
Robust Dynamic and Stochastic
Scheduling In Permutation Flow Shops

Mohanad Riyadh Saad AL-Behadili

A thesis submitted for the degree of
Doctor of Philosophy

The Logistics, Operational Research and Analytics Group
Department of Mathematics

University of Portsmouth

January 2018

Declaration

Whilst registered as a candidate for the above degree, I have not been registered for any other
research degree award. The results and conclusions embodied in this thesis are the work of the
named candidate and have not been submitteed for any other academic award.

Mohanad Riyadh Saad AL-Behadili
January 2018

Acknowledgements

I would like to extend thanks to the many people, in different countries, who so generously
contributed to the work presented in this thesis. I would express my heartfelt gratefulness to
my family. Without the support and encouragement of them, I would never have had the ability
to finish this thesis, and for their belief in me I will be forever grateful and thankful. To my
wonderful parents, they have been there for me all the time. Thank you for all you have done
for me. To my wife and daughters, I am so sorry for the long after-work hours necessary to
complete this thesis, but I am glad I was able to make you proud.
I would also like to thank my supervisors, Professor Djamila Ouelhadj and Professor Dylan
Jones for their valuable support, motivation, encouragement, insightful comments, enthusiasm
and continuous guidance during the development of this thesis. They were always open to
discussing and clarifying different concepts and made me feel part of the department. Similar,
profound gratitude to Professor Juan Angel at the Open University of Catalonia (Spain) and
Professor Rubén Ruiz at Polytechnic University of Valencia (Spain) for sharing their knowledge,
I cannot thank them enough for that.
I would also like to thank my sponsor, the Department of Mathematics, College of Science,
University of Basra in Iraq, not only for providing the funding which allowed me to undertake
this research, but also for the support provided by the staff members of the Department during
the whole period of study.
Last, but not the least, I would like to thank my fabulous friends in the office for keeping me
smiling, the fantastic staff in the of the Department of Mathematics and other people at the
University of Portsmouth for their support and friendship, I am also indebted to them for their
help, and everyone else who has been supportive of my work so far.

Dedication

This thesis is dedicated to the souls of brave men and women who defend my country against
the terrorism.

Abstract

The Permutation Flow Shop Scheduling Problem (PFSP) is a fundamental problem underlying
many operational challenges in the field of logistic and supply chain management. The PFSP
is a well-known NP-hard problem whereby the processing sequence of the jobs is the same
for all machines. The dynamic and stochastic PFSP arise in practice whenever a number of
different types of disruptions or uncertainties interrupt the system. Such disruptions could lead
to deviate the disrupted schedule from its initial plan. Thus, it is important to consider different
solution methods including: an optimisation model that minimise different objectives that take
into account stability and robustness, efficient rescheduling approach, and algorithms that can
handle large size and complex dynamic and stochastic PFSP, under different uncertainties.
These contributions can be described as follows:

1. Develop a multi-objective optimisation model to handle different uncertainties by min-
imising three objectives namely; utility, instability and robustness.

2. Propose the predictive-reactive approach to accommodate the unpredicted uncertainties.

3. Adapt the Particle Swarm Optimisation (PSO), the Iterated Greedy (IG) algorithm and
the Biased Randomised IG algorithm (BRIG) to reschedule the PFSP at the reactive stage
of the predictive-reactive approach.

4. Apply the Simulation-Optimisation (Sim-Opt) approach for the Stochastic PFSP (SPFSP)
under different uncertainties. This approach consists of two methods, which are: the novel
approach that hybridise the Monte Carlo Simulation (MCS) with the PSO (Sim-PSO)
and the Monte Carlo Simulation (MCS) with the BRIG (Sim-BRIG).

The main aim of using the multi-objective optimisation model with different solution methods
is to minimise the instability and keep the solution as robust as possible. This is to handle
uncertainty as well as to optimise against any worst instances that might arise due to data
uncertainty. Several approaches have been proposed for the PFSP under dynamic and stochastic
environments, where the PSO, IG and BRIG are developed for the PFSP under different
uncertainties. Also, hybridised the PSO and the BRIG algorithms with the MCS to deal with

x

SPFSP under different uncertainties. In our version of the approach, the first one is a PSO
algorithm step after which an MCS is incorporated in order to improve the final solutions of
problem. The second approach proposed the hybridisation of the BRIG algorithm with MCS to
be applied on the SPFSP under different uncertainties. The developed multi-objective model
and proposed approaches are tested on benchmark instances proposed by (Katragjini et al.,
2013) in order to evaluate the effectiveness of the proposed methodologies, this benchmark is
based on the well-known instances of Taillard’s (Taillard, 1993). The computational results
showed that the proposed methodologies are capable of finding good solutions for the PFSP
under different uncertainties and that they are robust for the dynamic and stochastic nature of
the problem instances. We computed the best solutions and found that they could be highly
promising in minimising the total completion time. The results obtained are quite competitive
when compared to the other models found in the literature. Also, some proposed algorithms
show better performance when compared to others.

Table of contents

List of figures xv

List of tables xvii

Glossary of Symbols and Abbreviations xix

1 Background and motivation 1
1.1 Introduction . 1
1.2 Definition of scheduling in a manufacturing system 3
1.3 Classification of scheduling problems . 4
1.4 Computational complexity of scheduling problems 7
1.5 Performance measures . 7
1.6 Research aims and objectives . 10
1.7 Organisation of thesis . 11

2 Literature review 15
2.1 Introduction . 15
2.2 Permutation Flow Shop Scheduling Problem 17

2.2.1 Exact methods . 17
2.2.2 Heuristic methods . 18
2.2.3 Metaheuristic and other methods . 19

2.3 Mathematical Optimisation models . 20
2.3.1 Multi-objective Optimisation models 21

2.4 Static Scheduling Approaches . 23
2.5 Dynamic Scheduling Approaches . 26

2.5.1 Disruptions classification . 29
2.5.1.1 Machine breakdown . 30
2.5.1.2 New job arrivals . 32
2.5.1.3 Scheduling in the presence of different disruptions 34

xii Table of contents

2.6 Solution methods related to dynamic and static scheduling 35
2.6.1 Particle Swarm Optimisation . 35
2.6.2 NEH Algorithm . 37
2.6.3 Iterated Greedy method . 39
2.6.4 Biased Randomisation . 41

2.7 Stochastic Scheduling Approaches . 41
2.7.1 Simulation-Optimisation . 43

2.8 Benchmark problem . 45
2.9 Conclusion . 46

3 Multi-objective Optimisation model for Robust PFSP under different disruptions 49
3.1 Introduction . 49
3.2 The proposed multi-objective optimisation model for robust PFSP 49
3.3 Weighted objectives . 54

3.3.1 Initial estimate of weights . 54
3.3.2 A revised weight sensitivity algorithm for MSR model 57

3.4 Uncertainties and real-time events . 57
3.4.1 Machine breakdown . 58
3.4.2 New jobs arrivals . 58
3.4.3 Stochastic processing time . 59
3.4.4 Interaction between real-time events 59

3.5 Conclusion . 59

I Dynamic PFSP under different real-time events 61

4 Particle Swarm Optimisation Algorithm for Robust PFSP 63
4.1 Introduction . 63
4.2 Predictive-reactive based PSO framework for robust PFSP 64

4.2.1 The initialisation of the PSO algorithm for the PFSP 67
4.2.2 PSO Algorithm . 68
4.2.3 Decoding of Solution . 70

4.3 An Example of the PSO Algorithm for the PFSP 71
4.4 Experiment Results . 75
4.5 Conclusion . 80

Table of contents xiii

5 Iterated Greedy Algorithm for Robust PFSP 81
5.1 Introduction . 81
5.2 Predictive-reactive based IG framework for robust PFSP 82

5.2.1 The NEH constructive heuristic . 83
5.2.2 Local Search approach . 84
5.2.3 IG algorithm . 87

5.3 Experiment Results . 88
5.3.1 Comparison Study between PSO and IG algorithms 91

5.4 Conclusion . 93

6 Biased Randomised Iterated Greedy Algorithm for Robust PFSP 95
6.1 Introduction . 95
6.2 Biased Randomised Heuristic . 96
6.3 Predictive-reactive based BRIG framework for robust PFSP 98

6.3.1 BRIG algorithm . 99
6.4 Experiment Results . 100

6.4.1 Comparative study between PSO, IG and BRIG algorithms 103
6.5 Conclusion . 106

II Stochastic PFSP under different real-time events 109

7 Simulation Particle Swarm optimisation for Robust SPFSP 111
7.1 Introduction . 111
7.2 Simulation based Optimisation . 113
7.3 The hybrid Sim-PSO framework for SPFSP under different disruptions 114

7.3.1 Sim-PSO Approach . 115
7.4 Experiment Results . 123

7.4.1 Using reliability-based methods to compare different solutions 128
7.5 Conclusion . 132

8 Sim-Biased Randomised Iterated Greedy for Robust SPFSP 135
8.1 Introduction . 135
8.2 The framework of Sim-BRIG approach for SPFSP under different disruptions 136

8.2.1 Integrated Simulation with the BRIG algorithm 136
8.2.2 The Sim-BRIG algorithm . 137
8.2.3 More details about Sim-BRIG algorithm 138

8.3 Experimental results . 139

xiv Table of contents

8.3.1 Comparison between Sim-POS and Sim-BRG 144
8.4 Conclusions . 146

9 Conclusion and future research 149
9.1 Conclusion . 149
9.2 Extensions and future work . 151

References 153

List of figures

1.1 Tardiness and Lateness functions . 8

2.1 Structure of the literature review . 16
2.2 Static scheduling solution methods . 24
2.3 Dynamic scheduling solution methods . 27
2.4 Predictive-Reactive approach . 29

3.1 Example of calculating Max(Un) for PFSP where n = 5 and m = 3 52
3.2 Example showing how to determine j′ and n′ for PFSP where n = 5 and m = 3 52
3.3 The revised weight sensitivity algorithm (Jones, 2011) 56

4.1 Predictive-Reactive based PSO approach . 65
4.2 General structure of the PSO algorithm . 67
4.3 PSO algorithm for the PFSP . 71
4.4 RPD for all models with weight W8 using the PSO algorithm 78
4.5 95% Tukey confidence interval for all models using the PSO algorithm 79

5.1 Predictive-Reactive based IG approach . 83
5.2 The NEH heuristic Algorithm . 84
5.3 LS moving through the solution space towards a local optimum 86
5.4 Iterative improvement of neighbourhood LS (Ruiz & Stützle, 2007) 87
5.5 The IG Algorithm . 88
5.6 RPD for all models with weight W8 using the IG algorithm 90
5.7 95% Tukey confidence interval for all models using the IG algorithm 91
5.8 The average RPD values obtained by using the PSO and IG algorithms with

weights W6 and W8 . 92

6.1 BR selection versus uniform selection . 97
6.2 Predictive-Reactive based BRIG approach 99
6.3 The BRIG algorithm . 100

xvi List of figures

6.4 RPD for all models with weight W8 using the BRIG algorithm 102
6.5 95% Tukey confidence intervals for all models using the BRIG algorithm . . 103
6.6 The average RPD values obtained by using the PSO, IG and BRIG algorithms 104
6.7 95% Tukey confidence intervals for PSO, IG and BRIG algorithms 105

7.1 Overview scheme of the Sim-Opt approach 114
7.2 Flowchart diagram of the Sim-PSO algorithm 119
7.3 Flowchart diagram of the LS algorithm . 121
7.4 Flowchart diagram of the MCS technique 122
7.5 Using MCS outputs to compare different solutions for problem of size 20×5

with k = 0.1,5 and weight W8 . 129
7.6 Using MCS outputs to compare different solutions for problem of size 50×10

with k = 0.1,5 and weight W8 . 129
7.7 Using MCS outputs to compare different solutions for problem of size 200×20

with k = 0.1,5 and weight W8 . 130
7.8 Survival plot with intersecting solutions for problem 20×5 and k = 0.1,5 . . 131
7.9 Survival plot with intersecting solutions for problem 50×10 and k = 0.1,5 . 131
7.10 Survival plot with intersecting solutions for problem 200×20 and k = 0.1,5 . 132

8.1 The integrated MCS approach and BRIG algorithm 137
8.2 Using MCS outputs to compare different solutions for problem of size 20×5

with k = 0.1,5 and weight W6 . 142
8.3 Using MCS outputs to compare different solutions for problem of size 50×10

with k = 0.1,5 and weight W6 . 143
8.4 Using MCS outputs to compare different solutions for problem of size 200×20

with k = 0.1,5 and weight W6 . 143
8.5 Survival plot with intersecting solutions for problem 20×5 and k = 0.1,5 . . 143
8.6 Survival plot with intersecting solutions for problem 50×10 and k = 0.1,5 . 144
8.7 Survival plot with intersecting solutions for problem 200×20 and k = 0.1,5 . 144
8.8 RPD values for Sim-PSO and Sim-BRIG with k = 0.1,5 and W6, W8 145
8.9 95% Tukey confidence intervals for Sim-PSO and Sim-BRIG with k = 0.1,5

and W6, W8 . 146

List of tables

3.1 The weights values . 57

4.1 Jobs processing times . 72
4.2 Positions, velocity and sequence of jobs . 72
4.3 Fitness functions . 73
4.4 Positions, velocity and sequence of jobs . 74
4.5 Fitness functions . 74
4.6 RPD for MSR and bi-obj models using the PSO algorithm 77
4.7 ANOVA between models using the PSO Algorithm 79
4.8 Computational time of PSO algorithm in seconds 80

5.1 RPD for MSR and bi-obj models using the IG algorithm 89
5.2 ANOVA between models using the IG Algorithm 91
5.3 Computational time of PSO and IG algorithms in seconds 92

6.1 RPD for MSR and bi-obj models using the BRIG algorithm 101
6.2 ANOVA between models using the BRIG Algorithm 102
6.3 Computational time of PSO, IG and BRIG algorithms in seconds 105

7.1 The average DRPD and SRPD for weights W1-W4 using the Sim-PSO 126
7.2 The average DRPD and SRPD for weights W5-W8 using the Sim-PSO 127
7.3 The average DRPD and SRPD for weights W9-W10 using the Sim-PSO 128

8.1 The average DRPD and SRPD for weights W1-W4 using the Sim-BRIG 140
8.2 The average DRPD and SRPD for weights W5-W8 using the Sim-BRIG 141
8.3 The average DRPD and SRPD for weights W9-W10 using the Sim-BRIG . . . 142

Glossary of Symbols and Abbreviations

AIS Artificial Immune System

B&B Branch and Bound

BRIG Biased Randomised Iterated Greedy

BRNEH Biased Randomised NEH

BR Biased Randomised

COP Combinatorial Optimisation Problems

DDT Discretised Decreasing Triangular Distribution

DE Differential Evolution

FFSP Flexible Flow shop Scheduling Problem

FJSP Flexible Job Shop Scheduling Problem

FSP Flow Shop Scheduling Problem

GA Genetic Algorithm

GC Greedy Constructive

IG Iterated Greedy

ILS Iterated Local Search

IPG Iterated Pareto Greedy

JSP Job Shop Scheduling Problem

LS Local Search

xx Glossary of Symbols and Abbreviations

MA Memetic Algorithm

MCS Monte Carlo Simulation

MILP Mixed Integer Linear Programming

MSA Memetic Search Algorithm

MSR Our proposed Multi-Objective Model

PFSP Permutation Flow shop Scheduling Problem

PMSP Parallel Machine Scheduling Problem

PSO Particle Swarm Optimisation

SA Simulated Annealing

Sim-BRIG Simulation-Biased Randimised Iterated Greedy

Sim-Opt Simulation-Optimisation

Sim-PSO Simulation-Particle Swarm Optimisation

SMSP Single Machine Scheduling Problem

SPFSP Stochastic Permutation Flow shop Scheduling Problem

TFT Total Flow Time

TS Tabu Search

TWT Total Weighted Tardiness

VN Variable Neighbourhood

VRP Vehicle Routing Problem

Chapter 1

Background and motivation

1.1 Introduction

Scheduling is a decision-making process that is vital in many manufacturing and services
industries. It deals with the assignment of a set of jobs to a set of machines in a reasonable
amount of time with the goal of optimising one or more objectives (Pinedo, 2016). Scheduling
problems are classified into different types of problems (Pinedo, 2016). One of the most
important scheduling problems is the PFSP, in this problem it does not allow for the job
sequence to change between machines. Because of the priority of the PFSP, we will consider
this problem to be the subject of study in this thesis. There are also different categories
of scheduling problems environments, these are; static, dynamic and stochastic scheduling
problems (Jarboui et al., 2013). The real-life scheduling problems in manufacturing systems are
dynamic and stochastic in nature. Due to the importance of dynamic and stochastic scheduling
in real practical life, researchers addressed the nature of the gap between the scheduling theory
and scheduling practice. There was a considerable gap until the late 1980s before interest
in the subject was rekindled. Considerable studies have been done in the last forty years for
scheduling problems under dynamic and stochastic environments. In dynamic, stochastic
manufacturing environments, managers, production planners, and supervisors must not only
generate high-quality schedules, but also react quickly to unexpected events and subsequently
revise schedules in a cost-effective manner. These events are generally difficult to take into
consideration while generating a schedule, disturbing the system and generating considerable
differences between the predetermined schedule and its actual realisation on the shop floor.
Rescheduling is then practically mandatory in order to minimise the effect of such disturbances
in the performance of the system. There are many types of disturbances that can upset the
plan. Rescheduling is the process of updating an existing production schedule in response

2 Background and motivation

to disruptions or other changes. The following is a partial list of possible disruptions among
others:

• New (urgent) job Arrival.

• Cancellation of a job, change to a job’s due date, or other change in job specification.

• Machine breakdown, repair, or other failure in status.

• Delay in the arrival of required material or other problem with material delivery.

• Absentee workers or changes to worker assignments.

• Incorrect predictions of setup time, processing time, or other actions.

• Poor quality parts that require rework or manufacture of new parts.

There exists a vast variety of solution methods that have been proposed for a large range
of scheduling problems (Pinedo, 2016). In particular, different solution methods have been
proposed for dynamic and stochastic scheduling problems. Mathematical optimisation models
have been used widely as solution method along with the exact and approximate techniques
to solve the PFSPs. However, PFSPs in real shop floor mainly operates in highly dynamic
and stochastic environments, where there are different real-time events and uncertainties that
could lead to the schedule deviating from its initial plan, and therefore a previously feasible
schedule may turn infeasible when it is released to the shop floor. Such a schedule is defined
as schedule nervous (Steele, 1975), or often referred to as schedule instability. The instability
could be disconcerting to production schedulers who often find that changes come faster than
they could effectively respond to. Now, after more than 40 years of Steele’s publication on
this issue, schedule instability is still an ongoing issue both in real practice as well as in
academic research despite the significant advancement of scheduling systems. For this, it is
very important to consider optimisation models that aim to reduce instability, robustness and
also utility (depending on the problem objectives). Rescheduling is one of main procedures that
are used to accommodate the dynamic disruptions. It uses different approaches typical to the
problem environments and the disruption types. The most well-known efficient approach used
in the dynamic scheduling is the predictive-reactive approach, which is considered in this thesis.
This approach is triggered at the time of disruption, and it uses any suitable algorithm at the
reactive stage in order to accommodate the disruptions. Regarding the solution algorithms, exact
or complete methods are the first proposed methods for different scheduling problems under
dynamic real-time events or stochastic uncertainties, these methods have mainly concentrated
on finding a guaranteed optimal solution for every instances of finite size in a specific time.

1.2 Definition of scheduling in a manufacturing system 3

The most proposed well-known exact method for different scheduling problem are Lagrangian
relaxation, dynamic programming, Branch and Bound (B&B), and Branch and Cut. Since the
PFSP belongs to the class of NP-hard (mathematically intractable) problems (Graham et al.,
1979), the computational complexity of the scheduling problem has special attention in the
literature of scheduling. It is defined as a maximum number of computational steps required to
reach an optimal solution. According to the concept of complexity, it may not be possible to
find an optimal solution using the classical algorithms such as exact methods for medium or
large scale problems of NP-hard class, as is the case of scheduling problems (in PFSP, medium
instances size ranging from 50×5 to 100×20 and large size problems ranging from 200×10
to 500×20). Hence, alternative methods are proposed, such as; heuristics, metaheuristics, and
so on. Regarding the stochastic scheduling problems, there are different techniques that have
been used in the literature. Recently, the Sim-Opt methods have been applied successfully in
many Combinatorial Optimisation Problems (COP), more precisely, in the SPFS area. In this
thesis, we consider the dynamic and stochastic PFSP under different types of uncertainties.
To solve this problem, we develop a multi-objective optimisation model that consider utility,
stability and robustness and proposed the predictive-reactive approach with different efficient
heuristics, metahueristics and Sim-Opt methods.

1.2 Definition of scheduling in a manufacturing system

Scheduling is the main key for most service and manufacturing systems. It is convenient
to adopt manufacturing terminology with the definition of scheduling, where jobs represent
activities and machines represent resources, while the range of application areas for scheduling
theory are not limited to manufacturing but are extensive. Some of the realistic situations in
which scheduling problems exist are:

• Technological planning of how the jobs should be completed in a manufacturing unit.

• Scheduling of aircraft waiting for landing clearance.

• Ordering of jobs for processing in a manufacturing plant.

• Scheduling of jobs under rental conditions in a non-deterministic environment.

• Scheduling of patients waiting in a hospital for different types of tests.

Currently, manufacturing services are facing new challenges for example, shorter product
life cycles, changes in market demand, global competition, and so on. It is crucial for the
manufacturing industries to improve the performance of their production scheduling systems

4 Background and motivation

under different internal and external uncertainties such as job cancellation, new job arrivals,
machine breakdown, stochastic processing times, and so on. Scheduling solution methods are
very important to reduce the production cost in a manufacturing procedure in order to keep the
company in the forefront of the competitive environment. Different scheduling approaches are
required to allocate jobs to machines, when the manufacturing process experience a lack of
resources and limited execution time or are facing different disruptions. It is vital for industries
to meet the deadline committed to a customer in order to prevent failure, which may lead
to a loss in customer satisfaction. Therefore, the industries are required to schedule tasks in
the shop floor in an efficient method. The combinatorial scheduling problems belong to the
class of representatives of problems. Thus, they are seeking a local optimal solution in the
finite set of potential solutions. Production scheduling in manufacturing systems is continually
assessed so as to manufacture reliable and high-quality merchandises at the given time and
without any delays. These objectives can be achieved by manufacturers relying on some tools
such as shop floor scheduling process, which is considered as the most substantial factor in
the planning of manufacturing systems (Suwa & Sandoh, 2013). The scheduling problem is
employed for different applications of technology and human resources to fulfill customer’s
demands. This function must organise the simultaneous execution of several activities while
accounting for constraints on available resources. According to the shop floor conditions,
jobs and machines perhaps take various shapes. The scheduling problem could have different
formulations depending on the type of the problem, the sets of jobs, machines, the range
of resources and the performance criteria during the optimisation process. For performance
criteria, there are different performance measures that are employed to optimise schedules. For
example, the objective function may consider reducing the total completion time to complete
a sequence of jobs, also the objective function may minimise the Total Weighted Tardiness
(TWT), and so on.

1.3 Classification of scheduling problems

As scheduling is the main key for manufacturing systems, it also plays an important role in
most information processing environments. According to Chryssolouris (2006), there are four
dimensions to classifying scheduling problems as follows:

◦ Requirement generations.

◦ Processing complexity.

◦ Scheduling criteria.

1.3 Classification of scheduling problems 5

◦ Scheduling environment.

The first dimension, is referred to as the distinction between what is called an open shop
versus a closed shop requirements generation. The second dimension, processing complexity,
is concerned primarily with the number of processing steps associated with each production
task or item. Scheduling criteria are measures by which schedules are to be evaluated, and
may be classified broadly into schedule costs and schedule performance measures. The last
dimension is the scheduling environments. A wide range of classification of scheduling problem
models are introduced according to their environment nature. The scheduling environment is
an important component of the rescheduling framework, which is to identify the set of jobs that
need to be scheduled. The classifications of scheduling according to the problem environments
are as follows:

1. Static scheduling
The scheduling problems in which the nature of job arrival is different and a set of jobs
over time does not change are called static scheduling problems. The setup times of jobs
are available beforehand. In other words, the scheduling problems when all elements of
the problems such as the arrival state of jobs at a shop floor, due date of jobs, ordering,
processing time, availability of machines etc. do not include stochastic factor and are
determined in advance are included in this category. Scheduling is called deterministic if
all the attributes needed for constructing a schedule take constant values and they are
known in advance.

2. Dynamic scheduling
The problem of scheduling in the presence of real-time events, termed dynamic schedul-
ing (Ouelhadj & Petrovic, 2008). An example for dynamic scheduling problem where a
set of jobs changes over time and arrival rate of jobs is different. In other words, random
disruptions may interrupt the system, which could change the scheduling plans. The
schedule, which is actually executed on the shop floor, is called the realised (actual)
schedule. This schedule may substantially differ from the initial schedule, depending on
the degree or intensity of disruptions.

3. Stochastic scheduling
The problem is stochastic if some information is not known exactly, i.e. at least one of
the problem elements includes a stochastic factor. For example, the processing time of
jobs are modelled as random variables. The stochastic processing could follow different
disruptions depending on the use of models and systems, the following distributions are
mainly considered in the literature.

6 Background and motivation

(a) Uniform distribution; A processing time pi j can uniformly be included between
two values a and b. Then, pi j follows a uniform distribution over the interval [a,b].
This kind of distribution is used to provide a simplified model of real industrial
cases. For instance, it has already been used in Gourgand et al. (2010) and Kouvelis
et al. (2000).

(b) Exponential distribution. A processing time pi j may follow an exponential distribu-
tion. Exponential distributions are commonly used to model random events that
may occur with uncertainty. This is typically the case when a machine is subject to
unpredictable breakdowns. For example, processing times have been modeled by
an exponential distribution in Cunningham & Dutta (1973) and Ku & Niu (1986)
among others.

(c) Normal distribution. A processing time pi j may follow a normal distribution
N(µ,σ) where µ stands for the mean and σ stands for the standard deviation. This
kind of distribution is especially usual when human factors are observed. A process
may also depend on unknown or uncontrollable factors and some parameters can
be described in a vague or ambiguous way by the analyst. Therefore, processing
times vary according to a normal distribution Gourgand et al. (2010) and Wang et al.
(2005).

(d) Log-normal distribution. A random variable X follows a log-normal distribu-
tion with parameters µ and σ if log X follows a normal distribution N(µ,σ) .
The log-normal distribution is often used to model the influence of uncontrolled
environmental variables. For instance, this modeling has already been used in
Dauzére-Pérés et al. (2010).

The scheduling problems are also categorised into the following problems Pinedo (2016):

• Single Machine Scheduling Problem (SMSP): This problem is defined as the process
of assigning a number of jobs to a single machine.

• Parallel Machine Scheduling Problem (PMSP): In this problem, similar type of ma-
chines are available in multiple numbers and jobs can be scheduled over these machines
simultaneously.

• Flow Shop Scheduling Problem: In FSP, there are n jobs where each job has to be
processed on a series of m machines such that all jobs have to follow the same route.

• Job Shop Scheduling Problem (JSP): In this problem, there are n jobs and m machines
where each job has its own predetermined route through the machines to follow.

1.4 Computational complexity of scheduling problems 7

• Open Shop Scheduling Problem: In this case, there are n jobs where each job has to
be processed on each one of the m machines. There are no restrictions with regard to the
routing of each job through the machine environment, this mean different jobs may have
different routes. Also, some of the jobs processing times may be zero.

1.4 Computational complexity of scheduling problems

Computational complexity of a problem is defined as a maximum number of computational
steps required to reach an optimal solution. The concept of complexity point out to the
computing attempt needed by a solution algorithm. Computing attempt is represented by
order-of-magnitude notation. Assume a specific proposed algorithm is employed to find the
solution for problem of size n (for PFSP n represents the number of jobs). Then the total
number of computations needed by the algorithm is usually restricted by a function of the
number of jobs n. When the number of required computations is a polynomial function of n,
then the algorithm is polynomial. For example, the order of magnitude function of n2, which is
denoted as O(n2). On contrary, when the function order of magnitude is not polynomial then
the algorithm is called an exponential or non-polynomial. For instance, the order of magnitude
function of 2n is an exponential and it denotes as O(2n). Depending on the problem complexity
in the literature, all problems are classified into P (polynomial) class and NP (non-polynomial)
class. The first type of classes P is defined as all problems with the property that the execution
time of the solution algorithm increases polynomially with the size of problem. On the other
hand, the NP class consists of the problems, which are the time required for solution execution
is grows exponentially. The algorithms that execution time grows polynomially are more
preferred in real practice, since such algorithms obtained the solution in a reasonable time.
However, some practical COPs are non-deterministic polynomial-time hard (NP-hard). For
example, the scheduling problems are NP-hard (Graham et al., 1979). According to the concept
of complexity, it is may not possible to find an optimal solution using the classical algorithms
such as exact methods for large scale problems of NP-hard class, as the case of scheduling
problems. For this, an alternative methods are proposed such as heuristics, metaheuristics, and
so on.

1.5 Performance measures

In scheduling, it is usually difficult to state objectives as there are many complex and often
conflicting objectives. The objective functions are called regular performance measures when
the functions are non-decreasing in C1, ...,Cn where Ci, i = 1, ...,n are jobs completion times.

8 Background and motivation

A noticeable number of scheduling problems with regular performance measures have been
studied in the literature. Some commonly discussed regular performance measures among
others are (Framinan et al., 2014):

1. Makespan Cmax: The makespan is defined as the maximum completion time of the last
job completed in the system. It can be seen as the time required to finish the scheduling
plan completely since it measures from the time the first job starts processing, which
is usually assumed to be zero (unless release times or other constraints exist), to the
time the last job in the processing sequence is finished on the last machine it uses. The
makespan is considered as one of the most common objective that have been studied in
the literature of PFSPs.

2. Total Completion Time (∑ j C j): The sum of the completion times of all jobs is called
the total completion time. The performance criteria of this measure is very important
for scheduling problems so as to increase the maximum utilization and productivity of
resources.

3. Total Weighted Completion Time (∑ j[w jC j]): It is the sum of the weighted completion
times of all jobs. The total weighted completion time is related to maximising system
utilization and work in process work-in-process inventory.

4. Total Weighted Tardiness (∑ j[w jTj]): This is a more general cost function than the
total weighted completion time. It is related to job due dates where the tardiness is
defined as follows: Tj = max(0,L j) Where L j is lateness of job j, and is defined as the
difference between the job completion time (C j) and its due date (d j), hence L j =C j −d j.
Tardiness ignores negative lateness values, the tardiness and lateness functions are shown
in Figure 1.1.

Fig. 1.1 Tardiness and Lateness functions

1.5 Performance measures 9

5. Weighted Number of Tardy jobs (∑ j[w jU j]): This objective has both academic and
practical values. It is related to job due dates. For example, late delivery implies a
penalty in the form of loss of goodwill and the magnitude of the penalty depends on
the importance of the order or the client and the tardiness of the delivery. One of the
objectives of the scheduling system is to minimize the sum of these penalties.

In the literature of scheduling, the majority of research addressed only the single objective
for scheduling problems. However, the multi-objective performance measures for scheduling
problems have considered a lot of attention since 1980 and since then research has reported
the case of multi-objective shop scheduling problems. The main reason of considering multi-
objective performance measures for scheduling problems is the companies environment nature,
which could be conflicting, dynamic and/or stochastic, companies strive to attain multiple
performance measures to ensure keeping in a good situation. The multi-objective models of
scheduling problem have been considered by different researchers. However, the majority of
researches were restricted to two or three objective performance measures. Developing ap-
proaches for manufacturing scheduling environments have been given a considerable coverage
and effort in the literature. However, only few researches were successful in the practical
solving of real life scheduling problems, while the majority of researchers rely on highly
theoretical and unrealistic assumptions. Therefore, implementation of such approaches are
generally impractical for scheduling problems in manufacturing environments of the real world,
which are conflicting, dynamic, stochastic and complex in nature. Actually, the most real
manufacturing scheduling problems are subjected to different perturbations because of a vast
extent of dynamic and stochastic uncertainties. Some uncertainty examples are; machine
breakdowns, new job arrivals, stochastic processing times, job ready times variation, and so
on, these disruptions can delay a schedule’s completion time. Some disruptions have a major
effect on the system performance. For example, machine breakdown is consider as one of
the most significant disruptions in shop scheduling problems. To minimse the effect of such
uncertainties on the scheduling in manufacturing systems under dynamic and/or stochastic
environments, two important measures have been studied in the literature (Cowling et al., 2004)
namely; stability and robustness. The stability measure is defined as the schedule that does
not deviate the completion time of the unaffected operations from the original schedule in a
disrupted situation, while the robustness measure is the schedule performance, which does
not deteriorate in a disrupting situation. These two measures have been proposed with the
utility (makespan) measure implicitly. The utility, stability and robustness measures have the
following assumptions: let n be the number of jobs where the jobs index is j = 1,2. . . .n ,
and let m be the number of machines where i = 1,2. . . .m is the machines index. Now the
performance measures mentioned can defined as follows:

10 Background and motivation

• Makespan: The most common objective for the PFSP is the minimisation of the maximum
total completion time ∑ j C j, this is referred to as makespan. This measure is aiming to
indicate the degree of optimisation of the scheduling problem where the completion time
is the time at which processing time of last operation at the job j is completed.

• Stability: This measure is to indicate the deviation between the new schedule and the
baseline.

• Robustness: This measure is to calculate the difference between the completion time of
the baseline and new schedule.

These performance measures are studied in details in this thesis

1.6 Research aims and objectives

As we explained previously, real world manufacturing system usually operate in highly dynamic
and uncertain environments, where random disruptions may cause non-optimal performances
for scheduling problem. In addition, real world manufacturing scheduling is generally too
complex and they are large scale problems. However, the robust dynamic and stochastic
scheduling is rarely addressed in the literature, and hence, we aim to consider the gap between
scheduling theory and practice and try to narrow it by discussing the dynamic PFSP and SPFSP
under different uncertainties. The aim of this thesis can be summarised in the following points:

1. Consider the challenging dynamic PFSP and SPFSP under different uncertainties with
the aim of proposing efficient frameworks and solution methods for these problems.

2. Design a multi-objective optimisation model that consider utility, stability and robustness
for the PFSP under uncertainties to accommodate the disruptions that effect the schedule
plan, in order to prevent the new schedule deviating too much from its initial plan.

Also, the novel research contributions for achieving the aims can be summarised as follows:

• Propose efficient predictive-reactive approach to handle the effect of different real-time
events on the scheduling system.

• Propose efficient and simple IG, its randomised version and PSO and develop these meth-
ods with the predictive-reactive approach to solve the PFSP with different disruptions.

• Design a Sim-Opt framework by considering the case where the PFSP is stochastic
and under different disruptions simultaneously. The propose framework consist of the

1.7 Organisation of thesis 11

integration of MCS with BRIG and then with the PSO to handle dynamic and stochastic
uncertainties for the PFSP with the consideration of minimising the utility, stability and
robustness simultaneously.

The following two goals are necessary for such algorithms to be efficient methods: exploration
and exploitation. The exploration ensures that the majority of areas of the solution space
domain are explored well to obtain a good local optimum solution. On the other hand, the
exploitation focuses the search direction procedure near the best solutions obtained in order
to explore the neighbourhoods of the best found solution to potentially find better solutions.
For this, in this thesis we consider more techniques to be used implicitly such as the Nawaz,
Enscor, and Ham (NEH) heuristic and Local Search (LS) procedure.

1.7 Organisation of thesis

Eight chapters presented in this thesis are organised as follows:
Chapter 1: Background and motivation
This chapter is structured as follows; the concept of scheduling including basic applications
and solution methodology are introduced first then the justification provided, the motivation
aim of research and research objectives.
Chapter 2: Literature review and research gap
The purpose of this chapter is to provide a literature review of the base knowledge that is
already available about PFSPs in dynamic and stochastic environments. This chapter will
also highlight the solution proposed frameworks, methodologies and problems that related to
different parts of the PFSPs in uncertain environments. Finally, the recent gap in the literature
is presented and the conclusions of this chapter are summarised.
Chapter 3: Multi-objective Optimisation model
This chapter introduce the multi-objective optimisation model and discusses the benchmark
instances of the PFSP with different uncertainties. The multi-objective optimisation model
address three important measures, namely; utility to minimise the makespan, the stability to
minimise the problem noise due to different uncertainties interruptions and robustness measure
to keep the current schedule robust in face of different disruptions. Moreover, this chapter
explain the generation of the benchmarks of dynamic PFSP and SPFSP including the different
real-time events. Finally, the sensitivity analysis technique that is used to generate the objectives
weights is discussed in this chapter.
Chapter 4: Particle Swarm Optimisation Algorithm
This chapter shows the adaption of the evolutionary PSO algorithm for the predictive-reactive
approach with the proposed multi-objective optimisation model to generate robust and stable

12 Background and motivation

schedule for the dynamic PFSP under machine breakdowns and new job arrivals. The exper-
imental results of the proposed multi-objective optimisation model compared against other
models to test our model efficiency. Finally, a statistical Analysis of Variance study (ANOVA)
is used to find the effect of different models on the solution efficiency under the state of different
real-time disruptions.
Chapter 5: Iterated Greedy Algorithm
This chapter introduce the IG algorithm for the predictive-reactive approach and our multi-
objective optimisation model to solve the dynamic PFSP under different real-time events. This
algorithm has been implemented to determine the local optimal solution for the problem and
improve the solution by using other techniques implicitly including the NEH heuristic which is
used to generate initial solution to the IG algorithm, and LS procedure to improve the solution
in the algorithm. An experimental study and ANOVA is conducted to study the effect of
different proposed models on the problem performance under uncertainty situation. Finally,
comparative study between IG and PSO algorithms is discussed in this chapter.
Chapter 6: Biased Randomised Iterated Greedy Algorithm
In this chapter, the BRIG algorithm with randomisation techniques are explained and adapted
for the predictive-reactive approach to solve the dynamic PFSP under different real-time events.
This algorithm has been implemented to determine the local optimal solution for the problem
and consider the stability and robustness by using the proposed multi-objective optimisation
model that introduced in chapter three. An experimental study and ANOVA is conducted to
study the effect of different proposed measures on the problem performance under uncertainty
situation. Also, comparisons between the BRIG, the IG and the PSO algorithms are imple-
mented to test the performance and speed of algorithms.
Chapter 7: Simulation Particle Swarm optimisation method
This chapter presents the framework of the novel Sim-PSO for the SPFSP under different
real-time events. The summary of the results, recommendations and scope for the algorithm
are given in this chapter including the reliability analysis to compare different dynamic and
stochastic solutions.
Chapter 8: Sim-Biased Randomised Iterated Greedy Algorithm
In this chapter, a Sim-BRIG approach is proposed and implemented to solve the SPFSP under
different real-time events, with the goal of minimising three measures, which are; utility, insta-
bility and robustness, simultaneously. The experimental results and conclusions are given at the
end of this chapter, including a comparative study between the Sim-BRIG and the Sim-PSO
algorithms.
Chapter 9: Conclusions and future works
This chapter presents the conclusions, summary of the results, recommendations and domain

1.7 Organisation of thesis 13

for future work in the direction of dynamic PFSPs and SPFSPs under different uncertainties. It
also discusses the specific contributions made in this research work and the limitations there
in. This chapter concludes the work covered in the thesis with implications of the findings and
general discussions on the area of research.

Chapter 2

Literature review

2.1 Introduction

The previous chapter highlights the background and the concept of scheduling problems in
manufacturing systems. The shop scheduling problems considered are complex and hard
problems to be solved due to the fact that they belong to the NP-hard class (Graham et al., 1979)
in addition when the problem under dynamic and/or stochastic environments and with multiple
performance measures. Until today, most research has been done on the static PFSPs with less
research being considered for the PFSP under dynamic and stochastic environments. This lack
of research is due to the complicated scheduling approaches for such systems to guarantee the
best employment for the scheduling system and to reduce the instability, also keep the schedule
robust in the face of different uncertainties. This chapter provides sufficient reliance for the
related approaches and the relevant gap in the previous literatures corresponding to the dynamic
and stochastic PFSP in the presence of uncertainties. The existing literature about the PFSP is
widely categorised depending on the problem environment (static, dynamic and stochastic), the
optimisation models and on the solution approaches. According to this restriction, this chapter
is conducted from the next points of view:

1. A review of the PFSP and the solution methods for this problem that existed in the
literature.

2. A review of the advanced scheduling techniques that have been used for the PFSP
effectively under different environments (static, dynamic and stochastic).

The overall aims of this chapter are given as follows:

• To summarise the PFSP (static, dynamic and stochastic) and the advanced solution
techniques that handle this problem.

16 Literature review

• To identify the research limitations in the existing approaches to static, dynamic and
stochastic scheduling.

• To highlight the objectives of research for this thesis.

• To present the research outline to achieve the objectives of this research.

The classification of this chapter is shown in Figure 2.1. Furthermore, the literature gap that is
pertinent to this work and solution methodologies are given in the following sections.

Fig. 2.1 Structure of the literature review

Figure 2.1 shows the path of introducing the literature review in this chapter.

2.2 Permutation Flow Shop Scheduling Problem 17

2.2 Permutation Flow Shop Scheduling Problem

The PFSP is defined as a set of n-independent jobs that has to be executed on a set of m-
independent machines. On each machine, each job has a fixed processing time value pi j ≥ 0.
Also, each machine can process at most one job at a time, and the processing sequence of the
jobs is the same for all machines, i.e., the job passing is not permitted. The definition of the
PFSP dates from over seventy years. Since then, a large number of papers have been published
about this problem and its variations. In this section, we present the literature related to the
PFSP without focusing on the problem environments. However, the PFSP under dynamic and
stochastic environments and uncertainties types will be discussed in details in the following
sections. The early research on Flow Shop Scheduling Problem (FSP) is mostly based on
Johnson’s rule Johnson (1954). This work introduced the PFSP on an environment formed
by two machines where the criterion is to minimise the makespan. The PFSP of n-jobs on
m-sequential machines with the objective of minimising makespan is proven to be NP-hard
(Graham et al., 1979), (Kan, 1976) and can be solved exactly for only small size problems.
Because of this intractability, many authors proposed various techniques to solve this problem.

2.2.1 Exact methods

In the literature of PFSP, different solution methods have been developed and applied for
this problem. Emmons & Vairaktarakis (2012) introduced the different methods including
exact, heuristics and metaheuristics that were used for FSPs and hence PFSP. The first methods
that were developed and proposed for the PFSPs are exact methods. However, such methods
were successful for small size instances. In 1970, the PFSP has been reviewed by James &
Michael (1970). Then, Campbell et al. (1970) studied the problem highlighting the strategy of
solutions and diverse optimisation objectives. Ignall & Schrage (1965) were the first authors
that introduced the B&B method for PFSP with minimising the makespan. Hariri & Potts
(1989) proposed the B&B algorithm to minimise the number of late jobs in a PFSP. They
proposed a technique of basing a lower bound on the simultaneous consideration of easily
solved sub-problems of a SMSP. Carlier & Rebaï (1996) applied two B&B algorithms to
minimise the makespan for the PFSP. Hejazi & Saghafian (2005) provided a comprehensive
survey of FSPs subject to the minimisation of the makespan. This study also surveyed for small
size instances some exact techniques and for larger size constructive heuristics approaches,
metaheuristic and evolutionary methods. Moreover, the author introduced contributions from
early research of Johnson (1954) until modern methods of metaheuristics in 2004.

18 Literature review

2.2.2 Heuristic methods

Another methods that has been applied successfully for even large size PFSP instances are
heuristics. Dudek & Teuton (1964) developed an m-stage rule for the PFSP subject to the
minimisation of the idle time accumulated on the last machine when executing each job
by employing the basic ideas of Johnson’s rule. Palmer (1965) introduced the Slope Index
Heuristic algorithm, which can be applied to large size problems even for hand calculations.
This heuristic algorithm first calculates a slope order for each job, and then sequences the jobs
according to the slope orders. This gives priority to the jobs with the strongest tendency to
progress from short times to long times in the sequence of operations. Gupta (1971) presented
an adjustment of Palmer’s Slope Index which utilised some resemblance between sorting and
scheduling problems. In a similar way, for the PFSP, Bonney & Gundry (1976) studied the
idea of employing the geometrical properties of the jobs cumulative process times and a Slope
Matching approach. Dannenbring (1977) attempted to integrate the advantages of the heuristic
procedures introduced by Campbell et al. (1970). This approach is termed the Rapid Access
technique where it aims to provide a quick and successful schedule by constructing an artificial
2-machine problem such that the processing times were specified from a weighting technique
and then solved by using Johnson’s rule. Nawaz et al. (1983) proposed an NEH heuristic for the
PFSP to minimise the makespan. It basically uses the idea that jobs with high processing times
on all the machines must schedule as early as possible before the jobs with less processing
times. Hence, the heuristic NEH algorithm is based neither on Johnson’s algorithm nor on
Slope Indexes. However, the only obstacle is that a total of n(n+1)

2 − 1 schedules must be
computed, being n of those schedules complete sequences. Framinan et al. (2004) introduced
a classification and review of heuristics for the PFSP under the objective of minimising the
makespan. Also, Framinan et al. (2002) and Ruiz & Maroto (2005) introduced a comprehensive
review and evaluation of PFSP heuristics, while a statistic review was introduced by Reisman
et al. (1997). Ruiz & Stützle (2007) introduced one of the most efficient heuristic for the
PFSP with minimising the makespan, which is the IG algorithm. This algorithm showed an
extraordinary performance in reaching high quality solutions in reasonable computational time.
Dong et al. (2015) applied a Self Adaptive Strategy for the Iterated Local Search (ILS) on the
PFSP where the criterion is to minimise the Total Flow Time (TFT). Sharma et al. (2016) made
an attempt to minimise the makespan for the m-machine FSP and compare the complexity
time for this problem by reducing the sequences and to finding an optimal or near optimal
makespan, where the CDS heuristic algorithm was proposed. Shao & Pi (2016) presented a
self guided Differential Evolution (DE) with Neighbourhood Search for the PFSP where the
criterion is to minimise the makespan. Rossi et al. (2017) addressed the PFSP with the criterion

2.2 Permutation Flow Shop Scheduling Problem 19

of minimising the TFT. They developed heuristic methods that provide high-quality solutions
with computational efficiency for this problem.

2.2.3 Metaheuristic and other methods

To solve the PFSP, a broad different metaheuristic approaches, which require fewer computa-
tions were used in the literature to generate a local optimal solutions. Some of these methods
are; PSO algorithm, Genetic Algorithm (GA), Tabu Search (TS), Simulated Annealing (SA) and
more. The first article discussing the application of PSO for solving the PFSP was presented
by Tasgetiren et al. (2004). Also, Rajendran & Ziegler (2004) studied the use of Ant Colony
Optimisation algorithm for the PFSP with the criteria of minimising both the makespan and
the sum of the TFT of jobs. Moreover, Solimanpur et al. (2004) proposed a TS algorithm
with neural networks for PFSP. Liu & Liu (2013) presented a hybrid discrete Artificial Bee
Colony method for the PFSP with the minimisation of makespan. Bargaoui & Driss (2014)
applied a Multi-Agent model based on a TS method to solve the PFSP. Mirabi (2014) developed
one novel Hybrid GAs for the FSP with minimising the makespan. Robert & Kumar (2016)
proposed the hybridisation of GA and SA algorithms for the PFSP to minimise the makespan.
They compared this method against PSO and a Bacterial Foraging Optimisation algorithms. In
this work, the obtained results demonstrated the viability of the proposed method. A novel PSO
algorithm for the PFSP subject to the minimisation of the makespan was proposed by Jia et al.
(2016). To adjust the PSO algorithm for discrete problems, some improvements and correspond-
ing procedures were used. Li et al. (2015) employed the PSO algorithm by using the advantage
of the swarm feature to determine the best particle in the solution space for the PFSP with the
criteria of minimising the makespan. In the first step an initial solution was generated by the
NEH heuristic. Then, they used some optimised strategy to set the parameters acceleration
constant and nonlinear inertia weight strategy which is based on random self-adaptive by means
of a Chaos method for setting parameters. Deng & Wang (2017) proposed a multi-objective
Memetic Search Algorithm (MSA) for the distributed PFSP with the bi-objective function
of both the makespan and TFT criterion. They first used the NEH algorithm to initialise the
population to improve initial solution quality. Then they applied a Global Search Embedded
with a perturbation operation to enhance the solution of the whole population. Moreover, the
author employed a Single Insert Based LS technique to enhance each individual and then used a
further LS strategy to determine a better solution for the non-improved individual in the Single
Insert Based LS. Bessedik et al. (2016) studied the hybrid GA Based Artificial Immune System
(AIS) for the PFSP with the makespan objective. The presented hybridisation technique was
used in two trends: the first way is the hybrid of GA and AIS Vaccination (Jiao & Wang, 2000)
into the field of GAs based on the theory of Immunity in biology. The second considered its

20 Literature review

inspiration on the Immune network theory (Perelson, 1989), and applied it to the field of GAs.
Greedy Randomised Adaptive Search Procedure metaheuristic for the scheduling problem
in a PFSP environment in order to minimise the TWT was proposed by Molina-Sánchez &
González-Neira (2016).
A number of selecting studies are also introduced in the following sections, concentrating on
some of the key domain research. The aim of most of this search is to diminish the existence gap
between scheduling theory and practice. The early literature extend back to the 1960s where
Dutton (1962), Dutton (1964) tried to capture scheduling practice in a box manufacturer from a
simulation model of scheduler behavior. Noticeable research efforts in the last four decades
have been done to develop different approaches to support scheduling under real circumstances,
Maccarthy & Liu (1993), introduced the failure of classical scheduling theory to respond to the
needs of practical environments, and recent trends in scheduling research attempt to make it
more relevant and applicable. Jackson et al. (2004) introduced a new model to understand and
describe scheduling in real manufacturing industry. Mathematical optimisation models play an
important role in scheduling solution approaches. Thus, in the following section, we introduce
briefly the literature of optimisation models related to the problem under study.

2.3 Mathematical Optimisation models

The initial formulations of mathematical optimisation models for scheduling problems may be
traced back to the late of 1950s. At that time, a few solution approaches were recognised to
solve different types of mathematical optimisation models. However, there were no applicable
computing technologies for the existing solution methods. The gap between computing tech-
nologies and mathematical models turn many practitioners to use mathematical models widely
as their basic way that could obtain optimal solutions. The impact of this problem discour-
age both academics and practitioners, as computational technologies and alternative solution
approaches could not handle large size problems. It is clear that mathematical programming
would be considered as the best way to generate optimal solutions if computational technology
could keep up. However, this problem did not stop researcher in academia from continuing to
develop mathematical models as a portion of their solution methods in the hope of reaching the
day where solving the mathematical models to optimality is possible. This hope was considered
as unattainable in the imagination of many researchers. Thus, many researchers believe that the
problem of reaching optimality could not be solved unless supercomputers were discovered. On
the other hand, few researchers thought it is possible to solve mathematical models to optimality
for small and medium-sized instances using the available technology at that time. For this,
they worked to adapt modeling methods such that the decision variables and constraints of the

2.3 Mathematical Optimisation models 21

mathematical models were significantly reduced. Although the single-objective PFSP has been
broadly studied, investigations about multi-objective PFSP have not been covered as much as
the single objective.

