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From Metaheuristics to Learnheuristics: Applications to Logistics, Finance, and
Computing

by Laura Calvet Liñán

A large number of decision-making processes in strategic sectors such as transport, production
and finance involve NP-hard problems. Trends such as globalization make systems larger and
more complex. Frequently, these problems are characterized by high levels of uncertainty and dy-
namism. Metaheuristics have become predominant methods for solving challenging optimization
problems in reasonable computing times. However, they frequently assume that the inputs, the ob-
jective functions, and the set of optimization constraints are deterministic and known in advance.
These constitute strong assumptions that lead to work on oversimplified versions of real-world
problems. As a consequence, the solutions obtained may have a poor performance when imple-
mented. Simheuristics integrate simulation into metaheuristics to solve stochastic optimization
problems in a natural way. Similarly, learnheuristics combine statistical learning and metaheuris-
tics to tackle optimization problems in dynamic enviroments, where inputs may depend on the
structure of the solution.

From a methodological perspective, the main contributions of this thesis are the design of
learnheuristics and a classification of works hybridizing statistical / machine learning and meta-
heuristics. It discusses the potential of learnheuristics in a number of fields and studies two specific
cases. The first is a routing problem in which the depots are heterogeneous, in terms of their com-
mercial offer, and customers show different willingness to consume depending on how well the
assigned depot fits their preferences. Thus, different customer-depot assignment maps lead to dif-
ferent customer-expenditure levels. Regression models are employed to capture the relationship
between each customer’s willingness to spend as a function of several variables, including the
assigned depot as well as other customer’s features (age, gender, etc.). The second case describes
a vehicle routing problem where each customer’s demand depends on the order in which the cus-
tomers are visited. Moreover, several applications are presented in transport, production, finance,
and computing. In the first field, the smart design of routes, including capacitated depots and ve-
hicles, are addressed analyzing stochastic demands, and sustainability indicators. Moreover, the
waste collection problem and a routing problem with a heterogeneous fleet, asymetric costs and
site-dependency are studied. In the production arena, the optimization of jobs’ sequences under
stochasticity, considering multiple production lines and a common deadline, is discussed. Strate-
gies to invest on risky assets are proposed and assessed. Finally, the parameter fine-tuning of
metaheuristics and the effect of the number of agents and the computing time on metaheuristics’
performance are investigated.

HTTP://WWW.UOC.EDU/PORTAL/EN/INDEX.HTML
http://in3.uoc.edu/opencms_portalin3/opencms/en/index.html




5

OPEN UNIVERSITY OF CATALONIA

Resum
Internet Interdisciplinary Institute (IN3)

Doctor of Network and Information Technologies

From Metaheuristics to Learnheuristics: Applications to Logistics, Finance, and
Computing

by Laura Calvet Liñán

Un gran nombre de processos de presa de decisions en sectors estratègics com el transport, la pro-
ducció i les finances impliquen problemes NP-difícils. Tendències com la globalització fan que
els sistemes siguin cada cop més grans i complexos. Sovint, aquests problemes es caracteritzen per
alts nivells d’incertesa i dinamisme. Les metaheurístiques s’han convertit en mètodes molt popu-
lars per resoldre problemes d’optimització difícils en temps de càlcul raonables. No obstant això,
sovint assumeixen que els inputs, les funcions objectiu, i el conjunt de restriccions d’optimització
són deterministes i coneguts. Aquests constitueixen supòsits forts que obliguen a treballar en ver-
sions simplistes de problemes del món real. Com a conseqüència, les solucions poden conduir
a resultats pobres quan s’apliquen. Les simheurístiques integren la simulació a les metaheurís-
tiques per resoldre problemes d’optimització estocàstica d’una manera natural. Anàlogament,
les learnheurístiques combinen l’estadística amb les metaheurístiques per fer front a problemes
d’optimització en entorns dinàmics, on els inputs poden dependre de l’estructura de la solució.

Des d’un punt de vista metodològic, les principals contribucions d’aquesta tesi són el disseny
de les learnheurístiques i una classificació dels treballs que combinen l’estadística / l’aprenentatge
automàtic i les metaheurístiques. La tesis discuteix el potencial de les learnheurístiques en un con-
junt de camps i estudia dos casos específics. El primer és un problema d’enrutament en el qual els
magatzems són heterogenis, en termes de la seva oferta comercial, i els clients mostren diferents
disposicions a consumir en funció de com el magatzem assignat s’ajusti a les seves preferències.
Per tant, diferents mapes d’assignació de clients a magatzems condueixen a diferents nivells de de-
spesa. Es fan servir models de regressió per representar la relació entre la disposició de cada client
per consumir com una funció de diverses variables, incloent el magatzem assignat, així com carac-
terístiques d’altres clients (edat, gènere, etc.). El segon cas descriu un problema d’enrutament on la
demanda de cada client depèn de l’ordre en què es visiten aquests. D’altra banda, es presenten di-
verses aplicacions en el transport, la producció, les finances, i la informàtica. En el primer camp,
el disseny intel·ligent de rutes, incloent magatzems i vehicles amb capacitat limitada, s’aborda
analitzant demandes estocàstiques i indicadors de sostenibilitat. A més a més, el problema de la
recol·lecció de residus i un problema d’enrutament amb una flota heterogènia, i costos asimètrics
i dependents del lloc s’estudien. En l’àmbit de la producció, es discuteix l’optimització de se-
qüències de tasques considerant estocasticitat, múltiples línies de producció i una data límit. Es
proposen i avaluen estratègies per invertir en actius de risc. Finalment, s’investiguen la selecció
de valors dels paràmetres de les metaheurístiques i l’efecte de la quantitat d’agents i del temps de
càlcul en el rendiment de les metaheurístiques.
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Un gran número de procesos de toma de decisiones en sectores estratégicos como el transporte,
la producción y las finanzas implican problemas NP-difíciles. Tendencias como la globalización
hacen que los sistemas sean cada vez más grandes y complejos. Con frecuencia, estos proble-
mas se caracterizan por altos niveles de incertidumbre y dinamismo. Las metaheurísticas se han
convertido en métodos muy usados para resolver problemas difíciles de optimización en tiempos
de computación razonables. Sin embargo, suelen asumir que los inputs, las funciones objetivo y
el conjunto de restricciones de optimización son deterministas y se conocen de antemano. Estas
fuertes suposiciones conducen a trabajar en versiones simplificadas de problemas del mundo real.
Como consecuencia, las soluciones obtenidas pueden tener un pobre rendimiento cuando se im-
plementan. Las simheuriśticas integran simulación en metaheurísticas para resolver problemas de
optimización estocástica de una manera natural. De manera similar, las learnheurísticas combi-
nan aprendizaje estadístico y metaheurísticas para abordar problemas de optimización en entornos
dinámicos, donde los inputs pueden depender de la estructura de la solución.

Desde un punto de vista metodológico, las principales aportaciones de esta tesis son el diseño
de las learnheurísticas y la clasificación de los trabajos que combinan estadística / aprendizaje
automático y metaheurísticas. La tesis discute el potencial de las learnheurísticas en una serie de
campos y estudia dos casos específicos. El primero es un problema de enrutamiento en el que
los almacenes son heterogéneos, en términos de su oferta comercial, y los clientes muestran una
disposición diferente de consumir dependiendo de lo bien que el almacén asignado se ajuste a sus
preferencias. Por lo tanto, diferentes mapas de asignación de clientes a almacenes conducen a
diferentes niveles de consumo. Se utilizan modelos de regresión para representar la relación entre
la disposición de cada cliente a gastar en función de varias variables, incluyendo el almacén asig-
nado, así como las características de otros clientes (edad, género, etc.). El segundo caso describe
un problema de enrutamiento de vehículos en el que la demanda de cada cliente depende del orden
en que se visitan los clientes. Además, se presentan varias aplicaciones en transporte, producción,
finanzas e informática. En el primer campo, el diseño inteligente de rutas, incluyendo almacenes
y vehículos con capacidad limitada, se aborda analizando demandas estocásticas e indicadores de
sostenibilidad. También se estudia el problema de la recolección de residuos y un problema de
enrutamiento con una flota heterogénea, y costes asimétricos y en función del sitio. En el ámbito
de la producción, se analiza la optimización de secuencias de tareas considerando estocasticidad,
múltiples líneas de producción y un plazo común. Se proponen y evalúan estrategias para invertir
en activos de riesgo. Finalmente, se investigan el ajuste de parámetros de metaheurísticas y el
efecto del número de agentes y el tiempo de computación en el rendimiento de las metaheurísti-
cas.
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Chapter 1

Introduction

This chapter introduces the thesis. Its sections are: motivation, main goal and
original contributions, and dissertation outline.

1.1 Motivation
Metaheuristics constitute a heterogeneous family of algorithms designed to solve a high number
of complex combinatorial optimization problems (COPs) without having to deeply adapt them to
each problem (Boussaïd et al., 2013). They represent the first recourse forNP-hard problems that
are required to be solved in real time. Their quickness and flexibility to address realistic and rich
(i.e., complex) problems are two significant advantages in comparison to exact methods. However,
they can not guarantee optimal solutions, but tend to provide near-optimal ones. As synthesized in
Talbi (2009), “optimization is everywhere; optimization problems are often complex; then meta-
heuristics are everywhere”. Certainly, metaheuristics are highly popular among researchers and
companies, and may be found in a large number of fields. For instance, their use is frequent
in: routing, scheduling, telecommunications, machine learning, cryptology, etc. The first works
on heuristics (more experience-based procedures) were written in the 1940s (in particular, Polya,
1945, is considered to be the first), but metaheuristics started to be widely used in the 1970s and
1980s. Since then, their importance in operation research (OR) has rapidly increased.

Fields such as logistics (including both transport and production logistics), finance and com-
puting are strategic sectors for all developed economies. A number of complex decision-making
processes in real-life related applications can be modeled as COPs (Faulin et al., 2012). All theses
problems areNP-hard in nature, which leads to the use of metaheuristics. In logistics, road trans-
port is key for the efficient flow of goods in supply chains. The multi-depot vehicle routing prob-
lem (MDVRP) represents a non-trivial extension of the classical vehicle routing problem (VRP)
combining assignation and routing issues. In the MDVRP with heterogeneous depots (MDVRP-
HD), the customers show different willingness to consume depending on how well the assigned
depot fits their preferences. The MDVRP with stochastic demands (MDVRP-SD) allows demands
to follow probability distributions, either theoretical o empirical ones. Also in the routing arena,
the interest of the waste collection problem (WCP) and the WCP with stochastic waste levels
(WCP-SW) is growing due to the expansion of cities and the relevance of the negative external-
ities of this service. In fact, there is a growing concern for environmental and social impacts of
routing activities in general, which calls for the design of routes based on sustainability indica-
tors. Regarding production, task scheduling is present in the elaboration of products, the design
of timetables, etc. The permutation flowshop scheduling problem (PFSP) is a classical problem,
which usually aims to find the permutation of jobs that minimizes the total makespan, considering
different machines and related restrictions. For instance, the PFSP with stochastic processing times
(PFSP-ST) has been extensively studied during the last decade. Frequently, there is a product com-
posed of several components that need to be independently processed before a deadline, when they
have to be assembled and the product delivered. This problem is called distributed permutation
flowshop scheduling problem with stochastic times (DPFSP-ST). In finance, investments drive the
economic growth and social welfare of countries. Metaheuristics are becoming key methodolo-
gies for addressing a wide range of problems in this field. For instance, the portfolio optimization
problem (POP) consists in selecting a subset of risky assets from a portfolio and setting the weight
of the investment of each asset in order to minimize the portfolio’s variance for a given required
rate of return. Most works fail to account for stochastic returns and covariances, rendering them
unrealistic in the presence of heightened uncertainty in financial markets. On the contrary, the
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stochastic POP (SPOP) deal with returns and covariances modelled as random variables. Finally,
computing includes a large number of procedures that may be optimized. Some examples are the
parameter-fine tuning on metaheuristics, and the analysis of the effect of the number of agents and
the maximum computing time on metaheuristics’ performance.

Nowadays, there are two important trends in the literature on metaheuristics. The first sustains
the original ideas of metaheuristics: the practical usefulness and logic of simple methodologies
relying on local searches (see e.g., Gardi et al., 2014). In contrast, the second encompasses hybrid
methodologies, which benefit from the advantages of each component. Indeed, simplicity is an
important criteria to assess an algorithm. It facilitates the correct implementation of the algorithm
by researchers and companies. However, there are many reasons why an hybrid algorithm may
be required: (i) to obtain better results in terms of objective function values and/or computational
times; and (ii) to deal with more realistic and richer problems. For instance, most matheuristics
(Maniezzo et al., 2009) fall into the first case, solving a subproblem with an exact method. Talbi
(2013) presents the combinations of metaheuristics and: (i) complementary metaheuristics; (ii) ex-
act methods; (iii) constraint programming; and (iv) machine learning. While the author discusses
interesting ideas, the number of works cited is low and the proposed classification is neither based
on works nor on applications, but is a very general framework usable for all the combinations
mentioned. In the context of hybrid algorithms, there is another powerful type which combines
metaheuristics and simulation, so called simheuristics (Juan et al., 2015a). The framework has
been developed during the last years and aims to reduce the lack of works addressing stochastic
COPs (SCOPs) (Bianchi et al., 2009). Indeed, the literature has studied some of these problems
but usually relying on analytical approaches making hard assumptions or complex approaches. It
is crucial to address the stochasticity of these problems, since it is present in most real-life appli-
cations. For instance, traveling times greatly depends on factors which are difficult to predict (and
so their effects) such as the weather, road works, accidents, etc. Similarly, processing times in
scheduling can be affected by machine failures, delays in inputs delivers, etc.

This thesis studies and integrates powerful and well-known methodologies such as simulation,
metaheuristics and statistical learning. It presents several works aiming to further explore, test and
disseminate simheuristics. An original contribution is the development of learnheuristics com-
bining statistical learning and metaheuristics to deal with COP with dynamic inputs (COPDIs),
i.e., problems in which the inputs depend on the solution. A number of applications are ana-
lyzed, focusing on the fields previously mentioned: routing, production, finance, and computing.
A graphical representation of the main methodologies and applications is shown in Figure 1.1.

Figure 1.1: Scheme of key methodologies and applications of this thesis.

1.2 Main goal and original contributions
The main goal of this research is to explore the advantages of hybrid algorithms combining statisti-
cal learning and/or simulation techniques with metaheuristics. It facilitates the design of method-
ologies able to solve realistic and rich problems, avoiding hard assumptions usually present in
the related literature. This general goal has been concreted in the following results and original
contributions:
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C1. An original approach combining metaheuristics and statistical learning for solving COPDIs,
and a general classification and review of works combining statistical learning and meta-
heuristics.

C2. In the routing arena, efficient metaheuristics for solving the MDVRP-HD, the WCP, power-
ful simheuristics for addressing the MDVRP-SD, the WCP-SW, and the HSAVRP-SD, and
a novel approach considering sustainability indicators.

C3. Regarding production, a simple simheuristic for tackling the DPFSP-ST.

C4. Related to finance, a comprehensive review of works on portfolio optimization and risk man-
agement relying on metaheuristics, an efficient metaheuristic and simheuristic for address-
ing the POP and the SPOP, respectively, and an analysis of the benefits due to diversification
of introducing commodity futures in stock portfolios.

C5. Considering computing, a classification and an extensive review of works on the parameter
fine-tuning of metaheuristics, a methodology based on clustering techniques and design of
experiments (DOE) for the parameter fine-tuning of metaheuristics, and an analysis of the
effects of increasing the number of agents and the computing time on the performance of
well-known heuristics.

1.3 Dissertation outline
The rest of this thesis is structured in the following three blocks: methodology (chapters 2 to 5),
applications (6 to 9), and conclusions, future research, and contributions (10 and 11).

The first block focuses on the existing methodology employed and the pure methodological
contributions. In particular, chapter 2 introduces metaheuristics, describing their context, review-
ing the main definitions and classifications, and presenting a few popular ones. Chapter 3 is
devoted to simheuristics, i.e., the integration of simulation techniques into metaheuristics-based
frameworks to deal with SCOPs. Chapter 4 provides a brief definition of statistical learning, high-
lighting the main branches and methods. Afterwards, chapter 5 puts forward learnheuristics, which
combine statistical learning and metaheuristics to address COPDIs.

The block of applications covers problems in transportation, production, finance, and comput-
ing. Chapter 6 analyzes five challenging transportation problems: the MDVRP-SD, the MDVRP-
HD, the MDVRP with sustainability indicators, the WCP, and the HSAVRP-SD. Different meta-
heuristics/simheuristics are designed, implemented and validated for them. In the context of pro-
duction, chapter 7 deals with the DPFSP-ST. Chapter 8 studies optimization problems in finance,
presenting a review and focusing on the POP and the SPOP. Next, chapter 9 addresses the param-
eter fine-tuning of metaheuristics, and discusses issues of parallel computing.

Finally, the last block draws some conclusions, and identifies potential lines of future work
in chapter 10, while lists the publications, and presentations in chapter 11. The most relevant
contributions may be found at appendices A, B, C and D, gathering journal papers indexed in ISI
JCR, journal papers in ISI JCR under review, selected journal papers indexed in Elsevier-Scopus,
and selected conference papers, respectively.
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Chapter 2

Metaheuristics optimization

This chapter presents metaheuristics. After introducing them, the main classification
criteria are discussed, and biased randomization techniques are presented. Later,
the following ones are described: the multi-start, the iterated local search, the sim-
ulated annealing and the variable neighborhood search.
It is based on the following journal articles: Calvet et al. (2017), Calvet et al. (sub-
mitted[a]), and Calvet et al. (submitted[b]).

2.1 Introduction
OR is a well-established field with a huge and active research community. One of its main goals
is to support decision-making processes in complex scenarios, i.e., providing optimal (or near-
optimal) solutions to COPs defined by a given objective function and a set of realistic constraints.
The number of applications is immense, e.g.: transportation and logistics, finance, production,
and telecommunication systems. A noticeable part of the efforts developed by the OR commu-
nity has focused on developing exact methods to find optimal solutions to a wide range of COPs.
When dealing with NP-hard COPs, this usually requires simplifying somewhat the model and/or
addressing only small- and medium-sized instances to avoid incurring in prohibitive computing
times. Another noticeable part of the efforts has been invested in developing heuristic and meta-
heuristic approaches that cannot guarantee optimality of the provided solutions but are usually
more powerful in terms of the size of the instances they can solve in reasonable computing times
(Talbi, 2009). Additionally, these approximated methods are quite flexible, which makes them
suitable for tackling more realistic and richer models. While heuristics are simple and fast proce-
dures based on the specific COP being addressed, metaheuristics represent a heterogeneous family
of algorithms designed to solve a high number of COPs without having to deeply adapt them to
each problem.

Metaheuristics have an enormous number of applications in many fields such as: engineering
design, telecommunications, robotics, bioinformatics, system modeling, chemistry, and physics,
among many others. A number of them are nature-inspired, include stochastic components, and
have several parameters that must be fine-tuned and may interact (Boussaïd et al., 2013). As
Feo and Resende (1995) state, the effectiveness of metaheuristics depends upon their ability to
adapt to a particular instance problem, avoid entrapment at local optima, and exploit the structure
of the problem. The authors also highlight the potential benefit of restart procedures, controlled
randomization, efficient data structures, and preprocessing.

2.2 Classification
Many classification criteria have been proposed to differentiate metaheuristics (Talbi, 2009). The
most important are highlighted next.

• Memory usage versus memoryless methods.

• Iterative versus greedy. An iterative metaheuristic is built from one (or more) complete
solution, which is transformed at each iteration. On the other hand, a greedy algorithm
starts from an empty solution and, as the execution proceeds, it is built progressively.
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• Deterministic versus stochastic. A deterministic metaheuristic makes deterministic deci-
sions; consequently, using the same initial solution will lead to the same final solution.
Whereas with stochastic metaheuristics, one could obtain different solutions.

• Single-solution based search versus population-based search. Single-solution based meta-
heuristics transform a single solution during their execution. While in population-based
metaheuristics, a set of solutions is considered. The first group is exploitation oriented,
they intensify the search in local regions. In contrast, population-based metaheuristics are
exploration oriented, they allow a better diversification.

Figure 2.1 includes some of the most popular metaheuristics (first works are cited): ant colony
optimization (ACO) (Dorigo, 1992), artificial immune systems (AIS) (Farmer et al., 1986), ge-
netic algorithms (GA) (Holland, 1962), greedy randomized adaptive search procedure (GRASP)
(Feo and Resende, 1989), iterated local search (ILS) (Martin et al., 1992), particle swarm op-
timization (PSO) (Kennedy and Eberhart, 1995), scatter search (SS) (Glover, 1977), simulated
annealing (SA) (Kirkpatrick, 1984), tabu search (TS) (Glover, 1986), and variable neighborhood
search (VNS) (Mladenovic, 1995). They are grouped according to the following criteria: (i) single-
solution versus population-based metaheuristics (SMs and PMs, respectively); (ii) whether they
use memory; and (iii) whether they are nature-inspired. Circles’ size is proportional to the number
of Google Scholar indexed articles, from 2006 to 2015, that include the complete name of the
specific metaheuristic and “metaheuristics” or “heuristics” in the article (March 15, 2016). The
success of the first implementations of metaheuristics aroused the interest of journals in new ver-
sions of these methods, which increased the number of authors exploring this topic. Unfortunately,
some publications add only marginal contributions to the already existing frameworks (Sörensen,
2015). In this chapter four metaheuristics will be introduced: the multi-start (MS), the ILS, the
SA and the VNS. Despite being relatively simple, many state-of-the-art optimization methods are
based on them.

Figure 2.1: Main metaheuristics grouped by different criteria.

2.3 Biased randomization
In optimization, a heuristic is defined as a method for building a feasible solution based on an
iterative process. At each iteration, the next movement is chosen from a list of potential candidates
that has been previously sorted according to a problem-specific criterion. Pure greedy heuristics
select the best next element on the short run, aiming to get a good solution at the end. This simple
procedure has two drawbacks: (i) there is no guarantee of finding an optimal solution; and (ii) it is
deterministic, so it always returns the same solution. Some pure greedy heuristics are the classical
Clarke and Wright savings (CWS) heuristic (Clarke and Wright, 1964) in routing, and the NEH
heuristic (Nawaz et al., 1983) in scheduling.

Biased randomization (Grasas et al., submitted) refers to the introduction of randomization in
the construction phase and/or the neighborhood search of optimization algorithms. On the one
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hand, randomization allows increasing the search area covered by selecting a candidate other than
the best next option. On the other hand, biased means that the procedure is not totally random in
the sense that not all the elements have the same probability of being selected. In particular, each
element is assigned a given probability depending on the criterion of the procedure, the higher the
element is in the list, the higher the probability.

Thus, using biased randomization leads to potentially different outputs each time the procedure
is executed. Since running a simple heuristic may take a few seconds or less, implementing biased
randomization may improve the solution found taking small amounts of time. The assignation
of probabilities can be done by using empirical or theoretical probability distributions. There are
analytical expressions that allow the quickly generation of random observations from most theo-
retical distributions. For this reason, these distributions constitute an efficient option. Examples
of distributions widely used are the geometric, the triangular, and the log-normal. Algorithm 1
describes the steps required to implement biased randomization.

