based
Restrictions

Various types of the VRP that incorporate limited capacities, storages or buffer-

like components are actively researched. However, different terms are used in the

literature to refer to these concepts. The following overview presents some common

terms and research works that incorporate them into the Vehicle Routing Problem.

28

2.3.3 Vehicle Routing Problems with Capacity- or Resource-based Restrictions

Vehicle Routing Problems with Capacities, Storages and Buffers

In the Capacitated Vehicle Routing Problem (CVRP), each vehicle has a limited

capacity and the amount of capacity used is determined by the nodes visited by

a vehicle. The capacity constraint states that the amount of capacity required for

a vehicle’s tour cannot exceed that vehicle’s capacity. Vehicle routing problems of

this type are common in the literature so that in some cases even the term “Vehicle

Routing Problem” is used to refer to Capacitated VRPs, e.g., [186, 11, 206]. Some of

the worksmentioned in the previous sections also incorporate vehicles with limited

capacities, for example, [6, 12, 101, 30, 206, 155].

The work of Borcinova [21] specifically deals with the Capacitated VRP and

proposes twoMixed-Integer Linear Programmingmodels for this problem. In [167]

an Artificial Bee Colony algorithm is proposed for the Capaciated VRP. A variant

of the CVRP that incorporates environmental aspects (similar to [176] where a

Prize-Collecting VRP is considered) is the work by Faulin et al. [43], where existing

algorithms are adapted so that they incorporate the environmental impact of each

vehicle’s tour.

The two-stage problem [133] mentioned above combines capacitated vehicles

with storages that have limited capacity. The storage is positioned between the

two stages of the problem (delivery from origin to depots and from depots to

customers). The work from Kuhn, Schubert, and Holzapfel [89] is similar to this

in that the delivery is done in two steps via an intermediate depot with limited

capacity. However, in [89] the problem is inspired by a grocery retail scenario

where many orders of small size are delivered from a central depot to retail stores

with limited capacity. For this reason, the batching of orders is investigated in [89]

and a General Adaptive Neighborhood Search algorithm is proposed. The two-

stage problem from Ostermeier et al. [126] mentioned above also incorporates a

storage with limited capacity between the two stages (picking and delivery). They

propose a Variable Neighborhood Search and compare it with 2 heuristics and an

exact solver.

Vehicle Routing Problems with Resource Constraints

Aside from VRPs with limited capacities, problems with limited resources are also

actively researched in the literature. In this type of problem, resources are al-

29

2 Background

located from a (limited or unlimited) pool for each vehicle which are required

for that vehicle’s tour. One of the first works that combines vehicle routing with

inventory allocation is from Federgruen and Zipkin [44]. They consider a VRP

where resources need to be transported to customers whose demand changes over

time. Over-allocating resources incurs storage cost for the depot and the customer,

whereas under-allocating resources causes shortage costs. In this work the prob-

lem of minimizing the total cost is considered and the authors propose interchange

heuristics as well as decomposition procedures for a corresponding Mixed-Integer

Linear Program.

In [17], a framework todescribeVehicleRouting-AllocationProblems ispresented.

In this type of problem, it is possible to assign nodes which are not visited by any

vehicle to other nodes for a given allocation cost. This is based on the problem of

providing medical care services in rural areas where not only the vehicles, but also

the patients (the “customers”) need to travel to other nodes (e.g., larger medical

facilities) by themselves. In addition, the paper presents other applications and

discusses how this problem is connected to other vehicle routing problems.

Hempsch and Irnich [69] consider a VRP with so-called “inter-tour resource

constraints” where the deployed vehicles compete for globally limited resources.

This problem is particularly relevant since the Two-Stage VRP with Profits and

Buffers considered in this thesis also deals with a type of “global” buffer that both

vehicles need to take into account. The authors of [69] propose a “giant-tour”model

where the routes of all vehicles are connected to a long tour as well as “resource-

extension functions” where additional values are added to the arcs of a graph that

describe the usage of resources up to a given point on a route. In addition, they

develop a local search for this type of problem.

However, some differences to the problem considered in this thesis should be

noted: For the Two-Stage VRP with Profits and Buffers, both vehicles need to visit

the same set of nodes and it depends on the vehicle whether the processing of

a job consumes buffer space (M1) or frees buffer space (M2), so adding values to

arcs is not sufficient to model the buffer in the problem of this thesis. In addition,

whether M1 can add a job to the buffer (i.e., whether enough free space is available)

depends on the jobs released from the buffer by M2, so the tours of M1 and M2

constantly interact with each other regarding the available buffer capacity. Due

to this, applying the concept of giant tours and resource-extension functions to

30

2.4 Preliminary Remarks on Subsequent Chapters

the problems considered in this thesis would require a significant extension of the

framework proposed in [69].

Another concept similar to inter-tour resource constraints is investigated in [62]

under the term “resource synchronization”, where resources are shared by all vehi-

cles at the same time. The authors of that work consider a VRP with cross-docking

where vehicles need to pass cross-docking points (also referred to as “transshipment

points” [62]) that allow for resources to be transferred between vehicles. However,

the cross-docking points have a limited capacity which is filled by the vehicles

passing that point so that these locations constitute points where resource synchro-

nization occurs. Cross-docking is extensively researched in the literature and a

review can be found in [181]. For the problem in [62], the authors of that work

adapt an existing matheuristic that incorporates a Large Neighborhood Search.

As can be seen from the works above, the keywords “resource” or “resource

allocation” encompass several types of problems. The problem investigated in this

thesis can also be considered to contain some aspects of resource allocation where

M1 allocates resources (buffer space) from a limited pool (from a buffer with limited

capacity) when it finishes a job (or when it starts to process a job, depending on the

buffer model used).

Finally, it should be noted that the literature overview given in this and the

previous sections only focused on two-stage VRPs, VRPs with profits and VRPs

with capacity- or resource-based constraints, but there exist many other types of

vehicle routing problems that are actively researched. However, they strongly differ

from the Two-Stage VRP with Profits and Buffers considered in this thesis so that

they are not included in the literature overview, but comprehensive reviews of these

and other vehicle routing problems can be found in [3, 121, 175, 185].

2.4 Preliminary Remarks on Subsequent Chapters

Although the Two-Stage VRP with Profits and Buffers and the literature presented

in the previous sections belong to the category of “vehicle routing problems”, it

should be noted that the Two-Stage VRP with Profits and Buffers encompasses

other practically relevant problems that are also actively researched in the literature

not related to vehicle routing. In particular, the Two-Machine Flow Shop Problem
With Buffers and the Orienteering Problem are interesting special cases for the

31

2 Background

optimization problems Omin Cmax, R≥Q and Omax R, Cmax≤B, respectively, since they

have various applications to scheduling and tour planning problems in the industry,

and are already NP-hard problems by themselves that are researched in their own

areas. For this reason, it is reasonable to investigate these problems inmore detail so

that new insights can be gained regarding their characteristics and their relationship

to the Two-Stage VRP with Profits and Buffers as a more general problem.

To this end, the analyses in the following chapters dealing with the special cases

have a similar structure that is briefly described in the following. First, an overview

of the state of research in the area pertaining to a special case is given by present-

ing research works from this area and related problems. Afterwards, theoretical

properties of the optimization problem corresponding to the special case are inves-

tigated. The theoretical questions considered in these sections have already been

briefly mentioned in the introductory section (see Section 1), but using the notation

and the concepts introduced above they can be precisely stated as follows:

• Problem complexity: How hard is the problem from the perspective of com-

putational complexity theory? Do efficiently solvable subcases exist?

• Existence of optimal permutation schedules: Does the set of optimal sched-

ules for an instance of the problem always contain permutation solutions, i.e.,

solutions where the vehicles M1 and M2 visit the same nodes in the same or-

der? Or are there cases where it is favorable that the second-stage processing

of the jobs by M2 is done in a different order than the first-stage processing by

M1?

• The gap between permutation schedules and non-permutation schedules:
If there exist instances where the set of optimal schedules contains no permu-

tation schedule, how large is the potential gap in solution quality between the

best possible permutation schedule and an optimal non-permutation sched-

ule?

In addition, metaheuristic algorithms for the special cases are presented that are

specifically adapted to the problems. The proposed algorithms are empirically

compared with other methods from the literature. All of these algorithms belong

to the category of so-called “anytime algorithms”, i.e., they continuously calculate

solutions during their run time instead of only calculating a single solution at

32

2.4 Preliminary Remarks on Subsequent Chapters

the end [195]. For this reason, it is reasonable to evaluate the performance of these

algorithms over the entire run time instead of only considering singular time points.

Due to the similarities between the problems considered in this thesis, it is pos-

sible to apply similar methodologies for evaluating the performance of algorithms.

In particular, graphical evaluation measures are used in the following chapters that

take the performance over the entire run time into account (progress curves, PC) as

well as how consistent a certain solution quality is reached (empirical cumulative

distribution functions, ECDF). Furthermore, the performance data of the algorithms

can be aggregated over problem instances with similar properties in order to inves-

tigate how different properties in the problem instances affect the performance of

the algorithms. In addition, statistical tests are used to compare the performance

of algorithms at selected points in time and check whether observed differences are

statistically significant.

The structure for theoretical and empirical analysis described above is used for the

following two special cases in Chapter 3 and Chapter 4. Afterwards, the Two-Stage

VRPwith Profits and Buffers as the general problem is analyzed in Chapter 5 where

similar theoretical questions are discussed and several metaheuristic methods are

compared using a similar methodology.

33

3 The Special Case Omin Cmax, R≥∑ rJi

Without Travel Times: The Two-Machine
Flow Shop Problem with Buffers

The special case considered in this chapter is derived from the Two-Stage VRP with

Profits and Buffers by consideringOmin Cmax, R≥Q (i.e., minimize themakespanwhile

collecting a minimum score Q) with Q = ∑ rJi (where the sum is taken over all jobs

so that it is required that all jobs are processed1
) and all travel times dij set to zero, i.e.,

dij = 0 for all edges eij in the graph G. In a practical scenario, travel times being zero

can be interpreted in the sense that traveling between customers takes a negligibly

small time, or that all nodes and their corresponding jobs are at the same location,

similar to a factory. Especially in the latter case M1 and M2 can be considered to

be stationary machines that do not travel as opposed to the “moving machines” in

the original problem and the depot node v0 can be (informally) neglected since any

node can be reached from any other node without any increase in time.

The restricted case is connected to the Two-Machine Flow Shop with Buffers
with the additional restriction that the second machine M2 has constant processing

times bJi = c for all jobs Ji. To give a brief informal description of this problem,

consider a set of jobs J = {J1, J2, . . . , Jn} that have to be processed on twomachines

M1, M2 (first on M1, then on M2). Theprocessing is non-preemptive (i.e., it cannot be

paused once it has started) and the processing of a job Ji on M2 can only start after M1

has finished the processing of Ji. In addition, there is a buffer with limited capacity

Ω that has to be taken into account while scheduling the jobs on the machines. In

particular, the buffer functions like the “intermediate buffer” or “spanning buffer”

described in Section 2.2. The optimization problem is to schedule all jobs on both

1
Recall from Section 2.2 that rJi > 0 holds for all jobs Ji. If this condition is not satisfied, the condition

R ≥ ∑ rJi is not equivalent to processing all available jobs.

35

3 The Two-Machine Flow Shop Problem with Buffers

machines such that the makespan Cmax (i.e., the time when the last job finishes

on M2) is minimized. It can be easily seen that this problem is equivalent to the

optimization problem Omin Cmax, R≥Q of the Two-Stage VRP with Profits and Buffers

with Q = ∑ rJi and dij = 0 for all edges eij, so refer to the formal description in

Section 2.2 for the specifics of the considered flow shop problem and the notation

used in this chapter.

Due to the connections between these two problems, it is possible to visualize an

instance of the Two-Machine Flow Shop Problemwith Buffers using instances from

the Two-Stage VRP with Profits and Buffers where the travel times on all edges are

zero, see Figure 3.1 for an example that shows an instance along with an example

solution for both buffer models (intermediate buffer and spanning buffer). Note

how in the example for the spanning buffer model the processing of J3 has to be

delayed so that the buffer capacity is not exceeded.

In the following, an overview of literature on flow shop problems with buffers is

given in Section 3.1. Theoretical properties of the problem regarding computational

complexity and permutation schedules / non-permutation schedules are analyzed

in Section 3.2.1. A metaheuristic algorithm to construct permutation schedules for

the considered special case is presented in 3.4 and empirically evaluated in 3.5.

A summary of results is given in Section 3.6. This chapter is based on published

research from the author, in particular [93, 96, 57].

3.1 Review of Literature on Flow Shop Problems with Buffers

In this section, an overviewof literature onflow shopproblemswith buffers is given.

The overview is divided into multiple subsections in which works are presented

that focus on a specific aspect of a flow shop problem.

3.1.1 Algorithms and Metaheuristics for Flow Shops with Buffers

A large number of metaheuristics have been proposed for flow shops with an

intermediate buffer, i.e., a buffer that exists between each two adjacentmachines Mi

and Mi+1 where each job occupies the buffer after it finishes on Mi andbefore it starts

onmachine Mi+1. It is known that the flow shop problemwith intermediate buffers

is NP-complete [131], so that heuristic methods are needed to efficiently calculate

36

3.1.1 Algorithms and Metaheuristics for Flow Shops with Buffers

v1

J1

aJ1 = 4 sJ1 = 4
bJ1 = 5 rJ1 = 2

v2

J2

aJ2 = 3 sJ2 = 3
bJ2 = 5 rJ2 = 3

v0
(start node)

v3

J3

aJ3 = 7 sJ3 = 7
bJ3 = 5 rJ3 = 5

d0,1 = 0 d1,0 = 0

d2,0 = 0

d0,2 = 0

d3,0 = 0

d0,3 = 0

d1,2 = 0
d2,1 = 0

d1,3 = 0
d3,1 = 0

d2,3 = 0

d3,2 = 0

0 5 10 15 20

Buffer

M2

M1

Time

J1
J3

J1 J2 J3

J2 J1 J3

0 5 10 15 20

Buffer

M2

M1

Time

J1

J2

J3

J1 J2 J3

J2 J1 J3

Figure 3.1: Top: Example instance for the Two-Stage VRP with Profits and Buffers

with the additional property that travel times on all edges are zero.

Bottom: The resulting schedules σ when M1 and M2 are set to process

the jobs in the order π1(σ) = (J1, J2, J3) and π2(σ) = (J2, J1, J3) when

an intermediate buffer (bottom left) or a spanning buffer (bottom right)

with capacity Ω = 13 is used.

37

3 The Two-Machine Flow Shop Problem with Buffers

Figure 3.2: Overview of works containing comparisons between algorithms [96].

The notation A← B indicates that algorithm A is outperformed by algo-

rithm B in the given reference. Care should be exercised when interpret-

ing the arrows: The notation A← B does not mean that A is worse than B

for two-machine flow shops with buffer constraints. It only means that B

obtained better results (on average) than A for the considered test instances
in the respective work.

NEH GA

[191]

{{

PSO[109]
oo

CHS[129]
oo

HVNS[119]
oo

TS

[26]

OO

ISA

[70]

OO

IWA

[149]

OO

DDE

[130]

dd

DABC[200]
oo

[200]

ee

NEH: Nawaz-Enscore-Ham heuristic

GA: Genetic Algorithms

PSO: Particle Swarm Optimization

CHS: Chaotic Harmony Search

HVNS: Hybrid Variable Neighborhood Search

TS: Tabu Search

ISA: Immune System Algorithm

IWA: Invasive Weed Algorithm

DDE: Discrete Differential Evolution

DABC: Discrete Artificial Bee Colony

“good”, but not necessarily optimal solutions. One of the earliest works is the work

from Leisten [100] where a systematic overview for formalizing intermediate buffer

flow shops problems is presented and several heuristics originating from infinite-

buffer flow shops are tested with the NEH heuristic obtaining the best results. As

for metaheuristics, the proposed algorithms include, e.g., a Tabu Search [104, 157],

Variable Neighborhood Search [119], Genetic Algorithms [191], methods based on

Differential Evolution [130], Chaotic Harmony Search [129] and Particle Swarm

Optimization [109]. Other examples of biologically inspired algorithms that have

been developed for this type of problem are a Discrete Artificial Bee Colony [200]

and Immune System algorithms [2, 70] and [149].

Inmost of these studies the performance of different heuristics has been compared

in experiments. Figure 3.2 summarizes the results of these comparisons [96].

Flow shops with a spanning buffer, (a buffer that is used by each job from its

starting time on the first machine until its completion time on the last machine)

are also investigated in the literature. This problem is also NP-complete [107] and

examples for methods from the literature for this flow shop type are a Variable

Neighborhood Search by Kononova and Kochetov [88], who also use Integer Linear

38

3.1.2 Two-Machine Flow Shop Problems with Buffers

Programming to solve small instances, as well as a heuristic based on Lagrangian

relaxation and bin packing [87]. Regarding exact methods, Lin, Hong, and Lin

[107] propose a Branch-and-Bound algorithm used to calculate lower bounds and

optimally solve small instances with up to 18 jobs.

A number of research works on flow shops with a spanning buffer investigate

theoretical aspects of the problem, especially for the case with two machines which

forms the focus of the following section.

3.1.2 Two-Machine Flow Shop Problems with Buffers

The two-machine case with spanning buffer is known to be NP-complete for the

makespan criterion [107]. A different criterion is investigated by Gu et al. [63]

who consider the total weighted completion time and show NP-hardness for this
problem, even if one of both permutations is fixed. Min, Choi, and Park [117] prove

the NP-hardness for the case where the processing times on both machines are the

same for each job. Another variant where the spanning buffer changes its capacity

over time is analyzed in [19, 18] where it is shown that this problem is NP-hard
even when all jobs have unit processing times, but Berlińska, Kononov, and Zinder

[19] present a polynomial-time approximation scheme and empirically show that

smaller instances with up to 40 jobs can be optimally solved using Integer Linear

Programming. A related problemwith jobs whose processing can be paused is also

known to be NP-hard [86].

The study of [205] analyses a variety of spanning buffer flow shops with two

machines by differentiatingwhether one or bothmachines have constant processing

times, whether the buffer usage of each job depends on its processing time, whether

for each job theprocessing timeon thefirstmachine is always shorter, longer or equal

to the time on the second machine and whether any pair of jobs can be stored in the

spanning buffer. For each of the resulting 64 flow shop problems they investigate

whether themakespanminimization problem is NP-hard or polynomially solvable.

A special case of a buffer flow shopwith twomachines considered in the literature

is when one of the machines has constant processing times, similar to the condi-

tion bJi = c for the problems considered in this thesis. Wei and Yuan [194] show

that already the case without buffer restrictions is NP-hard for the total weighted

time criterion ∑ wiCi and present an approximation algorithm with worst-case ap-

39

3 The Two-Machine Flow Shop Problem with Buffers

proximation ratio 2. The case with unit processing times for all jobs, which can

be considered a special case of this restriction, is investigated by Ernst et al. [42].

They consider multiple identical machines (a so-called “flexible flow shop”) with

a spanning buffer for the case with unit processing times and where buffers are

shared between adjacent machines. They show that this case is NP-hard and even

NP-hard to approximate within 4/3 of the optimal solution.

Two-machine flow shops with intermediate buffers have also been investigated,

although the majority of works consider the more general m-machine case (see

Section 3.1.1 above). The NP-hardness for the two-machine case is shown by Pa-

padimitriou and Kanellakis [131] who also propose a heuristic algorithm specific to

such flow shops. Dutta and Cunningham [40] present another heuristic algorithm

that is based on Dynamic Programming and successive approximations. However,

it should be noted that there exists a special type of flow shop that is efficiently

solvable in the two-machine case. This type of flow shop is presented in the next

section.

3.1.3 Blocking Flow Shops

If the buffer size is infinite, the resulting flow shop is equivalent to a flow shop

problem without buffer constraints which in the case with two machines can be

optimally solved in polynomial time for the makespan criterion using Johnson’s

algorithm [73], whereas it is NP-hard for more than two machines [54]. On the

other side, if the buffer has no capacity (Ω = 0) such that finished jobs on Mi

immediately block Mi if Mi+1 is busy, one obtains the Blocking Flow Shop which

can also be solved in polynomial time for up to two machines [58] by reducing it to

an efficiently solvable subcase of the Traveling Salesman Problem [139]. Blocking

flow shops with three or more machines are NP-hard for the makespan criterion

[52, 115]. They are NP-hard for two machines if the total flow time ∑ CJ (the sum

over all completion times) is to be minimized [52].

Blocking Flow Shops are based on practical applicationswhere it is not possible to

temporarily store intermediate products, e.g., the production of chemical products

[110] or automated manufacturing systems [83]. Various metaheuristics have been

proposed for blocking flow shop problems. These include search algorithms, e.g.,

Tabu Search [60] and Harmony Search [15, 190] as well as biologically inspired

40

3.1.3 Blocking Flow Shops

methods, such as Particle Swarm Optimization [105], a Cuckoo Search algorithm

[188], memetic algorithms [128], differential evolution [189] or an Artificial Bee

Colony algorithm [38]. Other heuristics include constructive heuristics [122, 142],

a heuristic based on Dynamic Programming [16] and an Iterated Greedy algorithm

by Tasgetiren et al. [172].

Table 3.1 lists algorithms that have been applied to both flow shops with buffers

and blocking flow shops. Even though the buffer capacity is the only difference

between these two flow shop types, Papadimitriou and Kanellakis [131] showed

that introducing a buffer that can store one job can potentially reduce the makespan

by the factor of up to 1/3 when compared to an equivalent blocking flow shop (with

zero buffer capacity). Note that a capacity Ω = 0 is only possible for intermediate

buffers, since in the case with spanning buffers no feasible schedules exist.

Limited Buffer FS Blocking FS

Bee algorithms [200] [38]

Tabu Search [104, 124, 26] [60]

Harmony Search [129] [15, 190]

Particle Swarm Opt. [109] [105]

Evolution-based algorithms [39, 130, 136, 191] [128, 189]

Table 3.1: Overviewofmetaheuristics that have been applied to flowshopswith lim-

ited buffers (“Limited Buffer FS”) as well as blocking flow shops (“Block-

ing FS”).

A more heavily constrained version of a blocking flow shop is the “no-wait flow

shop” where even the blocking of machines is not allowed so that all processing

stages of a job have to be performedwithout interruption. This problem occurs, e.g.,

in the production of food products that need to be quickly packaged or processed in

order to preserve freshness [110] or in the ingot productionwhere high temperatures

need to be maintained [54]. This problem is also efficiently solvable for up to two

machines, but becomesNP-hard for three ormoremachines [52]. Heuristicmethods

specifically developed for this problem are investigated in [100, 110, 139].

Note that in blocking flow shops and no-wait flow shops the order of processed

jobs is the same on all machines, i.e., only permutation schedules are allowed since

it is not possible for jobs to pass other jobs due to the missing buffer. However, if

the buffers with capacity Ω > 0 are used, non-permutation schedules are possible

41

3 The Two-Machine Flow Shop Problem with Buffers

where the machines process jobs in a different order. Even though the majority of

studies for flow shops with buffers discussed above (see Section 3.1.1) only consider

permutation schedules, there exist research works that specifically investigate non-

permutation schedules.

3.1.4 Non-Permutation Schedules

The flow shop problem where non-permutation schedules are permitted is also

known to be NP-complete [165] for the case with the intermediate buffer (whereas

the commonly cited NP-hardness proof of Papadimitriou and Kanellakis [131]

specifically considers permutation schedules), and there exist cases where non-

permutation schedules perform better than permutation schedules. For the case

with infinite buffer capacity, this has been observed for the total tardiness criterion

as well as criteria based on completion time, e.g., makespan or total completion

time [106], although for the latter the difference also depends on the dispersion in

the processing times [146, 147].

For two-machine flow shops with a spanning buffer where for each job its buffer

usage is equal to its processing time on the first machine (i.e., sJ = aJ for all jobs

J), Min, Choi, and Park [117] show that the set of all optimal schedules contains

at least one permutation schedule if all jobs have identical processing times on

each machine or if the second machine dominates the first machine with respect to

processing times. In [50] it is shown that for n ≤ 4 jobs, the set of optimal schedules

always contains at least one permutation schedule, whereas for instances n > 4 this

cannot be guaranteed. Due to this, heuristics for non-permutation schedules are

investigated in the literature, for example, by Leisten [100] where several heuristics

are compared or [26] where a Tabu Search algorithm is proposed. A review of

heuristic methods for the non-permutation flow shop (without buffer constraints)

is given in [146].

The study of [145] investigates a special case with two jobs and unknown pro-

cessing timeswith a focus on dominance properties between permutation schedules

and non-permutation solutions using a graph-theoretical approach. The theoreti-

cal work of [138] analyses “critical jobs” that in optimal non-permutation schedules

have to be processed at certain positions.

42

3.1.5 Other Extensions and Variations of Flow Shop Problems

3.1.5 Other Extensions and Variations of Flow Shop Problems

The buffer-constrained flow shop has also been investigated with other additional

constraints in the literature. A combination ofmultiple target criteria is investigated

by [137], whereas [110] consider the combination of different buffer types for the

same instance. Buffer flow shops that allow the “batch processing” of jobs are

investigated in [49, 7, 135, 4].

Another extension is the use of machines that can process multiple jobs at the

same time. This type is known as the “parallel flow shop”, “hybrid flow shop”

or “flexible flow shop” [42] problem and heuristics for this type of problem are

presented in [102, 177, 158] (for flow shops with intermediate buffers) and [141, 171,

198] (for blocking flow shops). Regarding the casewith twomachines and spanning

buffer, it has been shown that this problem is NP-hard [51]. A more general case

consisting ofmultiple parallel flow shops is considered by [199] where a Differential

Evolution heuristic is proposed.

A different flow shop problem which is not related buffer flow shops, but to the

Two-Stage VRP with Profits and Buffers is obtained when “sequence-dependent

setup times” are imposed. This means that a machine M needs to wait for at least

δ(Ji, Jj) time units between the processing of two jobs Ji and Jj where the time δ(Ji, Jj)

depends on the previous job Ji and the subsequent job Jj. The sequence-dependent

setup times δ(Ji, Jj) are similar to the travel times dij in the Two-Stage VRP with

Profits and Buffers in the sense that “setting up a machine for processing job Jj after

finishing Ji” is comparable to “travelling from node vi to vj” where vi and vj are the

nodes containing the jobs Ji and Jj, respectively. And even though the Two-Stage

VRPwithProfits andBuffers encompasses the two-machineflowshopproblemwith

buffers (i.e., a scheduling problem is seen from the perspective of vehicle routing),

the notion of sequence-dependent setup times allows some cases of the Two-Stage

VRPwith Profits and Buffers to be considered a “flow shop problemwith sequence-

dependent setup times and buffers” (i.e., a vehicle routing problem is reinterpreted

as a scheduling problem). Even though it should be noted that this only describes

the optimization problem Omin Cmax, R≥Q where all jobs need to be processed, this

type of flow shop is nonetheless relevant for the problems considered in this thesis.

This problem is known to be NP-hard for the case with two machines [65] and

mathematical heuristics for this problem are investigated in [156]. Exact methods

43

3 The Two-Machine Flow Shop Problem with Buffers

proposed for small instances include Dynamic Programming [35, 34] as well as

Branch-and-Bound algorithms [34]. Note that these works do not consider buffer

restrictions. Interestingly, metaheuristics for this problem as well as the case with

buffer restrictions have not been considered in the literature so far, so that results

presented in this thesis can potentially provide new insights for flow shop problems

with sequence-dependent setup times due to their similarities with the Two-Stage

VRP with Profits and Buffers.

3.2 Theoretical Properties

In the following sections, theoretical properties of the Two-Machine Flow Shop

Problem with Buffers are investigated. As mentioned in Section 2.4, the analyses

consider the computational complexity of the problem, the existence of permutation

schedules in the set of optimal solutions and the gap between the best possible

permutation schedule and optimal non-permutation schedules.

3.2.1 Computational Complexity

It is shown in this section that flow shop problems with buffers are NP-complete

for both the intermediate buffer and spanning buffer case even when for the second

machine all jobs have the same processing time bJ = c. However, there exist special

cases where an optimal solution can be efficiently constructed.

To specify the problems for which the complexity is analyzed, the following

parameters for Two-Machine Flow Shop Problem with Buffers, which are based on

common choices in the literature, are considered:

1. type of the buffer bufType ∈ {intermediateBuffer, spanningBuffer}: This param-

eter denotes the type of the buffer used in the flow shopproblem (intermediate

buffer or spanning buffer).

2. buffer usage for each job bufUsage ∈ {sJ = 1, sJ = aJ}: This parameter

describes whether sJ = 1 or sJ = aJ holds for all jobs J.

3. schedule type schedType ∈ {unrestricted, prmu}: This parameter describes

whether non-permutation schedules are allowed (schedType = unrestricted)
or if only permutation schedules are allowed (schedType = prmu).

44

3.2.1 Computational Complexity

Depending on how the three parameters bufType, bufUsage, schedType are chosen, a
total of 8 flow shop types are obtained whose complexity can be analyzed. Based

on the three-field notation introduced in [61], the flow shop problems are denoted

F2|schedType, bJ = c, bufType, bufUsage|Cmax. (3.1)

This notation refers to a two-machine flow shop problem with the restriction bJ = c
for all jobs J and the parameters schedType, bufType, bufUsage (which are described

above), where the makespan Cmax is to be minimized.

NP-hardness results

For flow shops with intermediate buffer “sJ = 1 for all jobs”, the NP-completeness

was already proven for the general case with non-permutation schedules [165] and

for the restricted casewhere only permutation schedules are allowed [131], whereas

for flow shops with a spanning buffer only the case with “sJ = aJ for all jobs” is

known to beNP-complete [107]. However, these cases do not consider the restriction

to constant processing times on the secondmachine. The following theorem, which

is based on publishedwork of the author [96], states that for all configurations of the

three parameters bufType, bufUsage and schedType the resulting flow shop problems

are NP-complete, even when the second machine has constant processing times for

all jobs. Thus, this theorem proves a stronger version of the aforementioned results

and in addition shows theNP-completeness for some of the cases not yet considered

in the literature.

For this theorem, a detailed proof is only given for one of the cases. The NP-
completeness for the other considered flow shops can be shown with similar argu-

ments, e.g., by slightly adapting the constructed instance or by generalizing some

formulations, but the main idea of reducing from the same NP-hard problem is the

same for all cases.

Theorem 3.2.1. For all choices of bufType, bufUsage and schedType, the decision problem
if, for an instance of F2|schedType, bJ = c, bufType, bufUsage|Cmax there exists a feasible
schedule σ∗ with Cmax(σ∗) ≤ L for a given integer L is NP-complete.

Proof (only for the case F2|prmu, bJ = c, intermediateBuffer, sJ = aJ |Cmax). The prob-

lem is in NP since it can be checked in polynomial time if a permutation schedule

45

3 The Two-Machine Flow Shop Problem with Buffers

Figure 3.3: Visualization for Theorem 3.2.1

B
4 B 3B B 3B B 3B B

M2

M1 g0 g1 g2 gmH0 H1 Hm−1

g0 g1 gm−1 gmH0 H1 Hm−1

σ∗ is valid and satisfies Cmax(σ∗) ≤ L. To show the NP-hardness, we reduce from

3Partition: Given are positive integers x1, x2, . . . , x3m and an integer B > 0 such

that B/4 < xj < B/2 for all j and ∑3m
j=1 xj = mB. The question for 3Partition

is if there exists a partition of {x1, x2, . . . , x3m} into m subsets S1, S2, . . . , Sm such

that each set Sk satisfies |Sk| = 3 and ∑x∈Sk
x = B. We denote the given instance

from 3Partition as I3P. The corresponding flow shop instance IF2 of the type

F2|prmu, bJ = c, intermediateBuffer, sJ = aJ |Cmax) is described in the following. The

set of jobs J = {g0} ∪ G ∪ H consists of n = 4m + 1 jobs where

• g0 is a job with ag0 = B/4,

• G is a set of m jobs g1, g2, . . . , gm with agk = 3B for k ∈ {1, 2, . . . , m}, and

• H is a set of 3m jobs h1, h2, . . . , h3m with ahk = xk for k ∈ {1, 2, . . . , 3m}.

The additional parameters are Ω = 3B/4, c = B, L = 4mB + B + B/4 and sJ = aJ

for all jobs. This instance can be constructed in polynomial time. Now it is shown

that I3P has a solution if and only if for IF2 there exists a permutation schedule σ∗

with Cmax(σ∗) ≤ L.
“⇐”: Assume that IF2 has a permutation schedule σ∗ with Cmax(σ∗) ≤ L. It is

shown in the following that σ∗ satisfies several properties that lead to a structure

shown in Figure 3.3. From these properties a solution for I3P can be constructed.

The first property results from the sum of all processing times on both machines,

using ∑3m
j=1 xj = mB and comparing the values to L:

∑
j∈J

aj =
B
4
+ m · 3B + mB = 4mB +

B
4
= L− B

∑
j∈J

bj = B + mB + 3mB = 4mB + B = L− B
4

46

3.2.1 Computational Complexity

This shows that M1 cannot have a total idle time of more than B time units and M2

cannot be idle for more than B/4 time units, or else the resulting schedule exceeds

the maximum makespan L. Since M1 is always idle for at least B time units (while

M2 is processing its last job), M1 is not allowed have any other idle times before it

finishes its last job.

As for M2, the initial idle time interval (while M1 processes its first job) cannot be

shorter than B/4 time units and its length is equal to B/4 if and only if g0 is the first

job on both M1 and M2 (a job hk ∈ H cannot be the first job due to B/4 < xk < B/2
being required for the corresponding 3Partition instance). Thus, g0 has to be the

first job on both machines and no idle time is allowed on M2 between g0 and the

last job on M2.

The second property is that it is not possible for the buffer to store any job g ∈ G
due to sg = 3B > 3B/4 = Ω. Thus, the machine M2 must immediately start any g-
job that finishes on M1: C1

g(σ
∗) = S2

g(σ
∗). It is also necessary that C1

g0
(σ∗) = S2

g0
(σ∗)

or else the initial idle time is exceeded. If we neglect the jobs in H and only consider

the jobs in G, it can be said that the order in which the jobs of G are processed is

equal for both machines: If that were not the case, then there would be two jobs

g, g′ ∈ G where g′ is processed before g on M1 , but after g on M2. This would imply

that g′ would have to be stored in the buffer which is not possible as this would

exceed the capacity Ω. Since all jobs in G are identical, it can be assumed without

loss of generality that the G-jobs are processed in the order g1, . . . , gm.

Next, consider the sets Hk ⊆ H of jobs processed between gk and gk+1 (for

k ∈ {0, 1, 2, . . . , m− 1}) and the set Hm of jobs processed after gm on both machines.

Note that the condition B/4 < xk < B/2 for k ∈ {1, . . . , 3m} implies that the

buffer cannot store more than two jobs from H at any time. It is now shown that

|Hk| = 3 and ∑j∈Hk
aj = B for k ∈ {0, 1, 2, . . . , m− 1}. First, consider k = 0. Since

no additional idle times are allowed on both machines, the equations S2
g1
(σ∗) =

C1
g0
(σ∗) + bg0 + ∑h∈H0

bh = ag0 + (1 + |H0|)B and C1
g1
(σ∗) = ag0 + ∑h∈H0

ah + ag1 as

well as C1
g1
(σ∗) = S2

g1
(σ∗) lead to ∑h∈H0

ah = (|H0| − 2)B which cannot be negative

or zero, implying |H0| ≥ 3.

Assume |H0| > 3 anddenote as h1, h2, h3, h4 ∈ H the first four jobs in H0 processed

on M1. Machine M2 also has to process these jobs immediately after finishing g0

or else idle times are incurred. Using the condition B/4 < ah < B/2 for all h ∈ H

47

3 The Two-Machine Flow Shop Problem with Buffers

leads to

C1
h4(σ

∗) = C1
g0
(σ∗) +

4

∑
i=1

ahi = S2
g0
(σ∗) +

4

∑
i=1

ahi < S2
g0
(σ∗) + 2B︸︷︷︸

bg0+bh1

= S2
h2(σ

∗).

This means that four jobs in H1
0 are finished on M1 before M2 frees the buffer space

occupied by h2
such that at least three jobs from H0 have to be stored in the buffer

at time t = C1
h4(σ

∗). This exceeds the buffer capacity from which it follows σ∗ is not

a feasible solution. Thus, |H0| = 3.
In order to show ∑j∈H0

aj = B, assume all other cases: If ∑j∈H0
aj < B, the three

jobs in H0 would be finished on M1 before M2 finishes g0 implying that they are

stored in the buffer. This is not possible since ∑j∈H0
sj > (3/4)B and this would

exceed the buffer capacity Ω. For the case ∑j∈H0
aj > B, let h3

be the job in the set

H0 that M2 processes last. It follows that

C2
h3(σ

∗) = S2
g0
(σ∗) + B︸︷︷︸

bg0

+ 3B︸︷︷︸
∑j∈H0

bj

= C1
g0
(σ∗) + B + 3B

< C1
g0
(σ∗) + ∑

j∈H0

aj + 3B︸︷︷︸
ag1

= C1
g1
(σ∗),

whichmeans that M2 is idle (waiting for g1) after finishing h3
. This is a contradiction

since there no idle times between the jobs on M2 are allowed.

Hence, |H0| = 3 and ∑j∈H0
aj = B holds. From this it follows that M1 finishes

the set H0 at the same time as M2 finishing g0 and that the interval from C2
g0
(σ∗) =

S1
g1
(σ∗) to S2

g1
(σ∗) = C1

g1
(σ∗) has a length of 3B time units. Thus, M2 has to process

the jobs in H0 during this interval or else it would be idle.

It can also be concluded that the buffer is empty by the time M1 finishes the

job g1. This allows us to apply the same arguments used in the case k = 0 for

k ∈ {1, 2, . . . , m− 1} to show that |Hk| = 3 as well as ∑j∈Hk
aj = B. By iteration,

one obtains m sets H0, H1, H2, . . . , Hm−1 that each contain three jobs from H. Due

to |H| = 3m, it follows that |Hm| = 0. Since ∑j∈Hk
aj = B for k ∈ {0, 1, 2, . . . , m− 1}

and since the jobs in H correspond to the 3Partition numbers, it is possible to

construct a solution for I3P.

48

3.2.1 Computational Complexity

“⇒”: Given the subsets S1, S2, . . . , Sm satisfying |Sk| = 3 and ∑x∈Sk
x = B for

k ∈ {1, 2, . . . , m}, a schedule σ∗ can be constructed as shown in Figure 3.3 where the

H-jobs corresponding to the subsets are scheduled between the G-jobs. This leads

to a schedule σ∗ with Cmax(σ∗) = L and a solution for IF2.

Polynomial-Time Solvable Subcases

As stated in Theorem 3.2.1, the buffer flow shops with bJ = c for all jobs J are

NP-complete for all values of schedType, bufType and bufUsage considered here. In

the following it is shown that two special subcases are solvable in polynomial time,

independent of the parameters bufType, bufUsage and schedType:

• The constant c is so small that c ≤ aJ holds for all jobs J.

• The constant c is so large that c ≥ aJ holds for all jobs J.

These cases were identified in a published work from the author [96] which also

forms thebasis for the following analyses. Thework [96] only considers permutation

schedules, but a new result presented in this thesis is that optimal schedules can

be found in polynomial time for these cases even if non-permutation schedules are

allowed.

In order to show the property for the case F2|prmu, bJ = c, spanningBuffer, sJ =

aJ , c ≥ aJ |Cmax (specifically with a spanning buffer where sJ = aJ holds for all jobs),

some lemmata are needed. The first lemma states that non-permutation schedules

are equivalent to permutation schedules in terms of attainable solution quality.

Lemma 3.2.1. Given a non-permutation schedule σ for an instance of F2|unrestricted, bJ =

c, spanningBuffer, sJ = aJ , c ≥ aJ |Cmax, there exists a permutation schedule σP satisfying
Cmax(σ) = Cmax(σP).

Proof. Assume that aJ ≤ c holds for all jobs J. For a given non-permutation schedule

σ, a permutation schedule σP
is constructed as follows. Set π(σP) = π2(σ) so that

both machines in σP
process the jobs in the same order as M2 in σ. Without loss

of generality, it is assumed that π(σP) = (J1, J2, . . . , Jn). Next, schedule the jobs on

M1 using the rule S1
Ji
(σP) = S2

Ji
(σ)− aJi for all Ji. For M2, the same starting times

49

3 The Two-Machine Flow Shop Problem with Buffers

as in σ are used: S2
Ji
(σP) = S2

Ji
(σ) for all Ji. By definition, C1

Ji
(σP) = S2

Ji
(σP). The

resulting schedule σP
satisfies Cmax(σP) = Cmax(σ) and is a permutation schedule.

However, it needs to be shown that σP
is a valid schedule, i.e., that it is possible for

M1 to start all jobs at the specified times. This is shown by induction. First, consider

the first job J1 on M1. Note that at the starting time S2
J1
(σ) in the original schedule

σ, machine M1 must have already processed J1 at this time, i.e.. S2
J1
(σ) ≥ aJ1 . Thus,

it is possible to set S1
J1
(σP) = S2

J1
(σ)− aJi in the new schedule σP

.

For the induction step (i.e., the remaining jobs after J1), it needs to be shown

that the starting times specified for M1 do not overlap, i.e., S1
Ji+1

(σP) ≥ C1
Ji
(σP)

for 1 ≤ i ≤ n − 1. To show this, assume that Ji can be processed by M1 in σP

at the specified time S1
Ji
(σP) = S2

Ji
(σ) − aJi (induction hypothesis). This implies

S2
Ji
(σP) = C1

Ji
(σP). Using this equation shows that S1

Ji+1
(σP) = S2

Ji+1
(σP)− aJi+1 ≥

S2
Ji
(σP) + c− aJi+1 = C1

Ji
(σP) + c− aJi+1 ≥ C1

Ji
(σP) + aJi+1 − aJi+1 = C1

Ji
(σP). In short,

S1
Ji+1

(σP) ≥ C1
Ji
(σP), so M1 is able to process Ji+1. Thus, the permutation Schedule

σP
is valid regarding all starting times. (Note that it is not necessary to check

whether M2 processes jobs that are not finished yet on M1 due to the definition of

σP
).

It remains to check whether σP
is feasible with respect to the buffer constraints.

Note that at most 2 jobs Ji, Ji+1 can enter the buffer in σP
at any time due to the

definition of σP
. Assume that these two jobs exceed the buffer capacity, i.e., sJi +

sJi+1 > Ω. Then it can be shown that in the original schedule σ the time interval

[S2
Ji+1

(σ), C2
Ji
(σ)] spans at least aJi+1 time units, which is sufficiently large so that Ji

and Ji+1 cannot both be in the buffer in σP
. To see this, assume that the interval

[S2
Ji+1

(σ), C2
Ji
(σ)] in σ spans less than aJi+1 time units. In σ, the job Ji+1 must have been

processed on M1 at some time before C2
Ji+1

. However, all possibilities for S1
Ji+1

(σ)

imply for the spanning buffer model, that Ji and Ji+1 are both in the buffer, which

contradicts the assumption that they exceed the buffer capacity. Thus, when two

jobs Ji, Ji+1 cannot be in the buffer at the same time, they cannot be in the buffer at

the same time in the constructed permutation schedule σP
.

The same property also holds for the other case where c ≤ aJ for all jobs J.

Lemma 3.2.2. Given a non-permutation schedule σ for an instance of F2|unrestricted, bJ =

c, spanningBuffer, sJ = aJ , c ≤ aJ |Cmax, there exists a permutation schedule σP satisfying
Cmax(σ) = Cmax(σP).

50

3.2.1 Computational Complexity

Proof. Similar to the proof of 3.2.1, except that π1(σ) (instead of π2(σ)) in the non-

permutation schedule σ is “copied” to the permutation π(σP) in the constructed

permutation schedule σP
.

The two lemmata above establish that the restriction to permutation schedules

does not restrict the attainable solution quality for this special case. This allows the

following analyses for the case with spanning buffer and sJ = aJ to be restricted to

permutation schedules only. The following lemmata are needed in order to establish

assumptions that can be made about schedules without losing any generality.

Lemma3.2.3. For each schedule σ for an instance of F2|prmu, bJ = c, spanningBuffer, sJ =

aJ , c ≥ aJ |Cmax, there exists a schedule σ′ with π(σ) = π(σ′) and Cmax(σ′) ≤ Cmax(σ)

satisfying C1
J (σ
′) = S2

J (σ
′) for all jobs J ∈ J .

Proof. For a given schedule σ, assume that there exists a job Jk for which C1
Jk
(σ) <

S2
Jk
(σ) holds. Without loss of generality let Jk be the rightmost such job so that all

jobs J` after Jk satisfy C1
J`(σ) = S2

J`(σ). Then, since c ≥ aJ for all jobs J, it follows that

each job which comes after Jk in σ starts later than S2
Jk
(σ) on M1. Hence, Jk can be

rescheduled on M1 to a new schedule σ′ such that C1
Jk
(σ′) = S2

Jk
(σ) = S2

Jk
(σ′) holds

without increasing the makespan of the schedule. The lemma follows by repeating

these arguments.

For the schedule σ′ of Lemma 3.2.3 it holds that for each job Jk (k ∈ {1, 2, . . . , n})
the predecessor job finishes at time t ≤ S2

Jk
(σ′) and the successor job of Jk starts at

time t ≥ C1
Jk
(σ′) = S2

Jk
(σ′). This implies for σ′ that at most two jobs are in the buffer

at any given time. A permutation schedule is defined to be minimal if it has the

shortest makespan out of all permutation schedules with the same order of jobs.

For minimal permutation schedules, the following lemma holds.

Lemma 3.2.4. For any permutation π = (Jπ1 , Jπ1 , . . . , Jπn) of the jobs J in an instance of
F2|prmu, bJ = c, spanningBuffer, sJ = aJ , c ≥ aJ |Cmax there exists a minimal permutation
schedule σ where for each job Jπk and its successor Jπk+1 (k ∈ {1, 2, . . . , n − 1}) the
permutation schedule σ satisfies either

i) C2
Jπk
(σ) = S2

Jπk+1
(σ) and sJπk

+ sJπk+1
≤ Ω or

ii) C2
Jπk
(σ) = S1

Jπk+1
(σ) and sJπk

+ sJπk+1
> Ω.

51

3 The Two-Machine Flow Shop Problem with Buffers

Proof. The lemma directly follows from Lemma 3.2.3, the property aJπk+1
≤ c and

the fact that it can be assumed that σ is a minimal permutation schedule.

If C2
Jk
(σ) = S2

J`(σ) holds for two jobs Jk, J` ∈ J (where J is the set of all jobs) in a

permutation schedule σ, we say that the processing time aJ` of J` on M1 is hidden.
Two jobs Jk, J` are compatible if sJk + sJ` ≤ Ω. For a permutation schedule σ and its

corresponding job permutation π(σ), let I(σ) ⊂ {1, 2, . . . , n} be the set of indices i
of jobs Ji which are not compatible with their predecessor, i.e., sJπi−1(σ)

+ sJπi(σ)
> Ω.

The following corollary is a direct consequence of Lemma 3.2.4.

Corollary 3.2.1. For an instance of F2|prmu, bJ = c, spanningBuffer, sJ = aJ , c ≥
aJ |Cmax, let σ be a minimal permutation schedule and π(σ) = (Jπ1(σ), Jπ2(σ), . . . , Jπn(σ))

its corresponding permutation of jobs in J . It holds that Cmax(σ) = aJπ1(σ)
+ ∑i∈I(σ) aJi +

n · c.

In the following we present Algorithm 3.1 which computes an optimal sched-

ule for an instance of F2|prmu, bJ = c, spanningBuffer, sJ = aJ , c ≥ aJ |Cmax. It first

requires that the jobs are sorted in order of decreasing aJ which can be done in

O(n log n) steps. In the case where the jobs are already sorted, the resulting algo-

rithm runs in linear time.

In order to calculate an optimal schedule, F2|prmu, bJ = c, spanningBuffer, sJ =

aJ , c ≥ aJ |Cmax, Algorithm 3.1 considers two special cases first: i) all jobs in J are

pairwise not compatible (lines 1 and 2) and ii) all jobs in J are pairwise compatible

(lines 3 and 4). In case of (i) none of the processing times on M1 can be hidden

so that any minimal schedule σ has the makespan Cmax(σ) = ∑n
i=1 aJ + n · c and

is thus optimal. In case (ii), it follows that I(σ) = ∅. In this case Corollary 3.2.1

implies that any minimal schedule σ which has Jn as its first job has the makespan

Cmax(σ) = an + n · c and is optimal since aJn ≤ aJi for i ∈ {1, 2, . . . , n− 1}.
If neither (i) nor (ii) hold there exists a minimal k ∈ {2, 3, . . . , n− 1} such that Jk+1

and Jk are compatible. Since ak+1 ≥ aJ for i > k + 1, all jobs in {Jk+1, Jk+2 . . . , Jn}
are compatible with Jk (line 6). In order for the processing time aJ` of a job J` ∈
{J1, . . . , Jk} to be hidden, it is necessary that a job from R := {Jk+1, . . . , Jn} (line
7) is its predecessor. Clearly, in an optimal schedule the total processing time of

jobs {J1, . . . , Jk−1} on M1 that can be hidden has to be maximal. To determine this

maximum total processing time that can be hidden the following greedy approach

52

3.2.1 Computational Complexity

Algorithm 3.1 2BF-OPT for F2|prmu, bJ = c, spanningBuffer, sJ = aJ , c ≥ aJ |Cmax

Require: J = {J1, . . . , Jn} with aJ ≥ aJi+1 for i ∈ {1, 2, . . . , n− 1}, Ω

1: if all jobs in J are pairwise not compatible then
2: return “any minimal schedule for J is optimal”

3: else if all jobs in J are pairwise compatible then
4: return a minimal schedule for any order of the jobs where Jn is the first job

5: else
6: k← smallest value in {2, 3, . . . , n− 1} such that Jk+1 and Jk are compatible

7: R← {Jk+1, . . . Jn}
8: for i = 1 to k− 1 do
9: if the smallest unassigned job J ∈ R is compatible with Ji then
10: f (Ji)← J . assign J to Ji
11: else
12: f (Ji)← ∅ . no job is assigned to Ji
13: end if
14: end for
15: if all jobs inR have been assigned then
16: return a minimal schedule σ with π(σ) = (Jk, f (Jk−1), Jk−1, . . . , f (J1), J1)
17: else
18: if there exists an i ∈ {1, 2, . . . , k− 1} with f (Ji) = ∅ then
19: h←maximum i ∈ {1, 2, . . . , k− 1} with f (Ji) = ∅
20: else
21: h← 0

22: end if
23: R′ ←R\ { f (Ji) | i ≤ h}
24: for i = k− 1 to h + 1 do
25: J← largest unmarked job inR′ that is compatible with Ji
26: f (Ji)← J and mark J . f (Ji) is newly defined

27: end for
28: f (Jk)← smallest unassigned job inR
29: return a minimal schedule σ for the job permutation

π(σ) = (f (Jk), R, Jk, f (Jk−1), Jk−1, . . . , f (J1), J1)where R is any order of

the jobs

inR \ { f (Ji) | i ∈ {1, 2, . . . , k}}
30: end if
31: end if

53

3 The Two-Machine Flow Shop Problem with Buffers

is taken in lines 8–14. The jobs J1, . . . , Jk−1 are considered in this order and a function

f is introduced that assigns jobs fromR to these jobs as predecessors as follows.

