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Abstract

The Permutation Flow Shop Scheduling Problem (PFSP) is a fundamental problem underlying
many operational challenges in the field of logistic and supply chain management. The PFSP
is a well-known NP-hard problem whereby the processing sequence of the jobs is the same
for all machines. The dynamic and stochastic PFSP arise in practice whenever a number of
different types of disruptions or uncertainties interrupt the system. Such disruptions could lead
to deviate the disrupted schedule from its initial plan. Thus, it is important to consider different
solution methods including: an optimisation model that minimise different objectives that take
into account stability and robustness, efficient rescheduling approach, and algorithms that can
handle large size and complex dynamic and stochastic PFSP, under different uncertainties.

These contributions can be described as follows:

1. Develop a multi-objective optimisation model to handle different uncertainties by min-

imising three objectives namely; utility, instability and robustness.
2. Propose the predictive-reactive approach to accommodate the unpredicted uncertainties.

3. Adapt the Particle Swarm Optimisation (PSO), the Iterated Greedy (IG) algorithm and
the Biased Randomised IG algorithm (BRIG) to reschedule the PFESP at the reactive stage
of the predictive-reactive approach.

4. Apply the Simulation-Optimisation (Sim-Opt) approach for the Stochastic PFSP (SPFSP)
under different uncertainties. This approach consists of two methods, which are: the novel
approach that hybridise the Monte Carlo Simulation (MCS) with the PSO (Sim-PSO)
and the Monte Carlo Simulation (MCS) with the BRIG (Sim-BRIG).

The main aim of using the multi-objective optimisation model with different solution methods
is to minimise the instability and keep the solution as robust as possible. This is to handle
uncertainty as well as to optimise against any worst instances that might arise due to data
uncertainty. Several approaches have been proposed for the PFSP under dynamic and stochastic
environments, where the PSO, IG and BRIG are developed for the PFSP under different
uncertainties. Also, hybridised the PSO and the BRIG algorithms with the MCS to deal with



SPESP under different uncertainties. In our version of the approach, the first one is a PSO
algorithm step after which an MCS is incorporated in order to improve the final solutions of
problem. The second approach proposed the hybridisation of the BRIG algorithm with MCS to
be applied on the SPFSP under different uncertainties. The developed multi-objective model
and proposed approaches are tested on benchmark instances proposed by (Katragjini et al.,
2013) in order to evaluate the effectiveness of the proposed methodologies, this benchmark is
based on the well-known instances of Taillard’s (Taillard, 1993). The computational results
showed that the proposed methodologies are capable of finding good solutions for the PESP
under different uncertainties and that they are robust for the dynamic and stochastic nature of
the problem instances. We computed the best solutions and found that they could be highly
promising in minimising the total completion time. The results obtained are quite competitive
when compared to the other models found in the literature. Also, some proposed algorithms

show better performance when compared to others.
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Chapter 1

Background and motivation

1.1 Introduction

Scheduling is a decision-making process that is vital in many manufacturing and services
industries. It deals with the assignment of a set of jobs to a set of machines in a reasonable
amount of time with the goal of optimising one or more objectives (Pinedo, 2016). Scheduling
problems are classified into different types of problems (Pinedo, 2016). One of the most
important scheduling problems is the PFSP, in this problem it does not allow for the job
sequence to change between machines. Because of the priority of the PFSP, we will consider
this problem to be the subject of study in this thesis. There are also different categories
of scheduling problems environments, these are; static, dynamic and stochastic scheduling
problems (Jarboui et al., 2013). The real-life scheduling problems in manufacturing systems are
dynamic and stochastic in nature. Due to the importance of dynamic and stochastic scheduling
in real practical life, researchers addressed the nature of the gap between the scheduling theory
and scheduling practice. There was a considerable gap until the late 1980s before interest
in the subject was rekindled. Considerable studies have been done in the last forty years for
scheduling problems under dynamic and stochastic environments. In dynamic, stochastic
manufacturing environments, managers, production planners, and supervisors must not only
generate high-quality schedules, but also react quickly to unexpected events and subsequently
revise schedules in a cost-effective manner. These events are generally difficult to take into
consideration while generating a schedule, disturbing the system and generating considerable
differences between the predetermined schedule and its actual realisation on the shop floor.
Rescheduling is then practically mandatory in order to minimise the effect of such disturbances
in the performance of the system. There are many types of disturbances that can upset the
plan. Rescheduling is the process of updating an existing production schedule in response
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to disruptions or other changes. The following is a partial list of possible disruptions among

others:

New (urgent) job Arrival.

Cancellation of a job, change to a job’s due date, or other change in job specification.

Machine breakdown, repair, or other failure in status.

Delay in the arrival of required material or other problem with material delivery.

Absentee workers or changes to worker assignments.

Incorrect predictions of setup time, processing time, or other actions.
* Poor quality parts that require rework or manufacture of new parts.

There exists a vast variety of solution methods that have been proposed for a large range
of scheduling problems (Pinedo, 2016). In particular, different solution methods have been
proposed for dynamic and stochastic scheduling problems. Mathematical optimisation models
have been used widely as solution method along with the exact and approximate techniques
to solve the PFSPs. However, PFSPs in real shop floor mainly operates in highly dynamic
and stochastic environments, where there are different real-time events and uncertainties that
could lead to the schedule deviating from its initial plan, and therefore a previously feasible
schedule may turn infeasible when it is released to the shop floor. Such a schedule is defined
as schedule nervous (Steele, 1975), or often referred to as schedule instability. The instability
could be disconcerting to production schedulers who often find that changes come faster than
they could effectively respond to. Now, after more than 40 years of Steele’s publication on
this issue, schedule instability is still an ongoing issue both in real practice as well as in
academic research despite the significant advancement of scheduling systems. For this, it is
very important to consider optimisation models that aim to reduce instability, robustness and
also utility (depending on the problem objectives). Rescheduling is one of main procedures that
are used to accommodate the dynamic disruptions. It uses different approaches typical to the
problem environments and the disruption types. The most well-known efficient approach used
in the dynamic scheduling is the predictive-reactive approach, which is considered in this thesis.
This approach is triggered at the time of disruption, and it uses any suitable algorithm at the
reactive stage in order to accommodate the disruptions. Regarding the solution algorithms, exact
or complete methods are the first proposed methods for different scheduling problems under
dynamic real-time events or stochastic uncertainties, these methods have mainly concentrated

on finding a guaranteed optimal solution for every instances of finite size in a specific time.
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The most proposed well-known exact method for different scheduling problem are Lagrangian
relaxation, dynamic programming, Branch and Bound (B&B), and Branch and Cut. Since the
PFSP belongs to the class of NP-hard (mathematically intractable) problems (Graham et al.,
1979), the computational complexity of the scheduling problem has special attention in the
literature of scheduling. It is defined as a maximum number of computational steps required to
reach an optimal solution. According to the concept of complexity, it may not be possible to
find an optimal solution using the classical algorithms such as exact methods for medium or
large scale problems of NP-hard class, as is the case of scheduling problems (in PFSP, medium
instances size ranging from 50 x 5 to 100 x 20 and large size problems ranging from 200 x 10
to 500 x 20). Hence, alternative methods are proposed, such as; heuristics, metaheuristics, and
so on. Regarding the stochastic scheduling problems, there are different techniques that have
been used in the literature. Recently, the Sim-Opt methods have been applied successfully in
many Combinatorial Optimisation Problems (COP), more precisely, in the SPFS area. In this
thesis, we consider the dynamic and stochastic PFSP under different types of uncertainties.
To solve this problem, we develop a multi-objective optimisation model that consider utility,
stability and robustness and proposed the predictive-reactive approach with different efficient
heuristics, metahueristics and Sim-Opt methods.

1.2 Definition of scheduling in a manufacturing system

Scheduling is the main key for most service and manufacturing systems. It is convenient
to adopt manufacturing terminology with the definition of scheduling, where jobs represent
activities and machines represent resources, while the range of application areas for scheduling
theory are not limited to manufacturing but are extensive. Some of the realistic situations in

which scheduling problems exist are:

» Technological planning of how the jobs should be completed in a manufacturing unit.

Scheduling of aircraft waiting for landing clearance.

Ordering of jobs for processing in a manufacturing plant.

Scheduling of jobs under rental conditions in a non-deterministic environment.

Scheduling of patients waiting in a hospital for different types of tests.

Currently, manufacturing services are facing new challenges for example, shorter product
life cycles, changes in market demand, global competition, and so on. It is crucial for the

manufacturing industries to improve the performance of their production scheduling systems
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under different internal and external uncertainties such as job cancellation, new job arrivals,
machine breakdown, stochastic processing times, and so on. Scheduling solution methods are
very important to reduce the production cost in a manufacturing procedure in order to keep the
company in the forefront of the competitive environment. Different scheduling approaches are
required to allocate jobs to machines, when the manufacturing process experience a lack of
resources and limited execution time or are facing different disruptions. It is vital for industries
to meet the deadline committed to a customer in order to prevent failure, which may lead
to a loss in customer satisfaction. Therefore, the industries are required to schedule tasks in
the shop floor in an efficient method. The combinatorial scheduling problems belong to the
class of representatives of problems. Thus, they are seeking a local optimal solution in the
finite set of potential solutions. Production scheduling in manufacturing systems is continually
assessed so as to manufacture reliable and high-quality merchandises at the given time and
without any delays. These objectives can be achieved by manufacturers relying on some tools
such as shop floor scheduling process, which is considered as the most substantial factor in
the planning of manufacturing systems (Suwa & Sandoh, 2013). The scheduling problem is
employed for different applications of technology and human resources to fulfill customer’s
demands. This function must organise the simultaneous execution of several activities while
accounting for constraints on available resources. According to the shop floor conditions,
jobs and machines perhaps take various shapes. The scheduling problem could have different
formulations depending on the type of the problem, the sets of jobs, machines, the range
of resources and the performance criteria during the optimisation process. For performance
criteria, there are different performance measures that are employed to optimise schedules. For
example, the objective function may consider reducing the total completion time to complete
a sequence of jobs, also the objective function may minimise the Total Weighted Tardiness
(TWT), and so on.

1.3 Classification of scheduling problems

As scheduling is the main key for manufacturing systems, it also plays an important role in
most information processing environments. According to Chryssolouris (2006), there are four

dimensions to classifying scheduling problems as follows:
o Requirement generations.
o Processing complexity.

o Scheduling criteria.
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o Scheduling environment.

The first dimension, is referred to as the distinction between what is called an open shop
versus a closed shop requirements generation. The second dimension, processing complexity,
is concerned primarily with the number of processing steps associated with each production
task or item. Scheduling criteria are measures by which schedules are to be evaluated, and
may be classified broadly into schedule costs and schedule performance measures. The last
dimension is the scheduling environments. A wide range of classification of scheduling problem
models are introduced according to their environment nature. The scheduling environment is
an important component of the rescheduling framework, which is to identify the set of jobs that
need to be scheduled. The classifications of scheduling according to the problem environments

are as follows:

1. Static scheduling
The scheduling problems in which the nature of job arrival is different and a set of jobs
over time does not change are called static scheduling problems. The setup times of jobs
are available beforehand. In other words, the scheduling problems when all elements of
the problems such as the arrival state of jobs at a shop floor, due date of jobs, ordering,
processing time, availability of machines etc. do not include stochastic factor and are
determined in advance are included in this category. Scheduling is called deterministic if
all the attributes needed for constructing a schedule take constant values and they are

known in advance.

2. Dynamic scheduling

The problem of scheduling in the presence of real-time events, termed dynamic schedul-
ing (Ouelhadj & Petrovic, 2008). An example for dynamic scheduling problem where a
set of jobs changes over time and arrival rate of jobs is different. In other words, random
disruptions may interrupt the system, which could change the scheduling plans. The
schedule, which is actually executed on the shop floor, is called the realised (actual)
schedule. This schedule may substantially differ from the initial schedule, depending on
the degree or intensity of disruptions.

3. Stochastic scheduling
The problem is stochastic if some information is not known exactly, i.e. at least one of
the problem elements includes a stochastic factor. For example, the processing time of
jobs are modelled as random variables. The stochastic processing could follow different
disruptions depending on the use of models and systems, the following distributions are
mainly considered in the literature.
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(a) Uniform distribution; A processing time p;; can uniformly be included between
two values a and b. Then, p;; follows a uniform distribution over the interval [a, b].
This kind of distribution is used to provide a simplified model of real industrial
cases. For instance, it has already been used in Gourgand et al. (2010) and Kouvelis
et al. (2000).

(b) Exponential distribution. A processing time p;; may follow an exponential distribu-
tion. Exponential distributions are commonly used to model random events that
may occur with uncertainty. This is typically the case when a machine is subject to
unpredictable breakdowns. For example, processing times have been modeled by
an exponential distribution in Cunningham & Dutta (1973) and Ku & Niu (1986)

among others.

(¢) Normal distribution. A processing time p;; may follow a normal distribution
N(u,o) where u stands for the mean and o stands for the standard deviation. This
kind of distribution is especially usual when human factors are observed. A process
may also depend on unknown or uncontrollable factors and some parameters can
be described in a vague or ambiguous way by the analyst. Therefore, processing
times vary according to a normal distribution Gourgand et al. (2010) and Wang et al.
(2005).

(d) Log-normal distribution. A random variable X follows a log-normal distribu-
tion with parameters u and o if log X follows a normal distribution N(u,o) .
The log-normal distribution is often used to model the influence of uncontrolled
environmental variables. For instance, this modeling has already been used in
Dauzére-Pérés et al. (2010).

The scheduling problems are also categorised into the following problems Pinedo (2016):

* Single Machine Scheduling Problem (SMSP): This problem is defined as the process

of assigning a number of jobs to a single machine.

* Parallel Machine Scheduling Problem (PMSP): In this problem, similar type of ma-
chines are available in multiple numbers and jobs can be scheduled over these machines

simultaneously.

* Flow Shop Scheduling Problem: In FSP, there are n jobs where each job has to be

processed on a series of m machines such that all jobs have to follow the same route.

* Job Shop Scheduling Problem (JSP): In this problem, there are n jobs and m machines

where each job has its own predetermined route through the machines to follow.
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* Open Shop Scheduling Problem: In this case, there are n jobs where each job has to
be processed on each one of the m machines. There are no restrictions with regard to the
routing of each job through the machine environment, this mean different jobs may have
different routes. Also, some of the jobs processing times may be zero.

1.4 Computational complexity of scheduling problems

Computational complexity of a problem is defined as a maximum number of computational
steps required to reach an optimal solution. The concept of complexity point out to the
computing attempt needed by a solution algorithm. Computing attempt is represented by
order-of-magnitude notation. Assume a specific proposed algorithm is employed to find the
solution for problem of size n (for PFSP n represents the number of jobs). Then the total
number of computations needed by the algorithm is usually restricted by a function of the
number of jobs n. When the number of required computations is a polynomial function of n,
then the algorithm is polynomial. For example, the order of magnitude function of n2, which is
denoted as O(n?). On contrary, when the function order of magnitude is not polynomial then
the algorithm is called an exponential or non-polynomial. For instance, the order of magnitude
function of 2" is an exponential and it denotes as O(2"). Depending on the problem complexity
in the literature, all problems are classified into P (polynomial) class and NP (non-polynomial)
class. The first type of classes P is defined as all problems with the property that the execution
time of the solution algorithm increases polynomially with the size of problem. On the other
hand, the NP class consists of the problems, which are the time required for solution execution
is grows exponentially. The algorithms that execution time grows polynomially are more
preferred in real practice, since such algorithms obtained the solution in a reasonable time.
However, some practical COPs are non-deterministic polynomial-time hard (NP-hard). For
example, the scheduling problems are NP-hard (Graham et al., 1979). According to the concept
of complexity, it is may not possible to find an optimal solution using the classical algorithms
such as exact methods for large scale problems of NP-hard class, as the case of scheduling
problems. For this, an alternative methods are proposed such as heuristics, metaheuristics, and

SO on.

1.5 Performance measures

In scheduling, it is usually difficult to state objectives as there are many complex and often
conflicting objectives. The objective functions are called regular performance measures when

the functions are non-decreasing in Cy, ...,C, where C;, i = 1,...,n are jobs completion times.
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A noticeable number of scheduling problems with regular performance measures have been

studied in the literature. Some commonly discussed regular performance measures among

others are (Framinan et al., 2014):

1.

Makespan C,,,;,: The makespan is defined as the maximum completion time of the last
job completed in the system. It can be seen as the time required to finish the scheduling
plan completely since it measures from the time the first job starts processing, which
is usually assumed to be zero (unless release times or other constraints exist), to the
time the last job in the processing sequence is finished on the last machine it uses. The
makespan is considered as one of the most common objective that have been studied in
the literature of PFSPs.

Total Completion Time (}_;C; ): The sum of the completion times of all jobs is called
the total completion time. The performance criteria of this measure is very important
for scheduling problems so as to increase the maximum utilization and productivity of

resources.

. Total Weighted Completion Time (Y ;[w;C;]): Itis the sum of the weighted completion

times of all jobs. The total weighted completion time is related to maximising system

utilization and work in process work-in-process inventory.