Algorithm 1 Biased randomization techniques

1: procedure Biased randomization
2: µ← get random number uniformly distributed in [0, 1) given a specific seed
3: ρ← get random number from a distribution PD(parameters, µ)
4: l← get the ρ element of the sorted list
5: return l
6: end procedure

Some recent works applying biased randomization are introduced here. The reader interested
in a comprehensive review is refered to Grasas et al. (submitted). In the context of smart cities,
Mazza et al. (2016) study the use of computation offloading for delegating computing-intensive
tasks of smart mobile devices to the cloud. The authors develop a biased-randomized algorithm
for solving this assignation problem. Related to real-life transportation activities, Dominguez et al.
(2016a) focus on the two-dimensional loading VRP with clustered backhauls, where both delivery
and pickup demands are composed of non-stackable items. This work presents a hybrid algorithm
integrating biased-randomised versions of vehicle routing and packing heuristics within a large
neighbourhood search (LNS) metaheuristic framework. Dominguez et al. (2016b) discuss the two-
dimensional loading capacitated VRP with heterogeneous fleet. A MS algorithm based on biased
randomization of routing and packing heuristics is proposed. Quintero-Araujo et al. (2016) solve
the location routing problem (LRP), which deals with the simultaneous decisions of: (i) locating
facilities; (ii) assigning customers to facilities; and (iii) defining routes of vehicles departing from
and finishing at each facility to serve the associated customers’ demands. A biased-randomized
metaheuristic relying on classical heuristics is proposed.

2.4 Multi-start
The MS is a simple metaheuristic consisting of two steps that are alternated for a certain number
of global iterations (Algorithm 2). They are: (i) generating a solution; and (ii) applying a local
search (i.e., a procedure to move from one solution to a better one by applying local changes).
Each iteration produces a solution, usually a local optimum, and the best one is returned. Muth
and Thompson (1963) and Crowston et al. (1963), both focused on scheduling, are considered the
first works proposing a MS framework. However, Glover (1977) is the one introducing a local
search to improve starting solutions. This author compared procedures for generating starting
values for variables and for generating values perturbed from other starting points (known as re-
starts), and adressed controlled randomization, learning strategies, induced decomposition, and
adaptive memory processes (Glover, 1986; Glover, 1989; Glover, 2000).

A comprehensive review on this metaheuristic is provided by Martí et al. (2013). This work
describes the origins of the methodology, includes a classification of versions in terms of their use
of memory, and introduces adaptive memory programming and the GRASP metaheuristic.
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Algorithm 2 Multi-start structure

1: procedure MS metaheuristic
2: repeat
3: Generate a solution s
4: s← LocalSearch(s)
5: until stopping criterion is met
6: end procedure

2.5 Iterated local search
The ILS metaheuristic is a flexible metaheuristic that became very popular at the beginning of this
century with the publication of Lourenço et al. (2010), an article that describes and analyzes its
framework, reviews the literature, explains the importance of each of the elements involved and
the interactions between them, and discusses its relationship with other metaheuristics. Burke et
al. (2010) show that the ILS obtains the best average performance among a set of selected meta-
heuristic approaches in three classical COPs: bin packing, PFSP, and personnel scheduling. The
authors also emphasize two main factors for its success: (i) an excellent balance between explo-
ration and exploitation by “systematically combining a perturbation followed by local search”; and
(ii) its simplicity and the reduced number of parameters required, factors that facilitate its quick
implementation in practical applications.

The high level architecture of the ILS is shown in Algorithm 3. First, an initial solution is
generated, usually employing a random solution or the return of a fast heuristic. Afterwards, a
local search is applied to the initial solution. It starts then an iterative process that stops when a
termination condition is met; this condition can be based on time, number of iterations or solution
converge, among others. Initially, the current solution is perturbed; this process may have memory,
i.e., depend on the previous walk (history). It is recommended to implement a random move in a
neighborhood of higher order than the one used by the local search algorithm. The following step
consists in applying a local search to the perturbed solution. This solution will become the next
element of the walk if it passes an acceptance test. Otherwise, one returns to the previous accepted
solution. The criteria designed can be adaptive.

An important advantage of this metaheuristic is its modularity, which enables its development
without problem-dependent knowledge. However, usually the most knowledge about the problem
one introduces, the best performance it gets. The metaheuristic relies on the assumption that local
minima are distributed in clusters.

Algorithm 3 Iterated local search structure

1: procedure ILS metaheuristic
2: Generate an initial solution s0
3: s∗ ← LocalSearch(s0)
4: repeat
5: s′ ← Perturbation(s∗, history)
6: s∗ ← AcceptanceCriterion(s∗, s′, history)
7: until stopping criterion is met
8: end procedure

2.6 Simulated annealing
The SA metaheuristic is a well-established metaheuristic used in both discrete and continuous op-
timization. It is inspired by the process of physical annealing with solids in which a crystalline
solid is heated, and then allowed to cool slowly until it achieves its most regular possible crystal
lattice configuration, without crystal defects (Nikolaev and Jacobson, 2010). Similarly, the meta-
heuristic searches a global solution following this thermodynamic behavior. Algorithm 4 shows
the steps in detail. First, a temperature change counter k is initialized to 0. Additionally, a starting
temperature t0 is set, a temperature cooling schedule is designed, and a repetition schedule Mk is
stablished, which represents the number of iterations executed at each temperature tk. An initial
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solution s is created, and an outer loop is started. In this loop, a repetition counter m is set to 0.
Afterwards, an inner loop starts which repeats the following steps Mk times: (1) a new solution
s′ in the neighborhood of s, N(s), is built; (2) the difference between the objective function value
of s′ and s, ∆s,s′ , is calculated; (3) if ∆s,s′ is negative (assuming a minimization problem), then
s′ replaces s, otherwise this replacement is performed with a probability of exp(−∆s,s′/tk); and
(4) m is incremented by one. After the inner loop stops, k is increased by one, which represents
a decrease in the temperature. The criterion applied to decide whether s must be replaced by s′

is called Metropolis acceptance criterion (Metropolis et al., 1953). It allows the algorithm to es-
cape from local optima. An interesting overview of this metaheuristic can be found in Suman and
Kumar (2006).

Algorithm 4 Simulated annealing structure

1: procedure SA metaheuristic
2: Build a solution s
3: Set temperature change counter k = 0
4: Design a temperature cooling schedule tk
5: Design a repetition schedule Mk

6: repeat
7: Set repetition counter m = 0
8: repeat
9: Build a solution s′ ∈ N(s)

10: Calculate ∆s,s′ = f (s′) − f (s)
11: if ∆s,s′ ≤ 0 then s← s′

12: elses← s′ with probability exp(−∆s,s′/tk)
13: end if
14: m← m + 1
15: until m = Mk

16: k ← k + 1
17: until stopping criterion is met
18: end procedure

2.7 Variable neighborhood search
The VNS was first proposed by Mladenović and Hansen (1997). Besides being a popular meta-
heuristic in combinatorial as well as global optimization, it has been used in a wide range of re-
search fields such as scheduling, routing, telecommunications, biology, and artificial intelligence.
For extensive reviews on applications the reader is referred to Moreno-Vega and Melián (2008)
and Hansen et al. (2010a). In essence, the VNS proposes systematic changes of neighborhood to
find a local minimum by intensifying the search, and to escape from the associated valley by di-
versifying. It relies on three facts: (i) a local minimum with respect to one neighborhood structure
is not necessarily so for another; (ii) a global minimum is a local minimum with respect to all
possible neighborhood structures; and (iii) for many problems, local minima with respect to one
or several neighborhoods are relatively close to each other.

Algorithm 5 shows a simple version of the VNS. Its inputs are the problem instance to solve,
the number of neighborhoods considered (K), and the maximum computational time (T ). Fre-
quently, K is set to two or three, and the neighborhoods are nested. First, the variable t for
measuring the time is initialized at zero. Afterwards, an initial solution is obtained and stored
in currentSol. An outer loop sets the current neighborhood to the first one, and controls that the
time-based constraint is satisfied. Inside, another loop builds and tests new solutions. Within this
loop, the current solution is initially shaken (or perturbed), generating a solution from the k-th
neighborhood of currentSol. The resulting solution is stored in newSol, which is then improved
by means of a local search. If there is an improvement (i.e., newSol is preferred over currentSol),
newSol is copied into currentSol, and the current neighborhood is set to the first. This constitutes
a descendent phase aimed to find a local minimum. Otherwise, the next neighborhood is analyzed
(i.e., k is set to k + 1). The inner loop is executed until the last neighborhood is explored (i.e.,
k = K). Finally, currentSol is returned.
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Algorithm 5 Variable neighborhood search structure

1: procedure VNS metaheuristic
2: Set K
3: t ← 0
4: Generate an initial solution s0
5: s∗ ← s0
6: repeat
7: k ← 1
8: while k ≤ K do
9: s′ ← Shake(s∗, k)

10: s′ ← LocalSearch(s′)
11: if s′ � s∗ then
12: s∗ ← s′

13: k ← 1
14: else
15: k ← k + 1
16: end if
17: end while
18: until stopping criterion is met
19: end procedure
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Chapter 3

Simulation and simheuristics

This chapter presents simheuristics, including a literature review and a discussion
of benefits and limitations.
It is based on the following journal articles: Calvet et al. (submitted[a]), Calvet
et al. (submitted[b]), and Gruler et al. (2016).

3.1 Introduction
Metaheuristics constitute a powerful approach to tackle COPs, they are indeed highly popular in
many research fields. However, these methodologies have been developed considering determin-
istic problems (i.e., ignoring stochasticity) when, in fact, real-life is plenty of uncertainty. For
example, in garbage collection or stocking of vending machines, the demand is not revealed until
the place is reached. Other situations in which there is unknown information are flight scheduling
and capital management. Unfortunately, the oversimplification of scenarios, i.e., assuming no un-
certainty, can lead to poor-quality solutions. This is the reason why there is an increasing interest
in considering randomness in COPs (Bianchi et al., 2009).

Simheuristics (Juan et al., 2015a) is an approach combining metaheuristics (in a general sense,
i.e., including heuristics, metaheuristics, and exact methods, among others) and simulation (Nance
and Sargent, 2002; Borshchev and Filippov, 2004; Gass and Assad, 2005), specially designed to
tackle COPs containing stochastic components. These components can be modeled as random
variables following either theoretical or empirical probability distributions, and can be located in
the objective function (for instance, random processing times) or in the set of constraints (e.g.,
deadlines that must be met with a given probability).

3.2 Simheuristics
A simheuristic algorithm is a particular simulation–optimization approach oriented to efficiently
tackle a COP instance that typically contains stochastic components. These components can either
be located in the objective function (e.g., random customers’ demands) or in the set of constraints
(e.g., deadlines that must be met with a given probability). In particular, the simheuristic approach
is aimed at solving COPs of the form:

Min f (s) = E[C(s)] or, alternatively,
Max f (s) = E[B(s)] (3.1)

subject to: P(qi(s) ≥ li) ≥ ki ∀i ∈ {1, 2, . . . , n} (3.2)

h j(s) ≤ r j ∀ j ∈ {1, 2, . . . ,m} (3.3)

s ∈ S (3.4)

where: (i) S represents a discrete space of possible solutions s to the optimization problem; (ii)
C(s) represents a stochastic cost function (alternatively, B(s) represents a stochastic profit or in-
come function); (iii) E[C(s)] represents a probabilistic measure of interest associated with the cost
function (e.g., the expected value of C(s)); (iv) Equations 3.2 represent probabilistic constraints
related to the problem (e.g., the probability that the service quality q(s) reaches a given threshold
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l is above a user-defined value k); and (v) Equations 3.3 represent typical deterministic constraints
in COPs.

The simheuristic approach relies on the assumption that high-quality solutions for the de-
terministic version of a COP are also likely to be high-quality solutions for its corresponding
stochastic version, specially in scenarios with a low or moderate uncertainty (variance).

The steps proposed to solve a SCOP instance are described next (see also Figure 3.1). First,
a deterministic counterpart of the instance is obtained, for example, by replacing random vari-
ables by their expected values. Afterwards, an iterative process is started. It consists in running
a metaheuristic-driven algorithm to perform an efficient search inside the solution space associ-
ated with the deterministic COP first, and then estimating the quality or feasibility of each of the
promising solutions when being considered as solutions of the SCOP instance. These estimations
are computed using simulation techniques. The estimated values can be employed to keep a ranked
list of the best solutions for the SCOP instance. Once a stopping criteria is met, more accurate
estimates are obtained for the best solutions with an intensive simulation process. The advantages
of this approach are numerous: it benefits from the extensive literature research related to solve
deterministic COPs, and is simple, easy-to-understand and to-implement, efficient, and capable of
solving realistic problems.

Figure 3.1: Scheme of the simheuristic approach. Source: Juan et al. (2015a)
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After identifying a set of high-quality solutions (those that provide the highest average perfor-
mance), the risk aversion of the decision-maker can be taken into account by performing a risk
analysis. It is done by studying the empirical probability distribution functions of the quality and
feasibility measures computed during the intensive simulation process. An easy and fast proce-
dure can be to provide a multiple box-plot including the solutions returned by the algorithm or
only a subset of them, the non-dominated. It provides information (quartiles and outliers) about
the functions. Figure 3.2 shows an example where there is a trade-off between solution risk and
expected value.

Figure 3.2: Risk analysis of alternative solutions. Source: Juan et al. (2015a).

The described procedure is proposed when simulation is to be used as an evaluation function
technique. Nevertheless, simheuristics can also be applied in the context of analytical model
enhancement methods. The first case is the most developed so far. An example of the second can
be found in Figueira et al. (2013).

Despite the fact that this approach is relatively new, there are many relevant lines of investiga-
tion being explored. In Juan et al. (2011b), the authors address the VRP with stochastic demands
(VRP-SD) employing safety-stocks to reduce the route failure-risk. The single-period stochas-
tic inventory routing problem (stochastic IRP) with stock-outs is tackled in Juan et al. (2014b).
Another routing problem, the arc routing problem (ARP) with stochastic demands is studied by
Gonzalez et al. (2016). Juan et al. (2014a) present a methodology to solve the PFSP. In Cabr-
era et al. (2014), the authors address the SCOP of determining a minimum-cost configuration of
non-dedicated resources able to support a specific service while maintaining its availability over
a user-defined threshold. Focusing on the home service industry, Fikar et al. (2016) propose a
flexible discrete-event driven metaheuristic to deal with dynamic routing and scheduling scenarios
using combined trip sharing and walking. It facilitates real-world operations, enabling reschedul-
ing and rerouting.

3.2.1 Benefits
According to Chica et al. (submitted), the most relevant benefits of simheuristics are:

• Embracing reality by a validated simheuristic
They allow the construction and study of valid complex system models. Indeed, new simu-
lation paradigms can better represent the complexity of reality, and there are computational
resources to run demanding simulations for addressing models that are too complicated for
analytical models.

• Risk assessment of alternative solutions and sensitivity analysis
The outputs of the simulations can be employed to generate information about the probabil-
ity distribution of the quality of each solution. These outputs can also be used to perform
a sensitivity analysis, which identifies the parameters having a higher effect on the model.
These analyses aim to gain insights into existing or prospective systems, which could lead
to better decisions and, as a consequence, to better managerial outcomes.
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• System understanding and output analysis
An innovization process (Deb et al., 2014) consists in analyzing a set of trade-off optimal or
near-optimal solutions to decipher useful relationships among problem entities. Visualiza-
tion methods promote design innovations. An analysis of the input/output variables space
of a model may strengthen trust in the solving approach. All these analyses provide a better
understanding of the behavior of the optimization and simulation models.

3.2.2 Limitations
The most important limitations are:

• Results are not expected to be optimal
Metaheuristics do not guarantee the optimality of the solution provided. Additionally, sim-
ulation in simheuristics represents a nonlinear complex system which cannot be analytically
treated. Thus, simheuristics should be used when simple and flexible methods are needed to
address complex problems.

• Additional stakeholders effort is demanded to define the system
Simheuristics require additional effort when defining the simulation system and analyzing
the results.

• More computational resources are required with respect to traditional methods
Running a simheuristic algorithm requires a high computational effort, which depends on
the selected type of simulation paradigm.
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Chapter 4

Statistical learning

This chapter introduces statistical learning. It summarizes the basic learning ap-
proaches describing the most popular methods and highlighting the main applica-
tions.
It is based on the following journal articles: Calvet et al. (2017), Calvet et al. (sub-
mitted[c]), and Calvet and Juan (2015).
This work has been presented at the following seminar: De Armas et al. (2016a).

4.1 Introduction
The term “statistics” was originally created in the 18th century to denote the systematic collection
of demographic and economic data of a state. Since then, its meaning has been increasingly broad-
ened. Some more updated informal definitions proposed in Hahn and Doganaksoy (2012) are: (i)
the science of learning from data; (ii) the theory and methods of extracting information from ob-
servational data for solving real-world problems; and (iii) the science of uncertainty. Statistics
plays an important role in numerous economics sectors. The world of statistics1 remarks the most
visible: business and industry, health and medicine, learning, research, social sciences and natural
resources.

The following subsections present the most basic learning methods classified into supervised
and unsupervised learning (Hastie et al., 2009).

4.2 Supervised learning
Supervised learning encompasses a set of procedures for function approximation. Given data pairs
{xi, yi} ∀i = {1, . . . , n}, in a (p + 1)-dimensional Euclidean space, there is a function f (xi) that has
a domain equal to the p-dimensional input subspace, and is related to the data via a model such as
yi = f (xi) + εi. The goal of these procedures is to obtain a useful approximation to f (xi) for all x
in some region of Rp.

Functions are estimated to describe a relation between variables, and to predict a response
variable based on explanatory variables. Despite the fact that linear models with few explanatory
variables are usually robust and powerful, sometimes a more complex model as a neural network
can be required. In this case, the user can hardly explain the specific role of each explanatory
variable in the model, i.e., the main aim of the model is to make predictions.

It is essential to validate a model before using it. This is done by splitting the dataset into
two subsets: a training set, containing the data pairs used to build the model, and the test set,
which is used to assess its performance. This split should be random, in order to obtain two
representative subsets. Sometimes, it is required to have three subsets: a training, a validation
and a test set. The validation test is employed to determine the best model between a set, or
to estimate a model-specific parameter like the number of hidden units in a neural network or
the parameter that determines the shrinkage penalty in a ridge regression. Often, specially with
high-dimensional data (p >> n), it is undesirable or unfeasible to perform those splits. Then, a
common procedure consists in applying cross-validation, a method for estimating the prediction
error of a model based on the following steps: (1) generate a given number of disjointed training

1The world of statistics is a global network of more than 2.350 organizations worldwide committed to increasing
public awareness of the power and impact of statistics, nurturing statistics as a profession, and promoting the development
of probability and statistics. Its official web is: www.worldofstatistics.org.

www.worldofstatistics.org
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sets from the dataset and define the corresponding test sets (all data pairs except those included
in the associated training set); (2) for each training set, build a model and compute the prediction
error with the corresponding test set; and (3) estimate the prediction error of the model as the
average. The most popular methods of supervised learning are introduced below.

• Linear regression
A linear regression model assumes that the relationship between the response variable and
the explanatory variables is linear. This relationship is modeled through an error variable εi,
which is an unobserved random variable. The corresponding model is:

yi = β0 +
p∑

j=1
β jxi j + εi ∀i = {1, . . . , n}

• Tree-based methods
Tree-based methods partition the feature space with splits, and fit a simple model for each
subset of data. There are methods both for regression and classification.

• Neural networks
Neural networks (NNs) extract linear combinations of explanatory variables as derived fea-
tures, and model a response variable as a non-linear function of these features. Hidden
layers are layers between the input and the output layers. Increasing the number of hid-
den layers and/or hidden neurons adds complexity and improves computational capacity.
Having too few hidden neurons, the model might not have enough flexibility to capture the
non-linearities in data. NNs tend to have many weights, which might cause problems of
overfitting. Weight decay is a method of regularization to prevent it. This method adds a
penalty to the error function that shrinks the weights toward zero. A tuning parameter allows
weighting the penalty in the error function.

There are several types of NN, both in supervised and unsupervised learning. They may
be employed for prediction, classification, clustering, and ranking. The most popular is the
feed-forward NN for prediction in supervised learning.

• Support vector machines
The basic support vector machine (SVM) algorithm employs a training subset with a binary
response variable to build a model capable of assigning new observations into one category.
The algorithm constructs a hyperplane so that categories are separated by the widest margin
possible. The model may include penalizations in case observations are not separable. This
method may perform non-linear classification by employing the kernel trick, and mapping
the explanation variables into high-dimensional spaces.

4.3 Unsupervised learning
In unsupervised learning, there is a set of observations xi,∀i = {1, . . . , n}, of a random p-vector X
having joint density Pr(X). The aim is to infer the properties of this probability density. The most
popular methods are introduced below.

• Cluster analysis
Cluster analysis consists in grouping a collection of observations into subsets or clusters,
such that those within each cluster are more closely related to one another than those as-
signed to different clusters. The grouping is based on the definition of similarity / dissim-
ilarity between two observations. The dissimilarity between two clusters is defined by the
linkage. The most used types are: complete, single, average, centroid, and medoid. The
result of the clustering highly depends on the linkage selected.

Hierarchical clustering is an approach that aims to build a hierarchy of clusters. The related
strategies fall into two types: agglomerative and divisive. The first group starts with each
observation being considered a cluster, and pairs of clusters are merged as one moves up the
hierarchy. On the other hand, in the divisive approach all observations start in a cluster, and
splits are done recursively as one moves down the hierarchy.
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• Self-organizing maps
A self-organizing map (SOM) is a type of NN. It produces a low-dimensional and dis-
cretized representation of the input space of the dataset, which is called map. An important
characteristic of this NN is that preserves the topological properties of the input space by
employing a neighbourhood function. A SOM represents a mapping from the input space
to the map space with a lower dimension.

• Principal components analysis
Principal components analysis (PCA) consists in transforming a dataset to a new coordinate
system by applying orthogonal linear transformation in such a way that the greatest vari-
ance by some projection of the data comes to lie on the first coordinate or first principal
component, the second greatest variance on the second coordinate, and so on. The number
of principal components is less or equal to the number of original variables. PCA is usu-
ally performed by eigenvalue decomposition of the covariance or correlation matrix of the
original data.

There is a third method so-called semi-supervised learning (Chapelle et al., 2006), which em-
ploys both labeled and unlabeled observations (i.e., not all have associated an output value). It is
extremely powerful for problems in which large amounts of unlabelled observations are available,
and only a few of them can be manually labelled. Typical examples are visual object recognition,
where milions of untagged images are publicly available, or natural language processing.





21

Chapter 5

Learnheuristics: statistical learning
and metaheuristics

This chapter reviews works combining statistical learning and metaheuristics, and
proposes a hybrid approach for tackling optimization problems with dynamic inputs.
It is based on the following journal articles: Calvet et al. (2017).
This work has been presented at the following seminar: Calvet16n; Calvet (2015).

5.1 Introduction
The OR community shows a growing interest in coping with increasingly challenging COPs, such
as SCOPs and dynamic COPs (in which some of the problem inputs evolve over time). This might
be due to several factors, including: (i) the rich characteristics of real-life problems frequently
faced by modern companies in sectors such as logistics and transportation (Caceres et al., 2014);
(ii) the technological development; (iii) the availability of vast amounts of Internet-based data;
and (iv) a shift to a more data-driven culture. During the last years, hybrid approaches have been
extensively employed due to their success when dealing with realistic problems, among others:
those combining different metaheuristics (Talbi, 2013), matheuristics (i.e., metaheuristics com-
bined with mathematical programming) (Maniezzo et al., 2009), and simheuristics.