2.3.1 Multi-objective Optimisation models

Initial work on the weighted sum method for multi-objective problems can be found in Zadeh
(1963). The context of instability or nervousness first started being used by Steele (1975), the
author refers to the significant changes occurring in Material Requirement Planning Systems.
Different scheduling formulations that could lead to different robust and stable schedules where
formulations consider different efficiency measures. There are some studied in the literature
about efficiency measures. However, there are not much studies considering the weaknesses
of continuously introducing changes in the schedule (Rangsaritratsamee et al., 2004). Chang
et al. (2002) presented the Gradual Priority Weighting method to search the Pareto optimal
solution for the multi-objective FSP, which has the following objectives; makespan, TFT,
total tardiness and maximum tardiness. The presented solution methods search the feasible
solution space starting from the first measure and towards the remaining measures step by
step. Coello et al. (2004) proposed a method where the Pareto dominance integrated with the
PSO such that the approach will have the ability to deal with multi-objective functions. Qian
et al. (2006) introduced a DE based hybrid algorithm for multi-objective PFSP. Geiger (2008)
tested the LS metaheuristic for multi-objective PFSP. Their work was based on two important
principles of heuristic search, which are; intensification through Variable Neighbourhoods
(VN), and diversification through perturbations and successive iterations in favorable regions
of the search space. Geiger (2006) proposed an investigation of the search space topology in
the context of global multi-objective PFSP. He showed that for the single objective problems
a single global optimum has to be identified, while the multi objective problem need the
identification of whole set of equalities. The significance of this work was shown in the context
of metaheuristic LS methods for which meaningful implications derive. Mokotoff (2009)
developed the multi-objective SA models for the multi-objective PFSP to provide the decision
maker with high quality solutions. Rahimi-Vahed & Mirghorbani (2007) used the concept of
the Ideal Point and a new multi-objective PSO method to solve the bi-objective PFSP with
minimising both the weighted mean completion time and weighted mean tardiness. Wang
et al. (2008) provided a comprehensive survey of multi-objective scheduling. They considered
some basic concepts and prevalent approaches for multi-objective optimisation. As well they
discussed several multi-objective scheduling models and a recent study on them. Rahimi-Vahed
& Mirzaei (2008) applied a multi-objective Shuffled Frog Leaping approach to a bi-objective
PFSP with the minimisation of the weighted mean completion time and the weighted mean

22 Literature review

tardiness. Lei (2008) provided an extensive review of the literature on the scheduling problems
with multiple objectives, among others. Also, a complete review of the literature for multi
objective FSPs including Objective Weighting approach introduced by Minella et al. (2008).
Qian et al. (2009) presented a hybrid DE algorithm to solve multi-objective PFSP with limited
buffers between consecutive machines. They used a Largest-Order-Value rule to modify the
continuous values of individuals in DE to job permutations, and hence, adjust the DE to
solve scheduling problems. The authors also applied a LS based on the landscape of the
multi-objective PFSP with limited buffers. Moreover, the Pareto dominance concept was
applied to deal with the multi-objective nature. Sun et al. (2011) introduced a complete
review of previous and recent methods on the multi-objective FSPs. They firstly gave a wide
description and the complexity of these problems. They also provided a classification of
multi-objective optimisations and presented an analysis of the publications on the proposed
problem. Sioud et al. (2015) presented an algorithm that hybridising the principles of a GA and
AIS introduced to solve the multi-objective PFSP with sequence-dependent setup times where
the makespan and the total tardiness were the two objectives studied. For a literature review of
the contributions to multi-objective PFSP we refer to Yenisey & Yagmahan (2014). Rahmani
et al. (2014) proposed a multi-objective Mixed Integer Linear Programming model for the
FSP with stochastic parameters. The multi-objective functions considers minimising each of
makespan, TFT and total tardiness, simultaneously. The authors apply the Chance Constrained
Programming method and Fuzzy Goal Programming to handle multi-objective function and the
stochastic parameters. Amirian & Sahraeian (2016) presented a modification of multi-objective
DE based on SA to solve a general tri-objective non-PFSP. The flow shop system considers the
release dates, machine breakdowns, past-sequence-dependent setup times and learning effect for
all the jobs. The algorithm proposed to tackle such a model combines the robustness of DE with
the rapid convergence and conditional diversification of SA. Entezari & Gholami (2015) applied
the Weighted Sum method to the multi-objective optimisation model of Flexible Flow shop
Scheduling Problem (FFSP) with unexpected arrivals of new jobs. To solve the no-idle PFSP
with the objective of minimising the total tardiness, Shen et al. (2015) proposed a Bi-Population
Estimation of Distribution algorithm. For a multi-objective FSP, Tiwari et al. (2015) proposed
the Pareto optimal block-based Estimation of Distribution Algorithm using bivariate model.
Li & Li (2015) used a multi-objective LS based decomposition for the multi-objective FSP
problem with and without sequence dependent setup times where the bi-objective function is to
minimise the makespan and TFT. The proposed method decomposes a multi-objective problem
into sub-problems of single objectives employing an Aggregation approach and optimise them
simultaneously. Leisten & Rajendran (2015) proposed a new criterion in a PFSP that aims to
reduce the gap between the completion times of each two consecutively scheduled jobs. The

2.4 Static Scheduling Approaches 23

authors compared some solution methods and discussed the influence of scheduling decisions
on other systems related to this scheduling system by employing a new criterion. Deng & Wang
(2017) presented the Memetic Algorithm (MA) to solve the multi-objective distributed PFSP
with the bi-objective function of makespan and total tardiness. Lu et al. (2016) introduced a
solution approach for a real-world scheduling problem of a welding process. This problem
was formulated as a new multi-objective Mixed Integer Linear Programming model. Then a
multi-objective discrete grey wolf optimiser was proposed to handle this problem. based on
the NEH heuristic, Liu et al. (2016a) proposed a heuristic approach to solve the PFSP with
the bi-objective function that minimise the makespan and machine idle time. de Siqueira et al.
(2016) showed the implementations of two metaheuristics based on GAs for solving the multi-
Objective hybrid FSP Problem. These two implemented metaheuristics were known as second
generation methods of evolutionary multi-objective algorithms. Li & Ma (2016) presented a
novel multi-objective MSA for the multi-objective PFSP. Hassanzadeh et al. (2016) developed a
new metaheuristic technique to solve an integrated multi-objective production distribution FSP.
This problem had two objectives where the first one concentrated on minimising makespan
and TWT, while the goal of the second objective function was to minimise the summation of
total weighted earliness, inventory costs, total weighted number of tardy jobs and total delivery
costs. Zangari et al. (2017) introduced a novel general multi-objective Decomposition-based
Estimation of Distribution algorithms using Kernels of Mallows models for solving multi-
objective PFSP, this minimised the TFT and the makespan. Finally, the multi-objective PFSP
with sequence-dependent setup times of minimising the makespan and TWT was introduced by
Xu et al. (2017). They designed a multi-objective ILS to solve this problem.

2.4 Static Scheduling Approaches

Static problems are fully defined in the literature of scheduling, even theoretically, they can
be solved to optimality. Generally, exact methods applied together with the formulation
of the scheduling problems. This formulation could be dynamic programming, constraint
programming or mathematical programming, which is then solved by a complete and systematic
search of the solution space. Numerous complex scheduling problems have been formulated as
Mixed Integer Linear Programming model (MILP) (Pan & Chen, 2005), which were usually
solved by the B&B method. The methods used to solve static scheduling problems are explained
in figure 2.2.

Practical scheduling problems (not small size problems) are usually very complex to be
solved to optimality by exact methods in a reasonable amount of time. For this, the need
of heuristics and other techniques have been raised. Such techniques concentrate on finding

24 Literature review

Fig. 2.2 Static scheduling solution methods

2.4 Static Scheduling Approaches 25

a good local optimal solution in a short time. Heuristics can used exact-based methods by
restricting the exploration of the solution space to specific parts, or by limiting the time of
running the algorithm, after which the best solution found so far is returned. A simple kind
of heuristic method for scheduling problems are Dispatching Rules, these methods construct
solutions gradually by scheduling one operation at a time. At any time, when there are jobs
waiting to be processed on an available machine, a priority index for each job is calculating by
Dispatching Rules as a function of some job and machine features, for example, job due date
or weight, also, machine current setup, and schedule only the imminent operation of the job
with the highest priority. Due to lack of a global perspective on the problem, Dispatching Rules
produce less quality solutions when compared to other complex heuristic methods. However,
their local horizon allows them to be processed very readily. Regardless of the complexity of
the overall problem. An alternative search-based heuristics are known as metaheuristics. Such
methods start to generate initial solutions (randomly or using heuristics methods) where they
explore the solution space to improve upon by means of LS techniques in incorporation with
additional techniques, which prevent them from remaining in local optima and seeking more
new locations from the space. A well-known branch of metaheuristic methods are evolutionary
algorithms, these methods have been widely used for scheduling problems (Dahal et al., 2007).
There are different types of search-based heuristics, which are based on decomposing the
scheduling problem into sub-scheduling problems of smaller sizes. Such methods are called
Decomposition methods, which can solve the complex scheduling problem more easily. The
partial sub-scheduling solutions are then recombined to obtain a final overall solution to the
given scheduling problem. For static scheduling problems, the Decomposition approaches
are usually machine-based such as the well-known Shifting Bottleneck heuristic or job-based
Decomposition (Mason et al., 2002), (Pinedo, 2016). Market-based approach is another
procedure which is based on local decision making (Toptal & Sabuncuoglu, 2010). In this
approach, the scheduling decisions were modeled as a negotiation process between agents
related to the jobs and agents representing the machines. Each job agent has a specific budget
that can employed to pay for a processing time on the needed machines. The job agent calls for
bids to which the agents of the machine(s) can execute the operation of a job they reply to keep
a time slot for this job operation, where each bid has a time slot and price that is determine by
the machine agents with the objective of maximising their own utility. Then the job agent can
choose the bid with the best value for money, that way scheduling the operation of a job. The
application of Market-based approaches have the challenge of determining the good budgets,
also, acceptance rules and effective pricing that are probably will be problem-specific. Finally,
Machine Learning techniques were also addressed in the static scheduling problems (Pinedo,
2016). To solve this problem, these techniques were used inference from good solutions to

26 Literature review

similar instances. Therefore, they can only be used in combination with another method or a
human expert, which or who generates solutions to example problems that can be used to train
the Machine Learning algorithm.

2.5 Dynamic Scheduling Approaches

Unlike static problems, dynamic ones cannot be solved optimally since the optimal schedule
depends on future unpredictable real-time events which only happen after a schedule has
been executed. The main feature of dynamic scheduling solution approaches is the way of
considering different types of unpredictable real-time events, which have the proactive or
reactive shape. Figure 2.3 shows the different dynamic scheduling approaches based on the
surveys by Aytug et al. (2005), Ouelhadj & Petrovic (2008) and the general overview of the
FSP under uncertainties (González-Neira et al., 2017).

From figure 2.3, dynamic scheduling has been defined under three categories (Vieira et al.,
2003); (Aytug et al., 2005):

• Completely-Reactive Scheduling or Dynamic Scheduling is also referred to as Online
Scheduling. In this case, no firm (robust) schedule is generated at the beginning of the
scheduling process, and the job schedule is obtained in a real-time manner. Priority
Dispatching Rules are frequently used. The advantage of completely-reactive scheduling
is that alterations due to unpredicted real-time events are considered as they stand out,
which allows for immediate response. However, to provide the ability of scheduling
in real shop floor, the reactive approaches have to depend on executions that provide
low computational and information needs, for example, Dispatching Rules that take
scheduling decisions on the basis of a locally restricted information horizon with little
consideration of the overall problem structure. It is clear that when the effect and
frequency of random real-time events is high, a globally optimised schedule becomes
neglected shortly, up to a point where the assumptions underlying the schedule become
invalid only moments after the very first part of the schedule has been implemented.
Then, the global solution method effectively solves the wrong problem and thus may
well lead to poorer scheduling decisions than a locally restricted approach which does
not prepare a future plan at all.

• Robust Pro-active Scheduling, this approach concentrates on constructing predictive
schedules that remains robust (flexible) despite real-time events that may affect the system
during a scheduling horizon, and up to a certain degree, can adjust future alterations
in order to ensure the objective function value does not deteriorate significantly. When

2.5 Dynamic Scheduling Approaches 27

Fig. 2.3 Dynamic scheduling solution methods

28 Literature review

using this approach, it is important to have enough information about the real-time events
that present in the problem, their occurrence probability and their potential effect on the
solution quality. These information can then be integrated within the solution method,
for example, within the objective function or constraints of a stochastic mathematical
programme (Kouvelis et al., 2000). For longer time horizons, the predictions related to
the aftertime developments become increasingly inaccurate. Also, there is an exponential
increase of possible combinations of future real-time events over time. Thus, for the
problems with relatively short time horizons, the best approach is the robust pro-active
scheduling.

• Predictive-Reactive Scheduling is defined as a rescheduling procedure such that schedules
are modified at the time of disruptions. The approach is a two-stage process; in the first
step, predictive scheduling (baseline) is generated. The second phase is about releasing
the schedule to the shop floor and revising it in response to real-time events. In general,
there is a broad agreement in the literature that the Predictive-reactive approach is the
most common dynamic technique that can be applied in manufacturing systems. Figure
2.4 shows the idea of this approach.

Depending on the mechanism for starting the modification process of the schedule, predictive-
reactive approaches can be categorised as Time-Driven or Event-Driven. In the Time-Driven
techniques which are also termed as Rolling Horizon techniques, the schedule is reoptimised
at uniform intervals of time. Event-Driven techniques triggers a revision procedure to the
schedule in response to random real-time events. In the two stages of the predictive-reactive
approach, any of the solution techniques for static scheduling problems (see Figure 2.2) can
be used for the generation of a predictive solution and the revised schedule, where choosing
the suitable technique for a given problem generally counts on the nature of the disruptions
that present into the system in terms of their disruptive power and the available time to react.
For example, when the only unexpected real-events are the arrivals of new jobs, the method of
choice maybe the Time-Driven approach that periodically applies a B&B algorithm, which is
a computationally expensive (Ovacikt & Uzsoy, 1994). Also, for scheduling problem under
random disruptions of machine breakdowns which could cause unexpected and significant
changes in the scheduling plan, it may be necessary to apply the Event-Driven method. This
method quickly restores feasibility of the schedule by means of a simple heuristic in the case of
machine breakdowns (Yamamoto & Nof, 1985). Furthermore, a hybridisation of these methods
is applied in practice, which generally follow a periodic reoptimisation but are able to react
flexibly, if the disruption caused by a specific real-time event is severe.

2.5 Dynamic Scheduling Approaches 29

start

Generate a Predictive Schedule

Scheduling Execution
Trigger a

rescheduling point
Update Scheduling Plan

Execute an effi-
cient Algorithm

Real-time
events

stop

Yes

No

Fig. 2.4 Predictive-Reactive approach

There are different approaches existing in the literature for solving dynamic scheduling
problems. It should be noted that, it is possible to hybridise any of the aforementioned
approaches to deal with dynamic scheduling problems depending on the nature of the real-time
events and the scheduling problem.

2.5.1 Disruptions classification

In scheduling for a real shop floor, the problem effected by single or different disruptions
of real-time events. As we discussed previously, there are different methods existing in the
literature that can be used to solve the PFSPs. Using a suitable method mainly depending on
the problem environments and also on the type and frequency of disruption. For this, it is
important to highlight these factors to be able to propose the best solution approaches. The
literature of manufacturing systems under dynamic environment have considered a significant
number of real-time events including their effects. Thus, real-time events can be categorised
into the following groups (Vieira et al., 2003):

30 Literature review

• Resource-related: such as; machine breakdown, unavailability or tool failures, operator
illness, loading limits, defective material (material with wrong specification), delay in
the arrival or shortage of materials, and so on.

• Job-related: for example; arrival of jobs, rush jobs, due date changes, job cancellation,
change in job priority, changes in job processing time, and so on.

In this thesis, we consider some important disruptions of real-time events, which are; ma-
chine breakdowns and new jobs arrival. these disruptions are frequently occurred in real
manufacturing systems.

2.5.1.1 Machine breakdown

The scheduling problems have been widely studied under static environment by assuming
machines and jobs are available at time zero (Vieira et al., 2003); (Gholami et al., 2009).
However, due to the uncertain environments in real shop floor, these assumptions become
invalid. In this section, we highlight the work done for the scheduling problems under machine
breakdown. Ali & John (1998) studied the bi-objective FSP that minimising both the makespan
and maximum lateness, this problem considered the case of 2-machines under random machine
breakdowns. When stochastic breakdowns effect the first or the second machine, respectively,
the authors showed that the shortest and longest processing times orders are optimal with
respect to both objectives in a sequence of FSP with 2-machines. To absorb the impacts of
breakdowns, Mehta & Uzsoy (1998) have used the available information on uncertainties to
generate a predictive schedule. To measure the effect of disruptions on planned activities, they
used the difference between the planned completion times of jobs in the predictive schedule and
their realised ones. The deviations of completion times were decreased by inserting extra idle
time into the predictive schedule. The amount of inserted extra idle time based on the structure
nature and frequency of the disruptions and the predictive schedule. Hence, in the predictive
schedule, the completion times of jobs rely on the schedule and the amount of inserted extra
idle time. For the Flexible Job Shop Scheduling Problems (FJSP), Jensen (2003) proposed
the robust and flexible schedules (solutions), where the aim is to minimise the makespan.
The author has used GA to define and investigate the robustness measure to obtain robust
and flexible schedules. These solutions were used to improve rescheduling significantly after
machine breakdown disrupted ordinary schedules.
To minimise makespan criteria for a stochastic FFSP that is effected by machine breakdowns,
Allaoui & Artiba (2004) proposed a framework of robustness to deal with such a problem.
By minimising the starting time deviations of jobs simultaneously, the algorithm handle the

2.5 Dynamic Scheduling Approaches 31

efficiency by maintaining the objectives of makespan, tardiness and stability. In this case, the
rescheduling triggered at specific intervals of time employing all obtainable jobs at the moment
of disruption. Kasap et al. (2006) studied the policies of optimal sequencing of jobs for a single
machine PFSP under random breakdowns and the objective of the expected makespan. The
FFSP with sequence dependent setups and under a stochastic machine breakdown have been
solved by a heuristic algorithm (Gholami et al., 2009). This heuristic used the random key
GA to determine the best local solution. Also, the Right-Shift technique and the Event-Driven
policy were incorporated in a simulator into the GA to evaluate the expected value of makespan.
Al-Hinai & Elmekkawy (2011) addressed finding stable and robust solutions for the FJSP under
random machine failures. They defined some bi-criteria performances considering both the
stability and robustness of the predicted schedule and compared using the same rescheduling
scheme. The Discrete Group Search Optimiser algorithm for the hybrid FSP under random
machine breakdown was introduced in Cui & Gu (2014). The proposed method adopted
the vector representation and several discrete operators, e.g., swap, insert, destruction, and
construction in the process, DE, rangers phases and scroungers. Pugazhenthi & Saravanan
(2015) proposed a new heuristic to analyse and solve the PFSP with breakdown nature. This
heuristic proposed an Exponential Index method with known breakdown time, the break down
occurs due to power shutdown. This heuristic has been applied for the problem with the
objective of minimising the makespan time of n jobs and m machines. Wang et al. (2016)
introduced the distributed PFSP with minimising the makespan and under machine failures.
They used the distribution algorithm of Fuzzy Logic-based Hybrid Estimation for this problem.
To find better solutions in the search space, the authors hybridised the probabilistic model of
Estimation of the Distribution method with crossover and mutation operators of GA to generate
new offspring. Proactive-scheduling approach is triggered for an uncertain machine failure
under deteriorating production environments was considered by Wang et al. (2015a), where
the usage and age of machine lead to a longer real processing time for jobs. They proposed a
multi-objective Evolutionary algorithm based on Elitist Non-Dominated Sorting, in which a
support vector regression surrogate model is built to replace the time-consuming simulations
in evaluating the rescheduling cost. Fazayeli et al. (2016) proposed a Pro-active scheduling
and a hybrid metaheuristic method based on GA and SA for the FSP with machine breakdown.
The hybrid flow shop rescheduling problem with flexible processing time in steelmaking
casting systems was studied by Li et al. (2016). They used a Hybrid Fruit Fly Optimisation
algorithm to solve this problem under machine breakdown and processing variation disruptions,
simultaneously. A serial-batching scheduling problem under machine breakdowns and new
job arrivals events, where the objective is to minimise the makespan was addressed in Pei
et al. (2016). A developed heuristic approach was applied to find near optimal solutions for

32 Literature review

this problem. Adressi et al. (2016) considered a group scheduling problem in no-wait FSP by
considering two stages with group sequence-dependent setup times under machine breakdowns.
GA and SA based heuristics have been presented for this problem where the primary objective
is to minimise the makespan for two classes of small and large scale problems. A SMSP under
machine breakdown was considered by Imed & Hans (2016). The authors studied two different
criterions for this problem, namely; minimising the makespan and maximum lateness. Also,
two different algorithms were proposed to solve two types of the problem; without release
dates or with different release dates. To solve a PMSP in dynamic environment under random
machine failures, the Learning Agent was presented (Yuan et al., 2016). They tested this
method for the problem with two different criterions; minimising the maximum lateness and
minimising the percentage of tardy jobs.

2.5.1.2 New job arrivals

The scheduling in static environment have the most efforts in the literature. Such problems
frequently assume the number of jobs are fixed, the processing times is deterministic and there
is no unpredicted disruptions which would influence the processing of job when the schedule
is under way. However, in reality, new orders arrive at production systems randomly, which
leads to sheer complexity in scheduling due to the dynamic changes given various constraints
of resources. Previous studies simply attach new orders directly after the existing schedule.
Liu et al. (2005) proposed an approach based on the Support Vector Machine for the flexible
manufacturing scheduling with minimising earliness and tardiness penalties of all jobs, to
achieve the goal of dynamical scheduling. For the just-in-time scheduling of a manufacturing
environment under new jobs that coming randomly into the system, Weng & Fujimura (2009)
introduced two distributed feedback mechanisms, where the simulation proves that distributed
feedback mechanisms showed a high performance. Some important improvements to formerly
employed intelligent production system handling the dynamic scheduling problem of FSP with
the factory environment of a multi-stage multi-machine were presented by Weng & Fujimura
(2010), where the criterion is to minimise the total earliness and tardiness penalties of all jobs
during any given period of time. Guo et al. (2011) applied an Adaptive Job-Insertion based
heuristic for the FSP minimising the mean flow time in a dynamic environment, where the job
arrival or release dates are not known in advance and new order jobs arrive randomly to the
system. Rahman et al. (2013) proposed a method based on GA for the PFSP with multiple
jobs arriving at different time points. The problem of combining new rush orders with the
recent schedule of a manufacturing shop floor level was addressed in Madureira et al. (2013),
where a Self-Organised Integration Mechanism Module based on Case-based Reasoning was
presented so as to determine independently that combination mechanism have been employed

2.5 Dynamic Scheduling Approaches 33

to incorporate new orders in the recent plan. Joo et al. (2013) used two Dispatching Rule-
based scheduling methods to the three-stage FSP with maximising the quality rate and the
mean tardiness of the finished jobs in a dynamic environment, where jobs of multiple types
arrive to the system over time dynamically. Pickardt (2013) proposed three methods based on
Evolutionary Algorithms to automate and support the design of Dispatching Rules for dynamic
and complex scheduling problems. Kaplanoğlu (2014) used a collaborative Multi-Agent
based Optimisation approach for the SMSP with sequence-dependent setup times and under
constraints of regular and irregular maintenance activities when the order arrivals are dynamic.
The effects of inserted idle times on the performance of a selection of Dispatching Rules for FSP
with a new job arrival was examined in El-bouri (2013) where the objectives are to minimise
the mean flow time, mean tardiness, or number of tardy jobs. Rao & Ranga Janardhana (2014)
gave a literature review which analysed the rescheduling activity for the case of uncertainties
from the manufacturer, supplier and customer. They also considered rescheduling factors,
rescheduling environments, and rescheduling algorithms. Xingbao et al. (2015) discussed a
Predictive Scheduling approach for the PFSP under new jobs arrival. They developed this
approach to reduce the impact of the new job arrival by inserting moderate slack times into
the baseline. A two-step approach was used for the two-stage FSP with unexpected arrival
of new jobs (Entezari & Gholami, 2015). In the first step, an initial schedule is obtained
considering makespan as an objective function. After the initial schedule was applied, now
assume that a new job arrives during the execution of the initial schedule. In the second
step, they proposed three criteria as a measure based on a classical objective and performance
measures. This Measure consists of makespan, stability and variation of completion times.
Sahin et al. (2015) proposed a Multi-Agent based System to the flexible scheduling problem
in a dynamic manufacturing environment. Kaplan & Rabadi (2015) studied the PMSP under
job-related disruptions, namely; departure of an existing job, the new jobs arrival and changes
to job priority. They considered the minimisation of the bi-criterion of both of the TWT and
instability of schedule, simultaneously. The authors first built a MILP using a scheduling
problem proposed by Kaplan & Rabadi (2012). Then they applied five different heuristic
approaches for the PMSP with the bi-objective function, using the developed methods by
Kaplan & Rabadi (2012) and Kaplan & Rabadi (2013). Rahman et al. (2015) presented a
heuristic based decision process for the dynamic PFSP. As each new order arrives, they used
the developed GA based method over and over to re-optimise the problem. Gao et al. (2016)
introduced a two-stage Artificial Bee Colony algorithm and an effective model for solving the
scheduling problem of re-manufacturing. This problem was modeled as FJSP with minimising
the makespan, when the new job arrives the problem was splitted into two steps; scheduling
and rescheduling. Zhang et al. (2016) presented an innovative method to investigate the flexible

34 Literature review

scheduling problem in dynamic environment in order to minimise or maximise the consumption
of energy into account. To solve this problem, they used a rescheduling method based on
the GA, also they proposed a new goal programming model that considers the consumption
of energy and the efficiency of schedule simultaneously. Xia et al. (2016) formulated a new
dynamic Integrated Process Planning and Scheduling (IPPS) model, the combination of hybrid
algorithm and rolling window technology was applied to solve the dynamic IPPS problem, and
two kinds of disturbances were considered, which are the machine breakdown and new job
arrival. The characteristics of dynamic integrated process planning and scheduling problem
with job arrivals were studied in Liangliang et al. (2017). A novel MILP model was established
to accommodate new job arrivals, and three criteria; makespan, stability, and tardiness were
considered. New periodic and Event-Driven rescheduling strategies were also presented. Sahin
et al. (2015) proposed a Multi-Agent based System for the dynamic flexible machine scheduling
groups and material handling system working. A novel scheduling strategy by integrating
Match-Up strategy and Real-Time strategy in order to make use of the remaining time before
the old order due date for PFSP with new job arrivals was introduced by Liu et al. (2017).

2.5.1.3 Scheduling in the presence of different disruptions

In real manufactures, it is very likely that different disruptions interrupt the system simultane-
ously. However, there are only few examples in academia regarding the scenario of scheduling
system under different types of disruptions. Turkcan et al. (2009) considered the problem of
PMSP with controllable processing times where the presented models were revised to incor-
porate a stability performance for rescheduling unpredicted events such as machine failure,
new job arrival, delay in the arrival or shortage of materials in rescheduling. Liu et al. (2016b)
addressed the PFSP with sequence dependent setup time which was effected by six different
types of real-time events, which are; arrival of new jobs machine failure, variation of setup
times, variation of processing time, job cancellation and job priority upgrading, simultaneously.
Katragjini et al. (2013) introduced a novel benchmark for the PFSP under different types of
disruptions including; machine breakdown, new job arrival and uncertain ready job. They
introduced a bi-objective model to minimise makespan and instability performances. Also, the
authors applied different heuristics methods and compared them against an IG algorithm, the
aforementioned algorithm showed extraordinary better results when compared against other
heuristics. A 2-machine FSP under stochastic processing times and unpredicted new jobs
arrival were considered in Rahmani & Heydari (2014). They introduced a novel multi-objective
optimisation model that consider three measures; makespan, stability and robustness to reduce
the noise that disturb this system because of unpredictable uncertainties. Li et al. (2015)
proposed a Discrete Teaching-Learning-based Optimisation to solve the flow shop rescheduling

2.6 Solution methods related to dynamic and static scheduling 35

problem under five types of uncertainties including machine breakdown, arrival of new jobs,
cancellation of jobs, job processing variation and job release variation. The authors used the
bi-objective model that was proposed by Katragjini et al. (2013) to minimise the makespan
and instability measures. Park et al. (2017) proposed the Genetic Programming rules for the
dynamic JSP under machine failures and arrival of new jobs.

2.6 Solution methods related to dynamic and static schedul-
ing

As shown in figure 2.3, the solution methods of static scheduling are also used in some levels
of the framework solutions of the dynamic scheduling problems. In this section, we present the
literature of the techniques that proposed implicitly or explicitly for the dynamic PFSP under
different real-time events. We start with the literature of the PSO algorithm for this problem,
then the NEH heuristic is discussed. This algorithm has been used to generate an initial solution
for both of the IG and its Biased Randomised (BR) version, which are also presented in this
section.

2.6.1 Particle Swarm Optimisation

The PSO algorithm was described as a stochastic global optimisation method, it was introduced
by Kennedy & Eberhart (1995). Thus, the PSO algorithm is one of the most efficient algorithms
that have been applied successfully for the dynamic and stochastic COPs. The PSO algorithm
has been implemented to solve the PFSP and other scheduling problems. For example, Lian
et al. (2006) suggested a PSO algorithm for solving the PFSP with respect to minimisation of
makespan and computational experiments showed that it was more efficient than GA. However,
some problems cannot be solved to guarantee optimality. Tasgetiren et al. (2007) presented
a PSO for solving the PFSP so as to minimise the makespan and the TFT. Liu et al. (2007)
proposed a PSO-based MA for the PFSP in order to minimise the makespan. On the other hand,
Wang & Yang (2007) developed a PSO to solve FSP where the processing times were uncertain.
Lian et al. (2008) presented a novel PSO algorithm, which was successfully applied for the
PFSP with minimising the total completion time. Pan et al. (2008) proposed a discrete PSO
algorithm for solving the no-wait FSP in order to minimise both the makespan and the TFT.
Liu et al. (2008a) introduced a hybrid PSO algorithm for the PFSP with the limited buffers
between consecutive machines with the objective of minimising the makespan. Zhang et al.
(2008) used an improved PSO method that combined the PSO algorithm with genetic operators
for solving the FSP in order to minimise the makespan. (Sha & Hung Lin, 2009) provided a

36 Literature review

PSO based multi-objective method for FSP. This method searches the Pareto optimal solution
for criterions by taking in account the modified PSO algorithm and the objectives of makespan,
mean flow time, and machine idle time. Kuo et al. (2009) presented a new hybrid PSO model
which combined random-key encoding techniques, individual enhancement techniques and
PSO algorithm for solving the FSP so as to minimising the makespan. Sha & Hung Lin (2009)
implemented PSO algorithm for multi-objective FSP. They proposed an evolutionary algorithm
that searches the Pareto optimal solution for objectives by considering the makespan, mean
flow time, and machine idle time. Zhang et al. (2010) proposed a hybrid alternate two phases
PSO algorithm to solve the FSP with the objective of minimising makespan which combined
the PSO with genetic operators and annealing strategy. Liu et al. (2011) proposed a hybrid
PSO with Estimation of Distribution algorithm to solve PFSP. Subashini & Bhuvaneswari
(2011) presented a multi-objective PSO approach where a Non-Dominated Sorting PSO which
combined the operations of Non-Dominated Sorting GA II (NSGA–II) was applied to schedule
tasks in a heterogeneous environment. Liao et al. (2012) proposed the PSO method to solve
the hybrid FSP subject to minimising the makespan. Kamble & Kadam (2012) studied the
simultaneous scheduling problem of machine and automated guided vehicle in a flexible
manufacturing system with minimising the objective of makespan, they applied the PSO
algorithm for this problem. Chen et al. (2014) proposed a revised discrete PSO to solve
the PFSP with the objective of minimising makespan. Damodaran et al. (2013) presented a
PSO method to schedule batch processing machines arranged in a PFSP with the objective
of minimising the makespan. Marinakis & Marinaki (2013) proposed an algorithmic Nature-
Inspired method which employed a PSO algorithm with different neighbourhood topologies
to solve one of the PFSPs. Vijay chakaravarthy et al. (2013) studied the flow shop with equal
size sub lots with the criterion of minimising the makespan and TFT. To solve this problem,
they used a DE and PSO algorithms. Moreover, A PSO algorithm was applied for the PFSP
with the objective of minimising the makespan (Ramanan et al., 2014). Akhshabi et al. (2014)
presented a PSO algorithm based on the MA which combined with the LS approach to solve a
no-wait FSP with the criterion of minimising the TFT. Behnamian (2014) extended the hybrid
PSO-based metaheuristic for solving the fuzzy PMSP with bell-shaped fuzzy processing times
where the criterion is to minimise the fuzzy value of makespan. Li et al. (2014) proposed
a hybrid approach of an ILS and PSO to solve the hybrid FSP with preventive maintenance
activities. Zhang & Wu (2014) investigated the PFSP with the objectives of minimising the
makespan and the TFT and proposed a hybrid metaheuristic based on the PSO algorithm.
Ramanan et al. (2014) used a PSO approach for the objective of optimising the makespan of
an FSP. Dongdong et al. (2015) applied a Discrete PSO for the FFSP which minimises the
maximum time used in the FSP. Zhang et al. (2015) introduced a comprehensive survey that

2.6 Solution methods related to dynamic and static scheduling 37

investigated the advances with PSO algorithm, including its modifications, population topology,
hybridisation with other optimisation approaches, extensions, theoretical analysis and parallel
implementation. They also provided a survey on PSO algorithm applications to different fields.
A hybrid algorithm based on PSO and SA was proposed by Kamble et al. (2015) and considered
the FJSP with minimising five criterion, namely; the makespan, the maximal machine workload,
the total workload, the machine idle time and the total tardiness, simultaneously.

2.6.2 NEH Algorithm

The NEH algorithm is a heuristic algorithm that was designed for the PFSP by Nawaz et al.
(1983). It has been broadly studied and various developed versions of the NEH heuristic have
been presented in the literature. Examples of studies that show the NEH heuristic outperforming
old version of methods are given in Turner & Booth (1987) and Taillard (1990), it has also been
proved to give better results than other highly cited heuristics such as CDS method (Campbell
et al., 1970). Several more recent studies established that the NEH heuristic showed better
performance, even when compared with modern and more complex heuristics. An important
study was given by Ruiz & Maroto (2005), where NEH heuristic was tested and compared
against 25 other heuristics algorithms, including the more recent and complex algorithms
of Hundal & Rajgopal (1988), Ho & Chang (1991), Koulamas (1998), Suliman (2000) and
Pour (2001). In this work, careful statistical analyses of results of comparing NEH heuristic
against different heuristics showed that NEH was superior to all tested heuristic methods and
it was much faster at the same time. Moreover, Nagano & Moccellin (2002) used a new
developed constructive heuristic called N&M in order to minimise the makespan for the FSP.
This algorithm have been compared with the constructive NEH heuristic. The N&M algorithm
outperforms, on average, the NEH algorithm. However, the study showed that there is no
significant difference regarding computation effort for both N&M and NEH algorithms.
To minimise the maximum completion time of the PFSP, Framinan et al. (2003) tested 176 rules
employed to obtain the initial list of jobs and illustrated that the ordering proposed initially
in the NEH algorithm was the one where it showed the best results. However through these
rules, the Nagano & Moccellin (2002), the Pour (2001) and the Profile Fitting procedures were
not included. Since then, the NEH heuristic has been used to generate an initial solution for
many modern heuristics and meta-heuristics. Some examples where the NEH was used as a
seed sequence for GAs, SA, ILS, TS and many of other metaheuristic methods were proposed
in Reeves (1995), Chen et al. (1995), Murata et al. (1996), Stützle (1998), Zheng & Wang
(2003), Rajendran & Ziegler (2004), Bożejko & Wodecki (2004) and Ruiz et al. (2006). More
recently, Ruiz & Stützle (2007) applied NEH heuristic to initialise the solution of the proposed
IG algorithm. Also, the IG construction phase used the NEH procedure to construct the new

38 Literature review

solution. Dong et al. (2008) studied several different Priority Rules for the NEH heuristic.
They proposed a new strategy to solve job insertion ties which may exist in the original NEH
heuristic. The authors also showed that the priority rule that combines the average processing
time of jobs and their standard deviations, was not statistically significantly better than that
used in NEH but it can get slightly better performance. Moreover, their new tie-breaking
strategy has improved the performance of NEH significantly. Kalczynski & Kamburowski
(2008) presented a combination of both the Priority Order and a simple Tie-Breaking approach.
This new approach outperformed the NEH heuristic. Ribas & Mateo (2010) studied the FSP
with and without buffer constraints and proposed an improved NEH-based heuristics algorithm
for this problem. Li & Yin (2013) proposed a DE based MA for the PFSP where a heuristic
NEH algorithm integrated with random initialisation to the population with certain quality
and diversity. Marichelvam et al. (2014) proposed a developed Cuckoo Search algorithm for
the multistage hybrid FSP with the objective of minimising the total completion time. In this
algorithm, the NEH algorithm was incorporated with the initial solutions to reach a local optimal
solutions quickly. Ramanan et al. (2014) used a PSO approach with the objective of optimising
the makespan of an FSSP. The problems were tested on Taillard’s benchmark problems. The
results of NEH heuristic were initialised to the PSO to direct the search into a quality space.
Vasiljevic & Danilovic (2015) showed the importance of the inclusion of the information about
the sort of ties in the initial phase of the NEH heuristic, which applied for the PFSP with the
makespan objective. The conclusion obtained by this study, was that the range of the objective
values for different sorts of ties was often greater than the improvements, published in literature.
This allowed them to construct a very simple algorithm that outperformed published NEH
improvements, maintaining NEH’s exceptional efficiency. The proposed algorithm also used
the information about the ties in the insertion phase to improve the objective value. Rossi et al.
(2016) analysed the PFSP with makespan minimisation criteria, and proposed constructive
methods that make use of the principles of the NEH heuristic and recent studies to significantly
improve its performance. For this purpose, 67 new constructive heuristic approaches were
presented. Ding et al. (2016) proposed a modified NEH heuristic algorithm based on the multi-
objective concept and developed the multi-objective IG approach to solve the FSP. Danilovic &
Ilic (2016) considered the PFSP and used a generalised constructive algorithm which based on
the extension of the NEH algorithm. Shao et al. (2017) used a modified speed-up NEH method
at the initialisation stage and the random initialisation was utilised to generate more promising
solutions with a reasonable running time, then a MA with Hybrid Node and Edge Histogram
was applied to solve no-idle PFSP with the criterion to minimise the maximum completion
time.

2.6 Solution methods related to dynamic and static scheduling 39

2.6.3 Iterated Greedy method

The IG algorithm is one of the most powerful and efficient heuristic algorithms developed so
far for solving the PFSP. It is a constructive technique that was introduced by Jacobs & Brusco
(1995). This algorithm was applied successfully for the PFSP by Ruiz & Stützle (2007). It is
state of the art in terms of simplicity, speed and accuracy. Ruiz & Stützle (2007) compared
the IG algorithm against different methods; the IG algorithm showed the best performance
throughout all other methods. The authors showed in this research the IG algorithm was far
superior and simpler than the hybrid GA proposed by Ruiz et al. (2006). Also, Ribas et al.
(2015) proposed several SA based techniques and compared them to the IG algorithm. The
authors applied the proposed methods for all classical benchmarks and the results illustrated that
the IG algorithm performed better and uses fewer parameters than their methods. Ying (2007)
proposed an IG algorithm for the non-PFSP. Also, Ying (2009) proposed the IG algorithm for
the multistage hybrid FSP with multiprocessor tasks where the objective is to minimise the total
completion time. The computational experiment results illustrated that the IG algorithm showed
better performance when compared with other three metaheuristics. In addition, Ying (2012)
presented an IG algorithm for the Wafer Sorting Scheduling Problem in order to minimise the
primary objective of the total setup time and minimise the secondary objective of the number of
testers. The same author Ying et al. (2009) proposed simple IG for solving the Single Machine
Tardiness problem with sequence dependent setup times. Ying & Cheng (2010) presented an
IG approach to the dynamic PMSP with sequence-dependent setup times in this problem. As
well, Lin et al. (2011) considered an improved IG with a sinking temperature to minimise the
maximum lateness of an identical PMSP with sequence-dependent setup times and job release
dates. Moreover, Lin et al. (2013) presented a modified IG algorithm for the distributed PFSP
with minimising the makespan. The IG algorithm applied with five other heuristics for the PFSP
under different types of disruptions (Katragjini et al., 2013). In their work, the IG algorithm
outperformed all other heuristics in achieving a better near optimal solution in a reasonable
amount of time. Tasgetiren et al. (2013) presented a variable IG algorithm with DE, designed to
solve the no-idle PFSP. Kang et al. (2013) used an IG algorithm for the problem of allocating
parallel application tasks to processors in heterogeneous distributed computing systems where
the objective is to maximise the system reliability. Ciavotta et al. (2013) presented Iterated
Pareto Greedy (IPG) for the multi-objective sequence dependent setup times PFSP. Also, an
IPG method was presented for solving the hybrid FSP in order to minimise both of the total
completion time and the total tardiness (Ying et al., 2014). Campos & Arroyo (2014) addressed
an Elitist Non-dominated Sorting GA with IG algorithm to solve the three-stage assembly FSP
in order to minimise both of the TFT and the total tardiness, simultaneously. Deng & Gu (2014)
proposed an enhanced IG algorithm which explores inserting and swapping neighbourhoods to

40 Literature review

solve the SMSP with sequence-dependent setup times and the objective is to minimise the TWT.
Pan et al. (2017) proposed a MILP model for the mixed no-idle extension where only some
machines have the no-idle constraint where the objective is to minimise the total completion
time. The authors used an IG algorithm to solve this problem. Ding et al. (2015) proposed
a Tabu-mechanism improved IG method for solving a no-wait FSP in order to minimise the
total completion time. Abdollahpour & Rezaeian (2015) proposed three approaches which
are; IG, an AIS and a hybrid AIS-IG algorithms to solve the PFSP with the limited buffers
between consecutive machines where the objective is to minimise the total completion time.
Very recently, Pan et al. (2017) used an IG algorithm for the hybrid FSP in order to minimise
the bi-criteria function of the weighted earliness and tardiness objective from the due window.
Also, a comparative study between the IG algorithm and nine other competing approaches
were given in this work, the IG algorithm showed the best performance against all of the nine
approaches. Elias C. Arroyo (2017) addressed the scheduling problem of n jobs with arbitrary
job sizes and non-zero ready times on m unrelated parallel batch machines with different
capacities in order to minimise the total completion time. They provided a lower bound for the
problem and a MILP model. To solve this problem, a metaheuristic based on the IG algorithm
was proposed. Ribas et al. (2017) considered the parallel blocking FSP with minimising the
makespan among lines. They presented a mathematical model along with some constructive
and improvement heuristics to solve the presented problem where the constructive technique
employed two methods which were completely different from those presented in the literature.
These approaches are applied as generating initial solution techniques of an ILS and an IG
algorithm, where they both combined with a VN search. Li et al. (2017) extended a simple IG
algorithm for the two-sided assembly line balancing problem and introduced a modified NEH-
based heuristic to obtain a high quality initial solution. Dubois-Lacoste et al. (2017) discussed
the possibility of re-optimising the subsequence obtained from the destruction phase of the
IG algorithm. For the PFSP with the objective of minimising makespan, the authors showed
that the performance of the IG algorithm can be significantly improved with this extension.
Also, they proved in experiments that the LS on subsequence of jobs is the key component
of the powerful performance of the algorithm. Tasgetiren et al. (2017) proved that the IG
algorithm performance depends significantly on the speed-up approach used. The parameters
of the presented IG method were tuned through a design of experiments on randomly generated
benchmark instances. Regarding the application of IG algorithm for the multi-objective PFSP,
Framinan & Leisten (2008) pioneered the use of IG methodologies for solving the multi-
objective scheduling problems. The authors presented an IG search technique to solve the PFSP
in order to minimise both of the makespan and the flowtime. On the other hand, Minella et al.
(2011) proposed an algorithm based on the IG approach for solving the multi-objective PFSP.

2.7 Stochastic Scheduling Approaches 41

2.6.4 Biased Randomisation

The randomised or probabilistic are recent solution approaches in the field of COPs. Such meth-
ods are usually proposed for the problems under issues of uncertainty or local optima. These
kind of algorithms have been used widely for various classes of COPs, such as: Scheduling
Problems, Vehicle Routing Problems (VRP) (Belloso et al., 2017), Packing and Partitioning
Problems, and more. For more details about randomised approaches we refer the reader to
(Collet & Rennard, 2007). An example of the successful hybridisation of the BR with some
heuristic was the application of the BR technique with the NEH heuristic that was used to
generate the initial solution for Sim-heuristic approach that was proposed by Juan et al. (2014a).
The authors applied the Discretised Decreasing Triangular Probability Distribution (DDT) to
generate random variates at the BR step.

2.7 Stochastic Scheduling Approaches

When the processing times of jobs are considered as random variables whereas the population of
jobs is assumed to be known in advance, the scheduling problem is called stochastic scheduling
(Pinedo, 2016). In these types of problems, the random processing times of all jobs follow a
specific probability distribution where µ j is the expected value and σ j is the standard deviation.
Stochastic scheduling models have been mainly introduced since the 1980’s where researches
have traditionally concentrated on non-anticipative policies which intent to minimise the
criteria in expectation. Additionally, it is usually supposed that the processing times of jobs are
independent stochastically. A policy of scheduling is non-anticipative if its decisions about the
jobs that must be scheduled at a time t depend only on the jobs which are already finished at
time t and on the conditional distributions of the remaining processing times of jobs that are still
active at this time. Rothkopf (1966) showed that for the scheduling problem of m immediately
available jobs with random variable service times. It is certain that such problems can be
reduced to equivalent deterministic problems. Möhring et al. (1984) investigated the analytic
properties in scheduling of various classes of policies, also for special cases, the optimal
policies were determined. Weiss (1991) and Weiss (1992) derived additive performance bounds
for a PMSP without release dates in stochastic environment. In addition to this, Modarres et al.
(1999) developed COP approaches for different scheduling problems in stochastic environment.
The authors examined the power of linear programming based priority policies, and compared
them to the expected performance of an optimal stochastic scheduling policy. Bertsekas
& Castanon (1999) showed how rollout approach can be implemented in an efficient way,
also they showed that the performance of these policies is local optima, and is substantially
better than the performance of their underlying heuristics. The authors, concentrated on a

42 Literature review

different class of scheduling problems in stochastic environments. Koole (2000) applied
event-based dynamic programming to stochastic scheduling problems. Skutella & Uetz (2005)
derived approximation policies for stochastic machine scheduling with precedence constraints.
Kamburowski (2000) studied a stochastic 3-machines scheduling problem in Johnson’s flow
shops with the objective of minimising the expected total completion time. Alcaide et al.
(2002) addressed the FSP with minimising the expected total completion time under machine
breakdowns in stochastic environment. The authors presented a method that converted a
scheduling problem under breakdowns into a finite sequence of problems without-breakdowns.
Yang et al. (2004) studied using TS to optimise the parameters of a FSP. Empirical results
showed TS as a promising method to solve the FSP. Wang et al. (2005) applied a Hypothesis-
Test method incorporated into a GA for solving the FSP problem in stochastic environment
and to avoid premature convergence of the GA. Hentenryck & Bent (2006) provided the
main algorithm for online stochastic COPs, they have given an interesting review of many
classical COPs in a stochastic environment such as; stochastic scheduling, stochastic VRP and
stochastic reservations. Kalczynski & Kamburowski (2006) proposed a job sequencing rule
which includes Talwar’s and Johnson’s rules for the 2-machines FSP so as to minimise the total
completion time. In this problem, the processing times are assumed independently and follow
the Weibull distribution. Liu et al. (2008b) proposed a class of PSO algorithm with SA and
hypothesis test to solve the FSP with no-wait constraint in stochastic environment, where the
criterion is to minimise the total completion time. The developed PSO algorithm showed better
feasibility, effectiveness and robustness when compared to other proposed algorithms. Parajuli
(2010) compared stochastic scheduling performance with deterministic scheduling, given that
the problem involves stochastic processing times. He also focused on due date performance
as a scheduling objective, considering that both early and tardy completion is undesirable.
Baker & Altheimer (2012) applied heuristics for the stochastic FSP and general distributions
for processing times. Almeder & Hartl (2013) dealt with a scheduling problem of a real-
world offline stochastic FFSP with limited buffers. The scheduling problem with impatience
to the end of service or impatience to the beginning of service in stochastic environment
have been considered by Salch et al. (2013). The impatience of a job was considered as an
uncertain due date and both of the processing times and due dates were stochastic variables.
The criteria is to minimise the expected weighted number of tardy jobs. Elyasi & Salmasi
(2013) presented a stochastic approach based on Chance Constrained Programming for two
different scheduling problems; SMSP and 2-machine scheduling in stochastic environment.
Cai et al. (2014) provided a comprehensive and unified coverage of studies in this area. Wang
& Choi (2014) presented a Decomposition-based Holonic approach to solve the FFSP under
stochastic processing times, in order to minimise the total completion time. Ebrahimi et al.

2.7 Stochastic Scheduling Approaches 43

(2014) proposed two metaheuristics for the hybrid FSP with sequence dependent family setup
time. The objective is to minimise the total completion time and the total tardiness. Also, the
due date was considered as a stochastic variable following the Normal distribution. Baker
(2014) proposed a developed B&B method for the stochastic SMSP in order to minimise
the total expected earliness and tardiness costs. Aydilek et al. (2015) considered the setup
and processing times as stochastic variables for the problem of a 2-machines production FSP
with the criterion of minimising the total completion time. Saravanan & Pugazhenthi (2015)
pertained to heuristic technique to obtain an optimal scheduling in PFSP where the jobs were
associated with probability, and the criterion of minimising the makespan was associated with
probability nature. Framinan & Perez-Gonzalez (2015) proposed some heuristics from the
literature for the PFSP under stochastic processing times in order to minimise the expected
total completion time.

2.7.1 Simulation-Optimisation

The terms Optimisation for Simulation or Simulation for Optimasation are commonly men-
tioned in the field of stochastic COPs (Amaran et al., 2017). Both the comprehensive surveys
of Fu (1994) titled Optimisation via Simulation, and (Andradóttir, 1998), which was titled
Simulation Optimisation, reflect the two terms mentioned previously. The main aim of hy-
bridising simulation and optimisation is to handle the COPs in the presence of stochastic
components. Recently, in stochastic scheduling, the Sim-Opt is used widely where heuristics
or metaheuristics are used for the optimisation part. The concept of SA algorithm has been
developed into an algorithm that can be used to solve a variety of optimisation problems. This
was shown in work by Manz et al. (1989), where SA was used to optimise parameters for an
Automated Manufacturing System Simulation. Sabuncuoglu & Kizilisik (2003) investigated
the problems of reactive scheduling in a stochastic and dynamic flexible manufacturing systems.
Tekin & Sabuncuoglu (2004) proposed a total survey on Sim-Opt approaches with emphasis
introduced on modern developments. They provided a taxonomy about the existing approaches
depending on the problem characteristics and discussed the main advantages and possible
drawbacks of the various approaches. Fu et al. (2005) introduced a review of the important
techniques of Sim-Opt and described some modern theoretical and algorithmic developments
in the field of Sim-Opt. Simulation-heuristic algorithm has been applied successfully for other
stochastic COPs. Work by Konak & Kulturel-Konak (2005) discussed optimising simulation
problems using TS, including discussion of the profound effect that parameter selection has
on the performance of the search. Grasas et al. (2016) presented the Sim-ILS approach that
extends the ILS algorithm by combining simulation to provide the algorithm with the ability of
dealing with stochastic COPs in a natural way. Juan et al. (2014a) presented a Sim-heuristic

44 Literature review

approach for solving the PFSP under uncertain processing times. This approach hybridised
an ILS metaheuristic with the MCS so as to handle the stochastic nature of the problem. A
set of methods related with planning and/or scheduling, many of which are a hybridisation of
optimisation and simulation have been presented by Pereira (2016).
As an alternative to the heuristic methods, metaheuristic approaches allow generation of high-
quality solutions to the real-life COPs in relatively short computing times. For example, GA
and PSO algorithm are showing a wide range of applicability and robustness for solving a wide
range of different COPs and have received a large amount of research. In work by Joines et al.
(2002), they used GA to optimise simulations of a supply chain to set optimal order quantity
and time between orders. Koyama et al. (2004) worked on optimising routing algorithms with
GA using a simulated system. Dahal et al. (2005) used a standard GA optimiser to solve a
simulation of an actual port facility to minimise total costs by reducing delays. Jeong et al.
(2006) developed a hybrid solution where the GA was used to optimise schedules and the
simulation was applied to minimise the makespan of the last job while reflecting stochastic
characteristics with the fixed input from the GA. Persson & Stablum (2006) was able to use
GA to solve a multi-objective Mail Sorting Simulation Created in Arena. Gu et al. (2008)
addressed the FSP with random breakdown and random repair time. They applied a Quantum
Genetic Based Scheduling Algorithm for this problem, this approach combined stochastic
simulation theory, stochastic programming, quantum computing and GA together. Juan et al.
(2011) integrated routing metaheuristics with MCS for solving the VRP with stochastic de-
mands; Cáceres-Cruz et al. (2012), also combined a MCS and routing metaheuristic to solve
the inventory routing problem with stochastic demands and stock-outs. Wang et al. (2015b)
addressed the PFSP under unknown processing times and applied a two-stage Sim-based
hybrid Estimation algorithm to solve this problem. Juan et al. (2015) presented a review of
Sim-heuristics by extending metaheuristics to deal with stochastic COPs. González-Neira et al.
(2016) addressed the Integral Analysis method for the stochastic FFSP with the bi-objectives
criteria, where the cardinal analysis implemented both a MILP model and a Sim-Opt technique
for the TWT solution. Noura et al. (2016) applied a Sim-based GA with the stochastic MILP
model to construct Quay Crane scheduling that account for the dynamics and the uncertainty
inherent to container handling process. Finally, Frazzon et al. (2016) introduced and examined
a Sim-Opt technique to solve the production and logistic processes along a global supply chain
involving a production JSP and intermodal transport.