Total Weighted Tardiness (Y ;[w;7;]): This is a more general cost function than the
total weighted completion time. It is related to job due dates where the tardiness is
defined as follows: 7; = max(0,L;) Where L; is lateness of job j, and is defined as the
difference between the job completion time (C;) and its due date (d;), hence L; = C; —d;.
Tardiness ignores negative lateness values, the tardiness and lateness functions are shown

in Figure 1.1.
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Fig. 1.1 Tardiness and Lateness functions
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5. Weighted Number of Tardy jobs (¥ ;[w;U;]): This objective has both academic and
practical values. It is related to job due dates. For example, late delivery implies a
penalty in the form of loss of goodwill and the magnitude of the penalty depends on
the importance of the order or the client and the tardiness of the delivery. One of the

objectives of the scheduling system is to minimize the sum of these penalties.

In the literature of scheduling, the majority of research addressed only the single objective
for scheduling problems. However, the multi-objective performance measures for scheduling
problems have considered a lot of attention since 1980 and since then research has reported
the case of multi-objective shop scheduling problems. The main reason of considering multi-
objective performance measures for scheduling problems is the companies environment nature,
which could be conflicting, dynamic and/or stochastic, companies strive to attain multiple
performance measures to ensure keeping in a good situation. The multi-objective models of
scheduling problem have been considered by different researchers. However, the majority of
researches were restricted to two or three objective performance measures. Developing ap-
proaches for manufacturing scheduling environments have been given a considerable coverage
and effort in the literature. However, only few researches were successful in the practical
solving of real life scheduling problems, while the majority of researchers rely on highly
theoretical and unrealistic assumptions. Therefore, implementation of such approaches are
generally impractical for scheduling problems in manufacturing environments of the real world,
which are conflicting, dynamic, stochastic and complex in nature. Actually, the most real
manufacturing scheduling problems are subjected to different perturbations because of a vast
extent of dynamic and stochastic uncertainties. Some uncertainty examples are; machine
breakdowns, new job arrivals, stochastic processing times, job ready times variation, and so
on, these disruptions can delay a schedule’s completion time. Some disruptions have a major
effect on the system performance. For example, machine breakdown is consider as one of
the most significant disruptions in shop scheduling problems. To minimse the effect of such
uncertainties on the scheduling in manufacturing systems under dynamic and/or stochastic
environments, two important measures have been studied in the literature (Cowling et al., 2004)
namely; stability and robustness. The stability measure is defined as the schedule that does
not deviate the completion time of the unaffected operations from the original schedule in a
disrupted situation, while the robustness measure is the schedule performance, which does
not deteriorate in a disrupting situation. These two measures have been proposed with the
utility (makespan) measure implicitly. The utility, stability and robustness measures have the
following assumptions: let n be the number of jobs where the jobs index is j =1,2....n,
and let m be the number of machines where i = 1,2....m is the machines index. Now the

performance measures mentioned can defined as follows:
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* Makespan: The most common objective for the PFSP is the minimisation of the maximum
total completion time }_ ;C;, this is referred to as makespan. This measure is aiming to
indicate the degree of optimisation of the scheduling problem where the completion time
is the time at which processing time of last operation at the job j is completed.

* Stability: This measure is to indicate the deviation between the new schedule and the
baseline.

* Robustness: This measure is to calculate the difference between the completion time of
the baseline and new schedule.

These performance measures are studied in details in this thesis

1.6 Research aims and objectives

As we explained previously, real world manufacturing system usually operate in highly dynamic
and uncertain environments, where random disruptions may cause non-optimal performances
for scheduling problem. In addition, real world manufacturing scheduling is generally too
complex and they are large scale problems. However, the robust dynamic and stochastic
scheduling is rarely addressed in the literature, and hence, we aim to consider the gap between
scheduling theory and practice and try to narrow it by discussing the dynamic PFSP and SPFSP
under different uncertainties. The aim of this thesis can be summarised in the following points:

1. Consider the challenging dynamic PFSP and SPFSP under different uncertainties with
the aim of proposing efficient frameworks and solution methods for these problems.

2. Design a multi-objective optimisation model that consider utility, stability and robustness
for the PFSP under uncertainties to accommodate the disruptions that effect the schedule
plan, in order to prevent the new schedule deviating too much from its initial plan.

Also, the novel research contributions for achieving the aims can be summarised as follows:

* Propose efficient predictive-reactive approach to handle the effect of different real-time

events on the scheduling system.

* Propose efficient and simple IG, its randomised version and PSO and develop these meth-

ods with the predictive-reactive approach to solve the PESP with different disruptions.

* Design a Sim-Opt framework by considering the case where the PFSP is stochastic

and under different disruptions simultaneously. The propose framework consist of the
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integration of MCS with BRIG and then with the PSO to handle dynamic and stochastic
uncertainties for the PFSP with the consideration of minimising the utility, stability and

robustness simultaneously.

The following two goals are necessary for such algorithms to be efficient methods: exploration
and exploitation. The exploration ensures that the majority of areas of the solution space
domain are explored well to obtain a good local optimum solution. On the other hand, the
exploitation focuses the search direction procedure near the best solutions obtained in order
to explore the neighbourhoods of the best found solution to potentially find better solutions.
For this, in this thesis we consider more techniques to be used implicitly such as the Nawaz,
Enscor, and Ham (NEH) heuristic and Local Search (LS) procedure.

1.7 Organisation of thesis

Eight chapters presented in this thesis are organised as follows:

Chapter 1: Background and motivation

This chapter is structured as follows; the concept of scheduling including basic applications
and solution methodology are introduced first then the justification provided, the motivation
aim of research and research objectives.

Chapter 2: Literature review and research gap

The purpose of this chapter is to provide a literature review of the base knowledge that is
already available about PFSPs in dynamic and stochastic environments. This chapter will
also highlight the solution proposed frameworks, methodologies and problems that related to
different parts of the PFSPs in uncertain environments. Finally, the recent gap in the literature
is presented and the conclusions of this chapter are summarised.

Chapter 3: Multi-objective Optimisation model

This chapter introduce the multi-objective optimisation model and discusses the benchmark
instances of the PFSP with different uncertainties. The multi-objective optimisation model
address three important measures, namely; utility to minimise the makespan, the stability to
minimise the problem noise due to different uncertainties interruptions and robustness measure
to keep the current schedule robust in face of different disruptions. Moreover, this chapter
explain the generation of the benchmarks of dynamic PFSP and SPFSP including the different
real-time events. Finally, the sensitivity analysis technique that is used to generate the objectives
weights is discussed in this chapter.

Chapter 4: Particle S warm Optimisation Algorithm

This chapter shows the adaption of the evolutionary PSO algorithm for the predictive-reactive

approach with the proposed multi-objective optimisation model to generate robust and stable
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schedule for the dynamic PFSP under machine breakdowns and new job arrivals. The exper-
imental results of the proposed multi-objective optimisation model compared against other
models to test our model efficiency. Finally, a statistical Analysis of Variance study (ANOVA)
is used to find the effect of different models on the solution efficiency under the state of different
real-time disruptions.

Chapter 5: Iterated Greedy Algorithm

This chapter introduce the 1G algorithm for the predictive-reactive approach and our multi-
objective optimisation model to solve the dynamic PFSP under different real-time events. This
algorithm has been implemented to determine the local optimal solution for the problem and
improve the solution by using other techniques implicitly including the NEH heuristic which is
used to generate initial solution to the IG algorithm, and LS procedure to improve the solution
in the algorithm. An experimental study and ANOVA is conducted to study the effect of
different proposed models on the problem performance under uncertainty situation. Finally,
comparative study between IG and PSO algorithms is discussed in this chapter.

Chapter 6: Biased Randomised Iterated Greedy Algorithm

In this chapter, the BRIG algorithm with randomisation techniques are explained and adapted
for the predictive-reactive approach to solve the dynamic PFSP under different real-time events.
This algorithm has been implemented to determine the local optimal solution for the problem
and consider the stability and robustness by using the proposed multi-objective optimisation
model that introduced in chapter three. An experimental study and ANOVA is conducted to
study the effect of different proposed measures on the problem performance under uncertainty
situation. Also, comparisons between the BRIG, the IG and the PSO algorithms are imple-
mented to test the performance and speed of algorithms.

Chapter 7: Simulation Particle Swarm optimisation method

This chapter presents the framework of the novel Sim-PSO for the SPFSP under different
real-time events. The summary of the results, recommendations and scope for the algorithm
are given in this chapter including the reliability analysis to compare different dynamic and
stochastic solutions.

Chapter 8: Sim-Biased Randomised Iterated Greedy Algorithm

In this chapter, a Sim-BRIG approach is proposed and implemented to solve the SPFSP under
different real-time events, with the goal of minimising three measures, which are; utility, insta-
bility and robustness, simultaneously. The experimental results and conclusions are given at the
end of this chapter, including a comparative study between the Sim-BRIG and the Sim-PSO
algorithms.

Chapter 9: Conclusions and future works

This chapter presents the conclusions, summary of the results, recommendations and domain
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for future work in the direction of dynamic PFSPs and SPFSPs under different uncertainties. It
also discusses the specific contributions made in this research work and the limitations there
in. This chapter concludes the work covered in the thesis with implications of the findings and
general discussions on the area of research.






Chapter 2

Literature review

2.1 Introduction

The previous chapter highlights the background and the concept of scheduling problems in
manufacturing systems. The shop scheduling problems considered are complex and hard
problems to be solved due to the fact that they belong to the NP-hard class (Graham et al., 1979)
in addition when the problem under dynamic and/or stochastic environments and with multiple
performance measures. Until today, most research has been done on the static PFSPs with less
research being considered for the PFSP under dynamic and stochastic environments. This lack
of research is due to the complicated scheduling approaches for such systems to guarantee the
best employment for the scheduling system and to reduce the instability, also keep the schedule
robust in the face of different uncertainties. This chapter provides sufficient reliance for the
related approaches and the relevant gap in the previous literatures corresponding to the dynamic
and stochastic PFSP in the presence of uncertainties. The existing literature about the PFSP is
widely categorised depending on the problem environment (static, dynamic and stochastic), the
optimisation models and on the solution approaches. According to this restriction, this chapter

is conducted from the next points of view:

1. A review of the PFSP and the solution methods for this problem that existed in the

literature.

2. A review of the advanced scheduling techniques that have been used for the PFSP
effectively under different environments (static, dynamic and stochastic).

The overall aims of this chapter are given as follows:

* To summarise the PFSP (static, dynamic and stochastic) and the advanced solution

techniques that handle this problem.
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* To identify the research limitations in the existing approaches to static, dynamic and

stochastic scheduling.
* To highlight the objectives of research for this thesis.
* To present the research outline to achieve the objectives of this research.

The classification of this chapter is shown in Figure 2.1. Furthermore, the literature gap that is
pertinent to this work and solution methodologies are given in the following sections.

Scheduling
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| Stochastic! | Dynamic Static PRSP
\Scheduling! |Scheduling| [Scheduling
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Multi-objective models
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Solution Approaches
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Fig. 2.1 Structure of the literature review

Figure 2.1 shows the path of introducing the literature review in this chapter.
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2.2 Permutation Flow Shop Scheduling Problem

The PFSP is defined as a set of n-independent jobs that has to be executed on a set of m-
independent machines. On each machine, each job has a fixed processing time value p;; > 0.
Also, each machine can process at most one job at a time, and the processing sequence of the
jobs is the same for all machines, i.e., the job passing is not permitted. The definition of the
PFSP dates from over seventy years. Since then, a large number of papers have been published
about this problem and its variations. In this section, we present the literature related to the
PFSP without focusing on the problem environments. However, the PFSP under dynamic and
stochastic environments and uncertainties types will be discussed in details in the following
sections. The early research on Flow Shop Scheduling Problem (FSP) is mostly based on
Johnson’s rule Johnson (1954). This work introduced the PFSP on an environment formed
by two machines where the criterion is to minimise the makespan. The PFSP of n-jobs on
m-sequential machines with the objective of minimising makespan is proven to be NP-hard
(Graham et al., 1979), (Kan, 1976) and can be solved exactly for only small size problems.

Because of this intractability, many authors proposed various techniques to solve this problem.

2.2.1 Exact methods

In the literature of PFSP, different solution methods have been developed and applied for
this problem. Emmons & Vairaktarakis (2012) introduced the different methods including
exact, heuristics and metaheuristics that were used for FSPs and hence PFSP. The first methods
that were developed and proposed for the PFESPs are exact methods. However, such methods
were successful for small size instances. In 1970, the PFSP has been reviewed by James &
Michael (1970). Then, Campbell et al. (1970) studied the problem highlighting the strategy of
solutions and diverse optimisation objectives. Ignall & Schrage (1965) were the first authors
that introduced the B&B method for PFSP with minimising the makespan. Hariri & Potts
(1989) proposed the B&B algorithm to minimise the number of late jobs in a PFSP. They
proposed a technique of basing a lower bound on the simultaneous consideration of easily
solved sub-problems of a SMSP. Carlier & Rebai (1996) applied two B&B algorithms to
minimise the makespan for the PESP. Hejazi & Saghafian (2005) provided a comprehensive
survey of FSPs subject to the minimisation of the makespan. This study also surveyed for small
size instances some exact techniques and for larger size constructive heuristics approaches,
metaheuristic and evolutionary methods. Moreover, the author introduced contributions from
early research of Johnson (1954) until modern methods of metaheuristics in 2004.
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2.2.2 Heuristic methods

Another methods that has been applied successfully for even large size PFSP instances are
heuristics. Dudek & Teuton (1964) developed an m-stage rule for the PFSP subject to the
minimisation of the idle time accumulated on the last machine when executing each job
by employing the basic ideas of Johnson’s rule. Palmer (1965) introduced the Slope Index
Heuristic algorithm, which can be applied to large size problems even for hand calculations.
This heuristic algorithm first calculates a slope order for each job, and then sequences the jobs
according to the slope orders. This gives priority to the jobs with the strongest tendency to
progress from short times to long times in the sequence of operations. Gupta (1971) presented
an adjustment of Palmer’s Slope Index which utilised some resemblance between sorting and
scheduling problems. In a similar way, for the PFSP, Bonney & Gundry (1976) studied the
idea of employing the geometrical properties of the jobs cumulative process times and a Slope
Matching approach. Dannenbring (1977) attempted to integrate the advantages of the heuristic
procedures introduced by Campbell et al. (1970). This approach is termed the Rapid Access
technique where it aims to provide a quick and successful schedule by constructing an artificial
2-machine problem such that the processing times were specified from a weighting technique
and then solved by using Johnson’s rule. Nawaz et al. (1983) proposed an NEH heuristic for the
PFSP to minimise the makespan. It basically uses the idea that jobs with high processing times
on all the machines must schedule as early as possible before the jobs with less processing
times. Hence, the heuristic NEH algorithm is based neither on Johnson’s algorithm nor on
Slope Indexes. However, the only obstacle is that a total of @ — 1 schedules must be
computed, being n of those schedules complete sequences. Framinan et al. (2004) introduced
a classification and review of heuristics for the PESP under the objective of minimising the
makespan. Also, Framinan et al. (2002) and Ruiz & Maroto (2005) introduced a comprehensive
review and evaluation of PFSP heuristics, while a statistic review was introduced by Reisman
et al. (1997). Ruiz & Stiitzle (2007) introduced one of the most efficient heuristic for the
PFSP with minimising the makespan, which is the IG algorithm. This algorithm showed an
extraordinary performance in reaching high quality solutions in reasonable computational time.
Dong et al. (2015) applied a Self Adaptive Strategy for the Iterated Local Search (ILS) on the
PFSP where the criterion is to minimise the Total Flow Time (TFT). Sharma et al. (2016) made
an attempt to minimise the makespan for the m-machine FSP and compare the complexity
time for this problem by reducing the sequences and to finding an optimal or near optimal
makespan, where the CDS heuristic algorithm was proposed. Shao & Pi (2016) presented a
self guided Differential Evolution (DE) with Neighbourhood Search for the PFSP where the
criterion is to minimise the makespan. Rossi et al. (2017) addressed the PFSP with the criterion
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of minimising the TFT. They developed heuristic methods that provide high-quality solutions

with computational efficiency for this problem.

2.2.3 Metaheuristic and other methods

To solve the PFSP, a broad different metaheuristic approaches, which require fewer computa-
tions were used in the literature to generate a local optimal solutions. Some of these methods
are; PSO algorithm, Genetic Algorithm (GA), Tabu Search (TS), Simulated Annealing (SA) and
more. The first article discussing the application of PSO for solving the PFSP was presented
by Tasgetiren et al. (2004). Also, Rajendran & Ziegler (2004) studied the use of Ant Colony
Optimisation algorithm for the PFSP with the criteria of minimising both the makespan and
the sum of the TFT of jobs. Moreover, Solimanpur et al. (2004) proposed a TS algorithm
with neural networks for PFSP. Liu & Liu (2013) presented a hybrid discrete Artificial Bee
Colony method for the PFSP with the minimisation of makespan. Bargaoui & Driss (2014)
applied a Multi-Agent model based on a TS method to solve the PESP. Mirabi (2014) developed
one novel Hybrid GAs for the FSP with minimising the makespan. Robert & Kumar (2016)
proposed the hybridisation of GA and SA algorithms for the PFSP to minimise the makespan.
They compared this method against PSO and a Bacterial Foraging Optimisation algorithms. In
this work, the obtained results demonstrated the viability of the proposed method. A novel PSO
algorithm for the PFSP subject to the minimisation of the makespan was proposed by Jia et al.
(2016). To adjust the PSO algorithm for discrete problems, some improvements and correspond-
ing procedures were used. Li et al. (2015) employed the PSO algorithm by using the advantage
of the swarm feature to determine the best particle in the solution space for the PFSP with the
criteria of minimising the makespan. In the first step an initial solution was generated by the
NEH heuristic. Then, they used some optimised strategy to set the parameters acceleration
constant and nonlinear inertia weight strategy which is based on random self-adaptive by means
of a Chaos method for setting parameters. Deng & Wang (2017) proposed a multi-objective
Memetic Search Algorithm (MSA) for the distributed PFSP with the bi-objective function
of both the makespan and TFT criterion. They first used the NEH algorithm to initialise the
population to improve initial solution quality. Then they applied a Global Search Embedded
with a perturbation operation to enhance the solution of the whole population. Moreover, the
author employed a Single Insert Based LS technique to enhance each individual and then used a
further LS strategy to determine a better solution for the non-improved individual in the Single
Insert Based LS. Bessedik et al. (2016) studied the hybrid GA Based Artificial Immune System
(AIS) for the PFSP with the makespan objective. The presented hybridisation technique was
used in two trends: the first way is the hybrid of GA and AIS Vaccination (Jiao & Wang, 2000)
into the field of GAs based on the theory of Immunity in biology. The second considered its
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inspiration on the Immune network theory (Perelson, 1989), and applied it to the field of GAs.
Greedy Randomised Adaptive Search Procedure metaheuristic for the scheduling problem
in a PFSP environment in order to minimise the TWT was proposed by Molina-Sdnchez &
Gonzalez-Neira (2016).