For the next job Ji, the smallest job in R that has so far not been assigned as

predecessor to one of the jobs J1, . . . , Ji−1 and that is compatible with Ji is always

assigned to be the predecessor of Ji (if it exists). If all jobs in R have been assigned

(line 15), the assignment f defines the only possible assignment of jobs in R to

jobs in {J1, . . . , Jk} such that for the maximum number of jobs in {J1, . . . , Jh} the

processing time on M1 can be hidden and also the total hidden processing time

on M1 of these jobs is maximized. That the greedy algorithm gives the optimal

solution follows from the fact that the set of all subsets of J1, . . . , Jk−1 which can be

hidden by assigning jobs from R as predecessors (where each job in R is assigned

to at most one job in J1, . . . , Jk−1) is an independence system over J1, . . . , Jk−1 and

forms a matroid together with the weight function w(J`) = aJ` . It follows that any

minimal schedule σ for the order (Jk, f (Jk−1), Jk−1, . . . , f (J1), J1) has themakespan

Cmax(σ) = ak + ∑i∈I(σ) aJi + n · c and is optimal (line 16). An analogous result holds

for jobs in {J1, . . . , Jk} if there exists an i ∈ {1, 2, . . . , k− 1} with f (Ji) = ∅ (line 18)

and h is the maximum such i (line 19). In this case there exists an optimal schedule

σ where (J(h), f (Jh−1), Jh−1, . . . , f (J1), J1) is a suffix of the permutation π(σ).

In line 23 of Algorithm 3.1 it holds for the remaining jobs J ′ = {Jk, . . . , Jh+1}
that their processing time on M1 can be hidden with jobs from R′ := R \ { f (Ji) |
i ≤ h}. However, in order to find an assignment for which the resulting makespan

a` + (|R′|+ k− h) · c (where J` is the first job) is minimal the assignment f might

have to be redefined for the subset J ′. For this the following lemma is needed.

Lemma 3.2.5. If there exists an assignment of some jobs in R′ to the jobs {Jk, Jk−1, . . . ,
Jh+1} where each job in {Jk, Jk−1, . . . , Jh+1} gets assigned exactly one job f (Ji) ∈ R′ such
that f (Ji) is compatible with Ji then there also exists such an assignment f where f (Jk)

is the smallest possible job. This assignment f satisfies the following property: a minimal
permutation schedule for the order f (Jk), R, Jk, f (Jk−1), Jk−1, . . . , f (Jh+1), Jh+1 where R is
any order of the jobs R′ \ { f (Ji) | i ∈ {h + 1, h + 2, . . . , k} is an optimal permutation
schedule for the jobs in {Jk, . . . , Jh+1} ∪R′.

Proof. Assume there exists no permutation schedule σ with an assignment f such

that the schedule f (Jk), R, Jk, f (Jk−1), Jk−1, . . . , f (Jh+1), Jh+1 is optimal, i.e., all op-

timal schedules use an assignment f and an order of the jobs in J ′ that is only

54

3.2.1 Computational Complexity

identical for the t rightmost elements Jh+t, Jh+t−1, . . . , Jh+1 after which a different

order Ji1 , Ji2 , . . . , Jik−h−t is used for the remaining jobs Jk, Jk−1, . . . , Jh+t+1 in J ′:

f (Ji1), R, Ji1 , f (Ji2), Ji2 , . . . , f (Jik−h−t),

Jik−h−t , f (Jh+t), Jh+t, . . . , f (Jh+2), Jh+2, f (Jh+1), Jh+1

(3.2)

Let t be maximal such that the resulting permutation (3.2) is optimal and has

the highest number of jobs identical to to the sequence Jk, Jk−1, . . . , Jh+2, Jh+1. The

makespan of the corresponding schedule is equal to a` + (|R′|+ k− h) · c where `

is the index corresponding to the first job f (Ji1) in the schedule.

It is now shown that that a new permutation schedule with the same makespan

can be constructed where the t + 1 rightmost elements coincide with this sequence,

thereby contradicting that a maximal t exists: Since h + t < k, the order of the

jobs in J ′ is only identical for Jh+t, Jh+t−1, . . . , Jh+1, whereas the job Jh+t+1 is at a

different position ij in the permutation (3.2): Jh+t+1 = Jij . In addition, the first

job Jik−h−t at which the two permutations differ corresponds to a job Js ∈ J ′ with

s ≥ h + t + 2, or in other words, ik−h−t ≥ h + t + 2. Since the schedule is optimal, it

must hold that f (Jij) and f (Jij+1) are compatible with Jij . Since Jij is the largest job

in Ji1 , Ji2 , . . . , Jik−h−t , it holds that f (Jij) and f (Jij+1) are compatible with each job in

Ji1 , Ji2 , . . . , Jik−h−t . Therefore, the minimal schedule for the order

f (Ji1), R, Ji1 , . . . , f (Jij), Jij+1 , . . . , f (Jik−h−t),

Jik−h−t , f (Jij+1), Jh+t+1, f (Jh+t), Jh+t, . . . , f (Jh+2), Jh+2, f (Jh+1), Jh+1

has the same makespan a` + (|R′| + k − h) · c as σ and coincides with t + 1 jobs

from the sequence Jk, Jk−1, . . . , Jh+2, Jh+1 contradicting the maximality of t.
Thus, there exists a permutation schedule with an assignment f such that the

sequence f (Jk), R, Jk, f (Jk−1), Jk−1, . . . , f (Jh+1), Jh+1 is optimal.

Lemma 3.2.5 shows that an optimal permutation schedule can be found with an

assignment function f that assigns compatible predecessors to the jobs in {Jk, . . . ,
Jh+1} such that f (Jk) is minimal. This is done in lines 23–26 of Algorithm 3.1 where

always the largest possible job fromR′ is assigned to the next job in {Jk+1, . . . , Jh+1}
and where the smallest remaining job is assigned to Jk afterwards. In addition,

it can be seen that Algorithm 3.1 always constructs the solution σ such that the

55

3 The Two-Machine Flow Shop Problem with Buffers

ak c c c c c c

M2

M1 Jk J2 J3 J4 Jn−1 Jn

Jk J2 J3 Jn−2 Jn−1 Jn

Figure 3.4: Structure of an optimal schedule for the case F2|schedType, bJ = c,
intermediateBuffer, sJ = aJ , c ≥ aJ |Cmax

number of neighbored pairs of compatible jobs is maximal. Thus, it is also optimal

for the case where c ≤ aJi for all i ∈ {1, 2, . . . , n} in which case the length of the

schedule is ∑n
i=1 aJi + |I(σ)| · c where |I(σ)| is the number of neighboured pairs of

incompatible jobs in π(σ).

After the analysis of the cases with spanning buffer and sJ = aJ , the special cases

(including the cases identified in [96]) that are optimally solvable in polynomial

time can be stated in the following theorem.

Theorem3.2.2. Given an instance of F2|schedType, bJ = c, bufType, bufUsage|Cmax with
schedType ∈ {restricted, prmu}, bufType ∈ {spanningBuffer, intermediateBuffer} and
bufUsage ∈ {sJ = 1, sJ = aJ}, a permutation schedule that is optimal can be constructed
in time O(n log n) if c ≥ maxJ aJ or c ≤ minJ aJ .

Proof. Consider all possible values for bufType and bufUsage. It was already shown

for the case with a spanning buffer, permutation schedules and sj = aj that Al-

gorithm 3.1 computes an optimal schedule in O(n log n) time. Lemma 3.2.1 and

Lemma 3.2.2 show that this schedule is also optimal for the case schedType =

unrestricted.
For the case of an intermediate buffer and c ≥ maxJ aJ , consider the schedule

σ shown in Figure 3.4 which starts with a job Jk ∈ J satisfying aJk ≤ aJj for all

j ∈ {1, 2, . . . , n} and where each job is immediately processed on M2 after being

finished on M1. The intermediate buffer is not occupied at any point in time. This

schedule σ has the makespan Cmax(σ) = ak + nc which is a trivial lower bound for

the makespan of any schedule (including non-permutation schedules). Thus, σ is

an optimal permutation schedule.

Next, it is assumed that the flow shop has an intermediate buffer and satisfies

c ≤ mini aJ . In this case a schedule σ where all jobs are processed as early as

56

3.2.2 The Existence of Optimal Permutation Schedules

∑i ai c

M2

M1 J1 J2 J3 J4 Jn−1 Jn

J1 J2 J3 Jn−2 Jn−1 Jn

Figure 3.5: Structure of an optimal schedule for the case F2|schedType, bJ = c,
intermediateBuffer, sJ = aJ , c ≤ aJ |Cmax

possible must have a structure similar to the schedule shown in Figure 3.5 where

the machine M2 is always idle by the time M1 finishes a job J ∈ J . This allows M2

to immediately start J leaving the intermediate buffer unoccupied. These schedules

have a makespan of Cmax(σ) = ∑j aj + c which is also a trivial lower bound for the

makespan of any feasible schedule (including non-permutation schedules) so that

all schedules of this type form optimal permutation schedules for this case.

Finally, consider the case with a spanning buffer and sJ = 1. Assume that Ω = 1.
Then, no two jobs are processed at the same time on both machines so that every

permutation schedule σ (where every job starts as early as possible) is optimal with

a makespan of Cmax(σ) = ∑i aJ + nc. If Ω ≥ 2, then it is possible to construct the

same schedules as in Figures 3.4 and 3.5 (depending on whether c ≥ maxi aJ or

c ≤ mini aJ holds) since a maximum of two jobs occupy the buffer at any time.

3.2.2 The Existence of Optimal Permutation Schedules

This section deals with the question whether the set of optimal solutions for a flow

shopwith buffers contains permutation schedules. In a co-authoredwork [57], some

properties were identified which guarantee the existence of optimal permutation

schedules. Due to the excessive length of the proofs (whichmainly rely on analyzing

all possible cases), only the statements of the theorems are given. Detailed proofs

can be found in the paper [57] and its supplement.

First, the case where sJ = 1 holds for all jobs J is considered. The following

lemma holds for all non-permutation schedules.

Lemma 3.2.6. Let σ be a non-permutation schedule for an instance of F2|unrestricted, bJ =

c, bufType, sJ = 1|Cmax with bufType ∈ {intermediateBuffer, spanningBuffer}. Then,
there exists a permutation schedule σP satisfying Cmax(σP) ≤ Cmax(σ).

57

3 The Two-Machine Flow Shop Problem with Buffers

This lemma can be used to directly show the following statement regarding the

existence of optimal permutation schedules for that case.

Theorem3.2.3. For any problem of the type F2|unrestricted, bJ = c, bufType, sJ = 1|Cmax

withbufType ∈ {intermediateBuffer, spanningBuffer}, the set of optimal schedules contains
at least one permutation schedule.

When sJ = aJ holds for all jobs J, the existence of optimal permutation schedules

can only be guaranteed for instances with a certain number of jobs that depend on

the buffer type. For two-machine flow shops with a spanning buffer without the
restriction bJ = c for all jobs J, Fung and Zinder [50] showed that optimal permuta-

tion schedules always exist for instances with up to 4 jobs, but their existence cannot

be guaranteed for instances with more than 4 jobs. However, this bound changes

when the restriction bJ = c for all J is added.

Theorem 3.2.4. For every problem of the type F2|bJ = c, spanningBuffer, sJ = aJ |Cmax

with 6 jobs or fewer, the set of optimal schedules contains at least one permutation schedule.
For every n > 6 (n ∈ N) there exists an instance of F2|bJ = c, spanningBuffer, sJ =

aJ |Cmax for which the set of optimal schedules contains no permutation schedule.

For two-machine flow shops with an intermediate buffer, the following holds.

Theorem3.2.5. For every problem of the type F2|bJ = c, intermediateBuffer, sJ = aJ |Cmax

with 3 jobs or fewer, the set of optimal schedules contains at least one permutation schedule.
For every n > 3 (n ∈ N) there exists an instance of F2|bJ = c, intermediateBuffer,
sJ = aJ |Cmax for which the set of optimal schedules contains no permutation schedule.

For two-machine flow shops without buffer restrictions, optimal permutation

schedules always exist [73]. The results above show that introducing a buffer where

sJ = aJ holds for all jobs J leads to a “gap” between non-permutation schedules and

permutation schedules in terms of attainable solution quality. This gap is analyzed

in more detail in the following section.

3.2.3 The Gap Between Permutation Schedules an Non-Permutation
Schedules

As established in the previous section, for certain flow shop problems with buffers

it is possible that the set of optimal schedules contains no permutation schedule.

58

3.2.3 The Gap Between Permutation Schedules an Non-Permutation Schedules

This raises the question how “good” the best possible permutation schedule can be

when compared to an optimal schedule. In order to investigate this, some terms

need to be introduced.

A permutation schedule σ∗perm is a best permutation schedule if it has the lowest

makespan out of all permutation schedules. This is to be distinguished from an

optimal schedule σ∗ that has the lowest makespan out of all schedules (including

permutation and non-permutation schedules).

With these terms, the ratio φ := Cmax(σ∗perm)/Cmax(σ∗) that describes the ratio

between the makespan of a best permutation schedule σ∗perm and the makespan

of an optimal schedule σ∗ is analyzed in the following. In particular, instances

are presented where this ratio is larger than 1. This means that the restriction to

permutation schedules can lead to a gap in solution quality when compared to non-

permutation schedules where even the best permutation schedule is worse than

the best non-permutation schedule by a constant factor. These results are based on

published work from the author [57].

In the following, the notation Cmax(σ∗perm, I) is used to denote the makespan of a

best permutation schedule σ∗perm and Cmax(σ∗, I) is used to denote the makespan of

an optimal schedule σ∗ (out of permutation and non-permutation schedules) for a

given flow shop instance I .

Spanning Buffer

In the following, let Ik, k ≥ 1 be an instance of F2|unrestricted, spanningBuffer,
sJ = aJ , bJ = c|Cmax with jobs u1

i , u2
i , u3

i , ri, g1
i , g2

i where au1
i
= au2

i
= au3

i
= c/3,

ag1
i
= ag2

i
= 2c and ari = c for i = 1, . . . , k and a given constant c > 0, and a job

g0 with ag0 = 2c. The size of the buffer is set to Ω = 3c + c/3. Jobs g0, g1
i and g2

i ,

i = 1, . . . , k are called jobs of type g or g-jobs. Analogously defined are jobs of type

u or u-jobs and jobs of type r or r-jobs. Thus, instance Ik has 2k many u-jobs, k many

r-jobs, and 2k + 1 many g-jobs.
In order to analyze the makespan ratio between an optimal non-permutation

schedule and the best permutation schedule, the following lemma specifies the

length of best permutation schedules for Ik.

Lemma 3.2.7. For each instance Ik, k = 1, 2, 3, . . . there exists an optimal permutation
schedule σ∗perm with makespan Cmax(σ∗perm) = (2k + 1) · 3c + kc/3.

59

3 The Two-Machine Flow Shop Problem with Buffers

Proof. First, a lower bound on the length of an optimal permutation schedule for

Ik is shown. Since the buffer cannot store more than one g-job exactly one of the

following properties holds at any time step of a permutation schedule σP
for Ik:

• A: A g-job is being processed on M1.

• B: A g-job is being processed on M2.

• C: Neither M1 nor M2 are processing a g-job.

Let tA, tB, tC be the number of time steps in a given permutation schedule σP

where the aforementioned cases A, B, respectively C hold. The makespan of σP
can

be expressed as Cmax(σP) = tA + tB + tC. It follows that tA = ∑ ag = (2k + 1)2c
and tB = ∑ bg = (2k + 1)c hold and therefore tA + tB = (2k + 1)3c. All schedules

for Ik have a makespan of at least tA + tB time units and an optimal permutation

schedule needs to minimize tC. The main idea is to calculate a lower bound t̃C for

tC from which it follows that tA + tB + t̃C forms a lower bound for the makespan of

any permutation schedule.

Let g1, g2, . . . , g2k+1 be the order in which the jobs of type g appear in the schedule

σP
, i.e., gi ∈ {g0} ∪ {g1

j , g2
j | j = 1, . . . , k} for i = 1, 2, . . . , 2k + 1. Let Γi, i =

1, . . . , 2k + 1 denote the set of jobs being (fully or partially) processed on M1 during

the interval [C1
gi
(σP), C2

gi
(σP)] in the given permutation schedule σP

. Observe that

Γi ∩ Γi = ∅ holds for i 6= j and i, j ∈ {1, . . . , 2k + 1}. This follows from the fact that

the jobs in Γi need to be processed on M1 before gi+1 is processed on M1 and the

jobs in Γi+1 are processed on M1 after gi+1 is processed on M1 for i ∈ {1, . . . 2k}.
Observe that every job processed on M1 after C1

g2k+1
(σP) (which includes the jobs in

Γ2k+1) contributes at least c time units to tC. This holds since each of these jobs is

processed on M2 after C2
g2k+1

but no g-job is processed on M1 during this time since

g2k+1 is the last g-job.
Next, it is analyzed howmuch the jobs in the sets Γi for i ∈ {1, . . . , 2k} contribute

to the value of tC. Due to the limited buffer size and since σP
is a permutation

schedule, one of the following cases must hold for each of the sets Γi, i = 1, . . . , 2k:

• case “∅”: Γi contains no job.

• case “u”: Γi contains exactly one u-job.

• case “r”: Γi contains exactly one r-job.

60

3.2.3 The Gap Between Permutation Schedules an Non-Permutation Schedules

• case “ur”: Γi contains exactly one u-job and one r-job (processed in the order

ur or ru)

• case “uu”: Γi contains exactly two u-jobs.

• case “uuu”: Γi contains exactly three u-jobs.

• case “uuuu”: Γi contains exactly four u-jobs.

First, consider the case “uuu”. During the interval [C1
gi
(σP), C2

gi
(σP)] none of the

three u-jobs in Γi can leave the buffer, since M2 has to finish gi before processing the

u-jobs. Thus, the three u-jobs need to be processed on M2 after C2
gi
(σP) before the

next g-job gi+1 can start on M2. Since the running time of the three u-jobs on M2

equals 3bu = 3c and since processing gi+1 on M1 takes only agi+1 = 2c time units

there exist at least c time units where one of the three u-jobs is processed on M2

but no g-job is processed on M1. Thus, Γi contributes at least c time units to tC. An

analogous argument shows that Γi for the case “uuuu” contributes at least 2c time

units to tC.

Next, consider the case “ur”. Since au + ar = c + c/3 there exist at least c/3
time units where jobs in Γi are being processed on M1 while M2 is not processing

a g-job. Thus, Γi contributes c/3 time units to tC in this case. However, note that

the contributions to tC caused by cases “uuu” and “uuuu” are due to processing

times on M2, i.e., the sum of processing times on M2 over the jobs in Γi exceeds

ag, whereas the contributions to tC caused by “ur” are due to processing times on

M1, i.e., the sum ∑j∈Γi
aj is larger than bg. In the following, these two types of

contributions to tC are referred to as “tC-contributions caused by processing times

on M1” and “tC-contributions caused by processing times on M2”.

When determining tC, the possibility has to be considered that a tC-contribution

of a set Γi caused byprocessing times on M2 (cases “uuu” and “uuuu”) can “overlap”

with a tC-contribution caused by processing times on M1 for jobs in the set Γi+1 (case

“ur”). In such a case it needs to be made sure that a tC-contribution is not counted

twice for tC. Therefore we will not count the tC-contribution of Γi+1 (case “ur”) in
such a case, i.e. when Γi is of the form “uuu” or“uuuu”.

For the cases “∅”, “u”, “r”, “uu” no tC-contribution is counted.

It should be noted that each u-job and each r-job that is not contained in any

of the sets Γi must necessarily be processed on M1 while no g-job is processed on

61

3 The Two-Machine Flow Shop Problem with Buffers

M2. Hence, each such u-job contributes at least c/3 time units to tC and each r-job
contributes at least c time units to tC. Since each such contribution to tC is caused

by processing times on M1 it is possible that it (fully or partially) overlaps with a

tC-contribution caused by some set Γi which belongs to one of the cases “uuu” and
“uuuu”. Both cases are considered in the following paragraph.

First, the case “overlap between ‘uuu’ and jobs not contained in any Γi” is consid-

ered. Note that for such jobs to overlap with the tC-contribution caused by “uuu”,
they have to be processed on M1 in the interval [C2

gi
(σP), S1

gi+1
(σP)], otherwise their

processing on M1 would not overlap with [C2
gi
(σP), S2

gi+1
(σP)] (the time interval

where the u-jobs are processed on M2) or they would be contained in Γi+1 (if they

are processed in the interval [C1
gi+1

(σP), S2
gi+1

(σP)]). Thus, assume that after the

three u-jobs in Γi a job x ∈ {r, u} is processed on M1 at some time in the interval

[C2
gi
(σP), S1

gi+1
(σP)]. By definition, this job is not contained in any of the sets Γi,

j ∈ {1, 2, . . . , 2k + 1}. Then, the contribution to tC caused by the M1 processing

time ax of x can overlap with the processing of u-jobs on M2 and thus overlap the

tC-contribution caused by “uuu” by at most ax ≤ c time units. However, since x is

processed before gi+1 on M1, it must also be processed before gi+1 on M2. It follows

that the interval [C2
gi
(σP), S2

gi+1
(σP)] must span at least 4c time units, where for at

least c time units none of the machines is processing a g-job and also not the x-job.
Hence it can still be counted that the case “uuu” has a tC-contribution of c time units

due to processing times on M2 (whereas for job x the tC-contribution is still fully

counted as ax). An analogous argumentation holds if more than one job of type u
and/or r is processed on M1 during the interval [C2

gi
(σP), S1

gi+1
(σP)].

Note that it is not possible that a contribution to tC caused in this case “overlaps”

with a contribution caused by the case “ur” (or vice versa) since they are both caused

by processing times on M1. Similarly, contributions to tC caused by two sets Γi and

Γi+1 that are both of one of the cases “uuu” and “uuuu” (and therefore both caused

by processing times on M1) cannot overlap with each other.

Next, the problem of minimizing tC is considered. In the following, let v∅, vu,

vr, vuu, vuuu, and vuuuu be the number of how often the aforementioned cases occur

for the sets Γi, i = 1, . . . , 2k in the schedule σP
. For case “ur”, we introduce the

variables vur/uuu, vur/uuuu, and vur/other such that: i) vur/uuu counts how often a set

Γi, i = 1, . . . , 2k belongs to the case “ur”when Γi−1 belongs to case “uuu”, ii) vur/uuuu

counts how often a set Γi, i = 1, . . . , 2k satisfies the case “ur” when Γi−1 belongs to

62

3.2.3 The Gap Between Permutation Schedules an Non-Permutation Schedules

the case “uuuu”, and iii) vur/other counts how often a set Γi, i = 1, . . . , 2k is belongs

to the case “ur” and none of the cases (i) or (ii) holds, i.e. either i = 1 or Γi−1 is

neither “uuu” nor “uuuu”. In addition, let vlast
r and vlast

u be the number of r-jobs and
u-jobs that are processed on M1 after g2k+1.The introduced variables need to satisfy

the following equations:

• vr + vur/uuu + vur/uuuu + vur/other + vlast
r ≤ k (there exist only k jobs of type r)

• 4vuuuu + 3vuuu + 2vuu + vu + vur/uuu + vur/uuuu + vur/other + vlast
u ≤ 3k (there

exist only 3k jobs of type u)

• v∅ + vu + vr + vur/uuu + vur/uuuu + vur/other + vuu + vuuu + vuuuu = 2k (each of

the sets Γi, . . . , Γ2k is counted in exactly one of the variables)

From the first equation it can be seen that the number of “remaining” r-jobs, i.e., r-
jobs that are neither contained in any set Γi, i = 1, . . . , 2k nor areprocessed after g2k+1

is equal to v?r := k− vr− vur− vur/uuu− vur/uuuu− vur/other− vlast
r . Similarly, from the

second equations one derives that the number of of “remaining” u-jobs, i.e., u-jobs
that are neither contained in any set Γi, i = 1, . . . , 2k nor are processed after g2k+1 is

equal to v?u := 3k− 4vuuuu− 3vuuu− 2vuu− vu− vur/uuu− vur/uuuu− vur/other− vlast
u .

In the following, a lower bound t̃C for tC is calculated by solving the following

minimization problem over the variables v∅, vu, vr, vuu, vuuu, vuuuu, vur/uuu, vur/uuuu,

vur/other, vlast
u , and vlast

r where for each case theminimumcontribution to tC is counted.

Minimize

t̃C =
c
3

vur/other + cvuuu + 2cvuuuu +
c
3
· v?u + c · v?r + cvlast

u + cvlast
r

subject to the constraints

vr + vur/uuu + vur/uuuu + vur/other + vlast
r ≤ k

4vuuuu + 3vuuu + 2vuu + vu + vur/uuu + vur/uuuu + vur/other + vlast
u ≤ 3k

vur/uuu ≤ vuuu

vur/uuuu ≤ vuuuu

v∅ + vu + vr + vur/uuu + vur/uuuu + vur/other + vuu + vuuu + vuuuu = 2k

v∅, vu, vr, vur/uuu, vur/uuuu, vur/other, vuu, vuuu, vuuuu, vlast
r , vlast

u ∈N

63

3 The Two-Machine Flow Shop Problem with Buffers

M2

M1 u1
i u2

i u3
i g1i ri g2i u1

i+1u
2
i+1u

3
i+1

g2i−1 u1
i u2

i g1i u3
i r2i g2i

Figure 3.6: Structure of an optimal (non-permutation) schedule σ∗ for an instance

Ik.

M2

M1 u1
i u2

i g1i u3
i ri g2i u1

i+1u
2
i+1

g2i−1 u1
i u2

i g1i u3
i ri g2i

Figure 3.7: Structure of a best permutation schedule σ∗perm for the instances for an

instance Ik.

The first three terms in the objective function correspond to the contribution to

tC for the cases “ur/other”, “uuu” und “uuuu”. The fourth term and fifth term

correspond the contributions to tC for “remaining” u-jobs and the “remaining” r-
jobs, respectively. The last two terms correspond to the contribution of the u-jobs
and r-jobs processed on M1 after g2k+1.

Rewriting the objective function leads to an integer linear programming problem.

A straightforward application of the simplex algorithm on the relaxed problem

(without integrality constraints) shows that a minimum is t̃∗C = kc/3. One possible

solution that leads to this value is vur/other = k, vuu = k where all other variables

are equal to zero (Observe, that the optimal schedule which is given in the next

paragraph corresponds to these values). This shows that the smallest attainable

value for t̃C is the same for the linear program with integrality constraints. Thus,

tA + tB + t̃C = (2k+ 1) · 3c+ kc/3 is a lower bound for themakespan of an (optimal)

permutation schedule.

To show that the lower bound is sharp an example for an optimal permutation

schedule is given in the following. Let σ∗perm be a schedule that starts with g0,

followed by a blockwise arrangement of jobs as shown in Figure 3.7 with length

6c + c/3 per block. This leads to the makespan Cmax(σ∗perm) = 2c + k · (6c + c/3) +
c.

64

3.2.3 The Gap Between Permutation Schedules an Non-Permutation Schedules

Now we can show the following theorem about the makespan ratio between a

best permutation schedule and an optimal schedule for flow shop instances Ik.

Theorem 3.2.6. For flow shop instances Ik (as defined above) of the type F2|unrestricted,
spanningBuffer,sJ = aJ , bJ = c|Cmax with k ≥ 100 the following holds:

Cmax(σ∗perm, Ik)

Cmax(σ∗, Ik)
≥ 1 +

1
20

.

Proof. The instances Ik are chosen as described above. It was shown in Lemma

3.2.7 that a best permutation schedule σ∗perm for Ik exists with Cmax(σ∗perm) = k · (6c+
c/3) + 3c.

In the followingwe define an optimal (non-permutation) schedule σ∗. Let σ∗ start

with a g-job (which, without loss of generality, can be assumed to be g0), followed

with a job structure as shown in Figure 3.6. In this structure, each block has a length

of 6c time units which is equal to the lower bound since each block contains 6 jobs.

Schedule σ∗ has makespan Cmax(σ∗) = k · 6c + 3c which is equal to the trivial lower

bound ∑J aJ + c.

To show the theorem consider Ik and assume k ≥ 100 holds. Then, Cmax(σ∗perm) =

(2k + 1)3c + kc/3 ≥ (19/3)kc and Cmax(σ∗) = 6kc + 3c ≤ (6c + 3c/k)k ≤ ((6c +
(3/100)c)k = (603/100)ck. Hence,

Cmax(σ∗perm, Ik)

Cmax(σ∗, Ik)
≥ 19/3

603/100
≥ 1 +

1
20

.

For increasing k the ratio between the best permutation schedule and the optimal

schedules increases monotonically. For k → ∞, it is straightforward to show the

following.

Corollary 3.2.2. For the flow shop instances Ik as defined above of the type F2|unrestricted,
spanningBuffer,sJ = aJ , bJ = c|Cmax, the following holds for k→ ∞:

lim
k→∞

Cmax(σ∗perm, Ik)

Cmax(σ∗, Ik)
= lim

k→∞

k · (6c + c/3) + 3c
k · 6c + 3c

=
19
18

65

3 The Two-Machine Flow Shop Problem with Buffers

Intermediate Buffer

A similar example exists for flow shops with an intermediate buffer. Let Ik, k =

1, 2, 3, . . . be an instance of type F2|intermediateBuffer, sJ = aJ , bJ = c|Cmax with

3(k + 1) with jobs hi, ui, and gi where aui = p, ahi = c − p, agi = 2c for i =

1, . . . , k + 1 and where for a given buffer size Ω the values p and c are chosen such

that p ≤ Ω < c − p. Jobs hi, (ui, gi, respectively) i = 1, . . . , k + 1 are called jobs

h-jobs (u-jobs, g-jobs, respectively).
Due to the choice of the processing times on M1 and the buffer size Ω, only a

small number of different cases can occur regarding which jobs are scheduled on

M2 when M1 starts to process a job in a permutation schedule σP
. These cases

and when they occur can be visualized using a state transition diagram shown in

Figure 3.8 where the cases correspond to “states” and a “state transition” (arrow)

corresponds to the next job scheduled in σP
. These state transitions can be verified

in a straightforward manner by determining the resulting schedules for each arrow

(i.e., for each job that is processed next). Note that it is not possible that the idle

times induced by state transitions overlap with each other.

In this diagram, each permutation schedule σP
corresponds to a connected path

that starts with the top-most arrow and consists of k + 1 transitions for each type

of jobs u, g, and h. Also, for each such path a corresponding feasible permutation

schedule exists where the sequence of jobs is the same as the sequence of jobs

corresponding to the arrows of the path and the total amount of idle times on one

machine is the sum over the idle times of the corresponding arrows, however, for

M1 an idle time with length c has to be added that always occurs at the end of the

schedule while M2 is processing the last job.

In the following lemma a lower bound on idle times in a feasible permutation

schedule for Ik is shown.

Lemma 3.2.8. For each instance Ik, k = 1, 2, . . . the total idle time on M1 in a feasible
permutation schedule is at least k · p + c.

Proof. Since the number of h-jobs in Ik is k + 1, the path corresponding to a feasible

permutation schedule σP
must contain at least k + 1 transitions with h-jobs. The

h-transition with the smallest idle time in M1 is A h→ A (excluding h being the first

job in the permutation schedule σP
). If σP

starts with h and all h-jobs are used for

this transition, at least kp time units of idle time on M1 are incurred. (If the schedule

66

3.2.3 The Gap Between Permutation Schedules an Non-Permutation Schedules

A
Next job to be scheduled on

M1 starts at the same time as

the processing of a job on M2.

Buffer is empty.

hhhc−p
M2

, ggg2c
M2

, uuup
M2

B
Next job to be sched-

uled on M1 starts while

M2 is already process-

ing a job. Buffer con-

tains one u-job.

C
Next job to be sched-

uled on M1 starts at the

same time as the pro-

cessing of a job on M2.

Buffer contains one u-
job.

hhhp
M1

, gggc
M2

uuu0 hhhc
M1

, gggp
M2

uuuc−2p
M1 uuuc−p

M1

ggg0
, hhhc+p

M1

Figure 3.8: Diagram to visualize the different cases (“states”) when scheduling a job

j as the next job in a feasible permutation schedule σP
and the incurred

idle times on M1 and M2 for the instances Ik. The symbols A, B, andC are

used to abbreviate the three possible states. The first job in a permutation

schedule σP
corresponds to the top-most arrow. The notation jx

Mi
for

j ∈ {h, u, g} on an arrow indicates that scheduling j in this state as the

next job will incur x units of idle time on Mi, whereas j0 indicates that no
idle times are incurred on any of the machines. A feasible permutation

schedule σP
for Ik corresponds to a connected path through this diagram

starting at the top that contains exactly k+ 1 transitionsusing h-jobs, k+ 1
transitions with g-jobs and k + 1 transitions with u-jobs and the total idle

time in σP
can be calculated by summing the idle times on the traversed

edges.

67

3 The Two-Machine Flow Shop Problem with Buffers

does not start with h, the total idle time on M1 caused by h-jobs is at least p(k + 1).)
Thus, the total idle time on M1 is bounded from below by kp + c.

The next lemma shows that the same lower as in Lemma 3.2.8 holds for idle times

on M2.

Lemma 3.2.9. For each instance Ik, k = 1, 2, . . . the total idle time on M2 in a feasible
permutation schedule is at least k · p + c.

Proof. Referring to Figure 3.8 above let XyZ be the number of times the edge X
y→ Z

is traversed on the path that corresponds to a permutation schedule σP
.

In order to show the lower bound, the following property is shown first: Each

occurrence of a transition C
g→ A leads to c corresponding idle time steps on M2.

In order to show this, the argument is as follows (using Figure 3.8): If CgA > 0
in a permutation schedule σP

, there are at least CgA transitions of type A u→ B
that are not followed by B

g→ A. In addition, at least CgA transitions of type

B u→ C must have occurred. Thus, since there are only k + 1 jobs of type u,
the following holds for the number of times the transition A u→ B occurs in σP

:

AuB ≤ k + 1− CgA. Furthermore, BgA + CgA ≤ AuB holds (each B
g→ A and

C
g→ A transition requires that a A u→ B transition has occurred previously). It

follows that BgA + CgA ≤ k + 1− CgA. Since there are k + 1 jobs of type g and

0gA + AgA + BgA + CgA = k + 1 (where 0gA is defined to be 1 if σP
starts with

a g-job and otherwise it is 0), the schedule σP
must contain g-transitions that are

neither B
g→ A nor C

g→ A.

Using the above inequalities, one obtains 0gA + AgA = k + 1− (BgA + CgA) ≥
k + 1− (k + 1− CgA) = CgA, which implies that σP

contains at least CgA · c units
of idle time on M2 due to transitions A

g→ A and 0
g→ A (the latter occurs when σP

starts with a g-job). Thus, every transition C
g→ A leads to an idle time of at least c

time units on M2.

Now, the lower bound for idle times on M2 is analyzed by considering all possible

starting jobs. First, assume that σP
starts with an u-job. Since the number of

u-jobs in Ik is k + 1, having σP
start with a u-job implies AuB < k + 1. Since

BgA + CgA ≤ AuB (as shown in the former paragraph), BgA + CgA < k + 1
holds. Using 0gA + AgA + BgA + CgA = k + 1 (where 0gA = 0 holds) leads to

AgA = k + 1− (BgA + CgA) > 0. This implies that there must be at least one

68

3.2.3 The Gap Between Permutation Schedules an Non-Permutation Schedules

M2

M1 hi ui gi hi+1

gi−1 hi ui gi

Figure 3.9: Structure of a best permutation schedule σ∗perm for the instances Ik.

M2

M1 ui hi gi ui+1 hi+1

gi−1 hi ui gi

Figure 3.10: Structure of an optimal non-permutation schedule σ∗ for the instances
Ik.

transition A
g→ A in the schedule with corresponding idle time of c time steps on

M2. In the best case, the feasible permutation schedule σP
uses the k + 1 jobs of

type g in Ik as follows: One transition A
g→ A (inducing an idle time of c on M2)

and k transitions of type B
g→ A, inducing kp units of idle time on M2 (recall that it

was shown above that C
g→ A induces more idle times than that, so it is not further

considered here). By summing the resulting M2 idle times, one obtains p + c + k · p
(i.e., a u-transition at the beginning, one A

g→ A-transition and k transitions B
g→ A)

as a lower bound for idle times on M2 when σP
starts with a u-job.

Next, assume that σP
starts with a g-job (inducing 2c units of idle time on M2), a

simple lower bound can be obtained by assuming that the remaining k transitions

with g-jobs are of the type B
g→ A. In this case summing the idle times induced by

g-jobs on M2 leads to the lower bound 2c + kp when σP
starts with g.

Finally, assume that σP
starts with an h-job and all k + 1 transitions with g-jobs

are B
g→ A, the lower bound kp+ c is obtained. Taking theminimum over the lower

bounds for the three possible starting jobs leads to the lower bound kp + c.

Consider the feasible permutation schedule σ∗perm that processes the jobs in the

order h1, u1, g1, h2, u2, g2, . . . , hk+1, uk+1, gk+1 leading to a block structure as shown

in Figure 3.9 so that each block (except the first block) takes 3c + p time units which

is a difference of length p when compared to σ∗ (note the dashed lines in Figure

3.9 where M1 is blocked). This feasible permutation schedule has idle times kp + c
on M1 and M2. Applying Lemma 3.2.8 and Lemma 3.2.9 shows that σ∗perm has the

minimum idle time that can be attained with feasible permutation schedules, i.e., it

is a best permutation schedule with makespan 3c(k + 1) + pk + c.

69

3 The Two-Machine Flow Shop Problem with Buffers

Next, the following property can be shown about the makespan ratio between

a best permutation schedule and an optimal (non-permutation) schedule for flow

shop instances Ik.

Theorem 3.2.7. For flow shop instances Ik (as defined above) of the type F2|unrestricted,
intermediateBuffer, sJ = aJ , bJ = c|Cmax with k ≥ 25, p = Ω ≥ 1, c = 2p + 1 the
following holds:

Cmax(σ∗perm, Ik)

Cmax(σ∗, Ik)
≥ 1 +

1
20

Proof. The instances Ik are chosen as described above. It was shown above that a

best permutation schedule σ∗perm for Ik exists with makespan Cmax(σ∗perm) = 3c(k +
1) + pk + c.

In the following we define an optimal (non-permutation) schedule σ∗. In σ∗ the

jobs are arranged in “blocks”, see Figure 3.10. Since each block of jobs (ui, hi, gi) con-

tains three jobs, the minimal length of such a block is 3c, from which it follows that

the arrangement shown in Figure 3.10 corresponds to an optimal (non-permutation)

schedule σ∗ since each block has length 3c and the makespan is 3c(k + 1) + c.

To show the ratio, consider Ik and assume k ≥ 25, p = Ω ≥ 1 and c = 2p + 1
holds. Then p ≥ (1/3)c holds. Clearly, Cmax(σ∗perm) = 3c(k + 1) + pk + c ≥ 3ck +
pk + 4c ≥ (10/3)ck and Cmax(σ∗) = 3ck + 4c ≤ 3ck + (4/25)ck ≤ (79/25)ck.
Hence,

Cmax(σ∗perm, Ik)

Cmax(σ∗, Ik)
≥ 10/3

79/25
≥ 1 +

1
20

.

Similar to the example with spanning buffers, the ratio increases monotonically.

By a straightforward calculation andusing p < 2c (which follows from thedefinition

of the instances Ik), the following can be shown for k→ ∞.

Corollary 3.2.3. For the flow shop instances Ik as defined above of the type F2|unrestricted,
intermediateBuffer,sJ = aJ , bJ = c|Cmax, the following upper bound for the ratio holds for
k→ ∞:

lim
k→∞

Cmax(σ∗perm, Ik)

Cmax(σ∗, Ik)
= lim

k→∞

3c(k + 1) + pk + c
3c(k + 1) + c

= 1 +
p
3c

<
7
6

70

3.2.3 The Gap Between Permutation Schedules an Non-Permutation Schedules

The ratios presented in the two examples above for buffer flow shops show that

in general it cannot be assumed that the ratio between best permutation schedules

and optimal schedules is smaller than these values, i.e., they form a type of “lower

bound” for the ratios that can be potentially reached. An upper bound of 2 for

this ratio is established in the following which shows that the ratio cannot exceed

this value. This is done by presenting an efficiently computable 2-approximation

algorithm.

Theorem 3.2.8. For any flow shop instance of the type F2|unrestricted, bufType,sJ =

aJ , bJ = c|Cmax with bufType ∈ {intermediateBuffer, spanningBuffer}, the makespan
ratio between a best permutation schedule σ∗perm and an optimal permutation schedule σ∗ is
bounded from above by

Cmax(σ∗perm)

Cmax(σ∗)
≤ 2.

Proof. Since in any feasible schedule (including an optimal schedule σ∗) all jobs

need to be processed on both M1 and M2, a trivial lower bound is Cmax(σ∗) ≥
max{∑J aJ , ∑ bJ}. The trivial permutation schedule σ̂ that processes all jobs subse-

quently without overlapping satisfies Cmax(σ̂) = ∑J aJ + ∑ bJ . From this, it follows

that Cmax(σ∗perm) ≤ Cmax(σ̂) = ∑J aJ + ∑ bJ ≤ 2 ·max{∑ aJ , ∑ bJ} ≤ 2 · Cmax(σ∗).

It remains to check that the permutation schedule σ̂ does not exceed the buffer

capacity at any time. In the case of an intermediate buffer, the buffer is not used

at any time. In the case with a spanning buffer, not more than maxJ sJ units of

buffer capacity are used. Since the buffer capacity Ω cannot be less than maxJ sJ in

flow shops with a spanning buffer (otherwise no feasible schedules exist), σ̂ is also

feasible if spanning buffers are used. Thus, σ̂ is a feasible permutation schedule

that cannot be worse than an optimal schedule σ∗ by a factor larger than 2.

After analyzing theoretical properties of flow shop problems with buffers, a

heuristic is presented in the following section for Two-Machine Flow Shops with

Buffers and constant processing times on the second machine.

71

3 The Two-Machine Flow Shop Problem with Buffers

3.3 A Modification of the NEH Heuristic

The NEH algorithm (named after the authors Nawaz, Emory Enscore, and Ham

[122]) is a commonly used and well-known heuristic for makespan minimization

in permutation flow shop problems. The algorithm starts with an empty permu-

tation that is iteratively filled by inserting jobs (in decreasing order of the sums of

their processing times) into the positions which lead to the smallest increases in

makespan. It can be shown that this heuristic also calculates an optimal solution for

all special cases considered in Theorem 3.2.2 since it also performs greedy insertions

maximizing the number of hidden jobs as well as the sum of their processing times.

Several variants of the NEH heuristic have been studied in the literature. The

majority of them deal with ties [46] or use different orders of job insertions, e.g.,

based on the moments of processing times [111] or using genetic programming

[184]. A disadvantage of the NEH heuristic is its relatively large run time since

it checks Θ(n2) insertion points. In particular, when the solution of the NEH

heuristic is further used by improvement heuristics, e.g., as the starting solution for

an Iterated Local Search heuristic, it is desirable to have a faster heuristic for the

computation of a starting solution.

In this section, a modified NEH heuristic (mNEH) is introduced that has a better

time complexity and is suited for the considered two-machine flow shops with

buffers where all processing times on the second machine M2 are equal. In this

case, the jobs differ only by their processing time on M1 making it more likely that

many jobs are similar or even identical. This property is used in themNEHheuristic

to reduce the number of positions to check for the insertions of the jobs, and thus

the total number of evaluated schedules. The main idea is to split the n jobs into

G(n) groups of similar jobs and to maintain for each group a list of L(n) “good”
positions as candidates for insertion operations. This is based on the assumption

that insertions of similar jobs at the same positions lead to similar changes in the

resulting makespan.

A pseudocode of the modified NEH heuristic is shown in Algorithm 3.2. The

number of evaluations to beperformed can thenbe adjustedbyappropriate choice of

L(n) andG(n). In the following experiments, L(n) = 2
√

npositions arememorized,

i.e., potentially

√
n before and

√
n after the newly inserted job for each of the

G(n) =
√

n groups of equal size (an exception is the last group as described later).

72

3.3 A Modification of the NEH Heuristic

Algorithm 3.2Modified NEH heuristic (mNEH)

Input: number of groups G(n), number of positions L(n) to memorize

1: πsort ← sorted sequence of jobs by descending ai
2: π← empty permutation

3: S1, S2, . . . , SG(n) ← partition of πsort
into G(n) groups of equal size

4: for S ∈ {S1, S2, . . . , SG(n)−1} do
5: (j1, j2, . . . , jk)← jobs in the current group S
6: test insertion of j1 in all possible positions of π and memorize the best L(n)

insertions

7: insert j1 at the best position in π
8: update list of memorized L(n) positions
9: for ` ∈ {2, 3, . . . , k} do
10: test insertion of j` into π̂ at the memorized L(n) positions
11: test insertion of j` into neighbor positions of j`−1
12: insert j` at the best tested position in π
13: update list of memorized L(n) positions (if necessary)
14: end for
15: end for
16: insert the jobs in SG(n) into π as in the standard NEH heuristic

17: return π

With this parameter choice, the resulting algorithm performs O(n
√

n) evaluations,
but note that the incomplete permutation π contains less than L(n) jobs during the

scheduling of the first two groups S1 and S2. For the jobs in these two groups,

the mNEH heuristic tests all possible insertion positions in the same way as in

the standard NEH heuristic. For the last group SG(n), all possible positions are

checked as this group contains the shortest jobs allowing for a finer optimization

of the partial permutation π. Regarding the time complexity (including the time

to evaluate a permutation as well as the time to build and update the list) it can be

shown that the mNEH heuristic with the used parameter values is faster than the

standard NEH algorithm by a factor of O(
√

n).

ThemodifiedNEH heuristic is used in ametaheuristic algorithm for permutation

flow shops with buffers that was developed in a published work from the author

[96]. This metaheuristic is described in the following section.

73

3 The Two-Machine Flow Shop Problem with Buffers

3.4 An Iterated Local Search for the Two-Machine Flow Shop
Problem with Buffers

The algorithmproposed for F2|prmu, bufType, bufUsage, bJ = c|Cmax (where bufType

can be an intermediate buffer or a spanning buffer andwhere bufUsage can be sJ = 1
or sJ = aJ for all jobs J) is an Iterated Local Search (denoted 2BF-ILS in the following)

that uses the following local search operations:

• inserting a job on position i into another position j (insert)

• inserting a pair of adjacent jobs at the positions (i, i + 1) into the positions

(j, j + 1) (pairInsert)

• swapping two jobs at the positions i and j (swap)

The naming of these operations is based on the work of Zhang and Gu [200] and

Moslehi and Khorasanian [119]. The actual selection of these operations and the

order inwhich they are used in the experiments is later determined by the algorithm

configurator irace in Section 3.5.3. For this reason, the following description is

based on the generalized case where a sequence op1, op2, . . . , op` is given with opi ∈
{insert, pairInsert, swap} for i ∈ {1, 2, . . . , `}. Each of the considered operations op ∈
{insert, pairInsert, swap} takes two parameters i and j and the result of op applied

on π with these parameters is denoted op(π, i, j). The resulting neighborhood of

permutations around π is denoted Nop(π) = {π′ | ∃i, j : op(π, i, j) = π′}, i.e.,
the set of all permutations π′ that can be obtained by a single application of op
on π. The size of the neighborhoods for the considered operations is quadratic

with respect to the number of jobs n since the number of possible values for the

parameters i and j linearly increases with n. One way to reduce the size is to fix a

parameter i:
Nop

i (π) = {π′ | ∃j : op(π, i, j) = π′}

This lowers the number of permutations that need to be checked, leading to po-

tentially good solutions being missed. However, the linear size of the resulting

neighborhood allows for more local search operations to be performed in the same

amount of time.