2.8 Benchmark problem 45

2.8 Benchmark problem

A comprehensive comparisons against well-known and established benchmarks of instances
are frequently required in the field of COPs and when a set of benchmarks is recognised,
then various approaches can be applied and compared depending on this set. Recently, there
are benchmarks available online for different scheduling problems and for different sizes.
Frequently, the best known solutions are the best known upper bounds in minimisation problems,
these solutions are used so as to compare the proposed method. In any study of combinatorial
optimisation benchmarks, poor quality instances can lead to experiments that are far removed
from real manufacturing problems. Thus, the design of the benchmark is of extreme importance.
Moreover, the benchmark instances might be too easy, limited size or specific for a given
combination of input parameters. In such situations, if the proposed technique outperforms
another in the set of instance, there is still no guarantees that the performance can be generalised
over the real world instances. As we define previously, in the FSP there are a list of n jobs
that proceed sequentially on all the set of m machines in series. Each job j has a non-negative,
deterministic and known amount of processing time pi j where i = 1, ...,m and j = 1, ...,n. In
the FSP the jobs start processing on the first machine and continue processing until the last
machine m. The solution space that has all the possible sequences is given as; n!, since at each
machine there are n! possible permutations of job sequences. On the other hand, in the PFSP,
there are only n! possible sequences to be considered and once the sequence of jobs for the first
machine is determined, is kept unchanged for all other machines. Taillard (1993) introduced
the well-known benchmark for different sizes of deterministic PFSP. His benchmarks have
been used widely in the literature of shop scheduling. Taillard benchmark was designed for
the case of deterministic PFSP. However, the real world PFSPs are dynamic and stochastic
in nature. Actually, there is a lack in the literature to consider dynamic and/or stochastic
benchmark for PFSP and there are no standard benchmarks in the literature of dynamic and
stochastic PFSP except the arguably limited benchmark of the SPFSP introduced by Baker &
Altheimer (2012). Recently, Katragjini et al. (2013) introduced a novel benchmark for PFSP
under different types of disruptions, they considered three different types of real-time event
during time horizon, which are; machine breakdown, arrivals of new jobs and ready time
variations. From our knowledge, there is no other given benchmark in the literature for the
PFSP with different uncertainties. This benchmark available online in http://soa.iti.es/. Vallada
et al. (2015) proposed a new benchmark of hard instances for the PFSP where the objective is
to minimise the makespan. This benchmark consisted of 480 instances including 240 small
size and 240 large size instances with up to 800×60 (jobs×machines).

http://soa.iti.es/

46 Literature review

2.9 Conclusion

The dynamic and stochastic PFSP under different uncertainties are considered as essential
studies in scheduling area. Such problems are widely studied due to the practical relevance of
the applications, where the research in this area is growing faster than in the last decades. From
the findings, current research on dynamic and stochastic PFSP under different uncertainties
focused more on improving the schedule by minimisation of specific objective(s) such as
makespan. In the same direction, others have attempted to reduce different objectives by using
multi-objective models, e.g., the bi-objective model with the objectives of minimising both
makespan and instability measures (Cowling et al., 2003), simultaneously. Furthermore, other
researcher defined such models and applied different rescheduling approaches to accommodate
different scheduling disruptions. Also, they proposed different efficient algorithms depending
on the problem environment and the disruptions types, for example; the Sim-heuristic algorithm
that was proposed for the SPFSP (Juan et al., 2014a). A central feature in dynamic and
stochastic PFSP under different uncertainties is the source of dynamicity (stochasticity) in
terms of machine breakdowns and new job arrivals (stochastic processing times). The aim in this
case is to make the new schedule feasible and optimal after any types of different uncertainties
(failures). In terms of multi-objective optimisation models, a literature review showed that this
could be a competitive approach in addressing uncertainty for the dynamic and stochastic PFSP,
when compared to the deterministic solution, as it does not require distributing assumptions on
the uncertainty. Also, multi-objective optimisation models can be adapted to address stability
and robustness (in addition utility) in order to accommodate the new disruptions with other
solution approaches. There exists broad range of different approximate and exact methods
have been used to solve dynamic and/or stochastic PFSP under different uncertainties. Exact
methods have the ability to only solve relatively small size instances. On the other hand,
approximate methods success to solve even large size problems in many cases. Hence, several
promising ways of research are worth more attention. A better heuristic should be more flexible
to accommodate the various disruptions in rescheduling approaches encountered in most of
real-life applications. In terms of Sim-Opt, nowadays, the combination of Simulation and
Optimisation is becoming quite popular in the research community. We presented several
studies on Sim-Optimisation methodologies, which are related to the combination of simulation
with heuristics/metaheuristic, in order to improve and to find a better way to solve COPs, in
particular, SPFSP. Additionally, the advantages of these algorithms are that they are flexible,
quite efficient and can be implemented in most practical applications. Also, the uncertainty
modelling feature of MCS hybridised with efficient and fast heuristic/metaheuristic can create
interesting approaches for real-life problems. Sim-Opt offers a practical perspective which is
able to deal with more realistic scenarios; by integrating MCS in the heuristic/metaheuristic,

2.9 Conclusion 47

it is possible to naturally consider any probabilistic distribution for modelling the stochastic
jobs processing times. To conclude a literature review showed that the use of Sim-Opt is a
well-established and increasingly relevant topic in COPs. There is the potential applications of
distributed computing to solve large-size PFSPs.

Chapter 3

Multi-objective Optimisation model for
Robust PFSP under different disruptions

3.1 Introduction

In the literature of manufacturing scheduling, one of the gaps is presented by considering
only classical efficiency performance measures for economic performances of the scheduling
systems. Examples of these measures are; the maximum flow time, makespan, tardiness,
earliness, and so on. As we mentioned previously, in real manufacturing systems, scheduling
frequently operated in highly dynamic and uncertain environments where random disruptions
may lead to non-optimal performances. Therefore, rescheduling actions will be required to
re-optimise the new schedule. The deviation of the current schedule could cause significant
impact such as additional costs in the case of storage costs, material handling costs, setup costs,
and more. Thus, it is important to minimise additional objectives in scheduling systems to
reduce any instability or deviations. The reminder of this chapter is orginised as follows; a multi-
objective optimisation model for robust PFSP under different real-time events is proposed in
section 3.2. Section 3.3 demonstrates the weighted objectives. In section 3.4, the uncertainties
and real-time events are discussed. Finally, related conclusions are presented in section 3.5.

3.2 The proposed multi-objective optimisation model for ro-
bust PFSP

In this chapter, we propose a new scheduling multi-objective optimisation model based on the
optimisation model introduced by Cowling et al. (2004) and Rahmani & Heydari (2014). The
new proposed model has been extended for the case of n jobs and m machines for the PFSP. It

50 Multi-objective Optimisation model for Robust PFSP under different disruptions

takes into account three important measures; utility (makespan), stability and robustness. The
new multi-objective optimisation model (MSR) for robust PFSP is then given as follows;

Min MSR = αUn(S∗)+β In(S∗)+ γRn(S∗) (3.1)

Where:
S∗ refers to the new schedule after the disruption. Similarly, S denotes the schedule before the
disruption time tD.
Un(S∗) = ∑ j′ CRm j′

In(S∗) = ∑i ∑ j′ |CRi j′ −CPi j′|
Rn(S∗) = |∑ j′ CRm j′ −∑ j′ CPm j′|
In this model we used the following notations:
n is the number of jobs.
m is the number of machines.
j index for jobs {1,2, ...,n}.
i index for machines {1,2, . . . ,m}.
j′ index of jobs that have not been processed on any machine yet and the newly arrived job.
CPi j′ is the predictive completion time of job j′ on the machine i.
CRm j′ is the real completion time of job j′ on the machine i.
Un(S∗) is the real makespan in real scheduling.
In(S∗) is the stability measure.
Rn(S∗) is robustness measure.

∑ j′ CPm j′ is the predictive makespan according to the initial schedule.
α , β and γ are weights used to indicate the importance of the objectives, where α +β + γ = 1.
In this model, the utility measure is used to indicate the degree of optimisation for the schedule.
While, the stability measure represents the difference between the completion times of the jobs
in the baseline and the new schedule. Also, robustness is used to determine the deviation in
performance of the baseline and new schedule.
In multi-objective optimisation problems things get complicated if the original functions are not
in the same scale. Thus, the model (3.1) will be normalised to enable a reasonable comparison.
The following model (NMSR) is the normalised objective function of model (3.1).

NMSR = αNUn(S∗)+βNIn(S∗)+ γNRn(S∗) (3.2)

Where NUn(S∗), NIn(S∗) and NRn(S∗) represent the normalised makespan, instability
and robustness, respectively and α , β , γ are the weight coefficients. The functions NUn(S∗),

3.2 The proposed multi-objective optimisation model for robust PFSP 51

NIn(S∗) and NRn(S∗) are calculated as following:
The normalised utility is giving by the following equation:

NUn(S∗) =
Un(S∗)−Min(Un)

Max(Un)−Min(Un)
(3.3)

Where Max(Un) and Min(Un) are the upper and lower bounds respectively for the makespan
at the time of disruption tD (Katragjini et al., 2013). To calculate Min(Un) we first define πAD

and πBD, where πAD is the partial sequence of jobs on the first machine at the time of disruption
tD, such that these jobs have already been executed or are in progress, and πBD denotes the
subsequence of jobs that have not proceed yet on the first machine and can be permuted. Now
Min(Un) is calculated using the following steps:

1. Determine πAD and πBD.

2. Calculate Un(πAD) the makespan of πAD.

3. Calculate ∑
n(πBD)
j=1 (Pm j) The total processing time of all jobs of πBD on the last machine.

Then the lower bound of makespan is as follows:

Min(Un) =Un(πAD)+
n(πBD)

∑
j=1

(Pm j) (3.4)

To calculate Max(Un), first we determine πAD and πBD. For every job j′s in πBD, the job j
start to be executed only after the previous job is terminated in the sequence. This calculation
process is explained in example in figure (3.1). From this figure, job number 3 is the first job in
πBD, and is starts proceeding after the termination of job number 5. Similarly, job number 1
starts after the termination of job number 3.
Also, figure 3.2 explain how to determine j′ and n′ where the only permutation order of jobs is
3 and 1 can be changed. The partial fixed sequence including the jobs that have already been
executed or are in progress on the first machine at the moment of the disruption is defined by
πAD. As well πBD denotes the permutable subsequence containing the jobs whose succession
order can be modified.

The normalised stability is given as follows:

NIn(S∗) =
In(S∗)−Min(In)

Max(In)−Min(In)
(3.5)

Where Min(In) and Max(In) represent the lower and upper bounds for instability at the
moment of disruption tD. In(S∗) represents the instability calculated as the sum of operations
whose starting times have been anticipated or delayed in the new schedule S∗.

52 Multi-objective Optimisation model for Robust PFSP under different disruptions

䐀琀   㴀 ㄀　　

䴀愀挀栀椀渀攀㄀

䴀愀挀栀椀渀攀㈀

䴀愀挀栀椀渀攀㌀

㐀 ㈀ 㔀 ㌀ ㄀

㐀 ㈀ 㔀 ㌀ ㄀

㐀 ㈀ 㔀 ㌀ ㄀

Fig. 3.1 Example of calculating Max(Un) for PFSP where n = 5 and m = 3

䐀琀   㴀 ㄀　　

쀃䈀䐀쀃䄀䐀 Ⰰ  渀✀ 㴀 ㈀Ⰰ  樀✀㴀㌀Ⰰ ㄀

䴀愀挀栀椀渀攀㄀

䴀愀挀栀椀渀攀㈀

䴀愀挀栀椀渀攀㌀

㐀 ㈀ 㔀 ㌀ ㄀

㐀 ㈀ 㔀 ㌀ ㄀

㐀 ㈀ 㔀 ㌀ ㄀

Fig. 3.2 Example showing how to determine j′ and n′ for PFSP where n = 5 and m = 3

3.2 The proposed multi-objective optimisation model for robust PFSP 53

In(S∗) = ∑
m
i=1 ∑

n
j=1 Ki j and

Ki j =

{
1 , |q∗i js−qi js|> h
0 ,otherwise

Where q∗i js denotes job j′s starting time on machine i after the rescheduling, and qi j s refers
to the starting times of the same task before the disturbance. h is a parameter to indicate an
alteration of an operation’s starting times up to h time units such that schedule stability is not
affected. By setting its value to 0 we consider the more general situation in which every single
change contributes to the instability of the final value. The normalised robustness function is
defined as follows:

NRn(S∗) =
Rn(S∗)−Min(Rn)

Max(Rn)−Min(Rn)
(3.6)

Where Rn(S∗) is the robustness after the disruption time tD. Max(Rn) and Min(Rn) are the
upper and lower robustness bounds respectively. To obtain these bounds, we first consider every
criterion to solve the problem alone, then according to three criteria, each problem should be
solved three times. The results are shown as a 3×3 matrix in equation (3.7)


Un In Rn

U∗
n a1,1 a1,2 a1,3

I∗n a2,1 a2,2 a2,3

R∗
n a3,1 a3,2 a3,3

 (3.7)

In matrix (3.7), the first row corresponds to the case where considering model (3.1) with
weight α = 1, β = 0, γ = 0 is solved. The second and third rows correspond to the state that by
considering the problem with weights α = 0, β = 1, γ = 0 and α = 0, β = 0, γ = 1 are solved.
Values of Min(Rn) and Max(Rn) are calculated as follows:

Min(Rn) = min{a1,3,a2,3,a3,3}

Max(Rn) = max{a1,3,a2,3,a3,3}

In the next chapters, the MSR model is compared against the bi-objective model (Katragjini
et al., 2013) and the classical makespan model. The next section explains the way of getting
the values of weights α , β and γ .

54 Multi-objective Optimisation model for Robust PFSP under different disruptions

3.3 Weighted objectives

The aim of designing different optimisation models is to determine the best model that min-
imises the objective function by changing design variables while satisfying design constraints.
It is often that during design optimisation it is required to consider objective functions or several
design criteria simultaneously. The multi-objective optimisation problem can then be defined as
the problem of finding “a vector of decision variables which satisfies constraints and optimises
a vector function whose elements represent the objective functions. These functions form a
mathematical description of performance criteria which are usually in conflict with each other.
Hence, the term ‘optimise’ means finding such a solution which would give the values of all
the objective functions acceptable to the decision maker” (Osyczka, 1985), it is also called
multi-performance, multi-criteria optimisation or vector optimisation problem. The most com-
mon and simple approach used for multi-objective optimisation is based on summarising the
multi-objectives in a new single objective, where the multiple objectives are transformed into
an aggregated objective function by using a linear combination of the proposed weights. This
approach is called the Weighted Sum. As state previously, the weight factors in the proposed
MSR model are; α , β and γ where 0 ≤ α,β ,γ ≤ 1. These weights are factors of the utility,
stability and robustness objective functions, respectively. The weighted sum α +β + γ = 1
is said to be a convex combination of objectives. The decision parameters α , β and γ are
used to indicate the importance of each of the three objectives. The optimisation approach
of weighted objectives is also referred to as the “a Priori” optimisation, since the weights
are calculated before the optimisation process. Although weighted approach was applied for
many multi-objective COPs, it is still unobvious how the weights should be established. Thus,
a Revised Weight Sensitivity algorithm introduced by Jones (2011), which is performed to
examine a part of weight space that is important to the decision maker in a multi-objective
scheduling problems. This work is based on the work of Jones & Tamiz (2010) that allows
to explore the whole weight space, but even so, many decisions have a priority for some
data beside their initial weighting estimate. Such important information avoid the method of
exploring the whole weight space by reducing the area which is required to be searched.

3.3.1 Initial estimate of weights

1. The starting point of the method which is an initial estimate by the decision maker.

2. A valid initial point for the method, this is obtained by using the Equal Weighting
technique, with the favorite weights of all the unfavorable deviations being given the
value of one.

3.3 Weighted objectives 55

3. Supply a starting point, the solution obtained by using the pair wise comparison methods
(Saaty, 1981) after the decision maker(s) supplies pair wise information according to the
importance of the objectives.

There are an additional favorable data employed to restrict the exploration weight space
area where the decision maker consider only one or hybrid of any of the following potential
forms of favorable data expressions:

• Absolute information about the relative importance of a single weight.

• Absolute information about a set of weights.

• Pair wise ordinal information regarding weights.

• Pair wise cardinal information regarding weights.

The revised weight sensitivity algorithm is then given in figure 3.3.

56 Multi-objective Optimisation model for Robust PFSP under different disruptions

1. Select initial starting point
2. Let S = φ

3. Let w = Initial set of weights
4. Add [SolveWGP(w)] to S
5. For n = 1 to T Max
6. For each subset T ∗ of deviations of cardinality n
7. Form new vector w∗by:
8. Calcmax(T ∗,max_weight_vector)
9. Set w = max_weight_vector
10. If [SolveWGP(w)] is not in S then add [SolveWGP(w)] to S
11. Let w = w_low,w∗ = w_up
12. Examine_Weight_Line (wlow,wup,1)
13. End_For
14. Next n
15. End
16. Subroutine Examine_Weight_Line (wlow,wup, level)
17. If [SolveWGP(wlow)] = [SolveWGP(wup)] then EXIT
18. If level > MaxLevel then EXIT
19. Form a new weight vector wmid by setting the weight of each
20. deviation to (wlow+wup)

2
21. If x∗ of [SolveWGP(wmid)] is not in S then add [SolveWGP(wmid)] to S
22. Examine_Weight_Line (wlow,wmid, level +1)
23. Examine_Weight_Line (wmid,wup, level +1)
24. End

Fig. 3.3 The revised weight sensitivity algorithm (Jones, 2011)

Where the parameter T Max is used to control the number of varied weights simultaneously,
MaxLevel is a parameter to control the maximum number of bi-sections of the line of direction
between the maximum level and initial estimate. In addition, [SolveWGP(w)] is a sub-code
which solves the dependent weighted goal programme using a weight set w to the unfavorable
deviations in the accomplishment objective. Also, Calcmax(T ∗,max_weight_vector) is a sub-
program used to compute the maximal level of weight that can be parted among the deviations
in T ∗ in ratio with the proportions of importance given in the initial solution whilst staying
within the bounds specified by the additional preference information supplied by the user. The
remaining weight is then shared amongst the remaining weights whilst coming as close as
possible to maintaining the ratios of importance given in the initial solution. In some cases this

3.4 Uncertainties and real-time events 57

can be calculated very simply from the preference information given while in other situations a
combination of two priority level lexicographic goal programme with the weight values as the
decision variables and the preference information as constraints must be constructed from the
preference information and solved to find max_weight_vector.

3.3.2 A revised weight sensitivity algorithm for MSR model

In this thesis, thirteen different weights (α,β ,γ) are derived from the Practical Weight Sensi-
tivity algorithm to evaluate the performance of the proposed multi-optimisation model, these
weights represent the relative importance of each objective in model (3.1). The selection of the
thirteen weights is based on a Practical Weight Sensitivity algorithm, which explained above.
By setting T Max = 1, MaxLevel = 1 and an sequential weight starting solution is set to be one,
ten of these weights are given in Table (3.1):

Table 3.1 The weights values

Solution α β γ

W1 0.333 0.333 0.333
W2 0.666 0.166 0.166
W3 0.498 0.498 0.002
W4 0.416 0.416 0.166
W5 0.166 0.666 0.166
W6 0.002 0.498 0.498
W7 0.166 0.416 0.416
W8 0.166 0.166 0.666
W9 0.498 0.002 0.498
W10 0.416 0.166 0.416

In this Table, the weights are represented as Wi, i = 1,2, . . . ,10. The remaining weight are
the unity weights (1,0,0),(0,1,0) and (0,0,1), these weights are only used to obtain the lower
and upper bounds that are used to demonstrate the normalised model (3.2).

3.4 Uncertainties and real-time events

The proposed optimisation model is used for the dynamic PFSP under different types of
disruptions. In this thesis, we proposed these benchmark instances for the PFSP under different
uncertainties. In the first part, we consider the dynamic PFSP under different real-time events
including; machine breakdown and arrival of new jobs. We also consider these two disruptions

58 Multi-objective Optimisation model for Robust PFSP under different disruptions

in addition to the stochastic processing times for the SPFSP in the second part. These real-time
events interrupt the initial predictive schedule individually or both simultaneously. Katragjini
et al. (2013) simulated the baseline of shop floor execution by generating different real-time
disruptions randomly at time t where 0 ≤ t ≤Cmax(BL) and Cmax(BL) represents the makespan
of the predictive baseline BL. They generated different disruptions till the end of the baseline
time horizon and not of the revised schedule for two reasons; the first reason is that new jobs
arrive continuously into the schedule sequence, which could delay the completion time of the
revised schedule and hence the process of disruption generation would be unending if halted at
the completion of each revised schedule. The second reason is that the authors aim to generate
a confined benchmark of disruptions and ensure reproducibility of the results when comparing
different rescheduling techniques. Since the revised schedule clearly depends on the algorithm
providing the best solution, the disruptions generated after the completion time of the baseline
are strongly related to the shop floor status determined by this algorithm and hence they cannot
ensure the reproducibility of results similar to a simulation process. They try to avoid lengthy
and difficult-to-reproduce simulation processes. Moreover, unless the new job arrival rate is
set to a very high level, as time goes by the number of jobs to be scheduled decreases and the
problems resolved at every rescheduling point tend to become trivial.

3.4.1 Machine breakdown

It is assumed that the breakdown time and interval are not known a priori. Then the schedule
disruption is simulated to generate random machine breakdowns at time t where 0 ≤ t ≤
Cmax(BL). The failure time duration is detected directly after the disruption occurs, where the
failure times are generated by applying a uniform distribution in the range U [1, ...,99]. In this
case, a job that is preceded due to a machine breakdown resumes its processing from the point
at which the event occurred.

3.4.2 New jobs arrivals

The scenario of a dynamic problem is considered in this research by generating arrivals of new
jobs randomly to the scheduling system. In other words, there is a probability of generating
one new job arrival at every point t where 0 ≤ t ≤ Cmax(BL). All jobs are characterised by
the arrival time, which is the time they enter the system, the ready times that identify the time
at which they can be released to the shop floor, and the processing times of operations on
all shop floor machines. The distribution of the processing times for the new jobs is fixed to
U [1, ...,99] following Taillard’s processing times generation. All the disruptions are saved as a
rescheduling event benchmark, which can be found on http://soa.iti.es/. It should be noticed

http://soa.iti.es/

3.5 Conclusion 59

that there does not exist any similar benchmark of disruptions in the literature, even for a single
type of disruption.

3.4.3 Stochastic processing time

For each PFSP instance in the Taillard’s problems, we consider the processing time of each job
as a random variable following a well-known probability distribution with a given mean and a
given variance. In other words, we replaced the deterministic processing time pi j to stochastic
processing times Pi j with E[Pi j] = pi j of job i on machine j. Any probability distribution
with a known mean could be used for modeling processing times. It should be noticed that,
in a real-world systems, historical data would be employed to generate each processing time
by a different probability distribution. The Log-Normal distribution is used when modeling
non-negative processing times (Juan et al., 2014a), it is a more natural choice than the Normal
distribution. Thus, a Log-Normal distribution is selected to be used in this thesis. This
probability distribution has two parameters; the location parameter, µi j, and the scale parameter,
σi j. According to the properties of the Log-Normal distribution, these parameters will be given
by the following expressions:

µi j = ln(E[Pi j])−1/2(1+Var[Pi j]/[E[Pi j]
2) (3.8)

σi j =

∣∣∣∣∣
√

ln
(

1+
Var[Pi j]

E[Pi j]2

)∣∣∣∣∣ (3.9)

3.4.4 Interaction between real-time events

It may have a machine breakdown, a new job arrival and/or stochastic processing time simulta-
neously during the time horizon. At the beginning of every disruption, reactive actions are used
to cope with the disruptions and to preserve a balance between schedule performance, stability
and robustness. Also, when the processing time is a random variable then simulation is applied
to handle the stochastic behavior.

3.5 Conclusion

The rescheduling literature, provide evidence of the lack of a standard methodology when
dealing with dynamic and stochastic manufacturing settings and the existence of a gap between
theory and practice in production scheduling. In this work we introduced a new multi-objective

60 Multi-objective Optimisation model for Robust PFSP under different disruptions

optimisation model for robust PFSP under different types of disruptions. The proposed model
considers three different measures namely; makespan, stability and robustness to handle the
effect of different disruptions on the schedule. We have addressed the FSP rescheduling under
two different types of disruptions that dynamically affect the shop floor layout, these disruptions
are; machine breakdowns, new job arrivals. However, real-life manufacturing operations are
affected by other types of events that need to be accommodated. Therefore, we also consider
the stochastic case when the stochastic processing time is adding to the shop floor. These
three disruptions are very common in every day manufacturing operations and negatively
affect the overall system performance. Hence, this work introduced the generation of a new
disruptions and benchmark by (Katragjini et al., 2013) as explained in details previously. The
shop floor layout considered in this work is a PFSP, yielding very stiff permutations that can be
reoptimised only partially at every rescheduling point.

Part I

Dynamic PFSP under different real-time
events

Chapter 4

Particle Swarm Optimisation Algorithm
for Robust PFSP

4.1 Introduction

In the literature of COPs, evolutionary methods have been widely used to solve different types
of these problems. The PSO algorithm belongs to the category of evolutionary computation op-
timisation family that was introduced by Kennedy & Eberhart (1995). Evolutionary algorithms
are usually inspired by nature such as the well-known GAs, Bee colony Optimisation and Ant
Colony Optimisation. The PSO algorithm simulates a social behaviour such as swarm bird
migration. It is a stochastic optimisation technique, and hence, it is a good option for many
dynamic and stochastic COPs. The PSO algorithm optimises the problems using improvement
solutions in a multi-dimensional space. It conducts a search using what is called a swarm
(population) of individuals and updated Iteratively, also, the individuals are called particles.
Each particle represents a solution (a candidate position) to the problem. A particle is treated
as a point in an n-dimension space, the position and velocity of each particle characterises
its status. The PSO algorithm stores populations of particle swarm, which moves around
in the solution space; the best position associated with the best fitness value of the particle
obtained so far is called the personal best, also the best experience or position ever found by
all particles is called global best. The nature of the PSO algorithm is fairly robust to changes
caused by random disruptions in a dynamic scheduling environment. This algorithm belong
to the metaheuristic techniques and it has been proposed by many researchers because of its
advantages over more traditional methodologies, the following are some advantages of this
algorithm:

64 Particle Swarm Optimisation Algorithm for Robust PFSP

1. The dynamic and stochastic nature of the algorithm and its simplicity of implementation
(Blackwell, 2007); (Li et al., 2006); (Zhang et al., 2015).

2. Another features are the use of self-information, individual best information and global
best information to generate effective and optimal results, as well as the convergence
speed of the swarm is very high (Blum & Merkle, 2008).

3. The main advantage of PSO is that, it requires fewer parameters to be adjusted when
compared to different optimisation methods (Li et al., 2012).

The contribution of this chapter is to apply the PSO algorithm for the predictive-reactive
approach with the MSR model for the robust dynamic PFSP under different types of real-time
events. The chapter is structured as follows; in section 4.2, the framework of the PSO algorithm
for dynamic PFSP is introduced. Section 4.3 gives an example to illustrate the procedure of
the PSO algorithm for the PFSP. Section 4.4 provides the experimental results. The related
conclusions are introduced in section 4.5.

4.2 Predictive-reactive based PSO framework for robust PFSP

In order to solve the PFSP under different disruptions, the PSO algorithm has to be defined.
First of all, the PSO algorithm is proposed to solve the dynamic PFSP under different real-
time events. Also, the MSR model is proposed to maintain the stability and robustness for
this problem. The predictive-reactive approach is proposed to control the effect of different
real-time events on the scheduling process. Thus, the methodology is to apply the predictive
solution first, then rescheduling is triggered when a real-time event is indicated in the scheduling
system. There are two real-time events that disturb the scheduling system, these are; machine
breakdowns and new job arrivals. These real-time events interrupt the initial planned schedules
simultaneously. At the beginning of every machine failure, rescheduling PSO algorithm is
applied to accommodate the new disruption, while the MSR model is used to preserve the
stability and robustness of the system. As well as, when a new job arrives to the system, the
PSO algorithm is applied at the reactive stage to reschedule partial sequence of jobs such
that the new job is located in an optimal sequence. Figure 4.1 shows the framework of the
predictive-reactive approach and how it applies to the PSO algorithm at the reactive stage.

4.2 Predictive-reactive based PSO framework for robust PFSP 65

start

Scheduling Execution
Trigger a
reschedul-

ing process
Update Sceduling Plan

Execute PSO Algorithm

Determine reschedul-
ing parameters

New jobs
arrival or
Machine

breakdown

stop

Yes

No

Fig. 4.1 Predictive-Reactive based PSO approach

In the PSO algorithm, the swarm consists of n number of particles. Each particle corre-
sponding to a position vector and a velocity vector where the position vector represents the
position particle in the solution space, while the position vector is used to create a schedule
from the particle position. This vector is decoded as explained in section 4.2.3 in order to
represent a solution to the problem. The PSO algorithm is an iterative procedure where each
particle move its position in the search space in order to improve the solution quality. Every
single particle continue looking for the best solution, this is named as the personal best. Also
the algorithm continues looking for the best solution from the personal best found in the swarm,
this is called the global best. The particles velocity control the movement of a particle to a
different position. The velocity of a particle is updated at each iteration and the particle change
it position in the search space, which generates a new position vector. The velocity has all
information about the way of moving the position of the particle from the position of the global
best solution in the whole swarm and the personal best solution that found by the particle
itself. The dimension of position, velocity, personal best and global best vectors are σ . This
dimension represents the required number of columns or variables in order for the position
vector to accurately represent a schedule to the problem. To explain PSO algorithm let us define
the following:

66 Particle Swarm Optimisation Algorithm for Robust PFSP

Problem dimension: n is the problem dimension (the number of jobs) and j is the index of
the problem dimension j = 1,2, . . . ,n.

Population size: σ is the population size (the number of particles) and i is the index of
population size i = 1,2, . . . ,σ .

Iteration number: t is the number of iterations.

Particle: X t
i is the ith particle (position vector) in the swarm at iteration t, it consists of n

particles that is X t
i = xt

i1,x
t
i2, . . . ,x

t
in where xt

i j is the position value of particle i of job j
at iteration t.

Particle velocity: V t
i is the ith particle velocity (velocity vector) at iteration t, it consists of n

particle velocities V t
i = vt

i1,v
t
i2, . . . ,v

t
in where V t

i j is the velocity of particle i of job j at
iteration t.

Population: The set consists of σ particles in the swarm at iteration t is called a population
pot where pot = X t

1,X
t
2, . . . ,X

t
σ .

Permutation: The permutation of job sequence implied by the particle X t
i is defined as

πt
i = πt

i1,π
t
i2, . . . ,π

t
in where πt

i is the assignment of job j of the particle i in the permutation
at iteration t.

Inertia Weight: The inertia weight wt is used to control the impact of the velocities from the
previous step on the current velocity.

Personal Best: The personal best Pt
i represents the best position of particle i with the best

fitness at iteration t where Pt
i = pt

i1, pt
i2, . . . , pt

in and pt
i j is the position value of the ith

personal best with respect to j. In a minimisation problem with the objective function
f (πt

i), the personal best Pt
i of the ith particle in the swarm can be obtained such that

f (πt
i)≤ f (πt−1

i) where πt
i is the corresponding permutation of Pt

i and π
t−1
i is the corre-

sponding permutation of Pt−1
i . The fitness function of Pt

i is simplified as f pb
i ≤ f (πt

i).

Global Best: The global best among all the swarm of particles achieved so far is called global
best Gt . It is defined as Gt = gt

1,g
t
2, . . . ,g

t
n where gt

i is the position value of Gt . To obtain
the global best we use the criterion f (πt)≤ f (πt

i) where πt and πt
i are the corresponding

permutation of global best Gt and personal best Pt
i respectively. For simplicity we use

f gb for the fitness function of the global best instead of f (πt).

Termination Criterion: The search process of PSO algorithm will be terminated after a
maximum number of iterations or a maximum CPU time.

4.2 Predictive-reactive based PSO framework for robust PFSP 67

Now the algorithm can be described after defining these notations. The general structure of the
PSO algorithm is given in figure 4.2 below.

1. t = 0
2. Initialise particles X t

i ;.
3. While termination condition are unsatisfied do
4. t = t +1;
5. Update wt ;
6. Select f pb

i for each particle;
9. Select f gb from X t−1

i ;
11. Calculate particle velocity vt

i j

12. Update particle positions xi j;
14. end

Fig. 4.2 General structure of the PSO algorithm

An initial solution is required to start the PSO algorithm. Every single particle is placed
randomly in the search space and its position is evaluated. After the evaluation of all the
solutions, the global best solution can be identified and hence decide whether to keep the old
solution or replace it with the current one. The fitness function is given as f (πt

i) = NMSR and
it is rewritten as f t

i in short. The PSO algorithm then moves to the next iteration. These steps
are explained in details in the following subsections.

4.2.1 The initialisation of the PSO algorithm for the PFSP

The PSO algorithm is start at iteration t = 0, also the population size is set to σ = 2×n where
n is the number of dimensions (Tasgetiren et al., 2004). The initial population of particles
generated randomly and the initial position values for the particle are generated randomly as
follows:

x0
i j = xmin + r1(xmax − xmin) (4.1)

Where i = 1,2, . . . ,σ , [xmin,xmax] = [0,4] and r1 ∈ (0,1) is a uniform random number
determined later as discussed in Section 4.3. Once the position vectors have been initialised,
the initial velocities are established similarly as follows:

v0
i j = vmin + r2(vmax − vmin) (4.2)

68 Particle Swarm Optimisation Algorithm for Robust PFSP

where [vmin,vmax] = [−4,4] and r2 ∈ (0,1) is a uniform random number.
The next step is to apply the decoding rule (described in Section 4.3) to the vector X0

i =

x0
i1,x

0
i2, . . . ,x

0
in for every particle to obtain π0

i . We use this schedule to compute the value of f 0
i

and thus for every particle we have:

P0
i = X0

i (4.3)

and

f pb
i = f 0

i (4.4)

for i = 1,2, ...,σ . The final step in fully initialising the PSO is to set the global best vector
Pt

g and the best objective value (makespan) of the swarm as follows:

g0 = P0
z (4.5)

and

f gb
i = min

i
(f pb

i) (4.6)

for i = 1,2, ...,σ . where the zth particle position is the one that yields the lowest objective
value out of all the particles in the swarm. At this point, all the particles have been initialised
and their position in the search space has been evaluated. The algorithm begins its iterative
procedure as described in following section.

4.2.2 PSO Algorithm

After all the particles in the swarm have been initialised, the inertia weight (w0) is given its
initial value. According to Tasgetiren et al. (2004), a reasonable value for the inertia weight,
which starts from 0.9 and never decreased below 0.4. The inertia value decreases the importance
of the previous velocity vector. Therefore, as the value of w increases, the previous velocity has
a bigger impact on the new velocity. If the value of w decreases, the previous velocity becomes
less relevant.

Step 1: Go to next iteration;

t = t +1 (4.7)

4.2 Predictive-reactive based PSO framework for robust PFSP 69

Step 2: Update inertia weight;
wt = w(t−1)×βPSO (4.8)

Where βPSO is the decrement factor. The decrement factor is similar to the cooling rate
of the temperature in SA. In this case, as time goes by βPSO decreases the inertia weight,
which reduces the importance of the prior iteration. The selected value for βPSO for this
problem is discussed in Section 4.3. In general, it ranges from (0,1).

Step 3: Update velocity;

vt
i j = w(t−1)v(t−1)

i j + c1r1(p(t−1)
i j − x(t−1)

i j)+ c2r2(g
(t−1)
i j − x(t−1)

i j) (4.9)

Equation (4.9) above is repeated along every dimension of a particle in order to populate
the velocity vector for particle i. This has to be repeated for each particle of the swarm.
In this equation, c1 and c2 are constants. It was found that a reasonable value for both
constants is 2 (Tasgetiren et al., 2007). However, further analysis (presented in Section
4.3) yields different values. Finally, r1 and r2 are uniformly distributed random numbers
from 0 to 1. If after updating the velocity any value along any dimension (i.e. vt

i j) exceeds
vmax or vmin, then the corresponding value is replaced with vmax or vmin, respectively.

Step 4: Update position;

xt
i j = x(t−1)

i j + vt
i j (4.10)

The above equation, just like with velocity, is repeated for every dimension of a particle
and for all particles in the swarm. It should be noted that if the value of xt

i j exceeds either
xmax or xmin then it is replaced by xmax or xmin, respectively.

Step 5: Schedule decoding; Once the new position vectors are obtained, utilise the procedure
described in the next section to decode a solution. This solution will yield a schedule πt

i ,
for the position vector of every particle in the swarm.

Step 6: Update personal best; Each particle of the swarm is evaluated according to the
corresponding πt

i obtained in step 5. If f t
i < f pb

i , then f pb
i = f t

i ; this is repeated for every
particle. If the new f t

i is better than f pb
i , we also update the personal vector as Pt

i = X t
i

and πt = πt
i . On the other hand, if f t

i ≥ f pb
i , then we leave the current value of f pb

i

unchanged and we set Pt
i = P(t−1)

i .

70 Particle Swarm Optimisation Algorithm for Robust PFSP

Step 7: Update global best; We find the minimum value of personal best in the whole swarm,
that is f pb

z =mini[f
pb
i]. If f pb

z < f gb, then f gb = f pb
z , and gt =X t

z and πt = πt
i . Otherwise,

f gb remains unchanged and gt = g(t−1).

Step 8: Stopping; If the stopping criterion is reached, then the procedure is stopped. Otherwise,
return to Step 1. A common stopping criterion is to set a predetermined maximum
number of iterations. If the maximum number of iterations has been reached, then πt is
the optimal schedule and the makespan of the assignment is given by f gb. Additional
stopping criteria can be implemented. For example, the algorithm may be stopped
once a certain number of iterations are carried out, during which there have been no
improvements to the global best. In this case, πt would also be the optimal schedule and
the makespan of the assignment would be given by f gb.

4.2.3 Decoding of Solution

The decoding mechanism is considered as the key elements in the PSO algorithm, it is also the
most challenging step of the procedure. The decoding step is defined as how a particle position
vector is mapped into a solution to the scheduling problem. There are several techniques that
have been used for this purpose. The most common method is the Smallest Position Value
(SPV) rule that was introduced by Tasgetiren et al. (2004). Another method was proposed by
Sha & Hsu (2008), who have presented a coding mechanism that uses a priority list vector
representation to map a solution to the problem of open shop where the lowest value has a
higher priority. Lian et al. (2006) used a different coding methodology for solving a JSP with
the objective of minimising the makespan. They translated an n×m matrix into a sequence
where jobs are sorted by location in numerical order. In this thesis, the SPV rule is used,
which is explained within the example given in section 4.3. Thus, the pseudocode of the PSO
algorithm is given in figure (4.3).

4.3 An Example of the PSO Algorithm for the PFSP 71

1. Set initial iteration t = 0 and σ = 2×n.
2. Generate σ initial particles X0

i = {x0
i1,x

0
i2, ...,x

0
in} where x0

i j is selected randomly from the
range [0,4].

3. Generate σ initial velocities V 0
i = {v0

i1,v
0
i2, ...,v

0
in} where v0

i j is chosen randomly from the
range [−4,4].

4. Use the SPV rule to detect π0
i = {π0

i1,π
0
i2, ...,π

0
in} of particle X0

i .
5. Apply the fitness function f 0

i to evaluate each particle i in the swarm.
6. For each particle set P0

i = X0
i where P0

i = {p0
i1, p0

i2, ..., p0
in}, p0

i1 = x0
i1, p0

i2 = x0
i2, ..., p0

in =

x0
in together with its best fitness function f pb

i = f 0
i .

7. Detect the best fitness value in the whole swarm such that f 0
L = min{ f 0

i } with its corre-
sponding particle X0

L . Set global best to G0 = X0
L such that g0

1 = x0
L1,g

0
2 = x0

L2, ...,g
0
n = x0

Ln

with its fitness value f gb = f 0
L .

8. Update the iteration t = t +1.
9. Update the inertia weight wt = wt−1 ×βPSO where βPSO is the decrement factor.

10. Update the velocity as follows vt
i j = wt−1vt−1

i j + c1r1(pt−1
i j − xt−1

i j)+ c2r2(gt−1
j − xt−1

i j)

where c1 and c2 are social and cognitive parameters and r1,r2 ∈ (0,1) are uniform
random numbers.

11. Update position values xt
i j = xt−1

i j + vt
i j.

12. Use the SPV rule to detect the permutation πt
i = {πt

i1,π
t
i2, ...,π

t
in}.

13. Use the permutation to evaluate particles by checking if there is any improvement at
iteration t for the personal best. That is, if f t

i < f pb
i , then Pt

i is updated as Pt
i = X t

i and
f pb
i = f t

i .
14. Find the minimum value of Pt

i as f t
L = min{ f pb

i }, L ∈ {i|i = 1,2, ...,ρ}. If f t
L < f gb,

then update the global best as Gt = X t
L and f gb = f t

L.
15. If the number of iteration exceeds the maximum number of iterations, then stop; otherwise

go back to step.

Fig. 4.3 PSO algorithm for the PFSP

4.3 An Example of the PSO Algorithm for the PFSP

To demonstrate the PSO methodology to the PFSP, we explain the procedure of the algorithm
for a single particle and for small number of iterations. In this case, we will assume a PFSP
with three jobs and two machines, and hence the problem dimension is equal to the number
of jobs, which means n = 3. As we mentioned above, the population size σ is set to be
twice of the problem dimension, so σ = 6. This means the dimension of both of position and
velocity vectors is six. Also, the decrement factor βPSO is set to 0.975 and w0 is set to 0.9

72 Particle Swarm Optimisation Algorithm for Robust PFSP

(Tasgetiren et al., 2007). As well as, c1 = c2 = 2, [xmin,xmax] = [0,4] and [vmin,vmax] = [−4,4].
The processing times for this example are given in Table 4.1.

Table 4.1 Jobs processing times

Machines J1 J2 J2

Machine 1 7 3 3
Machine 2 1 5 5

The first step is starting with set t = 0 and use equations (4.1) and (4.2) to initialise X0
i and

V 0
i respectively. Now, we apply the SPV rule as shown in Table 4.2. This Table shows these

initial values where π0
i represent the sequence of jobs by applying SPV rule. Note that the SPV

rule sort the jobs by sorting the position values X0
i in decent manner.

Table 4.2 Positions, velocity and sequence of jobs

Jobs 1 2 3
X0

1 0.329 2.453 3.559
V 0

1 -0.397 -1.136 3.838
π0

1 3 2 1
X0

2 1.224 3.904 1.433
V 0

2 -1.570 0.098 -1.057
π0

2 3 1 2
X0

3 3.406 1.267 1.881
V 0

3 -3.763 2.997 -3.521
π0

3 1 3 2
X0

4 2.137 0.694 0.339
V 0

4 0.015 2.432 -1.847
π0

4 1 2 3
X0

5 0.455 2.213 0.174
V 0

5 -2.013 1.609 -2.517
π0

5 2 1 3
X0

6 0.965 3.242 0.260
V 0

6 -1.767 -1.285 -2.594
π0

6 2 1 3

4.3 An Example of the PSO Algorithm for the PFSP 73

Once all the jobs have been assigned, we calculate the fitness function (makespan) cor-
responding to each position value X0

i . Since we are in the first initial iteration t = 0, we set
P0

i = X0
i . Also, since the dimension is 3, so we have six sequences of jobs, which are; π0

1 , π0
2 ,

π0
3 , π0

4 , π0
5 and π0

6 . The makespan for these sequences are shown in Table 4.3 below:

Table 4.3 Fitness functions

Schedule π0
1 π0

2 π0
3 π0

4 π0
5 π0

6

f 0
i 14 16 20 20 18 18

From Table 4.3 the personal best will be P0
1 = X0

1 , P0
2 = X0

2 , ..., P0
6 = X0

6 because this
the initial step of the algorithm. It is obvious that the global best will be given as follows;
g0 = f (π0

1).
Now we set t = 1. The velocity is then updated according to the updated iteration described in
the algorithm (see figure 4.3) as follows;

v1
i j = w0v0

i j + c1r1(p0
i j − x0

i j)+ c2r2(g0
i j − x0

i j) (4.11)

Once the velocity vector has been updated, we calculate the new values for the position
vector as follows;

x1
i j = x0

i j + v1
i j (4.12)

The new values of position vector and velocity vector for particle s are shown in Table 4.4
below.

74 Particle Swarm Optimisation Algorithm for Robust PFSP

Table 4.4 Positions, velocity and sequence of jobs

Jobs 1 2 3
X0

1 -0.058 1.350 7.608
V 0

1 -0.387 -1.104 4.048
π0

1 3 2 1
X0

2 0.189 4.975 0.413
V 0

2 -1.035 1.070 -1.020
π0

2 3 1 2
X0

3 -0.044 4.401 -1.275
V 0

3 -3.450 3.134 -3.157
π0

3 2 1 3
X0

4 2.491 3.107 -1.455
V 0

4 0.353 2.413 -1.794
π0

4 2 1 3
X0

5 -1.470 4.123 -2.296
V 0

5 -1.925 1.910 -2.469
π0

5 2 1 3
X0

6 -0.488 2.045 -2.290
V 0

6 -1.453 -1.197 -2.550
π0

6 2 1 3

Where c1 = c2 = 2 and r1,r2 are random variables from the interval (0,1). Finally, the
inertia weight will updated as follows:

w1 = w0 ×βPSO = 0.9×0.975 = 0.877

Now the new position vector is arranged using the SPV rule and the current schedule and
its corresponding makespan values are shown in Table 4.4. Also, the new fitness functions are
given in Table 4.5.

Table 4.5 Fitness functions

Schedule π1
1 π1

2 π1
3 π1

4 π1
5 π1

6

f 0
i 14 18 18 18 18 18

4.4 Experiment Results 75

At this point, from Table 4.5, the value of f 1
1 is equal to f 0

1 , for this, we have the choice to
keep or replace the previous personal best by setting P1

1 = P0
1 and we apply the same procedure

for the remaining values of f 1
i , i = 2,3,4,5,6. Thus, we have: P1

2 = P0
2 ,P

1
3 = P0

3 ,P
1
4 = P0

4 ,P
1
5 =

P0
5 and P1

6 = P0
6 . In this iteration, the global best f g requires to be recomputed based on the

new personal best values of the swarm. However, in this example the value of particle x1
1 does

not change, which yields an unchanging global best and concluding the first iteration. The
movement of the algorithm to a better solution is continue until stopping criteria yield. As can
be seen from the few iterations of the algorithm (Table 4.5), the value of the objective function
does not improve but it still the best. It is important to acknowledge that the algorithm can not
reach a better solution after more iterations are carried out. Furthermore, the performance of
the algorithm may improve if there are different values for job processing time and different
values for the parameters are set.

4.4 Experiment Results

This section gives the experimental results and comparison study for the PSO algorithm. This
algorithm has been applied for the dynamic PFSP under different real-time events, where
the PSO algorithm is triggered for the predictive-reactive approach with the MSR model and
used to maintain the problem stability and robustness. All experiments are coded in Java,
eclipse platform and run on an Intel Cori5 2.6 GHz PC with 6GB of memory RAM. In the
PFSP under different real-time events, three models are used and compared namely; the MSR
model, the bi-objective model of (Katragjini et al., 2013) (it has only makespan and stability
objectives) and the classical makespan model. A sensitivity analysis using a Practical Weighted
Analysis approach (Jones, 2011) is also coded to test the versatility of the MSR model in
producing differing Pareto efficient solutions with respect to the three objectives. The Jones
(2011) algorithm produced thirteen distinct weight sets (α,β ,γ), each representing different
levels of relative importance of the objectives in the MSR model. The parameters used in this
algorithm are as follows:
T Max = 1, MaxLevel = 2 and a sequential weight starting solution is set to be one. The unity
weights are applied to obtain the normalised model of the MSR model, these three weights are;
(0.999,0.001,0.001),(0.001,0.999,0.001),(0.001,0.001,0.999) While the sets of remaining
ten different weights are using to test this experiment. These weights are given in Table 3.1.
Furthermore, the bi-objective model given in (Katragjini et al., 2013) is also evaluated using
only the first (α) element of weights sets W1 to W10. These elements are listed as follows:

α = 0.333,0.666,0.498,0.416,0.166,0.002,0.166,0.166,0.498,0.416

76 Particle Swarm Optimisation Algorithm for Robust PFSP

Taillard (1993) has provided extensive sets of generated test problems for minimising
makespan in PFSP. The total number of problems he generated are 120, including 12 different
size of problems ranging from 20 to 500 jobs and 5 to 20 machines. He has provided 10
different instances for each PFSP from the same size. The performance of the PSO algorithms
with different weights are evaluated by using the benchmark set of Katragjini et al. (2013).
They have reported the PFSP under different real-time events and its predictive solution for
all Taillard’s benchmarks, which can be found in http://soa.iti.es/. The real-time events are
simulated such that they interrupt the system in specific disruption points tD, for example,
with the PFSP face machine breakdown disruption, the schedule disruption is simulated by
generating random machine breakdowns at time t, 0 ≤ t ≤ Cmax(B). For each instance, the
baseline B is generated by applying the IG algorithm. Also, machine breakdowns happen
only on busy machines, in other words, machines do not undergo failures during idle times.
In addition, the downtime duration is detected directly after the event occurs. At this point,
the down times are obtained from applying the uniform probability distribution in the range
U [1, . . . ,99]. Another assumption is that no other real-time event is recorded on the same
machine before the breakdown event is recovered. At most, only one machine can have a
breakdown event at time t. For more information about the real-time events including the new
job arrival see chapter 3.
In the PSO algorithm, the permutation representation is used, and the population size is taken
as twice the number of jobs. Also, the stopping criteria of the algorithm is depending on
the number of iterations and it is set to be 3×n. Regarding the PSO parameters, social and
cognitive parameters are taken as c1 = c2 = 2 consistent with the literature (Tasgetiren et al.,
2004). Initial inertia weight is set to w0 = 0.9 and is never decreased below 0.4. Finally, the
decrement factor βPSO is taken as 0.975. The solution quality is measured with the relative
percentage deviation (RPD), to be more specific, RPD is computed as follows:

RPD =
M−BestSol

BestSol
×100

where M is the solution obtained by the proposed model and PSO algorithm. BestSol is the
average of 10’s Taillard instances of lower bound solution from the same size. The predictive-
reactive approach with the PSO algorithm are applied for the MSR model, the bi-objective
model introduced by (Katragjini et al., 2013) and the classical makespan model, we run each
instance five independent times to obtain more reliable results for the proposed model and
algorithm.
Table 4.6 shows the results with respect to the RPD. In terms of the objective weights we solve
the problem for 10 weights as shown in chapter three, then we select the solution corresponding
to the weight that associated with lower values of the RPDs. In comparison to different weights,

http://soa.iti.es/

4.4 Experiment Results 77

the weight W8 = (0.166,0.166,0.666) had the lowest RPD values which were relatively better
results.

Table 4.6 RPD for MSR and bi-obj models using the PSO algorithm

Ta 20×5 20×10 20×20 50×5 50×10 50×20 100×5 100×10 100×20 200×10 200×20 500×20 Average

W1
MSR 29.446 22.907 20.532 27.014 22.872 23.768 15.085 23.259 20.938 22.923 22.559 17.737 22.420
bi-obj 34.345 6.838 21.109 25.106 22.311 24.256 28.078 30.075 22.222 25.297 22.860 20.764 23.605

W2
MSR 29.381 23.974 20.558 27.083 22.548 23.157 17.130 26.133 21.384 24.939 22.734 17.765 23.066
bi-obj 31.384 24.540 20.702 24.847 22.241 23.259 22.343 30.012 21.158 25.517 21.896 23.592 24.291

W3
MSR 29.062 23.921 20.621 27.905 23.539 23.203 18.788 26.151 21.636 24.693 22.518 17.960 23.333
bi-obj 32.807 23.506 20.76 23.575 22.308 24.023 25.127 32.409 21.901 27.009 20.427 22.8 24.721

W4
MSR 29.512 23.612 20.706 28.567 22.775 23.372 16.81 23.805 21.54 24.415 22.973 17.69 22.981
bi-obj 32.611 23.065 20.961 25.234 23.332 23.988 24.437 33.679 20.91 25.176 22.83 22.763 24.916

W5
MSR 30.796 23.75 21.892 28.64 23.369 23.09 15.386 24.082 21.604 22.86 22.6 17.44 22.959
bi-obj 31.769 23.618 23.52 25.811 23.375 24.774 24.453 32.38 22.264 25.187 23.909 24.521 25.465

W6
MSR 26.871 23.025 21.274 16.737 21.771 23.672 14.022 21.687 19.604 11.474 19.088 12.117 19.279
bi-obj 31.278 24.514 24.129 23.684 25.36 24.999 23.103 34.158 23.255 24.553 23.554 20.359 25.246

W7
MSR 28.163 23.447 20.138 19.146 22.358 23.624 14.085 20.92 19.896 11.331 19.082 13.794 19.665
bi-obj 31.769 25.285 23.52 25.811 23.375 24.774 24.453 32.38 22.264 25.187 23.909 24.521 25.604

W8
MSR 26.609 23.157 20.876 19.003 21.461 22.75 13.781 20.831 19.993 11.533 18.843 12.277 19.260
bi-obj 31.769 24.514 23.520 25.811 23.375 24.774 24.453 32.38 22.264 25.187 23.909 24.521 25.54

W9
MSR 29.422 23.664 20.464 29.659 22.184 22.267 14.98 23.648 22.117 23.118 22.889 17.177 22.632
bi-obj 32.807 24.514 20.76 23.575 22.308 24.023 25.127 32.409 21.901 27.009 20.427 22.8 24.805

W10
MSR 29.798 23.684 20.648 29.882 22.451 21.983 15.434 24.007 21.96 22.564 20.303 17.031 22.479
bi-obj 32.611 23.065 20.961 25.234 23.332 23.988 24.437 33.679 20.91 25.176 22.83 22.763 24.916

In the first row of this Table, Ta is the problem of size of n×m. As well as, the bi-
obj denotes the solution values obtained by using the bi-objective model of Katragjini et al.
(2013), where α = 0.166. According to Table 4.6, the objective functions are sensitive
to different sets of weights. The results show that the stability and robustness measures
play an important role in obtaining better solution. As shown in Table 4.6, the weights
W6 = (0.002,0.498,0.498), W7 = (0.166,0.416,0.416) and W8 = (0.166,0.166,0.666) pro-
duce better solutions in comparison with other weights. Furthermore, the solution correspond-
ing to the weight W8 = (0.166,0.166,0.666) has in general the lowest RPD values, this shows
that giving more priority to the robustness measure leads to better solutions. For this reason,
the weight W8 = (0.166,0.166,0.666) is selected in this experiment.
Now, to compare the quality of solution for different models, the MSR and the bi-obj are
compared with the classical model of makespan where is denoted as Utility for the RPD values
corresponding to the weight W8 = (0.166,0.166,0.666) as shown in figure 4.4. In this figure, it
is obvious that the RPD values relating to the MSR model are generally less than the values of
both of the bi-obj and Utility models.