A number of selecting studies are also introduced in the following sections, concentrating on
some of the key domain research. The aim of most of this search is to diminish the existence gap
between scheduling theory and practice. The early literature extend back to the 1960s where
Dutton (1962), Dutton (1964) tried to capture scheduling practice in a box manufacturer from a
simulation model of scheduler behavior. Noticeable research efforts in the last four decades
have been done to develop different approaches to support scheduling under real circumstances,
Maccarthy & Liu (1993), introduced the failure of classical scheduling theory to respond to the
needs of practical environments, and recent trends in scheduling research attempt to make it
more relevant and applicable. Jackson et al. (2004) introduced a new model to understand and
describe scheduling in real manufacturing industry. Mathematical optimisation models play an
important role in scheduling solution approaches. Thus, in the following section, we introduce

briefly the literature of optimisation models related to the problem under study.

2.3 Mathematical Optimisation models

The initial formulations of mathematical optimisation models for scheduling problems may be
traced back to the late of 1950s. At that time, a few solution approaches were recognised to
solve different types of mathematical optimisation models. However, there were no applicable
computing technologies for the existing solution methods. The gap between computing tech-
nologies and mathematical models turn many practitioners to use mathematical models widely
as their basic way that could obtain optimal solutions. The impact of this problem discour-
age both academics and practitioners, as computational technologies and alternative solution
approaches could not handle large size problems. It is clear that mathematical programming
would be considered as the best way to generate optimal solutions if computational technology
could keep up. However, this problem did not stop researcher in academia from continuing to
develop mathematical models as a portion of their solution methods in the hope of reaching the
day where solving the mathematical models to optimality is possible. This hope was considered
as unattainable in the imagination of many researchers. Thus, many researchers believe that the
problem of reaching optimality could not be solved unless supercomputers were discovered. On
the other hand, few researchers thought it is possible to solve mathematical models to optimality
for small and medium-sized instances using the available technology at that time. For this,

they worked to adapt modeling methods such that the decision variables and constraints of the



2.3 Mathematical Optimisation models 21

mathematical models were significantly reduced. Although the single-objective PFSP has been
broadly studied, investigations about multi-objective PFSP have not been covered as much as

the single objective.

2.3.1 Multi-objective Optimisation models

Initial work on the weighted sum method for multi-objective problems can be found in Zadeh
(1963). The context of instability or nervousness first started being used by Steele (1975), the
author refers to the significant changes occurring in Material Requirement Planning Systems.
Different scheduling formulations that could lead to different robust and stable schedules where
formulations consider different efficiency measures. There are some studied in the literature
about efficiency measures. However, there are not much studies considering the weaknesses
of continuously introducing changes in the schedule (Rangsaritratsamee et al., 2004). Chang
et al. (2002) presented the Gradual Priority Weighting method to search the Pareto optimal
solution for the multi-objective FSP, which has the following objectives; makespan, TFT,
total tardiness and maximum tardiness. The presented solution methods search the feasible
solution space starting from the first measure and towards the remaining measures step by
step. Coello et al. (2004) proposed a method where the Pareto dominance integrated with the
PSO such that the approach will have the ability to deal with multi-objective functions. Qian
et al. (2006) introduced a DE based hybrid algorithm for multi-objective PFSP. Geiger (2008)
tested the LS metaheuristic for multi-objective PESP. Their work was based on two important
principles of heuristic search, which are; intensification through Variable Neighbourhoods
(VN), and diversification through perturbations and successive iterations in favorable regions
of the search space. Geiger (2006) proposed an investigation of the search space topology in
the context of global multi-objective PFSP. He showed that for the single objective problems
a single global optimum has to be identified, while the multi objective problem need the
identification of whole set of equalities. The significance of this work was shown in the context
of metaheuristic LS methods for which meaningful implications derive. Mokotoff (2009)
developed the multi-objective SA models for the multi-objective PFSP to provide the decision
maker with high quality solutions. Rahimi-Vahed & Mirghorbani (2007) used the concept of
the Ideal Point and a new multi-objective PSO method to solve the bi-objective PFSP with
minimising both the weighted mean completion time and weighted mean tardiness. Wang
et al. (2008) provided a comprehensive survey of multi-objective scheduling. They considered
some basic concepts and prevalent approaches for multi-objective optimisation. As well they
discussed several multi-objective scheduling models and a recent study on them. Rahimi-Vahed
& Mirzaei (2008) applied a multi-objective Shuffled Frog Leaping approach to a bi-objective
PFSP with the minimisation of the weighted mean completion time and the weighted mean



22 Literature review

tardiness. Lei (2008) provided an extensive review of the literature on the scheduling problems
with multiple objectives, among others. Also, a complete review of the literature for multi
objective FSPs including Objective Weighting approach introduced by Minella et al. (2008).
Qian et al. (2009) presented a hybrid DE algorithm to solve multi-objective PFSP with limited
buffers between consecutive machines. They used a Largest-Order-Value rule to modify the
continuous values of individuals in DE to job permutations, and hence, adjust the DE to
solve scheduling problems. The authors also applied a LS based on the landscape of the
multi-objective PFSP with limited buffers. Moreover, the Pareto dominance concept was
applied to deal with the multi-objective nature. Sun et al. (2011) introduced a complete
review of previous and recent methods on the multi-objective FSPs. They firstly gave a wide
description and the complexity of these problems. They also provided a classification of
multi-objective optimisations and presented an analysis of the publications on the proposed
problem. Sioud et al. (2015) presented an algorithm that hybridising the principles of a GA and
AIS introduced to solve the multi-objective PFSP with sequence-dependent setup times where
the makespan and the total tardiness were the two objectives studied. For a literature review of
the contributions to multi-objective PESP we refer to Yenisey & Yagmahan (2014). Rahmani
et al. (2014) proposed a multi-objective Mixed Integer Linear Programming model for the
FSP with stochastic parameters. The multi-objective functions considers minimising each of
makespan, TFT and total tardiness, simultaneously. The authors apply the Chance Constrained
Programming method and Fuzzy Goal Programming to handle multi-objective function and the
stochastic parameters. Amirian & Sahraeian (2016) presented a modification of multi-objective
DE based on SA to solve a general tri-objective non-PFSP. The flow shop system considers the
release dates, machine breakdowns, past-sequence-dependent setup times and learning effect for
all the jobs. The algorithm proposed to tackle such a model combines the robustness of DE with
the rapid convergence and conditional diversification of SA. Entezari & Gholami (2015) applied
the Weighted Sum method to the multi-objective optimisation model of Flexible Flow shop
Scheduling Problem (FFSP) with unexpected arrivals of new jobs. To solve the no-idle PFSP
with the objective of minimising the total tardiness, Shen et al. (2015) proposed a Bi-Population
Estimation of Distribution algorithm. For a multi-objective FSP, Tiwari et al. (2015) proposed
the Pareto optimal block-based Estimation of Distribution Algorithm using bivariate model.
Li & Li (2015) used a multi-objective LS based decomposition for the multi-objective FSP
problem with and without sequence dependent setup times where the bi-objective function is to
minimise the makespan and TFT. The proposed method decomposes a multi-objective problem
into sub-problems of single objectives employing an Aggregation approach and optimise them
simultaneously. Leisten & Rajendran (2015) proposed a new criterion in a PFSP that aims to

reduce the gap between the completion times of each two consecutively scheduled jobs. The
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authors compared some solution methods and discussed the influence of scheduling decisions
on other systems related to this scheduling system by employing a new criterion. Deng & Wang
(2017) presented the Memetic Algorithm (MA) to solve the multi-objective distributed PFSP
with the bi-objective function of makespan and total tardiness. Lu et al. (2016) introduced a
solution approach for a real-world scheduling problem of a welding process. This problem
was formulated as a new multi-objective Mixed Integer Linear Programming model. Then a
multi-objective discrete grey wolf optimiser was proposed to handle this problem. based on
the NEH heuristic, Liu et al. (2016a) proposed a heuristic approach to solve the PFSP with
the bi-objective function that minimise the makespan and machine idle time. de Siqueira et al.
(2016) showed the implementations of two metaheuristics based on GAs for solving the multi-
Objective hybrid FSP Problem. These two implemented metaheuristics were known as second
generation methods of evolutionary multi-objective algorithms. Li & Ma (2016) presented a
novel multi-objective MSA for the multi-objective PFSP. Hassanzadeh et al. (2016) developed a
new metaheuristic technique to solve an integrated multi-objective production distribution FSP.
This problem had two objectives where the first one concentrated on minimising makespan
and TWT, while the goal of the second objective function was to minimise the summation of
total weighted earliness, inventory costs, total weighted number of tardy jobs and total delivery
costs. Zangari et al. (2017) introduced a novel general multi-objective Decomposition-based
Estimation of Distribution algorithms using Kernels of Mallows models for solving multi-
objective PFSP, this minimised the TFT and the makespan. Finally, the multi-objective PFSP
with sequence-dependent setup times of minimising the makespan and TWT was introduced by
Xu et al. (2017). They designed a multi-objective ILS to solve this problem.

2.4 Static Scheduling Approaches

Static problems are fully defined in the literature of scheduling, even theoretically, they can
be solved to optimality. Generally, exact methods applied together with the formulation
of the scheduling problems. This formulation could be dynamic programming, constraint
programming or mathematical programming, which is then solved by a complete and systematic
search of the solution space. Numerous complex scheduling problems have been formulated as
Mixed Integer Linear Programming model (MILP) (Pan & Chen, 2005), which were usually
solved by the B&B method. The methods used to solve static scheduling problems are explained
in figure 2.2.

Practical scheduling problems (not small size problems) are usually very complex to be
solved to optimality by exact methods in a reasonable amount of time. For this, the need

of heuristics and other techniques have been raised. Such techniques concentrate on finding
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a good local optimal solution in a short time. Heuristics can used exact-based methods by
restricting the exploration of the solution space to specific parts, or by limiting the time of
running the algorithm, after which the best solution found so far is returned. A simple kind
of heuristic method for scheduling problems are Dispatching Rules, these methods construct
solutions gradually by scheduling one operation at a time. At any time, when there are jobs
waiting to be processed on an available machine, a priority index for each job is calculating by
Dispatching Rules as a function of some job and machine features, for example, job due date
or weight, also, machine current setup, and schedule only the imminent operation of the job
with the highest priority. Due to lack of a global perspective on the problem, Dispatching Rules
produce less quality solutions when compared to other complex heuristic methods. However,
their local horizon allows them to be processed very readily. Regardless of the complexity of
the overall problem. An alternative search-based heuristics are known as metaheuristics. Such
methods start to generate initial solutions (randomly or using heuristics methods) where they
explore the solution space to improve upon by means of LS techniques in incorporation with
additional techniques, which prevent them from remaining in local optima and seeking more
new locations from the space. A well-known branch of metaheuristic methods are evolutionary
algorithms, these methods have been widely used for scheduling problems (Dahal et al., 2007).
There are different types of search-based heuristics, which are based on decomposing the
scheduling problem into sub-scheduling problems of smaller sizes. Such methods are called
Decomposition methods, which can solve the complex scheduling problem more easily. The
partial sub-scheduling solutions are then recombined to obtain a final overall solution to the
given scheduling problem. For static scheduling problems, the Decomposition approaches
are usually machine-based such as the well-known Shifting Bottleneck heuristic or job-based
Decomposition (Mason et al., 2002), (Pinedo, 2016). Market-based approach is another
procedure which is based on local decision making (Toptal & Sabuncuoglu, 2010). In this
approach, the scheduling decisions were modeled as a negotiation process between agents
related to the jobs and agents representing the machines. Each job agent has a specific budget
that can employed to pay for a processing time on the needed machines. The job agent calls for
bids to which the agents of the machine(s) can execute the operation of a job they reply to keep
a time slot for this job operation, where each bid has a time slot and price that is determine by
the machine agents with the objective of maximising their own utility. Then the job agent can
choose the bid with the best value for money, that way scheduling the operation of a job. The
application of Market-based approaches have the challenge of determining the good budgets,
also, acceptance rules and effective pricing that are probably will be problem-specific. Finally,
Machine Learning techniques were also addressed in the static scheduling problems (Pinedo,

2016). To solve this problem, these techniques were used inference from good solutions to
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similar instances. Therefore, they can only be used in combination with another method or a
human expert, which or who generates solutions to example problems that can be used to train

the Machine Learning algorithm.

2.5 Dynamic Scheduling Approaches

Unlike static problems, dynamic ones cannot be solved optimally since the optimal schedule
depends on future unpredictable real-time events which only happen after a schedule has
been executed. The main feature of dynamic scheduling solution approaches is the way of
considering different types of unpredictable real-time events, which have the proactive or
reactive shape. Figure 2.3 shows the different dynamic scheduling approaches based on the
surveys by Aytug et al. (2005), Ouelhadj & Petrovic (2008) and the general overview of the
FSP under uncertainties (Gonzalez-Neira et al., 2017).

From figure 2.3, dynamic scheduling has been defined under three categories (Vieira et al.,
2003); (Aytug et al., 2005):

* Completely-Reactive Scheduling or Dynamic Scheduling is also referred to as Online
Scheduling. In this case, no firm (robust) schedule is generated at the beginning of the
scheduling process, and the job schedule is obtained in a real-time manner. Priority
Dispatching Rules are frequently used. The advantage of completely-reactive scheduling
is that alterations due to unpredicted real-time events are considered as they stand out,
which allows for immediate response. However, to provide the ability of scheduling
in real shop floor, the reactive approaches have to depend on executions that provide
low computational and information needs, for example, Dispatching Rules that take
scheduling decisions on the basis of a locally restricted information horizon with little
consideration of the overall problem structure. It is clear that when the effect and
frequency of random real-time events is high, a globally optimised schedule becomes
neglected shortly, up to a point where the assumptions underlying the schedule become
invalid only moments after the very first part of the schedule has been implemented.
Then, the global solution method effectively solves the wrong problem and thus may
well lead to poorer scheduling decisions than a locally restricted approach which does
not prepare a future plan at all.

* Robust Pro-active Scheduling, this approach concentrates on constructing predictive
schedules that remains robust (flexible) despite real-time events that may affect the system
during a scheduling horizon, and up to a certain degree, can adjust future alterations

in order to ensure the objective function value does not deteriorate significantly. When
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using this approach, it is important to have enough information about the real-time events
that present in the problem, their occurrence probability and their potential effect on the
solution quality. These information can then be integrated within the solution method,
for example, within the objective function or constraints of a stochastic mathematical
programme (Kouvelis et al., 2000). For longer time horizons, the predictions related to
the aftertime developments become increasingly inaccurate. Also, there is an exponential
increase of possible combinations of future real-time events over time. Thus, for the
problems with relatively short time horizons, the best approach is the robust pro-active
scheduling.

* Predictive-Reactive Scheduling is defined as a rescheduling procedure such that schedules
are modified at the time of disruptions. The approach is a two-stage process; in the first
step, predictive scheduling (baseline) is generated. The second phase is about releasing
the schedule to the shop floor and revising it in response to real-time events. In general,
there is a broad agreement in the literature that the Predictive-reactive approach is the
most common dynamic technique that can be applied in manufacturing systems. Figure

2.4 shows the idea of this approach.

Depending on the mechanism for starting the modification process of the schedule, predictive-
reactive approaches can be categorised as Time-Driven or Event-Driven. In the Time-Driven
techniques which are also termed as Rolling Horizon techniques, the schedule is reoptimised
at uniform intervals of time. Event-Driven techniques triggers a revision procedure to the
schedule in response to random real-time events. In the two stages of the predictive-reactive
approach, any of the solution techniques for static scheduling problems (see Figure 2.2) can
be used for the generation of a predictive solution and the revised schedule, where choosing
the suitable technique for a given problem generally counts on the nature of the disruptions
that present into the system in terms of their disruptive power and the available time to react.
For example, when the only unexpected real-events are the arrivals of new jobs, the method of
choice maybe the Time-Driven approach that periodically applies a B&B algorithm, which is
a computationally expensive (Ovacikt & Uzsoy, 1994). Also, for scheduling problem under
random disruptions of machine breakdowns which could cause unexpected and significant
changes in the scheduling plan, it may be necessary to apply the Event-Driven method. This
method quickly restores feasibility of the schedule by means of a simple heuristic in the case of
machine breakdowns (Yamamoto & Nof, 1985). Furthermore, a hybridisation of these methods
is applied in practice, which generally follow a periodic reoptimisation but are able to react

flexibly, if the disruption caused by a specific real-time event is severe.
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There are different approaches existing in the literature for solving dynamic scheduling
problems. It should be noted that, it is possible to hybridise any of the aforementioned
approaches to deal with dynamic scheduling problems depending on the nature of the real-time

events and the scheduling problem.