The hybridization of metaheuristics with statistical learning is an emerging research field. In
this context, the main contributions of this chapter are: (i) providing a classification on works com-
bining metaheuristics with statistical learning; and (ii) proposing a novel ‘learnheuristic’ frame-
work, combining a heuristic-based constructive procedure with statistical learning, to deal with
COPDIs. In these problems, the inputs are deterministic (i.e., non-stochastic) but, instead of be-
ing fixed in advance, they vary according to the structure of the solution (i.e., they change as the
solution is being constructed following a heuristic-based iterative process). In this sense, these
COPDIs represent an extension of the classical deterministic COPs in which all inputs are given in
advance and are immutable. An example of such a COPDI is given next for illustrative purposes.
Suppose there is a set of heterogeneous radio access technologies (RATs) that provide pay-per-use
services to a group of users. Each user has to be assigned to just one RAT, and each RAT can
serve only a limited number of users. The goal is to maximize the total benefit, which depends on
the customers’ demands. Several scenarios may be described based on the nature of the demands
(Figure 5.1): (i) they are deterministic and static; (ii) they contain some degree of uncertainty but
can be modeled as random variables or using fuzzy techniques; and (iii) they are dynamic in the
sense that they depend on the solution characteristics (e.g., the number of users connected to the
same RAT, which has an effect on the service quality and, therefore, on the customers’ demands).
While the first case corresponds to a classical deterministic COP, the second case introduces a level
of uncertainty that usually requires the use of stochastic programming, simulation-optimization,
or fuzzy methods. Focusing on the third case, the learnheuristic algorithms have a learning mech-
anism that updates the input values as the solution is iteratively constructed using the heuristic
logic (Calvet et al., 2016d).
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Figure 5.1: Type of problem according to the nature of the inputs.

5.2 Related reviews
The existing literature analyzing the hybridization of metaheuristics and statistical learning may
be mainly divided into two groups: works were statistical learning is employed to enhance meta-
heuristics, and those in which metaheuristics are used to improve the performance of statistical
learning techniques.

Regarding the first group, there are several works providing overviews. For instance, the
emergence of hybrid metaheuristics is studied in Talbi (2013), which includes the combination
of metaheuristics and: (i) complementary metaheuristics; (ii) exact methods; (iii) constraint pro-
gramming; or (iv) statistical learning. The author distinguishes between low-level hybridizations,
in which a given internal function of a metaheuristic is replaced by another optimization method,
and high-level hybridizations, where the different optimization methods are self-contained. In a
second phase, these algorithms can be further classified into relay (where techniques are applied
one after another) or teamwork hybridization. Jourdan et al. (2006) describe applications of data
mining techniques to help metaheuristics. A survey on the integration of statistical learning in
evolutionary computation can be found in Zhang et al. (2011). The work presented in Corne et al.
(2012) gathers the synergies between OR and data mining, highlighting three benefits of employ-
ing data mining in OR: (i) increasing the quality of the results; (ii) speeding up algorithms; and (iii)
selecting an algorithm based on instance properties. This chapter builds on the classification in
Jourdan et al. (2006) and extends it by proposing more categories and analyzing a higher number
of works. Works are classified into specifically-located hybridizations (where statistical learning
is applied in a specific procedure) and global hybridizations (in which statistical learning has a
higher effect on the metaheuristic design).

Similarly, there are a few reviews on metaheuristics used to improve the performance of sta-
tistical learning techniques. For instance, Freitas (2008) focuses on two evolutionary algorithms
(EAs), namely GAs and genetic programming (GP), and discusses their application to discovery
of classification rules, clustering, attribute selection and attribute construction. Corne et al. (2012)
analyze the role of OR in data mining discussing the relevance of exact methods, heuristics and
metaheuristics in supervised classification, unsupervised classification, rule mining and feature
selection. More recently, Dhaenens and Jourdan (2016) provides an overview of the use of opti-
mization in Big Data focusing on metaheuristics. The book introduces the role of metaheuristics
in clustering, association rules, classification, and feature selection in classification. Building on
these reviews, here the literature works are arranged into the following categories: classification,
regression, clustering, and rule mining.
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5.3 Statistical learning for enhancing metaheuristics
This section describes works employing statistical learning for enhancing metaheuristics. They
are first grouped into specifically-located hybridizations and global hybridizations.

5.3.1 Specifically-located hybridizations
The fine-tuning of metaheuristic parameters is known to have a significant effect on the algorithm
performance. However, this issue is not always properly addressed and many researchers still con-
tinue selecting parameter values by performing exhaustive testing or copying values recommended
for similar instances or problems. Basically, there are three approaches:

1. Parameter control strategies (De Jong, 2007) apply a dynamic fine-tuning of the parameters
by controlling and adapting the parameter values during the solving of an instance. The
main types of control are: (i) deterministic, which modifies the parameter values by some
deterministic rule; and (ii) adaptive, which employs feedback from the search. For instance,
there are works relying on fuzzy logic (Jeong et al., 2009), SVMs (Zennaki and Ech-Cherif,
2010), and linear and SVM regression (Lessmann et al., 2011).

2. Parameter tuning strategies assume that the algorithms are robust enough to provide good
results for a set of instances of the same problem with a fixed set of parameter values. Fre-
quently, researchers focus on a subset of the instances and analyze their fitness landscapes.
Popular techniques are: response surface (Gunawan et al., 2013), logistic regression (Ramos
et al., 2005), and tree-based regression (Bartz-Beielstein et al., 2004).

3. Instance-specific parameter tuning strategies present characteristics from the previous ap-
proaches. While the parameter values are constant as in the second approach, they are
specific for each instance as in the first one. These strategies employ a learning mechanism
able to return recommended sets of parameter values given a number of instance features.
Techniques employed are: Bayesian networks (Pavón et al., 2009), case-based reasoning
(CBR) (Pereira et al., 2013), fuzzy logic (Ries et al., 2012), linear regression (Caserta and
Rico, 2009), and NNs (Dobslaw, 2010).

Typically, metaheuristics generate their initial solutions randomly, using design of experi-
ments (Leung and Wang, 2001), or via a fast heuristic. There are also works employing statisti-
cal learning techniques. For instance, some of them apply CBR to initialize GAs (Ramsey and
Grefenstette, 1993; Louis and McDonnell, 2004; Li et al., 2011c), while others explore the use of
Hopfield NNs (Yalcinoz and Altun, 2001). In De Lima et al. (2008) the authors suggest using the
Q-learning algorithm in the constructive phase of a GRASP and a reactive GRASP metaheuristics.
In this line, the hybridization of data mining and the GRASP metaheuristic is discussed in Santos
et al. (2008).

In real-life applications it is common to find objective functions and constraints that are com-
putationally expensive to evaluate (Lim et al., 2010; Tenne and Goh, 2010). In these cases, it
is required to build an approximation model to assess solutions employing polynomial regression
(Zhou et al., 2005), NNs (Adra et al., 2005; Pathak et al., 2008), SVMs (Yang et al., 2009), Markov
fitness models (Brownlee et al., 2010), kriging (Díaz-Manríquez et al., 2011) or radial basis func-
tions (Regis, 2014), for example. Some authors combine their use with that of real objective
functions (Rasheed and Hirsh, 2000; Zhou and Zhang, 2010). A survey on model approximation
in evolutionary computation may be found in Jin (2005). Another option to reduce evaluation
costs is to evaluate only representative solutions. Following this idea, Yoo and Cho (2004) apply
fuzzy clustering, while Jin and Sendhoff (2004) use clustering techniques and NNs ensembles.

Regarding population management, many authors attempt to extract information from solu-
tions already visited and employ it to build new ones, aiming to explore more promising search
spaces. A number of works rely on the Apriori algorithm (to identify interesting subsolutions)
(Dalboni et al., 2003; Santos et al., 2005; Ribeiro et al., 2006; Santos et al., 2006) or on CBR
(Louis, 2003). Another important issue in PMs is the population diversity, since maintaining it
may lead to better performances. The most common technique for promoting diversity is cluster-
ing analysis. In Streichert et al. (2003), for instance, individuals in a GA are separated in different
sub-populations based on their features and only those in the same cluster compete for survival.
The selection operator is applied independently to each cluster.
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The search of a metaheuristic may be improved by introducing knowledge in operators such
as mutation or crossover operators in PMs. For example, Michalski (2000) design a class of
evolutionary computation processes called learnable evolution model (LEM), which uses sym-
bolic learning methods to create rules that explain why certain individuals are superior to others.
These rules are then employed to create new populations by avoiding past failures, using rec-
ommendations or generating variants. In Jourdan et al. (2005), this class is extended to address
multi-objective problems.

Some statistical learning techniques have been used as local searches. For instance, Gaspar-
Cunha and Vieira (2004) employ a multi-objective EA (MOEA) combined with an inverse NN.
The authors test their approach on a set of benchmark bi-objective functions. A similar approach
is suggested in Adra et al. (2005) to be applied to an aircraft control system design application.

5.3.2 Global hybridizations
A few works have attempted to reduce the search space in order to make more effective and
efficient searches. Statistical learning techniques used are: clustering techniques (Hu and Huang,
2004; Senjyu et al., 2005; Barreto et al., 2007; Adibi and Shahrabi, 2013), NNs (ChangYoon and
Way, 2001; Marim et al., 2003) and PCA (Auger and Hansen, 2005).

The algorithm selection problem (ASP) aims to predict the algorithm from a portfolio that
will perform best, employing a given set of instance features. Its framework was proposed by
Rice (1976), where it was applied to partial differential equation solvers. More recently, Smith-
Miles (2009) presents it in the context of optimization algorithms. Kanda et al. (2011) design
an approach to select the best optimization method for solving a given travelling salesman prob-
lem (TSP) instance. Initially, 14 TSP properties and the performance values obtained with each
metaheuristic analyzed (GRASP, TS, SA and GA) are stored. Then, a rank of metaheuristics is
determined by using a multi-layer perceptron network. Several network architectures are assessed.
In Smith-Miles et al. (2014), the authors construct a methodology to compare the strengths and
weaknesses of a set of optimization algorithms. First, the instance space is generated. This step
includes selecting a subset of features providing a good separation of easy and hard instances.
Afterwards, classification techniques are used to identify the regions where an algorithm performs
well or poorly. The experiment is carried out with 8 algorithms for solving the graph coloring
problem.

According to Burke et al. (2010), hyperheuristics may be described as search methods or
learning mechanisms for selecting or generating heuristics to solve computational search prob-
lems. Typically, these methods do not aim to obtain better results than problem-specific meta-
heuristics, but to be able to automate the design of heuristic methods and/or deal with a wide
range of problems. The authors propose a classification taking into account the following dimen-
sions: (i) the nature of the heuristic search space (either heuristic selection or generation); and (ii)
the feedback, since hyperheuristics may learn (following online or offline learning strategies) or
not. A comprehensive survey on hyper-heuristics may be found in Burke et al. (2013). Reinforce-
ment learning is highly popular in methodologies selecting heuristics employing an online learning
strategy (e.g., see Berberoğlu and Uyar, 2010). In Asta and Ozcan (2014) an apprenticeship learn-
ing hyperheuristic is proposed for vehicle routing. Taking a state-of-the-art hyperheuristic as an
expert, the authors follow a learning approach that yields various classifiers, which capture dif-
ferent actions that the expert performs during the search. While this approach relies on a C4.5
algorithm, in Tyasnurita et al. (2015) it is improved by using a multilayer perceptron.

During the last decades, a new trend in optimization has emerged based on cooperative strate-
gies. It consists in combining several algorithms/agents to produce a hybrid strategy in which they
cooperate in parallel or sequentially. Communication among them can be either many-to-many
(direct) or memory-based (indirect). Agents may share partial or complete solutions and models,
among others. It is broadly accepted that strategies based on agents with unrestricted access to
shared information may experiment premature convergence. Commonly, there is an agent that
coordinates the search of the others, organizing the communication. For example, Cadenas et al.
(2009) develop a centralized hybrid metaheuristic cooperative strategy, where knowledge is in-
corporated into the coordinator agent through fuzzy rules. These rules have been defined from a
knowledge extraction process applied to the results obtained by each metaheuristic. The strategy
is tested on the knapsack problem, employing a TS, a SA, and a GA. In Martin et al. (2016), a
cooperative strategy relying on different metaheuristic / local search combinations is put forward.
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The architecture makes use of two types of agents: the launcher and the metaheuristic agent. Each
metaheuristic agent continuously adapts itself according to a cooperation protocol based on rein-
forcement learning and pattern matching. This proposal is tested on the PFSP and the capacitated
VRP (CVRP).

There are several new metaheuristics based on learning procedures. Most rely on the fact that
a set of pseudo-optimal solutions may be considered a sample drawn from an unknown proba-
bility distribution. This distribution may be estimated by employing a selected set of promising
solutions and used to generate new solutions. A review of these metaheuristics, called estimation
of distribution algorithms (EDAs), can be found in Pelikan et al. (2002). These metaheuristics
have been employed in a wide range of fields such as routing (Euchi, 2014; Wang et al., 2015),
scheduling (Ceberio et al., 2012), and nutrition (Gumustekin et al., 2014).

5.4 Using metaheuristics to improve statistical learning
Metaheuristics have been extensively employed to improve statistical learning tasks. Briefly, some
of the most successful approaches are reviewed in the supervised learning topic, both in classifica-
tion and regression, and in the unsupervised learning topic, including clustering and rule mining.

In classification, metaheuristics have been mainly applied for feature selection, feature ex-
traction and parameter fine-tuning. Escalante et al. (2016) suggest that the bags of visual words
algorithm could be improved when non linear combinations of weighted features obtained with
GP are considered. The approach is successfully applied to the object recognition field, learning
both the weights of each visual word (feature) and the non linear combination of them. Fernández-
Caballero et al. (2010) present a multi-classification algorithm relying on multi-layer perceptron
NN models. In order to obtain high levels of sensitivity and accuracy (which may be conflicting
measures), a Pareto-based multi-objective optimization methodology based on a memetic EA is
proposed.

In regression, the use of statistical learning is typically related to the training of complex
regression models. Neuroevolution is an emergent field which employs EAs to train NNs. Thus,
Yao (1999) provides a literature review on elements evolved: connection weights, architectures,
learning rules, and input features. In Stanley and Miikkulainen (2002), the authors develop the
neuroevolution of augmenting topologies (NEAT) method, which evolves topologies and weights
at the same time. Carvalho et al. (2011) present a methodology to find the best architecture of a NN
using metaheuristics. The authors tested the following ones: generalized extremal optimization,
VNS, SA, and canonical GA.

Regarding clustering, centroid models are based on an NP-hard optimization problem (thus,
only approximated solving methods such as metaheuristics may be employed). For instance, Sh-
elokar et al. (2004) use ACO to cluster objects, obtaining faster results in terms of the number of
objective functions evaluations. Gene clustering is performed in Banu and Andrews (2015), where
a comparative study is presented based on the following metaheuristics: GA, PSO, cuckoo search
and levy flight cuckoo search. More recently, Ferone et al. (2016) present a GRASP metaheuristic
for biclustering of gene expression data. The reader can find more details in the applications of
metaheuristics to unsupervised learning in these surveys: Hruschka et al. (2009) and Kurada et al.
(2013).

Related to rule mining, Freitas (2002) presents data mining tasks and paradigms, and describes
the application of GAs and GP for rule discovery, and EAs for generating fuzzy rules. After mod-
eling association rules discovery as an optimization problem, Khabzaoui et al. (2004) explore the
use of a GA to obtain associations between genes from DNA microarray data. Noticing that most
approaches tend to seek only frequent rules, Khabzaoui et al. (2008) propose a multi-objective
approach combining a GA and exact methods to discover interesting rules in large search spaces.

5.5 Learnheuristics
The learnheuristic framework aims at solving COPs in which the model inputs (either located in
the objective function or in the set of constraints) are not fixed in advance. Instead, these inputs
might vary in a predictable way according to the current status of the partially-built solution at
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Figure 5.2: Basic scheme of a learnheuristic framework.

each iteration of the constructive heuristic. More formally, these problems might be represented
as follows:

Min C(s, IOF(s)) or, alternatively,
Max B(s, IOF(s)) (5.1)

subject to: Q j(s, IC(s)) ≤ r j ∀ j ∈ J (5.2)

s ∈ S (5.3)

where: (i) S refers to a discrete space of possible solutions s; (ii) C(s) represents a cost function
(alternatively, B(s) represents a benefits function); (iii) IOF(s) and IC(s) refer to inputs in the objec-
tive function or the constraints, respectively; and (iv) Equations 5.2 represent a set of constraints.
Thus, the aim of this type of problems is to minimize a function of costs (or, alternatively, max-
imize a function of benefits) subject to a number of constraints. The novel characteristic is that
inputs in the objective function and/or the constraints may depend on the solution structure, which
makes them to be dynamic as the partially-built solution evolves, and not fixed in advance.

In order to deal with these COPDIs, the use of a learnheuristic framework is proposed as
explained next (see Figure 5.2). Initially, historical data on different system states (e.g., different
assignments of users to RATs) and their associated inputs (e.g., users’ demands observed for the
corresponding assignments) are employed to generate predictive models. Then, these models are
iteratively used during the heuristic-based constructive process in order to obtain updated estimates
of the problem inputs (e.g., users’ demands) as the structure of the solution (e.g., users-to-RAT
assignment map) varies. Eventually, once the construction process is finished, a complete solution
is generated. Without the use of the learning mechanism, the heuristic-based construction process
will not take into account the variations in the inputs due to changes in the solution structure,
which will lead to sub-optimal solutions.

Algorithm 6 contains a more detailed description of the basic learnheuristic framework. Notice
that the main loop iterates over a list of elements that are provided by the constructive heuristic
(e.g., next user-to-RAT assignment). At each iteration, the algorithm evaluates the current status
of the partially-built solution, makes use of the predictive model to update the problem inputs
according to this status, and follows the heuristic logic to take another solution-building step based
on the new problem inputs.

As any other heuristic procedure, the aforementioned learnheuristic approach can be integrated
into a more complex metaheuristic framework. For instance, it can be easily integrated into MS,
GRASP, or ILS frameworks. In order to do so, the learnheuristic algorithm may be combined with
biased-randomization strategies as the ones proposed in Juan et al. (2011b).
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Algorithm 6 Learnheuristic algorithm.
Learnheuristics(historicalData, inputs)
% historicalData: historical data on different system states and their associated inputs
% inputs: problem instance

model←buildPredictiveModel(historicalData)
sol← empty
while (sol is not completely built) do % iterative learning-heuristic process

inputs←updateInputs(model, inputs, sol)
sol← nextHeuristicStep(inputs, sol)

end while
return sol

Algorithm 7 Learnheuristic algorithm based on the MS metaheuristic.
Multi-start(historicalData, inputs, distribution, maxTime)
% distribution: probability distribution and parameters for the biased-randomization process
% maxTime: maximum computing time allowed

initInputs← inputs % copy of initial inputs
elapsedTime← 0
initT ime← currentT ime
bestS ol← biasedRandLearnheuristic(historicalData, inputs, distribution)
inputs← initInputs % reset inputs
while (elapsedTime ≤ maxTime) do

newS ol← biasedRandLearnheuristic(historicalData, inputs, distribution)
newS ol← localSearch(newS ol)
if (cost(newS ol) ≤ cost(bestS ol)) then

bestS ol← newS ol
end if
inputs← initInputs % reset inputs
elapsedTime← currentTime−initT ime

end while
return bestS ol
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5.6 Applications
This section provides a series of examples in which the use of learnheuristics might facilitate the
solving process of more realistic and rich models.

• Transportation: In the transportation area and, in particular, in VRPs and ARPs, inputs
such as the customers’ demands might be dynamic in the sense that they might depend upon
the delivery time and whether or not certain time-windows are satisfied. It is a function of
the solution structure, e.g., the order in which the customers are visited, the number and
type of vehicles employed, etc. Similarly, the traveling times, which affect the distribution
cost, might also be dynamic and dependent on the solution structure, specially in large cities
where traffic jams occur frequently.

• Logistics: As discussed in Calvet et al. (2016d), the assignment of customers to certain
distribution centers might have a significant effect on the customers’ willingness to spend
(i.e., on their demands). Therefore, in realistic facility location problems and similar ones,
modelers might have to face dynamic inputs influenced by the shape of the solution (i.e.,
which facilities are open and how customers are assigned to them).

• Production: In scheduling problems, for instance, processing times of jobs into machines
might not be fixed but, instead, they may be a function of the order in which they are
processed by the machine (e.g., due to ‘fatigue’ issues or to breaks). A similar situation
can happen in project scheduling, where some working teams might be more efficient than
others and assigning them to a given sub-project could cause the delay of others.

• Finance: In problems such as portfolio optimization, the covariance matrix that measures
the risk associated with each pair of assets could also be a function of the current portfolio
structure (i.e., which other assets are already included and which percentage of investment
has been assigned to each of them). Likewise, the expected return for each asset might
depend on the current composition of the portfolio. This dynamic behavior of the inputs can
be extended to different risk-management problems which include some sort of portfolio
optimization.

5.7 Example
This section describes a simple numerical experiment based on a VRP in which each customer’s
demand will depend on the order in which the customer is visited. For each customer, its initial
demand value is an upper-bound of the real demand. In other words, this value will be valid
only if the customer is visited by a vehicle as the first stop in its route. Then, as the position in
which the customer is visited increases, the customer’s demand will be reduced. Therefore, the
use of a constructive heuristic to solve the VRP considering the initial demands as fixed inputs
will overestimate the real demands. This, in turn, will lead to higher costs, since the number of
routes employed to satisfy the real demands will be higher than necessary. Likewise, vehicles will
be carrying more load than strictly required. On the contrary, if the real customers’ demands are
predicted based on their position inside a route, then each route might be able to cover additional
customers and the total distance-based costs will be reduced.

In order to compare both cases, the CWS heuristic have been applied to a random instance
belonging to the well known benchmarks for the VRP, particularly to the instance P-n70-k10
(http://neo.lcc.uma.es/vrp/wp-content/data/instances/Augerat/P-VRP.zip). On the one hand, fixed
demands are considered, i.e., the original demands are used to obtain the solution through the
heuristic in the standard way. On the other hand, a predictive model is created to calculate dynamic
demands in order to apply a learnheuristic algorithm. In this case, for illustrative purposes, the
following linear regression model has been considered:

d = max{k1 · d0, d0 − k2 · d0 · (p − 1)} (5.4)

where d is the predicted demand of a given customer, d0 is the initial demand of the same
customer, k1 and k2 ∈ (0, 1), and p is the position order in the route of the aforementioned customer.
In particular, k1 and k2 are set to 0.20 and 0.05, respectively.
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The regression model aims at predicting a customer’s demand taking into account the position
in which the customer is served in the route, so that the demand decreases as the position increases
or until a certain demand lower-bound is reached. Thus, each time the heuristic performs a step,
incorporating a new customer in a route or moving a customer from one route to another, the
customer’s demand is predicted and updated according to its new position in the corresponding
route. As mentioned before, the total demand in a route is limited by the capacity of the vehicle.
Therefore, this prediction affects the next steps that can be performed.

When fixed demands are considered, the best solution the constructive heuristic is able to ob-
tain has an associated cost of 896.86, and it involves 11 routes. However, if demands are predicted
taking into account the delivery order, the same heuristic obtains a solution with 8 routes and a cost
of 791.26. Therefore, the savings might be noticeable when dynamic demands are considered.
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Part II

APPLICATIONS
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Chapter 6

Applications in transportation

This chapter studies several rich and realistic routing problems. It proposes different
hybrid algorithms relying on metaheuristics, Monte Carlo simulation and regression
models.
It is based on the following journal articles: Calvet et al. (submitted[a]), Calvet et
al. (2016d), Gruler et al. (2016), Reyes et al. (submitted), and Calvet et al. (2016a).
This work has been presented at the following conferences: Juan et al. (2015d),
Juan et al. (2015b), Calvet et al. (2015a), and Calvet et al. (2015b).

6.1 Introduction
As a consequence of the growing flows of freight, the development of efficient and sustainable
transportation and logistics activities has become a priority for Europe (European Union, 2011a;
European Union, 2011b). The globalization, the growth of population, their purchase capacity and
the efficiency of production systems are the main reasons of the increase in this sector. According
to Eurostat (2015), emissions of greenhouses gases, air pollutants and noise from transport have
significant impacts on the climate, the environment and human health. The need of flexible and
efficient optimization tools affects both the public and the private sectors, since a huge number of
companies daily address problems related to the transportation of people and/or goods.