78 Particle Swarm Optimisation Algorithm for Robust PFSP

Fig. 4.4 RPD for all models with weight W8 using the PSO algorithm

To further investigate the impact of the proposed predictive-reactive based PSO and models
on the dependent variable RPD, the single factor mean of an Analysis of Variance (ANOVA) is
performed. The results of MSR model corresponding to the weight W8 = (0.166,0.166,0.666),
bi-obj and Utility model are statistically tested by ANOVA. For our analysis with the three
models, the null and alternative hypotheses in ANOVA are:
H0: all means are same.
HA: at least one mean is different.
The F-ratios and the p-values are reported in Table 4.7. Since the p-value is smaller than 0.05,
we reject the null hypothesis of no difference, and conclude these factors have a statistically
significant effect on RPD at the 95% confidence level. The ANOVA F-test only permit to
reject the null hypothesis, but it does not give indication about which groups have different
mean values. Hence, the 95% confidence interval is used to specify which of the mean RPD
differences are statistically significant as shown in figure 4.5.

4.4 Experiment Results 79

Table 4.7 ANOVA between models using the PSO Algorithm

Groups Count Sum Average Variance

MSR 12 242.196 20.183 22.17
bi-obj 12 308.617 25.718 17.768
Utility 12 307.253 25.604 9.702

ANOVA

Source of Variation SS df MS F P-value F crit
Between Groups 240.165 2 120.082 7.257 0.002 3.284
Within Groups 546.053 33 16.547
Total 786.218 35

Fig. 4.5 95% Tukey confidence interval for all models using the PSO algorithm

This figure shows that the MSR model has significance difference in comparison with the
other two models. This support the good performance of the proposed MSR model when
comparing with the other two models, and hence, the importance of the robustness measure in
getting better performance.
The times required to reach the solution is given in Table 4.8.

80 Particle Swarm Optimisation Algorithm for Robust PFSP

Table 4.8 Computational time of PSO algorithm in seconds

Ta 20×5 20×10 20×20 50×5 50×10 50×20 100×5 100×10 100×20 200×10 200×20 500×20
C-T (S) 0.044 0.041 0.105 0.27 0.364 0.488 1.35 1.923 2.126 10.728 16.051 292.2

In this Table, the C-T(S) represent the computational time in seconds, which is obtained
from the average of five independent runs. The PSO algorithm reach good quality results in the
time mentioned in Table 4.8.

4.5 Conclusion

In this chapter, we applied the multi-objective model proposed in chapter 3, which considers
utility, stability and robustness to obtain robust and stable schedules for the PFSP under different
real-time events. Also, we proposed a predictive-reactive approach based on generating robust
schedule and reacting at every disturbance point, the PSO is applied for rescheduling at the
reactive stage. This algorithm shows the ability to deal with the dynamic nature of this problem
successfully. On the other hand, a bi-objective model Katragjini et al. (2013) and the classical
model of makespan are compared with our proposed model. For this, an ANOVA comparative
study is applied to compare the efficiency of these models. The ANOVA results revealed
that the MSR model has a significant effect on the RPD than other referred models. Also the
computational results of sensitivity analysis indicated that giving higher priority for robustness
measure leads to better solutions. Even though it is not included in this work, a LS may also
be implemented in the future to achieve better solutions and avoid being trapped in a local
optimal solution. Similarly, generating an initial solution to start the PSO algorithm instead of
starting randomly using efficient and simple heuristic such as NEH algorithm may significantly
improve the algorithm solution.
The PSO algorithm is a population-based method and it requires a relatively huge time to
reach a high quality solution as shown in Table 4.8. For this reason, in the following chapter,
we propose an efficient and simple heuristic method, which is an IG algorithm to reduce the
computational time and examine the ability of this simple algorithm to reach a better quality
solution than the PSO algorithm.

Chapter 5

Iterated Greedy Algorithm for Robust
PFSP

5.1 Introduction

Often, heuristic methods are applied to solve COPs, which are very complicated to be solved
to optimality. In the previous chapter, we explained the PSO algorithm for the dynamic PFSP
under different types of real-time events. However, the PSO algorithm is a metaheuristic
approach that requires different parameters and consume a considerable computational time.
Thus, in this chapter, we proposed a simple and efficient heuristic approach, which applied
successfully for the PFSP with the objective of minimising the makespan (Ruiz & Stützle, 2007).
This algorithm is known as an IG algorithm, which needs less parameters at the applications.
Also, the NEH heuristic algorithm and LS technique are used to improve the algorithm quality,
and hence, we explained these approaches in details this chapter. A possible definition of the IG
algorithm could be, a heuristic method that aims to optimise single or multi-objective function,
it is going from one solution to another solution by generating a sequence of solutions. These
sequences are obtained by iterating over Greedy Constructive (GC) heuristics. The algorithm
has two main phases, namely; destruction and construction phases. In the destruction phase
some jobs are selected to be removed from a previously constructed complete candidate set of
jobs. Then during the construction phase a GC heuristic is applied to reconstruct a complete
candidate solution. After completing a candidate solution set, the algorithm attempts to improve
the current solution by applying an optional LS method. Then an acceptance criterion is called
into action to decide whether the newly constructed solution will replace the incumbent solution.
Finally, the algorithm continue iterating these steps while some stopping criterion is satisfied.
An initial solution is required to start the algorithm, The NEH constructive heuristic (Nawaz

82 Iterated Greedy Algorithm for Robust PFSP

et al., 1983) is used to generate such initial solution. It should be noticed that the constructive of
the NEH procedure is also used in the construction phase of the IG algorithm. The IG heuristic
algorithm is closely similar to ILS (Lourenço et al., 2003), the main difference between these
two algorithms is that the ILS is iterating over a LS while IG algorithm iterates in an identical
way over construction heuristics. IG algorithm is a conceptually simple yet powerful heuristic
that has proven to be very efficient in solving complex COPs (Juan et al., 2014c). In the next
sections, we explain the NEH heuristic algorithm that is used to initialise the IG algorithm.
Also, the optional LS technique is explained.

5.2 Predictive-reactive based IG framework for robust PFSP

In many industrial processes machine failures continuously affect the planned activities. Pre-
ventive maintenance may reduce the breakdown rate, but it is almost impossible to eradicate
this type of disruption from the system. Similarly, other parameters such as material availability
and market demand are highly likely to undergo modifications and, hence, it is crucial to react
rapidly and produce new schedules that take into account the new system variables. The stage
of applying the IG algorithm mentioned below is designed as a deterministic heuristic for the
dynamic PFSP under different real-time events. Hence, it is necessary to develop a predictive-
reactive approach which can absorb the impact of different real-time events while maintaining
high shop performance. For this, the predictive-reactive approach is applied for the dynamic
PFSP. In this approach, the procedure starts with a predictive solution, then rescheduling is
triggered in response to unexpected different types of real-time events that alter the current
system status. Figure 5.1 illustrates the predictive-reactive approach and how it uses the IG
algorithm at the reactive stage.

5.2 Predictive-reactive based IG framework for robust PFSP 83

start

Scheduling Execution
Trigger a
reschedul-

ing process
Update Scheduling Plan

Execute IG Algorithm

Determine reschedul-
ing parameters

New jobs
arrival or
Machine

breakdown

stop

Yes

No

Fig. 5.1 Predictive-Reactive based IG approach

5.2.1 The NEH constructive heuristic

This section discusses the heuristic NEH algorithm in the context of scheduling problems. This
algorithm is used to initialise an initial solution for the IG algorithm. The NEH heuristic, which
stands for the first letters of the authors, Nawaz, Enscore and Ham (Nawaz et al., 1983), has
been distinguished as the highest performing old version method, it was designed for the PFSP
under the objective of minimising the total completion time (makespan). This algorithm is
commonly used to generate initial solutions for most modern algorithms designed to solve
the PFSP. For this, we use the NEH heuristic to generate an initial solution to initialise IG
algorithm. The idea of the NEH heuristic is very simple. First of all, the job list is sorted in
the decreasing order according to jobs total processing time. Thereafter, the jobs of indexes 1
and 2 in this sequence are scheduled in order to obtain a sequence that minimises the partial
makespan. And so on for all the remaining jobs in the sequence, for each job, all possible
positions in the partial list are explored then the position that minimises the partial makespan
is selected, that way keeping the relative order of jobs. The procedure is continued until the
last job in the sequence is included into the partial list, the obtaining list is the list of jobs that
minimises the total makespan. The complexity of NEH heuristic algorithm is given by O(n2)

84 Iterated Greedy Algorithm for Robust PFSP

where n is the number of jobs and m is the number of machines. The heuristic NEH algorithm
can be stated as in figure 5.2.

1. procedure
2. NEH_Jobs_List = sort_Jobs_Using_NEH_Criterion
3. NEH_Sol = NEH_Algorithm(NEH_Jobs_List) % NEH solution
4. base_Sol = NEH_Sol
5. nIter = 0
6. while cost(base_Sol)≥ cost(NEH_Sol) and nIter < nJobs do
7. nIter = nIter+1
8. new_Jobs_List = NEH_Job_List
9. new_Sol = NEH_Algorithm(new_Jobs_List)
10. if new_Sol = getCost(new_Sol) < getCost(base_Sol) then
11. base_Sol = new_Sol
12. end if
13. end while
14. Return baseSol
15. end procedure

Fig. 5.2 The NEH heuristic Algorithm

5.2.2 Local Search approach

LS approach is an optional step in IG algorithm (as we explain in the next section), it is a
simple and efficient method to improve the solution in many COPs. In this section, we explain
what the LS method is. First of all, let us consider the general mathematical definition of LS,
for the following general minimisation problem:

min
x

f (x)

Subject to x ∈U
where U ⊆ Rn is a subset of non-negative values and f : Rn → R is a real valued function. The
key characteristic of a LS method used to solve this problem is that it is an iterative procedure
which starts with some x0 ∈ Rn(not necessarily feasible) and in each iteration i attempts to move
to an xi with some relation to x(i−1); xi has to be a neighbour of x(i−1) (a proper definition of a
neighbour will be given later on). The move is accepted if xi is a ‘better’ solution than x(i−1), if
the moves rejected we take xi = x(i−1). The point xi is called a state.The idea of LS procedure
is sufficiently simple, first of all the solution space is the space containing all solutions to the

5.2 Predictive-reactive based IG framework for robust PFSP 85

problem, it includes feasible and infeasible solutions. Now, in LS method the search process
considers all list of solutions and select the feasible solution that gives minimum makespan.
The method moves in the solution space, and it perturbs the given solution in each iteration.
LS considers the observation by replacing a current feasible or infeasible solution with an
obtained different solution. The method then records the best obtained feasible solution so
far after checking each solution feasibility if required, in this case the best obtained feasible
solution is called the incumbent solution. The stopping criteria of the method is finally applied
to terminate the procedure after the stopping criteria condition is met, such as the number of
iterations without any improvement or running time to the incumbent solution. To give more
clear idea about LS method, we represent the current set of solutions as S, where S is produced
by executing an operations (Oper) on solution set S, which is named the neighbourhood N(S) of
the current solution. By applying a neighbourhood operator No(S) to S, several parameters are
usually taken by the operator No(S) to indicate which jobs of S will insert in the perturbation
list. The neighbourhood size N(S) of S based on the different parameters considered for No(S).
The neighbourhood of S is constructed and evaluated at each iteration of the method. Then
the new solution is chosen from one of the neighbouring solutions. It should be noted that,
in LS, there often more than one neighbourhood operator is applied. Figure 5.3 shows a
visualisation of the different concepts. To select the neighbouring solution to move, there are
two improvement strategies that are typically used; first and best improvement strategies. The
search process in the first improvement strategy evaluates the neighbouring solutions during the
neighbourhood construction step. The search direction moves to a neighbouring solution that
improves the current solution quality. The best improvement strategy constructs and evaluates
the complete neighbourhood. The strategy selects a new current solution that most improved
the solution quality.

86 Iterated Greedy Algorithm for Robust PFSP

Fig. 5.3 LS moving through the solution space towards a local optimum

LS method has two important concepts, which are; intensification and diversification. These
two concepts are usually implemented in the selection and evaluation of neighbouring solutions.
Intensification defines as a measure that concentrates the search in the most promising area
of the solution space. Diversification moves the search to explore new areas in the solution
space so as to insure the search process does not remain stuck in the same local optimum
solution. For a more extensive review about LS, we refer to (Gaspero et al., 2003). In
the literature there are many different versions of LS algorithm, which can be taken into
account. In this thesis, the LS algorithm based on the insertion neighbourhood, by Ruiz &
Stützle (2007), is considered. This type of LS is very practical and a good procedure to be
applied for the PFSP (Taillard, 1990). To explain this type of LS, we define permutation
of jobs as π , then the insertion neighbourhood approach of π could be defined by taking
into account all possible positions pairs (j,k) where 1 ≤ j,k ≤ n of π and j not equal to
k. In this case, the job in the j position is removed from permutation sequence π and it

5.2 Predictive-reactive based IG framework for robust PFSP 87

reinserted into position k. Thus the list of permutation obtained from such a movement
is define as π ′ = (π(1), ...,π(j − 1),π(j + 1), ...,π(k),π(j),π(k + 1), ...,π(n)) if j < k, or
π ′ = (π(1), ...,π(k − 1),π(j),π(k), ...,π(j − 1),π(j + 1), ...,π(n)) if j > k. Moreover, I =
(j,k) : j ̸= k, 1 ≤ j, k ≤ n

∧
j ̸= k ,1, 1 ≤ j ≤ n, 2 ≤ k ≤ n, where I is the set of all insertion

moves, and the insertion neighbourhood of the permutation π is defined as V (I,π)= {πv : v∈ I}.
The iterative improvement algorithm is implemented by applying a first improvement type
pivoting rule. The proposed LS algorithm is given in Figure 5.4.

1. Procedure: Iterative_Improvement_Insertion
2. improve := true;
3. while (improve = true) do
4. improve := false;
5. for i := 1 to n do
6. remove a job k at random from π (without repetition)
7. obtain best permutation by inserting job k in any position of π;
8. If Cmax(π

′)<Cmax(π) then π = π ′;
9. improve := true;
10. endif
11. endfor
12. endwhile
13. return
14. end

Fig. 5.4 Iterative improvement of neighbourhood LS (Ruiz & Stützle, 2007)

5.2.3 IG algorithm

Simplicity is the main feature of IG algorithm, the reason behind its simplicity is that it has
very few parameters. Also, the IG algorithm has shown best performance for different FSPs
with different objectives. To construct an initial solution for the PFSP, IG algorithm starts
with an initial solution generated by the NEH heuristic of Nawaz et al. (1983). It is based on
the idea that jobs with higher total processing times on all machines should be scheduled as
early as possible. IG algorithm consists of two phases; destruction and construction. In the
destruction phase d jobs are selected randomly and extracted from the current permutation
π and inserted into a list of removed jobs πR. Then, in their construction phase, the NEH
insertion procedure is applied to reinsert all jobs in πR individually into π again. There is
one more optional step in IG algorithm used to improve each solution that is generated in the
construction phase by a LS algorithm. This algorithm based on the insertion neighbourhood, is

88 Iterated Greedy Algorithm for Robust PFSP

commonly regarded as being a very good choice for the PFSP (Ruiz & Stützle, 2007). The next
step is to decide whether to keep the incumbent solution or replace it with the new one, using
an acceptance criterion based on the constant temperature SA-like criterion (Osman & Potts,
1989). It basically calculates a constant temperature as;

Temperture = T
∑

m
i=1 ∑

n
j=1 pi j

m×n×10

where T is another value to calibrate. Hence, the final proposed IG method is given in figure
5.5.

1. Generate initial solution π0;
2. Apply LS to π0 , and put modified solution into πs;
3. repeat
4. πd = Destruction (πs);
5. πc = Construction (πd);
6. πl = Local Search(πc);
7. π f = AcceptanceCriterion(πs,πl);
8. Until termination condition met;
14. end

Fig. 5.5 The IG Algorithm

5.3 Experiment Results

In this section, the experimental study for the PFSP under different real-time events including;
machine breakdown and new job arrival is discussed. The MSR model and the predictive-
reactive based IG algorithm are used to solve this problem to verify the effectiveness of the
model and the algorithm. The IG algorithm is implemented in Java using the eclipse platform.
The numerical experiments were carried out on a computer with CPU of Intel Cor i5 3.2 GHz,
RAM: 6 Gb. For each instance, the RPD over the best solution for each compared model is
given as follows:

RPD =
M−BestSol

BestSol
×100

Where BestSol is the average lower bound solution of ten Taillard instances that have the same
size n×m and M is the solution obtained from the presented models and methods. Table 5.1
illustrates the values of average RPD for instances of Katragjini et al. (2013) corresponding to

5.3 Experiment Results 89

the objectives weights. In this Table, the bi-objective model uses the following components:

α = 0.333,0.666,0.498,0.416,0.166,0.002,0.166,0.166,0.498,0.416

On the other hand, the MSR model use the weights given in Table 3.1 (see chapter 3).

Table 5.1 RPD for MSR and bi-obj models using the IG algorithm

Ta 20×5 20×10 20×20 50×5 50×10 50×20 100×5 100×10 100×20 200×10 200×20 500×20 Average

W1
MSR 15.00 15.36 19.07 8.86 15.69 15.09 14.79 13.16 11.80 11.08 10.71 8.38 13.249
bi-obj 14.22 13.99 19.32 9.20 14.44 15.18 16.02 11.45 12.22 10.71 10.74 8.81 13.025

W2
MSR 11.77 16.81 20.37 8.16 16.03 14.45 10.89 11.65 11.70 12.00 11.62 8.83 12.857
bi-obj 15.95 16.71 17.71 9.10 16.59 14.30 18.20 12.00 12.35 11.62 10.88 9.62 13.753

W3
MSR 12.38 15.29 15.91 10.33 15.00 13.48 14.70 12.30 11.95 13.16 10.77 9.47 12.895
bi-obj 16.00 15.65 19.19 11.54 14.85 14.20 13.72 10.86 12.28 10.77 10.48 8.36 13.158

W4
MSR 13.61 8.83 15.87 9.39 15.00 15.02 16.71 11.35 11.70 10.97 11.48 9.47 12.450
bi-obj 12.72 10.64 16.26 9.82 14.85 14.70 15.35 11.70 11.95 11.48 10.75 8.36 12.382

W5
MSR 12.95 14.74 15.60 9.47 15.32 14.12 16.78 10.92 11.99 15.06 10.46 8.91 13.027
bi-obj 14.13 15.71 16.00 10.57 15.71 13.77 15.48 12.15 12.59 10.46 11.10 8.55 13.018

W6
MSR 12.37 10.48 15.58 8.23 14.75 14.81 13.36 12.19 11.86 11.78 10.51 8.90 12.068
bi-obj 13.01 11.98 15.97 8.85 17.47 14.22 19.87 11.34 11.93 10.51 10.66 8.99 12.900

W7
MSR 12.46 10.19 16.23 9.37 15.21 14.59 12.13 12.08 11.74 13.07 10.36 8.12 12.129
bi-obj 13.37 12.03 16.08 8.74 15.21 14.26 15.00 12.34 12.62 10.36 10.92 8.45 12.448

W8
MSR 13.71 13.02 16.68 10.82 15.48 13.72 14.92 11.75 12.35 10.93 10.73 8.83 12.745
bi-obj 15.37 13.30 16.06 8.86 16.58 14.63 14.58 11.98 11.92 10.73 10.91 8.46 12.782

W9
MSR 13.05 13.23 16.92 8.76 15.36 13.82 11.76 12.15 12.48 11.07 10.82 8.91 12.361
bi-obj 14.63 13.84 17.06 9.92 15.94 15.83 13.33 10.97 12.09 10.82 10.85 8.40 12.807

W10
MSR 12.72 17.37 17.57 7.36 15.34 15.83 16.98 11.66 12.16 11.83 10.71 9.49 13.252
bi-obj 12.43 13.86 16.39 10.88 15.43 14.56 17.41 11.02 11.94 10.71 10.71 8.99 12.861

According to this Table, different sets of weights produce different objective functions
values, which means the solution is sensitive to different weights. It is clear from Table
5.1 that the stability and robustness performances are key to improve the solution quality.
This table shows that the weights W4 = (0.416,0.416,0.166), W6 = (0.002,0.498,0.498) and
W7 = (0.166,0.416,0.416) have minimum RPDs comparing to the other weights. Moreover,
the weight W6 = (0.002,0.498,0.498) produces the lower values of RPDs, which proves that
giving more priority to the stability and robustness objectives produces better quality solu-
tions. For this reason, we select the weight corresponding to the lowest RPD value, which is
W6 = (0.002,0.498,0.498).
The RPD for models MSR, bi-obj and Utility corresponding to the weight W6 =(0.002,0.498,0.498)
are given in Figure 5.6 where Utility represents the solution of a classical model of minimising
total completion time (makespan) and bi-obj the bi-objective model proposed by Katragjini
et al. (2013) corresponding to α = 0.449 . From this figure, it is clear that the MSR model has
minimum RPD values in general comparing to the other models.

The single factor mean of an ANOVA is applied for further investigation for the impact
of the proposed predictive-reactive based IG and models on the dependent variable RPD.

90 Iterated Greedy Algorithm for Robust PFSP

Fig. 5.6 RPD for all models with weight W8 using the IG algorithm

The ANOVA statistically tested the results of all models where MSR corresponding to W6 =

(0.002,0.498,0.498) and bi-obj corresponding to α = 0.449. In ANOVA, both hypotheses
(null and alternative) are given as follows:
H0: all means are same.
HA: at least one mean is different.
Table 5.2 shows the p-value and F-ratio; it is clear that the p-value are smaller than 0.05, and
hence the null hypothesis of no difference is rejected. This means statistically, that these factors
have a significant impact on RPD.
We perform a 95% confidence interval test to determine the models that are significantly
different. Also, Figure 5.7 shows that both of the MSR and bi-obj models are significantly
different with the Utility model. This shows how important the objectives of stability and
robustness are reaching better quality solutions.

5.3 Experiment Results 91

Table 5.2 ANOVA between models using the IG Algorithm

Groups Count Sum Average Variance

MSR 12 141.768 11.814 6.254
bi-obj 12 156.061 13.005 11.146
Utility 12 182.843 15.237 11.594

ANOVA

Source of Variation SS df MS F P-value F crit
Between Groups 72.462 2 36.231 3.749 0.034 3.285
Within Groups 318.939 33 9.665
Total 391.402 35

Fig. 5.7 95% Tukey confidence interval for all models using the IG algorithm

5.3.1 Comparison Study between PSO and IG algorithms

In this chapter and the previous one we considered the PFSP under different real-time events.
The predictive-reactive approach based on the PSO and IG algorithms along with the MSR
model were employed to solve this problem. In this section, the proposed IG algorithm is
compared against the PSO algorithm for the same benchmark of the PFSP in the presence
of different real-time events, where the proposed MSR model is used for this comparative

92 Iterated Greedy Algorithm for Robust PFSP

study with the weights W6 = (0.002,0.498,0.498) and W8 = (0.166,0.166,0.666) that showed
relatively lower RPD values. The average of each instance solutions values for both algorithms
are calculated from five independent runs, as well, a predictive-reactive approach is applied. To
make fair comparison, we run both algorithms for the approximately same maximum number
of iterations Iter = 3×n, where n is the number of jobs for the Taillard problem of size n×m.
Figure 5.8 shows the RPD values associated with both weights, it is obvious that, in general, the
RPD values related to IG are much lower than the values corresponding to the PSO algorithm.

Fig. 5.8 The average RPD values obtained by using the PSO and IG algorithms with weights
W6 and W8

Regarding the computational time, Table 5.3 includes the computational time for both of
PSO and IG algorithms.

Table 5.3 Computational time of PSO and IG algorithms in seconds

Problem PSO (S.) IG (S.)
20×5 0.044 0.002

20×10 0.041 0.004
20×20 0.105 0.007
50×5 0.27 0.018

50×10 0.364 0.03
50×20 0.488 0.048
100×5 1.35 0.095

100×10 1.923 0.301
100×20 2.126 0.482
200×10 10.728 3.692
200×20 16.051 8.13
500×20 292.2 175.972
Average 27.141 15.732

5.4 Conclusion 93

In this Table, the computational time is given in seconds and it is represented as the average
of five independent runs. From Table 5.3, the computational time of the PSO algorithm is much
higher than the time required by IG algorithms. This is due to the simplicity of the IG algorithm
that requires less parameters than the PSO algorithm. Also, the reason of reaching the IG
algorithm better quality solution, is that the algorithm has the ability of exploring bigger parts
from the solution space when comparing to the PSO algorithm. In summary, the IG algorithm
outperform the PSO algorithm in getting a better quality solution in less computational time.

5.4 Conclusion

In this chapter, we proposed the IG algorithm for the predictive-reactive approach along with a
MSR model that aims to minimise the makespan, stability and robustness simultaneously. This
algorithm and the model have been proposed for the dynamic PFSP in the presence of machine
breakdown and new job arrival. The obtained results show the high performance of the IG
algorithm in handling the dynamic PFSP even for the large size instances and generating robust
solutions successfully. The results also illustrate that the proposed MSR model outperforms
the bi-objective models given in (Katragjini et al., 2013) and the single objective model of
makespan. This emphasises the importance of stability and robustness measures where these
measures provide better robust solutions.
The proposed IG algorithm uses few parameters and apply the LS technique implicitly, this
gives the ability for the algorithm to explore larger portion from the solution space, and hence,
it generates and rates a huge number of local optima during a short amount of computational
time when compared to the PSO metaheuristic algorithm.
Recently, the biased randomisation techniques have been applied to improve the performance of
many heuristics in COPs area (Juan et al., 2014b). The IG algorithm is a destructive-constructive
procedure, and thus, in the next chapter, we hybridised the biased randomisation with the IG
algorithm to improve the solution quality.

Chapter 6

Biased Randomised Iterated Greedy
Algorithm for Robust PFSP

6.1 Introduction

One of the solution methods that applied to solve some of COP is probabilistic or randomised
algorithms, often, when there is some uncertainty or local optima involved. Randomised
techniques apply random variates or pseudo-random numbers in the constructive phase of the
method. One of the advantage point of these techniques is that they are more likely to generate
various outputs for various runs for the same input data. Hence, such approaches have the ability
to explore the solution space extensively, which leads to find numerous solutions of local optima.
In this chapter, we introduced a new approach based on the hybridisation of IG algorithm with
a BR technique, which is the termed as BRIG algorithm. The biased randomised NEH heuristic
(BRNEH) is also used to generate the initial solution for this approach. Moreover, the DDT
probability distribution is used to generate random variates at the BR step. The contribution
of this chapter is to implement the predictive-reactive based BRIG approach along with the
MSR model for the dynamic PFSP in the presence of different real-time events. In addition, the
BRIG algorithm is compared against both of the IG and PSO algorithms. The remainder of the
chapter is organised as follows; in section 6.2 a BR heuristic is presented including the main
advantages of this technique. In section 6.3, the predictive-reactive based BRIG framework for
robust PFSP under machine breakdown and new job arrival is proposed and explained. Section
6.4 shows experimental results that illustrate the proposed methodology and comparative study.
Finally, section 6.5 highlights the conclusions of this chapter.

96 Biased Randomised Iterated Greedy Algorithm for Robust PFSP

6.2 Biased Randomised Heuristic

This section introduces how to transform deterministic heuristics such as NEH and IG algo-
rithms into more efficient probabilistic algorithms. More precisely, it discusses the way of
randomising these heuristics. The procedure of transforming a deterministic algorithm into
probabilistic one is by applying a probability distribution. In fact using a non-symmetric
probability distribution is more interesting for this transformation. BR means the method that
use a non-uniform (skewed) probability distributions where they are defined as distribution
probabilities in non-symmetric shape. As well, the BR technique can be induced into the
algorithm by using the non-symmetric distributions. In PFSPs, the hybridisation of classical
NEH or IG heuristics with BR process is applied in the step of inserting a job in a new position.
That is, instead of choosing the inserted job randomly, the BR procedure selects the job with
highest probability to be inserted first. The NEH heuristic for the PFSP employs an iterative
process in order to construct a feasible and hopefully a better solution. Usually, during the
iterative process, the next constructive movement is selected from the priority list of potential
movements where the list is ordered in accordance with some criteria. The criteria used to
order the sequence is based on the particular heuristic approach being used. For this, the
constructive heuristic approach is actually considered as an IG approach that builds a good
feasible solution to the problem by choosing the best option from a sequence at each iteration,
then arranged according to some logical criterion. This is consider as a deterministic process,
because as soon as the criterion is defined, the process provides a unique sort for the jobs
potential movement sequence. It is obvious that if the order is randomised such that the jobs
of the sequence are chosen, then a different list is probably obtained every time the entire
approach is carried out. However, a non-symmetric (uniform) randomisation of that sequence
will ruin the basic methodology of the heuristic greedy manner, hence, it is improbable that
the randomised algorithm will provide a good output solution. This means, the randomised
algorithm could be running thousands of times and the generated solutions are probably much
worse than the solution that is generated by the original heuristic procedure. To keep the logic
beyond the heuristic approach, the Greedy Randomised Adaptive Search Procedure (GRASP)
(Prabhaharan et al., 2006) is suggested to take into account a list of restricted candidates. This
list is defined as a partial list that have only a part of the most promising movements, i.e., the
jobs at the top of the list, and then it applies a symmetric randomisation to arrange the list
so as to select the restricted list of jobs as shown in Figure 6.1. It should be noticed that, the
complexity of a randomised heuristic algorithm is the same as the complexity of the original
deterministic heuristic (which is used as a basis) (Juan et al., 2014b). This is because the only
extra operation added is the generation of a random decision instead of a greedy one.

6.2 Biased Randomised Heuristic 97

Fig. 6.1 BR selection versus uniform selection

The application of the BR technique with heuristic algorithms provides better results for
many COPs problems (Juan et al., 2014b). Some of the main advantages of using BR heuristic
approaches are as follows:

• The most important purpose of designing BR heuristic approaches is to support different
strengths of metaheuristic approaches such as; simplicity, speed, flexibility and accuracy
(Cordeau et al., 2002). Where Simplicity is referred to the facility of implementation and
the number of parameters that need to be used in the algorithm. This is very important
feature because it can be used for various instances other than the ones tested without the
necessity of a long run test and without losing performance or quality. Also, speed feature
represents the computational time of the algorithm. Moreover, flexibility is defined as
the possibility of accommodating new side constraints and also with the adaptation to
other similar problems. Finally, accuracy represents the degree of deviation of the current
obtained solution from the initial planned solution.

• Because usually the used probability distributions do not need any parameters such as the
DDT distribution or they require only one parameter such as the Geometric distribution,
the BR techniques permit a simplification of the fine-tuning procedure. In general, this is
not popular in recent metaheuristic techniques that typically use many parameters and,
hence require more complex and more time consuming fine-tuning procedures to adapt
their related values.

• The classical well-tested heuristics are relatively simple and easy to implement ap-
proaches that can be adjusted to account for new flexibility. Thus, for COPs there are
high ranked efficient heuristics that can be chosen and transformed into BR. This happens,

98 Biased Randomised Iterated Greedy Algorithm for Robust PFSP

among many other cases, with the Clarke and Wright savings heuristic for the VRP, and
with the NEH heuristic for the PFSP.

• A BR with uniform distribution does not keep the logic behind the heuristic technique,
because it specifies the same probabilities for all jobs to be selected during all movements.
On the other hand, the application of skewing (non-uniform) distributions instead of
uniform ones, produces a more efficient and natural way to choose the next movement
from the priority list. BR with skewed distributions allows consideration of the common
concept of the heuristic by assigning more probabilities of being selected to those
movements which better fulfill the heuristic criteria. A good example is that in PFSP
jobs requiring larger processing times in the NEH heuristic.

• The last advantage of BR heuristic is it can also be hybridised with many different
approaches, for example BR is combined with MCS for stochastic variants of COPs
(Juan et al., 2011); (Cáceres-Cruz et al., 2012).

6.3 Predictive-reactive based BRIG framework for robust
PFSP

In the dynamic PFSP, two types of real-time events are employed namely; machine breakdowns
and new job arrivals. These real-time events interrupt the initial planned schedules simulta-
neously. The reason for having initially considered only these two types of real-time events
relies fundamentally on the fact that the concern of the research is not to address all types of
disruption that may affect manufacturing settings. In this chapter, at the beginning of every
machine failure, rescheduling BRIG algorithm are triggered to cope with this disruption where
the MSR model is used to keep the system performance on a stable and robust level. Also
when a new job arrives into the system, reactive procedure using a BRIG algorithm is applied
to accommodate the new job in the current schedule with using the MSR model.

Figure 6.2 shows the framework of the predictive-reactive approach and how it applies the
BRIG algorithm at the point of disruptions. The proposing predictive-reactive rescheduling
approach and the MSR model seeking a good trade-off between schedule quality, stability and
robustness. Consider a predictive initial schedule S0, which is generated at the beginning of
the planning schedule horizon. Let Ci (S0) be the completion time of job i in this schedule.
S0 that is executed on the shop floor and revised using the proposed rescheduling method.
At each periodic rescheduling point, all those unprocessed jobs on the first machine are
performed. A new schedule Sn is generated by the proposed rescheduling BRIG algorithm. A

6.3 Predictive-reactive based BRIG framework for robust PFSP 99

start

Scheduling Execution
Trigger a
reschedul-

ing process
Update Scheduling Plan

Execute BRIG
Algorithm

Determine reschedul-
ing parameters

New jobs
arrival or
Machine

breakdown

stop

Yes

No

Fig. 6.2 Predictive-Reactive based BRIG approach

new rescheduling is triggered while a machine breaks down or new job arrival interrupt the
schedule plan. Rescheduling employed a BRIG algorithm at every time tD at which an event
occurs to accommodate the partial sequence of jobs that have not already started processing by
the first machine. This reason is due to the fact that in PFSP, the order of the jobs proceeds on
the first machine and must be continued throughout all of the remaining machines.

6.3.1 BRIG algorithm

This work proposed the BRIG algorithm that hybridises the IG algorithm with BR. First of all,
to construct an initial solution in the BRIG, we use the BR version of the NEH heuristic, which
is explained in the section 6.2. In the BRNEH algorithm, the jobs are ordered in construction
phase depending on the probability of each job. Thus, the job with higher probability is
more likely to be constructed first. The probability distribution used for this task is the DDT
distribution. This distribution is preferred for its practicality where it provides good results and
also it does not have relatively straight forward parameters to set (Juan et al., 2014a). The next
step is applying the hybrid BRIG algorithm, which combines BR with the IG algorithm. As we
discussed before, the IG algorithm has two main phases; in the first phase, d jobs are selected
randomly from the set of all jobs, in this case we suppose πd is the set of d jobs that are selected

100 Biased Randomised Iterated Greedy Algorithm for Robust PFSP

randomly from the list of all jobs, and πR the set of the remaining jobs. In the second phase,
each job from πd is reinserted into πR and the sequence corresponding to the minimum partial
makespan is chosen, this process continues until πd = φ . To transform the IG algorithm from a
deterministic version into a probabilistic method, the BR is induced to perturbation behaviour
(Juan et al., 2014a). The idea of BR as in the BRNEH heuristic is to pick out jobs from the list
πd depending on their probability. Thus, to select a candidate job to be inserted from the list
πd , the BR assigns a different probability for each job in the list, then the job corresponding to
higher probability is more likely to be inserted into πR first. This probability is obtained by
using a skewed distribution, specifically the DDT distribution as it applied for the BRNEH
algorithm, where jobs with higher probability are more likely to be inserted to the permutation
list πR than the jobs with lower probability. At the construction phase, there is an optional step
of applying a LS technique to improve the generated solutions. This LS step is based on the
insertion neighbourhood technique, which is an efficient and common LS procedure for the
PFSP (Ruiz & Stützle, 2007). This technique has been explained in details in chapter 5. Figure
6.3 shows the BRIG algorithm.

1. Generate initial solution π0;
2. Apply LS to π0 , and put modified solution into πs;
3. repeat
4. πd = Destruction(πs);
5. πc =Construction(πd); % apply BR
6. πl = LocalSearch(πc);
7. π f = AcceptanceCriterion(πs,πl);
8. Until termination condition met;
14. end

Fig. 6.3 The BRIG algorithm

6.4 Experiment Results

In this section we present the results of numerical experiments designed for the PFSP in the
presence of machine breakdown and new job arrival. Once the best solution is found, the RPD
is calculated over 10 of Taillard problems of the same size (n×m) and is given as follows:

RPD =
M−BestSol

BestSol
×100

Where the value M represents the acquired solution using the proposed model and solution
methods. BestSol is the average of lower bound solution of 10s Taillard’s instances that have the

6.4 Experiment Results 101

same number of jobs and machines. Table 6.5 illustrates the RPD for each instance of model
MSR corresponding to the weight sets (α,β ,γ) given in Table 3.1 (see chapter 3). Also, the
bi-objective model uses the following components:

α = 0.333,0.666,0.498,0.416,0.166,0.002,0.166,0.166,0.498,0.416

Where the solution obtained from the bi-objective model of Katragjini et al. (2013) is termed as
bi-obj. From Table 6.1, it can be seen that the objective functions components are sensitive
to different weight sets. For example, for the solution corresponding to the weight W8 =

(0.166,0.166,0.666), the RPD increases in the bi-objective while it decreases for the MSR
model.

Table 6.1 RPD for MSR and bi-obj models using the BRIG algorithm

Ta 20×5 20×10 20×20 50×5 50×10 50×20 100×5 100×10 100×20 200×10 200×20 500×20 Average

W1
MSR 14.179 12.959 16.881 9.746 16.093 14.556 12.118 12.160 11.898 9.797 10.305 9.902 12.550
bi-obj 14.392 15.778 16.545 8.559 15.916 14.355 16.343 12.119 12.996 11.318 10.346 11.170 13.320

W2
MSR 12.479 15.205 15.530 10.620 14.712 13.589 12.062 12.391 11.706 12.658 10.151 8.362 12.455
bi-obj 12.356 11.516 16.536 9.516 15.796 14.567 15.876 11.151 11.802 9.844 11.274 10.667 12.575

W3
MSR 11.424 11.878 15.261 9.414 15.666 13.688 13.288 12.524 11.536 12.633 10.446 9.517 12.273
bi-obj 14.981 14.270 16.254 8.109 15.542 13.881 15.786 10.950 12.924 9.913 10.637 9.236 12.707

W4
MSR 14.457 13.874 14.823 8.347 15.262 14.227 12.495 11.739 12.528 12.257 10.462 9.673 12.512
bi-obj 14.703 15.666 15.377 10.024 15.362 14.436 14.496 11.703 11.924 10.023 10.507 9.388 12.801

W5
MSR 14.049 14.487 15.319 9.845 15.042 13.699 12.203 11.730 12.107 10.727 10.691 8.091 12.333
bi-obj 13.452 13.828 15.530 7.521 14.892 13.779 15.607 11.886 11.877 13.181 10.254 8.526 12.528

W6
MSR 12.413 15.153 16.107 8.975 15.659 14.977 11.218 10.327 11.395 10.483 10.298 8.357 12.114
bi-obj 13.705 13.209 15.785 7.981 15.816 14.806 15.664 11.083 11.596 10.633 10.363 8.924 12.464

W7
MSR 13.991 14.098 15.910 7.700 15.529 14.329 11.877 10.936 12.009 10.785 10.122 8.648 12.161
bi-obj 13.174 9.829 16.120 9.703 16.143 14.618 14.243 11.922 13.056 9.972 10.506 8.977 12.355

W8
MSR 12.201 13.426 16.411 8.182 14.278 14.685 12.758 11.593 11.382 10.513 10.065 8.101 11.966
bi-obj 12.372 13.769 16.509 8.343 17.060 14.487 14.071 11.220 11.857 10.665 10.416 8.635 12.450

W9
MSR 14.605 12.405 16.890 9.312 15.456 14.822 10.406 11.187 12.130 9.066 10.580 8.359 12.102
bi-obj 11.260 14.270 17.149 8.939 16.306 14.254 11.794 10.885 12.551 16.297 10.672 8.825 12.767

W10
MSR 13.018 14.388 16.075 9.301 15.502 14.581 12.480 11.547 12.361 11.164 10.130 8.417 12.414
bi-obj 14.384 13.888 14.603 7.572 15.122 14.162 13.551 11.572 11.775 12.555 9.803 8.649 12.303

The results of the numerical experiments in this table revealed that the RPDs corresponding
to the MSR model and the weight set W8 = (0.166,0.166,0.666) have lower values than
the other RPDs corresponding to other weight sets. This emphasises the fact that giving
higher priority for the robust term of the MSR model leads to less RPD, and hence produces
better quality solution. Figure 6.4, shows the RPD values for all models (MSR, bi-obj and
Utility models) with the weight W8 = (0.166,0.166,0.666). From this figure, it is obvious that
the solutions corresponding to the MSR model show in general lower values of RPD when
compared to the other models.

The results are statistically tested by the single factor mean of ANOVA. This statistical
procedure is used to describe the impact of the proposed predictive-reactive based BRIG

102 Biased Randomised Iterated Greedy Algorithm for Robust PFSP

Fig. 6.4 RPD for all models with weight W8 using the BRIG algorithm

and models on the dependent variable RPD. For our analysis with the three models the null
hypotheses and its alternative are then as follows:
H0: all means are same.
HA: at least one mean is different.
The p-value and the F-ratio are shown in Table 6.2. It is clear that p ≤ 0.05, this means there is
a statistical significant difference in RPD between the factors of models at confidence level of
95%.

Table 6.2 ANOVA between models using the BRIG Algorithm

Groups Count Sum Average Variance

MSR 12 144.622 12.052 6.887
bi-obj 12 149.400 12.450 7.898
Utility 12 179.195 14.933 8.409

ANOVA

Source of Variation SS df MS F P-value F crit
Between Groups 58.494 2 29.247 3.783 0.033 2.471
Within Groups 255.139 33 7.731
Total 313.633 35

6.4 Experiment Results 103

Fig. 6.5 95% Tukey confidence intervals for all models using the BRIG algorithm

The Tukey confidence 95% intervals are applied to assign the group that is statistically
significant difference in the mean of RPD values. Figure 6.5 shows that the MSR model is
significantly different when compared with the Utility model, while there is no significance
difference between the bi-obj and the Utility Models.

6.4.1 Comparative study between PSO, IG and BRIG algorithms

The PSO, IG and BRIG algorithms are applied for the dynamic PFSP in the presence of machine
breakdown and new job arrival. The MSR model is used to maintain the problem stability
and robustness. Also, the predictive-reactive approach is used with the PSO, IG and BRIG
algorithms at each disruption point. In this section, the proposed algorithms are compared
against each other for the dynamic PFSP in the presence of different real-time events (machine
breakdown and new job arrival), where the MSR model is used for this comparative study with
the weight W8 = (0.166,0.166,0.666). In this experiment, each algorithm performed five runs
independently. For all methods, the average of each instance solutions values are calculated.
Figure 6.6 records the average RPD values obtained by using the PSO, IG and BRIG algorithms.
From this figure, it is clear that the RPD corresponding to BRIG is always much lower than
the RPD for PSO algorithm. The RPD values of BRIG are slightly (in general) lower than the
solution of IG algorithm, this is true because the BRIG is the improved version of IG algorithm.

104 Biased Randomised Iterated Greedy Algorithm for Robust PFSP

On the other hand, figure 6.7 clarifies the significant difference between the PSO, IG and BRIG
algorithms.

Fig. 6.6 The average RPD values obtained by using the PSO, IG and BRIG algorithms

This figure shows there is a significance difference between the BRIG and PSO algorithms,
also between the IG and PSO algorithms. However, there is no significant difference between
the BRIG and the IG algorithms. The reason of peak performance of the BRIG when compared
to the PSO algorithm is that the BRIG algorithm used the BRNEH heuristic to generate an
initial solution and also it applies the LS improvement step implicitly. Hence, this algorithm
has the ability to start from good quality solution and try to improve it by exploring larger parts
from the solution space. In addition, the BR technique produces a more efficient and natural
way to select the next movement depending on the jobs priority list using the DDT probability
distribution. Thus, this advantage shows the improvement of the BRIG performance when
compared to the IG algorithm. This could explain the reasons for the better performance of the
BRIG algorithm.

Finally, Table 6.3 shows the required computational time for all the aforementioned algo-
rithms. It indicates that the computational time required by BRIG and IG are less than the time
required by the PSO algorithm, where the computational time is calculated as the average of
five independent runs in seconds.

6.4 Experiment Results 105

Fig. 6.7 95% Tukey confidence intervals for PSO, IG and BRIG algorithms

Table 6.3 Computational time of PSO, IG and BRIG algorithms in seconds

Problem PSO (S.) IG (S.) BRIG (S.)
20×5 0.044 0.002 0.003

20×10 0.041 0.004 0.005
20×20 0.105 0.007 0.007
50×5 0.270 0.018 0.019

50×10 0.364 0.030 0.030
50×20 0.488 0.048 0.057
100×5 1.350 0.095 0.105
100×10 1.923 0.301 0.298
100×20 2.126 0.482 0.493
200×10 10.728 3.692 3.716
200×20 16.051 8.130 8.124
500×20 292.200 175.972 177.687
Average 27.141 15.732 15.879

106 Biased Randomised Iterated Greedy Algorithm for Robust PFSP

As seen from the results in Table 6.3, the three algorithms running time are different for the
same PFSP instances under the same environment; the running time of the PSO is the longest,
followed by the BRIG then IG. The IG algorithm is the fastest in 12 groups for the test in
general. In particular, we focus on comparing the PSO algorithm and IG with its randomised
version in the all instances, for example, in the first instance of size 20×5 , we find that the
running time of both of the IG and the BRIG algorithms are about 14% of the running time
of the PSO algorithm. On the other hand, both the IG and the BRIG algorithm are essentially
consume almost the same time. Therefore, from the above results we can get that consumption
running time of both the IG and the BRIG algorithms on the dynamic PFSP under different real-
time events are much smaller when, compared with the PSO algorithm. IG and BRIG need less
computational time because their conceptual simplicity that both of IG and BRIG algorithms
required fewer parameters, when compared to the PSO algorithm which is a population based
method and it is a relatively more complex algorithm than the IG and BRIG algorithms.

6.5 Conclusion

In this chapter, we have analysed some key aspects, advantages, and experiment results related
to the hybridisation of BR technique with NEH and IG heuristics. This hybridisation considers
as a natural approach to develop probabilistic algorithms to solve dynamic PFSP in the presence
of different types of real-time events. The predictive-reactive based on the probabilistic BRIG
approach is used to solve this problem where the MSR model is also used to maintain the
solution stability and robustness. The obtained results revealed that the BRIG algorithm is
capable to cope successfully with the dynamic PFSP even for large size instances. The proposed
BRIG algorithm hybridises the IG algorithm with the BR technique and use the LS technique
implicitly. This gives the ability for strong seeking in the solution space in a relatively short
time. A number of numerical experiments have been carried out to test the performance of the
introduced MSR model and the BRIG algorithm. The results show that the proposed solution
method with the MSR model outperforms the other models. This emphasises the importance
of stability and robustness measures where these measures provide better robust and stable
solutions. Moreover, the BRIG algorithm has been compared versus the IG and PSO algorithms,
which have been already applied for the dynamic PFSP in the presence of machine breakdown
and new job arrival. This comparative study shows that the BRIG algorithm outperforms both
of the PSO and IG algorithms in reaching better quality solutions. On the other hand, the
computational time spent on both of IG and BRIG algorithms to reach a good solution is much
less than the time consumed by the PSO algorithm. Thus, the BRIG algorithm is flexible,

6.5 Conclusion 107

quite efficient, simple, and fast convergence, this is due to the advantages of the nature of IG
algorithm and BR technique.

Part II

Stochastic PFSP under different real-time
events

Chapter 7

Simulation Particle Swarm optimisation
for Robust SPFSP

7.1 Introduction

The scheduling in a manufacturing environment has received a special attention for its wide
real applications. In real-world scheduling systems, there are two main sources of uncertainties
that lead to different scheduling environments, which are; dynamic and stochastic. When there
are some variables that are considered as unknown and follow a probability distribution, the
scheduling in this case is named as stochastic scheduling. The PFSP problems in a stochastic
environment have received increasing interesting in the literature of scheduling, due to the
nature of most real problems where the data and information cannot be known in advanced.
Even though the literature today is filled with articles on a wide array of manufacturing
scheduling problems, there are less studies discussing the case of stochastic and dynamic
scheduling problems with efficient approaches. In this Part, we will consider the PFSP under
stochastic processing time and different dynamic disruptions including; machine breakdowns
and new job arrivals, where a multi-objective model (MSR) is used to preserve the problem
stability and robustness. To our knowledge, no other study has been lead on a multi-objective
scheduling under dynamic and stochastic environment (under different types of disruptions).
Due to the dynamicity and stochasticity of such problem, the solutions are sensitive to different
disruptions coming from different sources. The significance of models and methods that discuss
unexpected disruptions in simulation and optimisation for complex COPs is evident by plenty
of papers and books lately devoted to this topic. When optimising systems performances,
considering or ignoring uncertainties may change the results completely, and hence, uncertainty
management is a main problem in Sim-Opt. there are many applications for such methods in

112 Simulation Particle Swarm optimisation for Robust SPFSP

almost any subject of human applications, in transportation, science, engineering, business and
so on. Although there are wide applications of such methods, it is still unclear in how these
methods are developed and applied. The usual reason for implementing simulation models is
that we want insight or guidance on a decision. The word “decision” is somewhat synonymous
with the word “optimisation”. If the decisions can be represented as decision variables within a
simulation model, then we have the option of performing some kind of simulation-optimisation,
i.e., choosing the decision variables to try to opimise some performance measure that is
estimated using simulation (Jian & Henderson, 2015). Despite the method of solving a related
deterministic problem to solve the stochastic one not being a completely new idea, it has not
previously been expand to solve the SPFSP under different uncertainties. Actually, the majority
of the works so far have concentrated on the theoretical sides of the stochastic scheduling. On
the other hand, the proposed approach provides a practical process to the solution, the following
are some of important advantages:

1. The approach is flexible to use any probability distribution with a known mean, such
as Normal, Log-Normal, Gamma, etc. because it employs simulation to cope with
the stochastic attitude of jobs processing times. In any case it is possible to apply
bootstrapping method to generate the random values. In the literature of SPFSP, it
is not likely to suppose that the processing times are random variables and follow
a Normal probability distribution or even an Exponential one, because real-life jobs
processing times are related with continuous and non-negative values. On the other hand,
random processing times must be modelled by applying any experimental or theoretical
distribution, which provide values that are non-negative and asymmetries are produced
by long right-hand tails such as Log-Normal, Gamma or Weibull distributions, as is
frequently done in Reliability Analysis.

2. For complex SPFSP there is no efficient metaheuristic algorithm that have been developed
yet. Thus, Sim-Opt approaches have been applied successfully in many COPs.