The main steps of the proposed method are outlined in Algorithm 3.3: 2BF-ILS

starts with the solution obtained from the mNEH heuristic proposed in Section 3.3

74

3.4 An Iterated Local Search for the Two-Machine Flow Shop Problem with Buffers

Algorithm 3.3 2BF-ILS

Input: initial perturbation strength psinit, sequence of operations (op1, op2, . . . , op`)

1: π0 ← permutation generated by mNEH (Algorithm 3.2)

2: ps← psinit
3: while termination criterion not satisfied do
4: πcur ← best known solution

5: πrand← random job permutation

6: if best solution did not improve in previous iteration then
7: πcur ← perturb(πcur, ps)
8: end if
9: for s ∈ {1, 2, . . . , `} do
10: op← ops
11: repeat . local search

12: for k ∈ {1, 2, . . . , n} do
13: i← kth element in πrand

14: π̂← best permutation in the neighborhood Nop
i (πcur)

15: if Cmax(π̂) ≤ Cmax(πcur) then
16: πcur ← π̂
17: end if
18: end for
19: until πcur

does not improve

20: end for
21: if best known solution did not improve in current iteration then
22: ps← ps + ε
23: else
24: ps← psinit
25: end if
26: end while
27: return best known solution

75

3 The Two-Machine Flow Shop Problem with Buffers

(with G(n) =
√

n and L(n) = 2
√

n). Afterwards, the algorithm iterates through

a sequence of operations (op1, op2, . . . , op`) and repeatedly performs local search

steps with changing neighborhoods. The choice of the fixed parameter i in Nop
i (π)

is based on a random permutation πrand
which is calculated beforehand. The search

stepswith the current operation op are repeated until the permutation πcur
obtained

so far cannot be further improved. Then, the local search procedure is restartedwith

the next given operation. The changing neighborhoods combined with the usage

of randomized permutation strengthen the exploration to find promising solutions,

which are then refined by the local search operations.

If the best known solution obtained so far did not improve after all operations have

been tested, the following iteration of the algorithm uses a perturbed version of the

best known solution. The perturbation used is based on a geometric distribution.

In particular, (uniformly) random numbers r are drawn from [0, 1] and one of the

given operations with random parameters is randomly applied on the permutation

until r is greater than ps. This distribution favors a small number of perturbations.

The strength of perturbation ps increases additively (here set as ε = 0.05 with ps
maxed out at 0.99) if successive iterations do not lead to any improvement of the

best known solution, otherwise it is reset to the initial value psinit.

76

3.5 Computational Evaluation

3.5 Computational Evaluation

In this section the computational experiments for the Two-Machine Flow Shopwith

Buffers and their results are described.

3.5.1 Algorithms for Comparison

Based on the literature overview given in Section 3.1 and Figure 3.2 for permutation

flow shopswith buffers, theHybrid Variable Neighborhood Search (HVNS) and theDis-
crete Artificial Bee Colony (DABC) were selected for a comparison with 2BF-ILS since

these algorithms are described in fairly recent works [200, 119] and have not been

outperformed by any other algorithm so far. For the implementation, the author

of this thesis asked the authors of both algorithms for the source code, but did not

receive a reply. Thus, both algorithms were reimplemented. The source code for all

algorithms (written in R and C++) and the code for the evaluations in the following

sections are available at https://github.com/L-HT/TwoMachineFlowShopBuffers.

3.5.2 Generation of Problem Instances

The commonly used benchmark instances for flow shop problems (from [168], [140]

and the recent VRF benchmark by [180]) work with at least five machines and

contain no buffer constraints so that they cannot be directly used for the flow shops

with buffers considered here. Authors that studied flow shop problemswith buffers

and twomachines (e.g., [88] and [107]) generated instances with randomprocessing

times uniformly drawn over the set {1, 2, . . . , 100}. Based on the studies performed

by the these authors, instances for the experiments were generated as follows.

The values n ∈ {50, 100, 150} were chosen as the number of jobs for small,

medium and large instances, and three “incomplete instances” were created for

each size that contain only the M1 processing times aJ drawn randomly from a

uniform distribution over the set {1, 2, . . . , 100}. Each of these incomplete instances

was then used to build three subordinate instances by choosing the constant pro-

cessing times c on M2 as the median, i.e., the 50% percentile q0.50 of the values aJ .

Afterwards, this value of c was used to create (complete) instances for the interme-

diate buffer (spanning buffer) by setting sJ = 1 and Ω = 1 (Ω = 3) or sJ = aJ and

Ω = q0.25 (Ω = max aJ + q0.25) for all jobs J where q0.25 is the 25% percentile of the

77

https://github.com/L-HT/TwoMachineFlowShopBuffers

3 The Two-Machine Flow Shop Problem with Buffers

values aJ . Note that the buffer capacity Ω cannot be smaller than maxJ sJ for the

spanning buffer model or else there exists no feasible schedule. The resulting set of

instances contains 36 flow shop problems.

In addition, an additional set of instances was generated based on studies con-

ducted by [8] and [193] where it was argued that problem data generated from uni-

form distributions do not contain characteristics of problem instances commonly

occurring in practical applications, namely gradients or correlations with respect to

job processing times. In instances with the former property, the processing times aJ

on M1 are shorter (or longer) than the processing time bJ on the secondmachine for

all jobs J. Regarding flow shops satisfying bJ = c for all jobs J, job gradients lead to

the cases analyzed in Section 3.2.1 which were shown to be solvable in polynomial

time. The latter characteristic (correlations between processing times) was incorpo-

rated by drawing the processing times aJ for M1 from normal distributions N(µ, σ2)

withmean value µ = c. Higher values for c then lead to tendentially longer process-

ing times on M1 and vice versa. In particular, n integer values were calculated for

processing times aJ by drawing n (n ∈ {50, 100, 150}) random numbers r1, r2, . . . , rn

from normal distributions N(µ, σ2) with µ = c, σ = 10 and c = 50, and setting

aJi = max{drie, 1} for all i ∈ {1, 2, . . . , n}. The values for sJi are calculated in the

same way as for the first set of instances (with uniformly random processing times)

leading to 36 additional flow shop problems.

3.5.3 Parameter Values

For 2BF-ILS,the parameter values were determinedwith the algorithm configurator

irace [112]. The configuration was performed on a separate set of instances with

100 jobs (generated using the method described in Subsection 3.5.2 for uniformly

distributed processing times) with the standard irace parameter values and a

budget of 250 runs for each algorithm. As possible sequences for operations all

sequences of length 1, 2 or 3 were considered that can be formed by the operations

insert, pairInsert or swap (without repetition leading to 15 possible sequences in

total). The algorithms HVNS and DABC were used in the experiments with the

parameters given by the respective authors as well as tuned parameters calculated

by irace on the same instances. In the following, the tuned versions of these

algorithms are referred to as HVNS-T and DABC-T.

78

3.5.4 Comparison of 2BF-ILS with other Metaheuristics

Table 3.2: Results for the configuration of numerical parameters for 2BF-ILS, HVNS

and DABC as calculated by irace, including the upper and lower limits

used during the configuration. The parameter names for HVNS and

DABC are based on [200, 119].

Algorithm Parameter Limits Result Description

2BF-ILS psinit [0.01, 0.99] 0.24 initial perturbation strength

HVNS

Niter [1000, 250000] 135456 number of iterations

Tfin [0.010, 0.990] 0.876 final temperature

DABC

NS [1, 100] 7 population size

p [1, 10] 7 perturbation strength

d1 [1, 10] 7 destruction size 1

d2 [1, 10] 4 destruction size 2

Thevalues for thenumerical parameters calculatedby irace are given inTable 3.2.

Regarding the categorical parameter op (the sequenceof local searchoperationsused
by 2BF-ILS), the sequence (pairInsert, insert, swap) was obtained from the results in

irace.

After the configuration, each algorithm was executed on all 72 instances and the

resulting values were averaged over 30 replications. All test runs were performed

on a computer cluster of Leipzig University with thirty-six 2.1-GHz-cores (each run

being executed on one core) and 36GBRAMwith time limits of 5, 10 and 15minutes

for the small, medium and large problems, respectively.

3.5.4 Comparison of 2BF-ILS with other Metaheuristics

The performance of each algorithm was evaluated based on two time measures: i)

the number of performed function evaluations FE to calculate the makespan and ii)

the elapsed absolute run time. The latter was used to calculate the normalized run
time NT as a time measure where the reference run time for a given instance was

chosen as the mean run time of 30 runs of the standard NEH heuristic.

The evaluation methodology is based on a benchmarking study by Weise et al.

[195] for the Traveling Salesman Problem: In particular, the progress curve (PC,

the quality of the best known solution over time) and the empirical cumulative
distribution function (ECDF, describing the percentage of runs reaching a “target

79

3 The Two-Machine Flow Shop Problem with Buffers

solution quality” over time) were calculated for each instance and time measure.

The calculations were performed with respect to the relative percentage difference

RPD = (F(π)− F̂)/F̂ between the solution quality F(π) of the permutation π on

an instance and the best solution quality F̂ found in all runs on the same instance.

The target value for the ECDF was chosen as F̂, i.e., the ECDF diagrams show how

consistent an algorithm reaches the best solution quality F̂ during the 30 runs on

an instance.

Since an individual evaluation of over 250 diagrams is not feasible, the area under
curve (AUC) was calculated as an aggregate quality measure for the PC and ECDF

diagrams (with respect to both time measures) since algorithms with low AUC

values (for PC curves) and high AUC values (for ECDF diagrams) tend to find

better solutions faster [195]. As such, these values quantify the performance of an

algorithm for a given instance over time. In Table 3.3 (for PC diagrams) and Table

3.4 (for ECDF diagrams), relative AUC values are shown for both sets of instances

(uniformlydistributedprocessing times andnormallydistributedprocessing times).

The values are averaged over different subsets in order to analyze how an instance’s

properties affects the performance of the algorithms.

It can be seen that 2BF-ILS outperforms the other algorithms in all evaluation

measures on both sets of flow shop problems as it always obtains the values closest

to 1. For progress curves with tm = FE, it even reaches 1.000 which means that

it obtains the best performance on all instances. The lowest number is reached

for the evaluation measure ECDF and tm = FE when instances with uniformly

random processing times have a spanning buffer or sJ = aJ holds (0.660 and 0.666,

respectively). This indicates that these instances are harder for 2BF-ILS and that

the algorithm’s performance is not as consistent as on instances with normally

distributed processing times.

The irace-tuned versions of HVNS and DABC obtain mixed results when com-

pared with the original versions. Regarding the progress curves (PC), HVNS-T

obtains slightly better results on instances with normal processing times, whereas

for DABC this is the case for most of the progress curves with tm = FE on in-

stances with uniformly random processing times. For HVNS and HVNS-T, small

improvements can be observed on progress curves for instances with normally dis-

tributed processing times, whereas for these instance no difference was observed

with respect to the ECDF curves.

80

3.5.4 Comparison of 2BF-ILS with other Metaheuristics

Table 3.3: Relative area under curve (AUC) values for PC diagrams which were cal-

culated for each algorithmaswell as each timemeasure and averaged over

different subsets of instances (indicated in the first column). For each in-

stance, the area under the curve was calculated for each diagram and the

best obtained value was chosen as the “reference” to calculate the relative

values for the other algorithms. The upper half shows the values for the

instances with uniformly distributed processed times on M1, whereas the

lower half shows the values for instances with normally distributed pro-

cessing times. For the progress curves (PC), small values are preferable.

A number close to 1 indicates that the curves for the respective algorithm

show a high similarity (on average) to the best performing algorithm on

each instance. The values closest to 1 are shown in bold for each criterion.

“ILS” is used as an abbreviation for 2BF-ILS.

Progress curves

(uniform)

tm = FE tm = NT

HVNS HVNS-T DABC DABC-T ILS HVNS HVNS-T DABC DABC-T ILS

Buffer type
intermediate 2.777 3.000 2.138 2.194 1.000 3.500 3.474 1.916 2.250 1.004
spanning 2.288 2.488 2.159 1.896 1.000 3.017 3.141 1.766 2.075 1.000

Buffer usage
sJ = 1 1.277 1.333 1.555 1.500 1.000 2.444 2.277 1.555 1.611 1.000
sJ = aJ 3.788 4.155 2.742 2.590 1.000 4.072 4.338 2.127 2.714 1.134

All instances 2.533 2.744 2.149 2.045 1.000 3.258 3.307 1.841 2.162 1.002

Progress curves

(normal)

tm = FE tm = NT

HVNS HVNS-T DABC DABC-T ILS HVNS HVNS-T DABC DABC-T ILS

Buffer type
intermediate 2.388 2.333 1.555 1.611 1.000 2.309 2.385 1.388 1.777 1.000
spanning 1.888 1.777 2.333 2.444 1.000 1.944 1.833 2.228 2.679 1.131

Buffer usage
sJ = 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
sJ = aJ 3.277 3.111 2.888 3.055 1.000 3.254 3.219 2.617 3.457 1.131

All instances 2.138 2.055 1.944 2.027 1.000 2.127 2.109 1.808 2.228 1.065

When looking at the values averaged over all instances it can also be observed

for all algorithms that the values in Table 3.3 and Table 3.4 for the instances with

normally distributed processing times are closer to 1 than for uniformly random

instances for all evaluation criteria, which indicates that these methods can obtain

“good” solutions for instances with processing times aJ similar to c more easily than

for uniformly randomized instances.

In addition, for most instances with sJ = 1 (for both buffer types and both sets of

instances) it was observed that the algorithms quickly reach a state of convergence

81

3 The Two-Machine Flow Shop Problem with Buffers

Table 3.4: Relative area under curve (AUC) values for ECDF curves, averaged over

different sets of instances. The upper half shows the values for the in-

stances with uniformly distributed processed times on M1, whereas the

lower half shows the values for instances with normally distributed pro-

cessing times. Note that for ECDF curves, higher values are preferable.

A number close to 1 indicates that the curves for the respective algorithm

show a high similarity (on average) to the best performing algorithm on

each instance. The highest values are shown in bold for each criterion.

“ILS” is used as an abbreviation for 2BF-ILS.

ECDF

(uniform)

tm = FE tm = NT

HVNS HVNS-T DABC DABC-T ILS HVNS HVNS-T DABC DABC-T ILS

Buffer type
intermediate 0.448 0.439 0.491 0.471 0.993 0.454 0.444 0.553 0.516 0.993
spanning 0.415 0.422 0.420 0.432 0.660 0.409 0.417 0.446 0.459 0.826

Buffer usage
sJ = 1 0.833 0.840 0.839 0.870 0.987 0.832 0.839 0.900 0.937 0.987
sJ = aJ 0.030 0.021 0.073 0.033 0.666 0.031 0.022 0.099 0.038 0.833

All instances 0.431 0.430 0.456 0.451 0.827 0.432 0.430 0.500 0.488 0.910

ECDF

(normal)

tm = FE tm = NT

HVNS HVNS-T DABC DABC-T ILS HVNS HVNS-T DABC DABC-T ILS

Buffer type
intermediate 0.990 0.990 0.947 0.947 0.999 0.994 0.994 0.986 0.986 0.999
spanning 0.992 0.992 0.941 0.941 1.000 0.995 0.995 0.979 0.979 0.999

Buffer usage
sJ = 1 0.993 0.993 0.947 0.947 1.000 0.995 0.996 0.983 0.983 1.000
sJ = aJ 0.989 0.989 0.941 0.941 0.999 0.993 0.993 0.982 0.982 0.999

All instances 0.991 0.991 0.944 0.944 0.999 0.994 0.994 0.983 0.983 0.999

with the same solution quality (see Figure 3.11 left for an example). A comparison

with the lower bound given by the Johnson algorithm [73] for flow shops without

buffer constraints showed that in most cases an optimal solution was reached. This

can also be seen in Table 3.3 where for sJ = 1 values closer to 1 are reached by all

algorithms. This effect is even stronger when looking at the values in Table 3.3 for

instanceswith normally distributed processing timeswhere all algorithms obtained

the value 1.000. Further experiments using additional instances of this type lead

to similar results which indicates that this special case could be “easier” to solve

than other problems (even though in theory it is still NP-complete). This was not

observed for instances with sJ = aJ where a slower convergence occurred in most

instances for both sets (see Figure 3.11 right for an example).

82

3.5.4 Comparison of 2BF-ILS with other Metaheuristics

0e+00 1e+05 2e+05 3e+05

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

Evaluation

R
P

D

DABC
DABC−TUNED
HVNS
HVNS−TUNED
ILS

0 50000 150000 250000

0e
+

00
2e

−
04

4e
−

04
6e

−
04

8e
−

04

Evaluation

R
P

D

HVNS
HVNS−TUNED
DABC
DABC−TUNED
ILS

Figure 3.11: Progress curve for an instance using the spanning buffer, sJ = 1, uni-
formly random processing times and 150 jobs (left) and an instance

with spanning buffer, sJ = aJ for all J, normally distributed processing

times and 100 jobs (right)

From the PC diagrams it was also observed that 2BF-ILS calculated the first

feasible solution earlier than the other compared algorithms (note, e.g., how the

curves for 2BF-ILS in Figure 3.11 start slightly earlier than the other algorithms).

A possible explanation for this is that 2BF-ILS uses the modified NEH (mNEH)

described in Section 3.3 which uses fewer function evaluations than the standard

NEH algorithm. This indicates that themodifiedNEH is also suited for cases where

a “good” initial solution needs to be quickly obtained.

To compare the performance of the algorithms at specific points in time, the sign

test for paired samples was applied. This non-parametric test neither requires the

given data to be normally distributed nor the difference distributions between the

methods to be symmetric. Using this test, the performance of the algorithms during

the run (at 100 000 evaluations) and the performance at the end of the time limit

was compared. The results are shown in Table 3.5 for both sets of instances. Note

that the tables are symmetric since the 10 possible pairwise comparisons for each

of the two points in time were performed with two-sided tests.

Similar to Tables 3.3 and 3.4, it can be observed that 2BF-ILS obtains a signifi-

cantly better performance than the other algorithms at both time points in almost

83

3 The Two-Machine Flow Shop Problem with Buffers

all cases indicating a high and consistent performance over time. For instances with

uniformly distributed processing times, that the DABC algorithms obtain better

results than the HVNS algorithms regarding the quality of the final solution. In

the case for normally distributed processing times, the tests showed fewer statis-

tically significant differences (i.e., p-values p < 0.05/10) between the competitor

algorithms than for instances with uniformly random processing times. A possible

explanation for this is that with normally distributed processing times the problem

instances becomes “easier” so that more of the competitor algorithms obtain good

results, and thus more similar results when compared to 2BF-ILS.

Table 3.5: Results of the pairwise comparisons between the algorithms using the

two-sided sign test for both sets of flow shop problems (each containing

n = 36 instances). The first value in each cell shows the test result

with respect to the performance at 100 000 evaluations and the second

value refers to the performance reached at the end of the time limit. A

triangle indicates that the measured difference is statistically significant

(p < 0.05/10 due to Bonferroni correction) and that the algorithm at

which the triangle is pointed at is significantly better according to the test

statistic.

HVNS HVNS-T DABC DABC-T 2BF-ILS

uniform

HVNS - / - - /N - /N N/N
HVNS-T - / - - /N - /N N/N
DABC - /J - /J - / - N/N
DABC-T - /J - /J - / - N/N
2BF-ILS J/J J/J J/J J/J

normal

HVNS - / - - / - - / - N/N
HVNS-T - / - - / - - / - N/N
DABC - / - - / - - / - N/ -

DABC-T - / - - / - - / - N/N
2BF-ILS J/J J/J J/ - J/J

Plotting the RPD values of the final solutions for each algorithm on each instance

in relation to 2BF-ILS as points (RPD, RPD
2BF-ILS

) due to the paired nature of

the measured data (as shown in Figure 3.12) also shows the high performance of

2BF-ILS. Especially for HVNS (and HVNS-T) on instances with uniformly random

processing times it can be seen that for larger problem sizes the gap in solution

quality to 2BF-ILS increases. Similarly, for instances with normally distributed

84

3.5.4 Comparison of 2BF-ILS with other Metaheuristics

processing times the higher RPD values are measured for larger instances with 100

or 150 jobs. Most of the points in both diagrams are below the diagonal which

indicates that even if 2BF-ILS does not obtain the lowest RPD value the obtained

makespan is still lower than the makespans of the other algorithms.

In addition, Figure 3.12 right shows that the majority of points are gathered

around lower RPD values for 2BF-ILS, HVNS(-T) and DABC(-T) indicating that

these algorithms tend to obtain solutions with higher and more similar quality for

instances with correlations between the processing times ai and c than for problems

with uniformly randomprocessing times. This observation aswell as the differences

between the two sets of instances noted above for Tables 3.3 and 3.4 support the

results from [8] and [193] stating that instances containing structural features are

easier to solve than arbitrarily random problems.

1.000 1.010 1.020 1.030

1.
00

0
1.

00
1

1.
00

2
1.

00
3

1.
00

4
1.

00
5

R
P

D
 (

2B
F

−
IL

S
)

RPD

●●● ● ●
●

●● ●

●

●

●

●● ● ● ●
●

●●●

●

●

●

●●● ● ●
●

●●●

●

●

●

●●● ● ●
●

●●●

●

●

●

●

HVNS
HVNS−TUNED
DABC
DABC−TUNED
50 jobs
100 jobs
150 jobs

1.000 1.001 1.002 1.003 1.004 1.0051.
00

00
1.

00
04

1.
00

08
R

P
D

 (
2B

F
−

IL
S

)

RPD

●●●

●

●●●●●●

●

●●●●

●

●●●●● ●

●

●●●●

●

●●●●● ●

●

●●●●

●

●●●●● ●

●

●

●

HVNS
HVNS−TUNED
DABC
DABC−TUNED
50 jobs
100 jobs
150 jobs

Figure 3.12: Scatter plot of RPD values of the final solution calculated by 2BF-ILS in

relation to the respective RPD values of the other algorithms for flow

shop instances with uniformly distributed processing times (left) and

normally distributed processing times (right) on M1 for each problem

size. The grey linemarks the diagonal line y = x such that points above

(below) the line indicate that the algorithm obtained a better (worse)

final solution than 2BF-ILS.

85

3 The Two-Machine Flow Shop Problem with Buffers

●●

●●●

●

●

●
●

●

●

●

●●●●●
●

0
10

20
30

40

Number of Jobs

R
un

tim
e

in
 s

ec
on

ds

●●●●●● ●●●●●●●●●●●●

50 Jobs 100 Jobs 150 Jobs

●

●

NEH
2BF−OPT

●

●

●
●

●

●

●

●

●

●

●

●

●●●●
●
●0

10
20

30
40

Number of Jobs

R
un

tim
e

in
 s

ec
on

ds

●●●●●● ●●●●●●●●●●●●

50 Jobs 100 Jobs 150 Jobs

●

●

NEH
2BF−OPT

Figure 3.13: Distribution of run times between the standard NEH heuristic and

2BF-OPT on instances of the type F2|prmu, bi = c, spanningBuffer, si =
ai|Cmax for instances with c ≤ aJ (left) and c ≥ aJ (right) for all J. Each
point corresponds to the run time on one instance averaged over 30

replications.

3.5.5 Comparison of 2BF-OPT with NEH

As noted in Section 3.3 and Section 3.2.1, both the standard NEH heuristic and

2BF-OPT (Algorithm 3.1) optimally solve instances of the type F2|prmu, bi = c,
spanningBuffer, si = ai|Cmax with c ≥ maxJ aJ and with c ≤ minJ aJ in polynomial

time. In this section, the run time performance of both algorithms is empirically

investigated.

Experiments were conducted using the subset of all instances described in Sec-

tion 3.5.2 that belong to F2|prmu, bJ = c, spanningBuffer, sJ = aJ |Cmax. For these

instances, the constant c was redefined as either c = maxJ aJ or c = minJ aJ in order

to generate suitable test problems (36 instances in total). For both algorithms the run

times were measured on each instance and averaged over 30 repetitions. In Figure

3.13, it can be seen that the average run time of NEH grows in an approximately

quadratic manner with increasing number of jobs taking significantly more time

than 2BF-OPT on all instances (p < 0.001, n = 36 according to the sign test).

86

3.6 Summary

3.6 Summary

In this chapter of the thesis, a special case of the Two-Stage VRP with Profits and

Buffers was investigated where no travel times are imposed on the edges and all

jobs must be processed. This problem corresponds to a “Two-Machine Flow Shop

with Buffer” with the additional restriction that all processing times on the second

machine are equal to a constant c.
Flow shop problems with buffers are actively researched in the literature and

the theoretical results in Section 3.2 show that they are NP-complete even with the

restriction to constant processing times on the secondmachine. However, efficiently

solvable subcases were identified where the constant c is smaller or larger than all

processing times on the first machine. The most interesting of these subcases is

the spanning buffer when c is larger than all processing times on M1 and where

sJ = aJ holds for all jobs J. For this case an algorithm 2BF-OPTwas presentedwhich

calculates optimal schedules in O(n log n) steps. In addition to the computational

complexity of the problem, conditions that guarantee the existence of permutation

schedules in the set of optimal schedules were presented as well as instances where

the restriction to permutation schedules leads to a loss in the attainable solution

quality by a constant factor when compared to optimal schedules. However, it was

shown that in general this factor is bounded from above by 2.

Furthermore, a heuristic mNEH was introduced that is specifically adapted to

Two-Machine Flow Shops with constant processing times on the second machine.

In particular, it uses this property to reduce the number of function evaluations.

Finally, an Iterated Local Search 2BF-ILSwas developed for permutation flow shops

with buffers that uses mNEH to calculate the initial solution. The algorithm out-

performs other state-of-the-art algorithms for permutation flow shops with buffers

(namely, a Hybrid Variable Neighborhoods Search and a Discrete Artificial Bee

Colony algorithm) with respect to multiple time measures and evaluation criteria.

The results also show that the compared algorithms perform better if the flow shop

instances contain correlations between processing times, a structural feature that

commonly occurs in practical applications.

87

4 The Special Case Omax R, Cmax≤B Without
Processing Times: The Orienteering
Problem

The previous chapter considered the special case Omin Cmax, R≥∑ rJi
of the Two-Stage

VRP with Profits and Buffers where all edges have no travel time. In this chapter, a

special case ofOmax R, Cmax≤B (i.e., “maximize the collected profit, but the makespan

must not exceed B”) is investigated where edges have travel times, but for all nodes

v the processing times aJv , bJv of the corresponding jobs Jv are equal to zero. This

can be interpreted in the sense that processing a job (or “servicing a customer at a

node”) takes a negligible amount of time that is not considered in the optimization

problem so that the total time of a route only depends on the time used by the

machines M1, M2 (or vehicles) to travel on edges of the graph. In this chapter, this

“special case of of Omax R, Cmax≤B where the processing times for all jobs on both

machines is zero” is abbreviated as OaJ=0, bJ=0
max R, Cmax≤B.

In order to visualize this special case of the Two-Stage VRP with Profits and

Buffers, consider Figure 4.1 which shows an example instance and an example

schedule σ. The makespan of σ is Cmax(σ) = 15 and the total profit is R(σ) = 10.
Note that the processed jobs in this figure are indicated above (for M1) and below

(for M2) the line since all job processing times are zero. In the case where the buffer

usage sJ satisfies sJ = aJ for all jobs J, no job takes up any buffer space (sJ = 0). The
example in Figure 4.1 depicts the case where sJ = 1 holds for all J.

For the special case of the Two-Stage VRP with Profits and Buffers with these

restrictions, the resulting problem is very similar to the so-called Orienteering
Problem which can be briefly described as follows: Given a graph G = (V, E)
where the edges eij ∈ E have weights dij and the nodes v ∈ V have values rv

(“profits”), the Orienteering Problem is to find a route that starts at a given depot

89

4 The Orienteering Problem

v1

J1

aJ1 = 0 sJ1 = 1
bJ1 = 0 rJ1 = 2

v2

J2

aJ2 = 0 sJ2 = 1
bJ2 = 0 rJ2 = 3

v0
(start node)

v3

J3

aJ3 = 0 sJ3 = 1
bJ3 = 0 rJ3 = 5

d0,1 = 5 d1,0 = 5

d2,0 = 5

d0,2 = 6

d3,0 = 5

d0,3 = 4

d1,2 = 3
d2,1 = 2

d1,3 = 7
d3,1 = 6

d2,3 = 7

d3,2 = 5

0 5 10 15

Buffer

M2

M1

Time

d0,1 d1,2 d2,3

d0,2 d2,1 d1,3

J1

J2 J1 J3

J1 J2 J3

Figure 4.1: Top: Example instance for the Two-Stage VRP with Profits and Buffer-

swith the additional property that processing times for all jobs are zero.

Bottom: Example for a schedule σ with the paths P1(σ) = (v0, v1, v2, v3),
P2(σ) = (v0, v2, v1, v3) and the job permutations π1(σ) = (J1, J2, J3),
π2(σ) = (J2, J1, J3). For these paths and job permutations with buffer

capacity Ω = 2, the resulting schedule is the same for both buffermodels

(intermediate buffer and spanning buffer). Note that the names of the

processed jobs are indicated above (for M1) or below the line (for M2)

since all processing times are zero.

90

node v0 ∈ V where the weight sum of the traversed edges does not exceed a given

threshold B (“budget”) while maximizing the total profit of the visited nodes. Note

that not all nodes in G have to be visited.

In fact, it can be shown that the Orienteering Problem is, in a certain sense,

equivalent toOaJ=0, bJ=0
max R, Cmax≤B under some specific conditions, although some analysis

regarding the buffers and non-permutation schedules is necessary in order to see

this. This is further discussed in the theoretical analysis performed in this chapter

(see Section 4.2). In the following, it is assumed that the graph G in the Orienteering

is a directed, complete and simple graph, similar to the graphs assumed for the Two-

Stage VRP with Profits and Buffers.

The Orienteering Problem combines aspects of the well-known Traveling Sales-

person Problem (TSP) and the Knapsack Problem (KP). The connection to the latter

problem lies in the sub-problemof selecting a suitable set of nodeswith a high profit

where a higher number of visited nodes increases the likelihood that the solution

length solution exceeds the budget, whereas the sub-problem of calculating of a

short route through the selected nodes is similar to the former problem. However,

if the solution calculated for the second sub-problem exceeds the available bud-

get, the first sub-problem might need to be resolved. In other words, solving the

Orienteering Problem requires one to take the interplay of these two combinatorial

optimization problems with different target criteria into account.

Due to this, this optimization problem is actively researched in the literature

and relevant for many practical applications. An overview of the literature on

Orienteering Problems and their applications is given in Section 4.1. The aforemen-

tioned theoretical analysis regarding the properties of the Orienteering Problem

and OaJ=0, bJ=0
max R, Cmax≤B is done in Section 4.2. Similar to the analysis on Two-Machine

Flow Shops with Buffers in Section 3.2, the computational complexity, the existence

of “permutation schedules” (where both machines M1, M2 visit the nodes in the

same order) in the set of optimal solutions and the existence of gaps between non-

permutation schedules andpermutation schedules regarding the attainable solution

quality are investigated. In Section 4.3, a Variable Neighborhood Search VNSOP is

proposed for this problem that is empirically compared with other state-of-the-art

methods for the Orienteering Problem in Section 4.4.

This chapter is based on published research from the author, in particular [97,

98].

91

4 The Orienteering Problem

4.1 Review of Literature on Orienteering Problems

The name “Orienteering Problem” comes from a sport with the same name, where

players need to navigate to various check points as quick as possible by means of

a compass and a map [179]. The underlying combinatorial optimization problem

has applications in many areas, e.g., in the planning of city trips [182] and fuel

delivery routes [59], in agriculture [113], or for planning surveillance activities in

military scenarios [192]. Inmany of the applicationswhere theOP occurs, the nodes

correspond to locations in a city or a region and the calculated solution corresponds

to a route on a road network.

One of the earliest works dealing with the “Orienteering Problem” (OP) is [179]

where the name for the problem was first introduced based on the similarities to

the sport with the same name. Other names for the OP are Selective TSP [91] or

Maximum Collection Problem [77]. There exist several possible formulations of the

OP as a linear program (see, e.g., [91, 75]).

The OP is known to be NP-hard [59] and various heuristics for calculating ap-

proximate solutions have been developed for this problem. One of them is the

Greedy Randomized Adaptive Search Procedure (GRASP) which hasmultiple vari-

ants, such as Memetic GRASP [114] or GRASP with path relinking [29]. The latter

is outperformed by a newer GRASP heuristic that removes path segments [79] as

well as by an Evolutionary Algorithm [84]. Other heuristics include an Ant Colony

Optimization (ACO) for amulti-objective version of the OP [151], an ACO combined

with machine learning [166], an Evolution-inspired algorithm with Hill Climbing

[127] or an approximation algorithm for the case where the underlying directed

graph has unit values for all nodes [120].

An extension of the Orienteering Problem that is actively researched is the Team
Orienteering Problemwheremultiple routes need to be calculated that each satisfy

the budget constraint, with the profit being summed over all routes, whereas for

the Orienteering Problem in its standard formulation only one route is considered.

The multiple routes can be interpreted as routes for multiple vehicles which is why

the Team Orienteering Problem is sometimes also referred to as a “Vehicle Routing

Problem with Profits” [13].

One of the first works that considers this problem is [31] where a constructive

heuristic is proposed. Since then, a large number of other heuristic algorithms and

92

4.1 Review of Literature on Orienteering Problems

metaheuristics have been developed for this problem, including search algorithms,

e.g., a Greedy Randomized Adaptive Search Procedure (GRASP) [160], Tabu Search

[169] and a Harmony Search algorithm [178]. A Large Neighborhood Search that

incorporates the solution of Set Packing Problems to improve routes is presented in

[67]. Kim, Li, and Johnson [82] also propose a Large Neighborhood Search where it

is combinedwith three “improvement algorithms”, including Local Search, shifting

and replacement.

Regarding biologically inspired algorithms, an Ant Colony Optimization com-

bined with several construction methods for candidate solutions is proposed in

[78], and a Genetic Algorithm is presented [47] in the context of waste collection

and recycling. An interesting example is Particle Swarm Optimization which is

originally a metaheuristic for continuous optimization problems, but it is success-

fully applied to the Team Orienteering Problem in [5, 36] by combining tours of

multiple particles to “giant tours”.

Combinations of methods can also be found in the literature regarding the Team

Orienteering Problem. For example, a Path Relinking metaheuristic is combined

with a GRASP algorithm in [159], and in [23] a Memetic Algorithm is developed

that combines a Genetic Algorithm with Local Search. Due to the large number of

proposed heuristics andmetaheuristics, Mısır, Gunawan, and Vansteenwegen [118]

propose amethod based onCollaborative Filtering for selecting a suitable algorithm

for the Team Orienteering Problem. Their approach obtains promising results, but

the performance is significantly affected by the available time budget.

Exact methods have also been proposed for the Team Orienteering Problem, for

example, Branch and Bound [20, 37] as well as a Branch-and-Price algorithm [24]

combined with Dynamic Programming [80]. Xu et al. [196] present an approxima-

tion algorithm with a parameter ε that for ε = 0.5 has a guaranteed approximation

ratio of at least 0.32.

Extensions and Related Problems

An increasing number of research works focus on extensions of Orienteering Prob-

lems, i.e., problems with additional components which are not based on the Orien-

teering sport, but arise in practical scenarios that are structurally similar to Orien-

teering Problems.

93

4 The Orienteering Problem

One way to extend the Orienteering Problem is to introduce probabilistic ele-

ments. The resulting problems are referred to as “Stochastic Orienteering Prob-

lems”. In one variant [9] it is possible that nodes randomly become unavailable

while traversing a route so that some of the nodes have to be skipped. In this prob-

lem, the difference between the expected total value of the path and the expected

path length is to be maximized. To solve this problem, the authors of [9] propose a

Mixed-Integer Linear model and a metaheuristic. In another variant [71] the node

values are randomized with normally distributed values and the probability that

the total value of a path exceeds a given target value is to be maximized. For this

problem an exact algorithm as well as a Genetic Algorithm are presented in [71].

In [201] the sale of books in the context of a university campus is presented as

a Stochastic OP. This problem is modelled as a Markov Decision Process and ap-

proximately solved using an Approximate Dynamic Programming algorithmwhile

allowing the route to dynamically change while the path is traversed.

Campbell, Gendreau, andThomas [28] introduce aVariableNeighborhoodSearch

algorithm for the Orienteering Problemwith stochastic travel and service times that

achieves results similar to a Dynamic Programming approach but is significantly

faster at computing solutions. Papapanagiotou, Montemanni, and Gambardella

[132] also propose a Variable Neighborhood Search for the Stochastic Orienteering

Problem and expand their approach by incorporating a sampling-based evaluator

for the objective function. Solving the Stochastic Orienteering Problem is also

important in robotics since stochastic travel times can be used to model uncertain

terrain. For example, the approach of Thayer and Carpin [174] calculates for each

vertex where an irrigation robot should go next in a vineyard while taking a battery

constraint into account.

Another extension of Orienteering Problems are “Dynamic Orienteering Prob-

lems” where components of the problem change over time. For example, so-called

time windows, i.e., time intervals are given that represent business hours at which

certain nodes have to be visited (see, e.g., the surveys in [64, 56] or the application

to the city of Tehran in [1]). This problem is known as “Orienteering Problem

with Time Windows”. A Dynamic Orienteering Problem where the profits and the

budget change over time (with “time” referring to the runtime of an algorithm)

has been considered by the author in [97, 98]. Another interpretation for time in

“change over time” is the time when a node or an edge is visited, which primarily

94

4.1 Review of Literature on Orienteering Problems

depends on the distance previously traveled on a given path. This case is studied in

[48] where the weights of the edges (representing travel times) dynamically change

depending on the departure time from the starting node. Another variant where

node values linearly decrease depending on when nodes are visited is studied by

Erkut and Zhang [41].

The Orienteering Problem combines aspects of the well-known Traveling Sales-

person Problem (TSP) and the Knapsack Problem (KP), so it is also relevant to

look at works dealing with dynamic variants of these problems. The TSP has been

extensively investigated in the literature and various studies deal with dynamic

versions of the TSP. Dynamic changes in the TSP can be the removal or addition of

vertices as well as changes in the distance between vertices or in the traversal times

assigned to the edges. Schmitt, Baldo, and Parpinelli [152] propose an Ant System

with a short-term memory for the dynamic TSP. Chowdhury et al. [32] also modify

an ACO framework with an Adaptive Large Neighborhood Search to generate new

solutions for the dynamic TSP by destroying and repairing fractions of the current

solution. In [164] a Particle Swarm Optimization algorithm is developed for the

same problem, which is competitive with two ACOs. The survey of Feillet, Dejax,

and Gendreau [45] gives an overview of other variants of Traveling Salesperson

Problems incorporating profits, but these problems are structurally different from

the Orienteering Problem as traveling on the edges on their variants also incurs a

cost that reduces the profit.

The Dynamic Knapsack Problem deals, e.g., with a changing capacity of the

knapsack. Roostapour, Neumann, and Neumann [143] introduce single- andmulti-

objective Evolutionary Algorithms to account for the changing knapsack capacity

and show that the multi-objective approach outperforms the single-objective ap-

proach. The authors strengthen their results and expand their method in [144].

Assimi et al. [14] also use single- and multi-objective Evolutionary Algorithms to

deal with a knapsack with changing capacity as well as stochastic and unknown

itemweights. Their results state that bi-objective optimization already outperforms

single-objective optimization.

There exist other variants of the Orienteering Problem with additional compo-

nents, which are not related to the problems considered in this thesis. An overview

of these variants is given in the surveys [64, 183, 74]. The survey ofGavalas, Konstan-

topoulos, and Pantziou [56] focuses on connections to the related, but structurally

95

4 The Orienteering Problem

different Tourist Trip Design Problem. The review of Martins et al. [116] considers

Team Orienteering Problems (and related Vehicle Routing Problems) in the context

of electric cars with limited battery capacity and their environmental impact.

4.2 Theoretical Properties

In this section the relationship between theOrienteering Problem andOaJ=0, bJ=0
max R, Cmax≤B

is analyzed. In particular, it is shown that under certain conditions these two prob-

lems are equivalent. In order to show this, some preliminary analyses regarding

theoretical properties for OaJ=0, bJ=0
max R, Cmax≤B are needed which deal with the existence

of permutation schedules in the set of optimal solutions, potential gaps in solution

quality between permutation schedules and non-permutation schedules and the

computational complexity of the problem, similar to the properties analyzed for the

Two-Machine Flow Shop Problem with Buffers in Section 3.2.

Regarding non-permutation schedules for OaJ=0, bJ=0
max R, Cmax≤B, the following lemma

holds.

Lemma 4.2.1. Let σ be a non-permutation schedule for an instance ofOaJ=0, bJ=0
max R, Cmax≤B. Then,

there exists a permutation schedule σ̂ that satisfies VisitedNodes(σ) = VisitedNodes(σ̂),
R(σ) = R(σ̂) and Cmax(σ) = Cmax(σ̂).

Proof. Note that the length of σ is determined by when M2 finishes the last job.

Construct σ̂ by having M2 take the same path as in σ, i.e., P2(σ̂) = P2(σ), and

setting all start and completion times on M2 in σ̂ to be identical to the times in σ:

S2
J (σ̂) = S2

J (σ) and C2
J (σ̂) = C2

J (σ) for all J ∈ ProcessedJobs(σ). Next, the same times

and path are “copied” to M1, i.e., S1
J (σ̂) = S2

J (σ̂) and C1
J (σ̂) = C2

J (σ̂) for all jobs

J and P1(σ̂) = P2(σ̂). Since travel times dij are the same for both machines and

all edges eij, it is possible for M1 to reach all nodes in P1(σ̂) in time and process

the corresponding jobs (with zero processing time). Since C1
J (σ̂) = S2

J (σ̂), it is also

possible for M2 to start the processing of J at the specified times so that σ̂ is a valid

schedule.

Regarding the buffer, note that the buffer is not used in the intermediate buffer,

whereas for the case with spanning buffer the amount of used buffer capacity does

not exceed the highest amount of used buffer in the original schedule σ at any

point in time, so σ̂ is also feasible. By definition, VisitedNodes(σ) = VisitedNodes(σ̂)

96

4.2 Theoretical Properties

and R(σ) = R(σ̂) hold so that σ̂ is the desired schedule satisfying Cmax(σ) =

Cmax(σ̂).

The previous lemma describes a procedure to transform a non-permutation

schedule σ into a permutation schedule σ̂ with the same length. The following

lemma details how a permutation schedule can be transformed into a permutation

schedule where all jobs are started as early as possible.

Lemma 4.2.2. Let σ̂ be a permutation schedule for an instance of OaJ=0, bJ=0
max R, Cmax≤B. Let

P(σ̂) = (v0, vi1 , vi2 , . . . , vi`) be the sequence of nodes visited by M1 and M2 in σ̂. Then,
there exists a permutation schedule σP that satisfies VisitedNodes(σP) = VisitedNodes(σ̂),
R(σP) = R(σ̂) and for all k ∈ {1, 2, . . . , `} it holds that

S1
Jvk
(σP) = C1

Jvk
(σP) = S2

Jvk
(σP) = C2

Jvk
(σP) =

d0,i1 (k = 1)

d0,i1 + ∑k−1
t=1 dit,it+1 (k > 1),

which means that the starting and completion times for all jobs Jvk are the sum of travel
times starting from the depot node v0 up to the node vk on the path P(σ̂). In addition,
Cmax(σP) ≤ Cmax(σ̂).

Proof. The following procedure is used to transform a permutation schedule σ̂ into

a permutation schedule σP
with the desired properties. Without loss of generality,

it is assumed that P(σ̂) = (v0, v1, v2, . . . , v`) and π(σ̂) = (J1, J2, . . . , J`) (this is

possible by renaming the nodes and their corresponding jobs).

Note that it is not possible that S1
J1
(σ̂) < d0,1. If S1

J1
(σ̂) > d0,1, this implies that

M1 has idle times so that the processing of J1 can be moved to the left so that

S1
J1
(σP) = d0,1 holds. The same can be done for S2

J1
(σP) if S2

J1
(σ̂) > d0,1 without

affecting the validity of σP
since S1

J1
(σP) = C1

J1
(σP) ≤ S2

J1
(σP) holds by construction.

Next, consider J2. The earliest possible time for J2 to start on M1 and M2 in σP

is C1
J1
(σP) + d1,2 = d0,1 + d1,2, so J2 is scheduled to start at that time on M1 and

M2. With similar arguments as above for J1, the validity of the schedule is not

affected, i.e., it is possible for M1 and M2 to start the processing J2 at this time.

The jobs J3, J4, . . . , J` can be inductively scheduled with similar arguments which

leads to σP
satisfying the desired properties. Finally, note that the lower bound

Cmax(σ̂) ≥ d0,1 + d1,2 + · · ·+ d`−1,` holds for the original schedule σ̂. Since σP
has

exactly that length, the inequality Cmax(σP) ≤ Cmax(σ̂) follows.

97

4 The Orienteering Problem

In the following, the schedule σP
constructed from the permutation schedule σ̂ by

the procedure in Lemma 4.2.2 is referred to as the “minimal permutation schedule”

(to σ̂) as it is the shortest possible permutation schedule with the same order as in σ̂

where all jobs are processed as early as possible. It also has the property that it uses

the buffer as little as possible: For intermediate buffers, the buffer is not used at all,

whereas for spanning buffers not more than maxJ∈ProcessedJobs(σ̂) sJ units of buffer are

used. Recalling the common choices for buffer usage values sJ , in the case sJ = aJ

for all J this means that sJ = 0 so that no buffer capacity is used. For the case

sJ = 1 for all J, not more than 1 buffer unit is used at any time, which is the lowest

possible value for the buffer capacity Ω (or else no feasible schedules would exist in

the spanning buffer case). For this reason, it can be assumed in the following that

all minimal permutation schedules do not violate the buffer constraint.

The two procedures described in Lemma 4.2.1 and Lemma 4.2.2 can be applied

to any non-permutation schedule (or permutation schedule) to obtain a minimal

permutation schedule without a loss in solution quality with respect to R(σP) and

Cmax(σP). For this reason, the following analyses forOaJ=0, bJ=0
max R, Cmax≤B can be restricted

to only minimal permutation schedules.

Now, it is shown that OaJ=0, bJ=0
max R, Cmax≤B is equivalent to the Orienteering Problem.

Theorem 4.2.1. For a given instance IOP of the Orienteering Problem, there exists an
instance I∗ of the optimization problem OaJ=0, bJ=0

max R, Cmax≤B where for all solutions σOP of IOP

there exists a minimal permutation schedule σ∗ in I∗ with the same length and the same
total profit. Furthermore, for a given instance I0 of OaJ=0, bJ=0

max R, Cmax≤B, there exists an instance
of the Orienteering Problem I∗OP where for all minimal permutation schedules σ0 of I0 there
exists a solution σ∗OP in I∗OP with the same length and the same total profit.

Proof. For the first statement, the instance I∗ is constructed from IOP as follows.

The instance I∗ uses the same graph, the same depot node v0 and the same edge

weights. For each node v the corresponding job Jv is defined to have zero processing

times for both machines and the same profit as the corresponding node in IOP.

The buffer type in I∗ is assumed to be appropriately chosen so that all minimal

permutation schedules are feasible (for example, by using an intermediate buffer).

Let σOP be a solution for IOP that, without loss of generality, is assumed to traverse

the nodes v0, v1, v2, . . . , v` in that order. This solution has the total length d0,1 +

d1,2 + · · ·+ d`−1,` and collects the total profit r1 + r2 + · · ·+ r`. The corresponding

98

4.2 Theoretical Properties

solution σ∗ of I∗ is set to be a minimal permutation schedule that traverses the same

(corresponding) nodes in the same order so that it has the same length as σOP and

the same total profit.

For the second statement, the instance I∗OP of the Orienteering Problem is con-

structed from I0 as follows. The instance I∗OP uses the same graph, the same depot

node v0 and the same edge weights. For each node v and corresponding job Jv in

I0 with profit rJv , the corresponding node in I∗OP is set to have the same profit. Let

σ0 be a minimal permutation schedule for I0. As argued above, it can be assumed

that σ0 is feasible with respect to the buffer constraint (or else no feasible schedules

would exist in I0). The corresponding solution σ∗OP for IOP traverses the same (cor-

responding) nodes in the same order, so that it has the same total length and the

same total profit as σ0.

Computational Complexity

With the statement shown above, it is now possible to analyze the computational

complexity for OaJ=0, bJ=0
max R, Cmax≤B .

Theorem 4.2.2. The decision problem whether for a given instance I0 ofO
aJ=0, bJ=0
max R, Cmax≤B and

two non-negative numbers B and Q there exists a solution σ with Cmax(σ) ≤ B (budget
constraint) and R(σ) ≥ Q (minimum score constraint) is NP-complete.

Proof. The problem OaJ=0, bJ=0
max R, Cmax≤B is in NP since it can be verified in polynomial

time whether a given solution satisfies the budget constraint and the minimum

score constraint.

In order to showNP-hardness, a straightforward reduction from theOrienteering

Problem, which is known to be NP-complete [59], is used. The decision version of

theOrienteering Problem iswhether for a givenOrienteering Problem instancewith

budget B′ and non-negative number Q′ there exists a path that collects a total profit

of at least Q′ without exceeding the budget B′. The reduction from the Orienteering

Problem is done analogous to the proof of Theorem 4.2.1 with B = B′ and Q = Q′.
Let IOP be an Orienteering Problem instance and I∗ be the instance ofOaJ=0, bJ=0

max R, Cmax≤B.

It is straightforward to see that the existence of a solution in IOP that satisfies the

profit and length requirements implies the existence of an equivalent solution in I∗

that is a minimal permutation schedule.

99

4 The Orienteering Problem

For the inverse direction, assume that a solution σ exists in I∗ that satisfies the
budget constraint and the minimum score constraint (while not necessarily being

a permutation schedule or a minimal permutation schedule). Using Lemma 4.2.1

and Lemma 4.2.2, a minimal permutation schedule σ∗ can be constructed from σ

that also satisfies both constraints, after which σ∗ can be converted to a solution

of the Orienteering Problem (with the same procedure as in the proof of Theorem

4.2.1) that collects the required profit Q′ without exceeding the budget B′. Thus, a
solution for one problem that satisfies the length and profit requirements exists if

and only if a solution for the other problem with the required properties exists.