In this context, the design of intelligent approaches is key for: (i) company competitiveness;
(ii) good functioning of the labour market; (iii) cohesion within and between regions; (iv) reduction
in the fossil energy importation, by the decrease of the consumption of petroleum derivatives; (v)
decrement in the pollution, which improves people health; and (vi) reduction in traffic accidents.

The VRP is the most classical and simple formulation employed to describe logistic problems
dealing with physical distribution. It constitutes the most popular research line in combinatorial
optimization because of its practical relevance and its scientific interest due to its NP-hardness.
This chapter studies five realistic and rich extensions of the VRP (RVRP): the MDVRP-SD, the
MDVRP-HD, the sustainable MDVRP, the WCP and the HSAVRP.

The MDVRP is a two-stage decision process, since assignation and routing issues are often
interrelated, i.e., the assignment map may affect the quality of the posterior routing. Montoya-
Torres et al. (2015) highlight a noticeable growing interest in the MDVRP during the last decade,
with over 103 publications between 2006 and 2014. In the stochastic and capacitated MDVRP,
a set of customers with random demands must be served by a fleet of homogeneous capacitated
vehicles departing from one among several capacitated depots. The main goal is to determine the
set of routes that minimizes the expected total routing cost, including recursive actions, subject to
a number of capacity-related constraints. The problem has numerous applications in real-life, e.g.:
garbage collection, gas distribution, stocking of vending machines, and other similar activities in
which the specific amount of goods to leave or pick up is not known until the place is reached.
Despite its relevance, there are few works on the stochastic MDVRP and, to the best of our knowl-
edge, Calvet et al. (submitted[a]) is the first one addressing the stochastic and capacitated MDVRP.

Most works on the MDVRP has focused on minimizing distance-based distribution costs.
However, no attention has been given so far to potential variations in demands due to the fitness of
the customer-depot mapping in the case of heterogeneous depots. In the MDVRP-HD, the depots
are heterogeneous in terms of their commercial offer, and customers show different willingness
to consume depending on how well the assigned depot fits their preferences. As a consequence,
market-segmentation strategies need to be considered to increase sales and total income while
accounting for the distribution costs.
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The increasing social concern is compelling companies to change purely commercial objec-
tives in order to consider sustainability. This new vision seeks to compensate the negative impacts
of transport activities without neglecting economic profits. In this context, it is essential to intro-
duce approaches considering the impacts of the three pillars of sustainability for routing problems
such as the MDVRP. For instance, travelling time and distance are related to economical impacts,
carbon emissions to environmental impacts, and risk of accidents to social impacts.

In the face of rising population densities in urban areas around the world, a large number
of cities are currently reorganizing their municipal responsibilities (Nations, 2015). As a conse-
quence, the WCP is of high practical importance, especially in the context of smart city initiatives
(Neirotti et al., 2014). On the one hand, uncollected garbage can lead to pollution of the environ-
ment and health-issues, while noise and road congestions through extensive use of waste collection
vehicles decrease urban living standards. On the other hand, waste collection represents up to two
thirds of operational waste management costs (Malakahmad et al., 2014; Son, 2014; Tavares et al.,
2009). As waste generation and travel times of vehicles cannot be predicted with full certainty,
there is a need for fast and risk-aware solutions of high quality which are able to take stochastic
input variables into account.

The HSAVRP-SD considers a heterogeneous fleet. This diversity usually comes from two
facts: different customers and locations may require different types of vehicle (e.g., due to narrow
roads, available parking spaces, and vehicle weight restrictions), and the vehicle acquisitions may
be made in different times and places. In addition, this problem describes a scenario where some
customers cannot be accessed with all types of vehicle, which is known as site-dependency. Re-
garding the cost matrix, the classical assumption about its symmetry is relaxed, since there can
be cost differences associated to the direction of a route (for instance, differences between driving
uphill or downhill in mountainous regions). Moreover, the HSAVRP-SD also accounts for un-
certainty in demands. It has several real-life applications such as the fuel oil distribution, which
can be associated to petrol station replenishment or to the delivery of domestic heating oil. In
these cases, the exact demand is not known until the time of the delivery, and cost between nodes
(based on energy consumption) is asymmetric due to the presence of important road grades. The
optimization of domestic heating oil distribution has been less studied, even though the high de-
pendence on heating oil of some isolated regions. It could be of particular interest in mountainous
regions where in absence of a gas pipeline, domestic oil is frequently the predominant fuel for
heating.

6.2 Literature review
This section reviews relevance works related to the problems studied. First, it focuses on the
MDVRP and the WCP. Afterwards, routing works considering stochasticity and sustainability are
introduced. More references can be found in the articles introduced in this chapter.

6.2.1 The MDVRP
The MDVRP has been intensively studied in the last decades. Table 6.1 summarizes the informa-
tion of the main related works.

6.2.2 The WCP
Probably the first work to address municipal solid waste collection is Beltrami and Bodin (1974).
Since then, various solution techniques for different variants of the WCP have been proposed.
While some works formulating the WCP as an ARP can be found (Ghiani et al., 2005; Bautista
et al., 2008), the following discussion refers to recent publications using VRP formulations. More
extensive literature reviews are provided by Beliën et al. (2014), Ghiani et al. (2014b), and Han
and Ponce-Cueto (2015).

Most works on the WCP focus on case studies with some problem extension. For example,
Baptista et al. (2002) elaborated an extension of the Christofides and Beasley heuristic for the
multi-period WCP (Christofides and Beasley, 1984), modeled as a periodic VRP to combine ve-
hicle scheduling over multiple time periods with route planning. Also addressing a multi-period
WCP, Teixeira et al. (2004) developed a cluster-first route-second heuristic to schedule and plan
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waste collection routes for different waste types. Nuortio et al. (2006) presented a guided variable
thresholding metaheuristic to solve a multi-period WCP. Hemmelmayr et al. (2013) addressed
the periodic VRP with different waste types, which they solved with a VNS metaheuristic. The
landfills are considered intermediate facilities, which are inserted in pre-constructed routes using
dynamic programming. The authors also discussed the single period WCP with multiple depots,
in which the landfills serve as vehicle depots and disposal sites at the same time. Later, Hemmel-
mayr et al. (2014) discussed the integrated vehicle routing- and bin allocation problem using the
same real-life problem set, which they solved with a combination of a VNS metaheuristic for the
routing part and a mixed integer linear programming-based exact method for the bin allocation.
Ramos et al. (2014) extended the typical objective of minimizing routing costs in order to include
environmental concerns, considering multiple waste types and numerous vehicle depots.

Only focusing on waste collection routing, Kim et al. (2006) developed an extension of
Solomon’s insertion algorithm (Solomon, 1987) to optimize routes of a waste management ser-
vice provider, considering a capacitated vehicle fleet, time windows, and driver lunch breaks. A
benchmark set of 10 realistic instances based on the original case study ranging from 102-2100
nodes is provided. This benchmark set was later employed by Ombuki-Berman et al. (2007)
to test a multi-objective GA. Furthermore, the same benchmark set was used by Benjamin and
Beasley (2010) and Buhrkal et al. (2012) to test their metaheuristic solution methods. Benjamin
and Beasley (2010) combined the TS and the VNS metaheuristics. By exchanging containers and
landfills within and between routes, the solution search space is systematically increased. Buhrkal
et al. (2012) put forward an adaptive LNS metaheuristic. Based on an initial solution, this ap-
proach applies a range of destroy-and-repair methods to examine several solution neighborhoods.
It is called adaptive since the choice of methods depends on the solution quality obtained during
the construction of earlier solutions. Moreover, an acceptance criterion for new solutions based on
the SA metaheuristic included. Recently, Markov et al. (2016) presented a multiple neighborhood
search heuristic for a real-word application of the waste collection VRP with intermediate facil-
ities. The authors consider a heterogeneous vehicle fleet and flexible depot destinations in their
approach.

6.2.3 Stochasticity
Regarding the VRP-SD, the first works appear in the 80s. Table 6.2 shows some related works.
It is worth highlighting a few outstanding contributions. In Dror and Trudeau (1986), the concept
of route failure is introduced, and its effects on the expected cost of a route are illustrated. A
review on the stochastic CVRP is presented in Gendreau et al. (1996), where the main variants are
presented. Yang et al. (2000) suggest anticipating possible stock-outs by incorporating preventive
breaks or restocking in the route design. The aim is to reduce the probability of route failure
and, as a result, the cost. During the last decades, the scientific community has focused on the
implementation of metaheuristics. In this context, Bianchi et al. (2006) compare the performance
of several methodologies embedding one of the following metaheuristics: SA, TS, ILS, ACO, and
EA.

The stochastic MDVRP

The number of works analyzing the stochastic MDVRP is rather limited. Tillman (1969) expands
the CWS heuristic to address it. The procedure proposed may be applied to demands with Pois-
son, Exponential, Normal, Binomial or Chi-squared distributions. In Chan et al. (2001), a multi-
depot, multiple-vehicle LRP with stochastically processed demands is formulated. The proba-
ble demands are estimated by stochastic processes before the vehicle location-routing decisions.
Tatarakis and Minis (2009) study the stochastic MDVRP considering both the case in which prod-
ucts are stored dedicatedly or together in a compartment. Dynamic programming algorithms are
proposed to determine the minimal routing cost, and an optimal routing policy is derived to de-
cide whether a vehicle has to return to the depot for a reload after serving the current customer or
should continue to the next customer. Tauhid et al. (2012) solve the stochastic MDVRP in three
phases: first a nearest neighbor classification method is used for grouping the customers; then,
the sum-of-subsets method is applied for routing; and finally, the routes are optimized throughout
a greedy method. They aim to minimize the number of routes and, accordingly, the number of
vehicles needed.
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None of the aforementioned works deals with the stochastic and capacitated MDVRP ana-
lyzed here. In particular, Tillman (1969) and Tauhid et al. (2012) consider unlimited capacities at
each depot -which significantly reduces the difficulty of the problem and constitutes an unrealistic
assumption. In addition, Tauhid et al. (2012) do not really consider stochastic demands. Also,
Tillman (1969) makes strong assumptions on the probability distributions of these demands. Chan
et al. (2001) and Tatarakis and Minis (2009) deal with problems that, although somewhat related,
can not be considered stochastic and capacitated MDVRPs. While the former focuses on location
issues, in the latter a single vehicle must deliver multiple products given a predefined customer
sequence.

The stochastic WCP

Concerning the WCP with stochastic demands, the literature is more scarce. The ACO metaheuris-
tic and a hybrid approach based on a GA and TS for a case study with 50 containers is presented
in Ismail and Irhamah (2008), and Ismail and Loh (2009). After planning a priori routes, waste
levels are simulated according to a discrete probability distribution. Routes undergo a recourse
action (i.e., an additional disposal trip) whenever actual demand exceeds the planned collection
amount. Nolz et al. (2014) formulated a collector-managed IRP for a case study on the collection
of infectious waste. By using real information obtained through radio frequency identification,
their ALNS algorithm is able to consider stochastic inputs. Alshraideh and Abu Qdais (2016)
combined a multi-period WCP with time windows and stochastic demands. They used a GA and
a probability constraint regarding a pre-defined service level to solve the problem.

6.2.4 Sustainability
The increasing social concern for the environment and a sustainable growth requires the transfor-
mation of cities. During the last decade, the green VRP (GVRP) and the pollution VRP (PVRP)
have become increasingly popular. While the former is focused on the environmental impact
caused by the fuel or energy consumption of transport, the latter takes into account the pollution
and different emissions generated. Thus, both problems analyze the emissions and fuel/energy
consumption levels, which depend on traffic congestion, speed, acceleration, type of road, type of
vehicle, and load, among other internal and external factors of the operation (Bektaş and Laporte,
2011; Koç et al., 2014).

Regarding environmental impacts, the distance and vehicle weight play a crucial role in the
fuel/energy consumption and carbon emissions, thereby Ubeda et al. (2011) aimed at reducing
transport costs and emissions, considering the distance and some variations in the vehicle max-
imum capacity. It is concluded that enhancing load factors (which may be achieved by using
heterogeneous fleets) is an efficient way to get significant savings and environmental benefits. The
authors also discuss negative externalities of transport such as noise, air pollution, congestion,
accident rate, energy consumption and land use, among others. There are studies tackling the
negative impacts from three perspectives: negative externalities, emissions released and fuel con-
sumption. Faulin et al. (2011), Liu et al. (2014), and Zhang et al. (2015) considered environmental
indicators for the CVRP; they state that the load variation defines fuel consumption and emissions
caused by transport. Besides, the load variation influences the distribution processes profitability.
In this line, Kuo (2010), Demir et al. (2014), and Xiao and Konak (2015) developed methodologies
for the green heterogeneous VRP, considering traffic congestion, road gradient, speed variations,
and distance traveled as variables that influence fuel consumption and as elements that character-
ize the urban transport dynamics (Jabbarpour et al., 2015). More recently, Niknamfar and Niaki
(2016) study the MDVRP with time windows to optimize the customers-depots allocation and the
vehicles selection aiming to minimize the environmental impacts. They demonstrated that an op-
timal allocation and coordination between stakeholders not only reduce the negative impacts but
also enhance the total profit. Juan et al. (2014c) considered a supply chain with multiple suppliers
for minimizing the empty trips and the travel distance in each route. They concluded that it is
possible to reduce the CO2 emission to 23% when the distribution process is carried out in collab-
oration with multiple suppliers. Wang et al. (2014b) demonstrated that considering environmental
criteria allows a saving up to 10% of the operation costs. The authors developed an algorithm
to integrate the economic and environmental goals based on the MDVRP with backhauls. Demir
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et al. (2014) considered the MDVRP with freight pick-up and delivery to ensure that any customer
demand can be met from any depot and thus reducing the operation cost.

Some studies have focused on the analysis of environmental impacts caused by transport activ-
ities in urban zones, however there is no characterization for getting a rough estimation of the real
impact of these activities. For instance, about 60% of transport activities take place in urban re-
gions at where around 80% population is concentrated, making people the main harmed (European
Commission, 2015). Social impact refers to health problems and other factors such as quietness,
air quality, urban esthetic, accessibility and urban safety. Penalties, taxes or willingness to pay
as a means to reduce the social impacts constitute the costs associated. It is estimated that about
0.4%, 0.2%, 1.5% and 2% of the gross domestic product is related to air pollution problems, noise,
accidents and traffic congestion, respectively (Caceres et al., 2014). Therefore, the sustainability
concept has started to take part in the decision-making process but there is a lack of structured
tools that allow the integration of the three dimensions and support decision-makers (Chen et al.,
2013).

There are only a few works on sustainability criteria. Chibeles-Martins et al. (2016) pose
ecological criteria to determine an optimal structure of distribution networks. They solved a bi-
objective problem focused on determining the suitable locations, capacities and attributes in facto-
ries, warehouses and a distribution center. The solution method is based on the SA metaheuristic
and Pareto optimality is considered to get a balancing between economic and ecological concerns.
In the same sense, Zhang et al. (2016) implement EAs to determine the optimal design of sup-
ply chains considering two possible scenarios: first, the transport is outsourced and second the
transport is leased. It is a multi-objective problem aimed at minimizing CO2 emissions, fine dust
and costs. The authors implement the non-dominated sorting GA-II (NSGA-II) and the strength
Pareto EA2 (SEAP2) to compare their performance, both methods take into account Pareto opti-
mality through a scalarization method computed by a weighted sum. Later, Kadziński et al. (2017)
define a sustainable objective to design an optimal distribution structure considering a supply chain
with multi-distribution channels. Objectives are maximizing customer coverage, and minimizing
cost and environmental impacts. Notice that social objectives do not respond to problems high-
lighted by the society, besides these approaches belong to strategic levels without considering the
synergy among tactical levels, operative levels and stakeholders’ particular objectives.

6.3 The MDVRP-SD
The stochastic and capacitated MDVRP is characterized by the randomness of at least one of its
parameters or structural variables. These random variables follow specific probability distribu-
tions. This problem may be seen as a non-trivial extension of the stochastic CVRP (Gendreau
et al., 1996; Stewart and Golden, 1983). There are three problems belonging to this family: the
CVRP with stochastic demands, which is the most popular (Bianchi et al., 2006); the CVRP with
stochastic customers (Bertsimas, 1988); and the CVRP with stochastic times (Laporte et al., 1992;
Kenyon and Morton, 2003). The MDVRP may be described as follows. Let G = {V, E} be a
complete directed graph, where V = {Vd,Vc} is the set of vertices including the depots (Vd) and
the customers (Vc), and E is the set of edges connecting all vertices in V . Each customer i ∈ Vc

has a positive demand di. Each depot p ∈ Vd has assigned a maximum number of vehicles, m.
All vehicles are supposed to have the same capacity W. Each edge in E has an associated cost
ci j = c ji ≥ 0. A solution is a set of routes in which each route starts at one depot in Vd, connects
one or more customers in Vc, and ends at the same depot (Figure 6.1). Moreover, each customer
must be visited only once. The MDVRP-SD differs in the following two consideration: (i) each
customer has a positive demand Di that follows a probability distribution, either theoretical or
empirical, with an existing mean denoted as E[Di]; and (ii) each customer is visited once except
in the undesirable case in which a route failure occurs. While the demands’ distribution is known
beforehand, the exact demand cannot be revealed until the vehicle reaches the customer.
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Figure 6.1: Customer-depot assignment and posterior routing processes in the
MDVRP.

The classical goal of the MDVRP-SD is to find a solution that minimizes the expected routing
cost while satisfying the customer demands, and the constraints related to the number of vehicles,
and the vehicles’ capacity. However, other constraints may also apply, e.g.: a maximum allowable
cost for a route, time windows for visiting each customer, etc. In addition, different goals may be
proposed such as solution balance or minimization of environmental costs. Even in its simplest
version, this problem represents a challenge since it integrates a combinatorial assignment prob-
lem, in which each customer is assigned to one depot, with several stochastic CVRPs, one per
depot. The additional complexity lies in the interrelation between assigning and routing issues.

One way to model the MDVRP-SD is as a two-stage problem. In the first stage (design stage),
a set of routes is designed considering the probability distributions associated with each customer’s
demand. The second stage (corrective stage) specifies the actual route of each vehicle, which may
include corrective actions if the route fails, i.e., if the demand of a customer visited by a given
vehicle is higher than the remaining vehicle capacity. In this case, the vehicle must return to the
depot to reload. Often, the possibility of re-stocking is allowed, that means that a vehicle may
return to the depot before it has run out of capacity. For instance, if the remaining vehicle capacity
is not enough to satisfy the expected demands of the customers that still have to be served. The
solution must minimize the expected total cost, which is the sum of the costs of the routes planned
in the first stage (fixed cost), and the expected costs due to corrective actions (variable cost).

6.3.1 Methodology
Our approach relies on two facts: (i) the MDVRP-SD can be considered a generalization of the
MDVRP, i.e., the MDVRP can be seen as a MDVRP-SD in which the random demands have zero
variance; and (ii) despite the fact that the MDVRP-SD has not been intensively studied, there
exists efficient algorithms for solving the MDVRP.

The general ideas behind our approach are described next. Initially, given an instance of the
MDVRP-SD, it is transformed into a deterministic instance by replacing each random variable by
its mean. A set of high-quality solutions for the deterministic version is then obtained by using
an efficient algorithm. While the search takes place, MCS techniques are employed to assess the
performance of these promising solutions for the stochastic version. The best solution is defined
as the one with the lowest expected total cost. The proposed methodology employs safety stocks
as suggested in Juan et al. (2011b). A safety stock is a certain amount of the vehicle capacity
that is not considered while designing the routes. Then, if the final routes’ demands surpass their
expected values, this stock can be employed to try to satisfy them. Thus, the aim of considering
safety stocks is to reduce the probability of a route failure.

Proposed steps

The flowchart diagram is depicted in Figure 6.2 and described next:

1. Consider a MDVRP-SD instance defined by a set of n customers. Each customer i has
associated a demand Di (1 ≤ i ≤ n) that follows a known probability distribution with an
existing mean E[Di].



6.3. The MDVRP-SD 41

2. Determine a set K of percentages, where each element kl is the percentage of the vehicle
capacity (W) that can be used during the route design phase; in other words, 1−kl represents
a fixed level of safety stock. For each of these elements, follow the steps 3 to 9.

3. Consider the capacitated MDVRP(kl) with a total vehicle capacity of W∗l = kl · W and
deterministic demands di = E[Di].

4. Generate an initial solution for the MDVRP(kl). This solution is also an aprioristic solution
for the MDVRP-SD. It will be employed “as it is” as long as there is no need of corrective
actions (routes failures and re-stockings). Therefore, the cost associated to this solution,
CMDVRP(kl), can be considered a base or fixed cost of the MDVRP-SD solution. In the case
of the stochastic problem, there is also a variable cost CCA(kl) that depends on the corrective
actions undertaken. Consequently, for a given value of kl, the total cost of the ‘stochastic’
solution (the one associated with the MDVRP-SD) is the sum of the fixed cost corresponding
to the ‘deterministic’ solution (the one associated with the MDVRP) and the variable cost
due to corrective actions, CMDVRP−S D(kl) = CMDVRP(kl) + CCA(kl).

5. Use MCS to estimate the expected cost due to corrective actions for each route j of the
aprioristic solution, E[C j

CA(kl)] (1 ≤ j ≤ m). Then, aggregate the expected total cost for

all routes, E[CCA(kl)]) =
m∑

j=1
E[C j

CA(kl)]. In this phase, a short simulation is used to quickly

get that estimate. Then, the expected total cost of the solution is calculated as follows:
E[CMDVRP−S D(kl)] = CMDVRP(kl) + E[CCA(kl)].

6. Set a base solution as the initial solution.

7. Employ a metaheuristic algorithm, which starts an improvement process that will continue
until a stopping condition, based on time or a fixed number of iterations, is reached. At each
iteration the following steps are implemented. First, a perturbation is applied to the base
solution to generate a new one. If the fixed cost of the new solution is lower than the fixed
cost of the current base solution, then the list of the best deterministic solutions is updated
(only if it is not full or if the worst solution has a higher cost, then a swap is performed) and
the expected total cost of the new solution is estimated with a short simulation. If this cost
is lower than the expected total cost of the base solution, the latter is replaced and the list of
the best stochastic solutions is updated. Otherwise, an acceptance criterion is used to decide
whether the base solution is deteriorated to the new one. Before that, if the fixed cost of the
new solution is higher, then that solution is discarded. This iterative process will provide,
after analyzing many possible solutions, a list of promising solutions for the MDVRP-SD.

8. Try to improve all promising solutions with an intensive routing algorithm.

9. Use a long simulation to generate a sample of total costs for each promising solution. Large
samples are required to obtain estimates with small confidence intervals.

10. Finally, return the top best stochastic solutions (considering all solutions found with the
different values in K), and the corresponding samples (they will be used for completing a
risk analysis).
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Figure 6.2: Flowchart of the proposed approach for the MDVRP-SD.

Details and further considerations

The algorithm used to get the initial solution for the MDVRP is the one proposed in Juan et
al. (2015c). Initially, a customer-depot assignment map is set, and then the savings heuristic
(Clarke and Wright, 1964) is applied to obtain a fast routing plan. Regarding safety stocks, it
is expected that lower values of kl will provide more reliable routes, as a high percentage of the
vehicle capacity will be reserved as safety stock. However, a high fixed cost will result too, since
more vehicles will be needed to cover all the customers’ demands. On the other hand, a high value
of kl is related to a lower fixed cost but a higher variable cost due to the elevated risk of having to
return to the depot to reload. Considering the trade-off between these two costs, we try different
values as indicated in step 2.

The cost due to corrective actions is computed as follows. In case of route failure, it includes
the cost of returning to the depot first and then to the customer being served. It is assumed that the
vehicle delivers all the remaining stock before going back to reload. A re-stocking is carried out
when the expected demand of the next customer is higher than the current remaining stock. The
cost of this strategy incorporates the costs on the edges that link a customer with the depot and the
depot with the next customer minus the cost of the edge linking both customers.
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The perturbation operator modifies the current solution by reallocating a given percentage p of
customers randomly selected, considering the remaining capacity of the depots, and the distance-
based cost for each pair of customer and depot. The savings heuristic is applied again to design
the routes. A Demon-like acceptance criterion (Talbi, 2009) is used to diversify the search.