2.5.1 Disruptions classification

In scheduling for a real shop floor, the problem effected by single or different disruptions
of real-time events. As we discussed previously, there are different methods existing in the
literature that can be used to solve the PFSPs. Using a suitable method mainly depending on
the problem environments and also on the type and frequency of disruption. For this, it is
important to highlight these factors to be able to propose the best solution approaches. The
literature of manufacturing systems under dynamic environment have considered a significant
number of real-time events including their effects. Thus, real-time events can be categorised
into the following groups (Vieira et al., 2003):
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* Resource-related: such as; machine breakdown, unavailability or tool failures, operator
illness, loading limits, defective material (material with wrong specification), delay in

the arrival or shortage of materials, and so on.

* Job-related: for example; arrival of jobs, rush jobs, due date changes, job cancellation,

change in job priority, changes in job processing time, and so on.

In this thesis, we consider some important disruptions of real-time events, which are; ma-
chine breakdowns and new jobs arrival. these disruptions are frequently occurred in real

manufacturing systems.

2.5.1.1 Machine breakdown

The scheduling problems have been widely studied under static environment by assuming
machines and jobs are available at time zero (Vieira et al., 2003); (Gholami et al., 2009).
However, due to the uncertain environments in real shop floor, these assumptions become
invalid. In this section, we highlight the work done for the scheduling problems under machine
breakdown. Ali & John (1998) studied the bi-objective FSP that minimising both the makespan
and maximum lateness, this problem considered the case of 2-machines under random machine
breakdowns. When stochastic breakdowns effect the first or the second machine, respectively,
the authors showed that the shortest and longest processing times orders are optimal with
respect to both objectives in a sequence of FSP with 2-machines. To absorb the impacts of
breakdowns, Mehta & Uzsoy (1998) have used the available information on uncertainties to
generate a predictive schedule. To measure the effect of disruptions on planned activities, they
used the difference between the planned completion times of jobs in the predictive schedule and
their realised ones. The deviations of completion times were decreased by inserting extra idle
time into the predictive schedule. The amount of inserted extra idle time based on the structure
nature and frequency of the disruptions and the predictive schedule. Hence, in the predictive
schedule, the completion times of jobs rely on the schedule and the amount of inserted extra
idle time. For the Flexible Job Shop Scheduling Problems (FJSP), Jensen (2003) proposed
the robust and flexible schedules (solutions), where the aim is to minimise the makespan.
The author has used GA to define and investigate the robustness measure to obtain robust
and flexible schedules. These solutions were used to improve rescheduling significantly after
machine breakdown disrupted ordinary schedules.

To minimise makespan criteria for a stochastic FFSP that is effected by machine breakdowns,
Allaoui & Artiba (2004) proposed a framework of robustness to deal with such a problem.

By minimising the starting time deviations of jobs simultaneously, the algorithm handle the
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efficiency by maintaining the objectives of makespan, tardiness and stability. In this case, the
rescheduling triggered at specific intervals of time employing all obtainable jobs at the moment
of disruption. Kasap et al. (2006) studied the policies of optimal sequencing of jobs for a single
machine PFSP under random breakdowns and the objective of the expected makespan. The
FFSP with sequence dependent setups and under a stochastic machine breakdown have been
solved by a heuristic algorithm (Gholami et al., 2009). This heuristic used the random key
GA to determine the best local solution. Also, the Right-Shift technique and the Event-Driven
policy were incorporated in a simulator into the GA to evaluate the expected value of makespan.
Al-Hinai & Elmekkawy (2011) addressed finding stable and robust solutions for the FISP under
random machine failures. They defined some bi-criteria performances considering both the
stability and robustness of the predicted schedule and compared using the same rescheduling
scheme. The Discrete Group Search Optimiser algorithm for the hybrid FSP under random
machine breakdown was introduced in Cui & Gu (2014). The proposed method adopted
the vector representation and several discrete operators, e.g., swap, insert, destruction, and
construction in the process, DE, rangers phases and scroungers. Pugazhenthi & Saravanan
(2015) proposed a new heuristic to analyse and solve the PESP with breakdown nature. This
heuristic proposed an Exponential Index method with known breakdown time, the break down
occurs due to power shutdown. This heuristic has been applied for the problem with the
objective of minimising the makespan time of n jobs and m machines. Wang et al. (2016)
introduced the distributed PFSP with minimising the makespan and under machine failures.
They used the distribution algorithm of Fuzzy Logic-based Hybrid Estimation for this problem.
To find better solutions in the search space, the authors hybridised the probabilistic model of
Estimation of the Distribution method with crossover and mutation operators of GA to generate
new offspring. Proactive-scheduling approach is triggered for an uncertain machine failure
under deteriorating production environments was considered by Wang et al. (2015a), where
the usage and age of machine lead to a longer real processing time for jobs. They proposed a
multi-objective Evolutionary algorithm based on Elitist Non-Dominated Sorting, in which a
support vector regression surrogate model is built to replace the time-consuming simulations
in evaluating the rescheduling cost. Fazayeli et al. (2016) proposed a Pro-active scheduling
and a hybrid metaheuristic method based on GA and SA for the FSP with machine breakdown.
The hybrid flow shop rescheduling problem with flexible processing time in steelmaking
casting systems was studied by Li et al. (2016). They used a Hybrid Fruit Fly Optimisation
algorithm to solve this problem under machine breakdown and processing variation disruptions,
simultaneously. A serial-batching scheduling problem under machine breakdowns and new
job arrivals events, where the objective is to minimise the makespan was addressed in Pei

et al. (2016). A developed heuristic approach was applied to find near optimal solutions for
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this problem. Adressi et al. (2016) considered a group scheduling problem in no-wait FSP by
considering two stages with group sequence-dependent setup times under machine breakdowns.
GA and SA based heuristics have been presented for this problem where the primary objective
is to minimise the makespan for two classes of small and large scale problems. A SMSP under
machine breakdown was considered by Imed & Hans (2016). The authors studied two different
criterions for this problem, namely; minimising the makespan and maximum lateness. Also,
two different algorithms were proposed to solve two types of the problem; without release
dates or with different release dates. To solve a PMSP in dynamic environment under random
machine failures, the Learning Agent was presented (Yuan et al., 2016). They tested this
method for the problem with two different criterions; minimising the maximum lateness and

minimising the percentage of tardy jobs.

2.5.1.2 New job arrivals

The scheduling in static environment have the most efforts in the literature. Such problems
frequently assume the number of jobs are fixed, the processing times is deterministic and there
is no unpredicted disruptions which would influence the processing of job when the schedule
is under way. However, in reality, new orders arrive at production systems randomly, which
leads to sheer complexity in scheduling due to the dynamic changes given various constraints
of resources. Previous studies simply attach new orders directly after the existing schedule.
Liu et al. (2005) proposed an approach based on the Support Vector Machine for the flexible
manufacturing scheduling with minimising earliness and tardiness penalties of all jobs, to
achieve the goal of dynamical scheduling. For the just-in-time scheduling of a manufacturing
environment under new jobs that coming randomly into the system, Weng & Fujimura (2009)
introduced two distributed feedback mechanisms, where the simulation proves that distributed
feedback mechanisms showed a high performance. Some important improvements to formerly
employed intelligent production system handling the dynamic scheduling problem of FSP with
the factory environment of a multi-stage multi-machine were presented by Weng & Fujimura
(2010), where the criterion is to minimise the total earliness and tardiness penalties of all jobs
during any given period of time. Guo et al. (2011) applied an Adaptive Job-Insertion based
heuristic for the FSP minimising the mean flow time in a dynamic environment, where the job
arrival or release dates are not known in advance and new order jobs arrive randomly to the
system. Rahman et al. (2013) proposed a method based on GA for the PFSP with multiple
jobs arriving at different time points. The problem of combining new rush orders with the
recent schedule of a manufacturing shop floor level was addressed in Madureira et al. (2013),
where a Self-Organised Integration Mechanism Module based on Case-based Reasoning was

presented so as to determine independently that combination mechanism have been employed
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to incorporate new orders in the recent plan. Joo et al. (2013) used two Dispatching Rule-
based scheduling methods to the three-stage FSP with maximising the quality rate and the
mean tardiness of the finished jobs in a dynamic environment, where jobs of multiple types
arrive to the system over time dynamically. Pickardt (2013) proposed three methods based on
Evolutionary Algorithms to automate and support the design of Dispatching Rules for dynamic
and complex scheduling problems. Kaplanoglu (2014) used a collaborative Multi-Agent
based Optimisation approach for the SMSP with sequence-dependent setup times and under
constraints of regular and irregular maintenance activities when the order arrivals are dynamic.
The effects of inserted idle times on the performance of a selection of Dispatching Rules for FSP
with a new job arrival was examined in El-bouri (2013) where the objectives are to minimise
the mean flow time, mean tardiness, or number of tardy jobs. Rao & Ranga Janardhana (2014)
gave a literature review which analysed the rescheduling activity for the case of uncertainties
from the manufacturer, supplier and customer. They also considered rescheduling factors,
rescheduling environments, and rescheduling algorithms. Xingbao et al. (2015) discussed a
Predictive Scheduling approach for the PFSP under new jobs arrival. They developed this
approach to reduce the impact of the new job arrival by inserting moderate slack times into
the baseline. A two-step approach was used for the two-stage FSP with unexpected arrival
of new jobs (Entezari & Gholami, 2015). In the first step, an initial schedule is obtained
considering makespan as an objective function. After the initial schedule was applied, now
assume that a new job arrives during the execution of the initial schedule. In the second
step, they proposed three criteria as a measure based on a classical objective and performance
measures. This Measure consists of makespan, stability and variation of completion times.
Sahin et al. (2015) proposed a Multi-Agent based System to the flexible scheduling problem
in a dynamic manufacturing environment. Kaplan & Rabadi (2015) studied the PMSP under
job-related disruptions, namely; departure of an existing job, the new jobs arrival and changes
to job priority. They considered the minimisation of the bi-criterion of both of the TWT and
instability of schedule, simultaneously. The authors first built a MILP using a scheduling
problem proposed by Kaplan & Rabadi (2012). Then they applied five different heuristic
approaches for the PMSP with the bi-objective function, using the developed methods by
Kaplan & Rabadi (2012) and Kaplan & Rabadi (2013). Rahman et al. (2015) presented a
heuristic based decision process for the dynamic PFSP. As each new order arrives, they used
the developed GA based method over and over to re-optimise the problem. Gao et al. (2016)
introduced a two-stage Artificial Bee Colony algorithm and an effective model for solving the
scheduling problem of re-manufacturing. This problem was modeled as FJSP with minimising
the makespan, when the new job arrives the problem was splitted into two steps; scheduling

and rescheduling. Zhang et al. (2016) presented an innovative method to investigate the flexible
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scheduling problem in dynamic environment in order to minimise or maximise the consumption
of energy into account. To solve this problem, they used a rescheduling method based on
the GA, also they proposed a new goal programming model that considers the consumption
of energy and the efficiency of schedule simultaneously. Xia et al. (2016) formulated a new
dynamic Integrated Process Planning and Scheduling (IPPS) model, the combination of hybrid
algorithm and rolling window technology was applied to solve the dynamic IPPS problem, and
two kinds of disturbances were considered, which are the machine breakdown and new job
arrival. The characteristics of dynamic integrated process planning and scheduling problem
with job arrivals were studied in Liangliang et al. (2017). A novel MILP model was established
to accommodate new job arrivals, and three criteria; makespan, stability, and tardiness were
considered. New periodic and Event-Driven rescheduling strategies were also presented. Sahin
et al. (2015) proposed a Multi-Agent based System for the dynamic flexible machine scheduling
groups and material handling system working. A novel scheduling strategy by integrating
Match-Up strategy and Real-Time strategy in order to make use of the remaining time before
the old order due date for PFSP with new job arrivals was introduced by Liu et al. (2017).

2.5.1.3 Scheduling in the presence of different disruptions

In real manufactures, it is very likely that different disruptions interrupt the system simultane-
ously. However, there are only few examples in academia regarding the scenario of scheduling
system under different types of disruptions. Turkcan et al. (2009) considered the problem of
PMSP with controllable processing times where the presented models were revised to incor-
porate a stability performance for rescheduling unpredicted events such as machine failure,
new job arrival, delay in the arrival or shortage of materials in rescheduling. Liu et al. (2016b)
addressed the PFSP with sequence dependent setup time which was effected by six different
types of real-time events, which are; arrival of new jobs machine failure, variation of setup
times, variation of processing time, job cancellation and job priority upgrading, simultaneously.
Katragjini et al. (2013) introduced a novel benchmark for the PFSP under different types of
disruptions including; machine breakdown, new job arrival and uncertain ready job. They
introduced a bi-objective model to minimise makespan and instability performances. Also, the
authors applied different heuristics methods and compared them against an IG algorithm, the
aforementioned algorithm showed extraordinary better results when compared against other
heuristics. A 2-machine FSP under stochastic processing times and unpredicted new jobs
arrival were considered in Rahmani & Heydari (2014). They introduced a novel multi-objective
optimisation model that consider three measures; makespan, stability and robustness to reduce
the noise that disturb this system because of unpredictable uncertainties. Li et al. (2015)

proposed a Discrete Teaching-Learning-based Optimisation to solve the flow shop rescheduling
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problem under five types of uncertainties including machine breakdown, arrival of new jobs,
cancellation of jobs, job processing variation and job release variation. The authors used the
bi-objective model that was proposed by Katragjini et al. (2013) to minimise the makespan
and instability measures. Park et al. (2017) proposed the Genetic Programming rules for the

dynamic JSP under machine failures and arrival of new jobs.

2.6 Solution methods related to dynamic and static schedul-
ing

As shown in figure 2.3, the solution methods of static scheduling are also used in some levels
of the framework solutions of the dynamic scheduling problems. In this section, we present the
literature of the techniques that proposed implicitly or explicitly for the dynamic PFSP under
different real-time events. We start with the literature of the PSO algorithm for this problem,
then the NEH heuristic is discussed. This algorithm has been used to generate an initial solution
for both of the IG and its Biased Randomised (BR) version, which are also presented in this

section.

2.6.1 Particle Swarm Optimisation

The PSO algorithm was described as a stochastic global optimisation method, it was introduced
by Kennedy & Eberhart (1995). Thus, the PSO algorithm is one of the most efficient algorithms
that have been applied successfully for the dynamic and stochastic COPs. The PSO algorithm
has been implemented to solve the PFSP and other scheduling problems. For example, Lian
et al. (2006) suggested a PSO algorithm for solving the PFSP with respect to minimisation of
makespan and computational experiments showed that it was more efficient than GA. However,
some problems cannot be solved to guarantee optimality. Tasgetiren et al. (2007) presented
a PSO for solving the PFSP so as to minimise the makespan and the TFT. Liu et al. (2007)
proposed a PSO-based MA for the PFSP in order to minimise the makespan. On the other hand,
Wang & Yang (2007) developed a PSO to solve FSP where the processing times were uncertain.
Lian et al. (2008) presented a novel PSO algorithm, which was successfully applied for the
PFSP with minimising the total completion time. Pan et al. (2008) proposed a discrete PSO
algorithm for solving the no-wait FSP in order to minimise both the makespan and the TFT.
Liu et al. (2008a) introduced a hybrid PSO algorithm for the PFSP with the limited buffers
between consecutive machines with the objective of minimising the makespan. Zhang et al.
(2008) used an improved PSO method that combined the PSO algorithm with genetic operators
for solving the FSP in order to minimise the makespan. (Sha & Hung Lin, 2009) provided a
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PSO based multi-objective method for FSP. This method searches the Pareto optimal solution
for criterions by taking in account the modified PSO algorithm and the objectives of makespan,
mean flow time, and machine idle time. Kuo et al. (2009) presented a new hybrid PSO model
which combined random-key encoding techniques, individual enhancement techniques and
PSO algorithm for solving the FSP so as to minimising the makespan. Sha & Hung Lin (2009)
implemented PSO algorithm for multi-objective FSP. They proposed an evolutionary algorithm
that searches the Pareto optimal solution for objectives by considering the makespan, mean
flow time, and machine idle time. Zhang et al. (2010) proposed a hybrid alternate two phases
PSO algorithm to solve the FSP with the objective of minimising makespan which combined
the PSO with genetic operators and annealing strategy. Liu et al. (2011) proposed a hybrid
PSO with Estimation of Distribution algorithm to solve PFESP. Subashini & Bhuvaneswari
(2011) presented a multi-objective PSO approach where a Non-Dominated Sorting PSO which
combined the operations of Non-Dominated Sorting GA II (NSGA-II) was applied to schedule
tasks in a heterogeneous environment. Liao et al. (2012) proposed the PSO method to solve
the hybrid FSP subject to minimising the makespan. Kamble & Kadam (2012) studied the
simultaneous scheduling problem of machine and automated guided vehicle in a flexible
manufacturing system with minimising the objective of makespan, they applied the PSO
algorithm for this problem. Chen et al. (2014) proposed a revised discrete PSO to solve
the PFSP with the objective of minimising makespan. Damodaran et al. (2013) presented a
PSO method to schedule batch processing machines arranged in a PFSP with the objective
of minimising the makespan. Marinakis & Marinaki (2013) proposed an algorithmic Nature-
Inspired method which employed a PSO algorithm with different neighbourhood topologies
to solve one of the PFSPs. Vijay chakaravarthy et al. (2013) studied the flow shop with equal
size sub lots with the criterion of minimising the makespan and TFT. To solve this problem,
they used a DE and PSO algorithms. Moreover, A PSO algorithm was applied for the PESP
with the objective of minimising the makespan (Ramanan et al., 2014). Akhshabi et al. (2014)
presented a PSO algorithm based on the MA which combined with the LS approach to solve a
no-wait FSP with the criterion of minimising the TFT. Behnamian (2014) extended the hybrid
PSO-based metaheuristic for solving the fuzzy PMSP with bell-shaped fuzzy processing times
where the criterion is to minimise the fuzzy value of makespan. Li et al. (2014) proposed
a hybrid approach of an ILS and PSO to solve the hybrid FSP with preventive maintenance
activities. Zhang & Wu (2014) investigated the PFSP with the objectives of minimising the
makespan and the TFT and proposed a hybrid metaheuristic based on the PSO algorithm.
Ramanan et al. (2014) used a PSO approach for the objective of optimising the makespan of
an FSP. Dongdong et al. (2015) applied a Discrete PSO for the FFSP which minimises the

maximum time used in the FSP. Zhang et al. (2015) introduced a comprehensive survey that



2.6 Solution methods related to dynamic and static scheduling 37

investigated the advances with PSO algorithm, including its modifications, population topology,
hybridisation with other optimisation approaches, extensions, theoretical analysis and parallel
implementation. They also provided a survey on PSO algorithm applications to different fields.
A hybrid algorithm based on PSO and SA was proposed by Kamble et al. (2015) and considered
the FJSP with minimising five criterion, namely; the makespan, the maximal machine workload,

the total workload, the machine idle time and the total tardiness, simultaneously.