The original NP-hardness proof for the Orienteering Problem by Golden, Levy,

and Vohra [59] uses a reduction from the Traveling Salesperson Problem (TSP) so

that one might think that the hardness of the Orienteering Problem stems from

the TSP-like sub-problem of calculating a short route through a subset of nodes.

However, it can be shown that the Orienteering Problem is still anNP-hard problem

even if the travel lengths dij in the graph are chosen such that a shortest path through

any subset of nodes can be efficiently calculated.

This is due to the other sub-problem that is similar to the Knapsack problem

where a set of nodes has to be chosen such that their total value is maximized

without violating a weight constraint (or in the Orienteering Problem, the budget

constraint). This can be seen by outlining an alternative NP-hardness proof that

uses a reduction from the Knapsack problem: Assume that n items x1, x2, . . . , xn

are given with values ri, weights wi (i ∈ {1, . . . , n}) and a weight limit W for the

Knapsack problem. The corresponding Orienteering Problem instance uses n + 1
nodes v0, v1, . . . , vn with the same profit values ri (an exception is the depot node v0

with r0 = 0 which acts as a dummy node), the budget B = W and the travel lengths

di,j = wj for all edges eij in the graph (with di,0 = 0, if j = 0).

It is not hard to see in the constructed instance of the Orienteering Problem that

for a given subset of nodes S ⊆ V all routes (that do not contain unnecessary

detours) have the same length. A consequence of this is that shortest paths through

a set of nodes can be efficiently calculated. Furthermore, it can be seen that any

valid solution in the Knapsack problem has an equivalent and valid solution in the

constructed instance of the Orienteering Problem with the same total value, and

vice versa (if unnecessary detours are excluded).

100

4.2 Theoretical Properties

Inversely, simplifying only the Knapsack-like component of the Orienteering

Problem (for example, by assuming that all nodes v have the value rv = 1) still
leaves the TSP-like sub-problem that needs to be dealt with. This reinforces the

notion that the Orienteering Problem combines aspects of two NP-hard combina-

torial optimization problems so that algorithms for this problem need to take both

sub-problems into account.

Optimal Permutation Schedules for OaJ=0, bJ=0
max R, Cmax≤B

Similar to the theoretical analysis done for the Two-Machine Flow Shop Problem

with Buffers in Section 3.2, it is also possible to investigate the existence of permu-

tation schedules in the set of “optimal solutions” for OaJ=0, bJ=0
max R, Cmax≤B. Recall that for

OaJ=0, bJ=0
max R, Cmax≤B the optimization criterion is the profit that is to be maximized so that

the term “optimal” refers to solutions that maximize the collected profit without

exceeding the budget. In order to investigate the existence of permutation sched-

ules with this property, Lemma 4.2.1 can be directly used on any non-permutation

schedule (including optimal non-permutation schedules) to show the following

statement.

Corollary 4.2.1. For every instance of OaJ=0, bJ=0
max R, Cmax≤B, the set of optimal schedules always

contains a permutation schedule.

This result shows that the restriction to permutation schedules for OaJ=0, bJ=0
max R, Cmax≤B

does not restrict the attainable solution quality, i.e., there is no “gap” between sched-

ules in general (including non-permutation schedules) and permutation schedules.

This can be formalized as follows.

Corollary 4.2.2. For a given instance ofOaJ=0, bJ=0
max R, Cmax≤B, let R(σ∗perm) be the highest possible

profit that can be attained with a feasible permutation schedule (without violating the
budget constraint) an a given instance. Let R(σ∗) be the highest possible profit that can
be obtained with any schedule (including non-permutation schedules) on the same instance
without exceeding the budget. Then, the solution quality ratio R(σ∗)/R(σ∗perm) satisfies
R(σ∗)/R(σ∗perm) = 1.

101

4 The Orienteering Problem

4.3 A Variable Neighborhood Search for the Orienteering
Problem

Since the Orienteering Problem is known to beNP-hard [59], several metaheuristics

have already been proposed for this problem (see Section 4.1). In this section, a

Variable Neighborhood Search is presented for the Orienteering Problem (and due

to Theorem 4.2.1, also for OaJ=0, bJ=0
max R, Cmax≤B).

Variable Neighborhood Search (VNS) has been successfully applied to some ex-

tensions of the Orienteering Problem (see Section 4.1) as well as other routing

problems related to dynamic optimization. For example, Sarasola et al. [150] pro-

pose a VNS to solve a Dynamic Vehicle Routing Problem in which a fleet of vehicles

need to supply several customers at minimal cost and new customers may be added

that need to be supplied. Their VNS outperforms an Ant Colony Optimization

algorithm, a Genetic Algorithm, and a Tabu Search algorithm if one considers the

best over all runs. Khouadjia et al. [81] compared a VNS with a Particle Swarm

Optimization (PSO) algorithm and found that the VNS computes better solutions

on average and outperforms the PSO on larger instances.

The core principle of Neighborhood Search algorithms is to modify a given so-

lution σold by selecting a new solution σnew from a set (the “neighborhood” of σold)

containing solutions similar to σold while maximizing or minimizing an objective

function f . Variable Neighborhood Search algorithms are based on the idea that a

local maximum or local minimum within one neighborhood might not be a local

optimumwithin a different neighborhood [68]. For this reason, Variable Neighbor-

hood Search algorithms use different neighborhood functions, i.e., sets of solutions

considered “similar to σold” over the course of the algorithm. Formally, this means

that new solutions σnew are calculated as σnew = arg minσ∈Nk(σold)
f (σ) (in the case of

a minimization problem), where Nk(σold) is the neighborhood of solution σold and k
is an index to denote different neighborhoods.

For the proposed VNS algorithm, two neighborhoods Nadd(σ) and Nremove(σ) are

used. The set Nadd(σ) is the set of all solutions σ′ derived from σ by inserting one

unvisited node into σ (regardless of whether the length of the new solution exceeds

the budget B). The set Nremove(σ) is defined to be the set of all paths obtained by

removing a non-depot node from σ. In other words, search steps with respect to

these neighborhoods allow the algorithm to add and remove nodes.

102

4.3 A Variable Neighborhood Search for the Orienteering Problem

Since solving Orienteering problems requires an algorithm to repeatedly solve

sub-problems with different objectives, the heuristic proposed in this work is based

on a generalization of this principle: Given a path σold, the algorithm selects a new

solution σnew from a neighborhood Nk that maximizes or minimizes an objective

function f` with an index `which also changes during the run time of the algorithm:

σnew =

arg maxσ∈Nk(σold)
f`(σ, σold) if f` is to be maximized

arg minσ∈Nk(σold)
f`(σ, σold) if f` is to be minimized

(4.1)

The combination of different neighborhoods with changing objective functions

can also be interpreted in the sense that theneighborhood structure is nowcharacter-

ized by the pair (Nk, f`), which allows amore fine-grained tuning of the algorithm’s

behavior. More specifically, different objective functions f` allow the algorithm to

focus on specific aspects of the given optimization problem. Since the Orienteering

Problem is equivalent to the special case OaJ=0, bJ=0
max R, Cmax≤B of the Two-Stage VRP with

Profits and Buffers (as was shown in Theorem 4.2.1), the notation R(σ) and Cmax(σ)

is used to refer to the total profit and the total length of a path σ, respectively. Based

on this notation, the following objective functions are used:

flength(σ, σold) = 1/|Cmax(σ)− Cmax(σold)| (4.2)

fvalue(σ, σold) = |R(σ)− R(σold)| (4.3)

fratio(σ, σold) =

∣∣∣∣ R(σ)− R(σold)

Cmax(σ)− Cmax(σold)

∣∣∣∣ = flength(σ, σold) · fvalue(σ, σold) (4.4)

frandom(σ, σold) = r (4.5)

In frandom the number r is drawn randomly from a uniform distribution over

the interval [0, 1]. For this case it can be shown that Equation (4.1) is equiv-

alent to choosing σnew randomly from the set Nk(σold). In the following, F =

{ flength, fvalue, fratio, frandom} is defined to be the set of considered objective functions.

If Cmax(σ) = Cmax(σold), it is defined that flength(σ, σold) = ∞ and fratio(σ, σold) = ∞.

Depending on the objective function f` and the considered neighborhood (i.e.,

Nremove or Nadd), the objective function must be minimized or maximized. The

absolute values are used to consider only positive values for the objective function

f`. For example, if one considers the function flength with the neighborhood Nadd,

103

4 The Orienteering Problem

Cmax(σ) ≥ Cmax(σold) holds and thus flength needs to be maximized, since it is

preferable for the new solution σ to not be much longer than σold. If one considers

flength and the neighborhood Nremove, Cmax(σ) ≤ Cmax(σold) holds and thus flength
must be minimized to ensure a large difference between the path length of the new

and the old solution. In general, for f` with ` ∈ {length, value, ratio}, the following

holds:

f`(σ, σold) is to be

maximized if one considers Nadd

minimized if one considers Nremove

(4.6)

The choice of objective functions is motivated by the structure of the Orienteering

Problem. For example, flength focuses on the path length Cmax(σ) and prefers short

pathswhich is relevant for the aforementioned sub-problem that corresponds to the

TSP. The objective function fvalue primarily considers the total value R(σ) of a path

without taking its length into account which can be interpreted as solely focusing

on the Knapsack sub-problem. The third objective function fratio combines flength
and fvalue such that the selection of new solutions takes both sub-problems into

account. Function frandom corresponds to a random selection of paths which adds

a perturbation mechanism to the algorithm and strengthens the exploration. For

the neighborhoods considered in this work, two neighboring solutions differ by a

single node so that the calculation of these functions can be performed efficiently

by only considering the differing nodes.

The proposed algorithm VNSOP is shown in Algorithm 4.1. VNSOP starts with

a short, exploration-focused initial phase containing a randomized procedure,

which, for a path σ and parameter p ∈ [0, 1], iterates over all unvisited nodes and

inserts them into σ at random positions with probability p, regardless of whether

the length of the resulting path violates the budget constraint. This exploration-

focused procedure is used to do a quick, cursory scan of different areas of the

solution space in order to find a promising subset of nodes from which solutions

are then improved using the Chained Lin-Kernighan heuristic [10]. The implemen-

tation of this heuristic is based on the implementation provided by the Concorde

TSP Solver [33] and its computation time is also included in the time measurement

framework that is later described in Section 4.4. Afterwards and if necessary, nodes

are removed while minimizing fratio. The reason for using this objective function

is that it provides a balanced view on both sub-problems without inducing any

104

4.3 A Variable Neighborhood Search for the Orienteering Problem

Algorithm 4.1 VNSOP

Input: initial iterations kinit, initial insertion probability p

1: σ← empty solution (that only contains the depot node v0)

2: for it = 1, . . . , kinit do . initial exploration phase

3: for each node v not in σ do
4: with probability p, insert v into σ at a random position

5: end for
6: optimize the order of nodes in σ using the Chained Lin-Kernighan heuristic

7: while Cmax(σ) > B do
8: σ← arg minσ′∈Nremove(σ)

fratio(σ′, σ)
9: end while
10: end for
11: while termination criterion not satisfied do . main iterations

12: f1, f2 ← random elements from the set F
13: repeat
14: σ← arg maxσ′∈Nadd(σ)

f1(σ
′, σ)

15: until Cmax(σ) > B ∨ Nadd(σ) = ∅
16: optimize the order of nodes in σ using the Chained Lin-Kernighan heuristic

17: while Cmax(σ) > B do
18: σ← arg minσ′∈Nremove(σ)

f2(σ′, σ)
19: end while
20: end while
21: return best solution found so far

significant computational overhead. The initial phase lasts for kinit iterations where

kinit is a parameter.

Afterwards, the main iterations start where the algorithm loops through three

steps until a termination criterion is satisfied. With the solution σ obtained from

the previous step, it repeatedly performs search steps using neighborhood Nadd

while maximizing a randomly chosen function from F until the resulting path

exceeds budget B. The obtained path is now invalid. Next, the calculated path σ is

improved with respect to Cmax(σ) by using the Chained-Lin-Kernighan heuristic.

This heuristic is used in the algorithm since it is used in the Concorde TSP Solver

that has been successfully applied to the TSP and derived problems.

In the third step, if the improved path σ still violates the budget constraint, the

algorithmperforms search stepswith respect to Nremove(σ) in order to remove nodes

105

4 The Orienteering Problem

from σ. In theVNS framework, this corresponds to a change in neighborhood since a

local optimumwith respect to Nadd(σ)was reached that cannot be feasibly improved

by adding nodes. These search steps minimize a randomly chosen function from F
until the length of the resulting path σ does not exceed the budget B anymore. The

random selection of functions is done in order to provide variations in each iteration

of the algorithm, which in combination with the function frandom strengthens the

exploration and allows the algorithm to constantly test a variety of paths based on

the current solution.

4.4 Computational Evaluation

In this section, the performance of the proposed algorithm VNSOP is evaluated.

4.4.1 Measurement of Algorithm Performance

When measuring an optimization algorithm’s performance, it is not sufficient to

consider an algorithm’s performance only at a certain point in time [195] as this ne-

glects the algorithm’s optimization behavior over time, in particular its convergence

speed. Rather, the algorithm’s optimization behavior over a given time interval

needs to be taken into account. For this reason, a measurement framework with

logging functionalities has been implemented (with the source code being available

at [95]). In order to measure how well an algorithm performs over time, progress
curves (PC) are used based on [195], which plot over time the quality R(σbest) of

the best solution σbest found so far. In addition, Empirical Cumulative Distribution

Functions (ECDFs) are calculated which describe over time the percentage of runs

that reach a target solution quality R̂. For the following experiment, the target

solution quality R̂ for an instance is chosen to be a deviation that is less than 1 %
of the best solution quality R∗ found on that instance, i.e., a value R is said to have

reached the target quality if it satisfies (R∗ − R)/R∗ ≤ 1 %.

Similar to the study performed by Weise et al. [195], progress curves and ECDFs

are recordedwith respect to different timemeasures tm in order to evaluate different

aspects of an algorithm. Due to their general definition, they can be easily used

for other optimization problems if appropriate problem-specific time measures are

chosen. In this work, the following three time measures tm are used:

106

4.4.2 Choice of Algorithms for Comparison

1. Function evaluations (FE) count howoften the total length Cmax(σ) or the total

value R(σ) of σ is calculated. Evaluations with respect to this time measure

give insight into how an algorithm deals with the TSP sub-problem since for a

given subset of nodes V ′ ⊆ V there existmultiple pathswith different lengths.

2. Subsets (SS) count how many different subsets V ′ ⊆ V of nodes have been

used so far for the calculation of paths. This time measure focuses on how

an algorithm selects suitable subsets of V and thus how it deals with the

sub-problem that is similar to the Knapsack Problem.

3. The normalized time (NT) is the runtime that has passed since the start of the

algorithm normalized by a reference run time. This measure can be used to

compare the performance of algorithms ondifferent computerswith respect to

runtimeperformance. In contrast, the timemeasures FE and SSdonot depend

on the hardware that is used to run an algorithm. For this experiment, the

reference runtime for a given instance is chosen to be average runtime of the

Chained Lin-Kernighan heuristic [10] over 30 runs on that instance.

Since the criterion R(σ) is to be maximized for the Orienteering Problem, it is

preferable for the resultingprogress curve toquickly reachhighvalues as opposed to

progress curves for minimization problems such as the TSP orOmin Cmax, R≥Q where

low values in the target criterion are desirable. This allows one to use the value

UB = ∑v∈V rv, i.e., the sum of all node values at a time as a trivial upper bound for

normalizing the solution quality such that R(σ)/UB ∈ [0, 1] holds. This approach
is similar to the “optimization accuracy” measure used for dynamic optimization

problems [123]. Example progress curves are shown in Figure 4.2 left for algorithms

which are described in the following.

4.4.2 Choice of Algorithms for Comparison

Based on the literature overview given in Section 4.1, the Greedy Randomized

Adaptive Search Procedure (GRASP) with Segment Remove from [79] and the Evo-

lutionary Algorithm from [84] were selected as reference algorithms to evaluate the

proposed method VNSOP. Various algorithms based on GRASP have been pro-

posed for the Orienteering Problem (see Section 4.1), and the heuristic proposed

by Keshtkaran and Ziarati [79] is a fairly recent algorithm which also outperforms

107

4 The Orienteering Problem

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0.
0

0.
2

0.
4

0.
6

0.
8

Subset

%
 o

f T
ot

al
 V

al
ue

GSR
VNS
EA

Figure 4.2: Left: Examples for progress curveswith respect to timemeasure tm = SS
(Subset) for the Evolutionary Algorithm (EA), the Variable Neighbor-

hood Search (VNSOP, abbreviated as “VNS”) and the Greedy Random-

izedAdaptive Search Procedurewith Segment Remove (GSR). Right: Vi-

sualization of the Orienteering Problem instance Leipzig-100-80000-3
generated on basis of OpenStreetMap data for Leipzig. The blue node

is the depot v0 and the other colored nodes correspond to nodes with

assigned values where a bright color indicates a high value.

anotherGRASP that incorporates path relinking. The EvolutionaryAlgorithm from

Kobeaga, Merino, and Lozano [84] also obtained favorable results when experimen-

tally compared with other heuristics, including another GRASP algorithm [29]. In

the following, they are abbreviated as GSR and EA, respectively.

The authors of EA uploaded their source code to GitHub, but for the experiments

in thiswork the algorithmhas been reimplemented based on the source code and the

description in [84] in order to fit with and utilize our measurement framework for

the DOP mentioned in Section 4.4.1. Algorithm GSR [79] was also reimplemented

as its source code is not available. The source code (in C++) for the algorithms EA

and GSR as well as the proposed algorithm VNSOP is available at [95]. In order to

make GSR comparable with EA and VNSOP (since it uses a different termination

criterion), the algorithm has been slightly modified. In particular, if the local search

phase ends before the termination criterion is satisfied, the path obtained so far

is modified using the Segment Remove operator proposed in [79] after which the

algorithm starts the next iteration with its localSearch procedure.

108

4.4.3 Problem Instances

4.4.3 Problem Instances

The instances for the Orienteering Problem used in the following experiments are

based on two sets of instances. The first set is based on OPLib [85], a benchmark for

Orienteering Problems. From this benchmark the instances brazil58, brazil48,

gr48, gr120 were chosen from the gen4-subset since it contains the most difficult

instances [84, 85]. These instanceswere also used in the studywhere EA is proposed

[84]. The 4 instances from the subset were chosen because they specify the travel

times dij for the edges using a distance matrix, whereas most of the other instances

specify distances by listing point coordinates and calculating the Euclidiandistances

between them. However, for various applications, e.g., on road networks it is not

uncommon that the travel distance between two nodes differs from their Euclidian

distance which is why these instances were not considered.

The second set of instances (in the following referred to as city) is intended to

contain properties of realistic road networks in cities and was generated as follows:

Map data fromOpenStreetMap [125] was used fromwhich extracts for twoGerman

cities, Leipzig and Berlin (as examples for a smaller and a larger city) were down-

loaded using the download server from [153]. Then, a parser [76] was applied,

after which the roads were extracted and processed in order to obtain the road

network as a graph. On these two graphs, we randomly selected n nodes (with

n ∈ {50, 100, 150}) and assigned to them a random value rv ∈ {1, 2, . . . , 10} as their
“profit

1
” excluding one random node which was set as a depot node v0 with value

0. This was repeated three times for each city. In addition, distance matrices for

these nodes were calculated so that the instance data is available in the same form

as in the OPLib instances.

Regarding the budget B for the city instances, the value B = 80 000 was used

based on the following reasoning: A survey [72] measured that the average speed

in the two aforementioned cities is 11 mph (≈ 17.70 km/h). Since road transport

drivers in the European Union are not allowed to drive for more than 4.5 hours

without taking a break [197], it is potentially possible to drive 49.5 miles during

that time, which, after rounding, corresponds to approximately 80 000 m since the

generated graphs measure distances in meters. Using the Concorde TSP Solver

1
Since the Orienteering and OaJ=0, bJ=0

max R, Cmax≤B were shown to be equivalent (see Theorem 4.2.1), it can

also be said from the perspective of the latter problem that rv is the profit of a job Jv belonging to

node v where Jv has no processing times for both machines M1 and M2.

109

4 The Orienteering Problem

[33], it has been verified that for none of the city instances all nodes can be reached

within this budget. This set of instances contains 18 Orienteering Problems and an

example is shown in Figure 4.2 right.

4.4.4 Parameter Values

The proposed algorithm VNSOP described in Section 4.3, contains two parameters,

namely the number of iterations in the initial phase kinit and the probability p for

random insertions in the initial phase. Regarding kinit, since the number of possible

solutions grows rapidly with increasing number of nodes in the graph, we consider

it reasonable to scale the length kinit of the initial exploration phase with the size of

the graph. However, if the algorithm focuses too strongly on exploring the solution

space, there might not be enough time to refine the discovered solutions. Thus, the

parameter kinit was set as kinit =
√
|V|, i.e., the square root of the number of nodes

as a compromise between these two conflicting aspects.

As for the second parameter p, it is desirable that p is close to the percentage of

nodes contained in an optimal solution so that the insertion procedure and subse-

quent optimization of the path length lead to a solution of high quality. Kobeaga,

Merino, and Lozano [84] dealt with a similar problem for their algorithm EA and

proposed the formula

√
B/Cmax(σLK), which in the following is also used for the pa-

rameter p. This formula incorporates the budget B as well as the length of the path

σLK obtained by applying the Chained Lin-Kernighan heuristic on all nodes in V,

so that it provides an efficiently calculable approximation for the number of nodes

contained in an optimal solution. The parameters for the other two algorithms EA

and GSR are set as described in their respective studies [79, 84].

4.4.5 Experimental Setup

The three compared improvement heuristics were executed on each of 22 Orienteer-

ing Problem instances described in Section 4.4.3 with 30 repetitions over which the

results were averaged. The runs were executed on a computer cluster of Leipzig

University with thirty-six 2.1-GHz-cores (each run being executed on one core) and

36 GB RAM. Similar to the experimental study performed in Section 3.5, the runs

were set to terminate after a time limit of 5, 10 and 15minutes for the small (n ≤ 50),
medium (50 < n ≤ 100) and larger problems (n > 100), respectively.

110

4.4.6 Comparison of VNSOP with other Metaheuristics

Plotting the progress curves and ECDFs for each instance and time measure tm

leads to a total of 132 diagrams (similar to Figure 4.2 left) so that an individual eval-

uation of each diagram is not feasible. For this reason, we calculate the percentage

that the area under the progress curve (area under curve, AUC) occupies from the

area of a theoretical progress curve with constant value 1. This value is denoted

as AUCrel
(relative AUC) in the following and satisfies AUCrel ∈ [0, 1] providing

an aggregate quality measure for the calculated curves, similar to the evaluation

methodology in [195]. These values allow us to quantify the performance of an al-

gorithm on a given instance where a high value indicates that the algorithm quickly

obtains solutions of high quality. Note that in contrast to the experiments for the

Two-Machine Flow Shop Problem with Buffers in Section 3.5, high values in the

progress curves are desirable.

In order to compare the AUC values over different instances (similar to [123]),

these values were normalized with respect to the best attained value per instance.

Formally, if AUCrel
I,A denotes the relative AUC for algorithm A on an instance I, the

normalized value AUCnorm
I,A ∈ [0, 1] is calculated as

AUCnorm
I,A =

AUCrel
I,A

maxA′ AUCrel
I,A′

(4.7)

with A′ ∈ {VNSOP, EA, GSR}, where a value close to 1 indicates that the algorithm

A reaches a performance similar to the best performing algorithm for instance I.
This type of evaluation measure can be seen as an extension of the “collective

mean fitness” that is commonly used to evaluate an algorithm’s performance on

dynamic optimization problems [123], where instead of the best values per itera-

tion/generation the optimization behavior over the entire run time is taken into

account. An overview of the evaluation metrics used in this section is shown in

Table 4.1.

4.4.6 Comparison of VNSOP with other Metaheuristics

In this section, the proposed algorithm VNSOP is compared with EA and GSR with

respect to the evaluation measures described in Section 4.4.5. Table 4.2 shows the

average values for AUCnorm
I,A over the progress curves of all instances, as well as

average values when only certain sets of instances are considered. These numbers

111

4 The Orienteering Problem

Table 4.1: Overview of the evaluation metrics used during the computational ex-

periments.

Metric Description

AUCI,A Area under the progress curve (which shows the solution quality,

normalized to [0, 1], over time for a given time measure tm) of an

algorithm A on an instance I.

AUCrel
I,A Ratio between AUCI,A and the AUC of a theoretical progress curve

with constant value 1. Satisfies 0 ≤ AUCrel
I,A ≤ 1.

AUCnorm
I,A Ratio between AUCrel

I,A and AUCrel
I,A∗ where A∗ is the algorithm that

obtained the bestAUCrel
on instance I. Satisfies 0 ≤ AUCnorm

I,A ≤ 1, and
if an algorithm A obtains the best results on an instance I,AUCnorm

I,A = 1
holds.

quantify the average optimization performance of an algorithm over time. The

values AUCrel
I,A used for calculating the averages are uploaded to [95].

It can be seen that VNSOP reaches the best performance for almost all aggregation

criteria and time measures. One exception can be found for the time measure

tm = SS (subsets) when only the oplib instances are considered as the performance

of VNSOP is tied with EA. However, the average AUC values for the remaining

criteria indicate that VNSOP has a good performance over time for both sets of

instances. For the time measures tm = FE and tm = NT, it even reaches the value

1.000 which means that it obtained the highest AUC value on all instances used for

calculating the average.

It can also be seen for GSR that it performs better for smaller instances than

for larger instances. A possible explanation for this is that for a smaller number

of nodes, the addVertex phase of GSR ends earlier so that more time is spent in

the local search phase to improve solutions (see the description of GSR in [79] for

details). However, it can also be seen that the gap between EA and VNSOP is

smaller than between GSR and VNSOP which indicates that EA reaches a higher

performance than GSR. As for GSR, even though it obtains good results for the

time measure SS when compared to FE (indicating that it carefully selects a subset

V ′ ⊆ V and thoroughly tests it before changing the subset) it is still outperformed

112

4.4.6 Comparison of VNSOP with other Metaheuristics

Table 4.2: Average values for AUCnorm
I,A for the progress curve diagrams per time

measure, aggregated over different subsets of instances. The values are

truncated to 3 decimal places and values in bold indicate the best average

value for each aggregation criterion and time measure.

Progress Curves

tm = FE tm = SS tm = NT

EA GSR VNSOP EA GSR VNSOP EA GSR VNSOP

Instance set
oplib 0.991 0.910 1.000 0.998 0.978 0.998 0.995 0.978 1.000
city 0.936 0.807 1.000 0.979 0.912 0.995 0.968 0.943 1.000

Instance size
n ≤ 50 0.980 0.958 1.000 0.986 0.977 0.990 0.989 0.972 1.000
50 < n ≤ 100 0.936 0.821 1.000 0.971 0.921 1.000 0.969 0.945 1.000
n > 100 0.917 0.679 1.000 0.989 0.867 0.996 0.958 0.928 1.000

All instances 0.946 0.825 1.000 0.982 0.924 0.995 0.973 0.949 1.000

by VNSOP in all criteria and both time measures. A similar, but smaller difference

regarding the time measure tm = FE in relation to tm = SS and tm = NT can also

be observed for EA.

Table 4.3: Average values for AUCnorm
I,A with respect to ECDF diagrams per time

measure, aggregated over different subsets of instances. The values are

truncated to 3 decimal places and values in bold indicate the best average

value for each aggregation criterion and time measure.

ECDF

tm = FE tm = SS tm = NT

EA GSR VNSOP EA GSR VNSOP EA GSR VNSOP

Instance set
oplib 0.719 0.087 1.000 0.656 0.223 0.993 0.749 0.205 1.000
city 0.223 0.088 1.000 0.354 0.182 1.000 0.291 0.164 1.000

Instance size
n ≤ 50 0.723 0.224 1.000 0.720 0.258 0.998 0.778 0.262 1.000
50 < n ≤ 100 0.011 0.019 1.000 0.013 0.111 1.000 0.101 0.135 1.000
n > 100 0.147 0.001 1.000 0.578 0.200 0.973 0.186 0.106 1.000

All instances 0.313 0.088 1.000 0.421 0.191 0.995 0.374 0.172 1.000

Table 4.3 shows the average AUCnorm
I,A values with respect to the Empirical Cumu-

lative Distribution Function (ECDF) which describes how consistent an algorithm

reaches a certain solution quality. It can be seen that VNSOP obtains the best results

for the criteria shown in the table. However, for VNSOP some of the values for the

113

4 The Orienteering Problem

time measure tm = SS are lower than for the other time measures which indicates

that in regards to that time measure the algorithm needs to evaluate a higher num-

ber of subsets before the target solution quality (a deviation from the best solution

quality found on a given instance that is not more than 1%) is reached.

Similar to Table 4.2, it can be observed for GSR and EA that the values are lower

for the instance set city than for oplib (for all time measures). This means that

there is a larger “gap” in how consistent the quality of the calculated solutions for

EA and GSR when compared to VNSOP which possibly indicates that VNSOP is

better suited for instances containing characteristics of road networks.

It is interesting to note that for medium-sized instances and tm ∈ {SS, NT}
GSR outperforms EA. In combination with the data in Table 4.2 (where GSR is

outperformed by EA), this indicates for such instances GSR does not always find a

better solution than EA, but it reaches a “good” solution quality more consistently

than EA when time is measured with respect to these measures. However, for

tm = FE, the difference is smaller and for larger instances n > 100 the value for

GSR is close to 0 which means that there is a high number of runs where the target

solution quality was not reached within the time limit.

Interestingly, the values for EA and GSR are noticeably small for medium-sized

instances when compared to the other instance sizes. A possible explanation for

this is that for small instances, all algorithmsmanage to find high-quality solutions,

whereas for large instances the larger search space makes it more difficult for all

algorithms (including the best-performing algorithm on an instance) to consistently

obtain good solutions. This effect, combined with the normalization with the best-

performing algorithm in AUCnorm
I,A , leads to “more similar” values, see Figure 4.3

left for an example. However, for medium-sized instances only VNSOP consistently

obtains “good” solutions over time (see Figure 4.3 right for an example) leading to

a larger gap when compared to EA and GSR.

But in general it can be seen that the values for large instances (n > 100) are
smaller than the values for smaller instances (n ≤ 50). A likely explanation for this

is that larger instances are “more difficult” due to the larger solution space so that

it is less likely for an algorithm to consistently reach a good solution quality.

In addition, the sign test for paired samples was applied to compare the perfor-

mance of the algorithms at specific points in time. In particular, the solution quality

after 100,000 function evaluations and 100,000 subsets (which can be interpreted as

114

4.4.6 Comparison of VNSOP with other Metaheuristics

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Subset

E
C

D
F

 (
1%

)

EA
GSR
VNS

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Subset

E
C

D
F

 (
1%

)

EA
GSR
VNS

Figure 4.3: Visualization of ECDFs for the instance LGF-Berlin-150-80000 (left,

containing n = 150 nodes) and LGF-Berlin-100-80000-1 (right, con-

taining n = 100 nodes) with respect to the time measure tm = SS. The
notation “VNS” is used as an abbreviation for VNSOP. Note how on

the left, none of the algorithms reach high values, whereas on the right

only VNSOP has a high percentage of runs that reach the target solution

quality.

the “short-term performance”) as well as the quality of the final solution at the end

of the run (the “long-term performance”) were considered, where the latter is the

same as comparing the algorithm performance at the time of termination which

was done in [84] and [79].

The results of the statistical tests are shown in Table 4.4. It can be clearly seen

that the differences between VNSOP and the algorithms GSR and EA is statistically

significant, with VNSOP obtaining better results than the other algorithms. This

difference can be visualized by plotting the relative percentage difference RPD =

(R∗ − R)/R∗ for EA and GSR (with R being the quality of the current solution at a

given time and R∗ being the best solution quality found on an instance over all runs)

on each instance in relation to VNSOP as points (RPD, RPDVNSOP) due to the paired

nature of the measured data, as shown in Figure 4.4. Note that in this diagram,

values close to 0 are desirable.

On the left, it can be seen that after only 100,000 evaluation there are many points

where none of the algorithms have obtained the value RPD = 0, especially for larger

115

4 The Orienteering Problem

Table 4.4: Results of the pairwise comparisons between the algorithms using the

two-sided sign test over all Orienteering Problem instances (n = 22) at
certain points in time. A triangle indicates that the measured difference

is statistically significant (p < 0.05/9 due to Bonferroni correction) and

that the algorithm at which the triangle is pointed at is significantly better

according to the test statistic. Note that the tables are symmetric since the

3 possible pairwise comparisons for each of the three points in time were

performed with two-sided tests.

at t = 100, 000 FE at t = 100, 000 SS at end of run

EA GSR VNSOP EA GSR VNSOP EA GSR VNSOP

EA J N J N J N
GSR N N N N N N

VNSOP J J J J J J

instanceswith n > 100 which also indicates that these instances aremore difficult to

solve than smaller instances. However, the different axis scaling in Figure 4.4 right

shows that all algorithms have improved their solutions at the end of the runs, but

most of the points satisfy RPDVNSOP < RPD (i.e., they are below the diagonal y = x)
which means that at that time VNSOP still obtains better solutions. In particular,

there are many points with RPDVNSOP = 0 which means that at that time VNSOP

has already obtained solutions with quality R∗ . In addition, the results in Table 4.4

show that GSR is outperformed by EA at the considered points in time. This can

also be seen in Figure 4.4 left where many of the points for GSR are positioned to

the right of points for EA.

4.5 Summary

In this thesis chapter the Orienteering Problem was considered which is closely re-

lated to a special case OaJ=0, bJ=0
max R, Cmax≤B of the Two-Stage VRP with Profits and Buffers,

where the processing times of all jobs on both machines is zero. A theoretical anal-

ysis showed that these two problems can be considered to be equivalent. The Ori-

enteering Problem forms a challenging combinatorial optimization problem since it

contains aspects from two NP-hard problems as sub-problems, namely the Travel-

ing Salesperson Problem and the Knapsack problem. It was shown that simplifying

116

4.5 Summary

0.0 0.1 0.2 0.3 0.4

0.
00

0.
05

0.
10

0.
15

R
P

D
 (

V
N

S
_O

P
)

RPD

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

EA
GSR
n <= 50
50 < n <= 100
n > 100

0.00 0.04 0.08 0.12

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
R

P
D

 (
V

N
S

_O
P

)

RPD

●

●

●●

●

●

●

●

●

●●

●

●

●

●

EA
GSR
n <= 50
50 < n <= 100
n > 100

Figure 4.4: Scatter plot of average RPD values for the solution quality of VNSOP at

t = 100, 000 FE (left) and at the end of the run (right) in relation to the

respective RPD values of the other algorithms. The grey line marks the

diagonal line y = x such that points above (below) the line indicate that

an algorithm obtained a better (worse) final solution than VNSOP.

one of the sub-problems does not change theNP-hardness of the problem. In addi-

tion, it was shown forOaJ=0, bJ=0
max R, Cmax≤B from the perspective of the Two-Stage VRPwith

Profits and Buffers that the set of optimal schedules always contains at least one per-

mutation schedule so that the restriction to permutation schedules inOaJ=0, bJ=0
max R, Cmax≤B

does not restrict the attainable solution quality.

Since the Orienteering is known to be NP-hard, a heuristic VNSOP was proposed

for the Orienteering Problem that is based on Variable Neighborhood Search. The

main idea of VNSOP is to take the two interacting sub-problems of the Orienteering

Problem into account by combining neighborhoods with variable objective func-

tions. This allows the algorithm to dynamically change how new solutions are

generated. This concept can also be applied to other combinatorial optimization

problems by considering their characteristics, their structure and appropriately

choosing the available functions and neighborhoods.

Computational experiments were performed with two existing state-of-the-art

methods for the Orienteering Problem and the proposed algorithm VNSOP. The

evaluation of the experiments considered the performance over the entire run time

117

4 The Orienteering Problem

using graphical evaluation measures, as well as the performance at specific points

in time using statistic tests. The results showed that VNSOP outperforms the other

algorithms with respect to multiple time measures in most of the considered eval-

uation criteria. The gap in performance was larger for the set of instances that

contain characteristics of road networks when compared to instances from an exist-

ing benchmark. In addition, it was observed that larger instances are harder to solve

as the compared algorithms took more time and were less consistent at reaching a

high solution quality.

118

5 The Two-Stage Vehicle Routing Problem
with Profits and Buffers

After the previous two chapters of this thesis focused on two special cases of the

Two-Stage VRP with Profits and Buffers which arise in various practical appli-

cations, this chapter considers the Two-Stage VRP with Profits and Buffers in its

general case as described in Section 2.2 without any further restrictions. In particu-

lar, both optimization problemsOmin Cmax, R≥Q andOmax R, Cmax≤B are investigated in

theoretical analyses and computational experiments. In particular, their theoretical

properties regarding computational complexity, existence of optimal permutation

schedules and the gap in attainable solution quality between permutation schedules

and non-permutation schedules are analyzed in Section 5.1. Afterwards, a meta-

heuristic framework for the general case of the Two-Stage VRP with Profits and

Buffers is proposed in Section 5.2 from which multiple algorithms can be derived

for both optimization problems. In Section 5.3, various algorithms derived from the

framework are evaluated in computational experiments. The results of this chapter

are summarized in Section 5.4.

5.1 Theoretical Properties of the Two-Stage VRP with Profits
and Buffers

Similar to the theoretical analyses for the two special cases of the Two-Stage VRP

with Profits and Buffers in Section 3.2 and Section 4.2, the computational com-

plexity, the existence of permutation schedules in the set of optimal solutions as

well as potential gaps in solution quality between permutation schedules and non-

permutation schedules are investigated in the following. Since the Two-Stage VRP

with Profits and Buffers contains the Two-Machine Flow Shop with Buffers and the

Orienteering, the results presented in this section generalize some of the theoretical

119

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

properties shown in Section 3.2 and Section 4.2. In addition, properties for other

special cases that can be directly derived from these results are presented in an

overview.

5.1.1 Computational Complexity of the General Problem

Since the Two-Machine Flow Shopwith Buffers as well as the Orienteering Problem

are known to be NP-complete (see Section 3.2.1 and Section 4.2) and since the

Two-Stage VRP with Profits and Buffers generalizes these two problems, it directly

follows that the Two-Stage VRP with Profits and Buffers is also a hard problem.

A formalization of this property is given in the following statement which de-

scribes the complexity of the problem’s decision variant (for bothOmin Cmax, R≥Q and

Omax R, Cmax≤B):

Theorem 5.1.1. For all values of bufType ∈ {intermediateBuffer, spanningBuffer} and
bufUsage ∈ {sJ = 1, sJ = aJ}, the decision problem whether for a given instance of
the Two-Stage VRP with Profits and Buffers and two positive numbers B, Q there exists a
feasible schedule σ with Cmax(σ) ≤ B and R(σ) ≥ Q is NP-complete.

Similar to the analysis in Section 3.2, it might be interesting to investigate special

cases of the Two-Stage VRP with Profits and Buffers that can be efficiently solved.

This is detailed further below in Section 5.1.4.

5.1.2 Existence of Permutation Schedules in the Set of Optimal Solutions

Another question that was already investigated in the theoretical analyses of the

Two-Machine Flow Shop with Buffers and the Orienteering Problem is the question

whether the set of optimal schedules contains a permutation schedule. In the

following, the same question is analyzed for the Two-Stage VRP with Profits and

Buffers. Since both optimization problems Omin Cmax, R≥Q and Omax R, Cmax≤B are

considered, the following lemma is needed that establishes a connection between

their target criteria.

Lemma 5.1.1. Let I be an instance of the Two-Stage VRP with Profits and Buffers. If,
for every non-permutation schedule σ for I there exists a permutation schedule σP with
ProcessedJobs(σ) = ProcessedJobs(σperm) and Cmax(σperm) ≤ Cmax(σ), then the set of

120

5.1.2 Existence of Permutation Schedules in the Set of Optimal Solutions

optimal schedules for instance I with respect to the optimization problem Omax R, Cmax≤B

contains at least one permutation schedule.

Proof. Consider a non-permutation schedule σ∗ that is optimal with respect to the

optimization problem Omax R, Cmax≤B. Obviously, σ∗ has to satisfy Cmax(σ∗) ≤ B or

else σ∗ would violate the budget constraint. Due to the assumption, there exists

a permutation schedule σ∗perm that satisfies ProcessedJobs(σ∗) = ProcessedJobs(σ∗perm)

and Cmax(σ∗perm) ≤ Cmax(σ∗). Due to the latter property, it is not possible that σ∗perm

violates the budget constraint. The former property implies that R(σ∗) = R(σ∗perm),

so σ∗perm is a permutation schedule that is optimal with respect toOmax R, Cmax≤B.

It is shown in the following that for the Two-Stage VRP with Profits and Buffers,

the existence of optimal permutation schedules (with respect to both Omin Cmax, R≥Q

and Omax R, Cmax≤B) is only guaranteed for up to n = 2 jobs, which is remarkably

small when compared with the bound n = 6 that holds for the Two-Machine Flow

Shop with spanning buffer and sJ = aJ (see Theorem 3.2.4). This is due to the

addition of travel times dij which allow for a larger class of instances.

Lemma 5.1.2. Let σ be a non-permutation schedule for an instance of the Two-Stage VRP
with Profits and Buffers with |ProcessedJobs(σ)| ≤ 2. Then, there exists a permutation
schedule σP satisfying ProcessedJobs(σP) = ProcessedJobs(σ), Cmax(σP) ≤ Cmax(σ) and
R(σP) = R(σ).

Proof. If |ProcessedJobs(σ)| = 1, it is not possible for σ to be a non-permutation

schedule, so let σ be a non-permutation schedulewhere exactly 2 jobs are processed.

Without loss of generality, it is assumed that π1(σ) = (J1, J2) and π2(σ) = (J2, J1).

A trivial lower bound for Cmax(σ) is C̃ = d0,1 + aJ1 + d1,2 + aJ2 + c + d2,1 + c. If a

spanning buffer is used, the buffer capacity Ω must satisfy Ω ≥ sJ1 + sJ2 , whereas

for the intermediate buffer the buffer capacity must be at least sJ1 .

Next, consider the permutation schedule σP
that processes the jobs J1, J2 in that or-

der on bothmachines as early as possible. Obviously, it satisfies ProcessedJobs(σP) =

ProcessedJobs(σ) and R(σP) = R(σ). By considering the different buffer types with

the established lower bounds for Ω, it is not hard to see that regardless of the buffer

type, σP
has the makespan Cmax(σP) = d0,1 + aJ1 +max{d1,2 + aJ2 + c, c + d1,2 + c}.

This value cannot be larger than the lower bound C̃ for Cmax(σ). Thus, σP
is the

permutation schedule with the desired properties.

121

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

The following statement immediately follows from the lemma shown above.

Theorem 5.1.2. For both optimization problems Omin Cmax, R≥Q and Omax R, Cmax≤B, the
following holds: If the set of optimal schedules contains a schedule with exactly two jobs, it
also contains a permutation schedule.

The value n = 2 is a sharp bound since for n > 2 instances can be constructed

where the set of optimal schedules contains no permutation schedule.

Theorem 5.1.3. For both optimization problems Omin Cmax, R≥Q and Omax R, Cmax≤B, the
following holds: For every n > 2 there exists an instance of the Two-Stage VRP with Profits
and Buffers where the set of optimal schedules contains no permutation schedule.

Proof. Consider the following instance with depot node v0, 3 additional nodes

v1, v2, v3 and three corresponding jobs J1, J2, J3. The processing times of the jobs are

aJ = 1 for and bJ = c = 2 for all jobs J. The travel times dij are chosen according to

the matrix

(dij)i=0,1,2,3
j=0,1,2,3

=


0 1 3 W

W 0 0 0
W 0 0 3
W W W 0

 ,

where W can be W = ∞ or an appropriately large number. It is assumed that there

are no buffer restrictions (or in other words, the buffer capacity Ω is chosen to be

large enough that all jobs can be stored at the same time, with the consequence

that the type of buffer and choice of sJ does not affect schedules). Next, consider

the following non-permutation schedule σ∗ with π1(σ∗) = (1, 2, 3) and π2(σ∗) =

(2, 1, 3):

0 2 4 6 8

M2

M1

Time

d0,1 J1 J2
d2,3 J3

d0,2 J2 J1 J3

It can be shown that there exists no permutation schedule σP
that reaches the

same makespan as σ∗ with Cmax(σ∗) = 9. This can be seen by testing all possible

job permutations: Due to W and the choice of travel times dij, a schedule σP
that

122

5.1.2 Existence of Permutation Schedules in the Set of Optimal Solutions

starts with J3 takes at least W time units and cannot be shorter than σ∗. Next,

assume that σP
starts with J1. The permutation π = (J1, J3, J2) can be excluded with

the same reasoning, and the schedule σ1 resulting from π(σ1) = (J1, J2, J3) is also

longer than σ∗ with Cmax(σ1) = 11:

0 2 4 6 8 10

M2

M1

Time

d0,1 J1 J2
d2,3 J3

d0,1 J1 J2
d2,3 J3

Similarly with permutation schedules that start with J2, the schedule with permuta-

tionπ(σ2) = (J2, J3, J1) has a length of at leastW, and thepermutationπ = (J2, J1, J3)

also leads to a schedule σ2 longer than σ∗ with Cmax(σ2) = 10:

0 2 4 6 8 10

M2

M1

Time

d0,2 J2 J1 J3

d0,2 J2 J1 J3

In short, only job permutations πm = (J1, J2, J3) and πm = (J2, J1, J3) (with m ∈
{1, 2}) lead to schedules that can be potentially shorter than W. This can be used

to show that σ∗ is a makespan-minimizing schedule as the remaining cases to

check can be restricted to these permutations. In particular, all combinations except

π1 = (J2, J1, J3) and π2 = (J1, J2, J3) are already dealt with above, so it is only

remains to check this case:

0 2 4 6 8 10 12 14

M2

M1

Time

d0,2 J2 J1 J3

d0,1 J1 J2
d2,3 J3

This non-permutation schedule σ4 is also longer than σ∗ with Cmax(σ4) = 14. Since
all other caseswere shown to lead to longer schedules, it follows that σ∗ is an optimal

non-permutation schedule and that there exists no permutation schedule with the

same length.

123

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

The set of optimal schedules can be appropriately restricted to only contain σ∗

by choosing Q to be large enough so that all jobs need to be processed (in the case

of Omin Cmax, R≥Q)) or by choosing the budget B as B = 9 so that σ∗ is the only

schedule that maximizes the profit (by processing all jobs) without violating the

budget constraint.

The presented instance can be extended to contain more than 3 jobs by adding

“extra nodes” v` with “extra jobs” J` and processing times aJ` = c and appropriately

choosing the travel times di,` and d`,i such that the extra jobs have to be processed

at the end in succession after J3, or else travel times of length W are induced.

The instance presented in the proof above relies on large numbers W in order to

be applicable regardless of buffer type (intermediate buffer or spanning buffer) and

buffer usage (sJ = aJ or sJ = 1 for all J). However, it is also possible to construct

instances where the property that no optimal permutation schedules exist arises

due to the buffer. For the sake of completeness, two examples for such instances are

given in the following including examples for optimal non-permutation schedules.

However, the proofs that the set of optimal schedules for these instances contains

no permutation schedules are omitted as they rely on the same method used in the

proof above, namely, enumerating and checking all permutation schedules (which

is straightforward to do by hand).

The first example contains a depot node v0 and three additional nodes with jobs

J1, J2, J3 that have processing times aJ1 = 1, aJ2 = 2, aJ3 = 14 and c = 5. In addition,

a spanning buffer is used with Ω = 15 and sJ = aJ . The travel times are chosen

according to the following matrix:

(dij)i=0,1,2,3
j=0,1,2,3

=


0 5 5 5
5 0 2 3
6 3 0 2
4 7 5 0


One example for an optimal non-permutation schedule σ∗ uses the permutations

π1(σ∗) = (J1, J2, J3) and π2(σ∗) = (J2, J1, J3):

124

5.1.2 Existence of Permutation Schedules in the Set of Optimal Solutions

0 5 10 15 20 25 30 35

Buffer

M2

M1

Time

J3

J2

J1

d0,1 J1
d1,2 J2

d2,3 J3

d0,2 J2
d2,1 J1

d1,3 J3

This instance can be extended by adding “extra nodes” v` and jobs J` with aJ` = Ω
and d`,3 = d3,` = 0, d`,j = d3,j, dj,` = dj,3 for all j /∈ {3, `} as well as d`,` = 0 and

d`,`′ = d`′,` = 0 for all extra nodes v`′ 6= v`. With these values, an optimal schedule

needs to process all extra jobs in succession at the end of the schedule or else travel

times are induced.

For the resulting instances it can be shown similar to the proof above that the

shortest non-permutation schedule σ∗ that processes all jobs has a length Cmax(σ∗)

that cannot be reached by any permutation schedule. By appropriately choosing

the budget constraint or minimum score constraint, it is possible to obtain instances

for Omax R, Cmax≤B and Omin Cmax, R≥Q in which the set of optimal schedules contains

no permutation schedules.

The second example also uses three nodes (excluding the depot node v0) with jobs

J1, J2, J3 that have processing times aJ1 = 1, aJ2 = 2, aJ3 = 14 and c = 5. However, an

intermediate buffer is used with Ω = 1 and sJ = aJ . The travel times are chosen as

follows:

(dij)i=0,1,2,3
j=0,1,2,3

=


0 5 5 5
5 0 2 3
6 3 0 2
4 2 1 0


One of the optimal non-permutation schedules σ∗ for this instance has the permu-

tations π1(σ∗) = (J1, J2, J3) and π2(σ∗) = (J2, J1, J3):

125

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

0 5 10 15 20 25 30

Buffer

M2

M1

Time

J1

d0,1 J1
d1,2 J2

d2,3 J3

d0,2 J2
d2,1 J1

d1,3 J3

This instance can be extended to n > 3 by adding nodes v` and jobs J` with

processing times aJ` = c. The travel lengths d`,j and dj,` are set in the same way as

in the previous example.