In this chapter, we adopt a predictive-reactive based Sim-PSO approach for the SPFSP
under machine breakdown and new job arrival with applying of the MSR model, where the
Sim-PSO approach based on the hybridisation of MCS approach and PSO algorithm. The
remainder of the chapter is structured as follows; in section 7.2, we give a brief about the
Sim-Opt. In section 7.3, the hybrid Sim-PSO framework for SPFSP under different disruptions
is presented. Finally, the conclusions are given in section 7.4.

7.2 Simulation based Optimisation 113

7.2 Simulation based Optimisation

Generally, solving stochastic COPs are harder than their deterministic counterparts. In the last
few decades, computer simulations are implied for modeling of stochastic scheduling in manu-
facturing systems to evaluate the given objectives. It is important to select the best simulation
parameters that could lead to improve operation. However, it is still not easy to configure these
parameters well. Also, because of the complexity of the scheduling in manufacturing systems,
the simulation techniques consume a long time before getting a reasonable stochastic optimal
solution. On the other hand, optimisation algorithms (even stochastic version algorithms) do
not guarantee a good optimal solution for stochastic manufacturing scheduling problems, even
when some algorithms are able to find quasi-optimal solutions within a reasonable amount of
time. Thus, there is a requirement for an efficient algorithm that integrate between the simula-
tion and optimisation techniques is raises. The term “simulation” is short-hand for stochastic
discrete-event simulation, meaning that the random nature of the system will be implicitly
understood and the underlying models are discrete-event systems such as queuing networks.
Actually, the central key of all of this study is the stochastic nature, and one main hypothesis
of this chapter is that the currently implemented optimisation methods do not address this
feature sufficiently. In the Sim-Opt approach, an optimisation algorithm is run for a stochastic
COP so as to direct the exploration in the search space. The goal of this procedure is to find
feasible and good local optimal solutions. When the iterative search procedure is running, the
algorithm have to transact with the stochastic environment of the problem. One of most natural
ways to deal with the stochastic nature of such problems is by employing the utility of the
strengths simulation techniques that offer to manage randomness. In addition, there are other
methods that have the ability to be used instead of simulation such as; fuzzy logic, dynamic
programming, and so on. However, with the stochastic behavior under the presence of historical
data, simulation provides the improvement of both flexible and accurate models. Particularly, it
is possible to model the random behavior over a best-fit probability distribution without any
extra constraints or assumptions. For this, simulation technique is frequently incorporated with
the optimisation (heuristic or metaheuristic) method and it usually improves the final result
by providing dynamic feedback to the searching procedure. In some sense, simulations have
the ability to develop the existing highly quality heuristics/metaheuristics that were originally
designed to solve the deterministic optimisation problems so these efficient algorithms also
can be used to solve stochastic COPs. Clearly, one of main obstacle of combining simula-
tion with heuristics/metaheuristics are that the obtained results may not be optimal anymore,
since Sim-heuristics/metaheuristics are integrating two approximate approaches. Figure 7.1
illustrates the scheme of the Sim-Opt approach. Despite the fact that most of real life prob-
lems are too complicated and they are in general mathematically intractable (NP-hard). Thus,

114 Simulation Particle Swarm optimisation for Robust SPFSP

Sim-heuristics/metaheuristics constitute very intriguing alternative for the majority of practical
fields, because they are relatively flexible and simple approaches that have the ability to obtain
good local optimal solutions for complicated real life COPs, also Sim-heuristics/metaheuristics
consume reasonable amount of computational

Fig. 7.1 Overview scheme of the Sim-Opt approach

7.3 The hybrid Sim-PSO framework for SPFSP under dif-
ferent disruptions

In this section, the framework of the hybrid MCS and PSO algorithm which is applied for
the SPFSP under different real-time disruptions is explained in details. The basic idea of this
algorithm starting with transforming the initial SPFSP into a dynamic problem, this transforma-
tion uses constant processing times as the expected values of the stochastic processing times.
In spite of entering the inputs as deterministic values, these instances are designed for the
PFSP in a dynamic environment where the problem is effected by different real-time events
during the time horizon. Then, the predictive-reactive based PSO algorithm is running over
this problem with the MSR model to generate a robust and stable local optimal schedule. The

7.3 The hybrid Sim-PSO framework for SPFSP under different disruptions 115

obtained solution will then improve by applying a LS approach. It should be notice that, the
Katragjini et al. (2013) benchmarks are based on known processing time values (not stochastic
random variables). Thus, we assume the processing times as expected values for random
variables follow the Log Normal distribution. At this stage, the MCS approach employs the
Log Normal probability distribution to generate random variates of unknown processing times,
then it estimates the final value of the stochastic makespan, which is consider as a local optimal
stochastic solution for the SPFPS under different real-time events. The MCS technique has the
following advantages:

◦ The application of MCS provides the ability to be naturally extended to take in account
a various probability distributions to model the processing time of each job and even
possible dependencies through these processing times.

◦ The MCS technique does not require huge running time as we run short simulations during
the LS procedure for a reduced number of promising solutions. Thus, methodology of
Sim-PSO can be used for large size SPFSP.

7.3.1 Sim-PSO Approach

Following an analysis, we propose that the processing times follow the Log-Normal distribution.
In this case, a random variable pi j (of processing time) follows a Log Normal probability distri-
bution where µ and σ are parameters if logpi j follows a Normal distribution N(µ,σ). Usually,
the Log Normal probability distribution is employed to model the influence of uncontrolled
environmental variables (Dauzére-Pérés et al., 2010). It is essential that the Sim-PSO frame-
work starts to transform the SPFSP into a deterministic one. Then, the predictive-reactive based
PSO algorithm is applied for the dynamic PFSP under machine breakdown and new job arrival
in order to generate some good solutions. To transform the stochastic problem into dynamic
version of deterministic processing times, we assume that the deterministic processing time
of job i is the expected value of the probability distribution which characterised the unknown
processing time of the same job. Since the feasible solutions for the deterministic benchmark
are also possible solutions for the stochastic problem as well, where we are able to include
them to the probabilistic scenario. After this, the expected values of makespan for the PFSP
is estimated by employing the MCS technique. Thus, the current generated schedule will be
simulate in the stochastic scenario. The MCS phase will be repeated running as many times as
we require to obtain an enough reliable estimation. Thus, the steps of the Sim-PSO approach
can be given as follows:

1. For stochastic FSP in a permutation scheduling, let us first consider stochastic processing
times Pi j of jobs i and on machines j where the jobs number are n and the machines

116 Simulation Particle Swarm optimisation for Robust SPFSP

number are m. Each stochastic processing time Pi j follows a probability distribution
which is the Lognormal distribution with known mean E[Pi j].

2. In the dynamic PFSP scheduling where the processing times are constant values, we
consider the processing times pi j as constant values given by pi j = E[Pi j].

3. For the dynamic PFSP under different real-time events, we generate an initial schedul-
ing sequence (solution) by using the predictive-reactive based PSO algorithm (as we
discussed in chapter 4). Also, the MSR model is employed to minimise the makespan,
instability and robustness for this problem.

4. Improve the initial generated schedule by applying a classical LS algorithm, which is
explained in the next section. Now, we consider the new improved solution as the new
initial solution for the dynamic problem with constant processing times.

5. Apply a simulation for short runs, for example 250 iterations, to obtain the estimated
expected stochastic solution associated with the sequence of jobs of the dynamic PFSP.
After that, the stochastic solution is initilised by this estimated expected stochastic
solution.

6. Employ the ILS technique (Lourenço et al., 2010) to improve the best of dynamic and
stochastic solutions. Obtained so far. Thus, at each iteration, the ILS should complete
the following two steps:

(a) To create a new schedule, an ILS including the perturbation operator is used to
the initial solution. This operator is called an Enhanced Swap Operator, which is
performing as follows:

• It picks out two different jobs randomly from the current obtained solution.

• Swap the positions of both jobs in the permutation by moving each selected
job to the other place of the other job.

• Again apply a classical shift-to-left movement for both selecting jobs following
a left-to-right order.

The updating of the current solution to a new one is called deterioration. Sometimes
this deterioration helps to prevent the solution from being trapped in bad local
minimums in the solution space and it can be done from one of the following cases.

(b) If the current base solution has a higher makespan value than the new obtained
solution, then the baseline will be updated, also the new obtained solution is
compared with the best dynamic schedule yet to decide if this best dynamic schedule

7.3 The hybrid Sim-PSO framework for SPFSP under different disruptions 117

is required to be changed too. After each time of updating the dynamic schedule,
the MCS technique with small number of runs (short simulation) is employed to
evaluate the new expected makespan, and the best stochastic solution is updated if
appropriate.

(c) Finally, if the makespan of the current baseline is less than the new obtained solution,
then we apply an acceptance criterion to decide if we require to replace the baseline
with the new solution or not.

7. Employ a simulation with long runs, e.g. 1000000 runs, to obtain good estimations for
the expected stochastic makespans related to the best dynamic solution and the makespan
related to the best stochastic solution. It should be noticed that, the stochastic makespan
lower bound is related to the best dynamic solution and the stochastic makespan upper
bound is related to the best stochastic solution this constitute the dynamic solution.

The Demon-like procedure (Talbi, 2009) is used as an acceptance criterion for the Sim-PSO
approach. To do this, the criterion is simply that the baseline schedule will be deteriorated
(modified with the new solution) even if the new solution was worse than the original one as
long as; no consecutive deteriorations occur and the degradation does not overtake the value
of the last improvement. For more details about the acceptance criterion and the perturbation
process we refer to (Talbi, 2009).

The Sim-PSO approach then returns some information, which is given as follows:

• The best obtained dynamic solution and stochastic one so far and their related makespans.

• From stochastic makespans related to the best dynamic and stochastic solutions respec-
tively, the method returns the sample stochastic makespans observations. The advantage
from the sample observations is that they can be employed to determine more statistics,
consequently, there is better understanding of their individual nature also to compare
different solutions using criteria other than makespan.

Gourgand et al. (2003) and Dodin (1996) among others have proposed the methods of converting
the SPFSP into an equivalent dynamic one, and then use an effective heuristic/metaheuristic to
the transforming problem. Nevertheless, the proposed Sim-PSO method differs, by considering
the following aspects:

◦ This Sim-based approach employs a more practical point of view by using the MCS approach,
while the previous mentioned approaches are based on theoretical chance-constrained
models.

118 Simulation Particle Swarm optimisation for Robust SPFSP

◦ The proposed Sim-heuristic approach does not require to suppose a specific behaviour for the
random variables which is used to model the processing times, while previous approaches
require these assumptions. Thus, our proposed approach offers more flexibility for solving
the SPFSP.

For this, as much as to our knowledge, the presented Sim-PSO provides unique features over
other approaches in the literature for solving the SPFSP. Some of the strengths and advantages
of our proposed algorithm are explained later in the section. The flowchart of Sim-PSO is given
in figure 7.2 below.

The integration of simulation with PSO algorithm have been explained in the former
sections. To understand this approach completely and also to implement it, we provide further
relevant details in this section for the mentioned algorithm. The LS algorithm has been applied
in different steps in the Sim-PSO approach, the proposed LS algorithm used in this research has
been used by Ruiz & Stützle (2007) among others. The proposed LS algorithm is an iterative
procedure, which has the following steps:

1. We select randomly a job with the position k from the current solution of sequence of
jobs.

2. Insert the randomly selected job at the position k in each possible position located on the
left side of job k. This procedure is called shift-to-left movement as it shown in figure
7.3. Then the makespan is calculated for each new permutation of jobs.

3. The last step is locating the job at the position that gives the minimum makespan.

These steps are iteratively repeated until all jobs locations have been visited or the improvement
of makespan is attained. The Sim-PSO initialises the algorithm by using the PSO algorithm.
The PSO algorithm is used for the dynamic PFSP under different real-time events, where
the processing times are consider as constant values. After generating an initial solution and
improve it by LS algorithm, the MCS is called into action. The integration of this approach
with the mentioned metaheuristic is consider as one of the most important part of the approach.
MCS is employed to estimate the expected makespan value that related to the given solution.
This approach is shown in figure 7.4 and its steps are given in the following points:

a. Generate a random variate for all jobs processing times by employing the Log Normal
probability distribution.

b. Depending on the jobs sequence obtained from the current solution, the random variates
obtained from the proposed probability distribution are employed to generate a random
stochastic makespan observations.

7.3 The hybrid Sim-PSO framework for SPFSP under different disruptions 119

Fig. 7.2 Flowchart diagram of the Sim-PSO algorithm

120 Simulation Particle Swarm optimisation for Robust SPFSP

c. These steps are iteratively repeated so as to build a random sample of makespan observations.
Then these observations can be employed to estimate the expected makespan and interval
estimates, also other probable statistics about the distribution of the stochastic makespan,
such as extreme values, variance or quartiles.

d. The processes of the acceptance criterion and perturbation are used in this algorithm (Juan
et al., 2014c). The acceptance criterion and the perturbation process were designed to
prevent the solution from being trapped in a local minima during the algorithm process.

7.3 The hybrid Sim-PSO framework for SPFSP under different disruptions 121

Fig. 7.3 Flowchart diagram of the LS algorithm

122 Simulation Particle Swarm optimisation for Robust SPFSP

Fig. 7.4 Flowchart diagram of the MCS technique

7.4 Experiment Results 123

7.4 Experiment Results

In this chapter, the experimental results and compression study for the approach is given and
discussed. The predictive-reactive based PSO is hybridised with the MCS approach to solve
the SPFSP under different real-time events, which are; machine breakdown and new job arrival.
The MSR model is also used to keep the solution stable and robust. Java is used to implement
all the experiments where it runs in eclipse platform and on a PC of Intel Cori5 2.6 GHz
with 6GB of memory RAM. The proposed simulation based-optimisation approach starts with
solving the dynamic part of the problem using the predictive-reactive based PSO algorithm with
the MSR model, then, the MCS is applied to calculate the stochastic makespan. Since we apply
the multi-objective optimisation mode (MSR model), the sensitivity analysis using a Practical
Weighted Sensitivity approach of Jones (2011) is used, where thirteen distinct (α,β ,γ) weight
sets are generated (see chapter 3). The parameters used in this algorithm are the same that are
used in chapter 4, hence, T Max = 1, MaxLevel = 2 and a sequential weight starting solution is
set to be one.
The unity weights are applied to obtain the normalised model (3.2) as detailed in chapter 3.
These three weights are;

(0.999,0.001,0.001), (0.001,0.999,0.001), (0.001,0.001,0.999)

While the sets of remaining ten different weights are using to test this experiment. These
weights are given in Table 3.1 (see chapter 3).
There are no standard benchmarks in the literature of the SPFSP, even with the existence of
the arguably exception benchmarks given by Baker & Trietsch (2011), which is a limited
benchmark. This shows the existence of a lack in the knowledge of the SPFSP domain when
compared to the PFSP under other environments. For this, for the instances introduced by
Katragjini et al. (2013) are employed where random processing times are used instead of
fixed ones in this experiment. Since the PFSP consider in this part is stochastic, which means
the processing times are random variates and as we assume before, these processing times
follow the Log Normal probability distribution. Thus, we suppose the processing times pi j

(of job i on machine j) proposed by Katragjini et al. (2013) (which based on the benchmark
given by Taillard (1993)) as the expected processing times pi j = E[Pi j]. The benchmark
consists of 120 instances, categorised into12 problems of different size ranging from 20×5
to 500× 20 (jobs×machines). Each instances from the same size consists of 10 different
problem. Katragjini et al. (2013) have reported the PFSP with different real-time disruptions
including machine breakdown and new job arrivals. In this experiment, each problem have

124 Simulation Particle Swarm optimisation for Robust SPFSP

been run for 5 independent times. In this experiment, we consider the limit tmax = n×m×0.03
in seconds to stop the approach. This methodology provides some advantages:

A. A well-known instance of benchmarks which includes instances of different sizes are used
in this methodology.

B. The values of all processing times are given in advance, hence, researches can use the in-
stances, which have the same data information for benchmarking and verifying purposes.

C. In order to experience the proposed approach, we generalised the benchmark set of PFSP
with different disruptions (Katragjini et al., 2013) to the stochastic environment.

Briefly, In the benchmark set of Katragjini et al. (2013), we change each deterministic
processing times pi j of job i on machine j to random variables Pi j following a well-known
distribution where both mean and variance are given and E[Pi j] = pi j. As we discussed before,
since we employ the MCS, it is possible to use whatever probability distribution to model
the jobs processing times, in other words, it is not require to suppose that the jobs processing
times follow an Exponential or a Normal probability distribution. In this thesis, we choose a
Log-Normal probability distribution to model the jobs processing times. The reason for using
this distribution instead of the Normal distribution is that the Log-Normal distribution is a more
normal option to model the non-negative processing times than the Normal distribution. The
Log-Normal distribution has two parameters, namely; µi j and σi j parameters. These parameters
are given in the equations below from the Log-Normal distribution properties.

µi j = ln(E[Pi j])−0.5× ln
(

1+
V [Pi j]

E[Pi j]2

)

σi j =

∣∣∣∣∣
√

ln
(

1+
V [Pi j]

E[Pi j]2

)∣∣∣∣∣
By using the parameter k, we assume that Var[Pi j] = kE[Pi j]. More specifically, we will consider
the scenario where the levels of variances are relatively low levels of variances particularly
k = 0.1 and k = 0.5, then medium level when k = 2 and finally at high level that is k = 5 (Juan
et al., 2014a).
After each five independent runs, we register the average of the best found results of makespan
solutions. Tables 7.1-7.3 show the results obtained in this experiment, for the SPFSP under
different real-time events. Each Table includes the results corresponding to one of the ten
weights Wi, i = 1,2, . . . ,10 where DRPD is the RPD for the dynamic solution and SRPD is
the RPD for the stochastic solution. Each table shows the solutions corresponding to different
variance levels where k is equal to 0.1,0.5,2 and 5. Finally, each table have the following

7.4 Experiment Results 125

information; dynamic solutions, stochastic solutions and the RPDs. From Tables 7.1 to 7.3, we
can conclude the following two points:

• The RPD between the dynamic and stochastic solution of the SPFSP rises as the level of
uncertainty increase. However, the RPDs are low for k = 0.1 comparing to the other k
values.

• The expected RPDs corresponding to the best solution obtained from MCS are generally
lower than the dynamic RPDs.

• The RPDs are variants typical to different weights, hence, the RPDs corresponding to
weight W8 = (0.166,0.166,0.666) are generally lower than other RPDs of other weights.
For this, we select the RPDs corresponding to the weight W8 = (0.166,0.166,0.666) for
the next analysis study.

126 Simulation Particle Swarm optimisation for Robust SPFSP

Table 7.1 The average DRPD and SRPD for weights W1-W4 using the Sim-PSO

n×m k = 0.1 k = 0.5 k = 2 k = 5
DRPD SRPD DRPD SRPD DRPD SRPD DRPD SRPD

W1

20×5 25.762 25.76 28.311 28 29.468 29.467 29.592 29.592
20×10 28.201 28.2 31.451 31.4 31.792 31.7 34.669 34.669
20×20 22.051 22.05 24.451 24.447 26.013 26 26.452 26.434
50×5 19.024 19.02 21.558 21.556 23.648 23.64 24.198 23.982
50×10 29.287 29.2 31.320 31.315 33.158 33.1 33.857 33.357
50×20 25.781 25 27.027 27.027 28.202 28.002 29.421 29.421
100×5 16.84 16.84 20.239 20.241 21.92 21.92 23.039 23.039
100×10 26.755 26.75 28.508 26.432 29.391 29.391 30.206 30.206
100×20 25.291 25 26.03 26.029 28.863 28.863 29.815 29.814
200×10 18.433 18.4 19.036 19.03 19.67 19.6 20.353 20.353
200×20 19.863 19.86 20.632 20.632 22.081 22.081 22.185 22.185
500×20 16.352 16.3 16.98 16.98 17.223 17.2 19.185 19.004

W2

20×5 27.455 26.03 29.767 29.7 32.356 32.356 32.866 32.866
20×10 28.985 27.47 29.014 29.014 31.536 31 34.149 34.149
20×20 22.397 22.098 25.317 25.316 25.866 25.83 26.96 26.9
50×5 22.559 22.4 22.991 22.925 23.123 23.123 23.256 23.256
50×10 27.409 26.55 32.299 32.299 35.841 35.841 36.76 36.76
50×20 25.401 25.401 26.777 26.776 30.044 30 30.829 28.09
100×5 20.894 20.40 21.129 21.127 21.553 21.552 25.142 25.141
100×10 28.442 27.9 31.274 30.509 32.489 32.4 32.737 32.737
100×20 24.382 24.343 25.642 25.6 27.621 27.621 28.799 28.7
200×10 15.783 15.38 16.952 16.951 18.855 18.855 19.386 19.386
200×20 19.212 19.2 21.631 21.63 21.993 21.993 22.932 22.932
500×20 16.037 16.033 17.61 17.61 18.228 18.2 19.461 19.461

W3

20×5 25.684 25.21 29.294 29.2 32.994 32.994 34.011 34.011
20×10 29.603 29.54 30.356 30 32.399 32.399 33.563 33.563
20×20 22.769 22.68 23.76 23.7 24.599 24.599 26.649 26.648
50×5 21.845 21.61 22.753 22.715 24.596 24 25.802 25.802
50×10 30.122 28.76 31.995 31.995 33.134 33.003 33.61 33.61
50×20 25.085 25.085 26.769 26.769 29.519 26.941 30.073 30.073
100×5 21.494 20.12 21.812 21.809 22.931 22.931 24.813 24.8
100×10 30.464 29.08 32.747 32.746 33.313 33.3 33.984 33.984
100×20 23.43 22.49 26.251 26.249 26.807 26.807 28.158 28.158
200×10 16.049 16.046 16.145 16.145 18.985 18.985 19.441 19.441
200×20 19.697 19.43 20.225 20.225 22.142 22.142 23.089 23.089
500×20 17.004 17.004 17.578 17.578 18.689 18.689 18.918 18.918

W4

20×5 27.64 27.05 31.529 31.5 34.571 34.5 35.578 35.578
20×10 30.069 29.7 31.154 31.151 32.236 32.236 34.314 34.314
20×20 22.057 22.057 23.896 23.893 24.916 24.916 25.982 25.982
50×5 20.387 20.066 22.783 22.7 24.211 24.211 25.908 25.002
50×10 30.873 30.08 33.54 33.536 34.987 34.986 35.583 35.583
50×20 23.231 23.231 24.762 24.761 28.998 28.998 29.604 29.604
100×5 22.221 22.038 22.935 22.935 24.101 24.101 25.003 25.002
100×10 28.53 28.087 28.438 28.4 33.268 33.268 34.249 34.248
100×20 25.752 25.752 26.431 26.43 26.881 26.881 27.368 27.368
200×10 16.655 16.22 17.551 17.549 19.879 19.879 20.804 20.804
200×20 19.77 19.53 21.083 21.085 22.699 22 23.613 23.613
500×20 16.947 16.947 17.828 17.724 18.956 18.956 21.083 21.083

7.4 Experiment Results 127

Table 7.2 The average DRPD and SRPD for weights W5-W8 using the Sim-PSO

n×m k = 0.1 k = 0.5 k = 2 k = 5
DRPD SRPD DRPD SRPD DRPD SRPD DRPD SRPD

W5

20×5 27.475 27.46 29.472 29.47 31.628 31.628 33.543 33.542
20×10 30.184 30.18 30.79 30.79 31.812 31.812 32.884 32.88
20×20 23.167 23.1 23.207 23.2 26.225 26.224 27.261 27
50×5 22.639 22.6 22.962 22.959 26.278 26.278 26.884 26.884
50×10 28.583 28 29.614 29.6 32.614 32.6 33.451 33.45
50×20 24.123 24.12 25.255 25.2 28.122 28.121 29.001 29.001
100×5 18.889 18 22.84 22.839 24.061 24.061 25.199 25.199
100×10 29.886 29.8 30.938 30 31.19 31.19 32.467 32.467
100×20 23.479 23.47 25.417 25.416 26.27 26 27.223 27.223
200×10 17.355 17.35 17.766 17.764 18.602 18.602 20.195 20.195
200×20 20.332 20 21.065 21.065 22.747 22.747 23.304 23.304
500×20 16.634 16.634 17.821 17.821 18.932 18.92 21.368 21.368

W6

20×5 24.806 24.55 28.76 28 29.608 29.602 30.14 30.14
20×10 26.324 26.082 30.821 30.819 32.331 32.331 34.951 34.951
20×20 23.897 23.32 24.998 24.002 25.728 25.727 29.713 29.713
50×5 22.2 22.2 24.101 23.89 25.738 25.738 26.353 26.353
50×10 28.243 28.1 29.968 29.96 33.462 33.4 34.98 34
50×20 22.897 22.25 23.532 23.531 25.178 25.178 26.985 26.985
100×5 22.578 22.09 24.053 24.053 25.096 25.096 25.704 25.704
100×10 27.579 27.5 28.737 28 30.754 30.75 31.316 31.316
100×20 24.009 24.008 25.151 25.15 25.914 25.914 29.629 29.629
200×10 17.98 17.34 18.856 18.856 20.048 20.048 20.537 20.537
200×20 19.72 16.98 20.471 20.47 23.732 23.733 22.417 22.417
500×20 16.76 16.76 17.218 16.927 17.892 17.892 19.284 19.2

W7

20×5 25.692 24.72 26.492 26.49 27.717 27.717 29.761 29.7
20×10 31.599 29.68 32.007 32.008 32.85 32.852 34.229 34.229
20×20 22.864 22.7 25.744 25.745 26.397 26.397 26.921 26.921
50×5 21.603 21.601 23.963 23.963 25.039 25.039 26.26 26.26
50×10 29.07 29.07 30.908 30.908 33.731 33.732 34.225 34.225
50×20 28.397 28.36 24.476 24.47 32.166 32.1 27.658 27.658
100×5 20.07 20.07 23.352 23.352 24.135 24.135 26.87 26.87
100×10 27.279 26.41 29.17 29.17 30.395 30.395 31.465 31.465
100×20 24.996 24.07 25.105 25.105 26.002 26.002 26.315 26.315
200×10 15.053 15.053 17.428 17.429 19.165 19.165 19.818 19.818
200×20 19.293 19.293 21.059 21.059 23.574 23.574 23.925 23.925
500×20 16.824 16.8 17.851 17.851 18.014 18.014 20.274 20.274

W8

20×5 21.114 20.353 26.692 26.691 27.58 27.529 29.971 29.96
20×10 27.157 27.157 28.528 28.528 30.173 30.001 32.62 32.62
20×20 21.057 21.018 22.787 22.78 24.198 24.197 24.898 24.898
50×5 23.385 23.11 24.021 24.025 26.878 26.878 27.741 27.741
50×10 23.903 23.888 24.058 24.058 24.873 24.874 25.647 25.507
50×20 24.525 24.525 25.645 25.645 27.86 27.86 29.587 29.587
100×5 15.412 15.38 19.838 19.836 22.434 22.434 21.635 21.634
100×10 24.62 24.586 26.431 26.275 28.931 28.931 30.284 30.283
100×20 21.911 21.911 26.767 26.767 27.691 27.691 28.818 28.818
200×10 14.786 14.64 15.625 15.625 18.07 18.07 19.011 19.011
200×20 14.976 14.517 15.762 15.76 16.846 16.845 17.806 17.783
500×20 16.021 16.02 16.772 16.772 17.472 17.4 18.052 18.052

128 Simulation Particle Swarm optimisation for Robust SPFSP

Table 7.3 The average DRPD and SRPD for weights W9-W10 using the Sim-PSO

n×m k = 0.1 k = 0.5 k = 2 k = 5
DRPD SRPD DRPD SRPD DRPD SRPD DRPD SRPD

W9

20×5 30.539 30.54 31.823 31.824 32.768 32.768 33.598 33.598
20×10 28.268 28.27 29.797 29.797 33.497 34.956 34.956 34.956
20×20 23.085 23.09 23.887 23.887 27.139 27.138 27.539 27.538
50×5 22.389 22.389 23.323 23.323 24.06 24.06 26.283 26.283
50×10 31.431 31.43 32.359 32.358 34.024 34.024 36.061 36.061
50×20 27.071 27.07 27.283 27.284 28.161 28.161 29.176 29.176
100×5 18.365 18.36 21.252 21.252 22.442 22.442 23.106 23.106
100×10 28.25 28.25 30.724 30.72 31.686 31.686 32.793 32.79
100×20 23.98 23.98 25.706 25.706 26.146 26.145 29.248 29.24
200×10 15.55 15.55 18.428 18.428 18.555 18.555 19.778 19.778
200×20 20.471 20.47 21.368 21.368 23.391 23.39 24.82 24.82
500×20 16.13 16.13 16.96 16.967 18.681 18.681 19.327 19.327

W10

20×5 27.04 27.04 29.996 29.996 30.3 30.3 32.258 32.258
20×10 29.364 29.364 31.67 31.67 31.971 31.97 34.268 34.267
20×20 23.001 23 24.305 24.304 26.398 23.367 28.819 28.819
50×5 21.042 21.01 23.031 23.029 24.512 24.512 24.89 24.89
50×10 29.024 29.024 30.217 30.212 34.286 34.286 34.854 34.854
50×20 26.231 26.03 28.439 28.4 30.583 30.583 31.654 31.654
100×5 17.952 17.952 22.859 22.859 23.006 23.006 24.199 24.199
100×10 29.645 29.096 31.912 31.912 33.511 33.511 33.907 33.907
100×20 24.936 24.936 25.369 25.368 26.719 26.718 27.216 27.216
200×10 16.208 16.208 16.964 16.964 18.739 18.739 19.554 19.554
200×20 0.767 20.767 23.457 23.457 23.833 23.833 24.551 24.55
500×20 17.34 17.34 17.982 17.88 18.702 18.702 20.532 20.007

7.4.1 Using reliability-based methods to compare different solutions

To compare the obtained solutions, the most utilised criterion in the literature is the makespan
objective. Thus, in the last section, we use the expected values of makespan to compare the
obtained solutions. However, the manager might be more concerned in taking into account more
information about the makespan corresponding to the obtain solution. Due to the randomness
of the expected makespan, decision-makers could be concerned with the following questions;
which is the probability of this makespan being lower than a given threshold? and which is
the variance and distribution of this makespan? This is where historical data or, alternatively,
simulation can make a difference by providing random observations of the makespan associated
with a given solution. Figures 7.5-7.7 illustrate boxplots for three different size instances 20×5,
50× 10 and 200× 20 (small, medium and large) with k = 0.1,5 (low and high variations).
These boxplots intended to show the comparing values of makespans corresponding to the best
stochastic and best dynamic solutions where these solutions are used to find the SPFSP solution.
Subsequently, a random makespan is obtained as an output when any of these solutions are
used in a scenario under stochastic processing times. Hence, the boxplot shows the differences

7.4 Experiment Results 129

between stochastic and dynamic solutions, and also the probability distribution and variance
of each set of outputs (not only the expected makespan). From figures 7.5-7.7 we notice that
the makespan related to the stochastic solution show (in general) not only a smaller expected
makespan but also smaller quartiles and variance. Also, with high variance level, the expected
makespan, quartiles and variance are higher than the solution associated to dynamic makespan.

Fig. 7.5 Using MCS outputs to compare different solutions for problem of size 20× 5 with
k = 0.1,5 and weight W8

Fig. 7.6 Using MCS outputs to compare different solutions for problem of size 50×10 with
k = 0.1,5 and weight W8

130 Simulation Particle Swarm optimisation for Robust SPFSP

Fig. 7.7 Using MCS outputs to compare different solutions for problem of size 200×20 with
k = 0.1,5 and weight W8

We also use the analysis of duration times (Modarres et al., 1999) to design an identification
of makespans with reliability approaches. This is more important, as a makespan is the required
time to finish all jobs. The reliability techniques might be more interesting than the classical
statistical approaches, such as, distribution function plots or classical percentile. This could be
true when facing historical data on random job duration, due to the fact that some observations
could be incomplete data (censored). When censored data exist, the reliability approaches
could help so as to provide very important data about the survival function corresponding
with each solution. In 1958, a paper of Edward Kaplan and Paul Meier (Kaplan & Meier,
1958) introduced an efficient method for estimating patient survival rates, which is called
Kaplan-Meier estimator. It is taking into account the fact that some patients may have died
during a research trial while others will survive beyond the end of the trial. The Kaplan-Meier
estimator based on a mathematical formula using information from those who have died and
those who have survived to estimate the proportion of patients alive at any point during the
trial. The estimator is plotted over time and the resulting curve is called the Kaplan-Meier
curve, which is a series of horizontal steps of declining magnitude that, when a large enough
sample is taken, approaches the true survival function for that population. In this section,
the Kaplan–Meier estimator is used to calculate the survival function where it returns the
inverse of the empirical distribution function. In reliability analysis, this is the most common
non-parametric estimator used when dealing with non-censored data (Zio, 2007). Figures 7.8,
7.9 and 7.10 show the survival functions for different size instances selected previously with
different levels of variances (k). The selected instances are of size 20×5, 50×10 and 200×20
with k = 0.1,5, respectively. The survival functions are related for both of the best dynamic and
the best stochastic solutions, respectively. The survival function produced from the observed
stochastic makespans when employing the stochastic solution. This function corresponds to the

7.4 Experiment Results 131

stochastic solution and is generally under the survival function corresponding to the dynamic
solution. The dynamic solution is constructed from the observed stochastic makespans when
the dynamic solution is used. It means in job schedule terms that the probability of keeping the
job under operation will be generally lower when using the stochastic solution.

Fig. 7.8 Survival plot with intersecting solutions for problem 20×5 and k = 0.1,5

Fig. 7.9 Survival plot with intersecting solutions for problem 50×10 and k = 0.1,5

132 Simulation Particle Swarm optimisation for Robust SPFSP

Fig. 7.10 Survival plot with intersecting solutions for problem 200×20 and k = 0.1,5

7.5 Conclusion

In this chapter, we have presented the novel approach that hybridised the predictive-reactive
based Sim-PSO, which hybridised the PSO algorithm with the MCS technique. This approach
has been proposed with the MSR model to solve the SPFSP under different real-time events
including machine breakdown and new job arrival. The main idea of the proposed method has
the following points:

• Consider an initial PFSP with deterministic processing times instead of the stochastic
one by replacing the expected values of the stochastic processing times with constant
processing times values.

• Apply an efficient predictive-reactive based PSO algorithm and the MSR model to
generate an initial good quality solutions for the dynamic PFSP under different real-time
events.

• Consider each constant processing time as an expected value, then generating random
variates using the MCS procedure to estimate the expected value of the stochastic
makespan for each of the aforesaid solutions.

The PSO algorithm has the ability to deal with dynamic and stochastic problems successfully,
hence, the contribution of this chapter is hybridising the evolutionary PSO algorithm with the
MSC to solve the SPFSP under different uncertainties. It should be mentioned that, to our
knowledge there is no other work to adapt the PSO with MCS as a framework to solve this
problem. This hybrid methodology permits to use any theoretical or empirical probability
distribution for solving the problem, where the probability distribution is employed to model

7.5 Conclusion 133

job-machine processing times. It does not matter if we use one probability distribution to model
all job-machine processing times or we employ different probability distributions from one
job-machine pair to another. Another contribution of this chapter is applying the MSR model to
reduce instability and maintain robustness along with the Sim-PSO approach for the problem.
Also, a set of experiments based on adapted instances from well-known benchmarks for the
dynamic PFSP under different uncertainties are used to discuss the efficiency of the proposed
approach. Moreover, this chapter indicates the analogy between work failure times and duration
times and hence it provides the possibility of using procedures from Survival Analysis so as to
better compare alternative solutions. Such analysis is important to compare different solutions,
particularly when data of jobs is employed as real-life censored observations. Consequently,
some realisations of the Sim-PSO may produce makespan values over the duration of the
experiment, so providing incomplete or censored observations. In summary, this chapter
clarifies some of the advantages which can be gained when hybridising the PSO algorithm with
the MCS technique in solving the SPFSP under different uncertainties. The previous chapters
discussed the application of each of the PSO, IG and BRIG algorithms and show the ability of
these algorithms to handle the dynamic PFSP under different real-time events. Also, the BRIG
algorithm outperform both of the PSO and IG algorithms in reaching better quality solutions.
For this, we hybridise the BRIG with the MCS to solve the SPFSP under different real-time
events as shown in the following chapter.

Chapter 8

Sim-Biased Randomised Iterated Greedy
for Robust SPFSP

8.1 Introduction

In part I, we proposed three efficient approaches for the PFSP under machine breakdown and
new job arrivals, which are the PSO, IG and BRIG algorithms. The PSO shows the ability
to deal with such complex dynamic problem successfully. However, the PSO requires huge
computational time to obtain a good quality solution. For this reason, a simple and efficient
BRIG heuristic algorithm was proposed, it shows an exceptional performance in reaching
good local optimal solution in reasonable computational time. In this chapter, we propose the
Sim-BRIG framework where the MCS is integrated with the BRIG algorithm. The proposed
Sim-BRIG approach is designed to solve the SPFSP under different disruptions of real-time
events. Also, the MSR model is defined for this problem to keep the solution efficient, stable
and robust. In Sim-BRIG approach, the predictive-reactive based BRIG approach is proposed
first to solve the dynamic PFSP, where the MSR model is applied. Then the MSC is performed
to generate an expected makespan values. This chapter is organised as follows; Section 8.2
introduces the framework of the Sim-BRIG approach, and more details about this method
are introduced in this section. Section 8.3 illustrates the experimental results including the
comparative study between the Sim-BRIG and Sim-PSO approaches. Finally, the conclusions
of this chapter are given in section 8.4.

136 Sim-Biased Randomised Iterated Greedy for Robust SPFSP

8.2 The framework of Sim-BRIG approach for SPFSP un-
der different disruptions

As we discussed in the previous chapter, the SPFSP is considered under dynamic environment
where the processing times are random variables. Also, the Sim-PSO approach was used with
the MSR model to solve this problem. The PSO required relatively hug computational time to
obtain good solution. However, in this chapter, we apply the simple and effective Sim-BRIG
with the MSR model to solve the SPFSP under machine breakdown and new job arrival. In this
approach, the predictive-reactive based BRIG approach is used to solve the dynamic part of this
problem and hence, the Sim-BRIG predicts an initial planned schedule by solving the dynamic
problem using the BRIG algorithm. Then the MCS is applied to generate an expected value
for the stochastic makespan. The hybridisation of the BRIG algorithm with MCS procedure is
explained in the following subsection.

8.2.1 Integrated Simulation with the BRIG algorithm

In the integration of MCS and BRIG algorithm, the simulation is consider as a part of the
solution procedure by estimating the expected values of stochastic makespan. The generation
of random variates and estimation in the simulation are integrated with the solution of the
BRIG algorithm that have been applied for the dynamic PFSP under different real-time events.
This hybridisation starts from the sequence of jobs obtained from the predictive-reactive based
BRIG algorithm. Then it assumes the processing times of jobs as expected values for random
processing times which follow the Log Normal probability distribution (Juan et al., 2014a). At
this point, the simulation implemented the MCS procedure to generate random variates for each
expected processing time and hence calculate the expected stochastic makespan. The approach
repeat this process for fixed number of iterations. For example 200 runs for short simulation
and 10000 for long simulation, figure 8.1 explain the idea of the integration between MCS and
BRIG algorithm.

8.2 The framework of Sim-BRIG approach for SPFSP under different disruptions 137

Fig. 8.1 The integrated MCS approach and BRIG algorithm

8.2.2 The Sim-BRIG algorithm

For the SPFSP under machine break down and new job arrival, we assume J is the set of
jobs and M is the set of machines. In this problem, the processing times Pi j are considered
as random variables following a Log Normal distribution where the mean E[Pi j] is known for
each job i ∈ J on each machine j ∈ M. The steps of the Sim-BRIG can be summarised in the
following points:

1. Solve the dynamic PFSP under machine breakdown and new job arrival where the sets J
and M are defined. At this point, the processing times pi j are considered as fixed values
given by pi j = E[Pi j].

2. Determine the best sequence of jobs for the dynamic PFSP by using the predictive-
reactive approach based BRIG, which starts by generating an initial solution for the
problem using the BRNEH heuristic.

3. Improve the current solution by using a classical LS technique to the base solution as
explained in section 7.3, then replace the current solution with the improved one as the
new baseline and also the best dynamic solution so far.

4. Apply simulation with small number of iterations such as 300 runs (short MCS) to
construct estimation of the expected makespan related to the sequence of jobs obtained
from the best dynamic solution. Then, initialise the best stochastic solution as the best
dynamic solution.

138 Sim-Biased Randomised Iterated Greedy for Robust SPFSP

5. Apply the ILS technique (Lourenço et al., 2010) such that the best dynamic and stochastic
solutions will be improved iteratively. Continue this technique until a stopping criteria is
attained.

6. Employ the MCS such as 1E7 runs (long MCS) to generate more accurate estimations for
the expected values of two different stochastic makespans, the one associated with the
best stochastic solution and the one associated with the best dynamic solution. Notice that,
when considering the parameters (not the estimates), the dynamic makespan associated
with the best dynamic solution and the (stochastic) expected makespan associated with
the best dynamic solution constitute, respectively, a lower and an upper bound for the
(stochastic) expected makespan associated with the best stochastic solution.

8.2.3 More details about Sim-BRIG algorithm

More relevant details about the Sim-BRIG approach are given in this section to explain the
whole idea of this approach. Some of these details are the LS and ILS procedures, which are
used in different steps in the Sim-BRIG approach, we applied the same LS and ILS techniques
that are used in chapter 7 to give a fair comparison between this approach and the Sim-PSO
approach. The Sim-BRIG is initilised by using the BRIG algorithm as we explained before.
The BRIG algorithm is used for the dynamic PFSP where the processing times are consider as
constant values. After generating an initial solution and improve it by LS algorithm, the MCS
is employed to estimate the expected stochastic makespan related to the given solution. The
algorithm steps can be summarised as follows:

• Generate a random variate for all jobs processing times by employing the Log Normal
probability distribution.

• According to the jobs sequence given by the current solution, these random variates are
employed to construct a random observation of the stochastic makespan.

• These steps are iteratively repeated so as to get a random sample of makespan observa-
tions. These observations can then be employed to estimate the expected makespan and
interval estimates, also other probable statistics about the distribution of the stochastic
makespan, such as extreme values, variance or quartiles.

• The procedure of the acceptance criterion and the perturbation proposed by Juan et al.
(2014a) are used in this algorithm.

In the Sim-BRIG approach, a very simple, fast, and efficient operator is also used at the
perturbation process, which is the Enhanced Swap Operator, this operator is explained in details

8.3 Experimental results 139

in chapter 7. Finally, the Demon-like procedure is used as an acceptance criterion for the
Sim-BRIG approach as explained in the previous chapter.
To some extent, the Sim-BRIG approach is reducing this complex problem into a more tractable
SPFSP where fast, excellent and widely tested metaheuristics exist in the literature. Indeed, for
our method, the basis employs one of these efficient metaheuristic algorithms, which is BRIG.
This raises validity to the quality of the final solutions given to the decision-maker.

8.3 Experimental results

The Sim-BRIG approach is applied for the SPFSP under different real-time events. The method
starts with generating a solution for the dynamic PFSP where a predictive-reactive approach is
applied to accommodate the new disruptions. Then it employs the MCS approach to estimate
the expected makespan. In this approach, we use a computational time limit tmax = n×m×0.03
seconds to stop the procedure. This limited computational time is the same time used in the
Sim-PSO approach. Tables 8.1, 8.2 and 8.3 shows the RPDs for dynamic (DRPD) and stochastic
(SRPD) solutions corresponding to different weights. From these tables, we can conclude
that the RPD between the stochastic solution and the dynamic one increases as the level of
uncertainty increase. However, the RPDs are generally relatively low even for such complex
NP-hard dynamic and stochastic problem. These RPDs ranging from 5.719% for k = 0.1 to
25.572% for k = 5. For this, our solution has relatively lower RPD in all tested problems for
low variation. Also, the solution related to the weight W6 = (0.002,0.498,0.498) has in general
lower RPD values when compared to the other weights. This emphasis the importance of
stability and robustness measures. Figures 8.3, 8.4 and 8.5 illustrate boxplots for three different
size instances 20×5, 50×10 and 200×20 (small, medium and large) with k = 0.1,0.5,2,5
corresponding to the weight W6 = (0.002,0.498,0.498). These boxplots are intended to show
the comparing values of makespans corresponding to the best stochastic and best dynamic
solutions where these solutions are used to find the SPFSP solution. From figures 8.3-8.5 we
notice that our approach shows in general a relatively smaller expected stochastic makespan,
also, it shows smaller variance and quartiles. Moreover, with high variance level, the expected
makespan, quartiles and variance are higher than the solution associated to dynamic makespan.
We also use the reliability analysis by using the Kaplan–Meier estimator to compute the survival
function. Figures 8.6, 8.7 and 8.8 show the survival functions for instances of small, medium
and large size, 20×5, 50×10 and 200×20 (jobs×machines) with k = 0.1,5.
The survival functions obtained from the observed stochastic makespans when using the
stochastic solution are generally lower than the survival functions of the dynamic solution. This

140 Sim-Biased Randomised Iterated Greedy for Robust SPFSP

shows that the probability that the jobs are still in process will be generally lower when using
the stochastic solution.

Table 8.1 The average DRPD and SRPD for weights W1-W4 using the Sim-BRIG

n×m k = 0.1 k = 0.5 k = 2 k = 5
DRPD SRPD DRPD SRPD DRPD SRPD DRPD SRPD

W1

20×5 25.762 25.76 28.311 28 29.468 29.467 29.592 29.592
20×5 13.121 13.121 15.612 15.588 16.539 16.119 17.649 17.649
20×10 13.587 13.58 15.203 15.201 17.044 17.04 18.147 18.146
20×20 16.103 15.686 16.82 16.82 18.508 18.16 20.523 19.843
50×5 12.057 11.855 13.704 13.7 15.678 15.597 16.298 16.298
50×10 18.038 18.038 18.349 18.13 19.829 19.829 20.44 20.359
50×20 17.113 16.997 17.595 17.55 19.519 19.5 20.124 20.124
100×5 8.058 8.049 9.492 9.49 11.944 11.94 12.973 12.973
100×10 16.463 16.398 18.502 18.5 19.148 19.148 20.252 20.252
100×20 14.598 14.597 15.703 15.7 17.341 17.341 17.907 17.907
200×10 20.61 20.6 23.204 23.2 23.827 23.8 24.783 24.783
200×20 18.498 18.4 20.939 20.9 22.278 22.278 23.434 23.434
500×20 12.638 12.638 13.004 13.004 13.893 13.8 14.158 14.158

W2

20×5 12.822 12.82 13.59 13.59 14.773 14.241 18.389 18.389
20×10 13.668 13.429 15.037 15.03 17.168 17.168 17.382 17.277
20×20 12.606 12.6 14.703 14.55 20.308 20.057 20.523 20.523
50×5 10.389 10.385 12.281 12.28 14.607 14.6 16.158 16.158
50×10 18.613 18.61 19.737 19. 6 21.127 21.113 22.403 22.403
50×20 12.272 12.27 14.317 14.3 14.935 14.935 18.957 14.284
100×5 7.694 7.692 8.696 8.69 9.503 9.502 10.543 10.507
100×10 13.786 13.781 15.634 15.61 17.218 17.217 18.841 18.841
10×20 12.285 12.28 13.764 13.76 15.104 15.103 20.049 19.753
200×10 21.286 21.285 22.247 22.2 23.228 23.227 23.275 23.275
200×20 17.692 17.69 19.723 19.72 20.353 20.353 21.806 21.806
500×20 12.28 12.2 12.947 12.9 13.457 13.456 13.886 13.886

W3

20×5 11.268 11.2 14.135 14.13 19.086 18.53 19.663 19.661
20×10 10.542 10.54 14.046 14 13.103 13.038 15.896 15.895
20×20 13.181 13.179 14.549 14.1 15.96 15.496 16.612 16.612
50×5 11.334 11.33 12.514 12.51 13.009 13 14.3 14.096
50×10 14.473 14.467 15.541 15.54 16.654 16.654 18.588 18.588
50×20 12.063 12.058 18.24 18.24 21.087 21.087 22.576 22.576
100×5 6.258 6.2 9.51 9.51 9.953 9.953 10.58 10.5
100×10 16.789 16.16 16.462 16.46 17.181 17.181 17.915 17.915
100×20 13.422 13.421 14.184 14.1 14.227 14.227 15.249 15.249
200×10 20.006 20 23.66 23.64 24.523 24.523 25.572 25.501
200×20 17.233 17.232 19.722 19.72 21.068 21 22.965 22.965
500×20 12.371 12.37 12.781 12.781 13.327 13.327 13.983 13.983

W4

20×5 12.127 11.652 13.599 13 14.585 14.585 15.275 15.275
20×10 13.29 13.287 14.661 14.52 15.72 15.72 17.723 16.723
20×20 13.163 13.022 13.734 13.73 14.609 14.6 17.269 16.027
50×5 10.748 10.748 15.416 15.41 16.549 16.549 17.321 17.3
50×10 14.532 14.502 16.262 16.26 17.959 17.702 18.187 18.187
50×20 12.777 12.776 13.921 13.92 14.501 14.5 17.534 17.534
100×5 8.705 8.7 9.91 9.91 10.433 10.433 11.965 11.102
100×10 14.032 14.03 16.904 16.9 17.073 17.073 18.053 18
100×20 12.264 12.258 13.357 13.049 14.273 14.27 15.061 15.061
200×10 20.47 20.469 22.876 22.87 23.056 23.056 23.546 23.546
200×20 17.089 17 19.514 19.5 20.682 20.681 21.343 21.343
500×20 12.108 12 12.29 12.29 13.049 13 14.617 14.617

8.3 Experimental results 141

Table 8.2 The average DRPD and SRPD for weights W5-W8 using the Sim-BRIG

n×m k = 0.1 k = 0.5 k = 2 k = 5
DRPD SRPD DRPD SRPD DRPD SRPD DRPD SRPD

W5

20×5 12.36 12.3 15.764 15.7 18.34 18.339 19.688 19.688
20×10 15.165 15.153 16.101 16.1 17.907 17.907 19.063 19.063
20×20 16.452 16.45 17.851 17.78 18.716 18.716 19.399 19.086
50×5 12.124 11.811 13.839 13.8 16.437 16.437 17.02 17.02
50×10 16.107 16.1 18.095 18.05 19.051 19.051 19.582 19.582
50×205 17.655 17.66 17.966 17.9 18.64 18.64 19.639 19.639
100×5 7.209 7.2 10.495 10.5 11.106 11.106 11.739 11.739
100×10 17.029 17 17.997 17.74 18.421 18.421 19.848 19.848
100×20 14.601 14.599 15.967 15.9 17.378 17.378 18.31 18.31
200×10 20.549 20.547 21.845 21.82 22.868 22.868 23.71 23.655
200×20 19.376 19.374 20.434 20.43 22.414 22.414 22.721 22.721
500×20 12.371 12.37 12.781 12.781 13.327 13.327 13.983 13.983

W6

20×5 8.949 8.351 12.23 12.13 12.482 12.48 14.5 14.48
20×10 11.672 11.6 12.787 12.7 17.915 17.298 19.312 19.312
20×20 11.253 10.159 12.922 12.92 13.971 13.002 14.187 14.187
50×5 9.956 9.808 10.978 10.9 11.038 11.038 12.807 12.807
50×10 12.337 12.229 13.984 13.98 14.207 14.207 14.703 14.69
50×20 10.925 10.924 11.985 11.98 20.27 20.27 21.257 20.852
100×5 5.721 5.719 6.876 6.8 11.052 11.015 12.12 12.12
100×10 13.876 13 15.337 15.3 17.123 17.12 17.65 17.65
100×20 16.434 16.434 17.504 17.5 17.955 17.955 18.609 18.609
200×5 11.212 11.21 12.79 12.79 15.318 15.318 15.658 15.643
200×10 14.116 14.064 17.8 17.77 18.259 18.259 18.611 18.56
500×20 10.281 10.281 11.963 11.9 12.217 12.217 12.986 12.984

W7

20×5 14.521 13.924 14.885 14.88 16.707 16.7 18.935 18.934
20×10 13.507 13.5 14.638 14.04 15.994 15.606 16.968 16.896
20×20 15.612 15.61 17.992 17.99 18.482 18.482 18.985 18.985
50×5 12.273 12.272 12.915 12.9 15.584 15 16.29 16.02
50×10 16.979 16.056 17.609 17.6 17.74 17.74 20.266 20.266
50×20 16.675 16.67 17.417 17.4 17.582 17.582 20.399 20.399
100×5 7.278 7.275 9.617 9.6 10.962 10.961 11.865 11.865
100×10 15.74 15.712 18.76 18.76 19.263 19.26 19.552 19.552
100×20 14.695 14.693 16.143 16.14 17.257 17.257 17.389 17.389
200×10 21.157 21.156 21.755 21.75 23.973 23.973 24.588 24.201
200×20 18.245 18.21 19.969 19.9 22.094 22.094 22.824 22.824
500×20 11.894 11.89 12.384 12.384 13.207 13.2 16.638 16.638

W8

20×5 12.313 12.299 14.559 14.5 18.592 18.59 15.714 15.626
20×10 10.427 10.42 18.374 18.154 14.08 14 17.718 17.718
20×20 11.399 11.002 14.023 14 20.29 19.847 20.336 20.3
50×5 11.685 11.671 13.653 13.5 16.227 16.227 15.793 15
50×10 18.017 17.939 18.903 18.9 22.992 22.99 19.836 19.836
50×20 15.897 15.891 18.622 18.62 14.364 14.364 14.285 14.158
100×5 8.677 8.673 11.31 11.31 12.299 12.299 12.363 12.363
100×10 13.231 13.23 14.498 14.01 16.641 16.538 20.653 20.467
100×20 16.195 16.19 16.736 16.73 18.692 18.598 14.753 14.05
200×10 14.448 14.446 16.369 16.34 17.423 17.423 18.123 18.123
200×20 15.579 15.576 17.965 17.9 20.115 20.115 21.108 21.1
500×20 12.492 12.49 12.93 12.927 14.07 14.074 15.341 15.341

142 Sim-Biased Randomised Iterated Greedy for Robust SPFSP

Table 8.3 The average DRPD and SRPD for weights W9-W10 using the Sim-BRIG

n×m k = 0.1 k = 0.5 k = 2 k = 5
DRPD SRPD DRPD SRPD DRPD SRPD DRPD SRPD

W9

20×5 12.547 12.558 14.81 15.25 17.08 17.081 18.72 18.409
20×10 15.151 15.146 16.301 16.3 17.775 17.776 19.54 19.54
20×20 15.565 15.52 17.087 17.078 17.904 17.989 18.742 18.63
50×5 11.18 11.18 14.471 14.47 14.867 14.866 16.928 16.928
50×10 16.003 16 18.43 18.43 20.33 20.329 20.449 20.449
50×20 16.457 16.448 16.694 16.69 18.358 18.357 19.33 19.33
100×5 8.247 8.243 8.903 8.9 9.072 9.072 9.582 9.582
100×10 14.42 14.4 18.388 18.46 20.553 20.553 21.428 20.913
100×20 13.741 13.7 16.477 16.48 17.675 17.675 18.06 18.06
200×10 20.476 20.476 23.175 23.17 25.196 25.196 25.175 25.175
200×20 18.721 18.719 21.446 21.45 22.247 22.246 22.897 22.94
500×20 11.674 11.674 12.3 12.288 12.892 12.892 13.629 13.629

W10

20×5 13.253 13.245 14.48 13.45 15.544 15.544 16.622 16.565
20×10 15.971 15.967 16.68 16.68 19.658 19.175 20.726 20.678
20×20 15.648 15.64 17.81 17.6 18.54 18.54 20.203 19.077
50×5 13.308 13.282 14.57 14.57 16.365 16.364 18.651 17.651
50×10 17.958 17.838 18.059 18 18.828 18.827 20.827 20.827
50×20 14.12 14.12 17.082 17.06 18.138 18.138 21.743 19.743
100×5 9.008 9.005 9.294 9.2 11.364 11.36 12.314 12.314
100×10 15.932 15.871 17.628 17.6 18.335 18.335 19.962 19.962
100×20 14.001 13.997 15.974 15.97 16.802 16.802 17.541 17.541
200×10 20.335 20.334 23.256 23.25 23.551 23.551 25.339 25.339
200×20 18.833 18.83 21.362 21.36 21.955 21.955 23.618 23.618
500×20 12.581 12.581 13.915 13.9 14.054 14.05 14.796 14.796

Fig. 8.2 Using MCS outputs to compare different solutions for problem of size 20× 5 with
k = 0.1,5 and weight W6

8.3 Experimental results 143

Fig. 8.3 Using MCS outputs to compare different solutions for problem of size 50×10 with
k = 0.1,5 and weight W6

Fig. 8.4 Using MCS outputs to compare different solutions for problem of size 200×20 with
k = 0.1,5 and weight W6

Fig. 8.5 Survival plot with intersecting solutions for problem 20×5 and k = 0.1,5

144 Sim-Biased Randomised Iterated Greedy for Robust SPFSP

Fig. 8.6 Survival plot with intersecting solutions for problem 50×10 and k = 0.1,5

Fig. 8.7 Survival plot with intersecting solutions for problem 200×20 and k = 0.1,5

8.3.1 Comparison between Sim-POS and Sim-BRG

The PSO algorithm is a stochastic evolutionary algorithm, which has the ability of dealing with
stochastic COPs successfully. For this, we hybridised the MCS with the PSO algorithm and
apply it to the SPFSP under different disruptions in the previous chapter (see chapter 7). On the
other hand, the BRIG is an efficient and fast algorithm, and hence, we applied the Sim-BRIG for
the SPFSP under different disruptions too. Tables 7.1-7.3, 8.1-8.3 reported the best RPD values
over 5 replications found in their experiments for instances ranged from 20×5 to 500×20
(jobs×machines). Also, figures 7.3-7.8, 8.3-8.7 show the boxplots and survival functions
for problems of sizes 20×5 to 50×10 and 200×20 and k = 0.1,5. Thus, we can conclude
that the proposed Sim-PSO and Sim-BRIG approaches have the ability to handle different
real-time events successfully and to generate good expected local optimal solutions. However,
for equal running time for both methods (for a time limit tmax = n×m× 0.03 seconds), the

8.3 Experimental results 145

Sim-BRIG approach shows better performance than Sim-PSO, as we can see from Figure 8.8
which shows the RPD values for both approaches for low and high variations where k = 0.1,5
and also with weights W6 = (0.002,0.498,0.498) and W8 = (0.166,0.166,0.666). This figure
indicates that the RPDs obtained from the Sim-BRIG approach are always lower than the RPDs
obtained from the Sim-PSO approach with different weights and different levels of k (low
to high). This emphasises that the Sim-BRIG outperforms the Sim-PSO in reaching better
quality solutions even for the stochastic case. Finally, from a statistical view the Sim-BRIG
is significantly different with the Sim-PSO in low and high variations k = 0.1,5 and weights
W6 = (0.002,0.498,0.498) and W8 = (0.166,0.166,0.666) as shown in figure 8.9.