2.6.2 NEH Algorithm

The NEH algorithm is a heuristic algorithm that was designed for the PFSP by Nawaz et al.
(1983). It has been broadly studied and various developed versions of the NEH heuristic have
been presented in the literature. Examples of studies that show the NEH heuristic outperforming
old version of methods are given in Turner & Booth (1987) and Taillard (1990), it has also been
proved to give better results than other highly cited heuristics such as CDS method (Campbell
et al., 1970). Several more recent studies established that the NEH heuristic showed better
performance, even when compared with modern and more complex heuristics. An important
study was given by Ruiz & Maroto (2005), where NEH heuristic was tested and compared
against 25 other heuristics algorithms, including the more recent and complex algorithms
of Hundal & Rajgopal (1988), Ho & Chang (1991), Koulamas (1998), Suliman (2000) and
Pour (2001). In this work, careful statistical analyses of results of comparing NEH heuristic
against different heuristics showed that NEH was superior to all tested heuristic methods and
it was much faster at the same time. Moreover, Nagano & Moccellin (2002) used a new
developed constructive heuristic called N&M in order to minimise the makespan for the FSP.
This algorithm have been compared with the constructive NEH heuristic. The N&M algorithm
outperforms, on average, the NEH algorithm. However, the study showed that there is no
significant difference regarding computation effort for both N&M and NEH algorithms.

To minimise the maximum completion time of the PFSP, Framinan et al. (2003) tested 176 rules
employed to obtain the initial list of jobs and illustrated that the ordering proposed initially
in the NEH algorithm was the one where it showed the best results. However through these
rules, the Nagano & Moccellin (2002), the Pour (2001) and the Profile Fitting procedures were
not included. Since then, the NEH heuristic has been used to generate an initial solution for
many modern heuristics and meta-heuristics. Some examples where the NEH was used as a
seed sequence for GAs, SA, ILS, TS and many of other metaheuristic methods were proposed
in Reeves (1995), Chen et al. (1995), Murata et al. (1996), Stiitzle (1998), Zheng & Wang
(2003), Rajendran & Ziegler (2004), Bozejko & Wodecki (2004) and Ruiz et al. (2006). More
recently, Ruiz & Stiitzle (2007) applied NEH heuristic to initialise the solution of the proposed
IG algorithm. Also, the IG construction phase used the NEH procedure to construct the new
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solution. Dong et al. (2008) studied several different Priority Rules for the NEH heuristic.
They proposed a new strategy to solve job insertion ties which may exist in the original NEH
heuristic. The authors also showed that the priority rule that combines the average processing
time of jobs and their standard deviations, was not statistically significantly better than that
used in NEH but it can get slightly better performance. Moreover, their new tie-breaking
strategy has improved the performance of NEH significantly. Kalczynski & Kamburowski
(2008) presented a combination of both the Priority Order and a simple Tie-Breaking approach.
This new approach outperformed the NEH heuristic. Ribas & Mateo (2010) studied the FSP
with and without buffer constraints and proposed an improved NEH-based heuristics algorithm
for this problem. Li & Yin (2013) proposed a DE based MA for the PFSP where a heuristic
NEH algorithm integrated with random initialisation to the population with certain quality
and diversity. Marichelvam et al. (2014) proposed a developed Cuckoo Search algorithm for
the multistage hybrid FSP with the objective of minimising the total completion time. In this
algorithm, the NEH algorithm was incorporated with the initial solutions to reach a local optimal
solutions quickly. Ramanan et al. (2014) used a PSO approach with the objective of optimising
the makespan of an FSSP. The problems were tested on Taillard’s benchmark problems. The
results of NEH heuristic were initialised to the PSO to direct the search into a quality space.
Vasiljevic & Danilovic (2015) showed the importance of the inclusion of the information about
the sort of ties in the initial phase of the NEH heuristic, which applied for the PFSP with the
makespan objective. The conclusion obtained by this study, was that the range of the objective
values for different sorts of ties was often greater than the improvements, published in literature.
This allowed them to construct a very simple algorithm that outperformed published NEH
improvements, maintaining NEH’s exceptional efficiency. The proposed algorithm also used
the information about the ties in the insertion phase to improve the objective value. Rossi et al.
(2016) analysed the PFSP with makespan minimisation criteria, and proposed constructive
methods that make use of the principles of the NEH heuristic and recent studies to significantly
improve its performance. For this purpose, 67 new constructive heuristic approaches were
presented. Ding et al. (2016) proposed a modified NEH heuristic algorithm based on the multi-
objective concept and developed the multi-objective IG approach to solve the FSP. Danilovic &
Ilic (2016) considered the PFSP and used a generalised constructive algorithm which based on
the extension of the NEH algorithm. Shao et al. (2017) used a modified speed-up NEH method
at the initialisation stage and the random initialisation was utilised to generate more promising
solutions with a reasonable running time, then a MA with Hybrid Node and Edge Histogram
was applied to solve no-idle PFSP with the criterion to minimise the maximum completion

time.
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2.6.3 Iterated Greedy method

The IG algorithm is one of the most powerful and efficient heuristic algorithms developed so
far for solving the PFSP. It is a constructive technique that was introduced by Jacobs & Brusco
(1995). This algorithm was applied successfully for the PFSP by Ruiz & Stiitzle (2007). It is
state of the art in terms of simplicity, speed and accuracy. Ruiz & Stiitzle (2007) compared
the IG algorithm against different methods; the IG algorithm showed the best performance
throughout all other methods. The authors showed in this research the 1G algorithm was far
superior and simpler than the hybrid GA proposed by Ruiz et al. (2006). Also, Ribas et al.
(2015) proposed several SA based techniques and compared them to the IG algorithm. The
authors applied the proposed methods for all classical benchmarks and the results illustrated that
the IG algorithm performed better and uses fewer parameters than their methods. Ying (2007)
proposed an IG algorithm for the non-PFSP. Also, Ying (2009) proposed the 1G algorithm for
the multistage hybrid FSP with multiprocessor tasks where the objective is to minimise the total
completion time. The computational experiment results illustrated that the IG algorithm showed
better performance when compared with other three metaheuristics. In addition, Ying (2012)
presented an IG algorithm for the Wafer Sorting Scheduling Problem in order to minimise the
primary objective of the total setup time and minimise the secondary objective of the number of
testers. The same author Ying et al. (2009) proposed simple IG for solving the Single Machine
Tardiness problem with sequence dependent setup times. Ying & Cheng (2010) presented an
IG approach to the dynamic PMSP with sequence-dependent setup times in this problem. As
well, Lin et al. (2011) considered an improved IG with a sinking temperature to minimise the
maximum lateness of an identical PMSP with sequence-dependent setup times and job release
dates. Moreover, Lin et al. (2013) presented a modified IG algorithm for the distributed PFSP
with minimising the makespan. The IG algorithm applied with five other heuristics for the PFSP
under different types of disruptions (Katragjini et al., 2013). In their work, the IG algorithm
outperformed all other heuristics in achieving a better near optimal solution in a reasonable
amount of time. Tasgetiren et al. (2013) presented a variable IG algorithm with DE, designed to
solve the no-idle PFSP. Kang et al. (2013) used an IG algorithm for the problem of allocating
parallel application tasks to processors in heterogeneous distributed computing systems where
the objective is to maximise the system reliability. Ciavotta et al. (2013) presented Iterated
Pareto Greedy (IPG) for the multi-objective sequence dependent setup times PFSP. Also, an
IPG method was presented for solving the hybrid FSP in order to minimise both of the total
completion time and the total tardiness (Ying et al., 2014). Campos & Arroyo (2014) addressed
an Elitist Non-dominated Sorting GA with 1G algorithm to solve the three-stage assembly FSP
in order to minimise both of the TFT and the total tardiness, simultaneously. Deng & Gu (2014)
proposed an enhanced IG algorithm which explores inserting and swapping neighbourhoods to
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solve the SMSP with sequence-dependent setup times and the objective is to minimise the TWT.
Pan et al. (2017) proposed a MILP model for the mixed no-idle extension where only some
machines have the no-idle constraint where the objective is to minimise the total completion
time. The authors used an IG algorithm to solve this problem. Ding et al. (2015) proposed
a Tabu-mechanism improved IG method for solving a no-wait FSP in order to minimise the
total completion time. Abdollahpour & Rezaeian (2015) proposed three approaches which
are; IG, an AIS and a hybrid AIS-IG algorithms to solve the PFSP with the limited buffers
between consecutive machines where the objective is to minimise the total completion time.
Very recently, Pan et al. (2017) used an IG algorithm for the hybrid FSP in order to minimise
the bi-criteria function of the weighted earliness and tardiness objective from the due window.
Also, a comparative study between the IG algorithm and nine other competing approaches
were given in this work, the IG algorithm showed the best performance against all of the nine
approaches. Elias C. Arroyo (2017) addressed the scheduling problem of n jobs with arbitrary
job sizes and non-zero ready times on m unrelated parallel batch machines with different
capacities in order to minimise the total completion time. They provided a lower bound for the
problem and a MILP model. To solve this problem, a metaheuristic based on the 1G algorithm
was proposed. Ribas et al. (2017) considered the parallel blocking FSP with minimising the
makespan among lines. They presented a mathematical model along with some constructive
and improvement heuristics to solve the presented problem where the constructive technique
employed two methods which were completely different from those presented in the literature.
These approaches are applied as generating initial solution techniques of an ILS and an IG
algorithm, where they both combined with a VN search. Li et al. (2017) extended a simple IG
algorithm for the two-sided assembly line balancing problem and introduced a modified NEH-
based heuristic to obtain a high quality initial solution. Dubois-Lacoste et al. (2017) discussed
the possibility of re-optimising the subsequence obtained from the destruction phase of the
IG algorithm. For the PFESP with the objective of minimising makespan, the authors showed
that the performance of the IG algorithm can be significantly improved with this extension.
Also, they proved in experiments that the LS on subsequence of jobs is the key component
of the powerful performance of the algorithm. Tasgetiren et al. (2017) proved that the IG
algorithm performance depends significantly on the speed-up approach used. The parameters
of the presented IG method were tuned through a design of experiments on randomly generated
benchmark instances. Regarding the application of IG algorithm for the multi-objective PFSP,
Framinan & Leisten (2008) pioneered the use of IG methodologies for solving the multi-
objective scheduling problems. The authors presented an IG search technique to solve the PFSP
in order to minimise both of the makespan and the flowtime. On the other hand, Minella et al.

(2011) proposed an algorithm based on the IG approach for solving the multi-objective PFSP.
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2.6.4 Biased Randomisation

The randomised or probabilistic are recent solution approaches in the field of COPs. Such meth-
ods are usually proposed for the problems under issues of uncertainty or local optima. These
kind of algorithms have been used widely for various classes of COPs, such as: Scheduling
Problems, Vehicle Routing Problems (VRP) (Belloso et al., 2017), Packing and Partitioning
Problems, and more. For more details about randomised approaches we refer the reader to
(Collet & Rennard, 2007). An example of the successful hybridisation of the BR with some
heuristic was the application of the BR technique with the NEH heuristic that was used to
generate the initial solution for Sim-heuristic approach that was proposed by Juan et al. (2014a).
The authors applied the Discretised Decreasing Triangular Probability Distribution (DDT) to

generate random variates at the BR step.

2.7 Stochastic Scheduling Approaches

When the processing times of jobs are considered as random variables whereas the population of
jobs is assumed to be known in advance, the scheduling problem is called stochastic scheduling
(Pinedo, 2016). In these types of problems, the random processing times of all jobs follow a
specific probability distribution where (; is the expected value and 0 is the standard deviation.
Stochastic scheduling models have been mainly introduced since the 1980’s where researches
have traditionally concentrated on non-anticipative policies which intent to minimise the
criteria in expectation. Additionally, it is usually supposed that the processing times of jobs are
independent stochastically. A policy of scheduling is non-anticipative if its decisions about the
jobs that must be scheduled at a time ¢ depend only on the jobs which are already finished at
time # and on the conditional distributions of the remaining processing times of jobs that are still
active at this time. Rothkopf (1966) showed that for the scheduling problem of m immediately
available jobs with random variable service times. It is certain that such problems can be
reduced to equivalent deterministic problems. Mohring et al. (1984) investigated the analytic
properties in scheduling of various classes of policies, also for special cases, the optimal
policies were determined. Weiss (1991) and Weiss (1992) derived additive performance bounds
for a PMSP without release dates in stochastic environment. In addition to this, Modarres et al.
(1999) developed COP approaches for different scheduling problems in stochastic environment.
The authors examined the power of linear programming based priority policies, and compared
them to the expected performance of an optimal stochastic scheduling policy. Bertsekas
& Castanon (1999) showed how rollout approach can be implemented in an efficient way,
also they showed that the performance of these policies is local optima, and is substantially

better than the performance of their underlying heuristics. The authors, concentrated on a
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different class of scheduling problems in stochastic environments. Koole (2000) applied
event-based dynamic programming to stochastic scheduling problems. Skutella & Uetz (2005)
derived approximation policies for stochastic machine scheduling with precedence constraints.
Kamburowski (2000) studied a stochastic 3-machines scheduling problem in Johnson’s flow
shops with the objective of minimising the expected total completion time. Alcaide et al.
(2002) addressed the FSP with minimising the expected total completion time under machine
breakdowns in stochastic environment. The authors presented a method that converted a
scheduling problem under breakdowns into a finite sequence of problems without-breakdowns.
Yang et al. (2004) studied using TS to optimise the parameters of a FSP. Empirical results
showed TS as a promising method to solve the FSP. Wang et al. (2005) applied a Hypothesis-
Test method incorporated into a GA for solving the FSP problem in stochastic environment
and to avoid premature convergence of the GA. Hentenryck & Bent (2006) provided the
main algorithm for online stochastic COPs, they have given an interesting review of many
classical COPs in a stochastic environment such as; stochastic scheduling, stochastic VRP and
stochastic reservations. Kalczynski & Kamburowski (2006) proposed a job sequencing rule
which includes Talwar’s and Johnson’s rules for the 2-machines FSP so as to minimise the total
completion time. In this problem, the processing times are assumed independently and follow
the Weibull distribution. Liu et al. (2008b) proposed a class of PSO algorithm with SA and
hypothesis test to solve the FSP with no-wait constraint in stochastic environment, where the
criterion is to minimise the total completion time. The developed PSO algorithm showed better
feasibility, effectiveness and robustness when compared to other proposed algorithms. Parajuli
(2010) compared stochastic scheduling performance with deterministic scheduling, given that
the problem involves stochastic processing times. He also focused on due date performance
as a scheduling objective, considering that both early and tardy completion is undesirable.
Baker & Altheimer (2012) applied heuristics for the stochastic FSP and general distributions
for processing times. Almeder & Hartl (2013) dealt with a scheduling problem of a real-
world offline stochastic FFSP with limited buffers. The scheduling problem with impatience
to the end of service or impatience to the beginning of service in stochastic environment
have been considered by Salch et al. (2013). The impatience of a job was considered as an
uncertain due date and both of the processing times and due dates were stochastic variables.
The criteria is to minimise the expected weighted number of tardy jobs. Elyasi & Salmasi
(2013) presented a stochastic approach based on Chance Constrained Programming for two
different scheduling problems; SMSP and 2-machine scheduling in stochastic environment.
Cai et al. (2014) provided a comprehensive and unified coverage of studies in this area. Wang
& Choi (2014) presented a Decomposition-based Holonic approach to solve the FFSP under

stochastic processing times, in order to minimise the total completion time. Ebrahimi et al.
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(2014) proposed two metaheuristics for the hybrid FSP with sequence dependent family setup
time. The objective is to minimise the total completion time and the total tardiness. Also, the
due date was considered as a stochastic variable following the Normal distribution. Baker
(2014) proposed a developed B&B method for the stochastic SMSP in order to minimise
the total expected earliness and tardiness costs. Aydilek et al. (2015) considered the setup
and processing times as stochastic variables for the problem of a 2-machines production FSP
with the criterion of minimising the total completion time. Saravanan & Pugazhenthi (2015)
pertained to heuristic technique to obtain an optimal scheduling in PFSP where the jobs were
associated with probability, and the criterion of minimising the makespan was associated with
probability nature. Framinan & Perez-Gonzalez (2015) proposed some heuristics from the
literature for the PFSP under stochastic processing times in order to minimise the expected

total completion time.