5.1.3 The Gap Between Permutation Schedules an Non-Permutation
Schedules

Since it was shown in the previous section that there exist instances of the Two-

Stage VRP with Profits and Buffers where the set of optimal schedules contains no

permutation schedule, the question arises as to how large the “gap” in solution

quality between permutation schedules and non-permutation schedules can poten-

tially become. In the following, some statements are presented that deal with this

question.

The Optimization Problem Omin Cmax, R≥Q

First, the optimization problem Omin Cmax, R≥Q is considered where the makespan

Cmax(σ) needs to beminimizedwhile ensuring that aminimumprofit Q is collected,

i.e., R(σ) ≥ Q. In the following, let Cmax(σ∗, I) be the makespan of an optimal

schedule for an instance I and let Cmax(σ∗perm, I) be the makespan of a “best”

permutation schedule (i.e., a permutation schedule that minimizes the makespan

over all permutation schedules). Since the Two-Stage VRP with Profits and Buffers

encompasses the Two-Machine Flow Shop with Buffers, the examples given in

126

5.1.3 The Gap Between Permutation Schedules an Non-Permutation Schedules

Theorem 3.2.7 and Theorem 3.2.6 for Two-Machine Flow Shops with buffers (see

Section 3.2) also apply to the more general problem by choosing the required profit

Q such that all jobs need to be processed.

Corollary 5.1.1. Assume that sJ = aJ holds for all jobs J. For the buffer type bufType =
intermediateBuffer, there exists a sequence of instances Ik with k = 1, 2, 3, . . . with

lim
k→∞

Cmax(σ∗perm, Ik)

Cmax(σ∗, Ik
=

7
6

.

For bufType = spanningBuffer, there exists a sequence of instances Ik with k = 1, 2, 3, . . .
with

lim
k→∞

Cmax(σ∗perm, Ik)

Cmax(σ∗, Ik
=

19
18

.

However, the above statement only refers to a sequence of instances and the

asymptoticalmakespan ratio between the best permutation schedule and an optimal

schedule. Another example that uses a specific instance was given in the proof of

Theorem 5.1.3 which has the following makespan ratio.

Corollary 5.1.2. For bufType ∈ {intermediateBuffer, spanningBuffer} and bufUsage ∈
{“sJ = 1”, “sJ = aJ”}, there exists an instance I with

Cmax(σ∗perm, I)
Cmax(σ∗, I)

=
10
9

.

The statements presented above show examples on how large the “gaps” in

solution quality can become. However, it can be shown that this ratio cannot be

larger than 2 for Omin Cmax, R≥Q. In order to see this, consider the following lemma.

Lemma 5.1.3. Let σ be a non-permutation schedule for an instance of the Two-Stage VRP
with Profits and Buffers. Then, there exists a permutation schedule σP with the properties
ProcessedJobs(σP) = ProcessedJobs(σ) and R(σP) = R(σ) that satisfies Cmax(σP) ≤
2 · Cmax(σ).

Proof. Assume that σ is a non-permutation schedule, and let ProcessedJobs(σ) be

the set of jobs processed in σ with s = |ProcessedJobs|. Let D1, D2 be the sum of

travel times dij taken on the paths P1(σ), P2(σ) (i.e., paths of nodes traversed in the

graph) by M1 and M2, respectively. A trivial lower bound for the makespan of σ

127

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

is Cmax(σ) ≥ max{∑ aJ + D1, s · c + D2}, where the sum is taken over all jobs in

ProcessedJobs(σ).
Next, construct the following permutation schedule σP

. For k = arg mink∈{1,2} Dk

both vehicles traverse the nodes in the order Pk(σ) and process the corresponding

jobs in the order π(σP) = πk(σ). Without loss of generality, it is assumed that

π(σP) = (J1, J2, . . . , Js). The processing of jobs in σP
is done such that the buffer is

used as little as possible. Formally, this means that

S1
1(σ

P) = 0

S2
1(σ

P) = C1
1(σ

P)

S1
`(σ

P) = max{C2
`−1(σ

P), C1
`−1(σ

P) + d`−1,`}
S2
`(σ

P) = max{C1
` (σ

P), C2
`−1(σ

P) + d`−1,`}

for ` = 2, 3, . . . , s.
In the intermediate buffer model, the buffer is not used, whereas for the spanning

buffer not more than maxJ∈ProcessedJobs(σ) sJ buffer units are used which is a lower

bound for the buffer units used in the original schedule σ (or else σ would violate

the buffer constraint). Thus, σP
is feasible with respect to buffer usage. In addition,

this schedule satisfies ProcessedJobs(σP) = ProcessedJobs(σ) and R(σP) = R(σ).
To analyze the makespan Cmax(σP) of σP

, note that at any point in time t, exactly
one of the following three cases hold due to the definition of σP

:

1. t ∈ TA: M1 is processing a job.

2. t ∈ TB: M2 is processing a job.

3. t ∈ TC: None of the machines are processing a job.

Note that for t ∈ TC it is not possible that both machines are idle so that in the case

t ∈ TC at least one of the machines must be traversing an edge eij (with travel times

dij).

Using this notation, it is possible to giveupper bounds on thenumber of timeunits

contained in TA, TB and TC. Trivial upper bounds for the former two are TA ≤ ∑ aJ

(with the sum being taken over all jobs J ∈ ProcessedJobs(σP)) and TB ≤ s · c.
Regarding TC, note that it is possible that one machine traverses an edge with the

other machine waiting for the next job (and vice versa), so it is not sufficient to only

128

5.1.3 The Gap Between Permutation Schedules an Non-Permutation Schedules

consider the edge travel times for one of the machines M1, M2. However, adding

the factor 2 allows for the following upper bound that fully contains the edge travel

times for both vehicles:

TC ≤ 2 ·min{D1, D2}

These upper bounds can be used to calculate an upper bound for Cmax(σP):

Cmax(σ
P) ≤∑ aJ + s · c + 2 min{D1, D2}
≤∑ aJ + D1 + s · c + D2

≤ 2 ·max{∑ aJ + D1, s · c + D2}
≤ 2 · Cmax(σ)

Thus, σP
is the permutation schedule with the desired properties.

A “best” permutation schedule σ∗perm (with respect to Omin Cmax, R≥Q) cannot be

worse than the permutation schedule σP
constructed in the proof of the previous

lemma so that the following statement holds.

Theorem 5.1.4. For any instance of the Two-Stage VRP with Profits and Buffers with
bufType ∈ {intermediateBuffer, spanningBuffer}, the following upper bound holds for the
solution quality ratio Cmax(σ∗perm, I)/Cmax(σ∗, I) between a best permutation schedule
σ∗perm and an optimal schedule σ∗:

Cmax(σ∗perm, Ik)

Cmax(σ∗, Ik)
≤ 2

The Optimization Problem Omax R, Cmax≤B

Next, the optimization problem is consideredwhere the collected profit R(σ) is to be
maximized without violating the budget constraint Cmax(σ) ≤ B. In the following,

let R(σ∗, I) be the total value collected in an optimal schedule for an instance I
and let R(σ∗perm, I) be the total profit collected in a “best” permutation schedule

(i.e., a permutation schedule that maximizes the total profit over all permutation

schedules that do not violate the budget constraint).

First, a straightforward example can be given where R(σ∗, I)/R(σ∗perm, I) = 3/2
holds. Recall the example instance I with 3 jobs given in the proof of Theorem 5.1.3

129

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

where there existed a non-permutation schedule σ∗ with makespan Cmax(σ∗) = 9
and all permutation schedules with 3 jobs had amakespan of 10 or more time units.

By choosing the budget B as B = 9, the set of permutation schedules that do not

violate the budget constraint can only contain schedules where at most 2 jobs are

processed.

Without loss of generality, it is assumed that r1, r2, r3 are the profit values of

the three jobs processed in the non-permutation schedule σ∗ with r1 ≤ r2 ≤ r3

and it is assumed that the best permutation schedule σ∗perm has the total profit

R(σ∗perm) = r2 + r3 (i.e., it processes the two most valuable jobs out of the three). In

addition, let R = r1 + r2 + r3 be the total profit of the three jobs.

Then, the largest ratio in solution quality between σ∗ and σ∗perm is reached when

the profits are chosen as r1 = r2 = r3 = R/3. In order to see this, consider

the optimization problem of maximizing the ratio
r1+r2+r3

r2+r3
and substitute r1 using

r1 = R− r2− r3. This leads to the ratio
R

r2+r3
which ismaximized if and only if r2 + r3

is minimized. Note that the function g(r1, r2, r3) = r2 + r3 is a linear function so that

the aforementioned values r1 = r2 = r3 = R/3 can be obtained in a straightforward

manner by applying the simplex algorithm to the linear program that results from

the constraints r1 ≤ r2 ≤ r3 and r1 + r2 + r3 = R, where the objective function

g(r1, r2, r3) = r2 + r3 is to be minimized.

Using the values r1 = r2 = r3 = R/3, the resulting profits are R(σ∗) = R and

R(σ∗perm) = (2/3)R which gives an example for the following ratio.

Theorem 5.1.5. There exists an instance I of the Two-Stage VRP with Profits and Buffers
with bufType ∈ {intermediateBuffer, spanningBuffer} with the solution quality ratio
R(σ∗, I)/R(σ∗perm, I) = 3/2 for the optimization problem Omax R, Cmax≤B.

Regarding upper bounds for the ratio, note that the problem Omax R, Cmax≤B is

different fromOmin Cmax, R≥Q in that extending the length Cmax(σ) of a given solution

σ can lead to σ violating the budget constraint Cmax(σ) ≤ B. However, it is possible

to modify a given solution σ to a new solution σ′ in a way such that the same nodes

v are visited, but not all of their corresponding jobs Jv are processed. This decreases

the quality of the solution, but makes it possible to construct certain permutation

schedules that are guaranteed to not violate the budget constraint.

Lemma 5.1.4. Let σ∗ be a non-permutation schedule for an instance of the Two-Stage
VRP with Profits and Buffers where the optimization problemOmax R, Cmax≤B is considered.

130

5.1.3 The Gap Between Permutation Schedules an Non-Permutation Schedules

Assume that ProcessedJobs(σ∗) > 2. Then, there exists a permutation schedule σP that
satisfies Cmax(σP) ≤ Cmax(σ∗) while processing the two jobs with the highest value in
ProcessedJobs(σ∗)

Proof. Without loss of generality, assume that ProcessedJobs(σ∗) = {J1, J2, . . . , J`}
with the profits rJ1 ≤ rJ2 ≤ · · · ≤ rJ` (but it is not required that the jobs are

processed in that order) and ` > 2. Next, consider a “truncated” version σ̃ of σ∗

where the machines M1, M2 traverse the same path as in σ∗ (i.e., P1(σ̃) = P1(σ∗)

and P2(σ̃) = P2(σ∗)), but only processes the two most valuable jobs J` and J`−1,

whereas for all other jobs in ProcessedJobs(σ∗) the machines wait at their respective

nodes so that the starting and completion times for J` and J`−1 as well as Cmax(σ̃)

are identical to the times in σ∗.

Since in the non-permutation schedule σ̃ exactly 2 jobs are processed, it is possible

to apply Lemma 5.1.2 which states that non-permutation schedules where two jobs

are processed can be reordered to permutation schedules without an increase in

length or a decrease in collected profit. Applying this lemma to σ̃ leads to a

permutation schedule σP
with the desired properties.

The shown lemma guarantees the existence of permutation schedules σP
that

collect the profits of the two most valuable jobs from a given non-permutation

schedule σ∗. This raises the question as to how the profits rJ1 , rJ2 , . . . , rJ` should be

chosen so that the solution quality ratio between σ∗ and σP
becomes as large as

possible. It can be shown that, similar to the example above with 3 jobs, the largest

ratio is obtained when the profit is equally distributed over all jobs J1, J2, . . . , J`.

Lemma 5.1.5. Assume that a non-permutation schedule σ∗ processes ` > 2 jobs and
collects the total profit R(σ∗) = R. Assume that a permutation schedule σP processes the
two jobs with the highest value in ProcessedJobs(σ∗). Then, the ratio R(σ∗)/R(σP) is
maximized when all jobs J ∈ ProcessedJobs(σ∗) have the profit rJ = R/`.

Proof. Without loss of generality, let ProcessedJobs(σ∗) = {J1, J2, . . . , J`} and let

r1, r2, . . . , r` be the profit values for these jobs with r1 ≤ r2 ≤ · · · ≤ r` so that

σP
processes the jobs J` and J`−1.

First, it can be shown, that the problemofmaximizing the ratio entails the solution

of a linear optimization problem, similar to the example presented abovewith 3 jobs.

131

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

In particular, note that r1 + r2 + · · ·+ r` = R so that the term to be maximized can

be expressed as

R(σ∗)
R(σP)

=
r1 + r2 + · · ·+ r`−1 + r`

r`−1 + r`
=

R
r`−1 + r`

.

Since the total profit R is not a variable, it follows that this term is maximized

when r`−1 + r` is minimized (or equivalently, if −(r`−1 + r`) is maximized, which

is required further below). For this reason, it is sufficient to consider the following

linear optimization problem that is obtained from the inequalities r1 ≤ r2 ≤ · · · ≤ r`
and the constraint r1 + r2 + · · ·+ r` = R:

Maximize f (r1, r2, . . . , r`−1, r`) = −r`−1 − r`

subject to r1, r2, . . . , r`−1, r` ≥ 0 and

(yi) ri − ri+1 ≤ 0 (i = 1, 2, . . . , `− 1)

(ys) r1 + r2 + · · ·+ r`−1 + r` = R,

where the terms “(y)” are used as names for the constraints. This optimization

problem contains ` variables, ` − 1 inequality constraints and one equality con-

straint.

Since the number of constraints is not fixed, the duality theorems for linear pro-
gramming (see, e.g., [25, 53]) are used to construct a solution r = (r1, r2, . . . , r`−1, r`)
for this linear program and establish its optimality. In particular, the weak duality

theorem is a statement about a given linear program (the “primal linear program”)

where an objective function f is to be maximized, and its dual linear program with

the dual objective function g that is to be minimized. It states that the objective

function values g(y) for all feasible values y of the dual program are upper bounds

for the objective function f of the primal linear program. Thus, if a solution r∗

for the primal program and a solution y∗ for the dual program are found with the

property f (r∗) = g(y∗), it follows that r∗ and y∗ are optimal solutions for their

respective linear programs. That this property holds for all linear programs, where

the primal and dual linear programs have feasible solutions, is known as the strong

duality theorem [25].

132

5.1.3 The Gap Between Permutation Schedules an Non-Permutation Schedules

In short, in order to show that a choice for the values r = (r1, r2, . . . , r`−1, r`)
obtains the maximum with respect to objective function f , it suffices to present a

feasible solution y for the dual program that obtains the same value. For this, the

dual program needs to be constructed first by applying the construction rules for

dual linear programs (which are described, e.g., in [25]). Note that constraints y
and variables r of the primal linear program become variables and constraints in

the dual program, respectively:

Minimize g(y1, y2, . . . , y`−1, ys) = R · ys

subject to y1, y2, . . . , y`−1 ≥ 0, ys ∈ R and

(r1) y1 + ys ≥ 0

(r2) − y1 + y2 + ys ≥ 0

(r3) − y2 + y3 + ys ≥ 0
.
.
.

(r`−2) − y`−3 + y`−2 + ys ≥ 0

(r`−1) − y`−2 + y`−1 + ys ≥ −1

(r`) − y`−1 + ys ≥ −1,

where the terms “(r)” are the “names” of constraints in the dual linear program.

This linear program has ` variables y1, y2, . . . , y`−1, ys and ` constraints..

Next, consider the solution r∗ for the primal linear program where all variables

ri have the value ri = R/` (for i ∈ {1, 2, . . . , `}). This solution obtains the objective

value f (r∗) = −2R/` and it is straightforward to check that this solution satisfies

all constraints.

For the dual linear program, consider the solution y∗ = (y1, y2, . . . , y`−2, y`−1, ys)

with the following values:

yi = (2/`) · i (for i ∈ {1, 2, . . . , `− 2})

y`−1 = (2/`) ·
(
`

2
− 1
)

ys = (2/`) · (−1)

133

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

It can be immediately seen that g(y∗) = f (r∗) = −2R/` so that it only remains

to check whether y∗ satisfies all constraints in order to show that r∗ is an optimal

solution. It is straightforward to see that constraint (r1) is satisfied: y1 + ys =

(2/`) · [1 − 1] = 0. For constraints (rk) with k ∈ {2, 3, . . . , ` − 2}, observe that

−yk−1 + yk + ys = (2/`) · [−(k− 1)+ k− 1] = (2/`) · 0 = 0, whichmeans that these

constraints are not violated. Regarding constraint (r`−1), note that y`−2 + y`−1 +

ys = (2/`) · [−(`− 2) + (`2 − 1)− 1] = (2/`) · [− `
2] = −1 so that this constraint is

also satisfied. Finally, constraint (r`)holds since−y`−1 + ys = (2/`) · [− `
2 + 1− 1] =

−1.
Thus, y∗ is a feasible solution for the dual linear program. Since it obtains the

same objective value as r∗ in the primal linear program, it follows from the strong

duality theorem that r∗ is an optimal solution for the primal linear program that

maximizes the ratio R/(r`−1 + r`).

It is interesting to note that in the proof above the ratio R(σ∗)/R(σP) can be

expressed as
R

r`−1+r`
whichmight indicate that the value of the ratio does not directly

depend on the smaller profit values r1, r2, . . . , r`−2, but only on r`−1, r` and R. In fact,

setting r` = R/` for the highest profit value determines the remaining profits as it

inductively follows from the constraints r1 ≤ r2 ≤ · · · ≤ r` and r1 + r2 + · · ·+ r` = R
that the other ri must also have the value ri = R/`.
In the case where the profit values are chosen as described in Lemma 5.1.5, the

permutation schedule σP
has the total profit R(σP) = 2R/` fromwhich one obtains

the ratio R(σ∗)/R(σP) = `/2, where ` is the number of jobs processed in the non-

permutation schedule σ. Since it is possible that ` = n, which means that all n jobs

are processed in σ, an upper bound for the ratio R(σ∗)/R(σP) is as follows.

Theorem5.1.6. For an instance I of the Two-StageVRPwith Profits andBuffers containing
n jobs with bufType ∈ {intermediateBuffer, spanningBuffer}, the solution quality ratio
R(σ∗, I)/R(σ∗perm, I) for the optimization problem Omax R, Cmax≤B satisfies

R(σ∗, I)
R(σ∗perm I)

≤ n
2

.

Since this upper bound (for the general case of the Two-StageVRPwith Profits and

Buffers) depends on the number of jobs n that can be processed in a given instance,

134

5.1.4 Remarks on Restricted Cases

it might be interesting to investigate whether tighter bounds can be established for

restricted cases of the Two-Stage VRP with Profits and Buffers.

5.1.4 Remarks on Restricted Cases

In this section, special cases of the Two-Stage VRP with Profits and Buffers are ana-

lyzed that contain restrictions similar to the Two-Machine Flow Shop with Buffers

and the Orienteering Problem, such as having zero processing times, having pro-

cessing times on one machine that dominate the processing times on the other

machine, or no travel times on the edges. A high-level overview of the restrictions

and special cases considered in this section, including the obtained results is later

given in Section 5.1.5.

Computational Complexity

The next statement is similar to Theorem 4.2.2 which states that the Orienteering

Problem isNP-complete. This lemma considers the Two-Stage VRPwith Profits and

Buffers with the same restrictions (i.e., no processing times on any of the machines,

no buffer restrictions, but non-zero travel times dij on the edges are allowed), but

states that the problem of minimizing themakespan is stillNP-complete evenwhen

the sub-problem of selecting a suitable subset of jobs is removed by requiring that

all jobs need to be processed.

Theorem5.1.7. For a given instance of the Two-Stage VRPwith Profits and Buffers without
buffer constraints, but the additional restriction that all processing times on both machines
are zero, the decision problem whether for a given number B there exists a feasible schedule
σ that processes all jobs and satisfies Cmax(σ) ≤ B is NP-complete.

Proof. This restricted case of the Two-Stage VRP with Profits and Buffers is in NP
since it can be verified in polynomial time whether a schedule σ satisfies Cmax(σ) ≤
B. Regarding NP-hardness, it is not hard to see that this problem is very similar

to the decision variant of the Traveling Salesperson Problem (TSP), which asks

whether in a directed graph with edge weights a Hamiltonian path
1
exists where

1
Another common formulation of the TSP uses Hamiltonian cycles where the start node and end

node needs to be equal. However, removing this condition and permitting paths which are not

cycles does not change the complexity of the TSP [148].

135

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

the sum of traversed edge weights (the “total length” of that path) does not exceed

a value L. This decision problem is known to be NP-complete [59].

A reduction from a TSP instance ITSP to an instance IVRP′ of the restricted case is

straightforward to do by using the same graphs with the same edgeweights, setting

all jobs on all nodes to have zero processing times and setting B = L. It is not hard
to see that if a solution for ITSP exists where the total length does not exceed L,
then a schedule σ exists that satisfies Cmax(σ) ≤ B. For the inverse direction, note

that since the processing times on both machines are all zero, any non-permutation

schedule σ can be converted to a permutation schedule σP
without increasing Cmax

(for example, by setting π(σP) = π2(σ) and S1
J (σ

P) = S2
J (σ

P) = S2
J (σ) for all

J ∈ ProcessedJobs(σ) so that M1 finishes the last job at the same time as M2). The

sequence of traversed nodes in σP
can then be used to construct a path for ITSP

where the total length does not exceed L.

The following theorem and its proof shows that another restricted variant of the

Two-Stage VRP with Profits and Buffers also encompasses aspects of the Knapsack

Problem, another well-known NP-hard problem, since the latter problem can be

reduced to the former problem.

Theorem5.1.8. For a given instance of the Two-Stage VRPwith Profits and Buffers without
buffer constraints, without travel times dij on edges, but with the additional restriction that
c = 0, the decision problem whether for two given numbers B ≥ 0, Q ≥ 0 there exists a
feasible schedule σ that satisfies Cmax(σ) ≤ B and R(σ) ≥ Q is NP-complete.

Proof. This restricted version of the Two-Stage VRPwith Profits and Buffers is inNP
since it can be verified in polynomial timewhether a solution σ satisfiesCmax(σ) ≤ B
and R(σ) ≥ Q. In order to show NP-hardness, a reduction from the Knapsack

problem is used. The decision variant (which is known to be NP-complete [55])

asks whether for a set of n items x1, x2, . . . , xn that each have weights w(xi) ≥ 0
and scores s(xi) ≥ 0 (i ∈ {1, 2, . . . , n}), and two given numbers W, Y there exists a

subset S of these items such that ∑x∈S w(xi) ≤W and ∑x∈S ≥ Y.

Given an instance IKP of theKnapsack problem, an instance IVRP′ of the restricted

VRP case can be constructed using a complete graph with n nodes v1, v2, . . . , vn and

n corresponding jobs J1, J2, . . . , Jn (that correspond to the n items xi) where the

profit values are rJi = s(xi) and the processing times on M1 are aJi = w(xi) for

136

5.1.4 Remarks on Restricted Cases

i ∈ {1, 2, . . . , n}. In addition, the M2 processing times are bJi = c = 0 for all jobs

and all edges eij have travel time dij = 0. Furthermore, the values B and Q for the

budget constraint andminimum score constraint, respectively, are chosen as B = W
and Q = Y.

It is not hard to see that for a solution σ of IVRP′ (where all jobs are processed

as early as possible), its makespan Cmax(σ) and total profit R(σ) only depends on

ProcessedJobs(σ) and not the order in which the jobs are processed. For this reason,

it is straightforward to transform a solution S for IKP that satisfies ∑x∈S w(xi) ≤W
and ∑x∈S ≥ Y into a solution σ of IVRP′ that satisfies Cmax(σ) ≤ B and R(σ) ≥ Q
(by constructing a permutation schedule where all jobs are processed as early as

possible in any order).

For the inverse direction, assume that a schedule σ exists with Cmax(σ) ≤ B and

R(σ) ≥ Q. A lower bound forCmax(σ) isCmax(σ) ≥ ∑Ji
aJ with Ji ∈ ProcessedJobs(σ).

Since it is assumed that Cmax(σ) ≤ B, it follows that ∑Ji
aJi ≤ B where the sum is

taken over J ∈ ProcessedJobs(σ). Regarding IKP, it is straightforward to construct a

subset S based on ProcessedJobs(σ) (by choosing the items xi corresponding to the

jobs Ji). Due to ∑Ji
aJi ≤ B and B = W, subset S satisfies ∑x∈S w(xi) = ∑Ji

aJi ≤ W.

Regarding scores, S also satisfies ∑x∈S ≥ Y since R(σ) ≥ Q and Q = Y. This shows

that S is a solution for IKP.

When the Two-Stage VRP with Profits and Buffers is further restricted, a special

case can be obtained where the same decision problem is efficiently solvable. In

fact, the two optimization problemsOmin Cmax, R≥Q andOmax R, Cmax≤B corresponding

to that decision problem can be efficiently solved fromwhich it directly follows that

the decision problem is in P.

Theorem 5.1.9. Consider an instance of the Two-Stage VRP with Profits and Buffers with
bufType ∈ {intermediateBuffer, spanningBuffer} and bufUsage ∈ {sJ = aJ , sJ = 1}
where aJ = 0 holds for all jobs J and dij = 0 holds for all edges eij in the graph. Then,
for both optimization problems Omin Cmax, R≥Q and Omax R, Cmax≤B a feasible permutation
schedule that is optimal can be constructed in polynomial time.

Proof. Due to the restrictions aJ = 0 for all jobs J and dij for all edges eij, for any

subset of jobs J1 ⊆ J it is possible to construct a permutation schedule σP
that

137

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

satisfies Cmax(σP) = c · |J1| (by processing all jobs in J1 as early as possible in any

order). This is a trivial lower bound for any schedule σ with ProcessedJobs(σ) = J1,

so it is not possible for non-permutation schedules to have a shorter makespan than

c · |J1|.
For the optimization problemOmin Cmax, R≥Q (minimizingmakespanwhile obtain-

ing a minimum profit Q), an optimal solution can be constructed by starting with

J1 = ∅ and repeatedly adding the job with highest profit to J1 until the mini-

mum score constraint is satisfied, i.e., ∑J∈J1
rJ ≥ Q. Constructing a permutation

schedule σP
as described above leads to a schedule that minimizes the makespan

Cmax(σP) = c · |J1| since the number of jobs in J1 is minimal.

For the optimization problem Omax R, Cmax≤B (maximize profit without exceeding

the budget B), an optimal solution can be constructed as follows. Note that `1 =

bB/cc is the highest number of jobs that can be in a schedule σ without violating

the budget constraint, since for any schedule σ that processes ` jobs a lower bound

for the makespan is Cmax(σ) ≥ ` · c. Choosing the `1 jobs with the highest profit

and constructing a permutation schedule σP
as described above using these jobs

leads to a solution that satisfies Cmax(σP) = `1 · c ≤ B (the lower bound for any

schedule with `1 jobs) while maximizing the total profit R(σP), since any change to

ProcessedJobs(σP)would lead to a new solution σ′ that violates the budget constraint

or has a profit R(σ′) ≤ R(σP).

The construction of these permutation schedules for both optimization problems

can be done in polynomial time. It remains to check for both cases whether the

buffer constraint is violated at any time. If an intermediate buffer is used, no buffer

space is occupied at any time. In the case of a spanning buffer, at most one buffer

unit is used for all cases of bufUsage ∈ {sJ = aJ , sJ = 1} which is a trivial lower

bound for the buffer capacity Ω (or else it would not be possible to process any job

in the case bufType = spanningBuffer).

The algorithm described in the proof of Theorem 5.1.9 can be directly used to

efficiently solve the decision problem (for the considered special case) whether for

two given numbers B ≥ 0, Q ≥ 0 there exists a feasible schedule σ that satisfies

Cmax(σ) ≤ B and R(σ) ≥ Q. In particular, it suffices to calculate `1 = bB/cc,
construct a permutation schedule σP

with makespan R(σP) = `1 · c that contains

the `1 jobs with the highest profit and check whether R(σP) ≥ Q is satisfied.

138

5.1.4 Remarks on Restricted Cases

The following lemma which describes the efficient solvability of a special case

that is even more restricted, is later used in the tabular overview in Section 5.1.5.

Lemma 5.1.6. Consider an instance of the Two-Stage VRP with Profits and Buffers where
c = 0, aJ = 0 holds for all jobs J and dij = 0 holds for all edges eij in the graph. Then, a
feasible permutation schedule can be constructed in polynomial time that is optimal for both
optimization problems Omin Cmax, R≥Q and Omax R, Cmax≤B.

Proof. Due to the restrictions, any permutation schedule σP
that processes all jobs

as early as possible has the makespan Cmax(σP) = 0, so it is possible to process all

available jobs to obtain a solution σ∗ that maximizes the total profit while having

zero makespan. This schedule can be constructed in polynomial time.

Existence of Permutation Schedules in the Set of Optimal Solutions

Recall Lemma 3.2.2 which states for Two-Machine Flow Shops with Buffers that

any non-permutation schedule can be reordered to a permutation schedule without

increase in makespan if the constant c is smaller than all processing times on M1.

The following results generalize this statement to the Two-Stage VRP with Profits

and Buffers and show that this property holds even if non-zero travel times dij for

the edges eij are allowed.

Lemma 5.1.7. Let σ be a non-permutation schedule for an instance of the Two-Stage VRP
with Profits and Buffers with the additional restriction that aJ ≥ c holds for all jobs J in
the instance. Then, there exists a permutation schedule σP satisfying ProcessedJobs(σP) =

ProcessedJobs(σ), R(σP) = R(σ) and Cmax(σP) ≤ Cmax(σ).

Proof. Assume that aJ ≥ c holds for all jobs J. For a given non-permutation schedule

σ, a permutation schedule σP
is constructed as follows. Set π(σP) = π1(σ) so that

both machines in σP
process the jobs in the same order as M1 in σ. Without loss

of generality, it is assumed that ` out of the n jobs in the instance are processed

in σ (i.e., ProcessedJobs(σ) = {J1, J2, . . . , J`}) and π(σP) = π1(σ) = (J1, J2, . . . , J`).
Next, schedule the jobs on M1 using the rule S1

Ji
(σP) = S1

Ji
(σ) for all Ji (i.e., the M1

starting times are the same as in σ). For M2, all jobs Ji are schedules using the rule

S2
Ji
(σP) = C1

Ji
(σP).

It can be seen that ProcessedJobs(σP) = ProcessedJobs(σ) and R(σP) = R(σ) hold.
The resulting schedule σP

is a permutation schedule that satisfies Cmax(σP) ≤

139

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

Cmax(σ), since both σ and σP
need toprocess the job J` (the last job inπ1(σ) = π(σP))

on M2, where J` is also the last job on M2 in σP
.

Next, it needs to be shown that σP
is a valid schedule, i.e., that it is possible for

M2 to start all jobs at the specified times. In particular, M2 must have finished the

previous job and it must have reached the node containing the job to be processed.

Formally, S2
Ji+1

(σP) ≥ C2
Ji
(σP) + di,i+1 needs to hold (for 1 ≤ i ≤ `− 1), as well as

S2
J1
(σP) ≥ d0,1. (Note that it is not necessary to check whether M2 processes jobs

that are not finished yet on M1 due to the definition of σP
).

This can be shown by induction. For the starting time S2
J1
(σ) in σ, themachine M1

must have already traversed the edge e0,1 (from the depot to the node that contains

J1) and processed J1 at that time, i.e.. S2
J1
(σ) ≥ aJ1 + d0,1 ≥ d0,1. Thus, it is possible

for M2 to process J1 at time S2
J1
(σP) = C1

J1
(σP).

For the induction step, assume that Ji can be processed by M2 in σP
at the specified

time S2
Ji
(σP) = C1

Ji
(σ).Then, it is also possible for M2 to process the subsequent job

Ji+1, since S2
Ji+1

(σP) = C1
Ji+1

(σP) ≥ C1
J1
(σP) + aJi+1 + di,i+1 = S2

Ji
(σP) + aJi+1 + di,i+1 ≥

S2
Ji
(σP) + c + di,i+1 = C2

Ji
(σP) + di,i+1, or in short, S2

Ji+1
(σP) ≥ C2

Ji
(σP) + di,i+1. By

induction, the permutation Schedule σP
is valid regarding the starting times.

It remains to check whether σP
is feasible with respect to the buffer constraints.

In the intermediate buffer model, the buffer is not used. Regarding the case with

spanning buffer, note that at most 2 jobs Ji, Ji+1 can enter the buffer in σP
at any time

due to the definition of σP
. Assume that these two jobs exceed the buffer capacity,

i.e., sJi + sJi+1 > Ω. Then it can be shown that in the original schedule σ the time

interval [C1
Ji
(σ), S1

Ji+1
(σ)] spans at least c time units, which is sufficiently large so

that Ji and Ji+1 cannot both be in the buffer in the constructed schedule σP
.

To see this, assume that the interval [C1
Ji
(σ), S1

Ji+1
(σ)] in σ spans less than c time

units. In σ, the job Ji must have beenprocessed on M2 at some time before S1
Ji+1

(σ), or

else both jobs would enter the buffer. However, all possibilities for S2
Ji
(σ) imply for

the spanning buffer model that Ji and Ji+1 are both in the buffer, which contradicts

the assumption that they exceed the buffer capacity. Thus, when two jobs Ji, Ji+1

cannot be in the buffer at the same time, they are not in the buffer at the same time

in the constructed permutation schedule σP
.

However, an interesting asymmetry arises when the opposite case is considered

where all jobs satisfy aJ ≤ c. For the Two-Machine Flow Shop with Buffers, it

140

5.1.4 Remarks on Restricted Cases

was shown that any non-permutation schedule can be reordered to a permutation

schedulewithout increasing itsmakespan (see Lemma 3.2.1) for both caseswhen c is
smaller or larger than all processing times aJ on M1, but for the Two-Stage VRPwith

Profits and Buffers this only holds for the case when aJ ≥ c holds for all jobs J. For
the case aJ ≤ c, the example with 3 jobs given in the proof of Theorem 5.1.3 shows

that even in this case that there exist non-permutation schedules with makespans

that cannot be reached by any permutation schedule. Due to this, the same “gaps”

in solution quality between non-permutation schedules and permutation schedules

that were described in the previous section can potentially arise for this special case.

However, if the inequality aJ ≤ c is further strengthened by considering the

extreme case where aJ = 0 holds for all jobs, the existence of optimal permutation

schedules can be guaranteed due to the following lemma.

Lemma 5.1.8. Let σ be a non-permutation schedule for an instance of the Two-Stage VRP
with Profits and Buffers with the additional restriction that aJ = 0 holds for all jobs J in
the instance. Then, there exists a permutation schedule σP satisfying ProcessedJobs(σP) =

ProcessedJobs(σ), R(σP) = R(σ) and Cmax(σP) ≤ Cmax(σ).

Proof. Similar to the proof of Lemma5.1.7, but for a givennon-permutation schedule

σ that processes ` jobs the permutation π2(σ) is used for the permutation schedule

σP
, i.e., π(σP) = π2(σ). Without loss of generality, it is assumed that π(σP) =

(J1, J2, . . . , J`). All starting times in σP
on M2 are set to be the same as in σ (i.e.,

S2
J (σ

P) = S2
J (σ) for all J ∈ ProcessedJobs(σ)) and for M1 all jobs are scheduled

using the rule S1
J (σ

P) = S2
J (σ

P). By definition, σP
satisfies ProcessedJobs(σP) =

ProcessedJobs(σ), R(σP) = R(σ) and Cmax(σP) = Cmax(σ), but it needs to be shown

that it is possible for M1 to process all of the jobs at the specified times and that the

buffer constraint is not violated at any time.

The former property formally means that S1
Ji+1
≥ C1

Ji
+ di,i+1 needs to hold for 1 ≤

i ≤ `− 1 and S1
J1
≥ d0,1 needs to hold for the first job J1. Note that it is not necessary

to check whether M2 processes jobs that are not finished yet on M1 due to the

definition of σP
and since aJ = 0 holds for all jobs J. The aforementioned inequality

can be shown by induction. At the starting time S2
J1
(σ) of the first job on M2 in σ,

machine M2 must have already traveled to the node containing J1, i.e.. S2
J1
(σ) ≥ d0,1.

Since the start time for J1 in σP
was chosen as S1

J1
(σP) = S2

J1
(σP) = S2

J1
(σ), it follows

that S1
J1
(σP) ≥ d0,1 holds which means that it is possible for M1 to process J1 at the

141

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

time S1
J1
(σP). Since aJ = 0, it holds that C1

J1
(σP) = S1

J1
(σP) + aJ = S1

J1
(σP) = S2

J1
(σP).

For the induction step, assume that Ji can be processed by M1 in σP
at the time

S1
Ji
(σP) = S2

Ji
(σ), i.e., it holds that S2

Ji
(σP) = C1

Ji
(σP). Using this equation shows that

S1
Ji+1

(σP) = S2
Ji+1

(σP) ≥ S2
Ji
(σP) + c + di,i+1 = C1

Ji
(σP) + di,i+1 + c ≥ C1

Ji
(σP) + di,i+1,

so it is possible for M1 to process Ji+1. By induction, the schedule σP
is valid

regarding its starting times.

In addition, the buffer constraint is not violated at any time: If sJ = aJ holds for

all jobs J, no job takes up any buffer space. If sJ = 1, the buffer is not used in the case

bufType = intermediateBuffer, whereas for bufType = spanningBuffer at most one job

can be in the buffer at any time, so that at most one buffer unit is used. The buffer

capacity Ω can be assumed to be at least Ω ≥ 1, or else it is not possible for any job

to be processed without violating the buffer constraint.

The Gap Between Permutation Schedules an Non-Permutation Schedules

For the Orienteering Problem, which is a restricted case of the Two-Stage VRP with

Profits and Buffers where all processing times are zero, it was shown in Section 4.2

that any non-permutation schedule can be converted into a permutation schedule

without increasing its length (see Lemma 4.2.1). From this it directly follows that

the set of optimal schedules always contains a permutation schedule for the op-

timization problem Omax R, Cmax≤B (see Corollary 4.2.1), but also for Omin Cmax, R≥Q

which originally is not part of the Orienteering Problem.

For the Two-Machine Flow Shop with Buffers (the restricted case where all edges

have travel time dij = 0) on the other hand, a “gap” in solution quality between per-

mutation schedules and non-permutation schedules was found when sJ = aJ holds

for all jobs J (see Section 3.2.3). However, since the Two-Machine Flow Shop with

Buffers deals with the problem of minimizing makespan (and thus, with the opti-

mizationproblemOmin Cmax, R≥Q), the other optimizationproblemOmax R, Cmax≤B was

not considered in that section. But in the context of the Two-Stage VRP with Profits

and Buffers, the question of how large the solution quality gap is for Omax R, Cmax≤B

naturally arises for the restricted case with zero travel times on all edges.

In the following, let R(σ∗, I) be the total collected profit of a schedule σ∗ that

is optimal on instance I with respect to Omax R, Cmax≤B. Let R(σ∗perm, I) be the total

profit of a “best” permutation schedule σ∗perm, i.e., a permutation schedule that

142

5.1.4 Remarks on Restricted Cases

Figure 5.1: Example instance for Lemma 5.1.9. The left side shows the jobs of that

instance, their processing times (aJi and bJi) and how much buffer space

sJi they occupy. In addition, the buffer capacity Ω is shown at the bottom

left. The right side shows an example for a non-permutation schedule

σ∗ that minimizes the makespan Cmax.

Job aJi bJi sJi

J1 3 6 3

J2 2 6 2

J3 4 6 4

J4 12 6 12

Ω = 2

0 5 10 15 20 25

Buffer

M2

M1

Time

J2

J1 J2 J3 J4

J1 J3 J2 J4

maximizes the total profit out of all permutation schedules on an instance I . It

is assumed that sJ = aJ holds for all jobs in the following. In order to investigate

the “gap” for Omax R, Cmax≤B, two straightforward statements are given first that

demonstrate concrete values for the solution quality ratio R(σ∗, I)/R(σ∗perm, I).

Lemma 5.1.9. There exists an instance I of the Two-Stage VRP with Profits and Buffers
where dij = 0 holds for all edges eij, sJ = aJ holds for all jobs J and bufType =

intermediateBuffer such that
R(σ∗, I)

R(σ∗perm, I) =
4
3

.

Proof. Recall Theorem 3.2.5 which states that for every n > 3 with n ∈ N there

exists an instance where the set of optimal schedules (with respect to the makespan

minimization problem) that contains no permutation schedule. Take one such

instance I for n = 4, for example the one shown in Figure 5.1 taken from [57] (for a

proof on why the set of makespan-minimizing schedules contains no permutation

schedule, see [57]). The travel times dij are assumed to be zero for all edges.

For this instance, there exists an optimal (non-permutation) schedule σ∗ with

makespan Cmax(σ∗) that cannot be reached by any permutation schedule. Re-

143

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

garding the example in Figure 5.1, Cmax(σ∗) = 27. For the optimization problem

Omax R, Cmax≤B, the budget B for the budget constraint Cmax(σ) ≤ B can be chosen as

B = Cmax(σ∗) so that it is not possible for a permutation schedule σP
to process all 4

jobs of the instance without violating the budget constraints. Thus, a permutation

schedule that does not violate that constraint can only process 3 jobs at most. Note

that the existence of permutation schedules that process 3 jobs without violating

the budget constraint is guaranteed, since there trivially exists a (non-permutation)

schedule that processes 3 jobs and any non-permutation schedule with 3 jobs can be

converted to a permutation schedule without increasing its length due to Theorem

3.2.5. By choosing the job profits as rJ = 1 for all jobs, it immediately follows for

this instance that the solution quality ratio is R(σ∗, I)/R(σ∗perm, I) = 4/3.

The same idea can be applied to the casewith the same restrictions and bufType =

spanningBuffer. In the case with spanning buffer, the existence of permutation

schedules in the set of makespan-minimizing schedules is guaranteed for instances

with up to n = 6 jobs, whereas for every n > 6 there exists an instance where the

set of schedules that minimize makespan contains no permutation schedule (see

Theorem 3.2.4). The same idea used in the proof of Lemma 5.1.9 can be applied to

this case to straightforwardly show the following statement.

Lemma 5.1.10. There exists an instance I of the Two-Stage VRP with Profits and Buffers
where dij = 0 holds for all edges eij, sJ = aJ holds for all jobs J and bufType =

spanningBuffer such that
R(σ∗, I)

R(σ∗perm, I) =
7
6

.

After presenting concrete values that can be reached for the solution quality ratio

R(σ∗, I)/R(σ∗perm, I), it is investigated in the following how large this ratio (and

thus, the “gap” between non-permutation schedules and permutation schedules)

can potentially be. For this, a lemma is stated first that provides additional infor-

mation for analyzing the gap. This property can be shown due to the restriction

dij = 0 for all edges eij.

Lemma 5.1.11. Let σ be a schedule for an instance of the Two-Stage VRP with Profits
and Buffers where all edges have travel time dij = 0 and all jobs J satisfy sJ = aJ . Let
` = |ProcessedJobs(σ)| and consider the optimization problem Omax R, Cmax≤B with budget

144

5.1.4 Remarks on Restricted Cases

B. Then, there exists a permutation schedule σP satisfying Cmax(σP) ≤ B where the total
profit R(σP) is not less than the sum of the profits of the b`/2c jobs in ProcessedJobs(σ)
with the lowest profit.

Proof. Without loss of generality, let ProcessedJobs(σ) = {J1, J2, . . . , J`}, and denote

the profit values corresponding to these jobs as rJ1 , rJ2 , . . . , rJ` with rJ1 ≤ rJ1 ≤ · · · ≤
rJ` . A permutation schedule σP

with the desired properties is constructed as follows.

Define `1 = b`/2c and take the `1 jobs with the shortest processing time on M1.

These jobs are processed in σP
such that the processing times between different jobs

do not overlap (similar to the trivial permutation schedule constructed in the proof

of Theorem 3.2.8). Formally, S1
J1
(σP) = 0 and S2

J1
(σP) = aJ1 for the first job J1 as well

as S1
Ji
(σP) = C2

Ji−1
(σP) and S2

Ji
(σP) = S1

Ji
(σP) + aJi = C1

Ji
(σP) for i = 2, 3, . . . , `1.

Since dij = 0 for all edges eij, it is not hard to see that σP
is a valid schedule (i.e., it is

possible for M1 and M2 to process all jobs at the specified times). Furthermore, the

buffer constraint is not violated at any time: In the case bufType = intermediateBuffer,
the buffer is not used at any time. If bufType = spanningBuffer, not more than

maxJ∈ProcessedJobs(σ) sJ units of buffer are used, which is a trivial lower bound for the

buffer capacity Ω (otherwise the original schedule σ would also violate the buffer

constraint). Thus, σP
is also feasible with respect to the buffer constraint. Regarding

the total profit R(σP), note that `1 = b`/2c jobs are processed in σP
so that the sum

∑J∈ProcessedJobs(σP) rJ of their profits cannot be smaller than rJ1 + rJ2 + · · · + r`1 (the

sum of the `1 lowest profit values).

It remains to show that σP
does not violate the buffer constraint Cmax(σP) ≤ B.

To see this, let A(σ) = ∑J∈ProcessedJobs(σ) aJ and A(σP) = ∑J∈ProcessedJobs(σP) aJ . Note

that σP
processes the `1 = b`/2c jobs with the shortest processing time on M1 so

that A(σP) ≤ 1
2 A(σ) holds. Due to this, Cmax(σP) = A(σP) + `1c ≤ 1

2 A(σ) + 1
2`c.

A trivial lower bound for the makespan of the original schedule σ is Cmax(σ) ≥
max{A(σ), `c}. In addition, Cmax(σ) ≤ B needs to hold, or else σ would violate

the budget constraint. From these inequalities, it follows that

Cmax(σ
P) ≤ 1

2
A(σ) +

1
2
`c ≤ 1

2
max{A(σ), `c}+ 1

2
max{A(σ), `c}

= max{A(σ), `c} ≤ Cmax(σ) ≤ B.

145

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

In order to consider both cases bufType = intermediateBuffer and bufType =

spanningBuffer at the same time, a variable k0 is introduced in the following, which,

for an instance of the Two-Stage VRP with Profits and Buffers where all edges

have travel time dij = 0 (similar to a Two-Machine Flow Shop with Buffers), de-

scribes the number of jobs in an instance until which the existence of permuta-

tion schedules in the set of makespan-minimizing schedules is guaranteed. In

other words, k0 is the highest number where for any non-permutation schedule

σ with |ProcessedJobs(σ)| ≤ k0 there exists a permutation schedule σP
that pro-

cesses the same jobs without taking more time, i.e., Cmax(σP) ≤ Cmax(σ). For

the considered case of the Two-Stage VRP with Profits and Buffers and the con-

sidered buffer types bufType ∈ {intermediateBuffer, spanningBuffer}, it can be said

that k0 = 3 if bufType = intermediateBuffer (see Theorem 3.2.5) and k0 = 6 if

bufType = spanningBuffer (see Theorem 3.2.4) .

The following lemma provides an additional property that is later used when

analyzing the solution quality gap between non-permutation schedules and per-

mutation schedules.

Lemma 5.1.12. Let I be an instance of the Two-Stage VRP with Profits and Buffers where
(i) dij = 0 holds for all edges eij, (ii) sJ = aJ holds for all jobs and (iii) all non-permutation
schedules processing not more than k0 jobs can be transformed into feasible permutation
schedules without increasing their length. Let σ be a schedule for the optimization problem
Omax R, Cmax≤B with budget B that processes ` jobs. Then, there exists a permutation schedule
σP satisfying Cmax(σP) ≤ B where its total profit R(σP) is not smaller than the sum of the
k0 highest profit values of the jobs in ProcessedJobs(σ).

Proof. Without loss of generality, it is assumed thatProcessedJobs(σ) = {J1, J2, . . . , J`}
and that rJ1 , rJ2 , . . . , rJ` are the profit values of the jobs J1, J2, . . . , J` with rJ1 ≤ rJ2 ≤
· · · ≤ rJ` . Define Jk0 = {J`, J`−1, J`−2, . . . , J`−(k0−1)} as the set that contains the k0

jobs with the highest profit. A permutation schedule σP
with the desired properties

can be constructed from σ as follows. First, construct a temporary schedule σ̃ by

removing all jobs from σ except the jobs in Jk0 and use the same starting times as

in σ for the remaining jobs: S1
J (σ̃) = S1

J (σ) and S2
J (σ̃) = S2

J (σ) for all J ∈ Jk0 .

It is not possible for σ̃ to violate the buffer constraint or budget constraint. Since σ̃

processes k0 jobs, it is possible to reorder σ̃ into a permutation schedule σP
without

increasing the length of the schedule. Thus, σP
cannot violate any constraints either

146

5.1.4 Remarks on Restricted Cases

and it processes the k0 jobs with the highest profit contained in ProcessedJobs(σ).

From Lemma 5.1.11 and Lemma 5.1.12, it follows that the “best” permutation

schedule σ∗perm for the optimization problem Omax R, Cmax≤B (i.e., the permutation

schedule that maximizes the profit from the set of all permutation schedules that

do not violate the budget constraint) cannot obtain a profit that is less than the

values established in the lemmata above. This information is now used to establish

an upper bound for the solution quality ratio R(σ∗)/R(σ∗perm).