Fig. 8.8 RPD values for Sim-PSO and Sim-BRIG with k = 0.1,5 and W6, W8

146 Sim-Biased Randomised Iterated Greedy for Robust SPFSP

Fig. 8.9 95% Tukey confidence intervals for Sim-PSO and Sim-BRIG with k = 0.1,5 and W6,
W8

The Sim-BRIG has better performance than the Sim-PSO approach is due to the fact that
the Sim-BRIG approach has the following advantages:

1. The Sim-BRIG requires fewer parameters, which makes the approach running faster, and
hence reaching good quality solution in less computational time.

2. It uses the BRNEH heuristic to generate an initial solution while Sim-PSO starts with
generating random solution.

3. The Sim-BRIG implements some efficient techniques implicitly to improve the quality
of the obtained solution such as; LS procedure and BR technique.

8.4 Conclusions

The main methodology of Sim-BRIG algorithm can be given as follows: the algorithm starts to
consider fixed values of processing times as the expected values of the stochastic processing
times, and hence, the initial SPFSP problem is transformed into a dynamic deterministic
PFSP under different real-time events; then apply an efficient predictive-reactive based BRIG

8.4 Conclusions 147

heuristic approach to generate good solutions for the dynamic problem. Finally, employ the
MCS to determine the estimated expected value of the stochastic makespan for each of the
above-mentioned solutions. By combining MCS with BRIG algorithm, it is possible to solve
the problem by using any distribution to model the processing times of jobs, even in the
situation where these probability distributions are different from one pair of job-machine to
another pair. The performance quality of the Sim-BRIG algorithm is explained over a set
of experiments based on adjusted instances from benchmarks for the PFSP under different
disruptions with constant processing time values (Katragjini et al., 2013). Another contribution
is considering the dynamic scenario for the SPFSP where the problem effected by different
real-time events, which are machine breakdown and new job arrivals. This problem is very
complex even for the dynamic case, so the dynamicity and stochasticity raise the complexity
of this problem. It is possible to use approaches from survival analysis so as to have a better
comparison with alternative solutions. Particularly, this has more attention when real-life
censored observations related with the introduced jobs permutation, which are employed to
compare different solutions. This scenario could happen, for example, when the random values
of makespan related to the proposed solution have a high variability. Consequently, part of
realisations of the given solution may perform in the values of makespan to override the period
of the experiment, so providing incomplete or censored observations. As a result of this chapter,
the integration between simulation and BRIG explains some of the advantages that can be
gained at solving SPFSP with different real-time events. From the computational experiment of
this chapter, the Sim-BRIG have been applied successfully for this problem. Different weights
produced different relative percentages values, where the weight W6 = (0.002,0.498,0.498)
showed the lowest RPDs in general. For this, the dynamic and stochastic solutions related
to this weight are used in the survival analysis. The boxplots illustrated that the stochastic
solutions have in general lower means and quartiles, which showed the higher quality of the
obtained stochastic solutions. Also, the survival plots emphasised the higher performance of the
stochastic solutions when compared with the dynamic one. On the other hand, the comparative
study showed that the Sim-BRIG outperform the Sim-PSO approach in getting better dynamic
and stochastic solution during the same computational time. This proves the fact that the hybrid
MCS procedure and BRIG heuristic is much simple, fast and more accurate comparing to the
hybrid MCS and PSO metaheuristic algorithm.

Chapter 9

Conclusion and future research

9.1 Conclusion

This thesis examined the PFSP under dynamic and stochastic environments, where the problem
was effected by different uncertainties including; machine breakdowns, new jobs arrivals
and/or stochastic processing times. This problem is very important and a present-day problem,
impacting costs and productivity of manufacturing systems. The PFSP is an intensive study in
which there is no uncertainty during the time horizon where the processing times of each job is
known in advance and there are no disruptions interrupting the system. However, the research
direction of both of the dynamic and stochastic PFSP under different disruptions are raised.
This makes the problem more suitable for certain real-life cases in which there are different
uncertainties such as; machine breakdown, new job arrivals and when the jobs processing times
are not known in advance but can only be modelled by random variables. Such uncertainties
could change the schedule performance, and hence, it is important to develop an optimisation
model that consider different objectives to maintain the solution stability and robustness by
minimising the measures of utility, instability and robustness, simultaneously. Also, it is
significant to propose a rescheduling approach and efficient solution methods that are able to
solve such a complicated problem even for large size instances. For this, our main contributions
to scientific understanding dealt with several approaches for solving the dynamic and stochastic
PFSP under different uncertainties. These approaches focus on five main axes: multi-objective
optimisation model, predictive-reactive approach, metaheuristic, heuristic and BR heuristic.
Beginning from Chapter 1 where a background is provided following by extensive literature
review in chapter 2, which focused on describing the evolution of the main contribution from
previous works. Continuing in chapter 3, a multi-objective optimisation model that consider
three important measures were developed, this model shows better results when compared
with two other models, namely; the bi-objective model that consider only utility and stability

150 Conclusion and future research

measures, and the classical makespan model. The primary contribution of chapters 4, 5 and 6
are concentrated on the dynamic PFSP under different real-time events, where the framework
of the solution methods have used the predictive-reactive based on three different algorithms,
including; PSO, IG and BRIG along with the MSR model. The predictive-reactive approach was
used to accommodate the machine breakdowns and new jobs arrivals in the partial subsequence
of jobs after the time of disruption, where one of the aforementioned algorithms have been
applied at the reactive stage. The PSO is a population evolutionary method that has the ability
to deal with dynamic and stochastic problems. It starts with generating a population randomly,
then it uses position and velocity to seek the best solution in the space. On the other hand, the
IG algorithm and its randomised version are simple, efficient and consume a relatively small
computational time. They produced a sequence of solutions by iterating over GC heuristics
using two main phases iteratively: named destruction and construction. The main improvement
in the BRIG algorithm is that it uses the BR technique which provide the ability to consider
the jobs with higher probabilities to be selected in the construction phase. The solution of
IG and BRIG methods are based on an initial solution that is generated by the well-known
NEH and BRNEH heuristics, respectively. At the end of chapters 5 and 6, we demonstrated
the effectiveness of our model when compared to the bi-objective model and the classical
makespan model, where the MSR model showed the best performance among the other models.
Also, we tested the efficiency of our approaches by showing the computational results and
comparing with the results of the previous chapters. In this comparison, the experiments
showed that the obtained solutions were compared between different efficient algorithms and
hence the computational results obviously showed that the BRIG provides a good solution
quality for almost all instances when compared with the IG and PSO algorithms. In addition,
the computational time consumed by BRIG and IG algorithms were much less than the time
of running the PSO algorithm. The main reasons of the high performance and speed are due
to the nature of the BRIG where it has less parameters and apply LS improvement implicitly,
which provide the algorithm with the ability of exploring more local areas in the solution space.
More contributions of this thesis is to consider the SPFSP under different real-time events,
where the hybridisation of predictive-reactive based PSO and BRIG algorithms with the MCS
procedure along with the MSR model are discussed and examined. In these methods, the
hybridised approaches provide near-optimal expected solutions and demonstrate their efficiency
by obtaining high-quality solutions for the problem. In chapter 7, we adapted the Sim-PSO
to solve the SPFSP under different real-time events, this is a novel approach in the PFSP area.
Also, the Sim-BRIG approach to solve the stochastic case is given in chapter 8. There are
two stages in order to solve SPFSP under different real-time events; in the first stage, the
predictive-reactive approach based PSO (BRIG) algorithm is used along with the MSR model

9.2 Extensions and future work 151

in order to find a good quality solution for the dynamic PFSP under machine breakdowns
and new jobs arrivals. The next stage applied the MCS to estimate good expected solutions.
Both stages have been used on the well-known benchmark problem of Katragjini et al. (2013)
where the processing times are consider as expected values for random variables that follow
the Log Normal distribution, hence, this benchmark is designed for the SPFSP under different
real-time events. Indeed, in all chapters, we designed experiments to measure performance
with respect to the instances chosen from the literature proposed by Katragjini et al. (2013).
As a summery, the results have shown that the Sim-BRIG outperform the Sim-PSO method
in obtaining efficient solution in all 120 instances. In all chapters we used thirteen different
weights derived from the weight sensitivity algorithm proposed by Jones (2011). Each weight
representing different levels of relative importance of the objectives in the MSR model. There
are a particular weights which are W8 = (0.166,0.166,0.666) and W6 = (0.002,0.498,0.498)
that have showed better solutions where compared with other weights. The weights W8 and W6

show the importance of stability and robustness measures where giving higher priority to these
measures produced better quality solution.

9.2 Extensions and future work

Whilst this thesis does show very interesting ideas of solving dynamic and stochastic PFSP
under different real-time events and the computational results produced good quality solutions.
It is clear from the computational effort that there are opportunities to implement different
algorithm solutions in future work. More extensions and future works can be summarised as
follows:

• In this thesis, we have shown how the model and the approaches can successfully be
applied for dynamic and stochastic PFSP under different real-time events. One interesting
future research is testing different models including stochastic models and taking into
account different objectives with these approaches in order to improve and compare the
solutions of this problem.

• Another research line is to expand the weight sensitivity analysis to include other goal
programming variants and/or multiple criteria methods. Also considering different
sensitivity analysis approaches for the proposed models and approaches.

• More research is suggested about how the multi-objective measures perform over a
diverse set of weights could point towards a multi-objective performance measure.

152 Conclusion and future research

• One direction for future research could be to use these proposed algorithms to develop
efficient algorithms to solve similar kinds of problems with different/special character-
istics. In addition, there is the opportunity to implement the model with the proposed
algorithms to improve the solution quality.

• One potential area of interesting future research is to consider other biased (non-
symmetric) probabilistic distributions to measure performance and its impact on results,
while we proposed algorithms that are based on a BR selection of elements inside of
heuristics.

• Another possibility of future work for improving the quality of the solutions achieved by
the Sim-PSO and Sim-BRIG, is to apply efficient approaches to generate good quality
initial solution, which could lead to an improvement in the solution from the beginning.
Also, LS can be applied to improve the PSO algorithm.

• Also, considering different scheduling problems under different environments such as
dynamic and stochastic FFSP and JSPs under different uncertainties. Also, applying dif-
ferent efficient approaches and solution methods. As well as, generating new benchmarks
for such problems to enrich the scheduling area.

• Finally, the current proposed model and approaches can be explored to handle other types
of uncertainties.

References

Abdollahpour, S., & Rezaeian, J. (2015). Minimizing makespan for flow shop scheduling
problem with intermediate buffers by using hybrid approach of artificial immune system.
Applied Soft Computing, 28, 44 – 56. URL: http://www.sciencedirect.com/science/article/pii/
S1568494614005845. doi:https://doi.org/10.1016/j.asoc.2014.11.022.

Adressi, A., Hassanpour, S. T., & Azizi, V. (2016). Solving group scheduling problem in
no-wait flexible flowshop with random machinebreakdown, . 5, 157–168. doi:10.5267/j.
dsl.2015.7.001.

Akhshabi, M., Tavakkoli-Moghaddam, R., & Rahnamay-Roodposhti, F. (2014). A hybrid parti-
cle swarm optimization algorithm for a no-wait flow shop scheduling problem with the total
flow time. The International Journal of Advanced Manufacturing Technology, 70, 1181–1188.
URL: https://doi.org/10.1007/s00170-013-5351-9. doi:10.1007/s00170-013-5351-9.

Al-Hinai, N., & Elmekkawy, T. Y. (2011). Robust and stable flexible job shop scheduling with
random machine breakdowns using a hybrid genetic algorithm. International Journal of
Production Economics, 132, 279 – 291. URL: http://www.sciencedirect.com/science/article/
pii/S0925527311001952. doi:https://doi.org/10.1016/j.ijpe.2011.04.020.

Alcaide, D., Rodriguez-Gonzalez, A., & Sicilia, J. (2002). An approach to solve the minimum
expected makespan flow-shop problem subject to breakdowns. European Journal of Oper-
ational Research, 140, 384 – 398. URL: http://www.sciencedirect.com/science/article/pii/
S0377221702000772. doi:https://doi.org/10.1016/S0377-2217(02)00077-2.

Ali, A., & John, M. (1998). Dual criteria scheduling on a two-machine flow-shop subject
to random breakdowns. International Transactions in Operational Research, 5, 317–324.
doi:10.1016/S0969-6016(97)00042-7.

Allaoui, H., & Artiba, A. (2004). Integrating simulation and optimization to schedule a
hybrid flow shop with maintenance constraints. Computers Industrial Engineering, 47,
431 – 450. URL: http://www.sciencedirect.com/science/article/pii/S0360835204001299.
doi:https://doi.org/10.1016/j.cie.2004.09.002.

Almeder, C., & Hartl, R. F. (2013). A metaheuristic optimization approach for a real-world
stochastic flexible flow shop problem with limited buffer. International Journal of Pro-
duction Economics, 145, 88 – 95. URL: http://www.sciencedirect.com/science/article/pii/
S0925527312004100. doi:https://doi.org/10.1016/j.ijpe.2012.09.014.

Amaran, S., Sahinidis, N. V., Sharda, B., & Bury, S. J. (2017). Simulation optimization: A
review of algorithms and applications. ArXiv e-prints, . arXiv:1706.08591.

http://www.sciencedirect.com/science/article/pii/S1568494614005845
http://www.sciencedirect.com/science/article/pii/S1568494614005845
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2014.11.022
http://dx.doi.org/10.5267/j.dsl.2015.7.001
http://dx.doi.org/10.5267/j.dsl.2015.7.001
https://doi.org/10.1007/s00170-013-5351-9
http://dx.doi.org/10.1007/s00170-013-5351-9
http://www.sciencedirect.com/science/article/pii/S0925527311001952
http://www.sciencedirect.com/science/article/pii/S0925527311001952
http://dx.doi.org/https://doi.org/10.1016/j.ijpe.2011.04.020
http://www.sciencedirect.com/science/article/pii/S0377221702000772
http://www.sciencedirect.com/science/article/pii/S0377221702000772
http://dx.doi.org/https://doi.org/10.1016/S0377-2217(02)00077-2
http://dx.doi.org/10.1016/S0969-6016(97)00042-7
http://www.sciencedirect.com/science/article/pii/S0360835204001299
http://dx.doi.org/https://doi.org/10.1016/j.cie.2004.09.002
http://www.sciencedirect.com/science/article/pii/S0925527312004100
http://www.sciencedirect.com/science/article/pii/S0925527312004100
http://dx.doi.org/https://doi.org/10.1016/j.ijpe.2012.09.014
http://arxiv.org/abs/1706.08591

154 References

Amirian, H., & Sahraeian, R. (2016). A hybrid differential evolution for general multi-
objective flow shop problem with a modified learning effect. Proceedings of the Institu-
tion of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230, 2275–
2285. URL: https://doi.org/10.1177/0954405416673094. doi:10.1177/0954405416673094.
arXiv:https://doi.org/10.1177/0954405416673094.

Andradóttir, S. (1998). A review of simulation optimization techniques. In Proceedings of the
1998 Mnrer Siinularion Conference (pp. 151–158).

Aydilek, A., Aydilek, H., & Allahverdi, A. (2015). Production in a two-machine
flowshop scheduling environment with uncertain processing and setup times to mini-
mize makespan. International Journal of Production Research, 53, 2803–2819. URL:
http://dx.doi.org/10.1080/00207543.2014.997403. doi:10.1080/00207543.2014.997403.
arXiv:http://dx.doi.org/10.1080/00207543.2014.997403.

Aytug, H., Lawley, M. A., McKay, K., Mohan, S., & Uzsoy, R. (2005). Executing production
schedules in the face of uncertainties: A review and some future directions. European Journal
of Operational Research, 161, 86 – 110. URL: http://www.sciencedirect.com/science/article/
pii/S0377221703005307. doi:https://doi.org/10.1016/j.ejor.2003.08.027. IEPM:
Focus on Scheduling.

Baker, K. R. (2014). Minimizing earliness and tardiness costs in stochastic scheduling. Euro-
pean Journal of Operational Research, 236, 445 – 452. URL: http://www.sciencedirect.com/
science/article/pii/S0377221713009867. doi:https://doi.org/10.1016/j.ejor.2013.
12.011.

Baker, K. R., & Altheimer, D. (2012). Heuristic solution methods for the stochastic flow
shop problem. European Journal of Operational Research, 216, 172 – 177. URL: http:
//www.sciencedirect.com/science/article/pii/S0377221711006230. doi:https://doi.org/
10.1016/j.ejor.2011.07.021.

Baker, K. R., & Trietsch, D. (2011). Three heuristic procedures for the stochastic, two-machine
flow shop problem. Journal of Scheduling, 14, 445–454. URL: https://doi.org/10.1007/
s10951-010-0219-4. doi:10.1007/s10951-010-0219-4.

Bargaoui, H., & Driss, O. B. (2014). Multi-agent model based on tabu search for the permutation
flow shop scheduling problem. In S. Omatu, H. Bersini, J. M. Corchado, S. Rodríguez,
P. Pawlewski, & E. Bucciarelli (Eds.), Distributed Computing and Artificial Intelligence, 11th
International Conference (pp. 519–527). Cham: Springer International Publishing. URL:
https://doi.org/10.1007/978-3-319-07593-8_60. doi:10.1007/978-3-319-07593-8_60.

Behnamian, J. (2014). Particle swarm optimization-based algorithm for fuzzy parallel machine
scheduling. The International Journal of Advanced Manufacturing Technology, 75, 883–895.
URL: https://doi.org/10.1007/s00170-014-6181-0. doi:10.1007/s00170-014-6181-0.

Belloso, J., Juan, A. A., Martinez, E., & Faulin, J. (2017). A biased-randomized metaheuristic
for the vehicle routing problem with clustered and mixed backhauls. Networks, 69, 241–255.
URL: http://dx.doi.org/10.1002/net.21734. doi:10.1002/net.21734.

Bertsekas, D. P., & Castanon, D. A. (1999). Rollout algorithms for stochastic scheduling
problems. Journal of Heuristics, 5, 89–108. URL: https://doi.org/10.1023/A:1009634810396.
doi:10.1023/A:1009634810396.

https://doi.org/10.1177/0954405416673094
http://dx.doi.org/10.1177/0954405416673094
http://arxiv.org/abs/https://doi.org/10.1177/0954405416673094
http://dx.doi.org/10.1080/00207543.2014.997403
http://dx.doi.org/10.1080/00207543.2014.997403
http://arxiv.org/abs/http://dx.doi.org/10.1080/00207543.2014.997403
http://www.sciencedirect.com/science/article/pii/S0377221703005307
http://www.sciencedirect.com/science/article/pii/S0377221703005307
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2003.08.027
http://www.sciencedirect.com/science/article/pii/S0377221713009867
http://www.sciencedirect.com/science/article/pii/S0377221713009867
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2013.12.011
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2013.12.011
http://www.sciencedirect.com/science/article/pii/S0377221711006230
http://www.sciencedirect.com/science/article/pii/S0377221711006230
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2011.07.021
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2011.07.021
https://doi.org/10.1007/s10951-010-0219-4
https://doi.org/10.1007/s10951-010-0219-4
http://dx.doi.org/10.1007/s10951-010-0219-4
https://doi.org/10.1007/978-3-319-07593-8_60
http://dx.doi.org/10.1007/978-3-319-07593-8_60
https://doi.org/10.1007/s00170-014-6181-0
http://dx.doi.org/10.1007/s00170-014-6181-0
http://dx.doi.org/10.1002/net.21734
http://dx.doi.org/10.1002/net.21734
https://doi.org/10.1023/A:1009634810396
http://dx.doi.org/10.1023/A:1009634810396

References 155

Bessedik, M., Benbouzid-Si Tayeb, F., Cheurfi, H., & Blizak, A. (2016). An immunity-based
hybrid genetic algorithms for permutation flowshop scheduling problems. The International
Journal of Advanced Manufacturing Technology, 85, 2459–2469. URL: https://doi.org/10.
1007/s00170-015-8052-8. doi:10.1007/s00170-015-8052-8.

Blackwell, T. (2007). Particle swarm optimization in dynamic environments. In S. Yang, Y.-S.
Ong, & Y. Jin (Eds.), Evolutionary Computation in Dynamic and Uncertain Environments
(pp. 29–49). Berlin, Heidelberg: Springer Berlin Heidelberg. URL: https://doi.org/10.1007/
978-3-540-49774-5_2. doi:10.1007/978-3-540-49774-5_2.

Blum, C., & Merkle, D. (2008). Swarm Intelligence Introduction and Applications volume 1.
doi:10.1017/CBO9781107415324.004.

Bonney, M. C., & Gundry, S. W. (1976). Solutions to the constrained flowshop sequencing
problem. Journal of the Operational Research Society, 27, 869–883. URL: https://doi.org/
10.1057/jors.1976.176. doi:10.1057/jors.1976.176.

Bożejko, W., & Wodecki, M. (2004). Parallel genetic algorithm for minimizing total weighted
completion time. In L. Rutkowski, J. H. Siekmann, R. Tadeusiewicz, & L. A. Zadeh (Eds.),
Artificial Intelligence and Soft Computing - ICAISC 2004: 7th International Conference,
Zakopane, Poland, June 7-11, 2004. Proceedings (pp. 400–405). Berlin, Heidelberg: Springer
Berlin Heidelberg. URL: https://doi.org/10.1007/978-3-540-24844-6_58. doi:10.1007/
978-3-540-24844-6_58.

Cáceres-Cruz, J., Juan, A. A., Bektas, T., Grasman, S. E., & Faulin, J. (2012). Combining monte
carlo simulation with heuristics for solving the inventory routing problem with stochastic
demands. In Proceedings of the Winter Simulation Conference WSC ’12 (pp. 274:1–274:9).
Winter Simulation Conference. URL: http://dl.acm.org/citation.cfm?id=2429759.2430129.

Cai, X. Q., Wu, X., & Zhou, X. (2014). Optimal Stochastic Scheduling. International Series in
Operations Research & Management Science. Springer US. URL: https://books.google.co.
uk/books?id=RLouBAAAQBAJ.

Campbell, H. G., Dudek, R. A., & Smith, M. L. (1970). A Heuristic Algorithm for The n Job,
m Machine Sequencing Problem. Management science, 16, B630– B637. doi:10.1287/
mnsc.16.10.B630.

Campos, S. C., & Arroyo, J. E. C. (2014). Nsga-ii with iterated greedy for a bi-objective
three-stage assembly flowshop scheduling problem. In Proceedings of the 2014 Annual
Conference on Genetic and Evolutionary Computation GECCO ’14 (pp. 429–436). New
York, NY, USA: ACM. URL: http://doi.acm.org/10.1145/2576768.2598324. doi:10.1145/
2576768.2598324.

Carlier, J., & Rebaï, I. (1996). Two branch and bound algorithms for the permutation flow
shop problem. European Journal of Operational Research, 90, 238 – 251. URL: http:
//www.sciencedirect.com/science/article/pii/0377221795003525. doi:https://doi.org/
10.1016/0377-2217(95)00352-5.

Chang, P.-c., Hsieh, J.-c., & Lin, S.-g. (2002). The development of gradual-priority weighting
approach for the multi-objective flow-shop scheduling problem. Int. J. Production Economics
79, 79, 171–183.

https://doi.org/10.1007/s00170-015-8052-8
https://doi.org/10.1007/s00170-015-8052-8
http://dx.doi.org/10.1007/s00170-015-8052-8
https://doi.org/10.1007/978-3-540-49774-5_2
https://doi.org/10.1007/978-3-540-49774-5_2
http://dx.doi.org/10.1007/978-3-540-49774-5_2
http://dx.doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1057/jors.1976.176
https://doi.org/10.1057/jors.1976.176
http://dx.doi.org/10.1057/jors.1976.176
https://doi.org/10.1007/978-3-540-24844-6_58
http://dx.doi.org/10.1007/978-3-540-24844-6_58
http://dx.doi.org/10.1007/978-3-540-24844-6_58
http://dl.acm.org/citation.cfm?id=2429759.2430129
https://books.google.co.uk/books?id=RLouBAAAQBAJ
https://books.google.co.uk/books?id=RLouBAAAQBAJ
http://dx.doi.org/10.1287/mnsc.16.10.B630
http://dx.doi.org/10.1287/mnsc.16.10.B630
http://doi.acm.org/10.1145/2576768.2598324
http://dx.doi.org/10.1145/2576768.2598324
http://dx.doi.org/10.1145/2576768.2598324
http://www.sciencedirect.com/science/article/pii/0377221795003525
http://www.sciencedirect.com/science/article/pii/0377221795003525
http://dx.doi.org/https://doi.org/10.1016/0377-2217(95)00352-5
http://dx.doi.org/https://doi.org/10.1016/0377-2217(95)00352-5

156 References

Chen, C.-L., Huang, S.-Y., Tzeng, Y.-R., & Chen, C.-L. (2014). A revised discrete particle
swarm optimization algorithm for permutation flow-shop scheduling problem. Soft Com-
puting, 18, 2271–2282. URL: https://doi.org/10.1007/s00500-013-1199-z. doi:10.1007/
s00500-013-1199-z.

Chen, C.-L., Vempati, V. S., & Aljaber, N. (1995). An application of genetic algorithms for
flow shop problems. European Journal of Operational Research, 80, 389–396.

Chryssolouris, G. (2006). Manufacturing Systems: Theory and Practice. (2nd ed.). Springer
Science-i-Business Media, Inc. doi:10.1007/b22134. arXiv:arXiv:1011.1669v3.

Ciavotta, M., Minella, G., & Ruiz, R. (2013). Multi-objective sequence dependent setup times
permutation flowshop: A new algorithm and a comprehensive study. European Journal of
Operational Research, 227, 301 – 313. URL: http://www.sciencedirect.com/science/article/
pii/S0377221713000052. doi:https://doi.org/10.1016/j.ejor.2012.12.031.

Coello, C. A. C., Pulido, G. T., & Lechuga, M. S. (2004). Handling multiple objectives with
particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8, 256–279.
doi:10.1109/TEVC.2004.826067.

Collet, P., & Rennard, J.-P. (2007). Stochastic Optimization Algorithms. Hand-
book of Research on Nature-Inspired Computing for Economics and Manage-
ment, 1, 28–44. URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/
978-1-59140-984-7.ch003. doi:10.4018/978-1-59140-984-7.ch003.

Cordeau, J.-F., Gendreau, M., Laporte, G., Potvin, J.-Y., & Semet, F. (2002). A guide to
vehicle routing heuristics. Journal of the Operational Research Society, 53, 512–522. URL:
https://doi.org/10.1057/palgrave.jors.2601319. doi:10.1057/palgrave.jors.2601319.

Cowling, P. I., Ouelhadj, D., & Petrovic, S. (2003). A multi-agent architecture for dynamic
scheduling of steel hot rolling. Journal of Intelligent Manufacturing, 14, 457–470. URL:
https://doi.org/10.1023/A:1025701325275. doi:10.1023/A:1025701325275.

Cowling, P. I., Ouelhadj, D., & Petrovic, S. (2004). Dynamic scheduling of steel casting
and milling using multi-agents. Production Planning & Control, 15, 178–188. URL:
http://dx.doi.org/10.1080/09537280410001662466. doi:10.1080/09537280410001662466.
arXiv:http://dx.doi.org/10.1080/09537280410001662466.

Cui, Z., & Gu, X. (2014). A Discrete Group Search Optimizer for Hybrid Flowshop Scheduling
Problem with Random Breakdown. Mathematical Problems in Engineering, 2014. doi:http:
//dx.doi.org/10.1155/2014/621393.

Cunningham, A. A., & Dutta, S. K. (1973). Scheduling jobs, with exponentially distributed
processing times, on two machines of a flow shop. Naval Research Logistics Quarterly, 20,
69–81. URL: http://dx.doi.org/10.1002/nav.3800200107. doi:10.1002/nav.3800200107.

Dahal, K. P., Galloway, S. J., Burt, G. M., McDonald, J. R., & Hopkins, I. (2005). A case
study of process facility optimization using discrete event simulation and genetic algorithm.
URL: http://portal.acm.org/citation.cfm?doid=1068009.1068372. doi:10.1145/1068009.
1068372.

https://doi.org/10.1007/s00500-013-1199-z
http://dx.doi.org/10.1007/s00500-013-1199-z
http://dx.doi.org/10.1007/s00500-013-1199-z
http://dx.doi.org/10.1007/b22134
http://arxiv.org/abs/arXiv:1011.1669v3
http://www.sciencedirect.com/science/article/pii/S0377221713000052
http://www.sciencedirect.com/science/article/pii/S0377221713000052
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2012.12.031
http://dx.doi.org/10.1109/TEVC.2004.826067
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-59140-984-7.ch003
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-59140-984-7.ch003
http://dx.doi.org/10.4018/978-1-59140-984-7.ch003
https://doi.org/10.1057/palgrave.jors.2601319
http://dx.doi.org/10.1057/palgrave.jors.2601319
https://doi.org/10.1023/A:1025701325275
http://dx.doi.org/10.1023/A:1025701325275
http://dx.doi.org/10.1080/09537280410001662466
http://dx.doi.org/10.1080/09537280410001662466
http://arxiv.org/abs/http://dx.doi.org/10.1080/09537280410001662466
http://dx.doi.org/http://dx.doi.org/10.1155/2014/621393
http://dx.doi.org/http://dx.doi.org/10.1155/2014/621393
http://dx.doi.org/10.1002/nav.3800200107
http://dx.doi.org/10.1002/nav.3800200107
http://portal.acm.org/citation.cfm?doid=1068009.1068372
http://dx.doi.org/10.1145/1068009.1068372
http://dx.doi.org/10.1145/1068009.1068372

References 157

Dahal, K. P., Tan, K. C., & Cowling, P. I. (2007). Evolutionary Scheduling. Springer-Verlag
Berlin Heidelberg.

Damodaran, P., Rao, A. G., & Mestry, S. (2013). Particle swarm optimization for scheduling
batch processing machines in a permutation flowshop. The International Journal of Advanced
Manufacturing Technology, 64, 989–1000. URL: https://doi.org/10.1007/s00170-012-4037-z.
doi:10.1007/s00170-012-4037-z.

Danilovic, M., & Ilic, O. (2016). A generalized constructive algorithm using insertion-
based heuristics. Computers Operations Research, 66, 29 – 43. URL: http://
www.sciencedirect.com/science/article/pii/S0305054815001768. doi:https://doi.org/
10.1016/j.cor.2015.07.009.

Dannenbring, D. G. (1977). An Evaluation of Flow Shop Sequencing Heuristics. Management
Science, 23, 1174–1182.

Dauzére-Pérés, S., Castagliola, P., & Lahlou, C. (2010). Service level in scheduling. In
Flexibility and Robustness in Scheduling (pp. 99–121). ISTE. URL: http://dx.doi.org/10.
1002/9780470611432.ch5. doi:10.1002/9780470611432.ch5.

Deng, G., & Gu, X. (2014). An iterated greedy algorithm for the single-
machine total weighted tardiness problem with sequence-dependent setup
times. International Journal of Systems Science, 45, 351–362. URL: http:
//dx.doi.org/10.1080/00207721.2012.723054. doi:10.1080/00207721.2012.723054.
arXiv:http://dx.doi.org/10.1080/00207721.2012.723054.

Deng, J., & Wang, L. (2017). A competitive memetic algorithm for multi-objective distributed
permutation flow shop scheduling problem. Swarm and Evolutionary Computation, 32,
121 – 131. URL: http://www.sciencedirect.com/science/article/pii/S2210650216300281.
doi:https://doi.org/10.1016/j.swevo.2016.06.002.

Ding, J.-Y., Song, S., N.D. Gupta, J., Zhang, R., Chiong, R., & Wu, C. (2015). An
improved iterated greedy algorithm with a tabu-based reconstruction strategy for the
no-wait flowshop scheduling problem. Applied Soft Computing, 30, 604 – 613. URL:
http://www.sciencedirect.com/science/article/pii/S1568494615000964. doi:https://doi.
org/10.1016/j.asoc.2015.02.006.

Ding, J.-Y., Song, S., & Wu, C. (2016). Carbon-efficient scheduling of flow shops by multi-
objective optimization. European Journal of Operational Research, 248, 758 – 771. URL:
http://www.sciencedirect.com/science/article/pii/S0377221715004099. doi:https://doi.
org/10.1016/j.ejor.2015.05.019.

Dodin, B. (1996). Determining the optimal sequences and the distributional properties of
their completion times in stochastic flow shops. Computers Operations Research, 23, 829 –
843. URL: http://www.sciencedirect.com/science/article/pii/0305054895000836. doi:https:
//doi.org/10.1016/0305-0548(95)00083-6.

Dong, X., Huang, H., & Chen, P. (2008). An improved neh-based heuristic for the
permutation flowshop problem. Computers Operations Research, 35, 3962 – 3968.
URL: http://www.sciencedirect.com/science/article/pii/S0305054807001116. doi:https:
//doi.org/10.1016/j.cor.2007.05.005. Part Special Issue: Telecommunications Net-
work Engineering.

https://doi.org/10.1007/s00170-012-4037-z
http://dx.doi.org/10.1007/s00170-012-4037-z
http://www.sciencedirect.com/science/article/pii/S0305054815001768
http://www.sciencedirect.com/science/article/pii/S0305054815001768
http://dx.doi.org/https://doi.org/10.1016/j.cor.2015.07.009
http://dx.doi.org/https://doi.org/10.1016/j.cor.2015.07.009
http://dx.doi.org/10.1002/9780470611432.ch5
http://dx.doi.org/10.1002/9780470611432.ch5
http://dx.doi.org/10.1002/9780470611432.ch5
http://dx.doi.org/10.1080/00207721.2012.723054
http://dx.doi.org/10.1080/00207721.2012.723054
http://dx.doi.org/10.1080/00207721.2012.723054
http://arxiv.org/abs/http://dx.doi.org/10.1080/00207721.2012.723054
http://www.sciencedirect.com/science/article/pii/S2210650216300281
http://dx.doi.org/https://doi.org/10.1016/j.swevo.2016.06.002
http://www.sciencedirect.com/science/article/pii/S1568494615000964
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2015.02.006
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2015.02.006
http://www.sciencedirect.com/science/article/pii/S0377221715004099
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2015.05.019
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2015.05.019
http://www.sciencedirect.com/science/article/pii/0305054895000836
http://dx.doi.org/https://doi.org/10.1016/0305-0548(95)00083-6
http://dx.doi.org/https://doi.org/10.1016/0305-0548(95)00083-6
http://www.sciencedirect.com/science/article/pii/S0305054807001116
http://dx.doi.org/https://doi.org/10.1016/j.cor.2007.05.005
http://dx.doi.org/https://doi.org/10.1016/j.cor.2007.05.005

158 References

Dong, X., Nowak, M., Chen, P., & Lin, Y. (2015). Self-adaptive perturbation and multi-
neighborhood search for iterated local search on the permutation flow shop problem. Com-
puters Industrial Engineering, 87, 176 – 185. URL: http://www.sciencedirect.com/science/
article/pii/S0360835215002089. doi:https://doi.org/10.1016/j.cie.2015.04.030.

Dongdong, L., Kai, L., Zhengping, Z., Bo, H., & Yan, Z. (2015). Discrete Particle Swarm
Optimization Algorithm in FlexibleHybrid Flow Shop Scheduling. International Journal of
Hybrid Information Technology, 8, 299–310. doi:http://dx.doi.org/10.14257/ijhit.
2015.8.10.27.

Dubois-Lacoste, J., Pagnozzi, F., & Stützle, T. (2017). An iterated greedy algorithm with
optimization of partial solutions for the makespan permutation flowshop problem. Computers
Operations Research, 81, 160 – 166. URL: http://www.sciencedirect.com/science/article/pii/
S030505481630329X. doi:https://doi.org/10.1016/j.cor.2016.12.021.

Dudek, R. A., & Teuton, O. F. (1964). Development of M-Stage Decision Rule for Scheduling
n Jobs through m Machines. Operations Research, 12, 471–497.

Dutton, J. (1964). Production scheduling: a behaviour model. International Journal of Produc-
tion Research, (pp. 3–27). URL: http://search.ebscohost.com/login.aspx?direct=true{&}db=
bth{&}AN=5553140{&}site=ehost-live.

Dutton, J. M. (1962). Simulation of an Actual Production Scheduling and
Work Flow Control System. International Journal of Production Research, 1,
421–441. URL: http://search.ebscohost.com/login.aspx?direct=true{&}db=bth{&}AN=
5553140{&}site=ehost-live. doi:10.1080/00207546108943095.

Ebrahimi, M., Ghomi, S. M. T. F., & Karimi, B. (2014). Hybrid flow shop scheduling
with sequence dependent family setup time and uncertain due dates. Applied Mathemat-
ical Modelling, 38, 2490 – 2504. URL: http://www.sciencedirect.com/science/article/pii/
S0307904X13007282. doi:https://doi.org/10.1016/j.apm.2013.10.061.

El-bouri, A. (2013). The effect of inserted idle time on the performance of dispatching rules
in a flowshop. In International Conference on Industrial Engineering and Operations
Management.

Elias C. Arroyo, J., Joséand Y.-T. Leung (2017). An effective iterated greedy algorithm
for scheduling unrelated parallel batch machines with non-identical capacities and un-
equal ready times. Computers Industrial Engineering, 105, 84 – 100. URL: http:
//www.sciencedirect.com/science/article/pii/S0360835216305162. doi:https://doi.org/
10.1016/j.cie.2016.12.038.

Elyasi, A., & Salmasi, N. (2013). Stochastic scheduling with minimizing the number of tardy
jobs using chance constrained programming. Mathematical and Computer Modelling, 57,
1154 – 1164. URL: http://www.sciencedirect.com/science/article/pii/S0895717712002786.
doi:https://doi.org/10.1016/j.mcm.2012.10.017.

Emmons, H., & Vairaktarakis, G. (2012). Flow Shop Scheduling: Theoretical Results, Al-
gorithms, and Applications. International Series in Operations Research & Management
Science. Springer US. URL: https://books.google.co.uk/books?id=4UWMlwrescgC.

http://www.sciencedirect.com/science/article/pii/S0360835215002089
http://www.sciencedirect.com/science/article/pii/S0360835215002089
http://dx.doi.org/https://doi.org/10.1016/j.cie.2015.04.030
http://dx.doi.org/http://dx.doi.org/10.14257/ijhit.2015.8.10.27
http://dx.doi.org/http://dx.doi.org/10.14257/ijhit.2015.8.10.27
http://www.sciencedirect.com/science/article/pii/S030505481630329X
http://www.sciencedirect.com/science/article/pii/S030505481630329X
http://dx.doi.org/https://doi.org/10.1016/j.cor.2016.12.021
http://search.ebscohost.com/login.aspx?direct=true{&}db=bth{&}AN=5553140{&}site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true{&}db=bth{&}AN=5553140{&}site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true{&}db=bth{&}AN=5553140{&}site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true{&}db=bth{&}AN=5553140{&}site=ehost-live
http://dx.doi.org/10.1080/00207546108943095
http://www.sciencedirect.com/science/article/pii/S0307904X13007282
http://www.sciencedirect.com/science/article/pii/S0307904X13007282
http://dx.doi.org/https://doi.org/10.1016/j.apm.2013.10.061
http://www.sciencedirect.com/science/article/pii/S0360835216305162
http://www.sciencedirect.com/science/article/pii/S0360835216305162
http://dx.doi.org/https://doi.org/10.1016/j.cie.2016.12.038
http://dx.doi.org/https://doi.org/10.1016/j.cie.2016.12.038
http://www.sciencedirect.com/science/article/pii/S0895717712002786
http://dx.doi.org/https://doi.org/10.1016/j.mcm.2012.10.017
https://books.google.co.uk/books?id=4UWMlwrescgC

References 159

Entezari, S., & Gholami, S. (2015). Multi-objective flexible flow shop scheduling with
unexpected arrivals of new jobs, . 3, 172–181.

Fazayeli, M., Aleagha, M.-R., Bashirzadeh, R., & Shafaei, R. (2016). A hybrid meta-
heuristic algorithm for flowshop robust scheduling under machine breakdown uncertainty.
International Journal of Computer Integrated Manufacturing, 29, 709–719. URL: http:
//dx.doi.org/10.1080/0951192X.2015.1067907. doi:10.1080/0951192X.2015.1067907.
arXiv:http://dx.doi.org/10.1080/0951192X.2015.1067907.

Framinan, J., Leisten, R., & García, R. R. (2014). Manufacturing Scheduling Systems: An
Integrated View on Models, Methods and Tools. SpringerLink : Bücher. Springer London.
URL: https://books.google.co.uk/books?id=9DO3BAAAQBAJ.

Framinan, J. M., Gupta, J. N. D., & Leisten, R. (2004). A review and classification of
heuristics for permutation flow-shop scheduling with makespan objective. Journal of the
Operational Research Society, 55, 1243–1255. URL: https://doi.org/10.1057/palgrave.jors.
2601784. doi:10.1057/palgrave.jors.2601784.

Framinan, J. M., & Leisten, R. (2008). A multi-objective iterated greedy search for flowshop
scheduling with makespan and flowtime criteria. OR Spectrum, 30, 787–804. URL: https:
//doi.org/10.1007/s00291-007-0098-z. doi:10.1007/s00291-007-0098-z.

Framinan, J. M., Leisten, R., & Rajendran, C. (2003). Different initial sequences for the
heuristic of nawaz, enscore and ham to minimize makespan, idletime or flowtime in the
static permutation flowshop sequencing problem. International Journal of Production
Research, 41, 121–148. URL: https://doi.org/10.1080/00207540210161650. doi:10.1080/
00207540210161650.

Framinan, J. M., Leisten, R., & Ruiz-Usano, R. (2002). Efficient heuristics for flowshop
sequencing with the objectives of makespan and flowtime minimisation. European Journal
of Operational Research, 141, 559 – 569. URL: http://www.sciencedirect.com/science/article/
pii/S0377221701002788. doi:https://doi.org/10.1016/S0377-2217(01)00278-8.

Framinan, J. M., & Perez-Gonzalez, P. (2015). On heuristic solutions for the stochastic
flowshop scheduling problem. European Journal of Operational Research, 246, 413 – 420.
URL: http://www.sciencedirect.com/science/article/pii/S0377221715003781. doi:https:
//doi.org/10.1016/j.ejor.2015.05.006.

Frazzon, E. M., Albrecht, A., & Andrea, H. P. (2016). Simulation-based optimization for
the integrated scheduling of production and logistic systems. IFAC-PapersOnLine, 49,
1050 – 1055. URL: http://www.sciencedirect.com/science/article/pii/S2405896316308394.
doi:https://doi.org/10.1016/j.ifacol.2016.07.581. 8th IFAC Conference on Man-
ufacturing Modelling, Management and Control MIM 2016.

Fu, M. C. (1994). Optimization via simulation A review. Annals of Operations Research, 53,
199–247.

Fu, M. C., Glover, F. W., & April, J. (2005). Simulation optimization: a review, new develop-
ments, and applications. In Proceedings of the Winter Simulation Conference, 2005. (pp. 13
pp.–). doi:10.1109/WSC.2005.1574242.

http://dx.doi.org/10.1080/0951192X.2015.1067907
http://dx.doi.org/10.1080/0951192X.2015.1067907
http://dx.doi.org/10.1080/0951192X.2015.1067907
http://arxiv.org/abs/http://dx.doi.org/10.1080/0951192X.2015.1067907
https://books.google.co.uk/books?id=9DO3BAAAQBAJ
https://doi.org/10.1057/palgrave.jors.2601784
https://doi.org/10.1057/palgrave.jors.2601784
http://dx.doi.org/10.1057/palgrave.jors.2601784
https://doi.org/10.1007/s00291-007-0098-z
https://doi.org/10.1007/s00291-007-0098-z
http://dx.doi.org/10.1007/s00291-007-0098-z
https://doi.org/10.1080/00207540210161650
http://dx.doi.org/10.1080/00207540210161650
http://dx.doi.org/10.1080/00207540210161650
http://www.sciencedirect.com/science/article/pii/S0377221701002788
http://www.sciencedirect.com/science/article/pii/S0377221701002788
http://dx.doi.org/https://doi.org/10.1016/S0377-2217(01)00278-8
http://www.sciencedirect.com/science/article/pii/S0377221715003781
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2015.05.006
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2015.05.006
http://www.sciencedirect.com/science/article/pii/S2405896316308394
http://dx.doi.org/https://doi.org/10.1016/j.ifacol.2016.07.581
http://dx.doi.org/10.1109/WSC.2005.1574242

160 References

Gao, K. Z., Suganthan, P. N., Pan, Q. K., Tasgetiren, M. F., & Sadollah, A. (2016). Artificial
bee colony algorithm for scheduling and rescheduling fuzzy flexible job shop problem with
new job insertion. Knowledge-Based Systems, 109, 1 – 16. URL: http://www.sciencedirect.
com/science/article/pii/S0950705116301794. doi:https://doi.org/10.1016/j.knosys.
2016.06.014.

Gaspero, L. D., Schaerf, A., & Cadoli, M. (2003). Local Search Techniques for Scheduling
Problems: Algorithms and Software Tools. Ph.D. thesis a degli Studi di Udine. URL:
http://www.diegm.uniud.it/schaerf/SAS/articoli/PhDThesisLucaDiGaspero.pdf.

Geiger, M. J. (2006). On the distribution of pareto optimal solutions in alternative
space – the investigation of multi objective permutation flow shop scheduling problems.
Ukio Technologinis ir Ekonominis Vystymas, 12, 23–29. URL: http://www.tandfonline.
com/doi/abs/10.1080/13928619.2006.9637718. doi:10.1080/13928619.2006.9637718.
arXiv:http://www.tandfonline.com/doi/pdf/10.1080/13928619.2006.9637718.

Geiger, M. J. (2008). Foundations of the pareto iterated local search metaheuristic. In
Proceedings of the 18th International Conference on Multiple Criteria Decision Making,
Chania, Greece, June 19-23, 2006. volume abs/0809.0406. URL: http://arxiv.org/abs/0809.
0406.

Gholami, M., Zandieh, M., & Alem-Tabriz, A. (2009). Scheduling hybrid flow shop with
sequence-dependent setup times and machines with random breakdowns. The International
Journal of Advanced Manufacturing Technology, 42, 189–201. URL: https://doi.org/10.1007/
s00170-008-1577-3. doi:10.1007/s00170-008-1577-3.

González-Neira, E. M., García-Cáceres, R. G., Pablo, C.-V. J., Molina-Sánchez, L. P., Montoya-
Torres, & Montoya-Torres, J. R. (2016). Stochastic flexible flow shop scheduling problem
under quantitative and qualitative decision criteria. Computers Industrial Engineering,
101, 128 – 144. URL: http://www.sciencedirect.com/science/article/pii/S0360835216303308.
doi:https://doi.org/10.1016/j.cie.2016.08.026.

González-Neira, E. M., Montoya-Torres, J. R., & Barrera, D. (2017). Flow-shop schedul-
ing problem under uncertainties Review and trends. International Journal of Industrial
Engineering Computations, 8, 1–28. doi:10.5267/j.ijiec.2017.2.001.