2.7.1 Simulation-Optimisation

The terms Optimisation for Simulation or Simulation for Optimasation are commonly men-
tioned in the field of stochastic COPs (Amaran et al., 2017). Both the comprehensive surveys
of Fu (1994) titled Optimisation via Simulation, and (Andradéttir, 1998), which was titled
Simulation Optimisation, reflect the two terms mentioned previously. The main aim of hy-
bridising simulation and optimisation is to handle the COPs in the presence of stochastic
components. Recently, in stochastic scheduling, the Sim-Opt is used widely where heuristics
or metaheuristics are used for the optimisation part. The concept of SA algorithm has been
developed into an algorithm that can be used to solve a variety of optimisation problems. This
was shown in work by Manz et al. (1989), where SA was used to optimise parameters for an
Automated Manufacturing System Simulation. Sabuncuoglu & Kizilisik (2003) investigated
the problems of reactive scheduling in a stochastic and dynamic flexible manufacturing systems.
Tekin & Sabuncuoglu (2004) proposed a total survey on Sim-Opt approaches with emphasis
introduced on modern developments. They provided a taxonomy about the existing approaches
depending on the problem characteristics and discussed the main advantages and possible
drawbacks of the various approaches. Fu et al. (2005) introduced a review of the important
techniques of Sim-Opt and described some modern theoretical and algorithmic developments
in the field of Sim-Opt. Simulation-heuristic algorithm has been applied successfully for other
stochastic COPs. Work by Konak & Kulturel-Konak (2005) discussed optimising simulation
problems using TS, including discussion of the profound effect that parameter selection has
on the performance of the search. Grasas et al. (2016) presented the Sim-ILS approach that
extends the ILS algorithm by combining simulation to provide the algorithm with the ability of
dealing with stochastic COPs in a natural way. Juan et al. (2014a) presented a Sim-heuristic
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approach for solving the PFSP under uncertain processing times. This approach hybridised
an ILS metaheuristic with the MCS so as to handle the stochastic nature of the problem. A
set of methods related with planning and/or scheduling, many of which are a hybridisation of
optimisation and simulation have been presented by Pereira (2016).

As an alternative to the heuristic methods, metaheuristic approaches allow generation of high-
quality solutions to the real-life COPs in relatively short computing times. For example, GA
and PSO algorithm are showing a wide range of applicability and robustness for solving a wide
range of different COPs and have received a large amount of research. In work by Joines et al.
(2002), they used GA to optimise simulations of a supply chain to set optimal order quantity
and time between orders. Koyama et al. (2004) worked on optimising routing algorithms with
GA using a simulated system. Dahal et al. (2005) used a standard GA optimiser to solve a
simulation of an actual port facility to minimise total costs by reducing delays. Jeong et al.
(2006) developed a hybrid solution where the GA was used to optimise schedules and the
simulation was applied to minimise the makespan of the last job while reflecting stochastic
characteristics with the fixed input from the GA. Persson & Stablum (2006) was able to use
GA to solve a multi-objective Mail Sorting Simulation Created in Arena. Gu et al. (2008)
addressed the FSP with random breakdown and random repair time. They applied a Quantum
Genetic Based Scheduling Algorithm for this problem, this approach combined stochastic
simulation theory, stochastic programming, quantum computing and GA together. Juan et al.
(2011) integrated routing metaheuristics with MCS for solving the VRP with stochastic de-
mands; Caceres-Cruz et al. (2012), also combined a MCS and routing metaheuristic to solve
the inventory routing problem with stochastic demands and stock-outs. Wang et al. (2015b)
addressed the PFSP under unknown processing times and applied a two-stage Sim-based
hybrid Estimation algorithm to solve this problem. Juan et al. (2015) presented a review of
Sim-heuristics by extending metaheuristics to deal with stochastic COPs. Gonzélez-Neira et al.
(2016) addressed the Integral Analysis method for the stochastic FFSP with the bi-objectives
criteria, where the cardinal analysis implemented both a MILP model and a Sim-Opt technique
for the TWT solution. Noura et al. (2016) applied a Sim-based GA with the stochastic MILP
model to construct Quay Crane scheduling that account for the dynamics and the uncertainty
inherent to container handling process. Finally, Frazzon et al. (2016) introduced and examined
a Sim-Opt technique to solve the production and logistic processes along a global supply chain

involving a production JSP and intermodal transport.
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2.8 Benchmark problem

A comprehensive comparisons against well-known and established benchmarks of instances
are frequently required in the field of COPs and when a set of benchmarks is recognised,
then various approaches can be applied and compared depending on this set. Recently, there
are benchmarks available online for different scheduling problems and for different sizes.
Frequently, the best known solutions are the best known upper bounds in minimisation problems,
these solutions are used so as to compare the proposed method. In any study of combinatorial
optimisation benchmarks, poor quality instances can lead to experiments that are far removed
from real manufacturing problems. Thus, the design of the benchmark is of extreme importance.
Moreover, the benchmark instances might be too easy, limited size or specific for a given
combination of input parameters. In such situations, if the proposed technique outperforms
another in the set of instance, there is still no guarantees that the performance can be generalised
over the real world instances. As we define previously, in the FSP there are a list of n jobs
that proceed sequentially on all the set of m machines in series. Each job j has a non-negative,
deterministic and known amount of processing time p;; wherei=1,....mand j=1,...,n. In
the FSP the jobs start processing on the first machine and continue processing until the last
machine m. The solution space that has all the possible sequences is given as; n!, since at each
machine there are n! possible permutations of job sequences. On the other hand, in the PFSP,
there are only n! possible sequences to be considered and once the sequence of jobs for the first
machine is determined, is kept unchanged for all other machines. Taillard (1993) introduced
the well-known benchmark for different sizes of deterministic PFSP. His benchmarks have
been used widely in the literature of shop scheduling. Taillard benchmark was designed for
the case of deterministic PFSP. However, the real world PFSPs are dynamic and stochastic
in nature. Actually, there is a lack in the literature to consider dynamic and/or stochastic
benchmark for PFSP and there are no standard benchmarks in the literature of dynamic and
stochastic PFSP except the arguably limited benchmark of the SPFSP introduced by Baker &
Altheimer (2012). Recently, Katragjini et al. (2013) introduced a novel benchmark for PFSP
under different types of disruptions, they considered three different types of real-time event
during time horizon, which are; machine breakdown, arrivals of new jobs and ready time
variations. From our knowledge, there is no other given benchmark in the literature for the
PFSP with different uncertainties. This benchmark available online in http://soa.iti.es/. Vallada
et al. (2015) proposed a new benchmark of hard instances for the PESP where the objective is
to minimise the makespan. This benchmark consisted of 480 instances including 240 small

size and 240 large size instances with up to 800 x 60 (jobs x machines).
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2.9 Conclusion

The dynamic and stochastic PFSP under different uncertainties are considered as essential
studies in scheduling area. Such problems are widely studied due to the practical relevance of
the applications, where the research in this area is growing faster than in the last decades. From
the findings, current research on dynamic and stochastic PESP under different uncertainties
focused more on improving the schedule by minimisation of specific objective(s) such as
makespan. In the same direction, others have attempted to reduce different objectives by using
multi-objective models, e.g., the bi-objective model with the objectives of minimising both
makespan and instability measures (Cowling et al., 2003), simultaneously. Furthermore, other
researcher defined such models and applied different rescheduling approaches to accommodate
different scheduling disruptions. Also, they proposed different efficient algorithms depending
on the problem environment and the disruptions types, for example; the Sim-heuristic algorithm
that was proposed for the SPFSP (Juan et al., 2014a). A central feature in dynamic and
stochastic PFSP under different uncertainties is the source of dynamicity (stochasticity) in
terms of machine breakdowns and new job arrivals (stochastic processing times). The aim in this
case is to make the new schedule feasible and optimal after any types of different uncertainties
(failures). In terms of multi-objective optimisation models, a literature review showed that this
could be a competitive approach in addressing uncertainty for the dynamic and stochastic PFSP,
when compared to the deterministic solution, as it does not require distributing assumptions on
the uncertainty. Also, multi-objective optimisation models can be adapted to address stability
and robustness (in addition utility) in order to accommodate the new disruptions with other
solution approaches. There exists broad range of different approximate and exact methods
have been used to solve dynamic and/or stochastic PFSP under different uncertainties. Exact
methods have the ability to only solve relatively small size instances. On the other hand,
approximate methods success to solve even large size problems in many cases. Hence, several
promising ways of research are worth more attention. A better heuristic should be more flexible
to accommodate the various disruptions in rescheduling approaches encountered in most of
real-life applications. In terms of Sim-Opt, nowadays, the combination of Simulation and
Optimisation is becoming quite popular in the research community. We presented several
studies on Sim-Optimisation methodologies, which are related to the combination of simulation
with heuristics/metaheuristic, in order to improve and to find a better way to solve COPs, in
particular, SPFSP. Additionally, the advantages of these algorithms are that they are flexible,
quite efficient and can be implemented in most practical applications. Also, the uncertainty
modelling feature of MCS hybridised with efficient and fast heuristic/metaheuristic can create
interesting approaches for real-life problems. Sim-Opt offers a practical perspective which is
able to deal with more realistic scenarios; by integrating MCS in the heuristic/metaheuristic,
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it is possible to naturally consider any probabilistic distribution for modelling the stochastic
jobs processing times. To conclude a literature review showed that the use of Sim-Opt is a
well-established and increasingly relevant topic in COPs. There is the potential applications of
distributed computing to solve large-size PFSPs.






Chapter 3

Multi-objective Optimisation model for
Robust PFSP under different disruptions

3.1 Introduction

In the literature of manufacturing scheduling, one of the gaps is presented by considering
only classical efficiency performance measures for economic performances of the scheduling
systems. Examples of these measures are; the maximum flow time, makespan, tardiness,
earliness, and so on. As we mentioned previously, in real manufacturing systems, scheduling
frequently operated in highly dynamic and uncertain environments where random disruptions
may lead to non-optimal performances. Therefore, rescheduling actions will be required to
re-optimise the new schedule. The deviation of the current schedule could cause significant
impact such as additional costs in the case of storage costs, material handling costs, setup costs,
and more. Thus, it is important to minimise additional objectives in scheduling systems to
reduce any instability or deviations. The reminder of this chapter is orginised as follows; a multi-
objective optimisation model for robust PFSP under different real-time events is proposed in
section 3.2. Section 3.3 demonstrates the weighted objectives. In section 3.4, the uncertainties

and real-time events are discussed. Finally, related conclusions are presented in section 3.5.

3.2 The proposed multi-objective optimisation model for ro-
bust PFSP

In this chapter, we propose a new scheduling multi-objective optimisation model based on the
optimisation model introduced by Cowling et al. (2004) and Rahmani & Heydari (2014). The

new proposed model has been extended for the case of n jobs and m machines for the PFSP. It
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takes into account three important measures; utility (makespan), stability and robustness. The

new multi-objective optimisation model (MSR) for robust PFSP is then given as follows;

Min MSR = oU,(S*) + BL,(S*) + YR(S*) 3.1)

Where:

S* refers to the new schedule after the disruption. Similarly, S denotes the schedule before the
disruption time #p.

Un(S*) =X CRyj

I(S*) =L X |CRiy — CPy|

Ry(S*) = |X;CRyjy — X CPyjl

In this model we used the following notations:

n is the number of jobs.

m is the number of machines.

J index for jobs {1,2,...,n}.

i index for machines {1,2,...,m}.

Jj' index of jobs that have not been processed on any machine yet and the newly arrived job.
CP,j is the predictive completion time of job ;' on the machine i.

CR,,j is the real completion time of job j' on the machine i.

U, (S*) is the real makespan in real scheduling.

I,(S*) is the stability measure.

R, (S*) is robustness measure.

Y. CPy, is the predictive makespan according to the initial schedule.

o, B and y are weights used to indicate the importance of the objectives, where ot + 8 +y = 1.
In this model, the utility measure is used to indicate the degree of optimisation for the schedule.
While, the stability measure represents the difference between the completion times of the jobs
in the baseline and the new schedule. Also, robustness is used to determine the deviation in
performance of the baseline and new schedule.

In multi-objective optimisation problems things get complicated if the original functions are not
in the same scale. Thus, the model (3.1) will be normalised to enable a reasonable comparison.

The following model (NMSR) is the normalised objective function of model (3.1).

NMSR = aNU,(S*) + BNIL,(S*) + YNR,(S¥) 3.2)

Where NU,(S*), NI,(S*) and NR,(S*) represent the normalised makespan, instability
and robustness, respectively and a, 3, v are the weight coefficients. The functions NU,(S*),
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NI,(S*) and NR,(S*) are calculated as following:

The normalised utility is giving by the following equation:

o Uu(S*) —Min(U,)
NUL(ST) = Max(U,) — Min(U,)

(3.3)

Where Max(U,) and Min(U,) are the upper and lower bounds respectively for the makespan
at the time of disruption #p (Katragjini et al., 2013). To calculate Min(U,) we first define msp
and mpp, where T4 p is the partial sequence of jobs on the first machine at the time of disruption
Ip, such that these jobs have already been executed or are in progress, and 7pp denotes the
subsequence of jobs that have not proceed yet on the first machine and can be permuted. Now

Min(U,) is calculated using the following steps:
1. Determine 7sp and 7gp.
2. Calculate U,(msp) the makespan of msp.

. Calculate ) . mi e total processing time of all jobs of wgp on the last machine.
3. Caleulate Y/ (P,,;) The total processing time of all jobs of he 1 hi

Then the lower bound of makespan is as follows:

n(TEBD)
Min(Uy) = Up(Tap) + Y. (Puj) (3.4)
j=1

To calculate Max(U,), first we determine 7p and 7gp. For every job j's in mpp, the job j
start to be executed only after the previous job is terminated in the sequence. This calculation
process is explained in example in figure (3.1). From this figure, job number 3 is the first job in
Tpp, and is starts proceeding after the termination of job number 5. Similarly, job number 1
starts after the termination of job number 3.

Also, figure 3.2 explain how to determine j’ and n’ where the only permutation order of jobs is
3 and 1 can be changed. The partial fixed sequence including the jobs that have already been
executed or are in progress on the first machine at the moment of the disruption is defined by
ap. As well mpp denotes the permutable subsequence containing the jobs whose succession
order can be modified.

The normalised stability is given as follows:

o D(8*)—Min(I,)
NI(S7) = Max(I,) — Min(I,)

(3.5)

Where Min(I,,) and Max(1,) represent the lower and upper bounds for instability at the
moment of disruption zp. [,,(S*) represents the instability calculated as the sum of operations

whose starting times have been anticipated or delayed in the new schedule S*.
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Machinet | 4| 2 | 3 3

Machine2 4 2 5 3 E

Machine3 4 2 |5 3 1
Y Y I R
tp=100

Fig. 3.1 Example of calculating Max(U,,) for PFSP where n =5 and m = 3

Machinel | 4 | 2 5 3 1

Machine2 4 25 3 11
Machine3 4 |25 3 1
| | | | | | | |
tp=100

Fig. 3.2 Example showing how to determine j' and n’ for PFSP where n = 5 and m = 3
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K, { 1 ,|q:~kjs—('],~js] > h
0 ,otherwise
Where g;;s denotes job Jj's starting time on machine i after the rescheduling, and g;; s refers
to the starting times of the same task before the disturbance. 4 is a parameter to indicate an
alteration of an operation’s starting times up to 4 time units such that schedule stability is not
affected. By setting its value to 0 we consider the more general situation in which every single
change contributes to the instability of the final value. The normalised robustness function is

defined as follows: R (S)— Min(R

~ Max(R,) — Min(R,) (3-6)

Where R, (S*) is the robustness after the disruption time #p. Max(R,) and Min(R,,) are the
upper and lower robustness bounds respectively. To obtain these bounds, we first consider every
criterion to solve the problem alone, then according to three criteria, each problem should be

solved three times. The results are shown as a 3 X 3 matrix in equation (3.7)

U In Rn

Uy a1y aip a3
I | aq azp az3 (3.7)

Ry \az1 azp a33
In matrix (3.7), the first row corresponds to the case where considering model (3.1) with
weight o = 1, B =0, y = 0 is solved. The second and third rows correspond to the state that by
considering the problem with weights @ =0, 3 =1,y=0and a =0, B =0, y=1 are solved.