Lemma 5.1.13. Let I be an instance of the Two-Stage VRP with Profits and Buffers
where (i) dij = 0 holds for all edges eij, (ii) sJ = aJ holds for all jobs J and (iii) all non-
permutation schedules processing not more than k0 jobs can be transformed into feasible
permutation schedules without increasing their length. Let σ∗ be an optimal schedule for the
optimization problem Omax R, Cmax≤B with budget B. Let ` = |ProcessedJobs(σ∗)| and let
σ∗perm be a permutation schedule that maximizes the score out of all permutation schedules
σP that satisfy Cmax(σP) ≤ B. Then, the solution quality ratio R(σ∗, I)/R(σ∗perm, I) is
bounded from above by

R(σ∗, I)
R(σ∗perm, I) ≤ 1 +

dn/2e
k0

,

if k0 < d`/2e holds. If k0 ≥ d`/2e, the solution quality ratio is bounded from above by 2.

Proof. Without loss of generality, it is assumed for an optimal schedule σ∗ that

ProcessedJobs(σ∗) = {J1, J2, . . . , J`}. Let R = R(σ∗, I) > 0 be the total profit collected
in σ∗ on an instance Iwith thepropertiesmentioned above and let r1, r2, . . . , r` be the
profit values of the jobs J1, J2, . . . , J` with r1 ≤ r2 ≤ · · · ≤ r`. Due to Lemma 5.1.11

and Lemma 5.1.12, a “best” permutation schedule σ∗perm must obtain a value that is

not less than R∗ = r1 + r2 + · · ·+ rb`/2c or R∗ = r` + r`−1 + r`−2 + · · ·+ r`−(k0−1).

In short, R(σ∗perm, I) ≥ max{R∗, R∗}, so that the solution quality ratio is bounded

by

R(σ∗, I)
R(σ∗perm, I) ≤

R
max{R∗, R∗}

Since the total profit of an optimal schedule σ∗ does not change, it can be assumed

that R is constant, so theupper bound for that ratio ismaximizedwhenmax{R∗, R∗}
is minimized.

In the following, it is investigated how the total profit R should be distributed

on r1, r2, . . . , r` so that max{R∗, R∗} is minimized. This problem can be modeled

147

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

as a linear program with decision variables r1, r2, . . . , r`. Note that the following

linear program is expressed as a maximization problem with the goal of maximiz-

ing −max{R∗, R∗} and that this term can be expressed as a linear function by

introducing a temporary variable Z and adding the constraints R∗ ≤ Z and R∗ ≤ Z:

Maximize f (r1, r2, . . . , rn, Z) = −Z

with r1, r2, . . . , rn, Z ≥ 0 subject to the constraints

(yi) ri − ri+1 ≤ 0 (i = 1, 2, . . . , `− 1)

(yo) r`−(k0−1) + · · ·+ r`−1 + r` ≤ Z

(yu) r1 + r2 + · · ·+ rb`/2c ≤ Z

(ys) r1 + r2 + · · ·+ r` = R,

where the terms “(y)” are used as names for the constraints. This optimization

problem contains `+ 1 variables, (`− 1) + 2 inequality constraints and one equality

constraint.

Recall the proof of Theorem 5.1.6 where the duality theorems for linear program-

ming were used in the following to construct a solution r = (r1, r2, . . . , r`−1, r`) and
establish its optimality. In short, these theorems state that it suffices to present a

feasible solution y for the dual linear program with objective function g that satis-

fies g(y) = f (r) in order to show that r is an optimal solution that maximizes f .
This approach is also used in the following, but the verification that y is a feasible

solutionwill require further analysis which is done later in the proof. First, the dual

linear program for the linear program given above (the “primal linear program”)

is presented. Note that constraints y and variables r of the primal linear program

become variables and constraints in the dual program, respectively (see, e.g., [25,

53] for details on how to construct dual linear programs):

Minimize g(y1, y2, . . . , y`−1, yo, yu, ys) = R · ys

148

5.1.4 Remarks on Restricted Cases

with y1, y2, . . . , y`, yo, yu ≥ 0 and ys ∈ R subject to the constraints

(r1) y1 + yu + ys ≥ 0

(r2) − y1 + y2 + yu + ys ≥ 0

(r3) − y2 + y3 + yu + ys ≥ 0

. . .

(rb`/2c) − yb`/2c−1 + yb`/2c + yu + ys ≥ 0

(rb`/2c+1) − yb`/2c + yb`/2c+1 + ys ≥ 0

(rb`/2c+2) − yb`/2c+1 + yb`/2c+2 + ys ≥ 0

. . .

(r`−k0) − y`−k0−1 + y`−k0 + ys ≥ 0

(r`−(k0−1)) − y`−k0 + y`−k0+1 + yo + ys ≥ 0

(r`−(k0−2)) − y`−k0+1 + y`−k0+2 + yo + ys ≥ 0

. . .

(r`−1) − y`−2 + y`−1 + yo + ys ≥ 0

(r`) − y`−1 + yo + ys ≥ 0

(Z) − yo − yu ≥ −1,

where the terms in parentheses on the left are the names for the constraints of the

dual linear program. The dual linear program has (`− 1) + 3 variables and `+ 1
constraints.

In the following, the two cases k0 < d`/2e and k0 ≥ d`/2e named in the statement

of the theorem are analyzed separately.

First case: k0 < d`/2e. We partition the index set I = {1, 2, . . . , `} into three

sets I1 = {1, 2, . . . , b`/2c}, I2 = {b`/2c+ 1, b`/2c+ 2, . . . , `− k0}, I3 = {`− (k0 −
1), ` − (k0 − 2), . . . , ` − 1, `}. The choice of these sets is based on the idea that

∑i∈I1
ri = R∗ and ∑i∈I3

ri = R∗, whereas I2 contains the remaining indices.

Consider the following solution r∗ = (r1, r2, . . . , r`): For i < b`/2c − (k0 − 1), all
ri are set to ri = 0 and the total profit R is equally distributed over the remaining

profit values. By doing so, only the k0 most valuable profits ri for i ∈ I1 have a profit

ri 6= 0. Since I3 contains k0 elements, it follows that the number of non-zero profits

149

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

ri in i ∈ I3 is also k0 and that

∑
i∈I1

ri = ∑
i∈I3

ri.

Due to the assumption k0 < d`/2e, it is guaranteed that there exists at least one

profit value ri, i ∈ I1 with ri = 0.

Let q be the total number of profit values ri (i ∈ I) in the solution r∗ that have a

value ri 6= 0. In order to determine q, two cases are considered. If ` is even, then

q = k0 + (`− k0)− (b`/2c+ 1) + 1︸ ︷︷ ︸
=|I2|

+k0

= `/2 + k0

and it can be seen that |I2| = `/2− k0.

If ` is an odd number, then q = (` + 1)/2 + k0 (to see this, recall that for i <

b`/2c − (k0 − 1) all ri are set to ri = 0, so all ri for larger i have a value ri 6= 0) and
|I2| = `/2− k0 + 1/2. Both cases can be summarized as

q = d`/2e+ k0

and |I2| = d`/2e − k0. It follows that the ri with ri 6= 0 have the value ri = R/q.

For the constructed solution r∗ (of the primal linear program), it follows that

R∗ = R∗ = k0 · R/q, so that the temporary variable Z introduced above can be set

as Z = k0R/q fromwhich f (r∗, Z) = −k0R/q follows. It is straightforward to check

that r∗ and Z satisfy all constraints.

Next, a feasible solution y∗ for the dual linear program is constructed such that

g(y∗) = R · ys = f (r∗, Z) = −k0R/q. Since the objective function g only depends

on ys, it is not hard to see that ys must have the value

ys = −
k0

q
= − k0

d`/2e+ k0
.

Regarding yu, the value

yu = −ys =
k0

d`/2e+ k0

is chosen and y1 = y2 = · · · = yb`/2c = 0. With these values, the constraints

150

5.1.4 Remarks on Restricted Cases

(r1), (r2), . . . , (rb`/2c) are satisfied. For yo, we set

yo = 1− yu =
d`/2e+ k0 − k0

d`/2e+ k0
=

d`/2e
d`/2e+ k0

,

so that constraint (Z) is satisfied.

Regarding the constraints (rb`/2c+1), (rb`/2c+2), . . . , (r`−k0), i.e., the constraints

that contain neither yu nor yo, the values

yb`/2c+i = −ys · i =
i

d`/2e+ k0
· k0

are chosen for i = 1, 2, . . . , |I2|, where |I2| was shown above to be |I2| = d`/2e − k0.

In particular for the case i = |I2| = d`/2e − k0, recall that the index b`/2c+ i of
yb`/2c+i is equivalent to b`/2c+ |I2| = `− k0, so that

y`−k0 =
d`/2e − k0

d`/2e+ k0
· k0.

In the following, the abbreviation K = d`/2e−k0
d`/2e+k0

is used. Due to the assumption

k0 < d`/2e made above, K ≥ 0 holds, so that y`−k0 ≥ 0. By inserting the values

chosen so far into constraint (r`−(k0−1)) and simplifying the terms, one obtains

− y`−k0 + y`−k0+1 + yo + ys ≥ 0

⇔ − Ky0 + y`−k0+1 +
d`/2e

d`/2e+ k0
− k0

d`/2e+ k0
≥ 0

⇔ K(1− k0) + y`−k0+1 ≥ 0,

which means that this constraint is satisfied if and only if y`−k0+1 ≥ K(k0 − 1).

We choose the value of y`−k0+1 as y`−k0+1 = K(k0 − 1) and consider the next

151

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

constraint (r`−(k0−2)):

− y`−k0+1 + y`−k0+2 + yo + ys ≥ 0

⇔ K(1− k0) + y`−k0+2 +
d`/2e

d`/2e+ k0
− k0

d`/2e+ k0
≥ 0

⇔ K(2− k0) + y`−k0+2 ≥ 0

Similar to the previous constraint, y`−k0+2 is chosen as y`−k0+2 = −K(k0 − 2) in

order to satisfy constraint (r`−(k0−2)). This argument can be iteratively repeated

for the constraints (r`−(k0−h)) with h = 1, 2, . . . , k0 − 1 where the values y`−k0+h are

chosen as

y`−k0+h = K(k0 − h).

These resulting values are non-negative and satisfy constraints (r`−(k0−h)) with

h = 1, 2, . . . , k0 − 1. Note that the case h = k0 − 1 corresponds to constraint (r`−1).

Finally, consider constraint (r`) with the values chosen so far:

− y`−1 + yo + ys ≥ 0

⇔ K((k0 − 1)− k0) +
d`/2e

d`/2e+ k0
− k0

d`/2e+ k0
≥ 0

⇔ K · (−1) + K ≥ 0

⇔ 0 ≥ 0

This shows that (r`) is satisfied.

152

5.1.4 Remarks on Restricted Cases

To summarize, the solution y∗ with the values

ys = −
k0

d`/2e+ k0

yu =
k0

d`/2e+ k0

yo =
d`/2e

d`/2e+ k0

y1 = 0

y2 = 0

. . .

yb`/2c = 0

yb`/2c+1 =
1

d`/2e+ k0
· k0

yb`/2c+2 =
2

d`/2e+ k0
· k0

. . .

y`−k0 =
d`/2e − k0
d`/2e+ k0

· k0 (corresponds to yb`/2c+(d`/2e−k0))

y`−k0+1 =
d`/2e − k0
d`/2e+ k0

· (k0 − 1)

y`−k0+2 =
d`/2e − k0
d`/2e+ k0

· (k0 − 2)

. . .

y`−1 =
d`/2e − k0
d`/2e+ k0

· 1 (corresponds to y`−k0+(k0−1))

satisfies all constraints and obtains the value g(y∗) = f (r∗, Z) = −k0R/q, thus
proving that r∗ is an optimal solution. Since in the primal linear program Z corre-

sponds to max{R∗, R∗} and Z = k0R/q with q = d`/2e+ k0, the solution quality

ratio in the case k0 < d`/2e can be bounded from above by

R(σ∗, I)
R(σ∗perm, I) ≤

R
max{R∗, R∗}

=
R

k0R
d`/2e+k0

=
d`/2e+ k0

k0
= 1 +

d`/2e
k0

.

153

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

Second case k0 ≥ d`/2e. For this case it is not possible to define the index

set I2 and q as in the first case, so a different solution r∗ needs to be constructed.

Consider the solution r∗ where all profit values have the same value ri = R/` (for
i = 1, 2, . . . , `). It is straightforward to check that this solution satisfies all constraints

of the primal linear program. In this case, R∗ = k0 · R/` ≥ b`/2c · R/` = R∗, so that
Z can be chosen as Z = k0 · R/` leading to the objective value f (r∗, Z) = −k0R/`.

Next, a feasible solution y∗ for the dual linear program is constructed that satisfies

g(y∗) = f (r∗, Z) = −k0R/`. Since g(y∗) = Rys only depends on ys, the value of

ys must be chosen as ys = −k0/`. By setting yo = 1 and yu = 0, constraint (Z) is
satisfied. Next, values for y∗ need to be set so that the constraints which do not

contain yo are satisfied, i.e., constraints (r1), (r2), . . . , (r`−k0). This is straightforward

to do by starting with y1 = −ys, followed by yi = −ys · i for i = 1, 2, . . . , `− k0.

Consider constraint (r`−(k0−1)):

− y`−k0 + y`−k0+1 + yo + ys ≥ 0

⇔ − k0

`
(`− k0) + y`−k0+1 +

`

`
− k0

`
≥ 0

⇔ `− k0

`
(1− k0) + y`−k0+1 ≥ 0

By setting y`−k0+1 = − `−k0
` (1− k0), this constraint is satisfied. By repeating this

argument for the following constraints (similar to the first case), the next values in

y∗ are chosen as

y`−k0+h = − `− k0

`
(h− k0)

for h = 1, 2, . . . , k0− 1. With the values chosen so far, all constraints up to (r`−1) are

satisfied. It remains to check constraint (r`):

− y`−1 + yo + ys ≥ 0

⇔ `− k0

`
(−1) +

`

`
− k0

`
≥ 0

⇔ 0 ≥ 0

154

5.1.4 Remarks on Restricted Cases

To summarize, the solution y∗ with the values

ys = −
k0

`

yu = 0

yo = 1

y1 =
1
`
· k0

y2 =
2
`
· k0

. . .

y`−k0 =
`− k0

`
· k0

y`−k0+1 =
`− k0

`
· (k0 − 1)

y`−k0+2 =
`− k0

`
· (k0 − 2)

. . .

y`−1 =
`− k0

`
· 1 (corresponds to y`−k0+(k0−1))

satisfies all constraints and obtains the value g(y∗) = f (r∗, Z) = −k0R/`, thus
proving that r∗ is an optimal solution. Using the values of r∗ obtained for this case

leads to the upper bound

R(σ∗, I)
R(σ∗perm, I) ≤

R
max{R∗, R∗}

=
R

k0 · R
`

=
`

k0

for the solution quality ratio. But due to the assumption k0 ≥ d`/2e, this bound can

be further specified:

R(σ∗, I)
R(σ∗perm, I) ≤

`

k0
=
d `2e+ b

`
2c

k0
≤
d `2e+ d

`
2e

k0
≤ 2k0

k0
= 2

The proof of the lemma shown above differentiates between two cases k0 < d`/2e
and k0 ≥ d`/2e. To interpret these cases, the former case corresponds to a case

155

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

where an optimal (non-permutation) schedule σ∗ processes a high number of jobs,

whereas there latter case can be said to apply when σ∗ is a “small” schedule where

a small number of jobs is processed. Since it is possible that the number ` of

processed jobs in σ∗ is equal to the number n of the available jobs in the instance, i.e.,

` = n, it can also be said that these two cases correspond to “larger” and “smaller”

instances, depending on how large n is in comparison to k0. By replacing k0 with

the appropriate values for each bufType ∈ {intermediateBuffer, spanningBuffer}, the
following upper bounds for the solution quality ratio with respect to Omax R, Cmax≤B

are obtained from Lemma 5.1.13.

Theorem 5.1.10. Let I be an instance of the Two-Stage VRP with Profits and Buffers
containing n jobs with bufType = intermediateBuffer where dij = 0 holds for all edges
eij. If n > 6, the solution quality ratio R(σ∗, I)/R(σ∗perm, I) for the optimization problem
Omax R, Cmax≤B is bounded from above by

R(σ∗, I)
R(σ∗perm I)

≤ 1 +
dn/2e

3
.

If n ≤ 6, the ratio is bounded from above by 2.

Theorem 5.1.11. Let I be an instance of the Two-Stage VRP with Profits and Buffers
containing n jobs with bufType = spanningBuffer where dij = 0 holds for all edges eij.
If n > 12, the solution quality ratio R(σ∗, I)/R(σ∗perm, I) for the optimization problem
Omax R, Cmax≤B is bounded from above by

R(σ∗, I)
R(σ∗perm I)

≤ 1 +
dn/2e

6
.

If n ≤ 12, the ratio is bounded from above by 2.

5.1.5 Overview of Theoretical Results

The results for the Two-Stage VRP with Profits and Buffers and its restricted cases

presented in the previous sections aswell as the results from the theoretical analyses

done in the previous chapters (see Section 3.2 and Section 4.2) can be visualized in

a table. This gives a systematic overview on how the different special cases of the

Two-StageVRPwith Profits andBuffers (referred to as “subclasses” in the following)

156

5.1.5 Overview of Theoretical Results

are related and can provide new insights on problems with a similar properties. In

order to provide a succinct overview of the results, some notation is introduced.

• DR≥Q
Cmax≤B is the decision problem whether for an instance of the Two-Stage

VRP with Profits and Buffers (or an instance belonging to a subclass of that

problem) and two positive numbers B, Q a solution σ exists with Cmax(σ) ≤ B
and R(σ) ≥ Q.

• DCmax≤B is the decision problem whether for an instance of the Two-Stage

VRP with Profits and Buffers (or an instance belonging to a subclass of that

problem) and a positive number B a solution σ exists with Cmax(σ) ≤ B where

all jobs are processed. This decision problem is based on the Two-Machine

Flow Shop Problemwith Buffers investigated in Chapter 3 where all jobs need

to be processed (i.e., a solution σ needs to satisfy R(σ) ≥ ∑ rJ).

• The results presented in the following for the decision problems DCmax≤B and

DR≥Q
Cmax≤B apply to both the case where only permutation schedules are allowed

and the case where non-permutation schedules are allowed. The proofs for

the latter case are straightforward to obtain from the former case by slightly

modifying some arguments in the proofs.

• For an instanceI of aTwo-StageVRPwithProfits andBuffers, ϕmin Cmax, R≥Q(I)
is the solution quality ratio between the best possible permutation schedule

σ∗perm and an optimal schedule σ∗ (that can be a non-permutation schedule)

for the optimization problem Omin Cmax, R≥Q. Formally, it is calculated as

ϕmin Cmax, R≥Q(I) =
Cmax(σ∗perm, I)

Cmax(σ∗, I)
,

where Cmax(σ, I) is the makespan (or “total length”) of the solution σ for

instance I . Similarly, ϕmax R, Cmax≤B(I) is the solution quality ratio for the

optimization problem Omax R, Cmax≤B, i.e.,

ϕmax R, Cmax≤B(I) =
R(σ∗, I)

R(σ∗perm, I) .

• For a class C of problem instances belonging to the Two-StageVRPwith Profits

and Buffers, an interesting question is how large the ratios ϕmin Cmax, R≥Q(I)

157

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

and ϕmax R, Cmax≤B(I) can potentially become. These values describe the po-

tential “gap” between permutation and non-permutation schedules. For

this reason, the notation Φmin Cmax, R≥Q and Φmax R, Cmax≤B is used to describe

upper bounds for ϕmin Cmax, R≥Q(I) and ϕmax R, Cmax≤B(I), respectively, such
that for all instances I ∈ C belonging to C it holds that ϕmax R, Cmax≤B(I) ≤
Φmin Cmax, R≥Q and ϕmax R, Cmax≤B(I) ≤ Φmax R, Cmax≤B.

Using this notation, an overview of theoretical results obtained in this thesis is

shown in Table 5.1. Every row describes a class of problems belonging to the Two-

StageVRPwith Profits andBuffers, with its properties being described in the second

to seventh column. The eighth column (abbreviated as “A” in Table 5.1) describes

the complexity of the decision problem DR≥Q
Cmax≤B. The ninth column (abbreviated

as “B”) shows the computational complexity of the decision problem DCmax≤B. In

the tenth column (abbreviated as “C”), bounds for Φmin Cmax, R≥Q with respect to the

considered class of problems are shown. Similarly, the eleventh column (“D”) shows

bounds for the upper bound Φmax R, Cmax≤B.

An example on how to read the table is given in the following. Consider row 8

of Table 5.1 which considers a subclass of Two-Stage VRP with Profits and Buffers

where it is not assumed that aJ = 0 or c = 0 holds for all jobs. It is also not

required that the processing time c on M2 has the property “aJ ≤ c for all J” or

“aJ ≥ c for all J”. However, it is assumed that all travel lengths dij are zero for all

edges. When this class of problem is considered, the decision problem DCmax≤B is

NP-completewhichwas shown in Theorem 3.2.1. TheNP-completeness forDR≥Q
Cmax≤B

follows from table cell B8, which is aforementioned NP-completeness for DCmax≤B.

In addition, the results in this thesis provide the bounds
7
6 ≤ Φmin Cmax, R≥Q ≤ 2

(shown in Corollary 3.2.3 and Theorem 3.2.8) for the upper bound Φmin Cmax, R≥Q

and
4
3 ≤ Φmax R, Cmax≤B ≤ 1 + dn/2e

3 (shown in Lemma 5.1.9 and Theorem 5.1.10) for

the upper bound Φmax R, Cmax≤B. Note that these bounds are not sharp.

The notation “Φ = 1” in Table 5.1 means that the upper bound Φ for the solu-

tion ratio ϕ between best possible permutation schedules and optimal schedules

is exactly 1. Since it is not possible for the ratio ϕ on any instance to be smaller

than 1, ϕ = 1 follows for all instances of the considered class of problems. In short,

this means that for all problems of that class the set of optimal schedules always

contains a permutation schedule.

158

5.1.5 Overview of Theoretical Results

This table contains all possible configurations for the second to seventh column

using the values and restrictions considered in this thesis, but note that some

configurations for problem classes are not displayed in the table since they coincide

with other rows. For example, in rows 31–40 it is assumed that c = 0 holds from

which aJ ≥ c trivially follows for all J. If c = 0 were to hold with the additional

condition aJ ≤ c, this would imply aJ = 0 for all J, but this case already corresponds

to rows 47–52 in Table 5.1. Similarly, in rows 41–44 where aJ = 0 is assumed for all

J, the case where sJ = aJ holds for all J is not shown since this is equivalent to the

case without buffer restrictions (rows 45 and 46).

159

5
TheTw

o-StageVehicleRouting
Problem

w
ith

Profitsand
Buffers

Table 5.1: Overview of the theoretical properties for the Two-Stage VRP with Profits and Buffers and its subcases regarding computational

complexity and potential gaps between permutation schedules and non-permutation schedules. The second and third column

show whether it is assumed that all aJ are zero for all J or that the constant c is zero. The column “aJ R c?” specifies whether

aJ ≤ c for all J or aJ ≥ c for all J (or neither, indicated by “-”) is assumed. The buffer is specified in the columns bType and

bUsage (abbreviations for bufType and bufUsage, respectively), where bufType =“-” in combination with sJ = 0 refers to the case

without buffer restrictions (i.e., infinite buffer). Spanning buffer and intermediate buffer are abbreviated as “span” and “inter”,

respectively. Column “dij = 0” shows whether dij = 0 is assumed for all edges eij. The eighth and ninth column show the

complexity of the decision problems DR≥Q
Cmax≤B and DCmax≤B, with NPc being an abbreviation for “NP-complete”. The tenth and

eleventh column show bounds for the upper bound Φ for the ratio ϕ with respect to the optimization problems Omin Cmax, R≥Q
and Omax R, Cmax≤B. The parentheses written after a result indicate the table cells or theoretical properties shown in this thesis

from which this result is directly derived. The running number in the first column and the notation A, B, C, D is used to refer to

specific table cells more easily. Co, L and T are abbreviations for “Corollary”, “Lemma” and “Theorem”, respectively.

A B C D

№ aJ = 0 c = 0 aJ R c? bType bUsage dij = 0 DR≥Q
Cmax≤B DCmax≤B Φmin Cmax , R≥Q Φmax R, Cmax≤B

1 - - - span sJ = 1 - NPc (A51) NPc (B51) 10/9 ≤ Φ ≤ 2 (Co 5.1.2, T 5.1.4) 3/2 ≤ Φ ≤ n/2 (T 5.1.5, T 5.1.6)
2 - - - span sJ = 1 X NPc (B2) NPc (T 3.2.1) Φ = 1 (T 3.2.3) Φ = 1 (L 3.2.6, L 5.1.1)
3 - - - span sJ = aJ - NPc (A51) NPc (B51) 10/9 ≤ Φ ≤ 2 (Co 5.1.2, T 5.1.4) 3/2 ≤ Φ ≤ n/2 (T 5.1.5, T 5.1.6)
4 - - - span sJ = aJ X NPc (B4) NPc (T 3.2.1) 19/18 ≤ Φ ≤ 2 (Co 3.2.2, T 3.2.8) 7/6 ≤ Φ ≤ 1 + dn/2e/6 (L 5.1.10, T 5.1.11)
5 - - - inter sJ = 1 - NPc (A51) NPc (B51) 10/9 ≤ Φ ≤ 2 (Co 5.1.2, T 5.1.4) 3/2 ≤ Φ ≤ n/2 (T 5.1.5, T 5.1.6)
6 - - - inter sJ = 1 X NPc (B6) NPc (T 3.2.1) Φ = 1 (T 3.2.3) Φ = 1 (L 3.2.6, L 5.1.1)
7 - - - inter sJ = aJ - NPc (A51) NPc (B51) 7/6 ≤ Φ ≤ 2 (Co 3.2.3, T 5.1.4) 3/2 ≤ Φ ≤ n/2 (T 5.1.5, T 5.1.6)
8 - - - inter sJ = aJ X NPc (B8) NPc (T 3.2.1) 7/6 ≤ Φ ≤ 2 (Co 3.2.3, T 3.2.8) 4/3 ≤ Φ ≤ 1 + dn/2e/3 (L 5.1.9, T 5.1.10)
9 - - - - sJ = 0 - NPc (A51) NPc (B51) 10/9 ≤ Φ ≤ 2 (Co 5.1.2, T 5.1.4) 3/2 ≤ Φ ≤ n/2 (T 5.1.5, T 5.1.6)
10 - - - - sJ = 0 X NPc (A40) P [73] Φ = 1 [73] Φ = 1 ([73], L 5.1.1)
11 - - aJ ≤ c span sJ = 1 - NPc (A51) NPc (B51) 10/9 ≤ Φ ≤ 2 (Co 5.1.2, T 5.1.4) 3/2 ≤ Φ ≤ n/2 (T 5.1.5, T 5.1.6)
12 - - aJ ≤ c span sJ = 1 X NPc (A40) P (T 3.2.2) Φ = 1 (T 3.2.2) Φ = 1 (T 3.2.2, L 5.1.1)
13 - - aJ ≤ c span sJ = aJ - NPc (A51) NPc (B51) 10/9 ≤ Φ ≤ 2 (Co 5.1.2, T 5.1.4) 3/2 ≤ Φ ≤ n/2 (T 5.1.5, T 5.1.6)
14 - - aJ ≤ c span sJ = aJ X NPc (A40) P (T 3.2.2) Φ = 1 (T 3.2.2) Φ = 1 (T 3.2.2, L 5.1.1)
15 - - aJ ≤ c inter sJ = 1 - NPc (A51) NPc (B51) 10/9 ≤ Φ ≤ 2 (Co 5.1.2, T 5.1.4) 3/2 ≤ Φ ≤ n/2 (T 5.1.5, T 5.1.6)
16 - - aJ ≤ c inter sJ = 1 X NPc (A40) P (T 3.2.2) Φ = 1 (T 3.2.2) Φ = 1 (T 3.2.2, L 5.1.1)
17 - - aJ ≤ c inter sJ = aJ - NPc (A51) NPc (B51) 10/9 ≤ Φ ≤ 2 (Co 5.1.2, T 5.1.4) 3/2 ≤ Φ ≤ n/2 (T 5.1.5, T 5.1.6)
18 - - aJ ≤ c inter sJ = aJ X NPc (A40) P (T 3.2.2) Φ = 1 (T 3.2.2) Φ = 1 (T 3.2.2, L 5.1.1)
19 - - aJ ≤ c - sJ = 0 - NPc (A51) NPc (B51) 10/9 ≤ Φ ≤ 2 (Co 5.1.2, T 5.1.4) 3/2 ≤ Φ ≤ n/2 (T 5.1.5, T 5.1.6)
20 - - aJ ≤ c - sJ = 0 X NPc (A40) P (B10) Φ = 1 (C10) Φ = 1 (D10)

1
6
0

5.1.5
O
verview

ofTheoreticalResults

A B C D

№ aJ = 0 c = 0 aJ R c? bType bUsage dij = 0 DR≥Q
Cmax≤B DCmax≤B Φmin Cmax , R≥Q Φmax R, Cmax≤B

21 - - aJ ≥ c span sJ = 1 - NPc (A51) NPc (B51) Φ = 1 (L 5.1.7) Φ = 1 (L 5.1.7, L 5.1.1)
22 - - aJ ≥ c span sJ = 1 X NPc (A40) P (T 3.2.2) Φ = 1 (T 3.2.2) Φ = 1 (T 3.2.2, L 5.1.1)
23 - - aJ ≥ c span sJ = aJ - NPc (A51) NPc (B51) Φ = 1 (L 5.1.7) Φ = 1 (L 5.1.7, L 5.1.1)
24 - - aJ ≥ c span sJ = aJ X NPc (A40) P (T 3.2.2) Φ = 1 (T 3.2.2) Φ = 1 (T 3.2.2, L 5.1.1)
25 - - aJ ≥ c inter sJ = 1 - NPc (A51) NPc (B51) Φ = 1 (L 5.1.7) Φ = 1 (L 5.1.7, L 5.1.1)
26 - - aJ ≥ c inter sJ = 1 X NPc (A40) P (T 3.2.2) Φ = 1 (T 3.2.2) Φ = 1 (T 3.2.2, L 5.1.1)
27 - - aJ ≥ c inter sJ = aJ - NPc (A51) NPc (B51) Φ = 1 (L 5.1.7) Φ = 1 (L 5.1.7, L 5.1.1)
28 - - aJ ≥ c inter sJ = aJ X NPc (A40) P (T 3.2.2) Φ = 1 (T 3.2.2) Φ = 1 (T 3.2.2, L 5.1.1)
29 - - aJ ≥ c - sJ = 0 - NPc (A51) NPc (B51) Φ = 1 (L 5.1.7) Φ = 1 (L 5.1.7, L 5.1.1)
30 - - aJ ≥ c - sJ = 0 X NPc (A40) P (B10) Φ = 1 (C10) Φ = 1 (D10)
31 - X aJ ≥ c span sJ = 1 - NPc (A51) NPc (B51) Φ = 1 (L 5.1.7) Φ = 1 (L 5.1.7, L 5.1.1)
32 - X aJ ≥ c span sJ = 1 X NPc (A40) P (T 3.2.2) Φ = 1 (T 3.2.2) Φ = 1 (T 3.2.2, L 5.1.1)
33 - X aJ ≥ c span sJ = aJ - NPc (A51) NPc (B51) Φ = 1 (L 5.1.7) Φ = 1 (L 5.1.7, L 5.1.1)
34 - X aJ ≥ c span sJ = aJ X NPc (A40) P (T 3.2.2) Φ = 1 (T 3.2.2) Φ = 1 (T 3.2.2, L 5.1.1)
35 - X aJ ≥ c inter sJ = 1 - NPc (A51) NPc (B51) Φ = 1 (L 5.1.7) Φ = 1 (L 5.1.7, L 5.1.1)
36 - X aJ ≥ c inter sJ = 1 X NPc (A40) P (T 3.2.2) Φ = 1 (T 3.2.2) Φ = 1 (T 3.2.2, L 5.1.1)
37 - X aJ ≥ c inter sJ = aJ - NPc (A51) NPc (B51) Φ = 1 (L 5.1.7) Φ = 1 (L 5.1.7, L 5.1.1)
38 - X aJ ≥ c inter sJ = aJ X NPc (A40) P (T 3.2.2) Φ = 1 (T 3.2.2) Φ = 1 (T 3.2.2, L 5.1.1)
39 - X aJ ≥ c - sJ = 0 - NPc (A51) NPc (B51) Φ = 1 (L 5.1.7) Φ = 1 (L 5.1.7, L 5.1.1)
40 - X aJ ≥ c - sJ = 0 X NPc (T 5.1.8) P (A10) Φ = 1 (C10) Φ = 1 (D10)
41 X - aJ ≤ c span sJ = 1 - NPc (A51) NPc (B51) Φ = 1 (L 5.1.8) Φ = 1 (L 5.1.8, L 5.1.1)
42 X - aJ ≤ c span sJ = 1 X P (T 5.1.9) P (T 3.2.2) Φ = 1 (T 3.2.2) Φ = 1 (T 3.2.2, L 5.1.1)
43 X - aJ ≤ c inter sJ = 1 - NPc (A51) NPc (B51) Φ = 1 (L 5.1.8) Φ = 1 (L 5.1.8, L 5.1.1)
44 X - aJ ≤ c inter sJ = 1 X P (T 5.1.9) P (T 3.2.2) Φ = 1 (T 3.2.2) Φ = 1 (T 3.2.2, L 5.1.1)
45 X - aJ ≤ c - sJ = 0 - NPc (A51) NPc (B51) Φ = 1 (L 5.1.8) Φ = 1 (L 5.1.8, L 5.1.1)
46 X - aJ ≤ c - sJ = 0 X P (T 5.1.9) P (A10) Φ = 1 (C10) Φ = 1 (D10)
47 X X - span sJ = 1 - NPc (A51) NPc (B51) Φ = 1 (L 5.1.7) Φ = 1 (L 5.1.7, L 5.1.1)
48 X X - span sJ = 1 X P (L 5.1.6) P (L 5.1.6) Φ = 1 (L 5.1.6) Φ = 1 (L 5.1.6)
49 X X - inter sJ = 1 - NPc (A51) NPc (B51) Φ = 1 (L 5.1.7) Φ = 1 (L 5.1.7, L 5.1.1)
50 X X - inter sJ = 1 X P (L 5.1.6) P (L 5.1.6) Φ = 1 (L 5.1.6) Φ = 1 (L 5.1.6)
51 X X - - sJ = 0 - NPc (T 4.2.2) NPc (T 5.1.7) Φ = 1 (L 5.1.7) Φ = 1 (L 5.1.7, L 5.1.1)
52 X X - - sJ = 0 X P (L 5.1.6) P (L 5.1.6) Φ = 1 (L 5.1.6) Φ = 1 (L 5.1.6)

1
6
1

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

From Table 5.1, some notable observations can be made. For higher row num-

bers, the problems tend to become “easier” for both decision problems DCmax≤B

and DR≥Q
Cmax≤B as more restrictions are added to the problem. However, there are

more cases where DR≥Q
Cmax≤B is NP-complete, whereas the corresponding problem

for DCmax≤B is still efficiently solvable. This is mainly due to the minimum score

constraint where schedules σ additionally need to satisfy R(σ) ≥ Q. It can also

be seen that having non-zero travel times dij (in the seventh column) makes all

of these problems NP-complete. Listing the complexity results using the columns

DCmax≤B andDR≥Q
Cmax≤B in Table 5.1 provides an overview of the “boundary” between

efficiently solvable cases and “hard” cases of the Two-Stage VRP with Profits and

Buffers.

It is not hard to see that the decision problem DCmax≤B can be reduced to DR≥Q
Cmax≤B

by choosing Q in the minimum profit constraint R(σ) ≥ Q to be so large that the

profits of all available jobs need to be collected. From this it follows for any row

in Table 5.1 that the NP-completeness for DCmax≤B implies the NP-completeness for

DR≥Q
Cmax≤B, which is another way to show some of the complexity results for DCmax≤B

(column A).

It is interesting to note how some of the results in the table are closely connected

to well-known optimization problems. For example, A40 is highly similar to the

decision variant of the Knapsack problem, whereas A51 and B51 can be said to

correspond to the decision variant of the Orienteering Problem and Traveling Sales-

person Problem, respectively (see the corresponding NP-completeness proofs in

Theorem 4.2.2 and Theorem 5.1.7). The Two-Machine Flow Shop with Buffers in-

vestigated in Chapter 3 corresponds to the rows 2,4,6 and 8 with the corresponding

decision problems DCmax≤B and the ratios Φmin Cmax, R≥Q. Another example are the

efficiently solvable subcases of the Two-Machine Flow Shop where the processing

time on one machine dominate the times on the other machine (see Section 3.2.1):

These correspond to several of the rows 11–28, in particular the decision problem

DCmax≤B for the cases with buffer restrictions where dij = 0 holds for all edges.

In general, it can be seen that for themajority of problems the existence of permu-

tation schedules in the set of optimal schedules is guaranteed, but for decreasing

row numbers where the problem classes become harder and more general, a “gap”

arises between permutation schedules and non-permutation schedules. For the op-

timization problemOmax R, Cmax≤B the gaps presented in this thesis tend to be larger

162

5.1.5 Overview of Theoretical Results

than for Omin Cmax, R≥Q as some of them depend on the size of the instance, but it is

possible that tighter bounds might be established in future research works as these

bounds are not sharp.

163

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

5.2 A Metaheuristic Framework for the Two-Stage VRP with
Profits and Buffers

The Two-Stage VRP with Profits and Buffers in its general formulation is a type

of Vehicle Routing Problem that incorporates profits and the processing of jobs

in two stages with a buffer constraint that has not yet been considered in the lit-

erature. It encompasses a variety of other combinatorial optimization problems,

many of which are known or were shown in this thesis to be NP-hard. Due to this,

formulating a heuristic algorithm that performs well poses a difficult problem.

For this reason, a framework for metaheuristic algorithms is presented in this

section from which a variety of methods for the Two-Stage VRP with Profits and

Buffers can be derived. In particular, this framework combines and generalizes

aspects of the algorithms 2BF-ILS (presented for the Two-Machine Flow Shop with

Buffers in Section 3.4) andVNSOP (described for theOrienteering Problem in Section

4.3) since the optimization problems for which these algorithmswere developed for

are special cases of the Two-Stage VRP with Profits and Buffers. This shows how

these algorithms are related and how they can be extended to tackle more general

cases of the problem.

Before describing the framework, some remarks regarding the structure of the

Two-Stage VRP with Profits and Buffers need to be made and some notation needs

to be introduced. First, note that if it is assumed that in a schedule σ all jobs are

processed as early as possible, it suffices to specify the permutations π1(σ), π2(σ)

(or only π(σ) if σ is a permutation schedule) in order to fully specify σ, including all

starting times and completion times for the processed jobs and the paths traversed

by M1 and M2 in the graph.

Under this assumption, elements σ of the solution space for the Two-Stage VRP

with Profits and Buffers can be described by permutations of jobs. However, the

permutations do not have to contain all jobs J in the graph, i.e., ProcessedJobs(σ) ⊆
J , which means that a schedule only processes a subset of all available jobs. For

this reason, it can be said that the solution space has a “hierarchical” structure: It

is possible to define “subareas” SJ0 of the solution space which are specified by a

subset of jobs J0 ⊆ J and contain all solutions σ with ProcessedJobs(σ) = J0. By

doing so the first “level” of the solution space is concernedwith the set of processed

jobs J0, whereas the second level further specifies the order in which the jobs in

164

5.2 A Metaheuristic Framework for the Two-Stage VRP with Profits and Buffers

J0 are processed in a solution, which due to the above assumption specifies the

solution as a whole
2
.

This structure is also reflected in the framework which consists of the following

components:

• An initialization routine Init that performs a cursory search at a coarse level

of the solution space. This is used to identify promising sets of jobs (i.e., a

promising subarea SJ0).

• Neighborhood functions N,N : They can be defined for the different levels of

the solution space. For example, on the lowest level for agiven solutionσ, N(σ)

can be defined to be the set of solutions that are “similar” to σ. On the level of

subsets J0 it is possible for different neighborhood function N to assign a set

N (J0) containing sets of jobs to J0 (i.e., N (J0) ⊆ P(J), where P(J) is the

power set of J) where these subsets are “similar” to J0. However, how this

“similarity” is defined needs to specified for each neighborhood function.

• Neighborhood evaluation functions f : These functions evaluate “neighbors”,
i.e., the elements contained in a neighborhood N(σ) or N (J0) (which can be

sets J ′ ⊆ J of jobs or other schedules σ′). These functions are used to select

elements of a neighborhood which are used by the optimization algorithm.

In the case of evaluating subsets, it can also be said that these functions

determine the movement between the aforementioned “subareas” SJ0 of the

solution space.

• A preliminary optimization routine Optpre: In contrast to the two previous

components, Optpre is used inside a subarea SJ0 (i.e., for a given set of jobs J0)

to quickly discover promising solutions σ0 inside SJ0 .

• A local search routine Optlocal: This component is used to further improve a

given solution σ0 by applying local search operations. From the perspective

2
It can be even said that there is a third “layer”where after the job permutations it is further specified

when each job in J0 is processed. This means that specifying a job permutation π in the second

level does not immediately lead to a schedule, but to the set Sπ of all schedules σ that process jobs

in the specified job order π, but at potentially different times. However, due to the assumption

that all jobs are processed as early as possible, unnecessary idle times are excluded so that the sets

Sπ are simplified to only contain a single schedule σ.

165

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

of the solution space, Optlocal performs a more thorough search in a subarea

SJ0 by exploring around a given point σ0 inside that area.

The reasonwhy an additional local search routine is incorporated (in constrast

to VNSOP for the Orienteering Problem where such a component is not used)

is that in the Two-Stage VRP with Profits and Buffers the jobs have processing

times on both machines and take up buffer space so that the makespan of a

schedule is heavily dependent on the order of processed jobs. By using local

search routines, a stronger focus can be placed on optimizing the order in

which jobs are processed.

Based on these components, the proposed framework is referred to as a Frame-
work for Iterative Search Algorithms with Variable Neighborhoods (ISAVaN

framework) in the following. How these components are specified in detail de-

termines the optimization behavior of the algorithm with respect to the different

levels of the solution space. The general formulation of components above makes

it possible to incorporate additional knowledge about the problem’s structure into

the algorithm, for example, by choosing the evaluation functions f such that the

choice of new subareas SJ0 is based on criteria that have importance for a given

practical application.

In this thesis, the components are chosen such that they incorporate aspects

of both 2BF-ILS and VNSOP, two algorithms that obtained good results for two

subcases of the Two-Stage VRPwith Profits and Buffers. In particular, the following

options for the components are considered:

• For a given set of jobs J0 ⊆ J , Nadd(J0) contains all sets J ′ ⊆ J of jobs that

can be obtained from J by adding a job J ∈ J not contained in J0. Similarly,

Nremove(J0) contains all sets J ′ ⊆ J of jobs that are obtained from J by

removing an element from J .

For a permutation schedule σ0, neighborhood Nadd(σ0) contains all schedules

σ′ that can be derived from σ0 by adding a job J ∈ J \ ProcessedJobs(σ0) to

π(σ0). Conversely, Nremove(σ0) is the set of all schedules σ′ derived from σ0 by

removing a job J ∈ ProcessedJobs(σ0) fromπ(σ). Note that these neighborhood

functions assign sets of schedules σ′ to σ0 that belong to a different subareas

SNadd(ProcessedJobs(σ0)) and SNremove(ProcessedJobs(σ0)) of the solution space.

166

5.2 A Metaheuristic Framework for the Two-Stage VRP with Profits and Buffers

It is also possible to define “local” neighborhoods N1(σ0) of solutions σ0 where

schedules σ′ ∈ N1(σ0) have the propertyProcessedJobs(σ′) = ProcessedJobs(σ0).

Regarding this type of neighborhood, we consider Nop
i in the following with

op ∈ {insert, pairInsert, swap} and i ∈ {1, 2, . . . , |ProcessedJobs(σ0)|}. These

neighborhood functions are similar to the neighborhoods used in 2BF-ILS

(see Section 3.4) and assign sets Nop
i (σ0) of schedules σ′ to σ0, where σ′ is

obtained by applying one of the operations op ∈ {insert, pairInsert, swap}with

a given argument i to the permutation π(σ0).

For the neighborhoods containing schedules, it is assumed that they only

contain feasible schedules, i.e., schedules that do not violate the buffer con-

straint. However, it is not required that they satisfy the budget constraint or

the minimum score constraint since these constraints depend on which of the

optimization problems Omax R, Cmax≤B or Omin Cmax, R≥Q is considered.

• For aneighborhood N(σ0)with N ∈ {Nadd, Nremove} that contains schedulesσ,

the same evaluation functions F = { flength, fvalue, fratio, frandom} as in algorithm

VNSOP (see Section 4.3) are used to evaluate schedules σ ∈ N(σ0).

For neighborhoods N ∈ {Nadd, Nremove}, a function f̃value is used to evaluate

a set J ′ ∈ N (J0) as follows: f̃value(J ′, J0) = ∑J∈J ′ rJ − ∑J∈J0
rJ . As the

notation indicates, f̃value and fvalue are similar in that the evaluation only de-

pends on the profits of the jobs, but not their length or the order in which they

are processed. In fact, f̃value is implicitly used when a new schedule is chosen

with fvalue since selecting a new schedule σ′ from a neighborhood Nadd(σ0)

using fvalue corresponds to selecting the new set of jobs ProcessedJobs(σ′) from
Nadd using f̃value and randomly selecting a schedule σ′ out of the schedules

where the relative order of the jobs in ProcessedJobs(σ0) ∩ ProcessedJobs(σ′) is
the same as in the original schedule σ0.

• For a given permutation schedule σ0, the following procedures are considered

for the preliminary optimization routine Optpre:

The value Optpre = NEH indicates that the NEH heuristic is used to construct

a new solution using the jobs in ProcessedJobs(σ0). This heuristic is originally

proposed for Flow Shop problems [122], but it also performs well for Flow

Shopswith Buffers (see Section 3.3) and is straightforward to adapt to the Two-

167

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

Stage VRP with Profits and Buffers, since it only uses job insertions. When

Optpre = mNEH, the modified version mNEH is used, adapted to the Two-

Stage VRPwith Profits and Buffers. Furthermore, Optpre = LK means that the

ChainedLin-Kernighanheuristic [10] (whichwas alsoused inVNSOP) is called

to quickly calculate a new solution based on the travel times dij between the

nodes corresponding to the jobs in ProcessedJobs(σ0). Finally, Optpre = none
means that σ0 is not modified and used as-is for the next step in the algorithm.

• Regarding the local search proutine Optlocal, the procedures used in the fol-

lowing are based on the local search routine used in 2BF-ILS, of which the

relevant excerpt is shown in Algorithm 5.1. In this routine, local search oper-

ations are applied in an iterated manner until the resulting solution cannot be

further improved using these operations. For a given permutation schedule

σ0, the following options are considered for Optlocal:

If Optlocal = LS, this routine is called with op1 = pairInsert, op2 = pairInsert,
op3 = pairInsert, i.e., a sequence of length 3. This sequence is based on the one

used in 2BF-ILS which was obtained by the algorithm configurator irace (see

Section 3.5.3). For the value Optlocal = sLS (“short local search”), the local

search routine inAlgorithm5.1 is calledwith oneoperation op1 = insert, which

also obtained good results during the tuning with irace. In an extended

variant of Optlocal = LS, the value Optlocal = LS∗ indicates that after the

local search routine in Algorithm 5.1 is finished with the resulting schedule

σ1, additional pairwise swaps are performed with π1
or π2

(while keeping

the other permutation constant) to construct non-permutation schedules. The

reason for this choice is that the Two-Stage VRP with Profits and Buffers

contains cases where the set of optimal schedules contains no permutation

schedule (see the theoretical analysis in Section 5.1) so that itmight be possible

that an optimized permutation schedule can be further improved by testing

similar non-permutation schedules. Finally, Optlocal = noLS means that no

local search is performed so that the given solution σ0 is used as-is for the next

step in the algorithm.

The following analyses are restricted to aforementioned values for the compo-

nents in the ISAVaN framework, but it is possible to consider additional neighbor-

hoods, evaluation functions andoptimization routines dependingon the considered

168

5.2 A Metaheuristic Framework for the Two-Stage VRP with Profits and Buffers

Algorithm 5.1 Local Search subroutine of 2BF-ILS

Input: given solution σ0, finite sequence of operations (op1, op2, . . . , ops)

1: σcur ← σ0
2: πrand← random job permutation of ProcessedJobs(σ0)
3: for j ∈ {1, 2, . . . , s} do
4: op← ops
5: repeat . local search

6: for k ∈ {1, 2, . . . , n} do
7: i← kth element in πrand

8: σ̂← solution in the neighborhood Nop
i (σcur) that minimizes Cmax

9: if Cmax(σ̂) ≤ Cmax(σcur) then
10: σcur ← σ̂
11: end if
12: end for
13: until σcur

does not improve

14: end for
15: return σcur

problem and its structure. The initialization routine Init used in the following de-

pends on the considered optimization problem (Omin Cmax, R≥Q orOmax R, Cmax≤B). Its

details are outlined further below when the general structure of algorithms in this

framework is presented.