In order to improve the most promising solutions found within the metaheuristic framework,
the routing algorithm proposed by Juan et al. (2011a) is applied to each one. This algorithm is
based on a randomized version of the savings heuristic that employs a Geometric distribution to
guide the random search, and a cache and splitting techniques to make it more efficient. This
algorithm has been adapted for the stochastic solutions.

Finally, it is interesting to observe that, considering the parameters (not the estimates), the
fixed cost and the expected total cost of the best deterministic solution represent a lower and an
upper bound, respectively, of the expected total cost associated to the best stochastic solution. The
set of samples will allow us to compare the solutions not only focusing on the expected total cost,
but also on the distribution of the total cost.

6.3.2 Computational experiments
The algorithm has been implemented as a Java application and tested on 23 MDVRP benchmark
instances: the first seven were proposed by Christofides and Eilon (1969), the following four
were created by Gillett and Johnson (1976) and the remaining are described in Chao et al. (1993).
Vidal et al. (2012), Escobar et al. (2014), and Juan et al. (2015c) are some recent works using
them. These instances have been adapted as described next. The demand of each customer (di)
has been considered as a random variable Di following a Lognormal distribution with mean di

and variance vdi. Three different scenarios have been considered, each one with a respectively
different variance: 0.1 E[Di], 0.5 E[Di], and 1 E[Di], where E[·] represents the mean or expected
value. In order to choose the percentage of the vehicle capacity in the route design phase (1 − kl),
5 equally-spaced values varying from 0.90 to 1.00 have been tested.

The computational time is limited to 30 seconds. The number of seeds is set to 10, and only
the best result are stored. Concerning the number of iterations in each simulation, 200 runs have
been employed for the short simulations and 2, 000 runs for the long simulations. The selection of
these values, as well as of the number of solutions stored in the list of top solutions (4), is mainly
driven by the total computing time available. Biased randomization techniques rely on two Geo-
metric distributions (one for mapping and one for routing) and, therefore, they require distribution
parameters: bM and bR, respectively. Additionally, there is a parameter p which controls the per-
centage of nodes that may be reallocated in a solution when perturbing it. They have been tuned
by performing a full factorial experiment. bM, bR and p follow Uniform distribution between
[0.3, 0.4], [0.2, 0.3] and [0.3, 0.4].

Results are displayed in Tables 6.3, 6.4, and 6.5. Each of these tables represents a specific
scenario. The first column identifies the instance and the second shows the best known solution
(BKS) for the MDVRP. The next five columns are associated with the solution with the lowest
fixed cost: the first, the best deterministic solution - fixed cost (BDS-FC), represents the fixed cost;
the second calculates the gap between the BKS and the BDS-FC, which reveals the performance
of our algorithm for the deterministic version of the problem; the third, the best deterministic solu-
tion - total expected cost (BDS-TEC), is the expected total cost; the fourth, the best deterministic
solution - reliability (BDS-R), has been computed as one minus the number of route failures di-
vided by the number of routes; and the fifth, best deterministic solution - k (BDS-K), provides
the percentage of the vehicle total capacity chosen. The following column represents the gap be-
tween the BDS-TEC and the BDS-FC. The next three columns are associated with the solution
with the lowest expected total cost: the best stochastic solution - total expected cost (BSS-TEC)
contains the expected total cost; the following two columns, the best stochastic solution - reliabil-
ity (BSS-R) and the best stochastic solution - k (BSS-K), show the associated reliability, and the
k-value respectively. The next two columns are the gaps between the BSS-TEC and the BKS, and
between the BSS-TEC and the BDS-FC, respectively. It is important to highlight that, provided a
‘large’ number of simulation iterations is used, the BSS-TEC is bounded by the BDS-FC and the
BKS (lower bounds), and the BDS-TEC (upper bound). Therefore, the previous gaps show the
difference between the BSS-TEC and its lower bounds. The last column is the gap between the
expected total costs of both solutions.
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p01
576.87

587.18
1.79%

633.62
0.99

1.00
7.91%

620.93
1.00

0.925
7.64%

5.75%
-2.00%

p02
473.53

479.45
1.25%

491.96
0.99

1.00
2.61%

485.77
1.00

0.90
2.58%

1.32%
-1.26%

p03
641.19

649.87
1.35%

679.88
1.00

1.00
4.62%

671.69
1.00

0.925
4.76%

3.36%
-1.20%

p04
1001.04

1042.05
4.10%

1197.08
0.97

1.00
14.88%

1177.35
0.98

0.95
17.61%

12.98%
-1.65%

p05
750.03

777.41
3.65%

821.53
0.98

1.00
5.67%

806.97
0.99

0.95
7.59%

3.80%
-1.77%

p06
876.50

897.48
2.39%

1021.06
0.97

1.00
13.77%

971.84
0.99

0.925
10.88%

8.29%
-4.82%

p07
881.97

907.38
2.88%

1011.02
0.97

1.00
11.42%

991.80
0.97

1.00
12.45%

9.30%
-1.90%

p08
4371.66

4498.65
2.90%

5267.60
0.98

1.00
17.09%

4772.74
1.00

0.925
9.17%

6.09%
-9.39%

p09
3858.66

3962.30
2.69%

4398.51
0.99

1.00
11.01%

4185.01
1.00

0.95
8.46%

5.62%
-4.85%

p10
3629.60

3747.91
3.26%

4106.36
0.99

1.00
9.56%

3940.02
1.00

0.95
8.55%

5.13%
-4.05%

p11
3545.18

3625.26
2.26%

4010.29
0.99

1.00
10.62%

3788.72
1.00

0.925
6.87%

4.51%
-5.53%

p12
1318.95

1318.95
0.00%

1377.66
1.00

1.00
4.45%

1377.66
1.00

1.00
4.45%

4.45%
0.00%

p13
1318.95

1318.95
0.00%

1376.28
0.99

1.00
4.35%

1376.28
0.99

1.00
4.35%

4.35%
0.00%

p14
1360.12

1360.12
0.00%

1417.01
0.99

0.90
4.18%

1414.06
0.99

0.925
3.97%

3.97%
-0.21%

p15
2505.42

2553.90
1.93%

2755.74
0.98

1.00
7.90%

2673.11
1.00

0.90
6.69%

4.67%
-3.00%

p16
2572.23

2590.77
0.72%

2712.30
0.99

0.975
4.69%

2712.30
0.99

0.975
5.45%

4.69%
0.00%

p17
2709.09

2714.66
0.21%

2823.97
1.00

0.90
4.03%

2823.97
1.00

0.90
4.24%

4.03%
0.00%

p18
3702.85

3813.22
2.98%

4005.61
0.99

0.975
5.05%

3971.55
1.00

0.925
7.26%

4.15%
-0.85%

p19
3827.06

3876.15
1.28%

4054.76
0.99

1.00
4.61%

4054.76
0.99

1.00
5.95%

4.61%
0.00%

p20
4058.07

4085.91
0.69%

4252.71
0.99

0.90
4.08%

4252.71
0.99

0.90
4.80%

4.08%
0.00%

p21
5474.84

5677.62
3.70%

5974.19
0.99

1.00
5.22%

5957.66
0.99

0.925
8.82%

4.93%
-0.28%

p22
5702.16

5812.03
1.93%

6079.27
0.99

0.975
4.60%

6079.27
0.99

0.975
6.61%

4.60%
0.00%

p23
6078.75

6140.01
1.01%

6388.07
1.00

0.90
4.04%

6386.58
1.00

0.975
5.06%

4.02%
-0.02%
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Table 6.6: Summary of results for the MDVRP benchmark instances.

Scenario G. BDS-FC -
BKS

G. BDS-TEC -
BDS-FC

G. BSS-TEC -
BKS

G. BSS-TEC -
BDS-FC

G. BSS-TEC -
BDS-TEC

Var: 0.10E[Di] 1.83% 3.10% 3.12% 1.26% −1.69%
Var: 0.50E[Di] 1.83% 5.89% 5.53% 3.62% −2.06%
Var: 1.00E[Di] 1.74% 7.48% 7.12% 5.27% −1.97%

6.3.3 Analysis of results
The results obtained show that assuming a problem being deterministic can lead to solutions with
poor performance even in scenarios characterized by demands with a relatively low variance. In all
experiments, the expected total cost obtained with the best stochastic solution is better than the one
obtained with the best deterministic solution. There is a case in which the gap reaches the −9.39%
(instance p08 with high variance). The reason is that the deterministic solution is not balanced,
and a high variance results in an increasing of the expected total cost. Figure 6.3 illustrates the
case of the instance p02 with a high variance. The vehicle capacity is 160. The left and right
plots represent the best deterministic solution and the best stochastic solution, respectively. The
numbers in the nodes reveal the expected customer demands, while the numbers in the center of
each route are the total demands. Although the routes are similar, notice that the best stochastic
solution seems more ‘balanced’ in terms of demands, which explains why it is also more reliable.

Figure 6.3: Best deterministic (left) and stochastic solutions (right) for the MD-
VRP instance p02.

Table 6.6 summarizes the results described in Tables 6.3, 6.4 and 6.5. For each scenario, it
shows the mean gaps. The means gaps between the BDS-FC and the BKS, which ranges from
1.74% to 1.83%, show that our approach is relatively competitive for finding the best solution to
the deterministic problem. The third column reveals that the difference between the BDS-TEC and
the BDS-FC (i.e., the total cost if there was no stochasticity) is positive and positively correlated
with the variability of the scenario. Next two columns quantify the gaps between the BSS-TEC and
its lower bounds, the BKS and the BDS-FC. They both increase as the variability of the scenario
gets higher. Finally, the last gap shows the benefit of using the simheuristic approach. Thus, it can
be concluded that the higher the variability the higher the benefit.

Here we present a risk analysis in which the four best stochastic solutions and the best de-
terministic solution are compared. It is illustrated on a specific case, the instance p09 with high
variance. Thus, Figure 6.4 shows a boxplot of the total costs obtained by means of MCS. It can be
stated that the variability of total costs associated to the best deterministic solution is the highest,
and all distributions present a positive skew. In Figure 6.5, the empirical cumulative distributions
functions (CDFs) for the best deterministic and stochastic solutions are drawn. The probability
distribution function of the best stochastic solution is above the other almost for the entire domain.
In other words, the probability of having a total cost equal to or lower than a given value is usually
higher with this solution. As a consequence, a risk-averse decision-maker would prefer it. Never-
theless, the minimum values are provided by the deterministic solution, which makes sense since
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this solution will be the one selected in scenarios where the customer demands are similar to the
corresponding mean of the distributions.

Figure 6.4: Boxplots of best solutions for the MDVRP instance p09 with high
variability.

Figure 6.5: CDFs of best deterministic and stochastic solutions for the MDVRP
instance p09 with high variability.

6.4 The MDVRP-HD
The problem addressed here is an extension of the MDVRP, already introduced in this chapter.
When adopting a marketing perspective, companies focus on market segmentation to group cus-
tomers according to their features and preferences. Considering the heterogeneity of markets,
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segmentation attempts to divide customers into subsets that behave in a similar way. This exten-
sion of the MDVRP aims at assigning customers to depots based not only on distribution costs
but also on customers’ features and preferences. The goal is to optimize expected benefits by
considering both distribution costs and expected incomes.

6.4.1 Methodology
In order to assign customers to depots, the heterogeneity of the depots is taken into account. It is
a realistic approach, since depots belonging to the same organization usually have different char-
acteristics related to products, trade credit policies, and complementary services, among others.
This diversity leads to consider customer preferences. Specifically, the willingness to consume (or
expenditure) of each customer depends on how well the assigned depot fits his/her preferences.
Market segmentation techniques are applied to identify subsets of customers with similar profiles
and assign them to the particular depot that better fits their preferences, considering the restrictions
of the problem. Accordingly, it is proposed to study the relationship between expenditure and cus-
tomers’ features from data of existent customers by employing statistical learning methodologies
(e.g., prediction techniques). It will enable the assignation of new customers in such a way that
the expected benefits (expected incomes minus distribution costs) is maximized. The phases of
the proposed approach are represented in Figure 6.6 and described next:

1. Data collection. The approach requires several inputs: database of historical sales, descrip-
tion of new customers, location of depots, vehicle maximum capacity, number of available
vehicles at each depot, and maximum distribution costs per route. The sales database in-
cludes the following information for each existent customer: personal features, geographi-
cal location, expenditure level, and depot to which he/she has been assigned (randomly or
according to a metric not related to personal features such as distribution costs). The de-
scription of new customers gathers personal features and geographical locations. Regarding
the information of both existent and new customers, an initial selection of variables has to be
performed by assessing which ones may be valuable. Besides explaining the differences of
expenditures among depots, they should be easy to obtain, estimate or compute, and store.

2. Statistical learning. Given the database of existent customers, a statistical model exploring
the relationship between customers’ features and expenditure is performed for each group
of customers assigned to a specific depot. Considering several groups, it is allowed the
existence of a different trend in each one. A high number of methodologies are available to
carry out regression analysis (Hastie et al., 2009; Lantz, 2013).

3. Prediction of expenditure for new customers. Once a methodology has been selected and
the different functions have been fitted, the expenditure is predicted for each new customer
given his/her features if assigned to each depot.

4. Assignment of customers to depots. In order to perform an efficient and feasible assignation,
it is necessary not only to consider the predicted expenditure but also the distribution costs,
the maximum number of vehicles per depot, and their capacity. Taking a decision for each
customer individually may provide non-feasible and poor-quality solutions. Consequently,
a global and iterative strategy is presented in which customers are selected one at a time to
be assigned to a specific depot. It prioritizes the assignments of those customers that have
associated a relatively high expected benefits only for a particular depot, and is based on the
procedure developed in Juan et al. (2015c). In particular, the following steps are proposed:

• For each depot k and customer i,

– Compute the expected benefits µk
i as the difference between the predicted expen-

diture pk
i and the distribution costs ck

i (computed as the cost of moving from k to
i).

– Compute the difference between the expected benefits of assigning i to k and the
maximum expected benefits of assigning i to a depot l other than k, i.e.:

sk
i = µk

i − maxl∈Vd\{k} µ
l
i ∀i ∈ Vc, ∀k ∈ Vd
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This measure is referred to as “marginal savings”. Accordingly, sk
i will be high

in the case customer i reports relevant expected benefits only if assigned to k,
low (in absolute terms) if the expected benefits are similar for k and at least one
other depot, presenting both depots the highest expected benefits, and very low
(negative) when there is at least one depot where the expected benefits are larger
than those estimated for k.

• For each depot k, create a priority list of customers and sort it in descending order
according to the marginal savings sk

i .

• Create a list of unassigned customers. Then, select a depot and choose the next cus-
tomer to assign from its priority list. Update the list of unassigned customers and
repeat these steps while there are unassigned customers. Different policies may be
applied to determine which depot selects the next customer, as: (i) allowing the depot
with the highest remaining capacity to choose, (ii) using a round robin-based criterion,
or (iii) selecting it randomly.

5. Routing. Having an assignment map, the MDVRP can be solved as a set of independent
CVRPs. However, the most important challenge when addressing a MDVRP instance is the
interrelation between assignation and routing. Therefore, algorithms are required to take the
decisions associated to both phases ’simultaneously’. Thus, instead of finding an optimal or
near-optimal solution for the customer-to-depot assignment phase and then use this unique
solution as a starting point to solve the routing phase, an iteration process combines ’good’
and fast computed solutions for the first stage with ’good’ and fast computed solutions for
the second one in order to find a near-optimal solution for the overall problem.

Figure 6.6: Scheme of the proposed approach for the MDVRP-HD.

Detailed algorithm

Figure 6.7 summarizes the proposed approach, highlighting the main differences between the clas-
sical version of the problem and the proposed one.

Since the phase of data collection is company-specific, it is assumed to be already done. The
second and the third phases are related to the development and use of predictive statistical learning
models. First, the database of existent customers is split into two subsets: a training set, which will
be used to build the models, and a test set, to assess their performance. These subsets are generated
by means of random sampling: 75% of customers are assigned to the training set and 25% to
the test set. Having different alternatives to explore the relationship between expenditure and
customers’ features, three well-known methodologies are employed in the experiments: multiple
linear regression (MLR), multi-layer feedforward network (MFN), and model tree.

• Regarding MLR, the ordinary least squares method is applied to estimate the parameters,
and the stepwise regression approach with a bidirectional elimination procedure is chosen
to perform the variable selection.

• The MFN with one hidden layer is considered. The number of hidden units (4, 5, 6, 7, or 8)
and the decay value for regularization (0.2, 0.3, 0.4, 0.5 or 0.6) are set using 10-fold cross
validation based on the metric R2 (Kuhn, 2008). The back propagation method is employed
to estimate the parameters.

• The algorithm selected to implement a model tree is the standard M5P (Wang and Witten,
1996).
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The mean squared error (MSE) for each model (the number of models is the number of depots
multiplied by the number of methodologies tested) using the same problem instance is computed.
The total MSE is computed by aggregating the values of the models corresponding to the same
methodology. In the experiments, the methodology selected is the one with the lowest total MS E.
Thus, during the third phase, the expenditure that each new customer would make if he/she was
assigned to each one of the depots is predicted using the selected methodology and the customer’s
features.

For the assignation and the routing phases, an existing methodology described in Juan et al.
(2015c) has been adapted. The authors propose an efficient algorithm based on the ILS metaheuris-
tic framework. Firstly, an initial solution is generated assigning customers to depots according to
the marginal savings (only the distribution costs are considered) and designing the routes by im-
plementing the classical CWS heuristic. Afterwards, an iterative procedure is started in which
the base solution (the initial solution in the first iteration) is perturbed. If the new solution is
better than the base solution, then the latter is replaced. In case no improvement is achieved, a
Demon-based acceptance criterion is considered to avoid entrapment at local optimum. These
steps are repeated until a termination condition is met. Finally, the top best solutions are improved
by means of a post optimization process, and the best one is returned. The described algorithm
includes biased randomization techniques to further diversify the search (Juan et al., 2009c). They
are implemented both in the assignation phase, to randomize the sorted priority list of customers
of each depot in such a way that the reasoning behind the sorting is not erased but many orderings
are provided, and in the routing phase, where the CWS heuristic is randomized.

6.4.2 Computational experiments
An algorithm based on the described approach has been implemented and employed to solve
a number of generated instances. The computational experiments compare the results of our ap-
proach for the analyzed version of the MDVRP and for the classical version (i.e., the one assuming
homogeneous depots).

Set of instances

A total of 15 instances have been generated. Each of them consists in three datasets: the first two
gather data concerning existent and new customers, respectively, and the third includes depots’
locations and information related to restrictions. Regarding data of existent customers, four vari-
ables have been created: age (a discrete variable following a Uniform distribution with parameters
16 and 80), sex (a categorical variable with two equally probable values), estimated income (it
follows a Normal distribution with a mean of 1500 and standard deviation of 300), and preferred
article (a categorical variable including four equally probable values). Initially, each customer has
been assigned to his/her closest depot, while the expenditure level has been determined by a given
function that depends on the depot, the aforementioned variables and a white noise term. For a to-
tal of 100 new customers, the variables age, sex, estimated income and preferred article have been
generated using the same distributions. Customers’ and depots’ locations have been randomly
generated in a square of 100 x 100. In order to simplify the instances’ generation, Euclidean dis-
tances are employed as distribution costs. Different values have been chosen for the number of
depots, existent customers and vehicles, the maximum cost per route and vehicles’ capacity. This
information is shown in Table 6.7.

Test

Each instance has been adapted by modifying the expenditure of existent customers to analyze the
following scenarios: (1) low ratio (LR), the average ratio between average expenditure of existent
customers and average distribution costs is similar; (2) medium ratio (MR), average expenditure
is relatively higher than average distribution costs; and (3) high ratio (HR), average expenditure is
much higher than average distribution costs. The target ratio has been reached multiplying expen-
ditures by a coefficient. The analysis of these scenarios will allow the comparison of the expected
benefits (expected incomes, defined as the sum of predicted expenditures, minus distribution costs)
associated to solutions considering only distribution costs and those taking into account also cus-
tomer preferences (predicted expenditure), thus exploring the consequences of having different
weights of expenditure in the objective solution. For the first scenario, it is expected that the gap
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Figure 6.7: Flowchart of the proposed approach for the MDVRP-HD.

between distribution costs will be low (i.e., solutions are expected to be relatively similar). Like-
wise, it is expected that this gap will be higher as the ratio increases. Similarly, it is also expected
that the higher the ratio, the higher the gap between the expected benefits of the solutions. The
code has been implemented with Java and R (Team, 2008). The ILS process runs for 4,000 itera-
tions, and all executions are solved for 10 different seeds. Only the best values obtained after the
10 runs are reported.

Results

Tables 6.8, 6.9 and 6.10 show the results. The information gathered is the following: instance
name; methodology selected for prediction; distribution costs, expected incomes, expected ben-
efits and time associated to the best solution found considering only distribution costs (classical
MDVRP) and to the best solution found when maximizing expected benefit (MDVRP with het-
erogeneous depots); and gaps between distribution costs, expected incomes and expected benefits
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Instance
Numb.
depots

Numb. existent
cust.

Numb.
vehicles

Vehicle
capacity

Max. cost

1 3 300 3 250 200
2 3 300 3 225 200
3 3 300 3 225 150
4 3 300 3 225 200
5 3 300 3 200 150
6 3 400 3 350 225
7 3 400 3 300 200
8 3 400 3 200 175
9 5 400 4 325 175

10 5 400 4 200 150
11 5 400 4 275 175
12 5 400 4 275 150
13 5 400 4 225 200
14 5 400 4 175 125
15 5 400 4 250 175

Table 6.7: Description of the generated instances.

of both solutions.

Traditional (1) Rich(2) Gaps(2-1)

Inst. Meth. Dist.
cost

Exp.
inc.

Exp.
ben. Time Dist.

cost
Exp.
inc.

Exp.
ben. Time Dist.

cost
Exp.
inc.

Exp.
ben.

p01.1 MLR 898.6 961 62.4 82 930.6 1006 75.4 123 31.9 45.0 13.1
p02.1 M5P 834.3 943 108.7 112 834.5 947 112.6 335 0.1 4.0 3.9
p03.1 MFN 944.0 911 -33.0 143 964.4 939 -25.4 159 20.4 28.0 7.6
p04.1 MFN 891.8 852 -39.8 79 923.4 884 -39.4 165 31.6 32.0 0.4
p05.1 MFN 909.7 824 -85.7 189 914.4 829 -85.4 66 4.8 5.0 0.2
p06.1 MFN 868.5 1425 556.5 655 870.2 1429 558.8 613 1.7 4.0 2.3
p07.1 MFN 923.4 1073 149.6 103 925.7 1093 167.3 383 2.3 20.0 17.7
p08.1 M5P 898.2 867 -31.2 105 900.9 872 -28.9 122 2.7 5.0 2.3
p09.1 MLR 1039.2 2008 968.8 91 1127.5 2218 1090.5 33 88.3 210.0 121.7
p10.1 MFN 1029.6 1404 374.4 63 1062.5 1462 399.5 40 32.9 58.0 25.1
p11.1 MLR 880.7 1469 588.3 47 939.1 1609 669.9 464 58.4 140.0 81.6
p12.1 MFN 1858.4 1699 -159.4 108 1864.2 1709 -155.2 328 5.8 10.0 4.2
p13.1 MLR 1428.3 1495 66.7 437 1568.0 1691 123.0 144 139.6 196.0 56.4
p14.1 MFN 930.0 1163 233.0 43 930.0 1163 233.0 40 0.0 0.0 0.0
p15.1 M5P 1268.1 1401 132.9 374 1375.0 1512 137.0 59 107.0 111.0 4.0

Average 35.2 57.9 22.7

Table 6.8: Table of results for the MDVRP-HD instances considering a low ratio.