Values of Min(R,) and Max(R),) are calculated as follows:

Min(R,) = min{a, 3,a23,a33}

Max(R,) = max{a 3,a23,a33}

In the next chapters, the MSR model is compared against the bi-objective model (Katragjini
et al., 2013) and the classical makespan model. The next section explains the way of getting
the values of weights a, B and 7.
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3.3 Weighted objectives

The aim of designing different optimisation models is to determine the best model that min-
imises the objective function by changing design variables while satisfying design constraints.
It is often that during design optimisation it is required to consider objective functions or several
design criteria simultaneously. The multi-objective optimisation problem can then be defined as
the problem of finding “a vector of decision variables which satisfies constraints and optimises
a vector function whose elements represent the objective functions. These functions form a
mathematical description of performance criteria which are usually in conflict with each other.
Hence, the term ‘optimise’ means finding such a solution which would give the values of all
the objective functions acceptable to the decision maker” (Osyczka, 1985), it is also called
multi-performance, multi-criteria optimisation or vector optimisation problem. The most com-
mon and simple approach used for multi-objective optimisation is based on summarising the
multi-objectives in a new single objective, where the multiple objectives are transformed into
an aggregated objective function by using a linear combination of the proposed weights. This
approach is called the Weighted Sum. As state previously, the weight factors in the proposed
MSR model are; &, B and v where 0 < «, 3,y < 1. These weights are factors of the utility,
stability and robustness objective functions, respectively. The weighted sum ¢+ +y =1
is said to be a convex combination of objectives. The decision parameters o, 3 and 7y are
used to indicate the importance of each of the three objectives. The optimisation approach
of weighted objectives is also referred to as the “a Priori” optimisation, since the weights
are calculated before the optimisation process. Although weighted approach was applied for
many multi-objective COPs, it is still unobvious how the weights should be established. Thus,
a Revised Weight Sensitivity algorithm introduced by Jones (2011), which is performed to
examine a part of weight space that is important to the decision maker in a multi-objective
scheduling problems. This work is based on the work of Jones & Tamiz (2010) that allows
to explore the whole weight space, but even so, many decisions have a priority for some
data beside their initial weighting estimate. Such important information avoid the method of
exploring the whole weight space by reducing the area which is required to be searched.

3.3.1 Initial estimate of weights

1. The starting point of the method which is an initial estimate by the decision maker.

2. A valid initial point for the method, this is obtained by using the Equal Weighting
technique, with the favorite weights of all the unfavorable deviations being given the

value of one.
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3. Supply a starting point, the solution obtained by using the pair wise comparison methods
(Saaty, 1981) after the decision maker(s) supplies pair wise information according to the

importance of the objectives.

There are an additional favorable data employed to restrict the exploration weight space
area where the decision maker consider only one or hybrid of any of the following potential

forms of favorable data expressions:

Absolute information about the relative importance of a single weight.

Absolute information about a set of weights.
* Pair wise ordinal information regarding weights.

* Pair wise cardinal information regarding weights.

The revised weight sensitivity algorithm is then given in figure 3.3.
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Select initial starting point

LetS=¢

Let w = Initial set of weights

Add [SolveWGP(w)] to S

Forn=1to TMax

For each subset T* of deviations of cardinality n
Form new vector w*by:

Calcpax(T* ,max_weight _vector)

A PR RSN ol i

Set w = max_weight_vector
. If [SolveW GP(w)] is not in S then add [SolveW GP(w)] to S

[S—
=

11. Letw=w_low,w* =w_up

12. Examine_Weight_Line (wjo, Wyp, 1)

13. End_For

14. Nextn

15. End

16. Subroutine Examine_Weight_Line (wy,y, Wy, level)

17. If [SolveW GP(wj,y)| = [SolveW GP(w,,)] then EXIT

18. If level > MaxLevel then EXIT

19. Form a new weight vector w,,;; by setting the weight of each
20. deviation to (W“’”%“p)

21. If x* of [SolveW GP(Wy;q)] is not in S then add [SolveW GP(wy,4)] to S
22. Examine_Weight_Line (Wjoy, Wiid,level + 1)

23. Examine_Weight_Line (Wy,igz, wyp,level + 1)

24. End

Fig. 3.3 The revised weight sensitivity algorithm (Jones, 2011)

Where the parameter T Max is used to control the number of varied weights simultaneously,
MaxLevel is a parameter to control the maximum number of bi-sections of the line of direction
between the maximum level and initial estimate. In addition, [SolveW GP(w)] is a sub-code
which solves the dependent weighted goal programme using a weight set w to the unfavorable
deviations in the accomplishment objective. Also, Calcy,(T*, max_weight_vector) is a sub-
program used to compute the maximal level of weight that can be parted among the deviations
in T* in ratio with the proportions of importance given in the initial solution whilst staying
within the bounds specified by the additional preference information supplied by the user. The
remaining weight is then shared amongst the remaining weights whilst coming as close as

possible to maintaining the ratios of importance given in the initial solution. In some cases this
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can be calculated very simply from the preference information given while in other situations a
combination of two priority level lexicographic goal programme with the weight values as the
decision variables and the preference information as constraints must be constructed from the

preference information and solved to find max_weight_vector.

3.3.2 A revised weight sensitivity algorithm for MSR model

In this thesis, thirteen different weights (a, B,7) are derived from the Practical Weight Sensi-
tivity algorithm to evaluate the performance of the proposed multi-optimisation model, these
weights represent the relative importance of each objective in model (3.1). The selection of the
thirteen weights is based on a Practical Weight Sensitivity algorithm, which explained above.
By setting TMax = 1, MaxLevel = 1 and an sequential weight starting solution is set to be one,

ten of these weights are given in Table (3.1):

Table 3.1 The weights values

Solution | « B Y
Wi 0.333 | 0.333 | 0.333
W, 0.666 | 0.166 | 0.166
W3 0.498 | 0.498 | 0.002
Wy 0.416 | 0.416 | 0.166
Ws 0.166 | 0.666 | 0.166
We 0.002 | 0.498 | 0.498
W 0.166 | 0.416 | 0.416
Wy 0.166 | 0.166 | 0.666
Wo 0.498 | 0.002 | 0.498
Wio 0.416 | 0.166 | 0.416

In this Table, the weights are represented as W;,i = 1,2,...,10. The remaining weight are
the unity weights (1,0,0),(0,1,0) and (0,0, 1), these weights are only used to obtain the lower

and upper bounds that are used to demonstrate the normalised model (3.2).

3.4 Uncertainties and real-time events

The proposed optimisation model is used for the dynamic PFSP under different types of
disruptions. In this thesis, we proposed these benchmark instances for the PFSP under different
uncertainties. In the first part, we consider the dynamic PFSP under different real-time events
including; machine breakdown and arrival of new jobs. We also consider these two disruptions
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in addition to the stochastic processing times for the SPFSP in the second part. These real-time
events interrupt the initial predictive schedule individually or both simultaneously. Katragjini
et al. (2013) simulated the baseline of shop floor execution by generating different real-time
disruptions randomly at time  where 0 < t < Cy4¢(BL) and Cy,4x(BL) represents the makespan
of the predictive baseline BL. They generated different disruptions till the end of the baseline
time horizon and not of the revised schedule for two reasons; the first reason is that new jobs
arrive continuously into the schedule sequence, which could delay the completion time of the
revised schedule and hence the process of disruption generation would be unending if halted at
the completion of each revised schedule. The second reason is that the authors aim to generate
a confined benchmark of disruptions and ensure reproducibility of the results when comparing
different rescheduling techniques. Since the revised schedule clearly depends on the algorithm
providing the best solution, the disruptions generated after the completion time of the baseline
are strongly related to the shop floor status determined by this algorithm and hence they cannot
ensure the reproducibility of results similar to a simulation process. They try to avoid lengthy
and difficult-to-reproduce simulation processes. Moreover, unless the new job arrival rate is
set to a very high level, as time goes by the number of jobs to be scheduled decreases and the
problems resolved at every rescheduling point tend to become trivial.

3.4.1 Machine breakdown

It is assumed that the breakdown time and interval are not known a priori. Then the schedule
disruption is simulated to generate random machine breakdowns at time ¢ where 0 <7 <
Cmax(BL). The failure time duration is detected directly after the disruption occurs, where the
failure times are generated by applying a uniform distribution in the range U1, ...,99]. In this
case, a job that is preceded due to a machine breakdown resumes its processing from the point
at which the event occurred.

3.4.2 New jobs arrivals

The scenario of a dynamic problem is considered in this research by generating arrivals of new
jobs randomly to the scheduling system. In other words, there is a probability of generating
one new job arrival at every point ¢t where 0 <t < C4(BL). All jobs are characterised by
the arrival time, which is the time they enter the system, the ready times that identify the time
at which they can be released to the shop floor, and the processing times of operations on
all shop floor machines. The distribution of the processing times for the new jobs is fixed to
Ull,...,99] following Taillard’s processing times generation. All the disruptions are saved as a

rescheduling event benchmark, which can be found on http://soa.iti.es/. It should be noticed
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that there does not exist any similar benchmark of disruptions in the literature, even for a single

type of disruption.

3.4.3 Stochastic processing time

For each PFSP instance in the Taillard’s problems, we consider the processing time of each job
as a random variable following a well-known probability distribution with a given mean and a
given variance. In other words, we replaced the deterministic processing time p;; to stochastic
processing times P;; with E[P;;| = p;; of job i on machine j. Any probability distribution
with a known mean could be used for modeling processing times. It should be noticed that,
in a real-world systems, historical data would be employed to generate each processing time
by a different probability distribution. The Log-Normal distribution is used when modeling
non-negative processing times (Juan et al., 2014a), it is a more natural choice than the Normal
distribution. Thus, a Log-Normal distribution is selected to be used in this thesis. This
probability distribution has two parameters; the location parameter, L;;, and the scale parameter,
0;;. According to the properties of the Log-Normal distribution, these parameters will be given

by the following expressions:

pij = In(E[Py]) — 1/2(1 +Var(P;] /[E[Py]) (3.8)

o1 — ‘\/m (1+2"[’$§]>' (3.9)

3.4.4 Interaction between real-time events

It may have a machine breakdown, a new job arrival and/or stochastic processing time simulta-
neously during the time horizon. At the beginning of every disruption, reactive actions are used
to cope with the disruptions and to preserve a balance between schedule performance, stability
and robustness. Also, when the processing time is a random variable then simulation is applied

to handle the stochastic behavior.

3.5 Conclusion

The rescheduling literature, provide evidence of the lack of a standard methodology when
dealing with dynamic and stochastic manufacturing settings and the existence of a gap between

theory and practice in production scheduling. In this work we introduced a new multi-objective
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optimisation model for robust PFSP under different types of disruptions. The proposed model
considers three different measures namely; makespan, stability and robustness to handle the
effect of different disruptions on the schedule. We have addressed the FSP rescheduling under
two different types of disruptions that dynamically affect the shop floor layout, these disruptions
are; machine breakdowns, new job arrivals. However, real-life manufacturing operations are
affected by other types of events that need to be accommodated. Therefore, we also consider
the stochastic case when the stochastic processing time is adding to the shop floor. These
three disruptions are very common in every day manufacturing operations and negatively
affect the overall system performance. Hence, this work introduced the generation of a new
disruptions and benchmark by (Katragjini et al., 2013) as explained in details previously. The
shop floor layout considered in this work is a PESP, yielding very stiff permutations that can be

reoptimised only partially at every rescheduling point.
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Dynamic PFSP under different real-time
events






Chapter 4

Particle Swarm Optimisation Algorithm
for Robust PFSP

4.1 Introduction

In the literature of COPs, evolutionary methods have been widely used to solve different types
of these problems. The PSO algorithm belongs to the category of evolutionary computation op-
timisation family that was introduced by Kennedy & Eberhart (1995). Evolutionary algorithms
are usually inspired by nature such as the well-known GAs, Bee colony Optimisation and Ant
Colony Optimisation. The PSO algorithm simulates a social behaviour such as swarm bird
migration. It is a stochastic optimisation technique, and hence, it is a good option for many
dynamic and stochastic COPs. The PSO algorithm optimises the problems using improvement
solutions in a multi-dimensional space. It conducts a search using what is called a swarm
(population) of individuals and updated Iteratively, also, the individuals are called particles.
Each particle represents a solution (a candidate position) to the problem. A particle is treated
as a point in an n-dimension space, the position and velocity of each particle characterises
its status. The PSO algorithm stores populations of particle swarm, which moves around
in the solution space; the best position associated with the best fitness value of the particle
obtained so far is called the personal best, also the best experience or position ever found by
all particles is called global best. The nature of the PSO algorithm is fairly robust to changes
caused by random disruptions in a dynamic scheduling environment. This algorithm belong
to the metaheuristic techniques and it has been proposed by many researchers because of its
advantages over more traditional methodologies, the following are some advantages of this

algorithm:
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1. The dynamic and stochastic nature of the algorithm and its simplicity of implementation
(Blackwell, 2007); (Li et al., 2006); (Zhang et al., 2015).

2. Another features are the use of self-information, individual best information and global
best information to generate effective and optimal results, as well as the convergence
speed of the swarm is very high (Blum & Merkle, 2008).

3. The main advantage of PSO is that, it requires fewer parameters to be adjusted when

compared to different optimisation methods (Li et al., 2012).

The contribution of this chapter is to apply the PSO algorithm for the predictive-reactive
approach with the MSR model for the robust dynamic PFSP under different types of real-time
events. The chapter is structured as follows; in section 4.2, the framework of the PSO algorithm
for dynamic PFSP is introduced. Section 4.3 gives an example to illustrate the procedure of
the PSO algorithm for the PFSP. Section 4.4 provides the experimental results. The related

conclusions are introduced in section 4.5.

4.2 Predictive-reactive based PSO framework for robust PFSP

In order to solve the PFSP under different disruptions, the PSO algorithm has to be defined.
First of all, the PSO algorithm is proposed to solve the dynamic PFSP under different real-
time events. Also, the MSR model is proposed to maintain the stability and robustness for
this problem. The predictive-reactive approach is proposed to control the effect of different
real-time events on the scheduling process. Thus, the methodology is to apply the predictive
solution first, then rescheduling is triggered when a real-time event is indicated in the scheduling
system. There are two real-time events that disturb the scheduling system, these are; machine
breakdowns and new job arrivals. These real-time events interrupt the initial planned schedules
simultaneously. At the beginning of every machine failure, rescheduling PSO algorithm is
applied to accommodate the new disruption, while the MSR model is used to preserve the
stability and robustness of the system. As well as, when a new job arrives to the system, the
PSO algorithm is applied at the reactive stage to reschedule partial sequence of jobs such
that the new job is located in an optimal sequence. Figure 4.1 shows the framework of the
predictive-reactive approach and how it applies to the PSO algorithm at the reactive stage.
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Fig. 4.1 Predictive-Reactive based PSO approach

In the PSO algorithm, the swarm consists of » number of particles. Each particle corre-
sponding to a position vector and a velocity vector where the position vector represents the
position particle in the solution space, while the position vector is used to create a schedule
from the particle position. This vector is decoded as explained in section 4.2.3 in order to
represent a solution to the problem. The PSO algorithm is an iterative procedure where each
particle move its position in the search space in order to improve the solution quality. Every
single particle continue looking for the best solution, this is named as the personal best. Also
the algorithm continues looking for the best solution from the personal best found in the swarm,
this is called the global best. The particles velocity control the movement of a particle to a
different position. The velocity of a particle is updated at each iteration and the particle change
it position in the search space, which generates a new position vector. The velocity has all
information about the way of moving the position of the particle from the position of the global
best solution in the whole swarm and the personal best solution that found by the particle
itself. The dimension of position, velocity, personal best and global best vectors are ¢. This
dimension represents the required number of columns or variables in order for the position
vector to accurately represent a schedule to the problem. To explain PSO algorithm let us define

the following:
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Problem dimension: r is the problem dimension (the number of jobs) and j is the index of

the problem dimension j =1,2,... ,n.

Population size: o is the population size (the number of particles) and i is the index of

population size i = 1,2,...,0.
Iteration number: ¢ is the number of iterations.

Particle: X! is the i"" particle (position vector) in the swarm at iteration ¢, it consists of n
particles that is X/ = x/;,x,,...,x} where x} ; 1s the position value of particle i of job j

at iteration .

Particle velocity: V! is the i'" particle velocity (velocity vector) at iteration ¢, it consists of n
particle velocities V/ = v};,viy,...,;, where V}; is the velocity of particle i of job j at

iteration ¢.

Population: The set consists of ¢ particles in the swarm at iteration ¢ is called a population
po' where po' = X{,X5,... X{.

Permutation: The permutation of job sequence implied by the particle X! is defined as
T =T, ,,. .., where 7! is the assignment of job j of the particle i in the permutation
at iteration ¢.

Inertia Weight: The inertia weight w' is used to control the impact of the velocities from the

previous step on the current velocity.

Personal Best: The personal best P! represents the best position of particle i with the best
fitness at iteration # where P/ = pj;, ply,. .., pj, and pj; is the position value of the it
personal best with respect to j. In a minimisation problem with the objective function
f(m!), the personal best P! of the i’ particle in the swarm can be obtained such that
f(x) < f(m~") where 7! is the corresponding permutation of P/ and 7t/ ! is the corre-

sponding permutation of P!~ ! The fitness function of P! is simplified as fip b < f(nl).

Global Best: The global best among all the swarm of particles achieved so far is called global
best G'. It is defined as G’ = g/, g5, . .., &, where g} is the position value of G'. To obtain
the global best we use the criterion f(n') < f(x!) where ' and 7! are the corresponding
permutation of global best G' and personal best P/ respectively. For simplicity we use
18P for the fitness function of the global best instead of f(x').