Regarding the budget constraint Cmax(σ) ≤ B (for the optimization problem

Omax R, Cmax≤B) and the minimum score constraint R(σ) ≥ Q (for Omin Cmax, R≥Q), it

is interesting to note that adding and removing jobs (i.e., solution changes based on

the neighborhoods Nadd and Nremove) affects the validity of σ with respect to these

constraints, but in opposing directions. In particular, removing the processing

of jobs in σ increases the likelihood that the new solution σ′ satisfies the budget

constraint in the case of Omax R, Cmax≤B, but it becomes more likely that σ′ does not

satisfy theminimum score constraintwhenOmin Cmax, R≥Q is considered. The inverse

holds for adding jobs to σ with respect to these constraints.

We say in the following that “the validity of σ changes”, when a new solution σ′ is

selected from N(σ)with N ∈ {Nadd, Nremove}where one of these solutions satisfies

the budget constraint or minimum score constraint (depending on the considered

optimization problem) and the other solution does not. This means that the new

169

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

Algorithm 5.2 General structure of an algorithm in the ISAVaN framework

1: σ← Result from initialization routine Init

2: while termination criterion not satisfied do . main iterations

3: f1, f2 ← random elements from the set F
4: repeat
5: σ← arg maxσ′∈Nadd(σ)

f1(σ
′, σ)

6: until σ changes its validity

7: Call preliminary optimization routine Optpre
8: Call local search routine Optlocal
9: while σ has not changed its validity do
10: σ← arg minσ′∈Nremove(σ)

f2(σ′, σ)
11: end while
12: end while
13: return best solution found so far

solution σ′ is satisfies that constraint (and the old solution σ does not) or that the

new solution is violates that constraint (whereas σ does not).

Based on the remarks and the notation introduced above, the general form of an

algorithmusing the ISAVaNframework is shown inAlgorithm5.2. In this algorithm,

the components described above are iteratively used to change ProcessedJobs(σ) of
a schedule σ, quickly calculate new, promising solutions and refine them using

local search routines. Permitting validity changes in σ allows algorithms in this

framework to also work with solutions which at first might violate a constraint, but

can become valid and promising solutions after applying small modifications.

Note that the tophalf ofAlgorithm5.2 uses a repeat-until loop,whereas a while

loop is used at the bottom. This means that the latter loop might be skipped if the

validity of σ has already changed during the preceding steps, since inOmax R, Cmax≤B

it might be more reasonable to add new jobs to a solution σ which already satisfies

the budget constraint rather than remove jobs. For Omin Cmax, R≥Q, the validity of σ

does not change for the any of the routines Optpre, Optlocal used in this thesis so

that the while loop is not skipped.

The initialization routines Init used in the following are outlined in Algorithm

5.3 and Algorithm 5.4. They perform a number kinit of initial iterations that have a

similar structure to the iterations in the main algorithm, but with a stronger focus

on exploration in order to do a cursory search of different subareas in the solution

170

5.2 A Metaheuristic Framework for the Two-Stage VRP with Profits and Buffers

Algorithm 5.3 Initialization routine Init used for Omin Cmax, R≥Q

Input: initial iterations kinit

1: σ← empty solution (that only contains the depot node v0)

2: for it = 1, . . . , kinit do
3: repeat
4: σ← arg minσ′∈Nadd(σ)

frandom(σ′, σ)

5: until R(σ) ≥ Q
6: Call preliminary optimization routine Optpre
7: Call local search routine Optlocal
8: while R(σ) ≥ Q do
9: σ← arg minσ′∈Nremove(σ)

fratio(σ′, σ)
10: end while
11: end for
12: return schedule σ

Algorithm 5.4 Initialization routine Init used for Omax R, Cmax≤B

Input: initial iterations kinit, initial insertion probability p

1: σ← empty solution (that only contains the depot node v0)

2: for it = 1, . . . , kinit do
3: for each node v not in σ do
4: with probability p, insert v into σ at a random position

5: end for
6: Call preliminary optimization routine Optpre
7: Call local search routine Optlocal
8: while Cmax(σ) > B do
9: σ← arg minσ′∈Nremove(σ)

fratio(σ′, σ)
10: end while
11: end for
12: return schedule σ

171

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

space. The initialization routine forOmax R, Cmax≤B has an additional parameter p for

an insertion procedure that is similar to the one used in VNSOP during the initial

phase. For the experiments performed in the following sections withOmax R, Cmax≤B,

the value p = B/Cmax(σLK) is chosen similar to VNSOP where Cmax(σLK) is the total

length of the schedule obtained after applying the Chained Lin-Kernighan heuristic

Optpre = LK on the set J of all jobs. However, this value slightly differs from the

one used in VNSOP (in particular, it contains no square root) since job processing

times and buffer constraints need to be taken into account in the Two-Stage VRP

with Profits and Buffers which make it more likely that a solution has a higher

makespan that violates the budget constraint.

As for Omin Cmax, R≥Q, the insertion procedure in Algorithm 5.3 is not performed

with such a parameter, but until the minimum score constraint is satisfied. The

reason for this is that it is not possible for a solution σ that violates the minimum

score constraint to become valid by only reordering or removing jobs.

The general structure of the main iterations in Algorithm 5.2 is based on the

Variable Neighborhood Search algorithm VNSOP, as algorithms of this type have

been successfully applied to other Vehicle Routing Problems (see the literature

overviews given in Section 2.3 and Section 4.1). In fact, algorithm VNSOP is an

example for an algorithm in this framework for Omax R, Cmax≤B that can be obtained

by choosing Init as in Algorithm 5.4 as well as setting Optpre = LK and Optlocal =

noLS.
Furthermore, an algorithm with iterations that are highly similar to 2BF-ILS is

contained in this framework by setting Optpre = mNEH and Optlocal = LS, with

some differences being that 2BF-ILS does not incorporate the adding and removing

of jobs (since the Two-Machine Flow Shop with Buffers only considers schedules

where all jobs are processed, i.e., ProcessedJobs(σ) = J) so that the mNEH algo-

rithm is only called once and that 2BF-ILS uses a different perturbation mechanism.

However, the framework inAlgorithm 5.2 also incorporates perturbation and explo-

ration mechanics using the initialization routine Init and randomized evaluation

functions (line 3).

These are two examples for algorithms that can be modeled using the ISAVaN

framework. However, a variety of other algorithms for the Two-Stage VRP with

Profits and Buffers can be obtained by using other combinations for Optpre and

Optlocal, or even by adding new routines for these components, new neighbor-

172

5.3 Experimental Results

hoods or other evaluation functions. The choice of these components characterizes

the algorithm’s behavior. This can be used to adjust whether the resulting algo-

rithm focuses on exploring many different subareas SJ0 of the solution space (i.e.,

many different sets of jobs for ProcessedJobs(σ) by using various neighborhoods) or

whether it focuses on thoroughly searching through a subarea of the solution space

(for example, by having a stronger focus on local search routines Optlocal).

Furthermore, the general ideas of the framework and its components can be

applied to other combinatorial optimization problems where their search spaces

have a hierarchical structure that can be divided into “levels” or “layers”. This can

be done by properly adapting the components of the framework, in particular the

neighborhood functions and the functions for evaluating neighbored solutions that

characterize an algorithm’s movement in the solution space.

5.3 Experimental Results

In the following sections, the ISAVaN framework and its components are evalu-

ated in an experimental study. In order to do so, several algorithms derived from

that framework are considered in the following. These algorithms use the ini-

tialization procedure, neighborhoods and the evaluation functions as described

in the previous section. However, the components Optpre and Optlocal are var-

ied by considering all combinations for Optpre ∈ {NEH, mNEH, LK, none} and

Optlocal ∈ {LS, LS∗, sLS, noLS}, resulting in 16 different algorithms from the ISA-

VaN framework. These algorithms can be considered to form a “spectrum” of

different methods for the Two-Stage VRP with Profits and Buffers that also con-

tains algorithms similar to 2BF-ILS and VNSOP, the two heuristics developed in the

previous chapters.

5.3.1 Problem Instances

The instances used for the experimental study were generated as follows. The 22

Orienteering Problem instances (see Section 4.4.3) were used as the basis by taking

their graphs G = (V, E), their travel time dij for edges eij ∈ E and the node values

rv for v ∈ V which are later used for the job profits. In order to generate instances

for the Two-Stage VRP with Profits and Buffers a job Jv was defined for each node

173

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

v ∈ V with job profit rJv = rv (recall that in contrast to the Orienteering Problem,

the profits in this problem are assigned to jobs). The processing time bJv = c on M2

for all Jv was chosen to be the integer c = bdijc, where dij is the average over all

travel times dij for edges eij ∈ E. The processing time aJv for Jv on M1 are randomly

generated integers based on a uniform distribution over the set {1, 2, . . . , 2 · c}. The
values are chosen in thisway so that themakespan Cmax(σ) is not overly determined

by the processed jobs or the travel times dij in the graph.

Regarding the buffer, the amount sJv of buffer used by job Jv was set as sJv = aJv

for all Jv as these instances were observed to be harder than instances where sJv = 1
holds for all Jv (see Section 3.5). As for the buffer type, instances with interme-

diate buffer and instances with spanning buffer were generated. If bufType =

intermediateBuffer, the buffer capacity Ω was chosen as Ω = q0.25 (with q0.25 be-

ing the 25%-percentile over the processing times aJv on M1) and for bufType =

spanningBuffer the value Ω = maxJv sJv + q0.25 was chosen.

By doing so, the generated graphs and jobs contain characteristics of the hard

orienteering problems and hard buffer flow shop problems (in particular, graphs

from the Orienteering Problem benchmark oplib and buffer flow shop instances

with sJ = aJ) as well as characteristics of road networks that can occur in practical

applications (by using graphs based on the city instances from Section 4.4.3).

Based on these values, instances for both optimization problems Omax R, Cmax≤B

andOmin Cmax, R≥Q were generated as follows. ForOmin Cmax, R≥Q, theminimum score

constraint R(σ) ≥ Q was chosen with Q = (∑Jv
rJv)/10, so that a solution σ must

have a total profit of at least Q in order to satisfy the minimum score constraint.

For Omax R, Cmax≤B, the available budget for the budget constraint Cmax(σ) ≤ B was

chosen as B = 2 · BOP where BOP is the budget of the corresponding Orienteering

Problem instance from which the instance of the Two-Stage VRP with Profits and

Buffers is generated. The factor 2 was chosen since in contrast to the Orienteering

Problem additional times for processing jobs and buffer constraints need to be taken

into account. In total, 88 instances were generated using this method (44 for each

optimization problem, based on the 22 OP instances combined with 2 buffer types).

174

5.3.2 Experimental Results for Omax R, Cmax≤B

5.3.2 Experimental Results for Omax R, Cmax≤B

Each of the algorithms ran on each instance with a time limit of 5, 10 and 15minutes

for small (n ≤ 50), medium-sized (50 < n ≤ 100) and large (n > 100) instances.
The results were averaged over 30 repetitions. For the 42240 runs in total, a server

cluster of Leipzig University with thirty-six 2.1-GHz-cores (each run being executed

on one core) was used.

The evaluation methodology used in the following is similar to the methodology

used in Section 3.5 and Section 4.4.5 for the Two-Machine Flow Shop with Buffers

and the Orienteering Problem, respectively. In particular, progress curves (PC)

and empirical cumulative distribution functions (ECDF) are used to evaluate the

performance of an algorithm over its entire run time, with the “area under curve”

(AUC) as an aggregate qualitymeasure. Thesemethods are similar to the ones used

in a benchmarking study by Weise et al. [195].

Recall that progress curves show the quality of the best solution found so far over

time, whereas the ECDF shows the percentage of runs over time that reach a target

solution quality, with “solution quality” corresponding to R(σ) for Omax R, Cmax≤B

and Cmax(σ) for Omin Cmax, R≥Q. For the following experiments, the target solution

quality on an instance I is chosen to be a quality value that deviates less than 5% from

the best solution quality over all runs found on I. Figure 5.2 shows two example

diagrams for progress curves and ECDF obtained from the numerical experiments.

Furthermore, the evaluation is performedwith respect to the same timemeasures

FE (function evaluations), SS (subsets) and NT (normalized time) as in the previous

experiments performed in this thesis. For the normalized run time, the normaliza-

tion factor used for an instance is the run time of the standardNEHheuristic applied

on all jobs in an instance averaged over 30 repetitions. Using these time measures,

the aforementioned diagrams were calculated for all instances, all algorithms and

both optimization problems Omax R, Cmax≤B and Omin Cmax, R≥Q.

First, the optimization problem Omax R, Cmax≤B is considered, whereas the results

for Omin Cmax, R≥Q are presented in a separate section below due to their different

nature. A particular focus is placed on separately analyzing the components Optpre

and Optlocal in the following, but detailed results for all 16 algorithms can be found

online at [94].

175

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

0 200 400 600 800 1000 1200

0.
00

0.
05

0.
10

0.
15

0.
20

Subset

%
 o

f T
ot

al
 V

al
ue

none
mNEH
NEH
LK
noLS
sLS
LS
LS*

0 2000 4000 6000 8000 10000
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
Subset

E
C

D
F

 (
5%

)

none
mNEH
NEH
LK
noLS
sLS
LS
LS*

Figure 5.2: Example diagrams for progress curves and empirical cumulative dis-

tribution functions (ECDF). Left: Progress curves for the Omax R, Cmax≤B
instance LGF-brazil58-gen4-45.oplib (containing n = 58 nodes and

with spanning buffer). Right: Visualization of the ECDF for the

Omin Cmax, R≥Q instance LGF-Berlin-50-80000-1 (with n = 50 nodes and

an intermediate buffer).

The Influence of Optpre for Omax R, Cmax≤B

Recall the qualitymeasure AUCnorm
I,A (fromTable 4.1 in Section 4.4.5) which describes

for an algorithm A on instance I how “good” its AUC is in relation to the best

performing algorithm A∗ on that instance. Table 5.2 shows the AUCnorm
I,A values for

the PC curves (upper half) and ECDF curves (lower half), averaged over different

sets of instances. The algorithms shown in this table use different optimization

routines for Optpre, while Optlocal is set to Optlocal = noLS in order to minimize the

influence of Optlocal.

It can be seen for tm = FE and tm = NT that the algorithm with Optpre = LK
obtains good results when the AUC of PC diagrams is considered. For tm = SS, the
algorithms with Optpre ∈ {NEH, mNEH} perform well which, with respect to that

evaluation measure, means that these algorithms quickly improve their solutions

over time. However, the values for ECDF are mixed and rather low (especially for

tm = SS), which indicates that the target solution quality is hard to reach for these

algorithms. A possible explanation for the low values for and tm = SS is that

176

5.3.2 Experimental Results for Omax R, Cmax≤B

Table 5.2: Average AUCnorm
I,A for different values of Optpre with Optlocal = noLS on

Omax R, Cmax≤B instances with respect to PC diagrams (upper half) and

ECDF diagrams (lower half) per time measure, aggregated over different

subsets of instances. A value close to 1 indicates that the average perfor-

mance of an algorithm on an instance is similar to the best performance

over all algorithms reached on that instance. The values are truncated to

3 decimal places and values in bold indicate the best average value (i.e.,

the value closest to 1) for each aggregation criterion and time measure.

PC

(Optpre)

tm = FE tm = SS tm = NT

none NEH mNEH LK none NEH mNEH LK none NEH mNEH LK

Instance set
oplib 0.928 0.966 0.962 0.992 0.804 0.969 0.966 0.939 0.928 0.967 0.963 0.992
city 0.933 0.941 0.944 0.963 0.840 0.968 0.969 0.922 0.929 0.936 0.94 0.959

Buffer type
intermediate 0.927 0.949 0.949 0.963 0.824 0.972 0.975 0.923 0.923 0.945 0.946 0.960
spanning 0.937 0.941 0.945 0.973 0.843 0.963 0.962 0.927 0.935 0.939 0.942 0.971

All instances 0.932 0.945 0.947 0.968 0.834 0.968 0.968 0.925 0.929 0.942 0.944 0.965

ECDF

(Optpre)

tm = FE tm = SS tm = NT

none NEH mNEH LK none NEH mNEH LK none NEH mNEH LK

Instance set
oplib 0.000 0.699 0.637 0.647 0.000 0.174 0.080 0.135 0.000 0.674 0.610 0.650

city 0.091 0.384 0.411 0.377 0.085 0.200 0.165 0.102 0.087 0.360 0.398 0.390

Buffer type
intermediate 0.074 0.544 0.516 0.429 0.071 0.264 0.150 0.097 0.064 0.498 0.490 0.437

spanning 0.074 0.337 0.389 0.423 0.069 0.126 0.149 0.120 0.078 0.336 0.382 0.438

All instances 0.074 0.441 0.452 0.426 0.070 0.195 0.150 0.108 0.071 0.417 0.436 0.437

many subsets need to be tested (i.e., a long time with respect to that time measure)

before the target solution quality is reached, which is understandable since the

target criterion R(σ) directly depends on the considered subset of jobs.

It can also be observed that algorithms with Optpre = none do not perform well

(especially with respect to ECDF diagrams) as they obtain the lowest values. In

some cases is even 0 which means that the target solution quality was not reached

in any of the runs. A possible explanation for this is that the resulting algorithm

does not try to reduce the makespan of solutions violating the budget constraint so

that potentially good solutions are missed.

Furthermore, it is interesting to note that for Optpre = LK and Optlocal = noLS the

algorithm is highly similar to VNSOP developed for the Orienteering Problem. The

results show that for selected evaluation measures VNSOP also performs fairly well

177

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

for the general Two-Stage VRP with Profits and Buffers. This can also be observed

in the progress curves (see, e.g., Figure 5.3 left) where with Optpre = LK a high

solution quality is quickly reached.

0 200 400 600 800

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Time

%
 o

f T
ot

al
 V

al
ue

none
mNEH
NEH
LK
noLS
sLS
LS
LS*

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
00

0.
10

0.
20

0.
30

R
P

D
 (

LK
)

RPD

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

none
mNEH
NEH
LK
noLS
sLS
LS
LS*

Figure 5.3: Left: Visualization of progress curves for the Omax R, Cmax≤B instance

LGF-gr120-gen4-85.oplib-590 (containing n = 120 nodes and using

a spanning buffer) and the algorithms with Optlocal = noLS. Right:

Scatter plot of average RPD values for the solution quality with Optpre =
LK at the end of the run in relation to the respective RPD values of

algorithms with different Optpre and Optlocal = noLS. The grey line

marks the diagonal line y = x such that points above (below) the line

indicate that an algorithm obtained a better (worse) final solution than

the algorithm with Optpre = LK.

However, the solution quality at the end of the run tends to be higher when

Optpre ∈ {NEH, mNEH} is used, as can be seen by plotting the RPD (“relative

percentage difference”) values of final solution quality for the different values of

Optpre against Optpre = LK as shown in Figure 5.3 right. TheRPDvalue is calculated

as RPDOptpre = (R∗ − ROptpre)/R∗ (where ROptpre is the final solution quality of the

algorithm on an instance with the corresponding value for Optpre and R∗ is the

best solution quality found on the same instance over all runs) and the points are

plotted with the coordinates (RPDω, RPDLK) with ω ∈ {none, mNEH, NEH}. The
resulting scatterplot is consistent with the previous observation for ECDF diagrams

in Table 5.2 that the target solution quality is reached more consistently when

178

5.3.2 Experimental Results for Omax R, Cmax≤B

Optpre ∈ {NEH, mNEH}. In addition, it can be seen in Figure 5.3 right that the

algorithm with Optpre = LK tends to obtain better results than the one using

Optpre = none.

The Influence of Optlocal for Omax R, Cmax≤B

Regarding the local search routine Optlocal, Table 5.3 shows the average AUCnorm
I,A

values for the algorithms with Optpre = none.

Table 5.3: Average AUCnorm
I,A for different values of Optlocal with Optpre = none on

Omax R, Cmax≤B instances with respect to PC diagrams (upper half) and

ECDF diagrams (lower half) per time measure, aggregated over different

subsets of instances. Values close to 1 are preferable.

PC

(Optlocal)

tm = FE tm = SS tm = NT

noLS sLS LS LS∗ noLS sLS LS LS∗ noLS sLS LS LS∗

Instance set
oplib 0.928 0.968 0.967 0.786 0.804 0.837 0.835 0.648 0.928 0.968 0.967 0.795

city 0.933 0.959 0.956 0.892 0.840 0.873 0.873 0.779 0.929 0.955 0.952 0.895

Buffer type
intermediate 0.927 0.955 0.953 0.885 0.824 0.860 0.858 0.784 0.923 0.951 0.949 0.889

spanning 0.937 0.967 0.964 0.860 0.843 0.873 0.873 0.727 0.935 0.964 0.961 0.865

All instances 0.932 0.961 0.958 0.872 0.834 0.867 0.866 0.755 0.929 0.957 0.955 0.877

ECDF

(Optlocal)

tm = FE tm = SS tm = NT

noLS sLS LS LS∗ noLS sLS LS LS∗ noLS sLS LS LS∗

Instance set
oplib 0.000 0.260 0.421 0.037 0.000 0.070 0.105 0.000 0.000 0.263 0.433 0.050

city 0.091 0.275 0.222 0.416 0.085 0.154 0.060 0.207 0.087 0.275 0.220 0.429
Buffer type
intermediate 0.074 0.192 0.249 0.374 0.071 0.129 0.095 0.254 0.064 0.192 0.255 0.391
spanning 0.074 0.353 0.267 0.319 0.069 0.148 0.041 0.084 0.078 0.354 0.263 0.329

All instances 0.074 0.272 0.258 0.347 0.070 0.138 0.068 0.169 0.071 0.273 0.259 0.360

For progress curve diagrams (PC), the best results are obtained in all time mea-

sures when Optlocal = sLS. This indicates that a short local search routine allows

the resulting algorithms to quickly improve their solutions so that a good optimiza-

tion behavior over time is obtained. The results are also better than algorithmswith

Optlocal = noLS, likely due to job processing times and the buffer that, in contrast

to the Orienteering Problem, make it more important to take the order of processed

jobs into account.

179

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

Regarding ECDF diagrams, Optlocal = sLS only leads to good results for the

instanceswith spanningbuffer,whereas inother cases the algorithmwithOptlocal =

LS∗ tends to perform better. This is likely because algorithms with LS∗ try to reduce

the length of invalid solutions more than other algorithms, potentially leading to

more valid solutions where a high number of jobs are processed. Inspecting the

solutions generated during the runs showed that, on average, approximately 3.6

non-permutation solutions are found per iteration that are as good as or better

than the solution obtained after the local search routine. However, finding these

solutions takes more time so that algorithms with Optlocal = LS∗ do not obtain the

best results for PC diagrams. A similar observation, albeit at a smaller scale, can

also be made for Optlocal = LS on the oplib instances with respect to the ECDF

diagrams. The values for that row in Table 5.3 indicate that reaching the target

solution quality is harder on these instances than for the city instances.

Plotting the RPD values for the solution quality at the end of the runs (see

Figure 5.4 left) shows that there are many instances where the algorithm with

Optlocal = LS∗ obtains better results due to testing non-permutation solutions (the

points above the diagonal line). However, there are also instances (points below the

diagonal) where this is not the case, likely due to the additional time needed to test

such solutions. Due to this, it cannot be said in general that Optlocal = LS∗ leads
to better solutions at the end of the run as this also depends on other factors, such

as the properties of the instance and the available computation time. This can also

be seen when performing statistical tests using the two-sided sign test for paired

data, which is a non-parametric test. The results (see Figure 5.4 right) show that no

statistically significant difference can be seen for Optlocal = LS∗ when compared to

the algorithms with other local search routines Optlocal. However, the tests show

that algorithmswith Optlocal ∈ {sLS, LS} consistently obtain better solutions at the

end of the run than with Optlocal = noLS.

To summarize the results, the appropriate choice of components Optpre and

Optlocal depends on several factors. For example, if solutions of acceptable quality

need to be reached quickly, then a feasible choice might be Optpre = LK along with

Optlocal = sLS, inwhich casemany subsets of jobs are tested over a short timewhich

is reasonable forOmax R, Cmax≤B. Also, these values lead to good results with respect

to PCdiagrams. But for certain types of instances and if enough computation time is

available, then Optpre ∈ {mNEH, NEH}with Optlocal = LS∗might also be a feasible

180

5.3.3 Experimental Results for Omin Cmax, R≥Q

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.
0

0.
1

0.
2

0.
3

0.
4

R
P

D
 (

LS
*)

RPD

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

none
mNEH
NEH
LK
noLS
sLS
LS
LS*

noLS sLS LS LS∗

noLS N N -

sLS J - -

LS J - -

LS∗ - - -

Figure 5.4: Left: Left: Scatter plot of averageRPDvalues for the solutionqualitywith

Optlocal = LS∗ at the end of the run in relation to the respective RPD of

algorithms with different values for Optlocal and Optpre = none. Right:
Results of the pairwise comparisons between different Optlocal using the

two-sided sign test over all Omax R, Cmax≤B instances (n = 44). A black

triangle indicates that the measured difference is statistically significant

(p < 0.05/6 due to Bonferroni correction) and that the algorithm at

which the triangle is pointed at is significantly better according to the test

statistic. Note that the tables are symmetric since the 3 possible pairwise

comparisons for each of the three points in time were performed with

two-sided tests.

choice where potentially better solutions can be found, even though the resulting

algorithms need more time to optimize the solutions. However, the performance of

these methods is comparable to the configuration (Optpre, Optlocal) = (LK, noLS)
which is similar to algorithm VNSOP that obtained good results on the Orienteering

Problem. This indicates that the other algorithms can achieve a performance similar

to VNSOP.

5.3.3 Experimental Results for Omin Cmax, R≥Q

In this section, results are presentedwith respect to the 44 instances for the optimiza-

tion problem Omin Cmax, R≥Q. Similar to the analysis in previous section, separate

analyses are performed for the components Optpre and Optlocal.

181

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

The Influence of Optpre for Omin Cmax, R≥Q

Table 5.4 shows the averaged AUCnorm
I,A values for PC and ECDF diagrams regarding

the algorithms with Optlocal = noLS and different options for Optpre.

Table 5.4: Average AUCnorm
I,A for different values of Optpre with Optlocal = noLS on

Omin Cmax, R≥Q instances with respect to PC diagrams (upper half) and

ECDF diagrams (lower half) per time measure, aggregated over different

subsets of instances. A value close to 1 indicates that the average perfor-

mance of an algorithm on an instance is similar to the best performance

over all algorithms reached on that instance. The values are truncated to

3 decimal places and values in bold indicate the best average value (i.e.,

the value closest to 1) for each aggregation criterion and time measure.

PC

(Optpre)

tm = FE tm = SS tm = NT

none NEH mNEH LK none NEH mNEH LK none NEH mNEH LK

Instance set
oplib 1.367 1.474 1.606 1.884 2.301 2.222 2.237 2.527 1.372 1.325 1.329 1.870

city 2.160 2.058 2.112 2.049 2.480 1.937 1.928 2.214 2.188 2.013 2.032 2.070

Buffer type
intermediate 2.130 2.118 2.170 1.989 2.453 1.989 1.994 2.290 2.145 2.038 2.036 1.993
spanning 1.902 1.786 1.871 2.049 2.442 1.988 1.975 2.251 1.934 1.738 1.772 2.074

All instances 2.016 1.952 2.020 2.019 2.448 1.989 1.985 2.271 2.040 1.888 1.904 2.034

ECDF

(Optpre)

tm = FE tm = SS tm = NT

none NEH mNEH LK none NEH mNEH LK none NEH mNEH LK

Instance set
oplib 0.375 0.342 0.341 0.570 0.304 0.269 0.266 0.473 0.375 0.351 0.350 0.570
city 0.437 0.519 0.497 0.511 0.372 0.457 0.423 0.446 0.436 0.525 0.506 0.516

Buffer type
intermediate 0.535 0.427 0.480 0.509 0.423 0.372 0.391 0.457 0.534 0.439 0.497 0.518

spanning 0.316 0.546 0.457 0.535 0.296 0.474 0.398 0.445 0.316 0.549 0.459 0.533

All instances 0.425 0.487 0.468 0.522 0.360 0.423 0.395 0.451 0.425 0.494 0.478 0.526

The values for the progress curves (PC) show that the algorithms with Optpre ∈
{mNEH, NEH} obtain good results fairly consistently. This can also be seen in the

progress curves, e.g., the ones shown in Figure 5.5 left where the algorithms with

these values for Optpre find shorter solutions more quickly. A possible explanation

for this is that both the mNEH and NEH heuristic test insertions of jobs into many

positions so that they can find fairly short solutions; this is not done in the Lin-

Kernighan heuristic Optpre = LK and especially not in the algorithm with Optpre =

none which does not performwell in the shown example. Interestingly, for the Two-

182

5.3.3 Experimental Results for Omin Cmax, R≥Q

Machine Flow Shop Problem with Buffers, which is a special case of Omin Cmax, R≥Q,

these heuristics are also known to perform well (in particular, mNEH is also used

in 2BF-ILS) which indicates they might also be promising heuristics for the general

Two-Stage VRP with Profits and Buffers.

0 200 400 600 800

0.
00

0.
05

0.
10

0.
15

Time

R
P

D

none
mNEH
NEH
LK
noLS
sLS
LS
LS*

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Subset

E
C

D
F

 (
5%

)

none
mNEH
NEH
LK
noLS
sLS
LS
LS*

Figure 5.5: Left: Visualization of progress curves for the Omin Cmax, R≥Q instance

LGF-Leipzig-150-80000-2 (containing n = 150 nodes and with span-

ning buffer) and the algorithms with Optlocal = noLS. Right: ECDF

curves for theOmin Cmax, R≥Q instance LGF-Berlin-50-80000-1 (contain-
ing n = 50 nodes and with intermediate buffer) and for the algorithms

with Optlocal = noLS.

Regarding the ECDF diagrams, the results are mixed as the closest values to 1

are not consistently obtained by any of the algorithms. When averaged over all

instances, the values for Optpre = LK are the ones closest to 1, but there are also

cases where Optpre = NEH obtains better results than with Optpre = LK (for an

example, see ECDF diagram shown in Figure 5.5 right). This indicates that both

of these choices for Optpre can be viable, depending on whether the focus of the

resulting algorithm should be closer to the FlowShopProblem (with Optpre = NEH)

or to the Traveling Salesperson Problem (with the Chained Lin-Kernighan heuristic

Optpre = LK).

In addition, statistical tests for comparing the four algorithms’ average solution

quality at the end of the runwere performed using the two-sided sign test for paired

183

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

data which is a non-parametric test. However, no statistically significant differences

were observed (p ≥ 0.05/6 due to Bonferroni correction with n = 44). This can

also be visualized by plotting the RPD values for different Optpre in comparison

to Optpre = NEH in Figure 5.6 left where none of the other values for Optpre

consistently obtain better solutions (above the diagonal) or worse solutions (below

the diagonal) than with Optpre = NEH. In fact, many points are very close to the

diagonal, indicating that a similar performance at the end of the run is reached.

These results indicate that the choice of Optpre for this optimization problem rather

affects an algorithms performance over the run time rather than the performance

reached at the end of the run.

The Influence of Optlocal for Omin Cmax, R≥Q

Similar to the analysis in the previous section, Table 5.5 shows the averagedAUCnorm
I,A

values for the algorithms with varying Optlocal while Optpre is set to Optpre = none.

Table 5.5: Average AUCnorm
I,A for different values of Optlocal with Optpre = none on

Omin Cmax, R≥Q instances with respect to PC diagrams (upper half) and

ECDF diagrams (lower half) per time measure, aggregated over different

subsets of instances.

PC

(Optlocal)

tm = FE tm = SS tm = NT

noLS sLS LS LS∗ noLS sLS LS LS∗ noLS sLS LS LS∗

Instance set
oplib 1.367 1.859 2.362 2.155 2.301 2.273 2.229 1.287 1.372 1.874 2.398 2.069

city 2.160 2.526 2.940 2.974 2.480 2.074 2.049 2.203 2.188 2.565 2.983 3.002

Buffer type
intermediate 2.130 2.363 2.955 2.997 2.453 2.065 2.039 1.989 2.145 2.397 2.996 2.982

spanning 1.902 2.447 2.714 2.654 2.442 2.156 2.124 2.084 1.934 2.482 2.757 2.682

All instances 2.016 2.405 2.835 2.825 2.448 2.110 2.081 2.037 2.040 2.440 2.877 2.832

ECDF

(Optlocal)

tm = FE tm = SS tm = NT

noLS sLS LS LS∗ noLS sLS LS LS∗ noLS sLS LS LS∗

Instance set
oplib 0.375 0.342 0.322 0.593 0.304 0.308 0.341 0.652 0.375 0.340 0.316 0.577
city 0.437 0.400 0.348 0.344 0.372 0.424 0.428 0.447 0.436 0.396 0.342 0.343

Buffer type
intermediate 0.535 0.414 0.375 0.394 0.423 0.413 0.458 0.495 0.534 0.406 0.367 0.393

spanning 0.316 0.366 0.311 0.383 0.296 0.392 0.367 0.474 0.316 0.365 0.308 0.378

All instances 0.425 0.390 0.343 0.389 0.360 0.403 0.412 0.485 0.425 0.386 0.338 0.386

184

5.3.3 Experimental Results for Omin Cmax, R≥Q

Interestingly, for tm ∈ {FE, NT} the algorithm with Optlocal = noLS performs

the best, whereas for tm = SS the best results on average are obtained when

Optlocal = LS∗. This might be surprising since forOmin Cmax, R≥Q the target criterion

is the makespan Cmax(σ) that is heavily influenced by the order in which jobs are

processed. However, a possible explanation for this is that the makespan Cmax(σ)

of a solution σ also is also indirectly determined by the set of jobs ProcessedJobs(σ)
and thus, the subset of nodes that need to be traversed in order to process these

jobs. This indicates that the problem of selecting a subset of nodes also plays an

important for Omin Cmax, R≥Q. By choosing Optlocal = noLS, the resulting algorithm

focuses on trying many subsets in a short time, which can be a reasonable choice if

many subsets are available that satisfy the minimum score constraint.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

R
P

D
 (

N
E

H
)

RPD

●

●

●
●

●
●

●●

●
●

●

●
●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●

none
mNEH
NEH
LK
noLS
sLS
LS
LS*

0 2000 4000 6000 8000 12000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Subset

E
C

D
F

 (
5%

)

none
mNEH
NEH
LK
noLS
sLS
LS
LS*

Figure 5.6: Left: Scatter plot of average RPD values for the solution quality with

Optpre = NEH at the end of the run in relation to the respective RPD

values of algorithmswith different Optpre and Optlocal = noLS. The grey
line marks the diagonal line y = x such that points above (below) the

line indicate that an algorithm obtained a better (worse) final solution

than the algorithm with Optpre = NEH. Right: ECDF curves for the

Omin Cmax, R≥Q instance LGF-Berlin-100-80000-1 (containing n = 100
nodes and with intermediate buffer) for the algorithms with Optpre =
none.

However, regarding the evaluation measure ECDF the results are rather mixed

with both Optlocal = noLS and Optlocal = LS∗ obtaining the values closest to one.

185

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

Especially for tm = SS, the algorithm with Optlocal = LS∗ outperforms the other

algorithms inTable 5.5. Even though the ECDF curves donot reachparticularly high

values (see Figure 5.6 right for an example), the target solution quality is reached

more consistently with Optlocal = LS∗ than with Optlocal = noLS when time is

measured in evaluated subsets.

A likely explanation for this is that the local search procedure Optlocal = LS∗

checks many permutations for a given job set ProcessedJobs(σ). Indeed, inspecting
the log data for the generated solutions shows that, on average, approximately 5.1

non-permutation solutions are found per iteration that are as good as or better than

the previous solution found after the local search routine. However, with respect to

the time measure tm = SS, testing all of these permutations counts as the “same”

subset so that it is more likely that only a few subsets need to checked before finding

a solution with short makespan (that reaches the target solution quality).

Thus, it can be said that Optlocal = LS∗ provides a feasible option when the focus

is placed on not testing a large number of subsets. In the case where not much

time is available or when the number of function evaluations should be kept low,

the algorithm with Optlocal = noLS is a suitable choice as it quickly tests different

subareas of the solution space.

5.4 Summary

This chapter considered the Two-Stage Vehicle Routing Problem with Profits and

Buffers which generalizes the Two-Machine Flow Shop Problem with Buffers and

the Orienteering Problem investigated in Chapter 3 and Chapter 4, respectively. A

theoretical analysis regarding computational complexity, existence of permutation

schedules in the set of optimal schedules, and potential gaps in attainable solu-

tion quality between permutation schedules and non-permutation schedules was

performed. These aspects were investigated for the general problem and a vari-

ety of special cases that arise when restrictions are added which are similar to the

ones occurring in the Two-Machine Flow Shop with Buffers and the Orienteering

Problem.

The theoretical resultswere arranged in a table to illustrate howvarious subclasses

of the Two-Stage VRP with Profits and Buffers and their properties regarding the

aforementioned aspects are related. This table also contains the theoretical results

186

5.4 Summary

obtained for theTwo-MachineFlowShopProblemwithBuffers and theOrienteering

Problem, so it can be considered to provide an overview of all theoretical results

obtained in this thesis.

Since this problem encompasses a variety of other combinatorial optimization

problems, the framework “ISAVaN” (for “Iterative Search Algorithms with Variable

Neighborhoods”) was proposed as a framework for metaheuristic algorithms that

can be applied to the Two-Stage VRPwith Profits and Buffers. It generalizes aspects

of 2BF-ILS and VNSOP, two algorithms that obtained good results for the Two-

Machine Flow Shop with Buffers and the Orienteering Problem, but various other

algorithms can be derived from this framework by changing the neighborhoods

and optimization subroutines used by the algorithm. These components adjust the

algorithm’s focus in the solution space that, in the Two-Stage VRP with Profits and

Buffers, has a layered structure. The general formulation of the framework also

allows it to be applied to other combinatorial optimization problems by adapting

the components, in particular the neighborhoods and the local search routines in

accordance with the problem’s structure.

In an experimental study, various algorithmsderived from the ISAVaN framework

for the Two-Stage VRP with Profits and Buffers were compared. The instances used

for the experiments are based on characteristics found in difficult instances for

the Two-Machine Flow Shop Problem with Buffers and the Orienteering Problem.

The evaluation methodology is focused on the performance of algorithms over the

entire run time with respect to several time measures using graphical evaluation

measures, empirical cumulative distribution functions (ECDF) and the area under

curve (AUC) as an aggregate quality measure that is averaged over different sets

of instances. In addition, statistical tests to evaluate the significance of differences

at selected points in time as well as scatter plots due to the paired nature of the

measured data were used. As briefly mentioned in Section 2.4, these methods were

also used in the experimental studies for the Two-Machine Flow Shop with Buffers

and theOrienteering Problem, which illustrates that for a variety of problemswhich

are generalized by the Two-Stage VRP with Profits and Buffers it is possible to use

a consistent evaluation methodology.

The compared algorithms from the ISAVaN framework include algorithms that

share similarities with 2BF-ILS and VNSOP so that they can be expected to obtain

promising results. The evaluation separately focused on the components Optpre

187

5 The Two-Stage Vehicle Routing Problem with Profits and Buffers

and Optlocal from the framework that characterize an algorithm’s search behavior.

The results showed that there was not a single algorithm that performed best on

all evaluation measures as the most suitable choice for the components Optpre

and Optlocal depends on the considered time measure, the graphical evaluation

measure and the optimization criterion (maximizing the total profit or minimizing

the makespan).

In fact, for almost all considered values for the components Optpre and Optlocal

specific instance properties and evaluation measures could be identified for which

good results were obtained. For example, the local search procedure with subse-

quent testing of non-permutation solutions (Optlocal = LS∗) tended to performwell

for the time measure tm = SS (the number of tested subsets of nodes). Interest-

ingly, algorithmswith Optpre = LK obtained fairly good results for the optimization

problem of maximizing profit (similar to VNSOP for the Orienteering Problem) and

for the problem of minimizing makespan promising results were observed for

Optpre = NEH, where the NEH heuristic is also commonly used for Two-Machine

Flow Shops with Buffers.

In general, however, the most appropriate choice depends on the aforementioned

factors, which influence whether the focus is placed on the number of evaluations

or tested subsets, whether the speed of obtaining good solutions or the consistency

of reaching a certain solution quality is more important, and whether the total

profit or the makespan is the criterion to be optimized. For these questions, the

proposed ISAVaN framework provides a spectrumof different algorithms forming a

flexible and promising basis fromwhich newmethods for practical Vehicle Routing

Problems can be developed.

188

Bibliography

[1] R. A. Abbaspour and F. Samadzadegan. Time-dependent personal tour plan-

ning and scheduling inmetropolises. Expert Systems with Applications 38 (10),
12439–12452, 2011.

[2] S. Abdollahpour and J. Rezaeian. Minimizing Makespan for Flow Shop

Scheduling Problem with Intermediate Buffers by Using Hybrid Approach

of Artificial Immune System. Applied Soft Computing 28 (C), 44–56, 2015.

[3] A. Adewumi and O. Adeleke. A survey of recent advances in vehicle routing

problems. International Journal of System Assurance Engineering and Manage-
ment 9 (1), 155–172, 2018.

[4] A. Agnetis, F. Rossi, and G. Gristina. An exact algorithm for the batch se-

quencing problem in a two-machine flow shop with limited buffer. Naval
Research Logistics (NRL) 45 (2), 141–164, 1998.

[5] T. J. Ai, J. Pribadi, and V. Ariyono. Solving the Team Orienteering Problem

with Particle Swarm Optimization. Industrial Engineering and Management
Systems 12, 198–206, 2013.

[6] S. Allen. A Two Stage Vehicle Routing Algorithm Applied to Disaster Re-

lief Logistics after the 2015 Nepal Earthquake. SIAM Undergraduate Research
Online 11, 2017.

[7] M. A. Aloulou, A. Bouzaiene, N. Dridi, and D. Vanderpooten. A bicriteria

two-machine flow-shop serial-batching scheduling problem with bounded

batch size. Journal of Scheduling 17 (1), 17–29, 2014.

[8] A. D. Amar and J. N. D. Gupta. Simulated Versus Real Life Data in Testing

the Efficiency of Scheduling Algorithms. IIE Transactions 18 (1), 16–25, 1986.

[9] E. Angelelli, C. Archetti, C. Filippi, and M. Vindigni. The probabilistic ori-

enteering problem. Computers & Operations Research 81, 269–281, 2017.

189

Bibliography

[10] D. Applegate, W. Cook, and A. Rohe. Chained Lin-Kernighan for large trav-

eling salesman problems. INFORMS Journal on Computing 15, 82–92, 2003.

[11] C. Archetti, N. Bianchessi, and M. Speranza. Optimal solutions for routing

problems with profits. Discrete Applied Mathematics 161 (4), 547–557, 2013.

[12] C. Archetti, D. Feillet, A. Hertz, and M. G. Speranza. The undirected capac-

itated arc routing problem with profits. Computers & Operations Research 37

(11), 1860–1869, 2010.

[13] C. Archetti, M. G. Speranza, and D. Vigo. Vehicle Routing Problems with

Profits. Vehicle Routing. Ed. by P. Toth and D. Vigo. Chap. 10, 273–297, 2014.

[14] H. Assimi, O. Harper, Y. Xie, A. Neumann, and F. Neumann. Evolution-

ary Bi-Objective Optimization for the Dynamic Chance-Constrained Knap-

sack Problem Based on Tail Bound Objectives. ECAI 2020 - 24th European
Conference on Artificial Intelligence, - Including 10th Conference on Prestigious
Applications of Artificial Intelligence (PAIS 2020), 307–314, 2020.

[15] Y. Bao, L. Zheng, andH. Jiang.AnEfficientHybridBased onHSandGASolv-

ing Blocking Flow Shop Scheduling Problems. Advanced Materials Research
479, 1893–1896, 2012.

[16] J. Bautista, A. Cano, R. Companys, and I. Ribas. A bounded dynamic pro-

gramming algorithm for the blocking flow shop problem. 2011 IEEE Work-
shop On Computational Intelligence In Production And Logistics Systems (CIPLS),
1–8, 2011.

[17] J. E. Beasley and E.M.Nascimento. The Vehicle Routing-Allocation Problem:

A unifying framework. Top 4 (1), 65–86, 1996.

[18] J. Berlińska, K. Alexander, and Y. Zinder. Two-machine flow shop with dy-

namic storage space. Optimization Letters 15, 2433–2454, 2021.

[19] J. Berlińska, A. Kononov, and Y. Zinder. Two-Machine Flow Shop with a Dy-

namic Storage Space and UET Operations. Optimization of Complex Systems:
Theory, Models, Algorithms and Applications. Ed. by H. A. Le Thi, H. M. Le,

and T. Pham Dinh, 1139–1148, 2019.

190

[20] N. Bianchessi, R. Mansini, and M. G. Speranza. A branch-and-cut algorithm

for the Team Orienteering Problem. International Transactions in Operational
Research 25 (2), 627–635, 2018.

[21] Z. Borcinova. Two models of the capacitated vehicle routing problem. Croa-
tian Operational Research Review 8, 463–469, 2017.

[22] A. Bortfeldt and J. Homberger. Packing first, routing second – a heuristic for

the vehicle routing and loading problem. Computers & Operations Research 40
(3), 873–885, 2013.

[23] H. Bouly, D.-C. Dang, and A. Moukrim. A Memetic Algorithm for the Team

Orienteering Problem. Applications of Evolutionary Computing. Ed. by M. Gi-

acobini, A. Brabazon, S. Cagnoni, G. A. Di Caro, R. Drechsler, A. Ekárt, A. I.

Esparcia-Alcázar, M. Farooq, A. Fink, J. McCormack, et al. Springer Berlin

Heidelberg, Berlin, Heidelberg, 649–658, 2008.

[24] S. Boussier, D. Feillet, and M. Gendreau. An exact algorithm for team ori-

enteering problems. 4OR quarterly journal of the Belgian, French and Italian
Operations Research Societies 5, 211–230, Sept. 2007.

[25] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University

Press, 2004.

[26] P. Brucker, S. Heitmann, and J. Hurink. Flow-shop problems with interme-

diate buffers. Operations Research Spektrum 25 (4), 549–574, 2003.

[27] T. Bulhōes, M. Hà, R. Martinelli, and T. Vidal. The Vehicle Routing Problem

with Service Level Constraints. European Journal of Operational Research 265

(2), 544–558, 2018.

[28] A. M. Campbell, M. Gendreau, and B.W. Thomas. The orienteering problem

with stochastic travel and service times. Annals of Operations Research 186 (1),
61–81, 2011.

[29] V. Campos, R. Marti, J. Sánchez-Oro Calvo, and A. Duarte. GRASP with

path relinking for the orienteering problem. Journal of the Operational Research
Society 65, 1800–1813, 2014.

191

Bibliography

[30] C. Çetinkaya, I. Karaoglan, and H. Gökçen. Two-stage vehicle routing prob-

lemwith arc time windows: Amixed integer programming formulation and

a heuristic approach. European Journal of Operational Research 230 (3), 539–550,
2013.

[31] I.-M. Chao, B. L. Golden, and E. A. Wasil. The team orienteering problem.

European Journal of Operational Research 88 (3), 464–474, 1996.

[32] S. Chowdhury, M. Marufuzzaman, H. Tunc, L. Bian, and W. Bullington. A

modified Ant Colony Optimization algorithm to solve a dynamic traveling

salesmanproblem:A case studywith drones forwildlife surveillance. Journal
of Computational Design and Engineering 6 (3), 368–386, 2019.

[33] W. Cook, D. Applegate, R. Bixby, and V. Chvátal. Concorde TSP Solver.
2005. url: http://www.math.uwaterloo.ca/tsp/concorde/downloads/

downloads.htm.

[34] B. D. Corwin. Some Flow Shop Scheduling Problems Involving Sequence Depen-
dent Setup Times. PhD thesis. Cape Western Reserve University, 1969.

[35] B. D. Corwin and A. O. Esogbue. Two machine flow shop scheduling prob-

lems with sequence dependent setup times: A dynamic programming ap-

proach. Naval Research Logistics Quarterly 21 (3), 515–524, 1974.

[36] D.-C. Dang, R. Guibadj, and A. Moukrim. An effective PSO-inspired al-

gorithm for the team orienteering problem. European Journal of Operational
Research 229, 332–344, 2013.

[37] D.-C. Dang, R. El-Hajj, and A. Moukrim. A Branch-and-Cut Algorithm for

Solving the Team Orienteering Problem. Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems. Ed. by C.

Gomes and M. Sellmann. Springer Berlin Heidelberg, Berlin, Heidelberg,

332–339, 2013.

[38] G. Deng, Z. Cui, and X. Gu. A discrete artificial bee colony algorithm for

the blocking flow shop scheduling problem. Proceedings of the 10th World
Congress on Intelligent Control and Automation, 518–522, 2012.

[39] J.-H. Duan, G.-Y. Qiao, and M. Zhang. Solving the Flow Shop Problem with

Limited Buffers Using Differential Evolution. Chinese Control and Decision
Conference (CCDC), 2011.

192

http://www.math.uwaterloo.ca/tsp/concorde/downloads/downloads.htm
http://www.math.uwaterloo.ca/tsp/concorde/downloads/downloads.htm

[40] S. K. Dutta and A. A. Cunningham. Sequencing Two-Machine Flow-Shops

with Finite Intermediate Storage.Management Science 21 (9), 989–996, 1975.

[41] E. Erkut and J.Zhang.Themaximumcollectionproblemwith time-dependent

rewards. Naval Research Logistics 43 (5), 749–763, 1996.

[42] A. Ernst, J. Fung, G. Singh, and Y. Zinder. Flexible flow shop with dedicated

buffers. Discrete Applied Mathematics 261, 148–163, 2019.

[43] J. Faulin, A. Juan, F. Lera, and S. Grasman. Solving the Capacitated Vehicle

Routing Problem with Environmental Criteria Based on Real Estimations in

Road Transportation: A Case Study. Procedia - Social and Behavioral Sciences
20, 323–334, 2011.

[44] A. Federgruen and P. Zipkin. A Combined Vehicle Routing and Inventory

Allocation Problem. Operations Research 32 (5), 1019–1037, 1984.