Gourgand, M., Grangeon, N., & Norre, S. (2003). A contribution to the stochastic flow shop
scheduling problem. European Journal of Operational Research, 151, 415 – 433. URL:
http://www.sciencedirect.com/science/article/pii/S0377221702008354. doi:https://doi.
org/10.1016/S0377-2217(02)00835-4. Meta-heuristics in combinatorial optimization.

Gourgand, M., Grangeon, N., & Norre, S. (2010). Metaheuristics and performance evalua-
tion models for the stochastic permutation flow-shop scheduling problem. In Flexibility
and Robustness in Scheduling (pp. 143–170). ISTE. URL: http://dx.doi.org/10.1002/
9780470611432.ch7. doi:10.1002/9780470611432.ch7.

Graham, R., Lawler, E., Lenstra, J., & Kan, A. (1979). Optimization and approximation in
deterministic sequencing and scheduling: a survey. In P. Hammer, E. Johnson, & B. Korte
(Eds.), Discrete Optimization II (pp. 287 – 326). Elsevier volume 5 of Annals of Discrete
Mathematics. URL: http://www.sciencedirect.com/science/article/pii/S016750600870356X.
doi:https://doi.org/10.1016/S0167-5060(08)70356-X.

http://www.sciencedirect.com/science/article/pii/S0950705116301794
http://www.sciencedirect.com/science/article/pii/S0950705116301794
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2016.06.014
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2016.06.014
http://www.diegm.uniud.it/schaerf/SAS/articoli/PhDThesisLucaDiGaspero.pdf
http://www.tandfonline.com/doi/abs/10.1080/13928619.2006.9637718
http://www.tandfonline.com/doi/abs/10.1080/13928619.2006.9637718
http://dx.doi.org/10.1080/13928619.2006.9637718
http://arxiv.org/abs/http://www.tandfonline.com/doi/pdf/10.1080/13928619.2006.9637718
http://arxiv.org/abs/0809.0406
http://arxiv.org/abs/0809.0406
https://doi.org/10.1007/s00170-008-1577-3
https://doi.org/10.1007/s00170-008-1577-3
http://dx.doi.org/10.1007/s00170-008-1577-3
http://www.sciencedirect.com/science/article/pii/S0360835216303308
http://dx.doi.org/https://doi.org/10.1016/j.cie.2016.08.026
http://dx.doi.org/10.5267/j.ijiec.2017.2.001
http://www.sciencedirect.com/science/article/pii/S0377221702008354
http://dx.doi.org/https://doi.org/10.1016/S0377-2217(02)00835-4
http://dx.doi.org/https://doi.org/10.1016/S0377-2217(02)00835-4
http://dx.doi.org/10.1002/9780470611432.ch7
http://dx.doi.org/10.1002/9780470611432.ch7
http://dx.doi.org/10.1002/9780470611432.ch7
http://www.sciencedirect.com/science/article/pii/S016750600870356X
http://dx.doi.org/https://doi.org/10.1016/S0167-5060(08)70356-X

References 161

Grasas, A., Juan, A. A., & Lourenço, H. R. (2016). Simils: a simulation-based extension of
the iterated local search metaheuristic for stochastic combinatorial optimization. Journal of
Simulation, 10, 69–77. URL: https://doi.org/10.1057/jos.2014.25. doi:10.1057/jos.2014.
25.

Gu, J., Gu, X., & Jiao, B. (2008). A quantum genetic based scheduling algorithm for stochastic
flow shop scheduling problem with random breakdown. IFAC Proceedings Volumes, 41, 63 –
68. URL: http://www.sciencedirect.com/science/article/pii/S1474667016389261. doi:https:
//doi.org/10.3182/20080706-5-KR-1001.00010. 17th IFAC World Congress.

Guo, G., Wu, B., & Yang, S. (2011). A job-insertion heuristic for minimizing the mean
flowtime in dynamic flowshops. Frontiers of Mechanical Engineering, 6, 197–202. URL:
https://doi.org/10.1007/s11465-011-0211-5. doi:10.1007/s11465-011-0211-5.

Gupta, J. N. D. (1971). A functional heuristic algorithm for the flowshop scheduling problem.
Journal of the Operational Research Society, 22, 39–47. URL: https://doi.org/10.1057/jors.
1971.18. doi:10.1057/jors.1971.18.

Hariri, A., & Potts, C. (1989). A branch and bound algorithm to minimize the number of
late jobs in a permutation flow-shop. European Journal of Operational Research, 38, 228 –
237. URL: http://www.sciencedirect.com/science/article/pii/0377221789901082. doi:https:
//doi.org/10.1016/0377-2217(89)90108-2.

Hassanzadeh, A., Rasti-Barzoki, M., & Khosroshahi, H. (2016). Two new meta-heuristics
for a bi-objective supply chain scheduling problem in flow-shop environment. Applied
Soft Computing, 49, 335 – 351. URL: http://www.sciencedirect.com/science/article/pii/
S1568494616304136. doi:https://doi.org/10.1016/j.asoc.2016.08.019.

Hejazi, R. S., & Saghafian, S. (2005). Flowshop-scheduling problems with makespan
criterion: a review. International Journal of Production Research, 43, 2895–2929.
URL: http://dx.doi.org/10.1080/0020754050056417. doi:10.1080/0020754050056417.
arXiv:http://dx.doi.org/10.1080/0020754050056417.

Hentenryck, P. V., & Bent, R. (2006). Online Stochastic Combinatorial Optimization. London,
England: Massachusetts Institute of Technology.

Ho, J. C., & Chang, Y.-L. (1991). A new heuristic for the n-job, m-machine flow-
shop problem. European Journal of Operational Research, 52, 194 – 202. URL: http:
//www.sciencedirect.com/science/article/pii/037722179190080F. doi:https://doi.org/
10.1016/0377-2217(91)90080-F.

Hundal, T. S., & Rajgopal, J. (1988). An extension of palmer’s heuristic for the flow
shop scheduling problem. International Journal of Production Research, 26, 1119–1124.
URL: http://dx.doi.org/10.1080/00207548808947922. doi:10.1080/00207548808947922.
arXiv:http://dx.doi.org/10.1080/00207548808947922.

Ignall, E., & Schrage, L. (1965). Application of the branch and bound technique to some
flow-shop scheduling problems. Oper. Res., 13, 400–412. URL: http://dx.doi.org/10.1287/
opre.13.3.400. doi:10.1287/opre.13.3.400.

https://doi.org/10.1057/jos.2014.25
http://dx.doi.org/10.1057/jos.2014.25
http://dx.doi.org/10.1057/jos.2014.25
http://www.sciencedirect.com/science/article/pii/S1474667016389261
http://dx.doi.org/https://doi.org/10.3182/20080706-5-KR-1001.00010
http://dx.doi.org/https://doi.org/10.3182/20080706-5-KR-1001.00010
https://doi.org/10.1007/s11465-011-0211-5
http://dx.doi.org/10.1007/s11465-011-0211-5
https://doi.org/10.1057/jors.1971.18
https://doi.org/10.1057/jors.1971.18
http://dx.doi.org/10.1057/jors.1971.18
http://www.sciencedirect.com/science/article/pii/0377221789901082
http://dx.doi.org/https://doi.org/10.1016/0377-2217(89)90108-2
http://dx.doi.org/https://doi.org/10.1016/0377-2217(89)90108-2
http://www.sciencedirect.com/science/article/pii/S1568494616304136
http://www.sciencedirect.com/science/article/pii/S1568494616304136
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2016.08.019
http://dx.doi.org/10.1080/0020754050056417
http://dx.doi.org/10.1080/0020754050056417
http://arxiv.org/abs/http://dx.doi.org/10.1080/0020754050056417
http://www.sciencedirect.com/science/article/pii/037722179190080F
http://www.sciencedirect.com/science/article/pii/037722179190080F
http://dx.doi.org/https://doi.org/10.1016/0377-2217(91)90080-F
http://dx.doi.org/https://doi.org/10.1016/0377-2217(91)90080-F
http://dx.doi.org/10.1080/00207548808947922
http://dx.doi.org/10.1080/00207548808947922
http://arxiv.org/abs/http://dx.doi.org/10.1080/00207548808947922
http://dx.doi.org/10.1287/opre.13.3.400
http://dx.doi.org/10.1287/opre.13.3.400
http://dx.doi.org/10.1287/opre.13.3.400

162 References

Imed, K., & Hans, K. (2016). Semi-online scheduling on a single machine with un-
expected breakdown. Theoretical Computer Science, 646, 40 – 48. URL: http://
www.sciencedirect.com/science/article/pii/S0304397516303371. doi:https://doi.org/
10.1016/j.tcs.2016.07.014.

Jackson, S., Wilson, J. R., & MacCarthy, B. L. (2004). A new model of schedul-
ing in manufacturing: Tasks, roles, and monitoring. Human Factors, 46, 533–550.
URL: https://doi.org/10.1518/hfes.46.3.533.50393. doi:10.1518/hfes.46.3.533.50393.
arXiv:https://doi.org/10.1518/hfes.46.3.533.50393. PMID: 15573550.

Jacobs, L. W., & Brusco, M. J. (1995). Note: A local-search heuristic for large set-covering
problems. Naval Research Logistics (NRL), 42, 1129–1140. URL: http://dx.doi.org/10.
1002/1520-6750(199510)42:7<1129::AID-NAV3220420711>3.0.CO;2-M. doi:10.1002/
1520-6750(199510)42:7<1129::AID-NAV3220420711>3.0.CO;2-M.

James, E. D., & Michael, P. H. (1970). Review of sequencing research. Naval Research
Logistics, 17, 11–39.

Jarboui, B., Siarry, P., & Teghem, J. (2013). Metaheuristics for Production Scheduling. London,
England: ISTE Ltd and John Wiley & Sons, Inc.

Jensen, M. T. (2003). Generating robust and flexible job shop schedules using genetic algo-
rithms. IEEE Transactions on Evolutionary Computation, 7, 275–288. doi:10.1109/TEVC.
2003.810067.

Jeong, S. J., Lim, S. J., & Kim, K. S. (2006). Hybrid approach to production scheduling using
genetic algorithm and simulation. The International Journal of Advanced Manufacturing
Technology, 28, 129–136. URL: https://doi.org/10.1007/s00170-004-2345-7. doi:10.1007/
s00170-004-2345-7.

Jia, Y., Qu, J., & Wang, L. (2016). A novel particle swarm optimization algorithm for
permutation flow-shop scheduling problem. In Q. Zu, & B. Hu (Eds.), Human Centered
Computing: Second International Conference, HCC 2016, Colombo, Sri Lanka, January 7-9,
2016, Revised Selected Papers (pp. 676–682). Cham: Springer International Publishing. URL:
https://doi.org/10.1007/978-3-319-31854-7_62. doi:10.1007/978-3-319-31854-7_62.

Jian, N., & Henderson, S. G. (2015). An introduction to simulation optimization. In Proceedings
of the 2015 Winter Simulation Conference WSC ’15 (pp. 1780–1794). Piscataway, NJ, USA:
IEEE Press. URL: http://dl.acm.org/citation.cfm?id=2888619.2888819.

Jiao, L., & Wang, L. (2000). A novel genetic algorithm based on immunity. IEEE Transactions
on Systems, Man, and Cybernetics - Part A: Systems and Humans, 30, 552–561. doi:10.
1109/3468.867862.

Johnson, S. M. (1954). Optimal two- and three-stage production schedules with setup times
included. Naval Research Logistics Quarterly, 1, 61–68. URL: http://dx.doi.org/10.1002/nav.
3800010110. doi:10.1002/nav.3800010110.

Joines, J. A., Gupta, D., Gokce, R. E., M. A. andKing, & Kay, M. G. (2002). Supply chain
multi-objective simulation optimization. In Proceedings of the Winter Simulation Conference
(pp. 1306–1314 vol.2). volume 2. doi:10.1109/WSC.2002.1166395.

http://www.sciencedirect.com/science/article/pii/S0304397516303371
http://www.sciencedirect.com/science/article/pii/S0304397516303371
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2016.07.014
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2016.07.014
https://doi.org/10.1518/hfes.46.3.533.50393
http://dx.doi.org/10.1518/hfes.46.3.533.50393
http://arxiv.org/abs/https://doi.org/10.1518/hfes.46.3.533.50393
http://dx.doi.org/10.1002/1520-6750(199510)42:7<1129::AID-NAV3220420711>3.0.CO;2-M
http://dx.doi.org/10.1002/1520-6750(199510)42:7<1129::AID-NAV3220420711>3.0.CO;2-M
http://dx.doi.org/10.1002/1520-6750(199510)42:7<1129::AID-NAV3220420711>3.0.CO;2-M
http://dx.doi.org/10.1002/1520-6750(199510)42:7<1129::AID-NAV3220420711>3.0.CO;2-M
http://dx.doi.org/10.1109/TEVC.2003.810067
http://dx.doi.org/10.1109/TEVC.2003.810067
https://doi.org/10.1007/s00170-004-2345-7
http://dx.doi.org/10.1007/s00170-004-2345-7
http://dx.doi.org/10.1007/s00170-004-2345-7
https://doi.org/10.1007/978-3-319-31854-7_62
http://dx.doi.org/10.1007/978-3-319-31854-7_62
http://dl.acm.org/citation.cfm?id=2888619.2888819
http://dx.doi.org/10.1109/3468.867862
http://dx.doi.org/10.1109/3468.867862
http://dx.doi.org/10.1002/nav.3800010110
http://dx.doi.org/10.1002/nav.3800010110
http://dx.doi.org/10.1002/nav.3800010110
http://dx.doi.org/10.1109/WSC.2002.1166395

References 163

Jones, D. (2011). A practical weight sensitivity algorithm for goal and multiple objective
programming. European Journal of Operational Research, 213, 238 – 245. URL: http:
//www.sciencedirect.com/science/article/pii/S0377221711002232. doi:https://doi.org/
10.1016/j.ejor.2011.03.012.

Jones, D., & Tamiz, M. (2010). Practical Goal Programming. Springer, New York.

Joo, B. J., Choi, Y. C., & Xirouchakis, P. (2013). Dispatching rule-based algorithms for
a dynamic flexible flow shop scheduling problem with time-dependent process defect
rate and quality feedback. Procedia CIRP, 7, 163 – 168. URL: http://www.sciencedirect.
com/science/article/pii/S2212827113002357. doi:https://doi.org/10.1016/j.procir.
2013.05.028. Forty Sixth CIRP Conference on Manufacturing Systems 2013.

Juan, A., Faulin, J., Grasman, S., Riera, D., Marull, J., & Mendez, C. (2011). Us-
ing safety stocks and simulation to solve the vehicle routing problem with stochastic
demands. Transportation Research Part C: Emerging Technologies, 19, 751 – 765.
URL: http://www.sciencedirect.com/science/article/pii/S0968090X10001439. doi:https:
//doi.org/10.1016/j.trc.2010.09.007. Freight Transportation and Logistics (selected
papers from ODYSSEUS 2009 - the 4th International Workshop on Freight Transportation
and Logistics).

Juan, A. a., Barrios, B. B., Vallada, E., Riera, D., & Jorba, J. (2014a). A simheuristic algorithm
for solving the permutation flow shop problem with stochastic processing times. Simulation
Modelling Practice and Theory, 46, 101 – 117. URL: http://www.sciencedirect.com/science/
article/pii/S1569190X1400029X. doi:https://doi.org/10.1016/j.simpat.2014.02.
005. Simulation-Optimization of Complex Systems: Methods and Applications.

Juan, A. A., Cáceres-Cruz, J., González-Martín, S., Riera, D., & Barrios, B. B. (2014b).
Biased randomization of classical heuristics. In Encyclopedia of Business Analytics and
Optimization (pp. 304–314). IGI Global.

Juan, A. A., Faulin, J., Grasman, S. E., Rabe, M., & Figueira, G. (2015). A review of simheuris-
tics: Extending metaheuristics to deal with stochastic combinatorial optimization problems.
Operations Research Perspectives, 2, 62 – 72. URL: http://www.sciencedirect.com/science/
article/pii/S221471601500007X. doi:https://doi.org/10.1016/j.orp.2015.03.001.

Juan, A. A., Lourenço, H. R., Mateo, M., Luo, R., & Castella, Q. (2014c). Using iterated local
search for solving the flow-shop problem: Parallelization, parametrization, and randomization
issues. International Transactions in Operational Research, 21, 103–126. URL: http:
//dx.doi.org/10.1111/itor.12028. doi:10.1111/itor.12028.

Kalczynski, P. J., & Kamburowski, J. (2006). A heuristic for minimizing the expected makespan
in two-machine flow shops with consistent coefficients of variation. European Journal of
Operational Research, 169, 742 – 750. URL: http://www.sciencedirect.com/science/article/
pii/S0377221705001402. doi:https://doi.org/10.1016/j.ejor.2004.08.045.

Kalczynski, P. J., & Kamburowski, J. (2008). An improved neh heuristic to minimize makespan
in permutation flow shops. Computers Operations Research, 35, 3001 – 3008. URL: http:
//www.sciencedirect.com/science/article/pii/S0305054807000172. doi:https://doi.org/
10.1016/j.cor.2007.01.020. Part Special Issue: Bio-inspired Methods in Combinatorial
Optimization.

http://www.sciencedirect.com/science/article/pii/S0377221711002232
http://www.sciencedirect.com/science/article/pii/S0377221711002232
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2011.03.012
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2011.03.012
http://www.sciencedirect.com/science/article/pii/S2212827113002357
http://www.sciencedirect.com/science/article/pii/S2212827113002357
http://dx.doi.org/https://doi.org/10.1016/j.procir.2013.05.028
http://dx.doi.org/https://doi.org/10.1016/j.procir.2013.05.028
http://www.sciencedirect.com/science/article/pii/S0968090X10001439
http://dx.doi.org/https://doi.org/10.1016/j.trc.2010.09.007
http://dx.doi.org/https://doi.org/10.1016/j.trc.2010.09.007
http://www.sciencedirect.com/science/article/pii/S1569190X1400029X
http://www.sciencedirect.com/science/article/pii/S1569190X1400029X
http://dx.doi.org/https://doi.org/10.1016/j.simpat.2014.02.005
http://dx.doi.org/https://doi.org/10.1016/j.simpat.2014.02.005
http://www.sciencedirect.com/science/article/pii/S221471601500007X
http://www.sciencedirect.com/science/article/pii/S221471601500007X
http://dx.doi.org/https://doi.org/10.1016/j.orp.2015.03.001
http://dx.doi.org/10.1111/itor.12028
http://dx.doi.org/10.1111/itor.12028
http://dx.doi.org/10.1111/itor.12028
http://www.sciencedirect.com/science/article/pii/S0377221705001402
http://www.sciencedirect.com/science/article/pii/S0377221705001402
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2004.08.045
http://www.sciencedirect.com/science/article/pii/S0305054807000172
http://www.sciencedirect.com/science/article/pii/S0305054807000172
http://dx.doi.org/https://doi.org/10.1016/j.cor.2007.01.020
http://dx.doi.org/https://doi.org/10.1016/j.cor.2007.01.020

164 References

Kamble, S. V., & Kadam, K. S. (2012). A Particle Swarm Optimization –Based Heuristic
for Scheduling in FMS Review. International Journal on Advanced Computer Theory and
Engineering (IJACTE) problem, (pp. 92–96).

Kamble, S. V., Mane, S. U., & Umbarkar, A. J. (2015). Hybrid Multi-Objective Particle
Swarm Optimization for Flexible Job Shop Scheduling Problem. I.J. Intelligent Systems and
Applications, 4, 54–61. doi:10.5815/ijisa.2015.04.08.

Kamburowski, J. (2000). On three-machine flow shops with random job processing
times. European Journal of Operational Research, 125, 440 – 448. URL: http://
www.sciencedirect.com/science/article/pii/S0377221799002222. doi:https://doi.org/
10.1016/S0377-2217(99)00222-2.

Kan, A. H. G. R. (1976). Machine Scheduling Problems Classification, complexity and
computations. Boston, MA: Springer US. URL: http://www.springerlink.com/index/10.
1007/978-1-4613-4383-7. doi:10.1007/978-1-4613-4383-7.

Kang, Q., He, H., & Wei, J. (2013). An effective iterated greedy algorithm for reliability-
oriented task allocation in distributed computing systems. Journal of Parallel and Dis-
tributed Computing, 73, 1106 – 1115. URL: http://www.sciencedirect.com/science/article/
pii/S074373151300052X. doi:https://doi.org/10.1016/j.jpdc.2013.03.008.

Kaplan, E., & Meier, P. (1958). Nonparametric estimation from incomplete observations.
Journal of the American Statistical Association, 53, 457 – 481. doi:10.2307/2281868.

Kaplan, S., & Rabadi, G. (2012). Exact and heuristic algorithms for the aerial refueling parallel
machine scheduling problem with due date-to-deadline window and ready times. Computers
Industrial Engineering, 62, 276 – 285. URL: http://www.sciencedirect.com/science/article/
pii/S0360835211002841. doi:https://doi.org/10.1016/j.cie.2011.09.015.

Kaplan, S., & Rabadi, G. (2013). Simulated annealing and metaheuristic for randomized
priority search algorithms for the aerial refuelling parallel machine scheduling problem with
due date-to-deadline windows and release times. Engineering Optimization, 45, 67–87. URL:
http://dx.doi.org/10.1080/0305215X.2012.658783. doi:10.1080/0305215X.2012.658783.
arXiv:http://dx.doi.org/10.1080/0305215X.2012.658783.

Kaplan, S., & Rabadi, G. (2015). Minimising the total weighted tardiness and instability for
the parallel machine re-scheduling problem with deadlines and ready times. Int. J. Planning
and Scheduling, 2, 87–109.

Kaplanoğlu, V. (2014). Multi-agent based approach for single machine scheduling with
sequence-dependent setup times and machine maintenance. Applied Soft Computing, 23,
165 – 179. URL: http://www.sciencedirect.com/science/article/pii/S1568494614002944.
doi:https://doi.org/10.1016/j.asoc.2014.06.020.

Kasap, N., Aytug, H., & Paul, A. (2006). Minimizing makespan on a single machine
subject to random breakdowns. Operations Research Letters, 34, 29 – 36. URL: http:
//www.sciencedirect.com/science/article/pii/S0167637705000313. doi:https://doi.org/
10.1016/j.orl.2005.02.002.

http://dx.doi.org/10.5815/ijisa.2015.04.08
http://www.sciencedirect.com/science/article/pii/S0377221799002222
http://www.sciencedirect.com/science/article/pii/S0377221799002222
http://dx.doi.org/https://doi.org/10.1016/S0377-2217(99)00222-2
http://dx.doi.org/https://doi.org/10.1016/S0377-2217(99)00222-2
http://www.springerlink.com/index/10.1007/978-1-4613-4383-7
http://www.springerlink.com/index/10.1007/978-1-4613-4383-7
http://dx.doi.org/10.1007/978-1-4613-4383-7
http://www.sciencedirect.com/science/article/pii/S074373151300052X
http://www.sciencedirect.com/science/article/pii/S074373151300052X
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2013.03.008
http://dx.doi.org/10.2307/2281868
http://www.sciencedirect.com/science/article/pii/S0360835211002841
http://www.sciencedirect.com/science/article/pii/S0360835211002841
http://dx.doi.org/https://doi.org/10.1016/j.cie.2011.09.015
http://dx.doi.org/10.1080/0305215X.2012.658783
http://dx.doi.org/10.1080/0305215X.2012.658783
http://arxiv.org/abs/http://dx.doi.org/10.1080/0305215X.2012.658783
http://www.sciencedirect.com/science/article/pii/S1568494614002944
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2014.06.020
http://www.sciencedirect.com/science/article/pii/S0167637705000313
http://www.sciencedirect.com/science/article/pii/S0167637705000313
http://dx.doi.org/https://doi.org/10.1016/j.orl.2005.02.002
http://dx.doi.org/https://doi.org/10.1016/j.orl.2005.02.002

References 165

Katragjini, K., Vallada, E., & Ruiz, R. (2013). Flow shop rescheduling under different
types of disruption. International Journal of Production Research, 51, 780–797. URL:
http://dx.doi.org/10.1080/00207543.2012.666856. doi:10.1080/00207543.2012.666856.
arXiv:http://dx.doi.org/10.1080/00207543.2012.666856.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Neural Networks,
1995. Proceedings., IEEE International Conference on (pp. 1942–1948 vol.4). volume 4.
doi:10.1109/ICNN.1995.488968.

Konak, A., & Kulturel-Konak, S. (2005). Simulation optimization using tabu search: an
empirical study. In Proceedings of the Winter Simulation Conference, 2005. (pp. 7 pp.–).
doi:10.1109/WSC.2005.1574571.

Koole, G. (2000). Stochastic scheduling with event-based dynamic programming. Math-
ematical Methods of Operations Research, 51, 249–261. URL: https://doi.org/10.1007/
s001860050087. doi:10.1007/s001860050087.

Koulamas, C. (1998). A new constructive heuristic for the flowshop scheduling prob-
lem. European Journal of Operational Research, 105, 66 – 71. URL: http://
www.sciencedirect.com/science/article/pii/S0377221797000271. doi:https://doi.org/
10.1016/S0377-2217(97)00027-1.

Kouvelis, P., Daniels, R. L., & Vairaktarakis, G. (2000). Robust scheduling of a two-machine
flow shop with uncertain processing times. IIE Transactions, 32, 421–432. URL: https:
//doi.org/10.1023/A:1007640726040. doi:10.1023/A:1007640726040.

Koyama, A., Barolli, L., Matsumoto, K., & Apduhan, B. O. (2004). A ga-based multi-purpose
optimization algorithm for qos routing. In 18th International Conference on Advanced
Information Networking and Applications, 2004. AINA 2004. (pp. 23–28 Vol.1). volume 1.
doi:10.1109/AINA.2004.1283882.

Ku, P.-S., & Niu, S.-C. (1986). On johnson’s two-machine flow shop with random processing
times. Operations Research, 34, 130–136. URL: https://doi.org/10.1287/opre.34.1.130.
doi:10.1287/opre.34.1.130. arXiv:https://doi.org/10.1287/opre.34.1.130.

Kuo, I.-H., Horng, S.-J., Kao, T.-W., Lin, T.-L., Lee, C.-L., Terano, T., & Pan, Y. (2009). An ef-
ficient flow-shop scheduling algorithm based on a hybrid particle swarm optimization model.
Expert Systems with Applications, 36, 7027 – 7032. URL: http://www.sciencedirect.com/
science/article/pii/S0957417408006015. doi:https://doi.org/10.1016/j.eswa.2008.
08.054.

Lei, D. (2008). Multi-objective production scheduling: a survey. The International
Journal of Advanced Manufacturing Technology, 43, 926. URL: https://doi.org/10.1007/
s00170-008-1770-4. doi:10.1007/s00170-008-1770-4.

Leisten, R., & Rajendran, C. (2015). Variability of completion time differences in permutation
flow shop scheduling. Computers Operations Research, 54, 155 – 167. URL: http://
www.sciencedirect.com/science/article/pii/S0305054814002251. doi:https://doi.org/
10.1016/j.cor.2014.08.015.

http://dx.doi.org/10.1080/00207543.2012.666856
http://dx.doi.org/10.1080/00207543.2012.666856
http://arxiv.org/abs/http://dx.doi.org/10.1080/00207543.2012.666856
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1109/WSC.2005.1574571
https://doi.org/10.1007/s001860050087
https://doi.org/10.1007/s001860050087
http://dx.doi.org/10.1007/s001860050087
http://www.sciencedirect.com/science/article/pii/S0377221797000271
http://www.sciencedirect.com/science/article/pii/S0377221797000271
http://dx.doi.org/https://doi.org/10.1016/S0377-2217(97)00027-1
http://dx.doi.org/https://doi.org/10.1016/S0377-2217(97)00027-1
https://doi.org/10.1023/A:1007640726040
https://doi.org/10.1023/A:1007640726040
http://dx.doi.org/10.1023/A:1007640726040
http://dx.doi.org/10.1109/AINA.2004.1283882
https://doi.org/10.1287/opre.34.1.130
http://dx.doi.org/10.1287/opre.34.1.130
http://arxiv.org/abs/https://doi.org/10.1287/opre.34.1.130
http://www.sciencedirect.com/science/article/pii/S0957417408006015
http://www.sciencedirect.com/science/article/pii/S0957417408006015
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2008.08.054
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2008.08.054
https://doi.org/10.1007/s00170-008-1770-4
https://doi.org/10.1007/s00170-008-1770-4
http://dx.doi.org/10.1007/s00170-008-1770-4
http://www.sciencedirect.com/science/article/pii/S0305054814002251
http://www.sciencedirect.com/science/article/pii/S0305054814002251
http://dx.doi.org/https://doi.org/10.1016/j.cor.2014.08.015
http://dx.doi.org/https://doi.org/10.1016/j.cor.2014.08.015

166 References

Li, J.-q., Pan, Q.-k., & Mao, K. (2014). Hybrid particle swarm optimization for hy-
brid flowshop scheduling problem with maintenance activities. TheScientificWorld-
Journal, 2014, 596850. URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=
4032694{&}tool=pmcentrez{&}rendertype=abstract. doi:10.1155/2014/596850.

Li, J.-q., Pan, Q.-k., & Mao, K. (2015). A discrete teaching-learning-based optimisation
algorithm for realistic flowshop rescheduling problems. Engineering Applications of Arti-
ficial Intelligence, 37, 279 – 292. URL: http://www.sciencedirect.com/science/article/pii/
S0952197614002358. doi:https://doi.org/10.1016/j.engappai.2014.09.015.

Li, J. Q., Pan, Q. K., & Mao, K. (2016). A hybrid fruit fly optimization algorithm for the
realistic hybrid flowshop rescheduling problem in steelmaking systems. IEEE Transactions
on Automation Science and Engineering, 13, 932–949.

Li, X., Branke, J., & Blackwell, T. (2006). Particle swarm with speciation and adaptation
in a dynamic environment. In Proceedings of the 8th Annual Conference on Genetic and
Evolutionary Computation GECCO ’06 (pp. 51–58). New York, NY, USA: ACM. URL:
http://doi.acm.org/10.1145/1143997.1144005. doi:10.1145/1143997.1144005.

Li, X., & Li, M. (2015). Multiobjective local search algorithm-based decomposition for multi-
objective permutation flow shop scheduling problem. IEEE Transactions on Engineering
Management, 62, 544–557. doi:10.1109/TEM.2015.2453264.

Li, X., Lin, J., Li, J., & Jin, B. (2012). Computational Intelligence and Intelligent
Systems volume 575. Springer-Verlag Berlin Heidelberg. URL: http://www.scopus.
com/inward/record.url?eid=2-s2.0-84957936675{&}partnerID=tZOtx3y1. doi:10.1007/
978-981-10-0356-1.

Li, X., & Ma, S. (2016). Multi-objective memetic search algorithm for multi-objective permu-
tation flow shop scheduling problem. IEEE Access, 4, 2154–2165. doi:10.1109/ACCESS.
2016.2565622.

Li, X., & Yin, M. (2013). An opposition-based differential evolution algorithm for permutation
flow shop scheduling based on diversity measure. Advances in Engineering Software,
55, 10 – 31. URL: http://www.sciencedirect.com/science/article/pii/S0965997812001305.
doi:https://doi.org/10.1016/j.advengsoft.2012.09.003.

Li, Z., Tang, Q., & Zhang, L. P. (2017). Two-sided assembly line balancing problem of
type i: Improvements, a simple algorithm and a comprehensive study. Computers Op-
erations Research, 79, 78 – 93. URL: http://www.sciencedirect.com/science/article/pii/
S0305054816302544. doi:https://doi.org/10.1016/j.cor.2016.10.006.

Lian, Z., Gu, X., & Jiao, B. (2008). A novel particle swarm optimization algorithm for
permutation flow-shop scheduling to minimize makespan. Chaos, Solitons & Fractals,
35, 851 – 861. URL: http://www.sciencedirect.com/science/article/pii/S0960077906005388.
doi:https://doi.org/10.1016/j.chaos.2006.05.082.

Lian, Z., Jiao, B., & Gu, X. (2006). A similar particle swarm optimization algorithm for
job-shop scheduling to minimize makespan. Applied Mathematics and Computation, 183,
1008 – 1017. URL: http://www.sciencedirect.com/science/article/pii/S0096300306006369.
doi:https://doi.org/10.1016/j.amc.2006.05.168.

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4032694{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4032694{&}tool=pmcentrez{&}rendertype=abstract
http://dx.doi.org/10.1155/2014/596850
http://www.sciencedirect.com/science/article/pii/S0952197614002358
http://www.sciencedirect.com/science/article/pii/S0952197614002358
http://dx.doi.org/https://doi.org/10.1016/j.engappai.2014.09.015
http://doi.acm.org/10.1145/1143997.1144005
http://dx.doi.org/10.1145/1143997.1144005
http://dx.doi.org/10.1109/TEM.2015.2453264
http://www.scopus.com/inward/record.url?eid=2-s2.0-84957936675{&}partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-84957936675{&}partnerID=tZOtx3y1
http://dx.doi.org/10.1007/978-981-10-0356-1
http://dx.doi.org/10.1007/978-981-10-0356-1
http://dx.doi.org/10.1109/ACCESS.2016.2565622
http://dx.doi.org/10.1109/ACCESS.2016.2565622
http://www.sciencedirect.com/science/article/pii/S0965997812001305
http://dx.doi.org/https://doi.org/10.1016/j.advengsoft.2012.09.003
http://www.sciencedirect.com/science/article/pii/S0305054816302544
http://www.sciencedirect.com/science/article/pii/S0305054816302544
http://dx.doi.org/https://doi.org/10.1016/j.cor.2016.10.006
http://www.sciencedirect.com/science/article/pii/S0960077906005388
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2006.05.082
http://www.sciencedirect.com/science/article/pii/S0096300306006369
http://dx.doi.org/https://doi.org/10.1016/j.amc.2006.05.168

References 167

Liangliang, J., Zhang, C., & Shao, X., Xinyuand Yang (2017). A study on the
impact of periodic and event-driven rescheduling on a manufacturing system: An
integrated process planning and scheduling case. Proceedings of the Institution
of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231, 490–
504. URL: https://doi.org/10.1177/0954405416629585. doi:10.1177/0954405416629585.
arXiv:https://doi.org/10.1177/0954405416629585.

Liao, C.-J., Tjandradjaja, E., & Chung, T.-P. (2012). An approach using particle swarm
optimization and bottleneck heuristic to solve hybrid flow shop scheduling problem. Applied
Soft Computing, 12, 1755 – 1764. URL: http://www.sciencedirect.com/science/article/pii/
S1568494612000373. doi:https://doi.org/10.1016/j.asoc.2012.01.011.

Lin, S.-W., Lee, Z.-J., Ying, K.-C., & Lu, C.-C. (2011). Minimization of maximum lateness on
parallel machines with sequence-dependent setup times and job release dates. Computers
Operations Research, 38, 809 – 815. URL: http://www.sciencedirect.com/science/article/pii/
S0305054810002157. doi:https://doi.org/10.1016/j.cor.2010.09.020.

Lin, S.-W., Ying, K.-C., & Huang, C.-Y. (2013). Minimising makespan in
distributed permutation flowshops using a modified iterated greedy algo-
rithm. International Journal of Production Research, 51, 5029–5038. URL:
http://dx.doi.org/10.1080/00207543.2013.790571. doi:10.1080/00207543.2013.790571.
arXiv:http://dx.doi.org/10.1080/00207543.2013.790571.

Liu, B., Wang, L., & Jin, Y. H. (2007). An effective pso-based memetic algorithm for flow shop
scheduling. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 37,
18–27. doi:10.1109/TSMCB.2006.883272.

Liu, B., Wang, L., & Jin, Y.-H. (2008a). An effective hybrid pso-based algorithm for flow
shop scheduling with limited buffers. Computers Operations Research, 35, 2791 – 2806.
URL: http://www.sciencedirect.com/science/article/pii/S0305054806003169. doi:https:
//doi.org/10.1016/j.cor.2006.12.013. Part Special Issue: Bio-inspired Methods in
Combinatorial Optimization.

Liu, B., Wang, L., Qian, B., & Jin, Y. (2008b). Hybrid particle swarm optimization for stochastic
flow shop scheduling with no-wait constraint. IFAC Proceedings Volumes, 41, 15855 – 15860.
URL: http://www.sciencedirect.com/science/article/pii/S1474667016415442. doi:https:
//doi.org/10.3182/20080706-5-KR-1001.02680. 17th IFAC World Congress.

Liu, H., Gao, L., & Pan, Q. (2011). A hybrid particle swarm optimization with estimation of
distribution algorithm for solving permutation flowshop scheduling problem. Expert Systems
with Applications, 38, 4348 – 4360. URL: http://www.sciencedirect.com/science/article/pii/
S0957417410010614. doi:https://doi.org/10.1016/j.eswa.2010.09.104.

Liu, W., Jin, Y., & Price, M. (2016a). A new nawaz–enscore–ham-based
heuristic for permutation flow-shop problems with bicriteria of makespan and
machine idle time. Engineering Optimization, 48, 1808–1822. URL: http:
//dx.doi.org/10.1080/0305215X.2016.1141202. doi:10.1080/0305215X.2016.1141202.
arXiv:http://dx.doi.org/10.1080/0305215X.2016.1141202.

https://doi.org/10.1177/0954405416629585
http://dx.doi.org/10.1177/0954405416629585
http://arxiv.org/abs/https://doi.org/10.1177/0954405416629585
http://www.sciencedirect.com/science/article/pii/S1568494612000373
http://www.sciencedirect.com/science/article/pii/S1568494612000373
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2012.01.011
http://www.sciencedirect.com/science/article/pii/S0305054810002157
http://www.sciencedirect.com/science/article/pii/S0305054810002157
http://dx.doi.org/https://doi.org/10.1016/j.cor.2010.09.020
http://dx.doi.org/10.1080/00207543.2013.790571
http://dx.doi.org/10.1080/00207543.2013.790571
http://arxiv.org/abs/http://dx.doi.org/10.1080/00207543.2013.790571
http://dx.doi.org/10.1109/TSMCB.2006.883272
http://www.sciencedirect.com/science/article/pii/S0305054806003169
http://dx.doi.org/https://doi.org/10.1016/j.cor.2006.12.013
http://dx.doi.org/https://doi.org/10.1016/j.cor.2006.12.013
http://www.sciencedirect.com/science/article/pii/S1474667016415442
http://dx.doi.org/https://doi.org/10.3182/20080706-5-KR-1001.02680
http://dx.doi.org/https://doi.org/10.3182/20080706-5-KR-1001.02680
http://www.sciencedirect.com/science/article/pii/S0957417410010614
http://www.sciencedirect.com/science/article/pii/S0957417410010614
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2010.09.104
http://dx.doi.org/10.1080/0305215X.2016.1141202
http://dx.doi.org/10.1080/0305215X.2016.1141202
http://dx.doi.org/10.1080/0305215X.2016.1141202
http://arxiv.org/abs/http://dx.doi.org/10.1080/0305215X.2016.1141202

168 References

Liu, W., Jin, Y., & Price, M. (2017). New scheduling algorithms and dig-
ital tool for dynamic permutation flowshop with newly arrived order. In-
ternational Journal of Production Research, 55, 3234–3248. URL: http:
//dx.doi.org/10.1080/00207543.2017.1285077. doi:10.1080/00207543.2017.1285077.
arXiv:http://dx.doi.org/10.1080/00207543.2017.1285077.

Liu, X.-p., Liu, F., & Wang, J.-j. (2016b). An enhanced memetic algorithm for combinational
disruption management in sequence-dependent permutation flowshop. In D.-S. Huang,
V. Bevilacqua, & P. Premaratne (Eds.), Intelligent Computing Theories and Application:
12th International Conference, ICIC 2016, Lanzhou, China, August 2-5, 2016, Proceedings,
Part I (pp. 548–559). Cham: Springer International Publishing. URL: https://doi.org/10.
1007/978-3-319-42291-6_55. doi:10.1007/978-3-319-42291-6_55.

Liu, Y.-F., & Liu, S.-Y. (2013). A hybrid discrete artificial bee colony algorithm for
permutation flowshop scheduling problem. Applied Soft Computing, 13, 1459 – 1463.
URL: http://www.sciencedirect.com/science/article/pii/S1568494611004364. doi:https:
//doi.org/10.1016/j.asoc.2011.10.024. Hybrid evolutionary systems for manufac-
turing processes.

Liu, Y.-H., Huang, H.-P., & Lin, Y.-S. (2005). Dynamic scheduling of flexible manufacturing
system using support vector machines. In IEEE International Conference on Automation
Science and Engineering, 2005. (pp. 387–392). doi:10.1109/COASE.2005.1506800.

Lourenço, H. R., Martin, O. C., & Stützle, T. (2003). Iterated local search. In F. Glover, & G. A.
Kochenberger (Eds.), Handbook of Metaheuristics (pp. 320–353). Boston, MA: Springer
US. URL: https://doi.org/10.1007/0-306-48056-5_11. doi:10.1007/0-306-48056-5_11.

Lourenço, H. R., Martin, O. C., & Stützle, T. (2010). Iterated local search: Framework and
applications. In M. Gendreau, & J.-Y. Potvin (Eds.), Handbook of Metaheuristics (pp.
363–397). Boston, MA: Springer US. URL: https://doi.org/10.1007/978-1-4419-1665-5_12.
doi:10.1007/978-1-4419-1665-5_12.

Lu, C., Xiao, S., Li, X., & Gao, L. (2016). An effective multi-objective discrete grey wolf
optimizer for a real-world scheduling problem in welding production. Advances in Engi-
neering Software, 99, 161 – 176. URL: http://www.sciencedirect.com/science/article/pii/
S0965997816301260. doi:https://doi.org/10.1016/j.advengsoft.2016.06.004.

Maccarthy, B. L., & Liu, J. (1993). Addressing the gap in scheduling research: a review of opti-
mization and heuristic methods in production scheduling. International Journal of Production
Research, 31, 59–79. URL: http://dx.doi.org/10.1080/00207549308956713. doi:10.1080/
00207549308956713. arXiv:http://dx.doi.org/10.1080/00207549308956713.

Madureira, A., Pereira, I., & Falcão, D. (2013). Dynamic adaptation for scheduling under rush
manufacturing orders with case-based reasoning. In International Conference on Algebraic
and Symbolic Computation (SymComp 2013), At Lisbon, Portugal September (pp. 330–344).

Manz, E., Haddock, J., & Mittenthal, J. (1989). Optimization Of An Automated Manufacturing
System Simulation Model Using Simulated Annealing. 1989 Winter Simulation Conference
Proceedings, (pp. 390–395). doi:10.1109/WSC.1989.718704.

http://dx.doi.org/10.1080/00207543.2017.1285077
http://dx.doi.org/10.1080/00207543.2017.1285077
http://dx.doi.org/10.1080/00207543.2017.1285077
http://arxiv.org/abs/http://dx.doi.org/10.1080/00207543.2017.1285077
https://doi.org/10.1007/978-3-319-42291-6_55
https://doi.org/10.1007/978-3-319-42291-6_55
http://dx.doi.org/10.1007/978-3-319-42291-6_55
http://www.sciencedirect.com/science/article/pii/S1568494611004364
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2011.10.024
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2011.10.024
http://dx.doi.org/10.1109/COASE.2005.1506800
https://doi.org/10.1007/0-306-48056-5_11
http://dx.doi.org/10.1007/0-306-48056-5_11
https://doi.org/10.1007/978-1-4419-1665-5_12
http://dx.doi.org/10.1007/978-1-4419-1665-5_12
http://www.sciencedirect.com/science/article/pii/S0965997816301260
http://www.sciencedirect.com/science/article/pii/S0965997816301260
http://dx.doi.org/https://doi.org/10.1016/j.advengsoft.2016.06.004
http://dx.doi.org/10.1080/00207549308956713
http://dx.doi.org/10.1080/00207549308956713
http://dx.doi.org/10.1080/00207549308956713
http://arxiv.org/abs/http://dx.doi.org/10.1080/00207549308956713
http://dx.doi.org/10.1109/WSC.1989.718704

References 169

Marichelvam, M. K., Prabaharan, T., & Yang, X. S. (2014). Improved cuckoo search algorithm
for hybrid flow shop scheduling problems to minimize makespan. Applied Soft Computing,
19, 93 – 101. URL: http://www.sciencedirect.com/science/article/pii/S1568494614000738.
doi:https://doi.org/10.1016/j.asoc.2014.02.005.

Marinakis, Y., & Marinaki, M. (2013). Particle swarm optimization with expanding
neighborhood topology for the permutation flowshop scheduling problem. Soft Com-
puting, 17, 1159–1173. URL: https://doi.org/10.1007/s00500-013-0992-z. doi:10.1007/
s00500-013-0992-z.

Mason, S. J., Fowler, J. W., & Matthew Carlyle, W. (2002). A modified shifting bottleneck
heuristic for minimizing total weighted tardiness in complex job shops. Journal of Scheduling,
5, 247–262. URL: http://dx.doi.org/10.1002/jos.102. doi:10.1002/jos.102.

Mehta, S. V., & Uzsoy, R. M. (1998). Predictable scheduling of a job shop subject to break-
downs. IEEE Transactions on Robotics and Automation, 14, 365–378. doi:10.1109/70.
678447.

Minella, G., Ruiz, R., & Ciavotta, M. (2008). A review and evaluation of multiobjective al-
gorithms for the flowshop scheduling problem. INFORMS Journal on Computing, 20,
451–471. URL: https://doi.org/10.1287/ijoc.1070.0258. doi:10.1287/ijoc.1070.0258.
arXiv:https://doi.org/10.1287/ijoc.1070.0258.

Minella, G., Ruiz, R., & Ciavotta, M. (2011). Restarted iterated pareto greedy algorithm
for multi-objective flowshop scheduling problems. Computers Operations Research, 38,
1521 – 1533. URL: http://www.sciencedirect.com/science/article/pii/S0305054811000220.
doi:https://doi.org/10.1016/j.cor.2011.01.010.

Mirabi, M. (2014). A novel hybrid genetic algorithm to solve the sequence-dependent per-
mutation flow-shop scheduling problem. The International Journal of Advanced Man-
ufacturing Technology, 71, 429–437. URL: https://doi.org/10.1007/s00170-013-5489-5.
doi:10.1007/s00170-013-5489-5.

Modarres, M., Kaminskiy, M., & Krivtsov, V. (1999). Reliability Engineering and Risk Analysis:
A Practical Guide. New York: Marcel Dekker Inc.

Möhring, R. H., Radermacher, F. J., & Weiss, G. (1984). Stochastic scheduling problems
i — general strategies. Zeitschrift für Operations Research, 28, 193–260. URL: https:
//doi.org/10.1007/BF01919323. doi:10.1007/BF01919323.

Mokotoff, E. (2009). Multi-objective simulated annealing for permutation flow shop prob-
lems. In U. K. Chakraborty (Ed.), Computational Intelligence in Flow Shop and Job
Shop Scheduling (pp. 101–150). Berlin, Heidelberg: Springer Berlin Heidelberg. URL:
https://doi.org/10.1007/978-3-642-02836-6_4. doi:10.1007/978-3-642-02836-6_4.

Molina-Sánchez, L. P., & González-Neira, E. M. (2016). GRASP to minimize total weighted
tardiness in a permutation flow shop environment. International Journal of Industrial
Engineering Computations, 7, 161–176. doi:10.5267/j.ijiec.2015.6.004.

http://www.sciencedirect.com/science/article/pii/S1568494614000738
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2014.02.005
https://doi.org/10.1007/s00500-013-0992-z
http://dx.doi.org/10.1007/s00500-013-0992-z
http://dx.doi.org/10.1007/s00500-013-0992-z
http://dx.doi.org/10.1002/jos.102
http://dx.doi.org/10.1002/jos.102
http://dx.doi.org/10.1109/70.678447
http://dx.doi.org/10.1109/70.678447
https://doi.org/10.1287/ijoc.1070.0258
http://dx.doi.org/10.1287/ijoc.1070.0258
http://arxiv.org/abs/https://doi.org/10.1287/ijoc.1070.0258
http://www.sciencedirect.com/science/article/pii/S0305054811000220
http://dx.doi.org/https://doi.org/10.1016/j.cor.2011.01.010
https://doi.org/10.1007/s00170-013-5489-5
http://dx.doi.org/10.1007/s00170-013-5489-5
https://doi.org/10.1007/BF01919323
https://doi.org/10.1007/BF01919323
http://dx.doi.org/10.1007/BF01919323
https://doi.org/10.1007/978-3-642-02836-6_4
http://dx.doi.org/10.1007/978-3-642-02836-6_4
http://dx.doi.org/10.5267/j.ijiec.2015.6.004

170 References

Murata, T., Ishibuchi, H., & Tanaka, H. (1996). Genetic algorithms for flowshop schedul-
ing problems. Computers Industrial Engineering, 30, 1061 – 1071. URL: http://
www.sciencedirect.com/science/article/pii/0360835296000538. doi:https://doi.org/10.
1016/0360-8352(96)00053-8.

Nagano, M. S., & Moccellin, J. V. (2002). A high quality solution constructive heuristic for
flow shop sequencing. Journal of the Operational Research Society, 53, 1374–1379. URL:
https://doi.org/10.1057/palgrave.jors.2601466. doi:10.1057/palgrave.jors.2601466.

Nawaz, M., Enscore, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem. Omega, 11, 91 – 95. URL: http://www.sciencedirect.com/
science/article/pii/0305048383900889. doi:https://doi.org/10.1016/0305-0483(83)
90088-9.

Noura, A.-D., Jebali, A., & Diabat, A. (2016). A simulation-based genetic algorithm approach
for the quay crane scheduling under uncertainty. Simulation Modelling Practice and Theory,
66, 122 – 138. URL: http://www.sciencedirect.com/science/article/pii/S1569190X16000162.
doi:https://doi.org/10.1016/j.simpat.2016.01.009.

Osman, I., & Potts, C. (1989). Simulated annealing for permutation flow-shop schedul-
ing. Omega, 17, 551 – 557. URL: http://www.sciencedirect.com/science/article/pii/
0305048389900595. doi:https://doi.org/10.1016/0305-0483(89)90059-5.

Osyczka, A. (1985). 7− multicriteria optimization for engineering design. In J. S.
Gero (Ed.), Design Optimization (pp. 193 – 227). Academic Press. URL: http://www.
sciencedirect.com/science/article/pii/B978012280910150012X. doi:https://doi.org/10.
1016/B978-0-12-280910-1.50012-X.

Ouelhadj, D., & Petrovic, S. (2008). A survey of dynamic scheduling in manufacturing
systems. Journal of Scheduling, 12, 417. URL: https://doi.org/10.1007/s10951-008-0090-8.
doi:10.1007/s10951-008-0090-8.

Ovacikt, I. M., & Uzsoy, R. (1994). Rolling horizon algorithms for a
single-machine dynamic scheduling problem with sequence-dependent setup
times. International Journal of Production Research, 32, 1243–1263. URL:
http://dx.doi.org/10.1080/00207549408956998. doi:10.1080/00207549408956998.
arXiv:http://dx.doi.org/10.1080/00207549408956998.

Palmer, D. S. (1965). Sequencing jobs through a multi-stage process in the minimum total time—
a quick method of obtaining a near optimum. Journal of the Operational Research Society,
16, 101–107. URL: https://doi.org/10.1057/jors.1965.8. doi:10.1057/jors.1965.8.

Pan, J. C.-H., & Chen, J.-S. (2005). Mixed binary integer programming formulations for the
reentrant job shop scheduling problem. Computers Operations Research, 32, 1197 – 1212.
URL: http://www.sciencedirect.com/science/article/pii/S0305054803003174. doi:https:
//doi.org/10.1016/j.cor.2003.10.004.