Termination Criterion: The search process of PSO algorithm will be terminated after a

maximum number of iterations or a maximum CPU time.
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Now the algorithm can be described after defining these notations. The general structure of the

PSO algorithm is given in figure 4.2 below.

t=0

Initialise particles X/;.

While termination condition are unsatisfied do
t=t+1;

Update w';

Select fip b for each particle;

Select f¢¢ from X!~ ;

. o
Calculate particle velocity v; ;

= R O

_—
\®)

. Update particle positions x; ;;

[
N

. end

Fig. 4.2 General structure of the PSO algorithm

An initial solution is required to start the PSO algorithm. Every single particle is placed
randomly in the search space and its position is evaluated. After the evaluation of all the
solutions, the global best solution can be identified and hence decide whether to keep the old
solution or replace it with the current one. The fitness function is given as f(x}) = NMSR and
it is rewritten as f7 in short. The PSO algorithm then moves to the next iteration. These steps

are explained in details in the following subsections.

4.2.1 The initialisation of the PSO algorithm for the PFSP

The PSO algorithm is start at iteration # = 0, also the population size is set to ¢ = 2 X n where
n is the number of dimensions (Tasgetiren et al., 2004). The initial population of particles
generated randomly and the initial position values for the particle are generated randomly as

follows:
x?j = Xmin T 11 (xmax - xmin) (4 1)
Where i = 1,2,...,0 , [Xmin,Xmax] = [0,4] and r| € (0,1) is a uniform random number

determined later as discussed in Section 4.3. Once the position vectors have been initialised,

the initial velocities are established similarly as follows:

V?j = Vin + VZ(Vmax - Vmin) 4.2)
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where [Viin, Vimax] = [—4,4] and r5 € (0, 1) is a uniform random number.
The next step is to apply the decoding rule (described in Section 4.3) to the vector Xl.0 =
x9,x%, ... ,xY for every particle to obtain 7). We use this schedule to compute the value of f?

and thus for every particle we have:

Pl=x? (4.3)

and

=1 (4.4)

fori=1,2,...,0. The final step in fully initialising the PSO is to set the global best vector

Pé and the best objective value (makespan) of the swarm as follows:

d=r (4.5)

Z

and

727 = min(7") (4.6)

fori=1,2,...,0. where the 7'/ particle position is the one that yields the lowest objective
value out of all the particles in the swarm. At this point, all the particles have been initialised
and their position in the search space has been evaluated. The algorithm begins its iterative
procedure as described in following section.

4.2.2 PSO Algorithm

After all the particles in the swarm have been initialised, the inertia weight (w?) is given its
initial value. According to Tasgetiren et al. (2004), a reasonable value for the inertia weight,
which starts from 0.9 and never decreased below 0.4. The inertia value decreases the importance
of the previous velocity vector. Therefore, as the value of w increases, the previous velocity has
a bigger impact on the new velocity. If the value of w decreases, the previous velocity becomes

less relevant.

Step 1: Go to next iteration;

t=t+1 4.7)
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Step 2: Update inertia weight;
w = wl™Y x Bpso (4.8)

Where Bpso is the decrement factor. The decrement factor is similar to the cooling rate
of the temperature in SA. In this case, as time goes by Bpso decreases the inertia weight,
which reduces the importance of the prior iteration. The selected value for Bpgo for this

problem is discussed in Section 4.3. In general, it ranges from (0, 1).
Step 3: Update velocity;

= ben(pl ) ) bent =) @9)

Equation (4.9) above is repeated along every dimension of a particle in order to populate
the velocity vector for particle i. This has to be repeated for each particle of the swarm.
In this equation, c¢; and ¢, are constants. It was found that a reasonable value for both
constants is 2 (Tasgetiren et al., 2007). However, further analysis (presented in Section
4.3) yields different values. Finally, r; and r, are uniformly distributed random numbers
from O to 1. If after updating the velocity any value along any dimension (i.e. v/ j) exceeds

Vinax OT Vmin, then the corresponding value is replaced with v, or vy, respectively.

Step 4: Update position;

-1
A=Y (4.10)
The above equation, just like with velocity, is repeated for every dimension of a particle
and for all particles in the swarm. It should be noted that if the value of x! ; exceeds either

Xmax OF Xmin then it is replaced by x4y OF Xy, respectively.

Step S: Schedule decoding; Once the new position vectors are obtained, utilise the procedure
described in the next section to decode a solution. This solution will yield a schedule 7tl’ ,

for the position vector of every particle in the swarm.

Step 6: Update personal best; Each particle of the swarm is evaluated according to the
corresponding 7! obtained in step 5. If /7 < f7 ? then 17 = 7, this is repeated for every
particle. If the new f is better than f7 ® we also update the personal vector as Pl =X/

and ' = «!. On the other hand, if f/ > f¥ b then we leave the current value of 17 b
(t=1)
P. .

unchanged and we set P/ = l
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Step 7: Update global best; We find the minimum value of personal best in the whole swarm,
thatis fF? = mini[fipb]. If 77 < £8° then £$° = #P” and g' = X! and n' = 7!. Otherwise,

f8" remains unchanged and g’ = g~ 1.

Step 8: Stopping; If the stopping criterion is reached, then the procedure is stopped. Otherwise,
return to Step 1. A common stopping criterion is to set a predetermined maximum
number of iterations. If the maximum number of iterations has been reached, then 7’ is
the optimal schedule and the makespan of the assignment is given by £%”. Additional
stopping criteria can be implemented. For example, the algorithm may be stopped
once a certain number of iterations are carried out, during which there have been no
improvements to the global best. In this case, ' would also be the optimal schedule and

the makespan of the assignment would be given by f8°.

4.2.3 Decoding of Solution

The decoding mechanism is considered as the key elements in the PSO algorithm, it is also the
most challenging step of the procedure. The decoding step is defined as how a particle position
vector is mapped into a solution to the scheduling problem. There are several techniques that
have been used for this purpose. The most common method is the Smallest Position Value
(SPV) rule that was introduced by Tasgetiren et al. (2004). Another method was proposed by
Sha & Hsu (2008), who have presented a coding mechanism that uses a priority list vector
representation to map a solution to the problem of open shop where the lowest value has a
higher priority. Lian et al. (2006) used a different coding methodology for solving a JSP with
the objective of minimising the makespan. They translated an n X m matrix into a sequence
where jobs are sorted by location in numerical order. In this thesis, the SPV rule is used,
which is explained within the example given in section 4.3. Thus, the pseudocode of the PSO
algorithm is given in figure (4.3).
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11.

12.

13.

14.

15.

. Set initial iteration t =0and 0 =2 X n.

Generate o initial particles X; 0 {xl], I x?n where x?j is selected randomly from the
range [0,4].

. Generate o initial velocities ViO {Vm s ?n} where v?j is chosen randomly from the
range [—4,4].
Use the SPV rule to detect 7r = { ;) ,7rl2, . m} of particle X;°. 0

. Apply the fitness function fO to evaluate each particle i in the swarm.
. For each particle set P? = X? where P? = {p%,p%,....p0}, p% =8, p% =%, ..., p) =

x?n together with its best fitness function fip b— fl-o.

. Detect the best fitness value in the whole swarm such that fg = min{ fl-o} with its corre-

sponding particle XB . Set global best to G =X 2 such that g(l) = x(L) 15 gg = xgz, s g2 = xgn

with its fitness value f&° = ff.

. Update the iteration r =t +1.

. Update the inertia weight w' = w' Y Bpso where Bpso is the decrement factor.
10.

Update the velocity as follows vj; = w'~!vi7 e (plj xfjfl) —|—czr2(gtj — X h
where ¢ and ¢, are social and cognitive parameters and ry,r, € (0,1) are uniform
random numbers.

Update position values x}; = x;]._] + Vi

Use the SPV rule to detect the permutation 7} = {7/, ), ..., 7}, }.

Use the permutation to evaluate particles by checking if there is any improvement at
iteration ¢ for the personal best. That is, if f! < f*°, then P! is updated as P! = X! and
=1

Find the minimum value of P! as f] = min{fipb}, Lelili=1,2,..,p}. If fi < f8b,
then update the global best as G' = X} and f8> = f!.

If the number of iteration exceeds the maximum number of iterations, then stop; otherwise

go back to step.

Fig. 4.3 PSO algorithm for the PESP

4.3 An Example of the PSO Algorithm for the PFSP

To demonstrate the PSO methodology to the PFSP, we explain the procedure of the algorithm

for a single particle and for small number of iterations. In this case, we will assume a PFSP

with three jobs and two machines, and hence the problem dimension is equal to the number

of jobs, which means n = 3. As we mentioned above, the population size o is set to be

twice of the problem dimension, so ¢ = 6. This means the dimension of both of position and

velocity vectors is six. Also, the decrement factor Bpgo is set to 0.975 and w? is set to 0.9
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(Tasgetiren et al., 2007). As well as, ¢; = ¢2 = 2, [Xmin, Xmax] = [0,4] and [Viin, Vinax] = [—4,4].

The processing times for this example are given in Table 4.1.

Table 4.1 Jobs processing times

Machines J1 J2 J2
Machine 1 | 7
Machine2 | 1 | 5

The first step is starting with set # = 0 and use equations (4.1) and (4.2) to initialise Xl.o and
Vl-0 respectively. Now, we apply the SPV rule as shown in Table 4.2. This Table shows these
initial values where 71:19 represent the sequence of jobs by applying SPV rule. Note that the SPV
rule sort the jobs by sorting the position values Xl-0 in decent manner.

Table 4.2 Positions, velocity and sequence of jobs

Jobs 1 2 3
X | 0.329 | 2.453 | 3.559
VY |-0.397 | -1.136 | 3.838

X) | 1.224 | 3.904 | 1.433
VY | -1.570 | 0.098 | -1.057

XY | 3.406 | 1.267 | 1.881
VY | -3.763 | 2.997 | -3.521

X9 | 2.137 | 0.694 | 0.339
VY | 0.015 | 2.432 | -1.847

X2 | 0455 | 2213 | 0.174
vy | -2.013 | 1.609 | -2.517

XY | 0965 | 3.242 | 0.260
VO | -1.767 | -1.285 | -2.594
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Once all the jobs have been assigned, we calculate the fitness function (makespan) cor-

responding to each position value Xl.o. Since we are in the first initial iteration t = 0, we set

Pl.O = Xl.o. Also, since the dimension is 3, so we have six sequences of jobs, which are; 77:?, ﬂg,
7r§), 7r2, ng and 7r60 . The makespan for these sequences are shown in Table 4.3 below:

Table 4.3 Fitness functions

0] 70 [ 0 [ 70 [ 70
Schedule | 7y | 7; | 703 |y | 75

10 14 [ 16 | 20 | 20 | 18 | 18

1

From Table 4.3 the personal best will be Pl0 = XIO, P20 = Xg s eee Pg = Xg because this
the initial step of the algorithm. It is obvious that the global best will be given as follows;
g’ = f()).

Now we set t = 1. The velocity is then updated according to the updated iteration described in
the algorithm (see figure 4.3) as follows;

1

Vij :wov%+clr1(p§)j—x%)—l—czrz(g?j—x%) 4.11)

Once the velocity vector has been updated, we calculate the new values for the position

vector as follows;
xl-lj = x?j + v}j 4.12)

The new values of position vector and velocity vector for particle s are shown in Table 4.4
below.



74 Particle Swarm Optimisation Algorithm for Robust PFSP

Table 4.4 Positions, velocity and sequence of jobs

Jobs 1 2 3
X9 | -0.058 | 1.350 | 7.608
VY | -0.387 | -1.104 | 4.048

XY | 0.189 | 4975 | 0.413
VY | -1.035 | 1.070 | -1.020

XY | -0.044 | 4401 | -1.275
VY | -3.450 | 3.134 | -3.157

X9 | 2491 | 3.107 | -1.455
VY | 0353 | 2413 | -1.794

X9 | -1.470 | 4.123 | -2.296
V9 | -1.925 | 1.910 | -2.469

X) | -0.488 | 2.045 | -2.290
VO | -1.453 | -1.197 | -2.550

Where ¢y = ¢, =2 and ry,r; are random variables from the interval (0,1). Finally, the
inertia weight will updated as follows:
w! =w® x Bpso = 0.9 x 0.975 = 0.877

Now the new position vector is arranged using the SPV rule and the current schedule and
its corresponding makespan values are shown in Table 4.4. Also, the new fitness functions are
given in Table 4.5.

Table 4.5 Fitness functions

I S T R ) ey
Schedule | 7; | 7y, | @3 | 4 | 75

10 14 | 18 | 18 | 18 | 18 | 18

l
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At this point, from Table 4.5, the value of fl1 is equal to f{) , for this, we have the choice to
keep or replace the previous personal best by setting Pl1 = P]0 and we apply the same procedure
for the remaining values of f,i =2,3,4,5,6. Thus, we have: P} = P),P} =P). P| =P} P! =
PY and P! = P). In this iteration, the global best f¢ requires to be recomputed based on the
new personal best values of the swarm. However, in this example the value of particle x% does
not change, which yields an unchanging global best and concluding the first iteration. The
movement of the algorithm to a better solution is continue until stopping criteria yield. As can
be seen from the few iterations of the algorithm (Table 4.5), the value of the objective function
does not improve but it still the best. It is important to acknowledge that the algorithm can not
reach a better solution after more iterations are carried out. Furthermore, the performance of
the algorithm may improve if there are different values for job processing time and different

values for the parameters are set.

4.4 Experiment Results

This section gives the experimental results and comparison study for the PSO algorithm. This
algorithm has been applied for the dynamic PFSP under different real-time events, where
the PSO algorithm is triggered for the predictive-reactive approach with the MSR model and
used to maintain the problem stability and robustness. All experiments are coded in Java,
eclipse platform and run on an Intel Cori5 2.6 GHz PC with 6GB of memory RAM. In the
PFSP under different real-time events, three models are used and compared namely; the MSR
model, the bi-objective model of (Katragjini et al., 2013) (it has only makespan and stability
objectives) and the classical makespan model. A sensitivity analysis using a Practical Weighted
Analysis approach (Jones, 2011) is also coded to test the versatility of the MSR model in
producing differing Pareto efficient solutions with respect to the three objectives. The Jones
(2011) algorithm produced thirteen distinct weight sets (o, ,7), each representing different
levels of relative importance of the objectives in the MSR model. The parameters used in this
algorithm are as follows:

TMax = 1, MaxLevel = 2 and a sequential weight starting solution is set to be one. The unity
weights are applied to obtain the normalised model of the MSR model, these three weights are;
(0.999,0.001,0.001),(0.001,0.999,0.001),(0.001,0.001,0.999) While the sets of remaining
ten different weights are using to test this experiment. These weights are given in Table 3.1.
Furthermore, the bi-objective model given in (Katragjini et al., 2013) is also evaluated using

only the first (o) element of weights sets W) to Wjo. These elements are listed as follows:

o = 0.333,0.666,0.498,0.416,0.166,0.002,0.166,0.166,0.498,0.416
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Taillard (1993) has provided extensive sets of generated test problems for minimising
makespan in PFSP. The total number of problems he generated are 120, including 12 different
size of problems ranging from 20 to 500 jobs and 5 to 20 machines. He has provided 10
different instances for each PFSP from the same size. The performance of the PSO algorithms
with different weights are evaluated by using the benchmark set of Katragjini et al. (2013).
They have reported the PFSP under different real-time events and its predictive solution for
all Taillard’s benchmarks, which can be found in http://soa.iti.es/. The real-time events are
simulated such that they interrupt the system in specific disruption points ¢p, for example,
with the PFSP face machine breakdown disruption, the schedule disruption is simulated by
generating random machine breakdowns at time 7, 0 < t < Cyuq¢(B). For each instance, the
baseline B is generated by applying the IG algorithm. Also, machine breakdowns happen
only on busy machines, in other words, machines do not undergo failures during idle times.
In addition, the downtime duration is detected directly after the event occurs. At this point,
the down times are obtained from applying the uniform probability distribution in the range
U[l,...,99]. Another assumption is that no other real-time event is recorded on the same
machine before the breakdown event is recovered. At most, only one machine can have a
breakdown event at time ¢. For more information about the real-time events including the new
job arrival see chapter 3.

In the PSO algorithm, the permutation representation is used, and the population size is taken
as twice the number of jobs. Also, the stopping criteria of the algorithm is depending on
the number of iterations and it is set to be 3 x n. Regarding the PSO parameters, social and
cognitive parameters are taken as ¢ = ¢, = 2 consistent with the literature (Tasgetiren et al.,
2004). Initial inertia weight is set to w® = 0.9 and is never decreased below 0.4. Finally, the
decrement factor Bpgo is taken as 0.975. The solution quality is measured with the relative

percentage deviation (RPD), to be more specific, RPD is computed as follows:

M — Bests,;
— X
Bestg,;

RPD = 100

where M is the solution obtained by the proposed model and PSO algorithm. Bests,; is the
average of 10’s Taillard instances of lower bound solution from the same size. The predictive-
reactive approach with the PSO algorithm are applied for the MSR model, the bi-objective
model introduced by (Katragjini et al., 2013) and the classical makespan model, we run each
instance five independent times to obtain more reliable results for the proposed model and
algorithm.
Table 4.6 shows the results with respect to the RPD. In terms of the objective weights we solve
the problem for 10 weights as shown in