[45] D. Feillet, P. Dejax, and M. Gendreau. Traveling Salesman Problems With

Profits: An Overview. Transportation Science 39, 188–205, 2001.

[46] V. Fernandez-Viagas and J. M. Framinan. NEH-based heuristics for the per-

mutation flowshop scheduling problem tominimise total tardiness. Comput-
ers & Operations Research 60, 27–36, 2015.

[47] J. Ferreira, A. Quintas, J. Oliveira, G. Pereira, and L. Dias. Solving the Team

Orienteering Problem: Developing a Solution Tool Using a Genetic Algo-

rithm Approach. Advances in Intelligent Systems and Computing 223, 365–375,
2014.

[48] F. V. Fomin and A. Lingas. Approximation algorithms for time-dependent

orienteering. Information Processing Letters 83 (2), 57–62, 2002.

[49] Q. Fu, A. I. Sivakumar, andK. Li. Optimisation of flow-shop schedulingwith

batch processor and limited buffer. International Journal of Production Research
50 (8), 2267–2285, 2012.

[50] J. Fung and Y. Zinder. Permutation Schedules for a Two-machine Flow Shop

with Storage. Operation Research Letters 44 (2), 153–157, 2016.

[51] J. Fung,Y.Zinder, andG. Singh. Flexible FlowShopwith Storage:Complexity

and Optimisation Methods. IFAC-PapersOnLine 49, 237–242, 2016.

193

Bibliography

[52] N. G.Hall andC. Sriskandarajah. A Survey ofMachine Scheduling Problems

with Blocking and No-Wait in Process.Operations Research 44, 510–525, 1996.

[53] D. Gale, H. W. Kuhn, and A.W. Tucker. Linear programming and the theory

of games. Activity analysis of production and allocation 13, 317–335, 1951.

[54] M. R. Garey, D. S. Johnson, and R. Sethi. The Complexity of Flowshop and

Jobshop Scheduling.Mathematics of Operations Research 1 (2), 117–129, 1976.

[55] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., USA, 1990.

[56] D. Gavalas, C. Konstantopoulos, and G. Pantziou. A survey on algorithmic

approaches for solving tourist trip design problems. Journal of Heuristics 20,
291–328, 2014.

[57] P. Geser, H. T. Le, T. Hartmann, andM.Middendorf. On permutation sched-

ules for two-machine flow shops with buffer constraints and constant pro-

cessing times on one machine. European Journal of Operational Research 303

(2), 593–601, 2022.

[58] P. C. Gilmore and R. E. Gomory. Sequencing a One State-Variable Machine:

A Solvable Case of the Traveling Salesman Problem. Operations Research 12

(5), 655–679, 1964.

[59] B. Golden, L. Levy, and R. Vohra. The orienteering problem. Naval Research
Logistics 34, 307–318, 1987.

[60] J. Grabowski and J. Pempera. The permutation flow shop problem with

blocking. A tabu search approach. Omega 35, 302–311, 2007.

[61] R. Graham, E. Lawler, J. Lenstra, and A. R. Kan. Optimization and Approx-

imation in Deterministic Sequencing and Scheduling: a Survey. Annals of
Discrete Mathematics 5, 287–326, 1979.

[62] P. Grangier, M. Gendreau, F. Lehuédé, and L.-M. Rousseau. The vehicle rout-

ingproblemwith cross-docking and resource constraints. Journal ofHeuristics
27, 31–61, 2021.

[63] H. Gu, A. Kononov, J. Memar, and Y. Zinder. Efficient Lagrangian heuristics

for the two-stage flow shop with job dependent buffer requirements. Journal
of Discrete Algorithms 52-53, 143–155, 2018.

194

[64] A. Gunawan, H. C. Lau, and P. Vansteenwegen. Orienteering Problem: A

survey of recent variants, solution approaches and applications. European
Journal of Operational Research 255 (2), 315–332, 2016.

[65] J. N. Gupta and W. P. Darrow. The two-machine sequence dependent flow-

shop scheduling problem. European Journal of Operational Research 24 (3), 439–
446, 1986.

[66] R. El-Hajj, R. Guibadj, A. Moukrim, and M. Serairi. A PSO based algorithm

with an efficient optimal split procedure for the multiperiod vehicle routing

problem with profit. Annals of Operations Research 291, 281–316, 2020.

[67] F. Hammami, M. Rekik, and L. C. Coelho. A hybrid adaptive large neigh-

borhood search heuristic for the team orienteering problem. Computers &
Operations Research 123, 2020.

[68] P. Hansen, N. Mladenović, and J. M. Pérez. Variable neighbourhood search:

methods and applications. Annals of Operations Research 175, 367–407, 2010.

[69] C. Hempsch and S. Irnich. Vehicle Routing Problems with Inter-Tour Re-

source Constraints. The Vehicle Routing Problem: Latest Advances and New
Challenges. Ed. by B. Golden, S. Raghavan, and E.Wasil. Springer US, Boston,

MA, 421–444, 2008.

[70] Y.-C.Hsieh, P.-S. You, andC.-D. Liou.Anote of using effective immune based

approach for the flow shop scheduling with buffers.Applied Mathematics and
Computation 215 (5), 1984–1989, 2009.

[71] T. İlhan, S. M. R. Iravani, and M. S. Daskin. The orienteering problem with

stochastic profits. IIE Transactions 40 (4), 406–421, 2008.

[72] INRIX.Durchschnittliche Geschwindigkeit* im Automobilverkehr in ausgewählten
deutschen Städten im Jahr 2018 (in Meilen pro Stunde). In Statista. 2019. url:

https://de.statista.com/statistik/daten/studie/994676/umfrage/

innerstaedtische- durchschnittsgeschwindigkeit- im- autoverkehr-

in-deutschen-staedten/.

[73] S. M. Johnson. Optimal two- and three-stage production schedules with

setup times included. Naval Research Logistics Quarterly 1 (1), 61–68, 1954.

195

https://de.statista.com/statistik/daten/studie/994676/umfrage/innerstaedtische-durchschnittsgeschwindigkeit-im-autoverkehr-in-deutschen-staedten/
https://de.statista.com/statistik/daten/studie/994676/umfrage/innerstaedtische-durchschnittsgeschwindigkeit-im-autoverkehr-in-deutschen-staedten/
https://de.statista.com/statistik/daten/studie/994676/umfrage/innerstaedtische-durchschnittsgeschwindigkeit-im-autoverkehr-in-deutschen-staedten/

Bibliography

[74] R. Kant and A. Mishra. The Orienteering Problem: A Review of Variants

and Solution Approaches. Proceedings of the 26th World Multi-Conference on
Systemics, Cybernetics and Informatics (WMSCI 2022), 41–46, 2022.

[75] I. Kara, P. S. Bicakci, and T. Derya. New Formulations for the Orienteering

Problem. Procedia Economics and Finance 39, 849–854, 2016.

[76] M. Karlin and J. Heikkilä. osm-graph-parser. 2017. url: https://github.com/

rovaniemi/osm-graph-parser.

[77] S. Kataoka and S. Morito. An Algorithm for the Single Constraint Maximum

Collection Problem. Journal of theOperations Research Society in Japan, 515–560,
1988.

[78] L. Ke, C.Archetti, andZ. Feng.Ants can solve the teamorienteering problem.

Computers & Industrial Engineering 54 (3), 648–665, 2008.

[79] M. Keshtkaran and K. Ziarati. An efficient evolutionary algorithm for the

orienteering problem. Journal of Heuristics 22, 699–726, 2016.

[80] M. Keshtkaran, K. Ziarati, A. Bettinelli, and D. Vigo. Enhanced exact so-

lution methods for the Team Orienteering Problem. International Journal of
Production Research 54 (2), 591–601, 2016.

[81] M. R. Khouadjia, B. Sarasola, E. Alba, L. Jourdan, and E. Talbi. A compara-

tive study between dynamic adapted PSO and VNS for the vehicle routing

problem with dynamic requests. Applied Soft Computing 12 (4), 1426–1439,

2012.

[82] B.-I. Kim, H. Li, and A. L. Johnson. An augmented large neighborhood

search method for solving the team orienteering problem. Expert Systems
with Applications 40 (8), 3065–3072, 2013.

[83] H. Kise, T. Shioyama, and T. Ibaraki. Automated Two-machine Flowshop

Scheduling: A Solvable Case. IIE Transactions 23 (1), 10–16, 1991.

[84] G.Kobeaga,M.Merino, and J.A. Lozano.Anefficient evolutionary algorithm

for the orienteering problem.Computers&Operations Research 90, 42–59, 2018.

[85] G. Kobeaga, M. Merino, and J. A. Lozano. OPLib: Test instances for the Orien-
teering Problem. 2018. url: https://github.com/bcamath-ds/OPLib/tree/

master/instances.

196

https://github.com/rovaniemi/osm-graph-parser
https://github.com/rovaniemi/osm-graph-parser
https://github.com/bcamath-ds/OPLib/tree/master/instances
https://github.com/bcamath-ds/OPLib/tree/master/instances

[86] A. Kononov, J.-S. Hong, P. Kononova, and F.-C. Lin. Quantity-based buffer-

constrained two-machine flowshop problem: active and passive prefetch

models for multimedia applications. Journal of Scheduling 15 (4), 487–497,

2012.

[87] A. Kononov, J. Memar, and Y. Zinder. Flow Shopwith Job–Dependent Buffer

Requirements – a Polynomial–TimeAlgorithm and Efficient Heuristics.MO-
TOR 2019: Mathematical Optimization Theory and Operations Research, 342–357,
2019.

[88] P. A. Kononova and Y. A. Kochetov. The Variable Neighborhood Search for

the Two Machine Flow Shop Problem with a Passive Prefetch. Journal of
Applied and Industrial Mathematics 7 (1), 54–67, 2013.

[89] H. Kuhn, D. Schubert, and A. Holzapfel. Integrated order batching and

vehicle routing operations in grocery retail – A General Adaptive Large

Neighborhood Search algorithm. European Journal of Operational Research 294
(3), 1003–1021, 2021.

[90] E. Kupfer, H. T. Le, J. Zitt, Y.-C. Lin, and M. Middendorf. A Hierarchical

Simple Probabilistic Population-Based Algorithm Applied to the Dynamic

TSP. 2021 IEEE Symposium Series on Computational Intelligence (SSCI), 1–8,
2021.

[91] G. Laporte and S. Martello. The selective travelling salesman problem. Dis-
crete Applied Mathematics 26 (2), 193–207, 1990.

[92] T. Le Hoang. A Fuzzy Local Grid RefinementMethod for Sparse-Grid-Based

Function Approximations. Proceedings of 6th International Conference of Young
Scientists on Solutions of Applied Problems in Control and Communications, Data
Processing and Data Analysis. Ed. by U. Fissgus, B. Krause, A. Kostygov, A.

Petrochenkov, and L. Mylnikov, 116–121, 2015.

[93] H. T. Le, P. Geser, and M. Middendorf. An Iterated Local Search Algorithm

for the Two-Machine Flow Shop Problem with Buffers and Constant Pro-

cessing Times on One Machine. Evolutionary Computation in Combinatorial
Optimization (EvoCOP 2019). Ed. by A. Liefooghe and L. Paquete, 50–65,

2019.

197

Bibliography

[94] H. T. Le. 2SVRP_Results. GitHub repository. 2022. url: https://github.

com/L-HT/2SVRP_Results.

[95] H. T. Le. Dynamic Orienteering Algorithms. GitHub repository. 2020. url:

https://github.com/L-HT/DynamicOrienteeringAlgorithms/.

[96] H. T. Le, P. Geser, and M. Middendorf. Iterated Local Search and Other Al-

gorithms for Buffered Two-Machine Permutation Flow Shops with Constant

Processing Times on OneMachine. Evolutionary Computation 29 (3), 415–439,

2021.

[97] H. T. Le, M. Middendorf, and Y. Shi. An Improvement Heuristic Based on

Variable Neighborhood Search for a Dynamic Orienteering Problem. Evolu-
tionary Computation in Combinatorial Optimization (EvoCOP 2021). Ed. by C.

Zarges and S. Verel, 68–83, 2021.

[98] H. T. Le, M. Middendorf, and Y. Shi. An Improvement Heuristic Based on

Variable Neighborhood Search for Dynamic Orienteering Problems with

Changing Node Values and Changing Budgets. SN Computer Science 3 (4),

Bio-inspired Algorithms for Combinatorial Optimization, 326, 2022.

[99] D. Lee and J. Ahn. Vehicle routing problemwith vector profitswithmax-min

criterion. Engineering Optimization 51 (2), 352–367, 2019.

[100] R. Leisten. Flowshop sequencing problems with limited buffer storage. In-
ternational Journal of Production Research 28 (11), 2085–2100, 1990.

[101] J. Li and W. Lu. Full truckload vehicle routing problem with profits. Journal
of Traffic and Transportation Engineering (English Edition) 1 (2), 146–152, 2014.

[102] J. Li and Q.-K. Pan. Solving the large-scale hybrid flow shop scheduling

problem with limited buffers by a hybrid artificial bee colony algorithm.

Information Sciences 316, 487–502, 2015.

[103] K. Li and H. Tian. A two-level self-adaptive variable neighborhood search

algorithm for the prize-collecting vehicle routing problem.Applied Soft Com-
puting 43, 469–479, 2016.

[104] S. Li and L. Tang. A tabu search algorithm based on new block properties

and speed-up method for permutation flow-shop with finite intermediate

storage. Journal of Intelligent Manufacturing 16 (4), 463–477, 2005.

198

https://github.com/L-HT/2SVRP_Results
https://github.com/L-HT/2SVRP_Results
https://github.com/L-HT/DynamicOrienteeringAlgorithms/

[105] J. J. Liang,Q.-K. Pan, andT.-J. Chen.ADynamicMulti-swarmParticle Swarm

Optimizer for blocking flow shop scheduling. 2010 IEEE Fifth International
Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), 323–
327, 2010.

[106] C. J. Liao, L. M. Liao, and C. T. Tseng. A performance evaluation of permu-

tation vs. non-permutation schedules in a flowshop. International Journal of
Production Research 44 (20), 4297–4309, 2006.

[107] F.-C. Lin, J.-S. Hong, and B. M. T. Lin. A Two-machine Flowshop Problem

with Processing Time-dependent Buffer constraints–AnApplication inMul-

timedia Presentations. Computers & Operations Research 36 (4), 1158–1175,

2009.

[108] F.-C. Lin, J.-S. Hong, and B. M. Lin. Sequence optimization for media objects

with due date constraints in multimedia presentations from digital libraries.

Information Systems 38 (1), 2013.

[109] B. Liu, L.Wang, and Y.-H. Jin. An Effective Hybrid PSO-based Algorithm for

Flow Shop Schedulingwith Limited Buffers.Computers &Operations Research
35 (9), 2791–2806, 2008.

[110] S. Q. Liu and E. Kozan. Scheduling a flow-shop with combined buffer con-

ditions. International Journal of Production Economics 117 (2), 371–380, 2009.

[111] W. Liu, Y. Jin, andM. Price. A new improved NEH heuristic for permutation

flowshop scheduling problems. International Journal of Production Economics
193, 21–30, 2017.

[112] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, T. Stützle, and M.

Birattari. The irace package: Iterated Racing for Automatic Algorithm Con-

figuration. Operations Research Perspectives 3, 43–58, 2016.

[113] M. Mann, B. Zion, D. Rubinstein, R. Linker, and I. Shmulevich. The Orien-

teering Problemwith TimeWindows Applied to Robotic Melon Harvesting.

Journal of Optimization Theory and Applications 168, 1–22, 2015.

[114] Y.Marinakis,M. Politis,M.Marinaki, andN.Matsatsinis. AMemetic-GRASP

Algorithm for the Solution of the Orienteering Problem.Modelling, Computa-
tion and Optimization in Information Systems and Management Sciences. Ed. by
H. A. Le Thi, T. Pham Dinh, and N. T. Nguyen, 105–116, 2015.

199

Bibliography

[115] S. Martinez, S. Dauzère-Pérès, C. Guéret, Y. Mati, and N. Sauer. Complexity

of Flowshop Scheduling Problemswith aNewBlockingConstraint.European
Journal of Operational Research 169, 855–864, 2006.

[116] L. d. C. Martins, R. D. Tordecilla, J. Castaneda, A. A. Juan, and J. Faulin.

Electric Vehicle Routing, Arc Routing, and Team Orienteering Problems in

Sustainable Transportation. Energies 14 (16), 2021.

[117] Y. Min, B. C. Choi, and M. J. Park. Two-machine flow shops with an optimal

permutation schedule under a storage constraint. Journal of Scheduling 23,

327–336, 2019.

[118] M.Mısır,A.Gunawan, andP.Vansteenwegen.AlgorithmSelection for theTeam

Orienteering Problem. Evolutionary Computation in Combinatorial Optimiza-
tion (EvoCOP 2022). Ed. by L. Pérez Cáceres and S. Verel, 33–45, 2022.

[119] G. Moslehi and D. Khorasanian. A hybrid variable neighborhood search

algorithm for solving the limited-buffer permutation flow shop scheduling

problem with the makespan criterion. Computers & Operations Research 52,

260–268, 2014.

[120] V. Nagarajan and R. Ravi. The Directed Orienteering Problem. Algorithmica
60, 1017–1030, 2011.

[121] S. Nanda Kumar and R. Panneerselvam. A Survey on the Vehicle Routing

Problem and Its Variants. Intelligent Information Management 4 (3), 66–74,

2012.

[122] M. Nawaz, E. Emory Enscore, and I. Ham. A Heuristic Algorithm for the

m-Machine, n-Job Flow-Shop Sequencing Problem. Omega 11, 91–95, 1983.

[123] T. T. Nguyen, S. Yang, and J. Branke. Evolutionary dynamic optimization:

A survey of the state of the art. Swarm and Evolutionary Computation 6, 1–24.

issn: 2210-6502, 2012.

[124] E.Nowicki. Thepermutationflowshopwithbuffers:A tabu searchapproach.

European Journal of Operational Research 116 (1), 205–219, 1999.

[125] OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org.
2020. url: https://www.openstreetmap.org.

200

https://www.openstreetmap.org

[126] M. Ostermeier, A. Holzapfel, H. Kuhn, and D. Schubert. Integrated zone

picking and vehicle routing operations with restricted intermediate storage.

OR Spectrum 44, 795–832, 2022.

[127] K.Ostrowski, J.Karbowska-Chilinska, J.Koszelew, andP.Zabielski. Evolution-

inspired local improvement algorithm solving orienteering problem. Annals
of Operations Research 253, 519–543, 2017.

[128] Q.-K. Pan, L. Wang, H.-Y. Sang, J.-Q. Li, and M. Liu. A High Performing

Memetic Algorithm for the Flowshop Scheduling Problem With Blocking.

IEEE Transactions on Automation Science and Engineering 10 (3), 741–756, 2013.

[129] Q.-K. Pan, L. Wang, and L. Gao. A chaotic harmony search algorithm for the

flow shop scheduling problem with limited buffers. Applied Soft Computing
11, 5270–5280, 2011.

[130] Q.-K. Pan, L.Wang, L. Gao, andW.D. Li. An EffectiveHybridDiscreteDiffer-

ential Evolution Algorithm for the Flow Shop Scheduling with Intermediate

Buffers. Information Science 181 (3), 668–685, 2011.

[131] C.H. Papadimitriou andP.C.Kanellakis. FlowshopSchedulingwith Limited

Temporary Storage. Journal of the Association for ComputingMachinery (J ACM)
27 (3), 533–549, 1980.

[132] V. Papapanagiotou, R. Montemanni, and L. M. Gambardella. Comparison of

Objective Function Evaluators for a Stochastic Orienteering Problem. 2016
Joint 8th International Conference on Soft Computing and Intelligent Systems
(SCIS) and 17th International Symposium on Advanced Intelligent Systems (ISIS),
465–471, 2016.

[133] G. Perboli, R. Tadei, and D. Vigo. The Two-Echelon Capacitated Vehicle

Routing Problem: Models and Math-Based Heuristics. Transportation Science
45 (3), 364–380, 2011.

[134] A. Pirabán-Ramírez, W. J. Guerrero-Rueda, and N. Labadie. The multi-trip

vehicle routing problemwith increasing profits for the blood transportation:

An iterated local search metaheuristic. Computers & Industrial Engineering
170, 108294, 2022.

201

Bibliography

[135] M. Pranzo. Batch scheduling in a two-machine flow shopwith limited buffer

and sequence independent setup times and removal times. European Journal
of Operational Research 153 (3), 581–592, 2004.

[136] B. Qian, L. Wang, D. X. Huang, and X. Wang. An effective hybrid DE-based

algorithm for flow shop schedulingwith limited buffers. International Journal
of Production Research 47 (1), 1–24, 2009.

[137] B. Qian, L. Wang, D.-X. Huang, W.-l. Wang, and X. Wang. An Effective

Hybrid DE-based Algorithm forMulti-objective Flow Shop Scheduling with

Limited Buffers. Computers & Operations Research 36 (1), 209–233, 2009.

[138] G.Rabadi,M.K.Msakni, E.Rodriguez-Velasquez, andW.Alvarez-Bermudez.

New characteristics of optimal solutions for the two-machine flowshopprob-

lem with unlimited buffers. Journal of the Operational Research Society 70 (6),

962–973, 2019.

[139] S. S. Reddi and C. V. Ramamoorthy. On the Flow-Shop Sequencing Problem

with No Wait in Process. Journal of the Operational Research Society 23 (3),

323–331, 1972.

[140] C. Reeves. A genetic algorithm for flowshop sequencing. Computers & Oper-
ations Research 22 (1), 5–13, 1995.

[141] I. Ribas, R. Companys, and X. Tort-Martorell. Efficient Heuristics for the

Parallel Blocking Flow Shop Scheduling Problem. Expert Systems with Appli-
cations 74 (C), 41–54, 2017.

[142] D. P. Ronconi. A note on constructive heuristics for the flowshop problem

with blocking. International Journal of Production Economics 87, 2004.

[143] V. Roostapour, A. Neumann, and F. Neumann. On the Performance of Base-

line Evolutionary Algorithms on the Dynamic Knapsack Problem. Parallel
Problem Solving fromNature - PPSNXV - 15th International Conference, Coimbra,
Portugal, Part I, 158–169, 2018.

[144] V. Roostapour, A. Neumann, and F. Neumann. Single- and multi-objective

evolutionary algorithms for the knapsack problemwith dynamically chang-

ing constraints. Theoretical Computer Science 924, 129–147, 2022.

202

[145] D. A. Rossit, Ó. C. Vásquez, F. Tohmé,M. Frutos, andM. D. Safe. A combina-

torial analysis of the permutation and non-permutation flow shop schedul-

ing problems. European Journal of Operational Research 289 (3), 841–854, 2021.

[146] D. A. Rossit, F. Tohmé, and M. Frutos. The Non-Permutation Flow-Shop

scheduling problem: A literature review. Omega 77, 143–153, 2018.

[147] D. A. Rossit, F. Tohmé, M. Frutos, M. Safe, and Ó. Vásquez. Critical paths of

non-permutation and permutation flow shop scheduling problems. Interna-
tional Journal of Industrial Engineering Computations 11, 281–298, 2 2020.

[148] Rotenberg (https://math.stackexchange.com/users/242055/rotenberg).Re-
duction from Hamiltonian cycle to Hamiltonian path. Mathematics Stack Ex-

change. 2016. url: https://math.stackexchange.com/q/1290804.

[149] H.-Y. Sang andQ.-K. Pan. An effective invasiveweed optimization algorithm

for the flow shop scheduling with intermediate buffers. 25th Chinese Control
and Decision Conference (CCDC), 861–864, 2013.

[150] B. Sarasola, M. R. Khouadjia, E. Alba, L. Jourdan, and E. Talbi. Flexible

Variable Neighborhood Search in Dynamic Vehicle Routing. Applications of
Evolutionary Computation (EvoApplications 2011), 344–353, 2011.

[151] M. Schilde, K. F. Doerner, R. F. Hartl, and G. Kiechle. Metaheuristics for the

bi-objective orienteering problem. Swarm Intelligence 3, 179–201, 2009.

[152] J. P. Schmitt, F. Baldo, and R. S. Parpinelli. A MAX-MIN Ant System with

Short-Term Memory Applied to the Dynamic and Asymmetric Traveling

Salesman Problem. 7th Brazilian Conference on Intelligent Systems (BRACIS
2018), 1–6, 2018.

[153] W. Schneider. BBBike.org. 2020. url: https://download.bbbike.org/osm/.

[154] D. Schubert. IntegratedOrder Picking andVehicle RoutingOperations – Literature
Review and Further Research Opportunities. 2020. url: https://ssrn.com/

abstract=3631748.

[155] Z. Shen, M. Dessouky, and F. Ordóñez. A two-stage vehicle routing model

for large-scale bioterrorism emergencies. Networks 54 (4), 255–269, 2009.

[156] J. Simons. Heuristics in flow shop scheduling with sequence dependent

setup times. Omega 20 (2), 215–225, 1992.

203

https://math.stackexchange.com/q/1290804
https://download.bbbike.org/osm/
https://ssrn.com/abstract=3631748
https://ssrn.com/abstract=3631748

Bibliography

[157] C. Smutnicki. A two-machine permutation flow shop scheduling problem

with buffers. Operations Research Spektrum 20, 229–235, 1998.

[158] S. A. Soltani andB. Karimi. Cyclic hybrid flow shop scheduling problemwith

limited buffers and machine eligibility constraints. The International Journal
of Advanced Manufacturing Technology 76 (9), 1739–1755, 2015.

[159] W. Souffriau, P. Vansteenwegen, andG. Vanden Berghe. A Path Relinking ap-

proach for the Team Orienteering Problem. Computers & Operations Research
37, 1853–1859, 2010.

[160] W. Souffriau, P. Vansteenwegen, G. VandenBerghe, andD.VanOudheusden.

A greedy randomised adaptive search procedure for the team orienteering

problem. EU/MEeting 2008 on metaheuristics for logistics and vehicle routing,
1–9, 2008.

[161] F. Stavropoulou, P. Repoussis, and C. Tarantilis. The Vehicle Routing Prob-

lem with Profits and consistency constraints. European Journal of Operational
Research 274 (1), 340–356, 2019.

[162] A. Stenger. The prize-collecting vehicle routing problem with non-linear

cost: Integration of Subcontractors into Route Design of Small Package Ship-

pers. Proceedings of the 1st International Conference on Operations Research and
Enterprise Systems (ICORES 2012), 265–273, 2012.

[163] A. Stenger, M. Schneider, and D. Goeke. The prize-collecting vehicle routing

problem with single and multiple depots and non-linear cost. EURO Journal
on Transportation and Logistics 2, 57–87, 2013.

[164] L. Strak, R. Skinderowicz, U. Boryczka, andA.Nowakowski. A Self-Adaptive

Discrete PSOAlgorithmwithHeterogeneous Parameter Values for Dynamic

TSP. Entropy 21 (8), 738, 2019.

[165] V. Strusevich and P. Zwaneveld. On non-permutation solutions to some two

machine flow shop scheduling problems.Mathematical Methods of Operations
Research 39 (3), 305–319, 1994.

[166] Y. Sun, S. Wang, Y. Shen, X. Li, A. T. Ernst, and M. Kirley. Boosting Ant

Colony Optimization via Solution Prediction and Machine Learning. arXiv.
url: https://arxiv.org/abs/2008.04213, 2020.

204

https://arxiv.org/abs/2008.04213

[167] W. Szeto, Y. Wu, and S. C. Ho. An artificial bee colony algorithm for the

capacitated vehicle routing problem. European Journal of Operational Research
215 (1), 126–135, 2011.

[168] E. Taillard. Benchmarks for basic scheduling problems. European Journal of
Operational Research 64, 278–285, 1993.

[169] H. Tang and E. Miller-Hooks. A TABU search heuristic for the team orien-

teering problem. Computers & Operations Research 32 (6), 1379–1407, 2005.

[170] L. Tang and X. Wang. Iterated local search algorithm based on very large-

scale neighborhood for prize-collecting vehicle routing problem. The Inter-
national Journal of Advanced Manufacturing Technology 29, 1246–1258, 2006.

[171] Z. Tao, X. Liu, and P. Zeng. Study onHybrid Flow Shop Scheduling Problem

with Blocking Based on GASA. The Open Automation and Control Systems
Journal 6, 593–600, 2014.

[172] M. F. Tasgetiren, D. Kizilay, Q.-K. Pan, and P. Suganthan. Iterated greedy

algorithms for the blocking flowshop scheduling problem with makespan

criterion. Computers & Operations Research 77, 111–126, 2017.

[173] L. H. Thanh. A Learning Algorithm Based on λ-Policy Iteration and Its Ap-

plication to the Video Game “Tetris Attack”. 46. Jahrestagung der Gesellschaft
für Informatik (INFORMATIK 2016), Klagenfurt, Austria. Ed. by H. C. Mayr

and M. Pinzger. Gesellschaft für Informatik e.V., Bonn, 2157–2162, 2016.

[174] T. C. Thayer and S. Carpin. Solving Large-scale Stochastic Orienteering Prob-

lemswith Aggregation. IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2020), 2452–2458, 2020.

[175] A. Thibbotuwawa, G. Bocewicz, P. Nielsen, and Z. Banaszak. Unmanned

Aerial Vehicle Routing Problems: A Literature Review. Applied Sciences 10
(13), 2020.

[176] D. Trachanatzi, M. Rigakis, M. Marinaki, and Y. Marinakis. A firefly algo-

rithm for the environmental prize-collecting vehicle routing problem. Swarm
and Evolutionary Computation 57, 100712, 2020.

205

Bibliography

[177] T. H. Tran and K. M. Ng. A water-flow algorithm for flexible flow shop

scheduling with intermediate buffers. Journal of Scheduling 14 (5), 483–500,

2011.

[178] E. Tsakirakis, M.Marinaki, Y.Marinakis, andN.Matsatsinis. A similarity hy-

brid harmony search algorithm for the Team Orienteering Problem. Applied
Soft Computing 80, 776–796, 2019.

[179] T. Tsiligiridis. Heuristic Methods Applied to Orienteering. Journal of the Op-
erational Research Society 35, 797–809, 1984.

[180] E. Vallada, R. Ruiz, and J. M. Framinan. New hard benchmark for flowshop

scheduling problems minimising makespan. European Journal of Operational
Research 240, 666–677, 2015.

[181] J. Van Belle, P. Valckenaers, and D. Cattrysse. Cross-docking: State of the art.

Omega 40 (6), 827–846, 2012.

[182] P. Vansteenwegen, W. Souffriau, G. V. Berghe, and D. V. Oudheusden. The

City Trip Planner: An expert system for tourists. Expert Systems with Applica-
tions 38 (6), 6540–6546, 2011.

[183] P. Vansteenwegen, W. Souffriau, and D. V. Oudheusden. The orienteering

problem: A survey. European Journal of Operational Research 209 (1), 1–10,

2011.

[184] J. A. Vázquez-Rodríguez and G. Ochoa. On the automatic discovery of vari-

ants of the NEH procedure for flow shop scheduling using genetic program-

ming. Journal of the Operational Research Society 62 (2), 381–396, 2011.

[185] T. Vidal, G. Laporte, and P. Matl. A concise guide to existing and emerging

vehicle routing problem variants. European Journal of Operational Research 286
(2), 401–416, 2020.

[186] T. Vidal, N. Maculan, L. S. Ochi, and P. H. Vaz Penna. Large Neighborhoods

with Implicit Customer Selection for Vehicle Routing Problems with Profits.

Transportation Science 50 (2), 720–734, 2016.

[187] A. Viktorin, D. Hrabec, and M. Pluhacek. Multi-Chaotic Differential Evolu-

tion For Vehicle Routing Problem With Profits. 30th European Conference on
Modelling and Simulation, 245–251, 2016.

206

[188] H. Wang, W. Wang, H. Sun, C. Li, S. Rahnamayan, and Y. Liu. A modified

cuckoo search algorithm for flow shop scheduling problem with blocking.

2015 IEEE Congress on Evolutionary Computation (CEC), 456–463, 2015.

[189] L. Wang, Q.-K. Pan, P. N. Suganthan, W.-H. Wang, and Y.-M. Wang. A

novel hybrid discrete differential evolution algorithm for blocking flow shop

scheduling problems. Computers & Operations Research 37 (3), 509–520, 2010.

[190] L.Wang,Q.-K. Pan, andM. F. Tasgetiren.Ahybridharmony search algorithm

for the blocking permutation flow shop scheduling problem. Computers &
Industrial Engineering 61 (1), 76–83, 2011.

[191] L. Wang, L. Zhang, and D.-Z. Zheng. An effective hybrid genetic algorithm

for flow shop scheduling with limited buffers. Computers & Operations Re-
search 33, 2960–2971, 2006.

[192] X. Wang, B. L. Golden, and E. A. Wasil. Using a Genetic Algorithm to Solve

the Generalized Orienteering Problem. The Vehicle Routing Problem: Latest
Advances and New Challenges. Ed. by B. Golden, S. Raghavan, and E. Wasil.

Springer US, Boston, MA, 263–274, 2008.

[193] J.-P.Watson, L. Barbulescu, L. D.Whitley, andA. E. Howe. Contrasting Struc-

tured and Random Permutation Flow-Shop Scheduling Problems: Search-

Space Topology and Algorithm Performance. INFORMS Journal on Comput-
ing 14 (2), 98–123, 2002.

[194] H. Wei and J. Yuan. Two-machine flow-shop scheduling with equal process-

ing time on the second machine for minimizing total weighted completion

time. Operations Research Letters 47 (1), 41–46, 2019.

[195] T. Weise, R. Chiong, J. Lassig, K. Tang, S. Tsutsui, W. Chen, Z. Michalewicz,

andX.Yao. BenchmarkingOptimizationAlgorithms:AnOpenSourceFrame-

work for the Traveling Salesman Problem. IEEE Computational Intelligence
Magazine 9 (3), 40–52, 2014.

[196] W. Xu, Z. Xu, J. Peng, W. Liang, T. Liu, X. Jia, and S. K. Das. Approximation

Algorithms for the TeamOrienteering Problem. IEEE Conference on Computer
Communications (IEEE INFOCOM 2020), 1389–1398, 2020.

207

Bibliography

[197] Your Europe. Road transportation workers. 2020. url: https://europa.eu/

youreurope/business/human-resources/transport-sector-workers/

road-transportation-workers.

[198] Y. Yu and T. Li. Scheduling a constrained hybrid flow shop problem by

heuristic algorithm. 26th Chinese Control and Decision Conference (CCDC),
2532–2537, 2014.

[199] G. Zhang and K. Xing. Differential evolution metaheuristics for distributed

limited-buffer flowshop scheduling with makespan criterion. Computers and
Operations Research 108, 33–43, 2019.

[200] S.-J. Zhang and X.-S. Gu. An effective discrete artificial bee colony algo-

rithm for flow shop scheduling problem with intermediate buffers. Journal
of Central South University 22 (9), 3471–3484, 2015.

[201] S. Zhang, J. W. Ohlmann, and B. W. Thomas. Dynamic Orienteering on a

Network of Queues. Transportation Science 52 (3), 691–706, 2018.

[202] T. Zhang, W. Chaovalitwongse, Y.-J. Zhang, and P. Pardalos. The hot-rolling

batch schedulingmethod based on the prize collecting vehicle routing prob-

lem. Journal of Industrial and Management Optimization 5, 749–765, 2009.

[203] Z. Zhang, H. Qin, and Y. Li. Multi-Objective Optimization for the Vehicle

Routing Problem With Outsourcing and Profit Balancing. IEEE Transactions
on Intelligent Transportation Systems 21 (5), 1987–2001, 2020.

[204] H. Zhong, R. W. Hall, and M. Dessouky. Territory Planning and Vehicle

Dispatching with Driver Learning. Transportation Science 41 (1), 74–89, 2007.

[205] Y. Zinder, A. Kononov, and J. Fung. A 5-parameter complexity classification

of the two-stage flow shop scheduling problem with job dependent storage

requirements. Journal of Combinatorial Optimization, 1–34, 2021.

[206] X. Zou, L. Liu, K. Li, and W. Li. A coordinated algorithm for integrated

production scheduling and vehicle routing problem. International Journal of
Production Research 56 (15), 5005–5024, 2018.

208

https://europa.eu/youreurope/business/human-resources/transport-sector-workers/road-transportation-workers
https://europa.eu/youreurope/business/human-resources/transport-sector-workers/road-transportation-workers
https://europa.eu/youreurope/business/human-resources/transport-sector-workers/road-transportation-workers

List of Publications

• H. T. Le, M. Middendorf, and Y. Shi. An Improvement Heuristic Based on Vari-

able Neighborhood Search for Dynamic Orienteering Problems with Changing Node

Values and Changing Budgets. SN Computer Science 3 (4), Bio-inspired Algorithms for
Combinatorial Optimization, 326, 2022.

• P. Geser, H. T. Le, T. Hartmann, and M. Middendorf. On permutation schedules for

two-machine flow shops with buffer constraints and constant processing times on

one machine. European Journal of Operational Research 303 (2), 593–601, 2022.

• E. Kupfer, H. T. Le, J. Zitt, Y.-C. Lin, and M. Middendorf. A Hierarchical Simple

Probabilistic Population-Based Algorithm Applied to the Dynamic TSP. 2021 IEEE
Symposium Series on Computational Intelligence (SSCI), 1–8, 2021.

• H. T. Le, M. Middendorf, and Y. Shi. An Improvement Heuristic Based on Variable

Neighborhood Search for aDynamicOrienteering Problem. Evolutionary Computation
in Combinatorial Optimization (EvoCOP 2021). Ed. by C. Zarges and S. Verel, 68–83,

2021.

• H. T. Le, P. Geser, and M. Middendorf. Iterated Local Search and Other Algorithms

for Buffered Two-Machine Permutation Flow Shops with Constant Processing Times

on One Machine. Evolutionary Computation 29 (3), 415–439, 2021.

• H. T. Le, P. Geser, and M. Middendorf. An Iterated Local Search Algorithm for the

Two-Machine Flow Shop Problem with Buffers and Constant Processing Times on

One Machine. Evolutionary Computation in Combinatorial Optimization (EvoCOP 2019).
Ed. by A. Liefooghe and L. Paquete, 50–65, 2019.

• L. H. Thanh. A Learning Algorithm Based on λ-Policy Iteration and Its Application

to the Video Game “Tetris Attack”. 46. Jahrestagung der Gesellschaft für Informatik (IN-
FORMATIK 2016), Klagenfurt, Austria. Ed. byH. C.Mayr andM. Pinzger. Gesellschaft

für Informatik e.V., Bonn, 2157–2162, 2016.

• T. Le Hoang. A Fuzzy Local Grid Refinement Method for Sparse-Grid-Based Func-

tion Approximations. Proceedings of 6th International Conference of Young Scientists on
Solutions of Applied Problems in Control and Communications, Data Processing and Data
Analysis. Ed. byU. Fissgus, B. Krause, A. Kostygov, A. Petrochenkov, and L.Mylnikov,

116–121, 2015.

List of Figures

2.1 Visualization of an example graph with jobs for the Two-Stage VRP

with Profits and Buffers . 18

2.2 Visualization of an example route for an instance of the Two-Stage

VRP with Profits and Buffers . 22

3.1 Example instance for the Two-Stage VRP with Profits and Buffers

with the additional property that travel times on all edges are zero . 37

3.2 Relations between algorithms . 38

3.3 Visualization for Theorem 3.2.1 . 46

3.4 Structure of an optimal schedule for the case F2|schedType, bJ = c,
intermediateBuffer, sJ = aJ , c ≥ aJ |Cmax 56

3.5 Structure of an optimal schedule for the case F2|schedType, bJ = c,
intermediateBuffer, sJ = aJ , c ≤ aJ |Cmax 57

3.6 Structure of anoptimal (non-permutation) scheduleσ∗ for an instance

Ik (spanning buffer) . 64

3.7 Structure of a best permutation schedule σ∗ for an instance Ik (span-

ning buffer) . 64

3.8 Diagram to visualize the different “states” when scheduling a job j as
the next job in a feasible permutation schedule σP

and the incurred

idle times on M1 and M2 for the instances Ik 67

3.9 Structure of a best permutation schedule σ∗perm for the instances Ik

(intermediate buffer) . 69

3.10 Structure of an optimal non-permutation schedule σ∗ for the in-

stances Ik (intermediate buffer) . 69

211

List of Figures

3.11 Progress curve for an instance using the spanning buffer, sJ = 1,
uniformly random processing times and 150 jobs (left) and an in-

stance with spanning buffer, sJ = aJ for all J, normally distributed

processing times and 100 jobs (right) 83

3.12 Scatter plot of RPD values of the final solution calculated by 2BF-ILS

in relation to the respective RPD values of the other algorithms . . . 85

3.13 Distribution of run times between the standard NEH heuristic and

2BF-OPT on instances of the type F2|prmu, bi = c, spanningBuffer, si =

ai|Cmax for instances with c ≤ aJ (left) and c ≥ aJ (right) for all J . . . 86

4.1 Example instance for the Two-StageVRPwith Profits andBufferswith

the additional property that processing times for all jobs are zero . . 90

4.2 Examples for progress curves and an example for an Orienteering

Problem instance . 108

4.3 Visualization of ECDFs for the instance LGF-Berlin-150-80000 and

LGF-Berlin-100-80000-1with respect to the time measure tm = SS 115

4.4 Scatter plot of average RPD values for the solution quality of VNSOP

at t = 100, 000 FE (left) and at the end of the run (right) in relation to

the respective RPD values of the other algorithms. 117

5.1 Example instance for Lemma 5.1.9 . 143

5.2 Example diagrams for progress curves and empirical cumulative dis-

tribution functions (ECDF) . 176

5.3 Left: Visualization of progress curves for the Omax R, Cmax≤B instance

LGF-gr120-gen4-85.oplib-590 (withn = 120anda spanningbuffer)

and the algorithms with Optlocal = noLS. Right: Scatter plot of aver-
age RPD values for the solution quality with Optpre = LK at the end

of the run in relation to the respective RPD values of algorithms with

different Optpre and Optlocal = noLS 178

5.4 Left: Left: Scatter plot of average RPD values for the solution quality

with Optlocal = LS∗ at the end of the run in relation to the respective

RPD of algorithms with different values for Optlocal and Optpre =

none.Right: Results of the pairwise comparisons between different

Optlocal using the two-sided sign test over all Omax R, Cmax≤B instances. 181

212

List of Figures

5.5 Left: Visualization of progress curves for the Omin Cmax, R≥Q instance

LGF-Leipzig-150-80000-2 and the algorithmswithOptlocal = noLS.
Right: ECDFcurves for theOmin Cmax, R≥Q instanceLGF-Berlin-50-80000-1

and for the algorithms with Optlocal = noLS. 183

5.6 Left: Scatter plot of average RPD values for the solution quality with

Optpre = NEH at the end of the run in relation to the respective

RPD values of algorithms with different Optpre and Optlocal = noLS.
Right: ECDFcurves for theOmin Cmax, R≥Q instanceLGF-Berlin-100-80000-1

for the algorithms with Optpre = none. 185

213

List of Tables

3.1 Overview of metaheuristics that have been applied to flow shops

with limited buffers (“Limited Buffer FS”) as well as blocking flow

shops (“Blocking FS”). 41

3.2 Results for the configuration of numerical parameters for 2BF-ILS,

HVNS and DABC as calculated by irace 79

3.3 Relative area under curve (AUC) values for PC diagrams which were

calculated for each algorithm as well as each time measure and aver-

aged over different subsets of instances 81

3.4 Relative area under curve (AUC) values for ECDF curves, averaged

over different sets of instances . 82

3.5 Results of the pairwise comparisons between the algorithms using

the two-sided sign test for both sets of flow shop problems 84

4.1 Overview of the evaluation metrics used during the computational

experiments. 112

4.2 Average values for AUCnorm
I,A for the progress curve diagrams per time

measure, aggregated over different subsets of instances 113

4.3 Average values for AUCnorm
I,A with respect to ECDF diagrams per time

measure, aggregated over different subsets of instances 113

4.4 Results of the pairwise comparisons between the algorithms using

the two-sided sign test over all Orienteering Problem instances (n =

22) at certain points in time. 116

5.1 Overview of the theoretical properties for the Two-Stage VRP with

Profits and Buffers and its subcases regarding computational com-

plexity and potential gaps between permutation schedules and non-

permutation schedules . 160

215

List of Tables

5.2 Average AUCnorm
I,A for different values of Optpre with Optlocal = noLS

on Omax R, Cmax≤B instances with respect to PC diagrams (upper half)

and ECDF diagrams (lower half) per time measure, aggregated over

different subsets of instances . 177

5.3 Average AUCnorm
I,A for different values of Optlocal with Optpre = none

on Omax R, Cmax≤B instances with respect to PC diagrams (upper half)

and ECDF diagrams (lower half) per time measure, aggregated over

different subsets of instances . 179

5.4 Average AUCnorm
I,A for different values of Optpre with Optlocal = noLS

on Omin Cmax, R≥Q instances with respect to PC diagrams (upper half)

and ECDF diagrams (lower half) per time measure, aggregated over

different subsets of instances . 182

5.5 Average AUCnorm
I,A for different values of Optlocal with Optpre = none

on Omin Cmax, R≥Q instances with respect to PC diagrams (upper half)

and ECDF diagrams (lower half) per time measure, aggregated over

different subsets of instances. 184

216

List of Algorithms

3.1 2BF-OPT for F2|prmu, bJ = c, spanningBuffer, sJ = aJ , c ≥ aJ |Cmax . . . 53

3.2 Modified NEH heuristic (mNEH) . 73

3.3 2BF-ILS . 75

4.1 VNSOP . 105

5.1 Local Search subroutine of 2BF-ILS . 169

5.2 General structure of an algorithm in the ISAVaN framework 170

5.3 Initialization routine Init used for Omin Cmax, R≥Q 171

5.4 Initialization routine Init used for Omax R, Cmax≤B 171

217

Bibliographische Beschreibung:

Le, Hoang Thanh

Two-Stage Vehicle Routing Problems with Profits and Buffers: Analysis and Meta-

heuristic Optimization Algorithms

Universität Leipzig, Dissertation

220 S., 206 Lit., 25 Abb., 14 Tab.

Wissenschaftlicher Werdegang

Juli 2012 Ludwigsgymnasium Köthen

Erwerb der allgemeinen Hochschulreife

Oktober 2012–März 2016 Hochschule Anhalt

Studiengang: Angewandte Informatik

Abschluss: Bachelor of Science

April 2016–März 2018 Universität Leipzig

Studiengang: Informatik

Abschluss: Master of Science

seit April 2018 Universität Leipzig

Wissenschaftlicher Mitarbeiter

Forschungsgruppe: Schwarmintelligenz und Komplexe Systeme

Fakultät für Mathematik und Informatik

Selbständigkeitserklärung

Hiermit erkläre ich, die vorliegende Dissertation selbständig und ohne unzulässi-

ge fremde Hilfe angefertigt zu haben. Ich habe keine anderen als die angeführten

Quellen und Hilfsmittel benutzt und sämtliche Textstellen, die wörtlich oder sinn-

gemäß aus veröffentlichten oder unveröffentlichten Schriften entnommen wurden,

und alle Angaben, die auf mündlichen Auskünften beruhen, als solche kenntlich

gemacht. Ebenfalls sind alle von anderen Personen bereitgestellten Materialen oder

erbrachten Dienstleistungen als solche gekennzeichnet.

Ort:

Datum: Hoang Thanh Le

	Introduction
	Background
	Problem Motivation
	Formal Definition of the Two-Stage VRP with Profits and Buffers
	Review of Literature on Related Vehicle Routing Problems
	Two-Stage Vehicle Routing Problems
	Vehicle Routing Problems with Profits
	Vehicle Routing Problems with Capacity- or Resource-based Restrictions

	Preliminary Remarks on Subsequent Chapters

	The Two-Machine Flow Shop Problem with Buffers
	Review of Literature on Flow Shop Problems with Buffers
	Algorithms and Metaheuristics for Flow Shops with Buffers
	Two-Machine Flow Shop Problems with Buffers
	Blocking Flow Shops
	Non-Permutation Schedules
	Other Extensions and Variations of Flow Shop Problems

	Theoretical Properties
	Computational Complexity
	The Existence of Optimal Permutation Schedules
	The Gap Between Permutation Schedules an Non-Permutation Schedules

	A Modification of the NEH Heuristic
	An Iterated Local Search for the Two-Machine Flow Shop Problem with Buffers
	Computational Evaluation
	Algorithms for Comparison
	Generation of Problem Instances
	Parameter Values
	Comparison of 2BF-ILS with other Metaheuristics
	Comparison of 2BF-OPT with NEH

	Summary

	The Orienteering Problem
	Review of Literature on Orienteering Problems
	Theoretical Properties
	A Variable Neighborhood Search for the Orienteering Problem
	Computational Evaluation
	Measurement of Algorithm Performance
	Choice of Algorithms for Comparison
	Problem Instances
	Parameter Values
	Experimental Setup
	Comparison of VNSOP with other Metaheuristics

	Summary

	The Two-Stage Vehicle Routing Problem with Profits and Buffers
	Theoretical Properties of the Two-Stage VRP with Profits and Buffers
	Computational Complexity of the General Problem
	Existence of Permutation Schedules in the Set of Optimal Solutions
	The Gap Between Permutation Schedules an Non-Permutation Schedules
	Remarks on Restricted Cases
	Overview of Theoretical Results

	A Metaheuristic Framework for the Two-Stage VRP with Profits and Buffers
	Experimental Results
	Problem Instances
	Experimental Results for OmaxR, CmaxB
	Experimental Results for OminCmax, RQ

	Summary

	Bibliography
	List of Figures
	List of Tables
	List of Algorithms