Pan, Q.-K., Gao, L., Li, X.-Y., & Gao, K.-Z. (2017). Effective metaheuristics for schedul-
ing a hybrid flowshop with sequence-dependent setup times. Applied Mathematics
and Computation, 303, 89 – 112. URL: http://www.sciencedirect.com/science/article/pii/
S0096300317300127. doi:https://doi.org/10.1016/j.amc.2017.01.004.

http://www.sciencedirect.com/science/article/pii/0360835296000538
http://www.sciencedirect.com/science/article/pii/0360835296000538
http://dx.doi.org/https://doi.org/10.1016/0360-8352(96)00053-8
http://dx.doi.org/https://doi.org/10.1016/0360-8352(96)00053-8
https://doi.org/10.1057/palgrave.jors.2601466
http://dx.doi.org/10.1057/palgrave.jors.2601466
http://www.sciencedirect.com/science/article/pii/0305048383900889
http://www.sciencedirect.com/science/article/pii/0305048383900889
http://dx.doi.org/https://doi.org/10.1016/0305-0483(83)90088-9
http://dx.doi.org/https://doi.org/10.1016/0305-0483(83)90088-9
http://www.sciencedirect.com/science/article/pii/S1569190X16000162
http://dx.doi.org/https://doi.org/10.1016/j.simpat.2016.01.009
http://www.sciencedirect.com/science/article/pii/0305048389900595
http://www.sciencedirect.com/science/article/pii/0305048389900595
http://dx.doi.org/https://doi.org/10.1016/0305-0483(89)90059-5
http://www.sciencedirect.com/science/article/pii/B978012280910150012X
http://www.sciencedirect.com/science/article/pii/B978012280910150012X
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-280910-1.50012-X
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-280910-1.50012-X
https://doi.org/10.1007/s10951-008-0090-8
http://dx.doi.org/10.1007/s10951-008-0090-8
http://dx.doi.org/10.1080/00207549408956998
http://dx.doi.org/10.1080/00207549408956998
http://arxiv.org/abs/http://dx.doi.org/10.1080/00207549408956998
https://doi.org/10.1057/jors.1965.8
http://dx.doi.org/10.1057/jors.1965.8
http://www.sciencedirect.com/science/article/pii/S0305054803003174
http://dx.doi.org/https://doi.org/10.1016/j.cor.2003.10.004
http://dx.doi.org/https://doi.org/10.1016/j.cor.2003.10.004
http://www.sciencedirect.com/science/article/pii/S0096300317300127
http://www.sciencedirect.com/science/article/pii/S0096300317300127
http://dx.doi.org/https://doi.org/10.1016/j.amc.2017.01.004

References 171

Pan, Q.-K., Tasgetiren, M. F., & Liang, Y.-C. (2008). A discrete particle swarm optimization
algorithm for the no-wait flowshop scheduling problem. Computers Operations Research, 35,
2807 – 2839. URL: http://www.sciencedirect.com/science/article/pii/S0305054806003170.
doi:https://doi.org/10.1016/j.cor.2006.12.030. Part Special Issue: Bio-inspired
Methods in Combinatorial Optimization.

Parajuli, A. (2010). Scheduling to Optimize Due Date Performance under Uncertainty of
Processing Times. Ph.D. thesis University of CALGARY.

Park, J., Mei, Y., Nguyen, S., Chen, G., & Zhang, M. (2017). Investigating the generality
of genetic programming based hyper-heuristic approach to dynamic job shop scheduling
with machine breakdown. In M. Wagner, X. Li, & T. Hendtlass (Eds.), Artificial Life and
Computational Intelligence: Third Australasian Conference, ACALCI 2017, Geelong, VIC,
Australia, January 31 – February 2, 2017, Proceedings (pp. 301–313). Cham: Springer
International Publishing. URL: https://doi.org/10.1007/978-3-319-51691-2_26. doi:10.
1007/978-3-319-51691-2_26.

Pei, J., Liu, X., Fan, W., Pardalos, P. M., Migdalas, A., Goldengorin, B., & Yang, S. (2016).
Minimizing the makespan for a serial-batching scheduling problem with arbitrary ma-
chine breakdown and dynamic job arrival. The International Journal of Advanced Manu-
facturing Technology, 86, 3315–3331. URL: https://doi.org/10.1007/s00170-016-8408-8.
doi:10.1007/s00170-016-8408-8.

Pereira, L. F. d. J. V. (2016). Optimization and Simulation of Manufacturing Systems. Ph.D.
thesis Faculdade de Engenharia da Universidade do Porto.

Perelson, A. S. (1989). Immune network theory. Immunological Reviews, 110, 5–36. URL:
http://dx.doi.org/10.1111/j.1600-065X.1989.tb00025.x. doi:10.1111/j.1600-065X.1989.
tb00025.x.

Persson, G. H. N. A. L. T. E. J. F. S., A., & Stablum, P. (2006). Simulation-based multi-objective
optimization of real-world scheduling problem. In L. F. Perrone, F. P. Wieland, J. Liu, B.
G. Lawson, D. M. Nicol, & R. M. Fujimoto. (Eds.), Winter Simulation Conference (pp.
1757–1764). IEEE.

Pickardt, C. (2013). Evolutionary Methods for the Design of Dispatching Rules for Complex
and Dynamic Scheduling Problems. Ph.D. thesis.

Pinedo, M. L. (2016). Scheduling: Theory, Algorithms, and Systems. (5th ed.). Springer
Publishing Company, Incorporated.

Pour, H. D. (2001). A new heuristic for the n-job, m-machine flow-shop
problem. Production Planning & Control, 12, 648–653. URL: http:
//dx.doi.org/10.1080/09537280152582995. doi:10.1080/09537280152582995.
arXiv:http://dx.doi.org/10.1080/09537280152582995.

Prabhaharan, G., Khan, B. S. H., & Rakesh, L. (2006). Implementation of grasp in
flow shop scheduling. The International Journal of Advanced Manufacturing Tech-
nology, 30, 1126–1131. URL: https://doi.org/10.1007/s00170-005-0134-6. doi:10.1007/
s00170-005-0134-6.

http://www.sciencedirect.com/science/article/pii/S0305054806003170
http://dx.doi.org/https://doi.org/10.1016/j.cor.2006.12.030
https://doi.org/10.1007/978-3-319-51691-2_26
http://dx.doi.org/10.1007/978-3-319-51691-2_26
http://dx.doi.org/10.1007/978-3-319-51691-2_26
https://doi.org/10.1007/s00170-016-8408-8
http://dx.doi.org/10.1007/s00170-016-8408-8
http://dx.doi.org/10.1111/j.1600-065X.1989.tb00025.x
http://dx.doi.org/10.1111/j.1600-065X.1989.tb00025.x
http://dx.doi.org/10.1111/j.1600-065X.1989.tb00025.x
http://dx.doi.org/10.1080/09537280152582995
http://dx.doi.org/10.1080/09537280152582995
http://dx.doi.org/10.1080/09537280152582995
http://arxiv.org/abs/http://dx.doi.org/10.1080/09537280152582995
https://doi.org/10.1007/s00170-005-0134-6
http://dx.doi.org/10.1007/s00170-005-0134-6
http://dx.doi.org/10.1007/s00170-005-0134-6

172 References

Pugazhenthi, R., & Saravanan, R. (2015). A heuristic to minimise makespan time with
breakdown nature flowshop, . (pp. 27–29).

Qian, B., Wang, L., Huang, D.-x., Wang, W.-l., & Wang, X. (2009). An effective hybrid
de-based algorithm for multi-objective flow shop scheduling with limited buffers. Computers
Operations Research, 36, 209 – 233. URL: http://www.sciencedirect.com/science/article/pii/
S0305054807001542. doi:https://doi.org/10.1016/j.cor.2007.08.007. Part Spe-
cial Issue: Operations Research Approaches for Disaster Recovery Planning.

Qian, B., Wang, L., Huang, D.-X., & Wang, X. (2006). Multi-objective flow shop scheduling
using differential evolution. In D.-S. Huang, K. Li, & G. W. Irwin (Eds.), Intelligent Comput-
ing in Signal Processing and Pattern Recognition: International Conference on Intelligent
Computing, ICIC 2006 Kunming, China, August 16–19, 2006 (pp. 1125–1136). Berlin, Hei-
delberg: Springer Berlin Heidelberg. URL: https://doi.org/10.1007/978-3-540-37258-5_146.
doi:10.1007/978-3-540-37258-5_146.

Rahimi-Vahed, A., & Mirzaei, A. H. (2008). Solving a bi-criteria permutation flow-shop
problem using shuffled frog-leaping algorithm. Soft Computing, 12, 435–452. URL: https:
//doi.org/10.1007/s00500-007-0210-y. doi:10.1007/s00500-007-0210-y.

Rahimi-Vahed, A. R., & Mirghorbani, S. M. (2007). A multi-objective particle swarm for a
flow shop scheduling problem. Journal of Combinatorial Optimization, 13, 79–102. URL:
https://doi.org/10.1007/s10878-006-9015-7. doi:10.1007/s10878-006-9015-7.

Rahman, H., Sarker, R., & Essam, D. (2013). Permutation flow shop scheduling with dynamic
job order arrival. In 2013 IEEE Conference on Cybernetics and Intelligent Systems (CIS)
(pp. 30–35). doi:10.1109/ICCIS.2013.6751574.

Rahman, H. F., Sarker, R., & Essam, D. (2015). A real-time order acceptance and scheduling
approach for permutation flow shop problems. European Journal of Operational Research,
247, 488 – 503. URL: http://www.sciencedirect.com/science/article/pii/S0377221715005329.
doi:https://doi.org/10.1016/j.ejor.2015.06.018.

Rahmani, D., & Heydari, M. (2014). Robust and stable flow shop scheduling with unexpected
arrivals of new jobs and uncertain processing times. Journal of Manufacturing Systems,
33, 84 – 92. URL: http://www.sciencedirect.com/science/article/pii/S0278612513000332.
doi:https://doi.org/10.1016/j.jmsy.2013.03.004.

Rahmani, D., Ramezanian, R., & Mehrabad, M. S. (2014). Multi-objective flow shop scheduling
problem with stochastic parameters fuzzy goal programming approach. International Journal
of Operational Research, 21, 322–340. doi:10.1504/IJOR.2014.065411.

Rajendran, C., & Ziegler, H. (2004). Ant-colony algorithms for permutation flowshop schedul-
ing to minimize makespan/total flowtime of jobs. European Journal of Operational Research,
155, 426 – 438. URL: http://www.sciencedirect.com/science/article/pii/S0377221702009086.
doi:https://doi.org/10.1016/S0377-2217(02)00908-6. Financial Risk in Open
Economies.

Ramanan, T., Iqbal, M., & Umarali, K. (2014). A particle swarm optimization approach
for permutation flow shop scheduling problem. International Journal for Simulation and
Multidisciplinary Design Optimization, 5, A20.

http://www.sciencedirect.com/science/article/pii/S0305054807001542
http://www.sciencedirect.com/science/article/pii/S0305054807001542
http://dx.doi.org/https://doi.org/10.1016/j.cor.2007.08.007
https://doi.org/10.1007/978-3-540-37258-5_146
http://dx.doi.org/10.1007/978-3-540-37258-5_146
https://doi.org/10.1007/s00500-007-0210-y
https://doi.org/10.1007/s00500-007-0210-y
http://dx.doi.org/10.1007/s00500-007-0210-y
https://doi.org/10.1007/s10878-006-9015-7
http://dx.doi.org/10.1007/s10878-006-9015-7
http://dx.doi.org/10.1109/ICCIS.2013.6751574
http://www.sciencedirect.com/science/article/pii/S0377221715005329
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2015.06.018
http://www.sciencedirect.com/science/article/pii/S0278612513000332
http://dx.doi.org/https://doi.org/10.1016/j.jmsy.2013.03.004
http://dx.doi.org/10.1504/IJOR.2014.065411
http://www.sciencedirect.com/science/article/pii/S0377221702009086
http://dx.doi.org/https://doi.org/10.1016/S0377-2217(02)00908-6

References 173

Rangsaritratsamee, R., Ferrell, W. G., & Kurz, M. B. (2004). Dynamic rescheduling that
simultaneously considers efficiency and stability. Computers Industrial Engineering, 46, 1 –
15. URL: http://www.sciencedirect.com/science/article/pii/S0360835203000950. doi:https:
//doi.org/10.1016/j.cie.2003.09.007.

Rao, K. V., & Ranga Janardhana, G. (2014). The effect of rescheduling on operating perfor-
mance of the supply chain under disruption - a literature review. In Dynamics of Machines
and Mechanisms, Industrial Research (pp. 2704–2710). Trans Tech Publications volume 592
of Applied Mechanics and Materials. doi:10.4028/www.scientific.net/AMM.592-594.
2704.

Reeves, C. R. (1995). A genetic algorithm for flowshop sequencing. Computers
Operations Research, 22, 5–13. URL: http://www.sciencedirect.com/science/article/pii/
0305054893E0014K. doi:https://doi.org/10.1016/0305-0548(93)E0014-K. Ge-
netic Algorithms.

Reisman, A., Kumar, A., & Motwani, J. (1997). Flowshop scheduling/sequencing research: a
statistical review of the literature, 1952-1994. IEEE Transactions on Engineering Manage-
ment, 44, 316–329. doi:10.1109/17.618173.

Ribas, I., Companys, R., & Tort-Martorell, X. (2015). An efficient discrete artificial bee colony
algorithm for the blocking flow shop problem with total flowtime minimization. Expert
Systems with Applications, 42, 6155 – 6167. URL: http://www.sciencedirect.com/science/
article/pii/S0957417415002201. doi:https://doi.org/10.1016/j.eswa.2015.03.026.

Ribas, I., Companys, R., & Tort-Martorell, X. (2017). Efficient heuristics for the parallel
blocking flow shop scheduling problem. Expert Systems with Applications, 74, 41 – 54.
URL: http://www.sciencedirect.com/science/article/pii/S0957417417300064. doi:https:
//doi.org/10.1016/j.eswa.2017.01.006.

Ribas, I., & Mateo, M. (2010). Improvement tools for neh based heuristics on permutation
and blocking flow shop scheduling problems. In B. Vallespir, & T. Alix (Eds.), Advances
in Production Management Systems. New Challenges, New Approaches: IFIP WG 5.7
International Conference, APMS 2009, Bordeaux, France, September 21-23, 2009, Revised
Selected Papers (pp. 33–40). Berlin, Heidelberg: Springer Berlin Heidelberg. URL: https:
//doi.org/10.1007/978-3-642-16358-6_5. doi:10.1007/978-3-642-16358-6_5.

Robert, R. B. J., & Kumar, R. R. (2016). A Hybrid Algorithm for Minimizing Makespan in
the Permutation Flow Shop Scheduling Environment. Asian Journal of Research in Social
Sciences and Humanities, 6, 1239–1242. doi:10.5958/2249-7315.2016.00867.4.

Rossi, F. L., Nagano, M. S., & Neto, R. F. T. (2016). Evaluation of high performance
constructive heuristics for the flow shop with makespan minimization. The International
Journal of Advanced Manufacturing Technology, 87, 125–136. URL: https://doi.org/10.1007/
s00170-016-8484-9. doi:10.1007/s00170-016-8484-9.

Rossi, F. L., Nagano, M. S., & Sagawa, J. K. (2017). An effective constructive heuristic for
permutation flow shop scheduling problem with total flow time criterion. The International
Journal of Advanced Manufacturing Technology, 90, 93–107. URL: https://doi.org/10.1007/
s00170-016-9347-0. doi:10.1007/s00170-016-9347-0.

http://www.sciencedirect.com/science/article/pii/S0360835203000950
http://dx.doi.org/https://doi.org/10.1016/j.cie.2003.09.007
http://dx.doi.org/https://doi.org/10.1016/j.cie.2003.09.007
http://dx.doi.org/10.4028/www.scientific.net/AMM.592-594.2704
http://dx.doi.org/10.4028/www.scientific.net/AMM.592-594.2704
http://www.sciencedirect.com/science/article/pii/0305054893E0014K
http://www.sciencedirect.com/science/article/pii/0305054893E0014K
http://dx.doi.org/https://doi.org/10.1016/0305-0548(93)E0014-K
http://dx.doi.org/10.1109/17.618173
http://www.sciencedirect.com/science/article/pii/S0957417415002201
http://www.sciencedirect.com/science/article/pii/S0957417415002201
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2015.03.026
http://www.sciencedirect.com/science/article/pii/S0957417417300064
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2017.01.006
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2017.01.006
https://doi.org/10.1007/978-3-642-16358-6_5
https://doi.org/10.1007/978-3-642-16358-6_5
http://dx.doi.org/10.1007/978-3-642-16358-6_5
http://dx.doi.org/10.5958/2249-7315.2016.00867.4
https://doi.org/10.1007/s00170-016-8484-9
https://doi.org/10.1007/s00170-016-8484-9
http://dx.doi.org/10.1007/s00170-016-8484-9
https://doi.org/10.1007/s00170-016-9347-0
https://doi.org/10.1007/s00170-016-9347-0
http://dx.doi.org/10.1007/s00170-016-9347-0

174 References

Rothkopf, M. H. (1966). Scheduling with random service times. Management Science,
12, 707–713. URL: https://doi.org/10.1287/mnsc.12.9.707. doi:10.1287/mnsc.12.9.707.
arXiv:https://doi.org/10.1287/mnsc.12.9.707.

Ruiz, R., & Maroto, C. (2005). A comprehensive review and evaluation of permutation
flowshop heuristics. European Journal of Operational Research, 165, 479 – 494. URL:
http://www.sciencedirect.com/science/article/pii/S0377221704002553. doi:https://doi.
org/10.1016/j.ejor.2004.04.017. Project Management and Scheduling.

Ruiz, R., Maroto, C., & Alcaraz, J. (2006). Two new robust genetic algorithms for the
flowshop scheduling problem. Omega, 34, 461 – 476. URL: http://www.sciencedirect.com/
science/article/pii/S0305048305000174. doi:https://doi.org/10.1016/j.omega.2004.
12.006.

Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. European Journal of Operational Research, 177,
2033 – 2049. URL: http://www.sciencedirect.com/science/article/pii/S0377221705008507.
doi:https://doi.org/10.1016/j.ejor.2005.12.009.

Saaty, T. L. (1981). The Analytic Hierarchy Process. McGraw-Hill, Inc.

Sabuncuoglu, I., & Kizilisik, B. O. (2003). Reactive scheduling in a dynamic and stochastic
fms environment. International Journal of Production Research, 41, 4211–4231. URL:
http://dx.doi.org/10.1080/0020754031000149202. doi:10.1080/0020754031000149202.
arXiv:http://dx.doi.org/10.1080/0020754031000149202.

Sahin, C., Demirtas, M., Erol, R., Baykasoğlu, A., & Kaplanoğlu, V. (2015). A multi-
agent based approach to dynamic scheduling with flexible processing capabilities. Journal
of Intelligent Manufacturing, . URL: https://doi.org/10.1007/s10845-015-1069-x. doi:10.
1007/s10845-015-1069-x.

Salch, A., Gayon, J. P., & Lemaire, P. (2013). Optimal static priority rules for stochas-
tic scheduling with impatience. Operations Research Letters, 41, 81 – 85. URL: http:
//www.sciencedirect.com/science/article/pii/S0167637712001447. doi:https://doi.org/
10.1016/j.orl.2012.11.008.

Saravanan, R., & Pugazhenthi, R. (2015). Computation of makespan time associated with
stochastic natured jobs in a flow shop. Vels Journal Of Mechanical Engineering, 2, 43–46.

Sha, D., & Hsu, C.-Y. (2008). A new particle swarm optimization for the open shop
scheduling problem. Computers Operations Research, 35, 3243 – 3261. URL: http:
//www.sciencedirect.com/science/article/pii/S030505480700055X. doi:https://doi.org/
10.1016/j.cor.2007.02.019. Part Special Issue: Search-based Software Engineering.

Sha, D. Y., & Hung Lin, H. (2009). A particle swarm optimization for multi-objective flowshop
scheduling. The International Journal of Advanced Manufacturing Technology, 45, 749–758.
URL: https://doi.org/10.1007/s00170-009-1970-6. doi:10.1007/s00170-009-1970-6.

Shao, W., & Pi, D. (2016). A self-guided differential evolution with neighborhood search
for permutation flow shop scheduling. Expert Systems with Applications, 51, 161 – 176.
URL: http://www.sciencedirect.com/science/article/pii/S0957417415007927. doi:https:
//doi.org/10.1016/j.eswa.2015.12.001.

https://doi.org/10.1287/mnsc.12.9.707
http://dx.doi.org/10.1287/mnsc.12.9.707
http://arxiv.org/abs/https://doi.org/10.1287/mnsc.12.9.707
http://www.sciencedirect.com/science/article/pii/S0377221704002553
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2004.04.017
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2004.04.017
http://www.sciencedirect.com/science/article/pii/S0305048305000174
http://www.sciencedirect.com/science/article/pii/S0305048305000174
http://dx.doi.org/https://doi.org/10.1016/j.omega.2004.12.006
http://dx.doi.org/https://doi.org/10.1016/j.omega.2004.12.006
http://www.sciencedirect.com/science/article/pii/S0377221705008507
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2005.12.009
http://dx.doi.org/10.1080/0020754031000149202
http://dx.doi.org/10.1080/0020754031000149202
http://arxiv.org/abs/http://dx.doi.org/10.1080/0020754031000149202
https://doi.org/10.1007/s10845-015-1069-x
http://dx.doi.org/10.1007/s10845-015-1069-x
http://dx.doi.org/10.1007/s10845-015-1069-x
http://www.sciencedirect.com/science/article/pii/S0167637712001447
http://www.sciencedirect.com/science/article/pii/S0167637712001447
http://dx.doi.org/https://doi.org/10.1016/j.orl.2012.11.008
http://dx.doi.org/https://doi.org/10.1016/j.orl.2012.11.008
http://www.sciencedirect.com/science/article/pii/S030505480700055X
http://www.sciencedirect.com/science/article/pii/S030505480700055X
http://dx.doi.org/https://doi.org/10.1016/j.cor.2007.02.019
http://dx.doi.org/https://doi.org/10.1016/j.cor.2007.02.019
https://doi.org/10.1007/s00170-009-1970-6
http://dx.doi.org/10.1007/s00170-009-1970-6
http://www.sciencedirect.com/science/article/pii/S0957417415007927
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2015.12.001
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2015.12.001

References 175

Shao, W., Pi, D., & Shao, Z. (2017). Memetic algorithm with node and edge histogram
for no-idle flow shop scheduling problem to minimize the makespan criterion. Applied
Soft Computing, 54, 164 – 182. URL: http://www.sciencedirect.com/science/article/pii/
S1568494617300327. doi:https://doi.org/10.1016/j.asoc.2017.01.017.

Sharma, M., Soni, R., Chaudhary, A., & Goar, V. (2016). Comparison of approximation
heuristics with minimizing make-span in permutation flow shop scheduling environment.
In 2016 Second International Conference on Computational Intelligence Communication
Technology (CICT) (pp. 539–542). doi:10.1109/CICT.2016.112.

Shen, J. N., Wang, L., & Wang, S. Y. (2015). A bi-population {EDA} for solving the no-idle
permutation flow-shop scheduling problem with the total tardiness criterion. Knowledge-
Based Systems, 74, 167 – 175. URL: http://www.sciencedirect.com/science/article/pii/
S095070511400416X. doi:https://doi.org/10.1016/j.knosys.2014.11.016.

Sioud, A., Gagné, C., & Dort, J. (2015). A gismoo algorithm for a multi-objective permutation
flowshop with sequence-dependent setup times. In 2015 7th International Joint Conference
on Computational Intelligence (IJCCI) (pp. 116–121). volume 1.

de Siqueira, E. C., Diana, R. O. M., Souza, M. J. F., & de Souza, S. R. (2016). A study
concerning the application of genetic algorithms for solving the multi-objective hybrid
flowshop scheduling. XIII Encontro Nacional de Inteligencia Artificial e Computacional,
(pp. 301–312).

Skutella, M., & Uetz, M. (2005). Stochastic machine scheduling with prece-
dence constraints. SIAM Journal on Computing, 34, 788–802. URL:
https://doi.org/10.1137/S0097539702415007. doi:10.1137/S0097539702415007.
arXiv:https://doi.org/10.1137/S0097539702415007.

Solimanpur, M., Vrat, P., & Shankar, R. (2004). A neuro-tabu search heuristic for the flow
shop scheduling problem. Computers Operations Research, 31, 2151 – 2164. URL: http:
//www.sciencedirect.com/science/article/pii/S0305054803001692. doi:https://doi.org/
10.1016/S0305-0548(03)00169-2.

Steele, D. C. (1975). The nervous mrp system: how to do battle. Production and Inventory
Management, 16, 83–89.

Stützle, T. (1998). Applying Iterated Local Search to the Permutation Flow Shop Problem.
Technical Report AIDA-98-04, FG Intellektik, TU Darmstadt.

Subashini, G., & Bhuvaneswari, M. C. (2011). Non Dominated Particle Swarm Optimization
For Scheduling Independent Tasks On Heterogeneous Distributed Environments. Interna-
tional Journal of Advances in Soft Computing and its Applications, 3, 1–17.

Suliman, S. (2000). A two-phase heuristic approach to the permutation flow-shop scheduling
problem. International Journal of Production Economics, 64, 143 – 152. URL: http://
www.sciencedirect.com/science/article/pii/S0925527399000535. doi:https://doi.org/
10.1016/S0925-5273(99)00053-5.

http://www.sciencedirect.com/science/article/pii/S1568494617300327
http://www.sciencedirect.com/science/article/pii/S1568494617300327
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2017.01.017
http://dx.doi.org/10.1109/CICT.2016.112
http://www.sciencedirect.com/science/article/pii/S095070511400416X
http://www.sciencedirect.com/science/article/pii/S095070511400416X
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2014.11.016
https://doi.org/10.1137/S0097539702415007
http://dx.doi.org/10.1137/S0097539702415007
http://arxiv.org/abs/https://doi.org/10.1137/S0097539702415007
http://www.sciencedirect.com/science/article/pii/S0305054803001692
http://www.sciencedirect.com/science/article/pii/S0305054803001692
http://dx.doi.org/https://doi.org/10.1016/S0305-0548(03)00169-2
http://dx.doi.org/https://doi.org/10.1016/S0305-0548(03)00169-2
http://www.sciencedirect.com/science/article/pii/S0925527399000535
http://www.sciencedirect.com/science/article/pii/S0925527399000535
http://dx.doi.org/https://doi.org/10.1016/S0925-5273(99)00053-5
http://dx.doi.org/https://doi.org/10.1016/S0925-5273(99)00053-5

176 References

Sun, Y., Zhang, C., Gao, L., & Wang, X. (2011). Multi-objective optimization algorithms
for flow shop scheduling problem: a review and prospects. The International Jour-
nal of Advanced Manufacturing Technology, 55, 723–739. URL: https://doi.org/10.1007/
s00170-010-3094-4. doi:10.1007/s00170-010-3094-4.

Suwa, H., & Sandoh, H. (2013). Online Scheduling in Manufacturing A Cumulative Delay
Approach. London: Springer-Verlag. doi:10.1201/9781420072747-c3.

Taillard, E. (1990). Theory and methodology some efficient heuristic methods for the flow
shop sequencing problem. European Journal Of Operational Research, 47, 65–74.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Oper-
ational Research, 64, 278 – 285. URL: http://www.sciencedirect.com/science/article/pii/
037722179390182M. doi:https://doi.org/10.1016/0377-2217(93)90182-M. Project
Management anf Scheduling.

Talbi, E.-G. (2009). Metaheuristics: From Design to Implementation. Hoboken, New Jersey
Published simultaneously in Canada: JohnWiley & Sons, Inc. All.

Tasgetiren, M. F., Kizilay, D., Pan, Q.-K., & Suganthan, P. N. (2017). Iterated greedy algo-
rithms for the blocking flowshop scheduling problem with makespan criterion. Computers
Operations Research, 77, 111 – 126. URL: http://www.sciencedirect.com/science/article/pii/
S030505481630171X. doi:https://doi.org/10.1016/j.cor.2016.07.002.

Tasgetiren, M. F., Liang, Y.-C., Sevkli, M., & Gencyilmaz, G. (2007). A particle swarm
optimization algorithm for makespan and total flowtime minimization in the permutation
flowshop sequencing problem. European Journal of Operational Research, 177, 1930 – 1947.
URL: http://www.sciencedirect.com/science/article/pii/S0377221705008453. doi:https:
//doi.org/10.1016/j.ejor.2005.12.024.

Tasgetiren, M. F., Pan, Q.-K., Suganthan, P., & Buyukdagli, O. (2013). A variable it-
erated greedy algorithm with differential evolution for the no-idle permutation flow-
shop scheduling problem. Computers Operations Research, 40, 1729 – 1743. URL:
http://www.sciencedirect.com/science/article/pii/S0305054813000130. doi:https://doi.
org/10.1016/j.cor.2013.01.005.

Tasgetiren, M. F., Sevkli, M., Liang, Y.-C., & Gencyilmaz, G. (2004). Particle swarm optimiza-
tion algorithm for permutation flowshop sequencing problem. In M. Dorigo, M. Birattari,
C. Blum, L. M. Gambardella, F. Mondada, & T. Stützle (Eds.), Ant Colony Optimization and
Swarm Intelligence: 4th International Workshop, ANTS 2004, Brussels, Belgium, September
5-8, 2004. Proceedings (pp. 382–389). Berlin, Heidelberg: Springer Berlin Heidelberg. URL:
https://doi.org/10.1007/978-3-540-28646-2_38. doi:10.1007/978-3-540-28646-2_38.

Tekin, E., & Sabuncuoglu, I. (2004). Simulation optimization: A comprehen-
sive review on theory and applications. IIE Transactions, 36, 1067–1081.
URL: http://dx.doi.org/10.1080/07408170490500654. doi:10.1080/07408170490500654.
arXiv:http://dx.doi.org/10.1080/07408170490500654.

Tiwari, A., Chang, P.-C., Tiwari, M., & Kollanoor, N. J. (2015). A pareto block-
based estimation and distribution algorithm for multi-objective permutation flow shop
scheduling problem. International Journal of Production Research, 53, 793–834. URL:

https://doi.org/10.1007/s00170-010-3094-4
https://doi.org/10.1007/s00170-010-3094-4
http://dx.doi.org/10.1007/s00170-010-3094-4
http://dx.doi.org/10.1201/9781420072747-c3
http://www.sciencedirect.com/science/article/pii/037722179390182M
http://www.sciencedirect.com/science/article/pii/037722179390182M
http://dx.doi.org/https://doi.org/10.1016/0377-2217(93)90182-M
http://www.sciencedirect.com/science/article/pii/S030505481630171X
http://www.sciencedirect.com/science/article/pii/S030505481630171X
http://dx.doi.org/https://doi.org/10.1016/j.cor.2016.07.002
http://www.sciencedirect.com/science/article/pii/S0377221705008453
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2005.12.024
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2005.12.024
http://www.sciencedirect.com/science/article/pii/S0305054813000130
http://dx.doi.org/https://doi.org/10.1016/j.cor.2013.01.005
http://dx.doi.org/https://doi.org/10.1016/j.cor.2013.01.005
https://doi.org/10.1007/978-3-540-28646-2_38
http://dx.doi.org/10.1007/978-3-540-28646-2_38
http://dx.doi.org/10.1080/07408170490500654
http://dx.doi.org/10.1080/07408170490500654
http://arxiv.org/abs/http://dx.doi.org/10.1080/07408170490500654

References 177

http://dx.doi.org/10.1080/00207543.2014.933273. doi:10.1080/00207543.2014.933273.
arXiv:http://dx.doi.org/10.1080/00207543.2014.933273.

Toptal, A., & Sabuncuoglu, I. (2010). Distributed scheduling: a review of concepts
and applications. International Journal of Production Research, 48, 5235–5262.
URL: http://dx.doi.org/10.1080/00207540903121065. doi:10.1080/00207540903121065.
arXiv:http://dx.doi.org/10.1080/00207540903121065.

Turkcan, A., Akturk, M. S., & Storer, R. H. (2009). Predictive/reactive scheduling with control-
lable processing times and earliness-tardiness penalties. IIE Transactions, 41, 1080–1095.
URL: http://dx.doi.org/10.1080/07408170902905995. doi:10.1080/07408170902905995.
arXiv:http://dx.doi.org/10.1080/07408170902905995.

Turner, S., & Booth, D. (1987). Comparison of heuristics for flow shop sequencing. Omega,
15, 75 – 78. URL: http://www.sciencedirect.com/science/article/pii/0305048387900545.
doi:https://doi.org/10.1016/0305-0483(87)90054-5.

Vallada, E., Ruiz, R., & Framinan, J. M. (2015). New hard benchmark for flowshop scheduling
problems minimising makespan. European Journal of Operational Research, 240, 666 – 677.
URL: http://www.sciencedirect.com/science/article/pii/S0377221714005992. doi:https:
//doi.org/10.1016/j.ejor.2014.07.033.

Vasiljevic, D., & Danilovic, M. (2015). Handling ties in heuristics for the permutation flow
shop scheduling problem. Journal of Manufacturing Systems, 35, 1 – 9. URL: http://
www.sciencedirect.com/science/article/pii/S027861251400140X. doi:https://doi.org/
10.1016/j.jmsy.2014.11.011.

Vieira, G. E., Herrmann, J. W., & Lin, E. (2003). Rescheduling manufacturing systems: A
framework of strategies, policies, and methods. Journal of Scheduling, 6, 39–62. URL:
https://doi.org/10.1023/A:1022235519958. doi:10.1023/A:1022235519958.

Vijay chakaravarthy, G., Marimuthu, S., & Naveen Sait, A. (2013). Performance evaluation of
proposed differential evolution and particle swarm optimization algorithms for scheduling
m-machine flow shops with lot streaming. Journal of Intelligent Manufacturing, 24, 175–191.
URL: https://doi.org/10.1007/s10845-011-0552-2. doi:10.1007/s10845-011-0552-2.

Wang, B., & Yang, Z. (2007). A particle swarm optimization algorithm for robust flow-
shop scheduling with fuzzy processing times. In 2007 IEEE International Conference on
Automation and Logistics (pp. 824–828). doi:10.1109/ICAL.2007.4338678.

Wang, D.-J., Liu, F., Wang, Y.-z., & Jin, Y. (2015a). A knowledge-based evolutionary proac-
tive scheduling approach in the presence of machine breakdown and deterioration effect.
Knowledge-Based Systems, 90, 70 – 80. URL: http://www.sciencedirect.com/science/article/
pii/S0950705115003718. doi:https://doi.org/10.1016/j.knosys.2015.09.032.

Wang, K., & Choi, S. (2014). A holonic approach to flexible flow shop scheduling under
stochastic processing times. Computers Operations Research, 43, 157 – 168. URL: http:
//www.sciencedirect.com/science/article/pii/S0305054813002839. doi:https://doi.org/
10.1016/j.cor.2013.09.013.

http://dx.doi.org/10.1080/00207543.2014.933273
http://dx.doi.org/10.1080/00207543.2014.933273
http://arxiv.org/abs/http://dx.doi.org/10.1080/00207543.2014.933273
http://dx.doi.org/10.1080/00207540903121065
http://dx.doi.org/10.1080/00207540903121065
http://arxiv.org/abs/http://dx.doi.org/10.1080/00207540903121065
http://dx.doi.org/10.1080/07408170902905995
http://dx.doi.org/10.1080/07408170902905995
http://arxiv.org/abs/http://dx.doi.org/10.1080/07408170902905995
http://www.sciencedirect.com/science/article/pii/0305048387900545
http://dx.doi.org/https://doi.org/10.1016/0305-0483(87)90054-5
http://www.sciencedirect.com/science/article/pii/S0377221714005992
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2014.07.033
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2014.07.033
http://www.sciencedirect.com/science/article/pii/S027861251400140X
http://www.sciencedirect.com/science/article/pii/S027861251400140X
http://dx.doi.org/https://doi.org/10.1016/j.jmsy.2014.11.011
http://dx.doi.org/https://doi.org/10.1016/j.jmsy.2014.11.011
https://doi.org/10.1023/A:1022235519958
http://dx.doi.org/10.1023/A:1022235519958
https://doi.org/10.1007/s10845-011-0552-2
http://dx.doi.org/10.1007/s10845-011-0552-2
http://dx.doi.org/10.1109/ICAL.2007.4338678
http://www.sciencedirect.com/science/article/pii/S0950705115003718
http://www.sciencedirect.com/science/article/pii/S0950705115003718
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2015.09.032
http://www.sciencedirect.com/science/article/pii/S0305054813002839
http://www.sciencedirect.com/science/article/pii/S0305054813002839
http://dx.doi.org/https://doi.org/10.1016/j.cor.2013.09.013
http://dx.doi.org/https://doi.org/10.1016/j.cor.2013.09.013

178 References

Wang, K., Choi, S., & Lu, H. (2015b). A hybrid estimation of distribution algorithm for
simulation-based scheduling in a stochastic permutation flowshop. Computers Indus-
trial Engineering, 90, 186 – 196. URL: http://www.sciencedirect.com/science/article/pii/
S0360835215003873. doi:https://doi.org/10.1016/j.cie.2015.09.007.

Wang, K., Huang, Y., & Qin, H. (2016). A fuzzy logic-based hybrid estimation of
distribution algorithm for distributed permutation flowshop scheduling problems under
machine breakdown. Journal of the Operational Research Society, 67, 68–82. URL:
https://doi.org/10.1057/jors.2015.50. doi:10.1057/jors.2015.50.

Wang, L., Zhang, L., & Zheng, D.-Z. (2005). A class of hypothesis-test-based genetic algo-
rithms for flow shop scheduling with stochastic processing time. The International Journal
of Advanced Manufacturing Technology, 25, 1157–1163. URL: https://doi.org/10.1007/
s00170-003-1961-y. doi:10.1007/s00170-003-1961-y.

Wang, X.-j., Zhang, C.-y., Gao, L., & Li, P.-g. (2008). A survey and future trend of study on
multi-objective scheduling. In 2008 Fourth International Conference on Natural Computa-
tion (pp. 382–391). volume 6. doi:10.1109/ICNC.2008.817.

Weiss, G. (1991). Approximation results in parallel machines stochastic scheduling. Ann.
Oper. Res., 26, 195–242. URL: http://dx.doi.org/10.1007/BF02248591. doi:10.1007/
BF02248591.

Weiss, G. (1992). Turnpike optimality of smith’s rule in parallel machines
stochastic scheduling. Mathematics of Operations Research, 17, 255–270.
URL: https://doi.org/10.1287/moor.17.2.255. doi:10.1287/moor.17.2.255.
arXiv:https://doi.org/10.1287/moor.17.2.255.

Weng, W., & Fujimura, S. (2009). Distributed feedback mechanism for just-in-time scheduling
problem, . (pp. 15–20). doi:10.1109/ICIS.2009.12.

Weng, W., & Fujimura, S. (2010). Flexible flow shop scheduling by intelligent multi-agents. In
2010 Eighth ACIS International Conference on Software Engineering Research, Management
and Applications (pp. 113–120). doi:10.1109/SERA.2010.24.

Xia, H., Li, X., & Gao, L. (2016). A hybrid genetic algorithm with variable neighborhood search
for dynamic integrated process planning and scheduling. Computers Industrial Engineering,
102, 99 – 112. URL: http://www.sciencedirect.com/science/article/pii/S0360835216303849.
doi:https://doi.org/10.1016/j.cie.2016.10.015.

Xingbao, H. A. N., Bing, W., & Yabing, N. I. E. (2015). Predictive scheduling for permutation
flow shop subject to new arrival job. In 2015 34th Chinese Control Conference (CCC) (pp.
2732–2737). doi:10.1109/ChiCC.2015.7260056.

Xu, J., Wu, C.-C., Yin, Y., & Lin, W.-C. (2017). An iterated local search for the multi-
objective permutation flowshop scheduling problem with sequence-dependent setup times.
Applied Soft Computing, 52, 39 – 47. URL: http://www.sciencedirect.com/science/article/pii/
S1568494616306007. doi:https://doi.org/10.1016/j.asoc.2016.11.031.

http://www.sciencedirect.com/science/article/pii/S0360835215003873
http://www.sciencedirect.com/science/article/pii/S0360835215003873
http://dx.doi.org/https://doi.org/10.1016/j.cie.2015.09.007
https://doi.org/10.1057/jors.2015.50
http://dx.doi.org/10.1057/jors.2015.50
https://doi.org/10.1007/s00170-003-1961-y
https://doi.org/10.1007/s00170-003-1961-y
http://dx.doi.org/10.1007/s00170-003-1961-y
http://dx.doi.org/10.1109/ICNC.2008.817
http://dx.doi.org/10.1007/BF02248591
http://dx.doi.org/10.1007/BF02248591
http://dx.doi.org/10.1007/BF02248591
https://doi.org/10.1287/moor.17.2.255
http://dx.doi.org/10.1287/moor.17.2.255
http://arxiv.org/abs/https://doi.org/10.1287/moor.17.2.255
http://dx.doi.org/10.1109/ICIS.2009.12
http://dx.doi.org/10.1109/SERA.2010.24
http://www.sciencedirect.com/science/article/pii/S0360835216303849
http://dx.doi.org/https://doi.org/10.1016/j.cie.2016.10.015
http://dx.doi.org/10.1109/ChiCC.2015.7260056
http://www.sciencedirect.com/science/article/pii/S1568494616306007
http://www.sciencedirect.com/science/article/pii/S1568494616306007
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2016.11.031

References 179

Yamamoto, M., & Nof, S. Y. (1985). Scheduling/rescheduling in the manufacturing oper-
ating system environment. International Journal of Production Research, 23, 705–722.
URL: http://dx.doi.org/10.1080/00207548508904739. doi:10.1080/00207548508904739.
arXiv:http://dx.doi.org/10.1080/00207548508904739.

Yang, T., Kuo, Y., & Chang, I. (2004). Tabu-search simulation optimiza-
tion approach for flow-shop scheduling with multiple processors — a case
study. International Journal of Production Research, 42, 4015–4030. URL:
http://dx.doi.org/10.1080/00207540410001699381. doi:10.1080/00207540410001699381.
arXiv:http://dx.doi.org/10.1080/00207540410001699381.

Yenisey, M. M., & Yagmahan, B. (2014). Multi-objective permutation flow shop scheduling
problem: Literature review, classification and current trends. Omega, 45, 119 – 135. URL:
http://www.sciencedirect.com/science/article/pii/S0305048313000832. doi:https://doi.
org/10.1016/j.omega.2013.07.004.

Ying, K.-C. (2007). Solving non-permutation flowshop scheduling problems by an ef-
fective iterated greedy heuristic. The International Journal of Advanced Manufactur-
ing Technology, 38, 348. URL: https://doi.org/10.1007/s00170-007-1104-y. doi:10.1007/
s00170-007-1104-y.

Ying, K.-C. (2009). An iterated greedy heuristic for multistage hybrid flowshop scheduling
problems with multiprocessor tasks. Journal of the Operational Research Society, 60, 810–
817. URL: https://doi.org/10.1057/palgrave.jors.2602625. doi:10.1057/palgrave.jors.
2602625.

Ying, K.-C. (2012). Scheduling identical wafer sorting parallel machines
with sequence-dependent setup times using an iterated greedy heuristic. In-
ternational Journal of Production Research, 50, 2710–2719. URL: http:
//dx.doi.org/10.1080/00207543.2011.588617. doi:10.1080/00207543.2011.588617.
arXiv:http://dx.doi.org/10.1080/00207543.2011.588617.

Ying, K.-C., & Cheng, H.-M. (2010). Dynamic parallel machine scheduling with
sequence-dependent setup times using an iterated greedy heuristic. Expert Systems with
Applications, 37, 2848 – 2852. URL: http://www.sciencedirect.com/science/article/pii/
S0957417409007878. doi:https://doi.org/10.1016/j.eswa.2009.09.006.

Ying, K.-C., Lin, S.-W., & Huang, C.-Y. (2009). Sequencing single-machine tardiness problems
with sequence dependent setup times using an iterated greedy heuristic. Expert Systems
with Applications, 36, 7087 – 7092. URL: http://www.sciencedirect.com/science/article/pii/
S0957417408005873. doi:https://doi.org/10.1016/j.eswa.2008.08.033.

Ying, K.-C., Lin, S.-W., & Wan, S.-Y. (2014). Bi-objective reentrant hy-
brid flowshop scheduling: an iterated pareto greedy algorithm. Interna-
tional Journal of Production Research, 52, 5735–5747. URL: http://dx.doi.
org/10.1080/00207543.2014.910627. doi:10.1080/00207543.2014.910627.
arXiv:http://dx.doi.org/10.1080/00207543.2014.910627.

Yuan, B., Jiang, Z., & Wang, L. (2016). Dynamic parallel machine scheduling with random
breakdowns using the learning agent. International Journal of Services Operations and
Informatics, 8, 1741–5403.

http://dx.doi.org/10.1080/00207548508904739
http://dx.doi.org/10.1080/00207548508904739
http://arxiv.org/abs/http://dx.doi.org/10.1080/00207548508904739
http://dx.doi.org/10.1080/00207540410001699381
http://dx.doi.org/10.1080/00207540410001699381
http://arxiv.org/abs/http://dx.doi.org/10.1080/00207540410001699381
http://www.sciencedirect.com/science/article/pii/S0305048313000832
http://dx.doi.org/https://doi.org/10.1016/j.omega.2013.07.004
http://dx.doi.org/https://doi.org/10.1016/j.omega.2013.07.004
https://doi.org/10.1007/s00170-007-1104-y
http://dx.doi.org/10.1007/s00170-007-1104-y
http://dx.doi.org/10.1007/s00170-007-1104-y
https://doi.org/10.1057/palgrave.jors.2602625
http://dx.doi.org/10.1057/palgrave.jors.2602625
http://dx.doi.org/10.1057/palgrave.jors.2602625
http://dx.doi.org/10.1080/00207543.2011.588617
http://dx.doi.org/10.1080/00207543.2011.588617
http://dx.doi.org/10.1080/00207543.2011.588617
http://arxiv.org/abs/http://dx.doi.org/10.1080/00207543.2011.588617
http://www.sciencedirect.com/science/article/pii/S0957417409007878
http://www.sciencedirect.com/science/article/pii/S0957417409007878
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2009.09.006
http://www.sciencedirect.com/science/article/pii/S0957417408005873
http://www.sciencedirect.com/science/article/pii/S0957417408005873
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2008.08.033
http://dx.doi.org/10.1080/00207543.2014.910627
http://dx.doi.org/10.1080/00207543.2014.910627
http://dx.doi.org/10.1080/00207543.2014.910627
http://arxiv.org/abs/http://dx.doi.org/10.1080/00207543.2014.910627

180 References

Zadeh, L. (1963). Optimality and non-scalar-valued performance criteria. IEEE Transactions
on Automatic Control, 8, 59–60. doi:10.1109/TAC.1963.1105511.

Zangari, M., Mendiburu, A., Santana, R., & Pozo, A. (2017). Multiobjective decomposition-
based mallows models estimation of distribution algorithm. a case of study for per-
mutation flowshop scheduling problem. Information Sciences, 397, 137 – 154. URL:
http://www.sciencedirect.com/science/article/pii/S0020025517305352. doi:https://doi.
org/10.1016/j.ins.2017.02.034.

Zhang, C., Ning, J., & Ouyang, D. (2010). A hybrid alternate two phases particle swarm
optimization algorithm for flow shop scheduling problem. Computers Industrial Engineering,
58, 1 – 11. URL: http://www.sciencedirect.com/science/article/pii/S0360835209000357.
doi:https://doi.org/10.1016/j.cie.2009.01.016.

Zhang, C., Sun, J., Zhu, X., & Yang, Q. (2008). An improved particle swarm optimization
algorithm for flowshop scheduling problem. Information Processing Letters, 108, 204 – 209.
URL: http://www.sciencedirect.com/science/article/pii/S0020019008001567. doi:https:
//doi.org/10.1016/j.ipl.2008.05.010.

Zhang, L., Li, X., Gao, L., & Zhang, G. (2016). Dynamic rescheduling in fms that
is simultaneously considering energy consumption and schedule efficiency. The Inter-
national Journal of Advanced Manufacturing Technology, 87, 1387–1399. URL: https:
//doi.org/10.1007/s00170-013-4867-3. doi:10.1007/s00170-013-4867-3.

Zhang, L., & Wu, J. (2014). A PSO-based hybrid metaheuristic for permutation flow-
shop scheduling problems. TheScientificWorldJournal, 2014, 902950. doi:10.1155/2014/
902950.

Zhang, Y., Wang, S., & Ji, G. (2015). A comprehensive survey on particle swarm optimization
algorithm and its applications. Hindawi Publishing Corporation Mathematical Problems in
Engineering, 2015, 38. arXiv:931256.

Zheng, D.-Z., & Wang, L. (2003). An effective hybrid heuristic for flow shop scheduling.
The International Journal of Advanced Manufacturing Technology, 21, 38–44. URL: https:
//doi.org/10.1007/s001700300005. doi:10.1007/s001700300005.

Zio, E. (2007). An Introduction to the Basics of Reliability and Risk Analysis. World Scientific
Publishing Co. Re. Ltd.

http://dx.doi.org/10.1109/TAC.1963.1105511
http://www.sciencedirect.com/science/article/pii/S0020025517305352
http://dx.doi.org/https://doi.org/10.1016/j.ins.2017.02.034
http://dx.doi.org/https://doi.org/10.1016/j.ins.2017.02.034
http://www.sciencedirect.com/science/article/pii/S0360835209000357
http://dx.doi.org/https://doi.org/10.1016/j.cie.2009.01.016
http://www.sciencedirect.com/science/article/pii/S0020019008001567
http://dx.doi.org/https://doi.org/10.1016/j.ipl.2008.05.010
http://dx.doi.org/https://doi.org/10.1016/j.ipl.2008.05.010
https://doi.org/10.1007/s00170-013-4867-3
https://doi.org/10.1007/s00170-013-4867-3
http://dx.doi.org/10.1007/s00170-013-4867-3
http://dx.doi.org/10.1155/2014/902950
http://dx.doi.org/10.1155/2014/902950
http://arxiv.org/abs/931256
https://doi.org/10.1007/s001700300005
https://doi.org/10.1007/s001700300005
http://dx.doi.org/10.1007/s001700300005

	Table of contents
	List of figures
	List of tables
	Glossary of Symbols and Abbreviations
	1 Background and motivation
	1.1 Introduction
	1.2 Definition of scheduling in a manufacturing system
	1.3 Classification of scheduling problems
	1.4 Computational complexity of scheduling problems
	1.5 Performance measures
	1.6 Research aims and objectives
	1.7 Organisation of thesis

	2 Literature review
	2.1 Introduction
	2.2 Permutation Flow Shop Scheduling Problem
	2.2.1 Exact methods
	2.2.2 Heuristic methods
	2.2.3 Metaheuristic and other methods

	2.3 Mathematical Optimisation models
	2.3.1 Multi-objective Optimisation models

	2.4 Static Scheduling Approaches
	2.5 Dynamic Scheduling Approaches
	2.5.1 Disruptions classification
	2.5.1.1 Machine breakdown
	2.5.1.2 New job arrivals
	2.5.1.3 Scheduling in the presence of different disruptions

	2.6 Solution methods related to dynamic and static scheduling
	2.6.1 Particle Swarm Optimisation
	2.6.2 NEH Algorithm
	2.6.3 Iterated Greedy method
	2.6.4 Biased Randomisation

	2.7 Stochastic Scheduling Approaches
	2.7.1 Simulation-Optimisation

	2.8 Benchmark problem
	2.9 Conclusion

	3 Multi-objective Optimisation model for Robust PFSP under different disruptions
	3.1 Introduction
	3.2 The proposed multi-objective optimisation model for robust PFSP
	3.3 Weighted objectives
	3.3.1 Initial estimate of weights
	3.3.2 A revised weight sensitivity algorithm for MSR model

	3.4 Uncertainties and real-time events
	3.4.1 Machine breakdown
	3.4.2 New jobs arrivals
	3.4.3 Stochastic processing time
	3.4.4 Interaction between real-time events

	3.5 Conclusion

	I Dynamic PFSP under different real-time events
	4 Particle Swarm Optimisation Algorithm for Robust PFSP
	4.1 Introduction
	4.2 Predictive-reactive based PSO framework for robust PFSP
	4.2.1 The initialisation of the PSO algorithm for the PFSP
	4.2.2 PSO Algorithm
	4.2.3 Decoding of Solution

	4.3 An Example of the PSO Algorithm for the PFSP
	4.4 Experiment Results
	4.5 Conclusion

	5 Iterated Greedy Algorithm for Robust PFSP
	5.1 Introduction
	5.2 Predictive-reactive based IG framework for robust PFSP
	5.2.1 The NEH constructive heuristic
	5.2.2 Local Search approach
	5.2.3 IG algorithm

	5.3 Experiment Results
	5.3.1 Comparison Study between PSO and IG algorithms

	5.4 Conclusion

	6 Biased Randomised Iterated Greedy Algorithm for Robust PFSP
	6.1 Introduction
	6.2 Biased Randomised Heuristic
	6.3 Predictive-reactive based BRIG framework for robust PFSP
	6.3.1 BRIG algorithm

	6.4 Experiment Results
	6.4.1 Comparative study between PSO, IG and BRIG algorithms

	6.5 Conclusion

	II Stochastic PFSP under different real-time events
	7 Simulation Particle Swarm optimisation for Robust SPFSP
	7.1 Introduction
	7.2 Simulation based Optimisation
	7.3 The hybrid Sim-PSO framework for SPFSP under different disruptions
	7.3.1 Sim-PSO Approach

	7.4 Experiment Results
	7.4.1 Using reliability-based methods to compare different solutions

	7.5 Conclusion

	8 Sim-Biased Randomised Iterated Greedy for Robust SPFSP
	8.1 Introduction
	8.2 The framework of Sim-BRIG approach for SPFSP under different disruptions
	8.2.1 Integrated Simulation with the BRIG algorithm
	8.2.2 The Sim-BRIG algorithm
	8.2.3 More details about Sim-BRIG algorithm

	8.3 Experimental results
	8.3.1 Comparison between Sim-POS and Sim-BRG

	8.4 Conclusions

	9 Conclusion and future research
	9.1 Conclusion
	9.2 Extensions and future work

	References