6.4.3 Analysis of results
Given the flexibility of neural networks, and despite the basic topology and parameter fine-tuning,
and the medium size of the training set, they have been selected to solve more than half of the
instances (57.8%). MLR has provided the best results in a high number of cases (31.1%).

The gaps related to the distribution costs and the expected incomes are strictly positive except
in one case. It confirms the trade-off decision-makers face between both measures; that is to say,
higher distribution costs are required to obtain an increase in expected incomes. Regarding the
gap of expected benefits, it is strictly positive for all instances except for two where both solutions
are equal. Therefore, attempting to achieve the highest benefits studying only distribution costs
in instances with heterogeneous depots results in sub-optimal solutions. As expected, all average
gaps increase with the ratio, i.e., the difference between solutions (in terms of distribution costs,
expected incomes or expected benefits) is positively correlated to the average expenditure for
fixed average distribution costs. However, this rule does not apply for all cases. In some of them,
despite the fact that the gap of expected incomes increases, so does the gap of distribution costs.
As a consequence, the gap of expected benefit may be reduced.
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Traditional (1) Rich(2) Gaps(2-1)

Inst. Meth. Dist.
cost

Exp.
inc.

Exp.
ben. Time Dist.

cost
Exp.
inc.

Exp.
ben. Time Dist.

cost
Exp.
inc.

Exp.
ben.

p01.2 MLR 925.3 1383 457.7 277 978.0 1483 505.0 173 52.7 100.0 47.3
p02.2 MLR 901.2 1334 432.8 301 921.9 1385 463.1 254 20.7 51.0 30.3
p03.2 MLR 959.3 1405 445.7 134 979.1 1438 458.9 89 19.8 33.0 13.2
p04.2 MFN 942.5 1280 337.5 124 947.8 1292 344.3 101 5.3 12.0 6.7
p05.2 MFN 919.0 1264 345.0 51 921.3 1269 347.8 221 2.3 5.0 2.7
p06.2 MFN 945.6 2103 1157.4 106 948.6 2122 1173.4 327 3.1 19.0 15.9
p07.2 MFN 962.8 1581 618.2 394 992.3 1617 624.7 139 29.5 36.0 6.5
p08.2 MFN 969.9 1302 332.1 300 969.9 1302 332.1 296 0.0 0.0 0.0
p09.2 MFN 1169.6 2897 1727.4 36 1336.1 3335 1998.9 173 166.5 438.0 271.5
p10.2 MFN 1165.1 2109 943.9 161 1222.9 2222 999.1 97 57.8 113.0 55.2
p11.2 MLR 1001.8 2212 1210.2 80 1054.4 2288 1233.7 253 52.5 76.0 23.5
p12.2 MFN 1050.0 2571 1521.0 75 1070.5 2620 1549.5 41 20.6 49.0 28.4
p13.2 MLR 1633.4 2178 544.6 106 1778.2 2446 667.8 270 144.8 268.0 123.2
p14.2 MFN 1020.2 1703 682.8 63 1026.8 1717 690.2 67 6.6 14.0 7.4
p15.2 M5P 1419.6 2090 670.4 69 1560.2 2257 696.8 106 140.5 167.0 26.5

Average 48.2 92.1 43.9

Table 6.9: Table of results for the MDVRP-HD instances considering a medium
ratio.

Traditional (1) Rich(2) Gaps(2-1)

Inst. Meth. Dist.
cost

Exp.
inc.

Exp.
ben. Time Dist.

cost
Exp.
inc.

Exp.
ben. Time Dist.

cost
Exp.
inc.

Exp.
ben.

p01.3 MLR 1060.3 1930 869.7 199 1153.7 2132 978.3 42 93.4 202.0 108.6
p02.3 M5P 1070.7 1803 732.3 253 1097.0 1864 767.0 174 26.3 61.0 34.7
p03.3 MFN 1042.7 1864 821.3 23 1067.1 1923 855.9 162 24.4 59.0 34.6
p04.3 MFN 1043.2 1701 657.8 54 1080.5 1755 674.5 393 37.2 54.0 16.8
p05.3 MFN 994.0 1621 627.0 174 1011.0 1657 646.0 68 17.0 36.0 19.0
p06.3 MFN 1068.1 2856 1787.9 109 1102.7 2906 1803.3 208 34.6 50.0 15.4
p07.3 MFN 1064.1 2115 1050.9 152 1081.2 2139 1057.8 71 17.1 24.0 6.9
p08.3 M5P 1069.6 1741 671.5 32 1069.6 1741 671.5 261 0.0 0.0 0.0
p09.3 MLR 1420.5 4269 2848.5 37 1690.6 4825 3134.4 138 270.1 556.0 285.9
p10.3 MFN 1434.8 2913 1478.2 113 1734.8 3396 1661.2 33 299.9 483.0 183.1
p11.3 MLR 1238.0 3020 1782.0 25 1486.3 3407 1920.7 265 248.3 387.0 138.7
p12.3 MFN 1195.7 3385 2189.3 37 1216.1 3452 2235.9 125 20.3 67.0 46.7
p13.3 MLR 1843.3 2801 957.7 79 2321.4 3387 1065.6 101 478.1 586.0 107.9
p14.3 MFN 1198.9 2297 1098.1 17 1251.0 2351 1100.0 23 52.1 54.0 1.9
p15.3 M5P 1416.0 2086 670.0 164 1595.5 2311 715.6 210 179.5 225.0 45.5

Average 119.9 189.6 69.7

Table 6.10: Table of results for the MDVRP-HD instances considering a high
ratio.

The results are summarized in Figures 6.8. The boxplots on the left show the expected benefits
per scenario and version of the problem: considering heterogeneous depots (rich) and assuming
homogeneous ones (traditional). Even if the medians associated to each ratio level do not dif-
fer significantly, the third and second quartile values do present a higher value for the extended
version of the problem. This behavior is caused by the long right tails of the corresponding dis-
tributions, which indicate that for some instances the rich version results in better solutions in
terms of expected benefits. The second figure displays the variables in which expected benefits are
decomposed per scenario and considering the rich version. It can be observed that differences of
expected benefits between scenarios are mainly due to differences between expected incomes.

6.5 Sustainable urban freight transport
This section studies a MDVRP considering the sustainability concept as optimality criteria. The
three-axis of sustainability (measured as economic, environmental and social impacts) are repre-
sented by traveling distances and times, carbon emissions and risk of accidents. These measures
are monetized and aggregated. Several studies have addressed the economic impacts as a variable
mainly influenced by traveling distances; therefore most existing models seek to minimize them.
However, doing this does not guarantee the minimum impact because many elements such as con-
gestion, speed limits, traffic signs and vehicles crashes make longer the time of the distribution
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Figure 6.8: Boxplots of the expected benefits for the MDVRP-HD instances per
scenario and version (left), and of the distribution costs and expected incomes for

the rich version (right).

routes (Wang et al., 2016). In fact, the shortest paths in urban zones tend to have more traffic signs
since these are the most frequented and, as a result, main streets may be the slowest paths.

• Economic dimension: It is composed by the classical measures total traveling times and
distances, which are monetized based on the driver wage, vehicle fixed cost and oil price.

• Environmental dimension: CO2 emissions estimates assume that the internal combustion
process of vehicles burns the carbon of the fuel and it is released as carbon dioxide. Thus,
emissions are assumed to depend on fuel consumption. The fuel consumption is estimated
as suggested in Kuo (2010) and Zhang et al. (2015).

• Social dimension: Accidents are an externality caused by speed variations on roads, among
other factors. These variations represent the state and stability of the roads, and are associ-
ated to an accident risk for pedestrian and vehicles (Wang et al., 2016).

6.5.1 Methodology
The methodology proposed (Algorithm 8) is based on the VNS metaheuristic. The inputs are the
problem instance to solve and the number of neighborhoods considered (K). It is usual to set K to
two or three, and to design nested neighborhoods.

First, an initial solution is generated and stored in initSol and baseSol. Then, the cost of all
the impacts associated are computed. bestSol will store the best solution found. An outer loop
is started, which sets the current neighborhood to the first one. Inside, another loop builds and
assesses new solutions. Within this loop, the base solution is initially shaken (i.e., it is partially
destroyed and reconstructed in a random way), generating a solution from the k-th neighborhood
of baseSol. The total cost of this solution (newSol) is computed (Algorithm 9). The variable rpd
measures the relative percentage difference between the total cost of newSol and baseSol. If there
is an improvement (i.e., rpd < 0), a local search is applied to newSol, the resulting solution is
copied into baseSol, and the current neighborhood is set to the first. In addition, bestSol is updated
if it applies. This constitutes a descendent phase aimed to find a local minimum. Otherwise,
newSol is accepted and the current neighborhood is set to the first with a probability of exp(−rpd).
This acceptance criterion, first proposed in Hatami et al. (2015), aims to avoid entrapment at local
optimum. It is based on the criterion of the simulated annealing metaheuristic but is simpler and
has no parameters. In case of not accepting newSol, the next neighborhood is analyzed (i.e., k
is set to k + 1). The inner loop is executed until the last neighborhood is explored (i.e., k = K).
Finally, bestSol is returned.

The generation of solutions for the MDVRP has two sequential and interrelated stages: a)
the assignment of customers to depots, and b) the design of distribution routes for each depot.
Both stages employ biased randomization techniques. The first stage relies on a measure called
“marginal savings” (Juan et al., 2015c), which is computed for each pair depot-customer as fol-
lows: the distance between each depot and the customer is obtained, and the difference of assigning
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Algorithm 8 Approach for the MDVRP considering externalities.
1: procedure MDVRP WITH SUSTAINABILITY INDICATORS (inputs, impactsParameters)
2: initS ol← genInitS ol (inputs) # generate solution based on the BR-CWS heuristic
3: baseS ol← clone (initS ol)
4: computeTotalCost(baseS ol, impactsParameters)
5: bestS ol← clone (baseS ol)
6: while (stopping criterion is not met) do
7: k ← 1
8: while (k ≤ K) do
9: newS ol← shake(baseS ol, k) # destruction-construction stages

10: computeTotalCost(newS ol, impactsParameters)
11: rpd← (getTotalCost(newS ol) - getTotalCost(baseS ol))/getTotalCost(baseS ol)· 100
12: if (rpd < 0) then # newSol improves baseSol
13: newS ol← localSearch(newS ol)
14: baseS ol← newS ol
15: k ← 1
16: if (getTotalCost(newS ol) - getTotalCost(bestS ol) < 0) then
17: bestS ol← newS ol
18: end if
19: else
20: u← generateU()
21: if (u < exp(−rpd)) then #acceptance criterion
22: baseS ol← newS ol
23: k ← 1
24: else
25: k ← k + 1
26: end if
27: end if
28: end while
29: end while
30: bestS ol← localSearch(bestS ol)
31: return bestS ol
32: end procedure

Algorithm 9 Function to monetize the impacts of a given solution.
1: procedure COMPUTE TOTAL COST(MDVRPS ol, impactsParameters)
2: distance← 0
3: time← 0
4: emissions← 0
5: social← 0
6: for each (cvrpSol in MDVRPSol) do
7: distance← distance + getDistance(cvrpS ol)
8: time← time + getTime(cvrpS ol)
9: for each (edge in cvrpSol) do

10: emissions← emissions + getDistance(edge)/getKPL(edge)
11: social← social + getDistance(edge) · getLoad(edge, cvrpS ol)
12: end for
13: end for
14: distanceCost ← distance· getDistUnitCost(impactsParameters)
15: timeCost ← time· getTimeUnitCost(impactsParameters)
16: emissionsCost ← emissions· getEmissionsUnitCost(impactsParameters)
17: socialCost ← social· getSocialUnitCost(impactsParameters)
18: totalCost ← distanceCost + timeCost + emissionsCost + socialCost
19: return totalCost
20: end procedure

the customer to the specific depot instead of the closest depot among the others is computed. A
priority list of customers is created for each depot and sorted according to the marginal savings.
Thus, high marginal savings are prioritized, since assigning the corresponding customer to another
depot (which would be farther) could lead to a poor-quality solution. These lists are randomized
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assigning probabilities according to a Geometric distribution. Three different policies are itera-
tively applied to choose the depot to select the next customer to be assigned: i) all depots choose
the first node in their list at a time, following consecutive turns (known as round robin criteria);
ii) randomly; iii) the depot with the highest remaining capacity is selected. Thus, using biased
randomization and different policies promotes the generation of different assignation-maps. The
second stage is based on the randomized version of the CWS saving’s heuristic (Juan et al., 2011a),
which also depends on a Geometric distribution applied to the savings to iteratively choose one
merge among all possible. However, the classical distance-based savings are replaced by “rich
savings” including all costs.

The performance of each solution is computed and the sum of the costs associated to the
impacts considered: economic, environmental and social. The shaking procedure randomly selects
a percentage pk of customers to be assigned to a different depot. Afterwards, the procedure to
construct solutions is applied to repair the solution. This movement is introduced to diversify the
search. This search is guided by the base solution, since the shaking procedure applied at each
iteration works with that solution. It is set to the initial solution at the beginning and replaced by
the new solution if the acceptance criterion is met. The stopping criterion is based on the number
of iterations. Two local searches are used: the first is applied to solutions improving the current
base solution and is based on the classical 2-opt operator defined for the CVRP (Lin, 1965), while
the second is a routing extensive improving search described in Juan et al. (2011a), and applied
only to the best solution found at the end. More details for specific procedures can be found in the
references provided in this section.

6.5.2 Computational experiments
The algorithm proposed has been implemented in JAVA and run on a personal computer with 8
GB of RAM and an Intel Core i7 of 1.8 GHz. In order to test it, illustrate its use and the analysis
of results that may be carried out, 4 MDVRP benchmark instances (p10, p11, p12 and p13) called
here instance 1, 2, 3 and 4, respectively, are employed. They have been extensively used (see Vidal
et al., 2012; Escobar et al., 2014).

Each instance has been adapted as follows. Vehicles’ efficiency parameters are based on a
type of light duty vehicle used for freight distribution in urban zones. We have used the cost
coefficients of Zhang et al. (2015) for CO2 emissions (0.1 USD/L). Regarding the traveling time
cost, it is defined by Koç et al. (2014) as the sum of a vehicle fixed cost and driver wage, which are
set to 1.4 USD/h and 6.3 USD/h, respectively. The traveling distance cost is based on the price of
fuel (1.1 USD/L) and the average miles per fuel liter (5.56 km/L). Delucchi and McCubbin (2010)
propose an the interval [1 · 10−4, 1.3 · 10−3] USD per kg-km for the coefficient to estimate the
social cost. Without loss of generality, times ti j are generated from distances di j using this formula
ti j = α · di j + εi j, where α is a constant based on an estimated speed (α−1 = 35 km/h) and εi j

represents external factors that define the correlation between traveling time and distance. It is set
to follow a truncated Normal distribution with a lower bound and mean equal to 0 and a standard
deviation equal to 3.5, 2, and 0.5. These deviations are set in order to get a correlation around
0.5, 0.7 and 0.9, which may represent a high, medium and low congested zone, respectively.
Thus, three scenarios are generated per instance. For example, for di j=10 km, ti j would fall in the
following intervals considering the different standard deviations and a probability of 95%: (0.59,
1.69), (0.64, 5.06), and (0.69, 8.42).

Each instance has been solved 10 times (employing a different seed for the random number
generator) and only the best solutions are reported. 300,000 iterations are considered. The pa-
rameter fine-tuning is performed by using design of experiments and testing reasonable ranges.
The parameters for the Geometric distributions related to the allocation and the routing process
are randomly chosen in the intervals (0.5, 0.8) and (0.1, 0.2), respectively. The degree of shaking,
which defines the neighborhoods, is set to 10%, 30% and 50% (for the first, second and third
neighborhood, respectively).

The experimentation process consists on analyzing how the solution space changes according
to the optimization criterion and how it influences the other indicators. Thus, five options are con-
sidered: optimization criterion is based on minimizing each component of the objective function
or the sum of them. In a real-life application, the choice will depend on the particular interests of
the decision-maker.
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6.5.3 Analysis of results
This section analyzes the solutions found considering all the indicators or each one of them as
optimization criterion. This comparison aims to determine a solution subspace representing an
equilibrium between the economic, environmental, and social dimensions.

Table 6.11 shows the total cost of the best solutions found according to the objective pursued
for each instance and scenario. As described before, the total cost is computed as the sum of the
costs associated to traveling distance, traveling time and CO2 emissions, and the social cost. As
expected, the best solution in terms of total cost is the solution that seeks to minimize the total cost.
In instance 1 and 2, the solution minimizing the traveling time matches the solution minimizing
the total cost, which means that these objectives converge to the same solution. Similarly, the same
solution ensures the minimum traveling distance cost and emissions cost (this is due to the way
in which the emissions are estimated). Obviously, the total cost is higher in the zones where the
traveling time and the traveling distance have a low correlation (i.e., in congested zones, based on
the description of the scenarios). The solution with the minimum social cost is the most expensive,
because the other costs are significantly increased.

Table 6.11: Total cost by scenario, instance and optimization criterion.

Scenarios

Low Medium High

Instance Objective Total Cost Total Cost Total Cost Run Time (s)

Instance 1
Total Cost 7597.4 5669.1 3763.3 1665.8
Distance 8601.8 6054.1 3763.3 1572.9
Time 7597.4 5770.8 3867.3 1688.3
CO2 Emissions 8601.8 6054.1 3763.3 1572.9
Social cost 8686.3 6393.7 3977.7 1485.0

Instance2
Total Cost 7625.8 5979.4 3645.0 1368.4
Distance 9087.9 6392.3 3645.0 1625.2
Time 7625.8 6060.9 3741.2 1603.2
CO2 Emissions 9087.9 6392.3 3645.0 1625.2
Social cost 9096.5 6651.7 3898.9 1130.3

Instance 3
Total Cost 2475.6 1913.3 1197.9 200.2
Distance 2949.0 1944.5 1199.6 190.8
Time 2475.6 1949.0 1197.9 198.5
CO2 Emissions 2949.0 1944.5 1199.6 190.8
Social cost 2979.8 1999.8 1241.6 186.0

Instance 4
Total Cost 2757.8 1904.3 1217.0 185.9
Distance 2871.1 1913.3 1217.0 187.3
Time 2813.3 1927.9 1222.7 189.3
CO2 Emissions 2871.1 1913.3 1217.0 183.9
Social cost 3144.2 2103.1 1385.6 182.8

Regarding the social cost, it is important to determine the customer sequence and the direction
of the route. Figure 6.9 illustrates and quantifies their effect on the total cost of a given route.
Accordingly, high-quality solutions visits first the customers with higher demands, minimizing
the amount of freight transported over long stretch of roads. On the other hand, the scenario
influences the total cost. Table 6.11 suggests that the gap between solutions with minimum total
cost and minimum social cost is higher in congested zones. This happens because minimizing the
social cost involves reducing the traveling distance, which leads to optimize also the traveling time
if there is a high correlation between time and distance.

Figures 6.10 and 6.11 provide information regarding the behavior of solutions for each sce-
nario. The first represents the average weight of each cost component per scenario considering the
four instances. It can be observed that traveling time represents the main cost and its magnitude is
the most sensitive to the scenario. Figure 6.11 shows the ranges of total cost and its components
per scenario for instance 1. In this case, the time cost increases at a higher rate than the distance
cost, which causes differences among scenarios.

Table 6.12 shows the cost of each indicator when the main objective is to minimize the total
cost for all instances and scenarios. The gaps reflect the difference between the solution with
minimum total cost and the best solution for each indicator. For example, the solution with the
minimum total cost for instance 1 in the low scenario has a social cost 9.49% higher than the
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Figure 6.9: Effect of the customer sequence and the direction for a given route.

(a) Low Scenario (b) Medium Scenario (c) High Scenario

Figure 6.10: Weight of each sustainability component in the total cost by scenario
considering all instances.

Figure 6.11: Total cost and component per scenario for instance ’1’.

best solution found when the objective is to minimize the social cost. This table demonstrates
that the solution with the minimum total cost does not tend to be the best when applying another
optimization criterion.

Figure 6.12 displays radar plots for instances 1 and 4, and the scenarios low and high using the
best solutions found for each indicator and the total cost. These plots identify the desirable and
sustainability regions. The desirable region may be used to define an upper bound (or maximum
allowable cost for each measure) and a lower bound (i.e., the white regular pentagon), which
represents the ideal solution. There is no guarantee that a feasible solution exists that falls in
the sustainability region. However, if one is found, it can be argued that that solution achieves a
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Table 6.12: Comparison among solutions for each instance and scenario.

Objective: Minimizing Total cost

Scenario Instance Traveling distance Traveling time CO2 emissions Social cost

(V, C, D) Cost Gap (%) Cost Gap (%) Cost Gap (%) Cost Gap (%)

Low
1 (8,249,4) 1386.35 -12.88% 5136.15 0.00% 672.10 -12.88% 402.78 -20.37%
2 (6,249,5) 1376.06 -14.96% 5192.52 0.00% 667.11 -14.96% 390.11 -21.38%
3 (5,80,2) 560.84 -23.09% 1624.93 0.00% 271.89 -23.09% 17.90 -31.55%
4 (5,80,2) 460.19 -5.66% 2059.82 -1.16% 223.10 -5.66% 14.69 -28.31%

Average 945.86 -14.15% 3503.36 -0.29% 458.55 -14.15% 206.37 -25.40%

Medium
1 (8,249,4) 1328.31 -9.07% 3325.69 -2.38% 643.96 -9.07% 371.14 -13.58%
2 (6,249,5) 1312.04 -10.81% 3671.20 -2.96% 636.08 -10.81% 360.05 -14.82%
3 (5,80,2) 434.16 -0.65% 1254.84 -12.01% 210.48 -0.65% 13.78 -11.05%
4 (5,80,2) 442.88 -1.97% 1232.64 -0.26% 214.71 -1.97% 14.09 -25.23%

Average 879.35 -5.63% 2371.09 -4.40% 426.31 -5.63% 189.77 -16.17%

High
1 (8,249,4) 1204.67 0.00% 1626.95 -4.72% 584.02 0.00% 347.65 -7.74%
2 (6,249,5) 1177.17 -0.59% 1563.70 -3.79% 570.69 -0.59% 333.45 -8.03%
3 (5,80,2) 435.35 -0.92% 538.16 0.00% 211.06 -0.92% 13.33 -8.06%
4 (5,80,2) 434.16 0.00% 558.53 -0.48% 210.48 0.00% 13.78 -23.54%

Average 812.84 -0.38% 1071.84 -2.25% 394.06 -0.38% 177.05 -11.84%

suitable balance between at least two measures. In our case, the sustainability region is a narrower
area for the scenario with less nodes and a high correlation between traveling time and distance.

(a) Instance 1: Low Scenario (b) Instance 1: High Scenario

(c) Instance 4: Low Scenario (d) Instance 4: High Scenario

Figure 6.12: Solution spaces for decision-making considering sustainability in-
dicators.

6.6 The WCP
The WCP (Figure 6.13) can be described on a graph G = (V, A), where the set of nodes V = Vd ∪

V f ∪ Vc ∪ Vb includes: (i) a set of starting and ending depots Vd = {0, 0′} (in practice both depots
could be the same), with the starting depot being the initial location of a fleet of homogeneous
vehicles K = {1, 2, . . . , k}, each of them having a capacity C; (ii) a set V f = {1, 2, . . . ,m} describing
m landfills at which collected waste must be disposed at least once before visiting the ending depot;
(iii) a set of waste containers (customers) Vc = {m+1, . . . ,m+n}with associated waste levels qi > 0
(∀i ∈ Vc); and (iv) a set Vb = {0∗} representing a virtual lunch-break node that has to be included
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in each route. Each node i ∈ V \ Vd has an associated time window represented by [ai, bi] (with
0 ≤ ai < bi). Necessary service times for emptying any container and the duration of the lunch
break are formulated as ri > 0 (∀i ∈ Vc∪Vb). Likewise, the set A = {(i, j)/i, j ∈ V, i , j} describes
the arcs connecting any pair of different nodes. Each pair is characterized by its respective travel
costs, ci j = c ji ≥ 0, and travel times, ti j = t ji ≥ 0. The travel time associated with going
from any node i ∈ V ∪ Vb to the virtual lunch-break node (and vice versa) is equal to zero, i.e.:
ti0∗ = t0∗i = 0. Notice, however, that the travel cost associated with ‘crossing’ the lunch-break
virtual node is given by the travel cost of the origin and destination nodes, i.e.: ci0∗ + c0∗ j = ci j .
The decision variables xi jl (∀(i, j) ∈ A, ∀l ∈ K) equal 1 if arc (i, j) is employed by vehicle l and 0
otherwise. The aim is to minimize total travel costs.

Figure 6.13: Representation of a WCP instance.

The following restrictions are considered: (i) the number of vehicles used is not predetermined,
only the maximum number of available vehicles is given; (ii) the lunch break is automatically
included in a route whenever a certain time window is reached; (iii) there is a maximum number
of stops at containers and landfills per route; (iv) there is a maximum amount of waste that can be
collected on a single vehicle route; and (v) the depot also has a time window. Methodologies for
both the deterministic and the stochastic versions are presented.

6.6.1 Methodology
The WCP

A VNS metaheuristic is proposed to solve the deterministic WCP. An initial solution is obtained
by applying the CWS heuristic and its biased-randomized extension. This procedure is adapted to
the special case of waste collection by changing the calculation of savings values used for merging
two customers i and j, originally calculated as si j = ci0 +s0 j−ci j. In the WCP, the costs of traveling
between a customer and the depot are asymmetric due to the additional landfill visit. To address
this new situation, the average savings associated to each arc are employed.

Based on the initial solution baseS ol, different neighborhood structures Nk({k = 1, ..., kmax})
are created. The shaking procedures applied to create new solution structures are outlined in Table
6.13. Within each neighborhood Nk(baseS ol), different local descent heuristics described in Table
6.14 are randomly applied to find the local minimum of Nk(baseS ol). To conclude the local search
phase, a quick solution improvement procedure based on a cache memory technique (Juan et al.,
2013a) is implemented: the best-known order of traveling between a set of nodes establishing
a sub-route –i.e., starting at the depot or a landfill and ending at a disposal site– is stored in a
hash-table data structure, thus allowing new solutions to benefit from previously constructed ones.
Whenever the local search phase leads to a more competitive objective function value than that
of baseS ol, baseS ol is updated and k is returned to its initial value of 1. If baseS ol cannot be
improved through the local minimum of Nk, k is incremented by 1 and the next shaking operator
is applied. Once each neighborhood has been constructed (k = kmax), the process is repeated until
a certain predefined stopping criterion (e.g.: time, iterations, etc.) has been reached. Note that we
shuffle the list of neighborhood operators every time k > kmax. A description of the VNS procedure
for the deterministic WCP can be seen in Algorithm 1.
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Table 6.13: Shaking operators for the WCP.

Operator (k) Description
Customer Swap Inter-Route Swaps two random customers between different routes.
2-Opt Inter-Route Interchanges two chains of randomly selected customers between different routes.
Reinsertion Inter-Route Inserts a random customer in a different route.
Cross-Exchange Interchanges positions of 2-4 random, non-consecutive customers from

different routes.

Table 6.14: Local search operators for the WCP.

Operator (LS-Scheme) Description
Best Position Insertion Reinserts the container with the highest objective function increase into the best

available position of any route.
Re-allocate all Iteratively calculates the objective function increase of each container and

reinserts it at the best possible position.
Random Swaps Randomly selects and interchanges two nodes (from the same or different routes)

if the objective function improves.

The stochastic WCP

Waste levels cannot be predicted with full certainty when solving a more realistic stochastic ver-
sion of the problem. The fact that actual waste levels in containers are only known when reach-
ing designated pick-up points can lead to route failures whenever collected garbage exceeds the
planned collection amount. In these cases, the collection vehicle needs to add an additional and
expensive landfill visit to its route. The proposed simheuristic methodology (Algorithm 2) allows
an estimation of the solution quality of previously created outputs using the VNS metaheuristic
proposed before by integrating MCS into the solution procedure.

The methodology starts by transforming the stochastic input variables into their deterministic
counterpart, which is used to establish initial WCP solutions. Even though waste levels face dif-
ferent levels of stochasticity, their behavior can typically be modeled according to some kind of
theoretical or empirical distribution (e.g., based on historical data). This allows the (stochastic)
waste levels wi at each container i to be replaced with expected values E[wi]. Using these deter-
ministic values, an initial solution baseS ol is constructed. In the following, the solution quality in
a stochastic environment is tested by randomly simulating the waste levels of each container i for
a certain number of iterations (or simulation runs) within the predefined probability distribution.
During each run the occurring route failure costs are estimated by penalizing situations in which
vehicle capacities are reached before a scheduled landfill trip. More specifically, route failure costs
are calculated as corrective actions to the predefined routes. Finally, the sum of all route failure
costs of all simulation runs are divided by the number of simulation runs. Thus, the expected total
costs of baseS ol consist not only of the deterministic routing costs, but rather in the addition of
the deterministic routing costs with the expected route failure costs. At this stage we propose the
application of a small number of iterations shortS imIter. On the one hand, a larger number of
simulation runs lead to more reliable estimates of the stochastic route costs. On the other hand, at
this stage a shorter simulation procedure can be used to keep the computational effort through the
simulation reasonable.

Once detCosts(baseS ol), stochCosts(baseS ol), and totalCosts(baseS ol) have been defined,
new deterministic solution neighborhoods are constructed and locally improved as described pre-
viously. A newly constructed solution newS ol is considered as promising whenever it yields lower
deterministic costs than the current base solution. The behavior of each promising solution un-
der waste level uncertainty is then evaluated by applying a short simulation run, leading to a first
estimation of the total solution costs. Whenever totalCosts(newS ol) < totalCosts(baseS ol), the
current base solution is updated and k is returned to its initial value. Furthermore, the solution
is stored as elite stochastic solution. With each elite solution, a more extensive simulation run is
started for longS imIter iterations once the metaheuristic stopping criteria has been reached. The
number of stored eliteS ols is limited to 10.

In addition to calculating the stochastic objective function value of promising deterministic
solutions, our methodology allows the estimation of a solution reliability by considering the pro-
portion of runs where the solution plan can be implemented without any route failure. Thus,
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Algorithm 1 VNS procedure for the WCP

1: baseS ol← solve biased randomized CWS for the WCP
2: while stopping criteria not reached do
3: shuffle(ListO f S hakingOperators)
4: k ← 1
5: repeat
6: newS ol← shake(baseS ol, k)
7: improving← true
8: while improving do
9: newS ol∗ ← localDescent(newS ol, randomLS operator)

10: if costs(newS ol∗) ≤ costs(newS ol) then
11: newS ol← newS ol∗
12: else
13: improving← false
14: end if
15: cacheSubRoutes(newS ol)
16: if costs(newS ol) < costs(baseS ol) then
17: baseS ol← newS ol
18: k ← 1
19: else
20: k ← k + 1
21: end if
22: end while
23: until k > kmax

24: end while
25: bestS ol← baseS ol
26: return bestS ol

the reliability reliabr of each route r of any solution S is computed as the quotient of the num-
ber of runs in which a route failure occurs divided by the total number of simulation runs, i.e.
reliabr = simRunsWithRouteFailue/simRuns. Notice that each route in a solution can be seen as
an independent component of a series system (i.e., the proposed solution will fail if, and only if,
a failure occurs in any of its routes). Therefore, the overall reliability of a solution with R routes

can be computed as
R∏

r=1
reliabr.

6.6.2 Computational experiments
To test the deterministic approach, the 10 WCP benchmark instances provided by Kim et al.
(2006), which were later adopted by Benjamin and Beasley (2010) and Buhrkal et al. (2012),
are employed. Furthermore, the clustered instances presented by Buhrkal et al. (2012) are used. A
clustering procedure is applied to nodes with the same location and time windows to change the
total number of nodes. The algorithm was implemented as Java application and run on a personal
computer with an Intel R©XeonTMCPU E5-2630 v2 @ 2.60GHz processor. The initial solutions
constructed with the biased randomized version of the savings heuristic are based on a distribution
parameter randomly chosen within the range (0.4, 0.5) at each solution construction step.

The results are summarized in Table 6.15. Column (1) reports the BKS for each instance, col-
umn (2) the computational times (CT) in seconds, and column (3) the average results with 10 dif-
ferent random number seeds. The VNS metaheuristic is tested with two different stopping criteria.
On the one hand, our best solution (achieved with 10 seeds) is reported in column (4). Further-
more, our average solution (5) and our best solution (6) with a stopping criterion of 300 seconds
per instance are reported, as suggested by Benjamin and Beasley (2010). It can be seen that the
proposed algorithm outperforms current BKSs by an average of -0.85% and -2.65%. Moreover, it
reaches 9 new BKSs (11 with the extended algorithm running time).

Since there is a lack of stochastic benchmark instances, the non-clustered instances of Kim et
al. (2006) are used as reference. The deterministic instances are then transformed into stochastic
ones by using random waste levels following a log-normal distribution with expected values equal
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Algorithm 2 Simheuristic approach for the WCP-SW

1: replace stochastic waste levels by expected values
2: baseSol← solve biased randomized CWS for the WCP
3: shortSimulation(baseS ol)
4: while stopping criteria not reached do
5: k ← 1
6: repeat
7: newSol← shake(baseSol, k) . see Algorithm 1
8: localSearch(newSol) . see Algorithm 1
9: if detCosts(newS ol) < detCosts(baseS ol) then . Solution is promising

10: shortSimulation(newSol)
11: if totalCosts(newS ol) < totalCosts(baseS ol) then
12: update(eliteS ols)
13: baseS ol← newS ol
14: k ← 1
15: else
16: k ← k + 1
17: end if
18: end if
19: until k > kmax

20: end while
21: for each eliteS ol do
22: longSimulation(eliteS ol)
23: estimateReliability(eliteS ol)
24: end for

to the original deterministic value. Note that the approach could be used with any other probability
distribution (e.g., Weibull, gamma, etc.).

The approach is tested using low (Var[wi] = 0.05), medium (Var[wi] = 0.15), and high
variance levels (Var[wi] = 0.25) concerning the waste level distribution at any container. The
number of short simulation runs is set to 500, while a more extensive simulation with 5000 runs is
applied only to the elite solutions. Moreover, we propose the inclusion of vehicle safety stocks k
to better deal with unexpected demands (Juan et al., 2011b). Instead of considering the complete
available vehicle capacity C in the construction of the deterministic solution, a decreased capacity
C∗ = C(1 − k) is applied. On the one hand, high levels of k will, on average, lead to higher
deterministic costs, as the considered vehicle capacity during the route construction is reduced. On
the other hand, it can be expected that the stochastic route failure costs will decrease. 6 different
safety stock levels k are considered: 0, 0.02, 0.04, 0.06, 0.08, and 0.1.

Tables 6.16-6.18 show the deterministic costs (1), the total costs including the expected route
failure penalties (2), and the related reliability calculated (3) of each tested scenario, where listed
results refer to the best obtained solution according to the overall costs. The average calculation
time of all scenarios was 351.92 seconds.

6.6.3 Analysis of results
Figure 6.14 shows the expected total costs and reliabilities for the average of all tested instances
for each waste variance level/safety capacity factor combination. As can be observed, the highest
total costs for each waste variance level is obtained when no safety capacity factor is considered as
a result of high expected route failure costs. Furthermore, it can be seen that the lowest total costs
over all instances for a low variance level are obtained with a safety capacity factor of 2%. For
medium and high waste variance, a safety capacity factor of 4% seems to yield the most promising
results concerning total costs. As expected however, the reliability levels increase for all variance
levels as the vehicle safety capacity is increased. It can also be concluded that the inclusion of
only a small safety capacity already significantly increases reliability levels (up to around 60% in
the most extreme case).

A more detailed risk analysis is done in Figure 6.15, which shows a boxplot of the long simula-
tion outputs for the three most competitive elite solutions of the Kim277 instance. In this specific
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(a)

(b)

Figure 6.14: Expected total costs (a) and reliabilities (b) for the WCP-SW in-
stances.
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Table 6.15: Table of results for the WCP benchmark instances.

Instance
(1)

BKS

(2)
CT BKS

(s)

(3)
BKS

average

(4)
Our

best sol1

(5)
Our sol

average2

(6)
Our

best sol2

(7)
CT our

best sol (s)

%-Gap
(1)-(4)

%-Gap
(1)-(6)

Kim102 174.5 3 176.03 158.61 158.64 154.62 5 -9.11 -11.39
Kim277 447.6 8 455.7 472.73 457.14 450.6 299 5.61 0.67
Kim335 182.1 10 196.49 189.79 187.36 184.22 298 4.22 1.16
Kim444 78.3 18 78.99 80.22 80.09 79.49 292 2.45 1.52
Kim804 604.1 72 650.65 603.17 601.14 593.2 300 -0.15 -1.80
Kim1051 2250.6 194 2387.7 2128.37 2119.50 2077.37 294 -5.43 -7.70
Kim1351 871.9 105 891.17 929.5 929.40 910.6 238 6.61 4.44
Kim1599 1337.5 252 1385.3 1184.67 1208.54 1182.58 292 -11.43 -11.58
Kim1932 1162.5 285 1192.2 1149.45 1169.95 1136.34 273 -1.12 -2.25
Kim2100 1749 356 1916.8 1595.48 1622.29 1603.93 293 -8.78 -8.29

Clustered Instances
Kim86 174.5 3 176.6 155.68 158.35 155.68 10 -10.79 -10.79
Kim267 450.7 8 456.4 460.4 455.96 449.41 294 2.15 -0.29
Kim322 182.4 10 190.7 189.78 185.93 184.26 298 4.05 1.02
Kim444 78.6 18 79.2 80.22 80.09 79.49 292 2.06 1.13
Kim602 586.2 72 647.8 610.52 593.25 586.11 297 4.15 -0.02
Kim1011 2295.2 116 2370.5 2151.51 2131.00 2102.23 299 -6.26 -8.41
Kim536 850 105 850.9 885.83 877.69 850.46 292 4.22 0.05
Kim870 1170.2 252 1230.6 1156.15 1180.07 1145.83 286 -1.20 -2.08
Kim1860 1128.7 285 1180.9 1129.89 1154.48 1138.6 295 0.11 0.88
Kim1877 1594.2 266 1650.8 1620.89 1642.20 1604.33 186 1.67 0.64
Average 868.44 122 908.27 846.64 849.65 833.47 257 -0.85 -2.65

1 Computational times per instance equal to column (2)
2 Computational times per instance equal to column (7)

case the first solution seems to be the most promising one, as it has the lowest mean and the lowest
quartiles. However, this is not necessarily always the case. In Table 6.19, the mean and standard
deviation of the results from the long simulation concerning total costs of the three best solutions
of each instance are listed. It can be concluded that the solution with the lowest mean does not
always have the lowest standard deviation. This information can be used by decision-makers to
select the solution that he/she prefers according to his/her risk preference. In a similar manner,
our solution approach allows the consideration of different risk-aversion levels of decision takers
by comparing solutions with different safety capacity levels. A more risk-averse route planner
will choose to construct routes with higher safety capacity levels, which typically lead to higher
routing costs while experiencing lower route failure, and vice versa.

6.7 The HSAVRP-SD
The HSAVRP-SD is defined over a complete graph G = (N, A), where N = {0, 1, . . . , n} is a set
of nodes representing the depot (node 0) and the n customers (nodes 1 to n). Each node i ∈ N
has associated a demand Di, which is a random variable following a given probability distribution.
The actual demand of a specific customer is only known when a vehicle visits her/him. The set
A = {(i, j) : i, j ∈ N, i , j} contains the arcs connecting each pair of nodes. Moreover, there is a set
F = {1, ...,m} referring to the types of vehicle. For each type o ∈ F, there are po available vehicles,
the parameter Qo represents the maximum load that a vehicle can carry, and Uo (Uo ⊆ N \ 0)
denotes the set of customers that can be served. Each arc has associated a cost co

i j that depends on
the type of vehicle. The cost of a route is the sum of the costs of its arcs and a fixed cost for using
a vehicle ( fo). The goal is to design routes that satisfy all demands and minimize the total costs.

6.7.1 Methodology
The methodology proposed is a simheuristic procedure combining the ILS metaheuristic and MCS
techniques. For building solutions, the successive approximations method (SAM) (Juan et al.,
2014c) (Algorithm 3) is used. The description of the methodology is explained below and sum-
marized in Figure 6.16.
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Figure 6.15: Boxplots of the total costs of the WCP instance ‘Kim277’ consider-
ing a high waste variance level and a 2% safety capacity level.

Table 6.19: Comparison of elite solutions for the WCP-SW.

Elite
Solutions Best 1 Best 2 Best 3

Instance
Name Mean St. Dev. Mean St. Dev. Mean St. Dev.

Kim102 157.05 3.54 157.14 3.38 157.22 3.65
Kim277 498.66 4.53 499.07 4.45 499.12 4.59
Kim335 187.84 1.81 187.96 1.84 188.25 1.85
Kim444 87.79 0.84 87.80 0.79 91.35 0.82
Kim804 633.97 5.93 634.34 5.74 635.00 5.90

Kim1051 2342.85 16.67 2343.58 15.48 2345.62 16.29
Kim1351 1009.88 26.48 1012.78 26.57 1025.50 26.54
Kim1599 1290.02 24.34 1291.67 23.40 1292.07 23.83
Kim1932 1199.85 29.77 1202.21 30.50 1245.03 30.14
Kim2100 1742.47 13.97 1742.81 14.62 1748.34 13.83

Algorithm 3 The SAM procedure

1: procedure buildSolution(customers, vehicles)
2: globalS ol← empty
3: nonS ervedCust ← customers
4: while nonS ervedCust , empty do
5: vehType← selectType(vehicles)
6: compatCust ← getCompatibleCust(nonS ervedCust, vehType)
7: sol← solveHoS AVRP(compatCust, vehType)
8: routes← getRoutes(sol)
9: numVehO f TypeK ← numberO f Vehicle(vehType)

10: if numberO f Routes > numVehO f TypeK
11: routes← S electRoutes(numVehO f TypeK,Random)
12: end if
13: globalS ol← addRouteToS ol(routes, globalS ol)
14: vehicles← deleteUsedVehicles(vehicles)
15: nonS ervedCust ← extractCustomers(nonS ervedCust, globalS ol)
16: end while
17: return globalS ol
18: end procedure
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Figure 6.16: Flowchart of the proposed approach for the HSAVRP-SD.

The inputs are the HSAVRP-SD instance and a set K of values used to determine safety stocks.
Their use leads to lower costs due to route failures (which are the costs of going from the customer
being served to the depot to refill and come back to complete the delivery). However, it may also
increase the number of routes needed, increasing the deterministic costs (those obtained consider-
ing that demand variances are 0). Consequently, it is required to test different values and compare
expected total costs.

The algorithm starts by selecting the first value k ∈ K and transforming the original instance
into a deterministic one replacing stochastic demands by their means. Additionally, the capacities
are reset to: Qo = (1−k)Qo (∀o ∈ F). The next step consists in building an initial solution (initSol)
for the new instance and estimating the associated total costs using MCS techniques with a short
number of scenarios. Afterwards, a base solution (baseSol) is constructed by cloning initSol, and a
list of solutions (bestSols) is created, which will store the best stochastic solutions (i.e., those with
the lowest expected total cost). Initially, the list includes (initSol). Then, a new solution (newSol) is
obtained by perturbing baseSol, which involves removing a random number of routes and repairing
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it. If the former has lower total costs (i.e., costs in the deterministic environment), it replaces
baseSol, the total costs in the stochastic environment are estimated with a short MCS, and bestSols
is updated. On the other hand, if (newSol) is not better than (baseSol), an acceptance criterion is
checked to decide whether the base solution is replaced. We use a Demon-like acceptance criterion
(Talbi, 2009), which allows the base solution to be deteriorated if no consecutive deteriorations
take place and the degradation does not exceed the value of the last improvement. By doing this,
the algorithm avoids getting stuck in a local optima. This procedure is repeated to visit different
solutions until a stopping criteria is met. At this point, the algorithm is re-initialized with another
value of K. When all values have been tested, the total costs of bestSols are accurately estimated
using MCS with a larger number of scenarios. Finally, the list is returned.

Regarding the building of solutions, the SAM procedure is implemented. It can be described
as follows. The procedure receives one list of customers and one of available vehicles. First,
an empty global solution is created, and the list of customers is copied into a list of non-served
customers. While this list is not empty, the next steps are taken. A vehicle type not used yet is
selected and those customers not compatible with the selected vehicle are removed from the list.
Then the problem is transformed into an homogeneous SAVRP (HoSAVRP) with no limitation on
the number of vehicles that is solved with a state-of-the-art algorithm.

If the solution provided reports more routes than the number of available vehicles of the current
type, some routes are discarded. This partial solution is included in the global solution. The last
instructions inside the while loop update the list of available vehicles and the list of non-served
customers. This process ends when all customers are assigned to a route. Finally, the global
solution is returned.

The procedure for repairing solutions is exactly the same but receiving as inputs only those
customers that remain to be included in a route and copying the perturbed solution into the global
one when this is created.

Each HoSAVRP solution is constructed using the SR-GCWS-CS algorithm (Juan et al.,
2011a). It is based on the CWS heuristic and incorporates biased randomization techniques and
cache and splitting techniques, which contribute to reduce computational times. We have adapted
this algorithm in order to consider asymmetric costs. For this, the easy procedure of computing
savings as the mean of the two savings associated to each pair of nodes (Gruler et al., 2015b) has
been applied.

6.7.2 Computational experiments
In order to test our approach, we have generalized a set of 4 classical CVRP instances from Branch
and Cut. The same location of the nodes and demand is used. They have been modified to include
the characteristics of the rich VRP.

Since we minimize a cost function, a fixed cost for using a vehicle, fo, and a variable cost, vo,
that multiplies the distance have been established. Therefore, the cost of arc (i, j) ∈ A, co

i j = vodi j,
where di j is the Euclidean distance. In order to account for asymmetric costs, the cost of an
edge (i, j) is incremented by 10% if the y-coordinate of the destination node j is greater than the
y-coordinate of the origin node j.

An heterogeneous fleet has been proposed, with three type of vehicles. Large vehicles have a
capacity equal to the one used in the benchmark, and medium and small vehicles have a reduced
capacity of 75% and 50% respectively. All vehicles can serve all customers except for customers
belonging to a randomly selected sub-area in which we assume that large vehicles cannot access.

Without loss of generality we have chosen the demand of a particular customer, Di, to follow
a logNormal distribution, with expected value as the demand of the benchmark instance (di) and
variance proportional to the expected value (κdi). The results presented next are obtained with
κ = 0.1.

Several measures are computed for each solution. When a solution is evaluated with deter-
ministic demands, the cost (Zdet) and the distance (dist) are shown. When a solution is assessed
with stochastic demands, route failures may happen. Therefore, the expected cost (Z stoch) and the
percentage of expected route failures (r f ail) is displayed. Finally, the safety stock is also included.

Test cases were run on a laptop with 4 cores at 2.6GHz. Experiments were run over 5 random
seeds for 60 seconds except for instance A-n80-k10 which run for 300. The name of the instances
indicate the number of nodes (after the letter n). Short MCS were run for 100 scenarios, and long
simulations for 10000.
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6.7.3 Analysis of results
Table 6.20 compares the solution of the original CVRP instance with the current version HSAVRP
with deterministic demands. When the SAM method is employed to solve the CVRP, Our Best
Solution (OBS) shows to be competitive compared with the optimal (OPT) solution reported in
the literature, with an average gap of 0.52%. With the solution of the HSAVRP we also report the
composition of the fleet for each solution. We can observe that a mix fleet is used, motivated by
the fact that some vehicles cannot access some customers. The performance of the deterministic
solution is tested in the operational level with stochastic demands in Table 6.21.

A particular solution is tested under stochastic demands using MCS techniques. In Table 6.21
we can observe how the expected cost of the deterministic solution increases on average a 4% and
experiences a high percentage of route failures. This is due to the fact that some routes has a filling
rate of 99%. On the other hand, stochastic solutions show a filling rate more balanced among the
routes, and the route failures decrease dramatically.

6.8 Conclusions
The flow of goods and products is becoming increasingly complex as a consequence of many
factors such as the globalization. The weight of this sector in the gross domestic product and the
employment rates of most countries require the development of inteligent algorithms to obtain
efficient solutions. The constant evolution and dynamism of the sector calls for fast algorithms.
Moreover, the rellevance of the social and enviromental impacts caused by this sector and the
growing concern for these issues makes it necessary to study classical problems focusing on a
different perspective (i.e., not analyzing only the common measures: distances or time).

While the literature on logistic transportation is extensive and varied, there are plenty of re-
search lines to be explored. Here, both classical and novel problems have been addressed, pre-
senting reviews, methodologies, computational experiments, and analysis of results. The main
conclusions are:

• Statistical learning techniques may help to deal with uncertainty. Hybrid algorithms for
routing problems allow to maximize benefits by increasing sales and total income while
accounting for the distribution costs, which is a more realistic approach than the classical.

• Simheuristics are very useful to address routing problems such as the MDVRP and the WCP
modeling demands as stochastic variables. Whereas solutions for the deterministic version
of the problem (e.g., considering expected values to replace the random variables) tend
to provide good results in scenarios characterized by a low variability, this is not true for
scenarios with a higher degree of stochasticity.

• Sustainability indicators are needed to analyze the externalities of transport activities. Even
if there is a high correlation between the performance of a solution in terms of distance or
time, and in terms of the cost associated to other sustainability indicators, it is not perfect. As
a consequence, the solutions minimizing each indicator individually may be very different
in some cases.

• Smart cities require efficient and clean systems of waste coleection. There are plenty of
works on this problem, most of them using real data. However, there are many lines of
research, a version dealing with stochastic waste levels has been addressed.

• RVRPs encompass a large number of challenging problems with real-life applications. The
HSAVRP has been tackled with a simple approach based on classical procedures but able
to deal with the characteristics of the problem: heterogeneous fleet, site-dependency and
asymmetric costs.
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Chapter 7

Application in production

This chapter studies PFSPs with stochastic processing times and a common due
date. It proposes a simheuristic algorithm based on the ILS metaheuristic and
Monte Carlo simulation.
It is based on the following journal article: Hatami et al. (submitted).
This work has been presented at the following conferences: Calvet et al. (2016c)
and Calvet et al. (2016e).

7.1 Introduction
The manufacturing industry is facing important challenges, including fierce competitiveness, short
product life cycles, increasing speed of product innovation, high product variety and quality, and
rising customer expectations, among others. Industries need to find proper strategies to cope with
these challenges and remain successful in the market, being one of these strategies the use of
distributed manufacturing systems (Moon et al., 2002), with contrasted benefits in terms of higher
product quality, lower production costs and fewer management risks (Wang, 1997; Chan et al.,
2005; Kahn et al., 2013).

In distributed manufacturing systems there is an horizontal cooperation among entities when
they have strategic relationships and join their individual strengths to achieve a common goal, so
the complexity of manufacture is shared among different entities, resulting in conditions in which
risks and costs become acceptable and market opportunities can be captured. Quite often single
manufacturing centers are not able to produce products within reasonable costs and increase prod-
uct diversity because of rigid organizational structures, deterministic approaches to take decisions,
lack of technology and a competencies’ hierarchical allocation (Sluga et al., 1998; Wang et al.,
2006). As a result, single manufacturing centers are infrequent while distributed manufacturing
systems are quite usual (Moon et al., 2002; Naderi and Ruiz, 2010). Constructing these collab-
orative manufacturing systems help industries to address market global challenges in an efficient
way but their optimization is more complicated. The optimization of these systems has received a
considerable attention from practitioners and the research community in recent years.

A well-established problem is the so-called distributed permutation flowshop scheduling prob-
lem (DPFSP) (Naderi and Ruiz, 2010). It consists of a set of distributed manufacturing factories
with flowshop configurations. The responsibility of the factories is to produce a product composed
of various jobs. Each factory has to process a certain number of jobs, and all of them should be
completed at a given deadline or before. Typically, the DPFSP involves two decisions: assign-
ing each job to be manufactured to a factory, and determining a job sequence for each factory.
The classical DPFSP assumes a static environment and deterministic processing times to sim-
plify the problem. However, real-world manufacturing systems are dynamic and often exposed
to uncertainties and unforeseen events such as machine breakdown, changing due date, operator
unavailability, materials out of stock, order rush, etc (Rodammer and White, 1988).

This chapter addresses a problem related to the DPFSP. It is assumed that the components have
already been assigned, and the work deals with job sequencing for each flowshop. Furthermore,
the processing times of the components in each flowshop are random variables. The objective is to
find a robust job sequence for each factory which starts to process at the latest possible time while
completes all jobs respected to the deadline. Since stochastic processing times are considered, it
will only be guaranteed that jobs are finished by then with a given probability. This probability
depends on the probability of each factory ending on time. Thus, if a minimum probability is
required, each PFSP can not be separately solved.
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The problem can be also related to the PFSP-ST. The literature on this problem is not exten-
sive, especially when compared with the PFSP (Lin et al., 2015; Fernandez-Viagas and Framinan,
2015b; Fernandez-Viagas and Framinan, 2015c; Hsu et al., 2015), but it is becoming more popular
(Baker and Altheimer, 2012; Kianfar et al., 2012; Juan et al., 2014a). Since the PFSP is an NP-
Hard problem when the number of machines are equal to or higher than 3 (Garey et al., 1976),
our problem is also NP-Hard. As a consequence, it is sensible to focus on designing heuristic or
metaheuristic approaches for obtaining good solutions in reasonable CPU times.

7.2 Literature review
A review on three problems sharing characteristics with the problem analyzed is presented.

7.2.1 PFSP-ST
While the PFSP has been intensively studied during the last few decades, the PFSP-ST has received
less attention. Baker and Trietsch (2011) designed heuristics for addressing the 2-machine PFSP-
ST, where the processing times are independent random variables following specific probability
distributions. Later, Baker and Altheimer (2012) presented a methodology for the m-machine
version. In addition, several variations of the PFSP-ST have been analyzed. For instance, Allaoui
et al. (2006) and Choi and Wang (2012) worked on the stochastic hybrid FSP, aiming to minimize
the expected makespan. The same problem was tackled by Kianfar et al. (2012) with the goal of
minimizing the average tardiness of jobs. A novel approach is applied in Zhou and Cui (2008)
for tackling the multi-objective PFSP-ST, where both the flow time and delay time of jobs are
minimized.

An interesting line is related to uncertainty. Basically, there are two categories: proactive (or
robust) scheduling and reactive scheduling. For works falling in the first category, Roy (2010)
propose constructing an original predictive schedule. The aim is to find schedules that do not
require new schedules (or significant changes) when confronting disruptions. These works may
consider probability distributions or sets of scenarios. Al Kattan and Maragoud (2008), Ghezail
et al. (2010) and Liu et al. (2011) addressed the PFSP with uncertainty implementing proactive
scheduling strategies. On the other hand, reactive scheduling consists in revising and re-optimizing
schedules when unexpected events take place. A classical option is to obtain a predictive schedul-
ing and then try to repair it according to the actual state of the system. A comprehensive review
on rescheduling under disruptions is provided by Katragjini et al. (2013).

Some authors employ exact methods for addressing the PFSP-ST. A disadvantage of many of
these methods is that they only work with a specific set of probability distributions and relatively
small instances. Moreover, it may be difficult to adapt them for handling dependencies among pro-
cessing times. Simulation techniques enable researchers to deal with these situations in a natural
way. Baker and Altheimer (2012) proposed a hybrid approach combining heuristics and simula-
tion, and tested three heuristic methods: two relying on the CDS heuristic (Campbell et al., 1970)
and one on the NEH heuristic.

7.2.2 DPFSP
In this problem the jobs have not been assigned to each flowshop, so this assignment becomes
part of the decision problem. This problem is also known as the distributed flowshop scheduling
problem (DFSP) since Naderi and Ruiz (2010) resumed the topic for a distributed environment
and makespan minimization. Nevertheless, this decision scheduling problem was first studied by
David et al. (1996) based on a glass industry considering non-delay flowshops and batch produc-
tion mode. Note that each factory is treated as line in this paper, but the mathematical scheduling
problem inside is the same. Since then, it has been also studied under different names in the liter-
ature: parallel flowline (Vairaktarakis and Elhafsi, 2000) and parallel flowshops (Cao and Chen,
2003). Before Naderi and Ruiz (2010), the particular two-machine-flowshop layout in each factory
or line has been solved using approximate algorithms by Zhang and Van De Velde (2012) and Al-
Salem (2004). This particular problem turns to be a pure assignment problem due to the Johnson’s
rule (Johnson, 1954). For a general configuration of m machines, Naderi and Ruiz (2010) have
proposed and compared several mixed integer linear programming models and constructive heuris-
tics to solve the problem. Regarding iterated optimisation algorithm, the problem has received an
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increasing attention for makespan minimization in the literature in the last years. Gao and Chen
(2011) have proposed a GA using local search phases based on interchange and insertion of jobs.
A TS algorithm is proposed by Gao et al. (2013). An iterated greedy (IG) algorithm without local
search phases is presented by Lin et al. (2013). A SS algorithm with a reference set made up
of solutions and restarts mechanisms is proposed by Naderi and Ruiz (2014). Fernandez-Viagas
and Framinan (2015a) presented an IG algorithm with bounded local search phases employing
properties of the problem to reduce the space of solutions. Recently, Ribas et al. (2017) have pro-
posed several constructive heuristics and two simple iterated algorithms (IG and ILS) with variable
neighbourhood searches but with zero-buffer flowshops (blocking constraint).

A particular case of the DFSP refers to the so-called distributed assembly flowshop schedul-
ing problem, which combines the DFSP with assembly scheduling. In this problem, a distributed
flowshop composed of f identical flowshops is followed by a single assembly operation. n jobs
consisting each one of f components have to be assembled after each component has been manu-
factured in one of the flowshops. This decision problem includes job assignment plus the schedul-
ing of jobs in the assembly line. The main references for this problem are Hatami et al. (2015)
and Hatami et al. (2013). In the first reference, the authors consider the objective of makespan
minimization, while in the second sequence-dependent setup times are assumed.

7.2.3 Assembly scheduling
This problem is also denoted n-stage assembly or assembly flowshop scheduling. In this problem
m tandem lines are arranged prior to a single assembly station which is fed by the tandem lines.
Using this layout, n different products (jobs) have to be manufactured, each one consisting of
m components manufactured in the tandem lines. The processing time of each component in
each line is different. Some authors distinguish among the fixed case (i.e. each component can be
processed only in a given tandem line), and the unfixed case (i.e. each component can be processed
in different factories).

For these problems, different objectives are sought, such as makespan minimization (Sung and
Juhn, 2009), total flowtime (Al-Anzi and Allahverdi, 2013; Sung and Kim, 2008), due date ful-
filment (Al-Anzi and Allahverdi, 2007), or the combination of several indicators (Seidgar et al.,
2014). Most references refer to the 2-stage case (production followed by assembly), so they as-
sume that each tandem line consists of a single machine. The underlying hypothesis is that there is
a single processing time for each component before the assembly process. For this problem, differ-
ent exact and approximate methods have been proposed, and some variants of the original problem
have been tackled by Sung and Juhn (2009), where two types of components –manufactured and
imported– are considered, and by Liao et al. (2015), where assembly batches are assumed. Several
other variants of the problem for three stages have been addressed in the literature (see e.g. Koula-
mas and Kyparisis, 2001 and Komaki et al., 2017), but in none of the different versions of the
problem the processing times have been assumed to be stochastic.

7.3 The DPFSP-ST
There is a set F of f distributed manufacturing factories. The shop configuration of each factory
is a permutation flowshop scheduling problem (PFSP), which is a particular case of the flowshop
scheduling problem (FSP) (Johnson, 1954). In the FSP, there is a set M of m machines where each
job of a set N of n jobs must be processed on each machine. Each job starts to process from the
first machine to the last one. Therefore, the number of operations per job is equal to the number of
machines. The jth operation of job i is processed on machine j, and can start if the j−1th operation
on machine j − 1 has been completed and machine j is free. Processing times are supposed to
be known in advance and deterministic. Other classical assumptions (Baker, 1974) are: (i) all
operations and jobs are independent and available for processing at time 0; (ii) all machines are
continuously available and there are no breakdowns; (iii) each machine can process at most one
job at a time; (iv) each job can be processed in only one machine at a time; (v) once an operation of
a given job on a given machine has started, it cannot be interrupted (i.e., no preemption is allowed
until the processing has been completed); (vi) setup and removal times are sequence-independent
and are included in the processing times or are negligible; and (vii) in-process storage is considered
infinite. In the FSP, there are (n!)m possible solutions since the number of job permutations per
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machine is n!. The PFSP is a simpler version which assumes that all machines have the same job
permutation and the job passing is not allowed. It has n! possible solutions.

In this manufacturing layout, a product consisting of various components (jobs) has to be
processed on the machines located at the factories. The processing time of each job i in each
machine j, Pi j, is considered a random variable. The product is considered finished when all its
jobs have been completed. It is required that all components are completed by a (deterministic)
deadline d̃ with a probability not lesser than p.

Consequently, it is intended that the processing operations for job i at factory k should ter-
minate by the deadline d̃. In a PFSP with a deadline, a specific job sequence has a makespan
associated and the starting time can be set at the deadline minus the makespan. In contrast, the
PFSP-ST is characterized by having potential different makespans under different conditions for a
given job sequence. Therefore, in our setting, at least one of the three following approaches should
be considered:

• To ignore the stochastic nature of the problem and replace the random variables by their
representation (typically their mean). While ignoring the stochasticity may provide solu-
tions of poor quality, it is not necessarily the case (see e.g. Framinan and Perez-Gonzalez,
2015). This is due to the fact that a deterministic optimization algorithm is faster and, as a
consequence, may visit more solutions during a limited amount of time. Thus, if the level of
stochasticity is low, there is a chance that solutions found are robust enough to have a good
performance in a stochastic environment. This approach is labelled as makespan (M) in the
following.

• To minimize the expected makespan. This approach stresses the average behaviour of the
layout. However, if the starting time is set at the deadline minus the expected makespan,
there is no guarantee that all processing operations will be completed on time. This approach
is labelled as expected makespan (EM).

• To ensure that the final product will be finished on time with a probability p. This option
allows the decision-maker to include a restriction that sets the probability of finishing on
time or, conversely, the risk of a delay. This approach is labelled as percentile makespan
(PM).

It is assumed that the factories are independent, so p can be computed as: p =
∏ f

k=1 pk, and
by assuming an equal allocation of probabilities we have pk = f

√
p. Therefore, the problem

is equivalent to ensure that factory k will finish its jobs with a probability pk. In order to
do so, the pk-th makespan percentile can be computed for each factory k given a sample of
makespans, and its starting time can be set to the deadline minus the makespan percentile.

Figure 7.1 shows the concepts of starting time, expected makespan and makespan per-
centile. The choice between the last two approaches depends on the risk-aversion of the decision-
maker. For example, if the decision-maker prefers to focus on the worst outputs (i.e., the largest
makespans), it is better to minimize the makespan percentile requiring a high probability. On the
other hand, if she/he prefers to analyze the average case, she/he should focus on minimizing the
expected makespan.

7.3.1 Methodology
Three algorithms are presented: the ILSM algorithm considers the deterministic version of the
problem, while the SIM-ILSEM and the SIM-ILSMP algorithms minimize the expected makespan
and the percentile makespan, respectively. For each solution returned by an algorithm, the (deter-
ministic) makespan, the expected makespan and the makespan percentile are computed. The aim
of working with different algorithms is to study and compare their behaviour. While simulation
techniques are used in the SIM-ILSEM and the SIM-ILSMP algorithms, the ILSM algorithm, which
works with average processing times, skips that part. From here, SIM-ILS algorithm refers to the
basic structure of the SIM-ILSEM and the SIM-ILSMP algorithms.

The SIM-ILS algorithm combines the ILS metaheuristic with MCS. The metaheuristic
searches for promising solutions while MCS techniques are employed to assess their performance.
The promising solutions are returned by the metaheuristic when solving a (deterministic) PFSP in-
stance, which is created from the original PFSP-ST instance by replacing the random variables Pi j
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Figure 7.1: Starting time, expected makespan and makespan percentile in the
DPFSP-ST.

by constant values pi j using the means, i.e., pi j = E[Pi j]. Simulation is applied to a given solution
to compute the expected makespan or makespan percentile. The algorithm works with a list of best
stochastic solutions found and the best deterministic solution found. The best deterministic one
is the job sequence with the smallest makespan referring to the PFSP instance. Depending on the
objective considered, the best stochastic solutions found are the job sequences with the smallest
expected makespans or makespan percentiles, referring to the PFSP-ST instance. The algorithm
starts solving the PFSP. The obtained result is set as the best deterministic solution and the best
stochastic solution. During the algorithm execution, the best stochastic solutions are saved in a list
with length l. This list is sorted iteratively in increasing order of the considered objective function.
Thus, the solution at the first position is considered as the best stochastic solution. The steps of
the algorithm are detailed in Figure 7.2 and explained below.

Generation of the initial solution
A biased-randomized version of the classical NEH heuristic (Nawaz et al., 1983) described in

Juan et al. (2014a) is proposed to generate initial solutions.
Solution improvement
An iterative improvement procedure using shift-to-left as first-improvement type pivoting rule

(Ruiz and Stützle, 2007; Juan et al., 2014a) is applied in different parts of our algorithm to improve
solutions. Each iteration of the procedure consists of three steps. In the first, a position s is
randomly selected, without repetition, from the current job sequence. The selected positions are
saved in a selection list. In the second step, the job placed in the position s is removed from the
sequence and the shift-to-left movement is applied, i.e., the insertion of the job in each possible
position at the left side of s is tested. The makespan of each option is calculated through the
accelerations of Taillard (Taillard, 1990). Finally, the job is inserted in the position resulting in the
sequence with the smallest makespan. The iteration of these steps are continued until all positions
have been selected or a better solution is achieved. If there is an improvement, the algorithm is
restarted with an empty selection list.

Simulation
The assessment of a solution using MCS techniques follows these steps: (1) a number of itera-

tions numsim is considered to repeat the simulation process; (2) a job processing time is generated
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Figure 7.2: Flowchart of the proposed approach for the DPFSP-ST.

for each random variable according to the probability distribution associated, and the makespan
is computed; (3) this process is repeated numsim times; and (4) a performance measure such as
the expected makespan, E[Cmax], or the makespan percentile for a probability pro, P[Cmax]pro, is
computed. While, the assessment of solutions during the search is done quickly (i.e., numsim is
relatively small), a long simulation (numsim relatively big) is used at the end to provide accurate
estimates related to the best deterministic and best stochastic solutions.

Iterated local search
A series of steps are performed iteratively during the search. Initially, a perturbation operator

is applied to change the region of the current solution space and then, the new solution is improved
using the local search. The simple and efficient enhanced-swap operator proposed by Juan et al.
(2014f) is used to perturbate the solution. It takes three steps: (1) two different positions are
selected randomly from the current job sequence; (2) the jobs at these positions are interchanged;
and (3) the shift-to-left movement is applied for both jobs.

In the second step, the algorithm decides whether the new solution is accepted. If it has a
smaller makespan than the current base solution, then the latter is replaced by the new. In this
case, the best deterministic solution is accordingly updated (i.e., replaced by the new solution if
this has a smaller makespan). Additionally, a short simulation is applied to check whether the best
stochastic solution list has also to be updated considering the objective function value. Finally, if
the new solution does not provide a smaller makespan than the current base solution, an acceptance
criterion is applied. These steps are repeated until the stopping criterion based on the elapsed CPU
time is reached.

Acceptance criteria
Our algorithm assigns an acceptance probability to the new solutions that are worse than the

current base solution. This criterion prevents the algorithm from getting stuck in a local optima. It
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is used for the first time by Hatami et al. (2015). Given a new solution πn with a worse makespan
than the current base solution πC , the acceptance criterion decides if it is accepted or not. Let
CMax(πc) and CMax(πn) denote the makespans of each solution. The acceptance of πn depends on
the probabilistic mechanism shown in Equation B.2, where random is a random number uniformly
distributed between 0 and 1, and the relative percentage difference (RPD) is: RPD =

C(πn )−C(πc )

C(πc)
×

100.

random ≤ e−RPD. (7.1)

7.3.2 Computational experiments
The algorithms described in the previous section have been implemented as Java applications
and tested on 27 instances. A standard personal computer, Intel QuadCore i5 CPU at 3.2 GHz
and 4 GB RAM with Windows 7, has been used to execute all tests. This section provides the
description of the instances, the tests carried out, and the numerical results. The analysis of the
results is presented in the next section.

Set of instances and test

Since no benchmark instances exist for the problem analyzed, a new set is constructed based
on Taillard instances (Taillard, 1993). Table B.1 gathers the following characteristics for each
instance: name, total number of the jobs (total n), number of machines (m) and number of factories
( f ). For a given factory, each instance contains a processing time pi j for job i at machine j, which
describes a random variable Pi j following a Log-normal distribution with mean pi j and variance
σ2

i j set to c · pi j. In real-life applications, empirical distributions based on historical data could be
used.

Table 7.1: Description of the generated instances for the DPFSP-ST.

Total n

20 50 100
f / m 5 10 20 5 10 20 5 10 20
2 Ins. 1 Ins. 4 Ins. 7 Ins. 10 Ins. 13 Ins. 16 Ins. 19 Ins. 22 Ins. 25
3 Ins. 2 Ins. 5 Ins. 8 Ins. 11 Ins. 14 Ins. 17 Ins. 20 Ins. 23 Ins. 26
4 Ins. 3 Ins. 6 Ins. 9 Ins. 12 Ins. 15 Ins. 18 Ins. 21 Ins. 24 Ins. 27

Three different levels of processing time variability c (small, medium and high) are consid-
ered and set to 0.25, 1 and 1.5, respectively. Three different values of 80%, 90% and 95% are
considered for the general probability p (used only for the SIM-ILSMP algorithm). The maximum
computational time for solving the PFSPST of each factory is limited to 0.05 ·n ·m, which seems a
reasonable amount for real-life applications. Ten seeds are randomly generated and only the best
result is stored. Regarding the number of iterations for assessing solutions, 600 and 1000 runs are
employed during the algorithm and at the end, respectively. Note that the selection of these values
are mainly driven by the computing time available. Thus, if more time is available, then these
values can be incremented in order to obtain better and more accurate results.

Results

Results are displayed in Tables 7.2-7.4, where each table represents a specific level of process-
ing time variability: low, medium and high. Due to space limitations and the fact that results
show similar trends for all three values of general probability, only those related to 90% are
shown. The composition of the tables is as follows. The first column identifies the instance.
The next five summarize the results of the ILSM algorithm, which considers makespan mini-
mization. For each instance, they show the following information regarding the best solution
found: Cmax(1), E[Cmax](2), P[Cmax]pro(3), gap between the first two measures, computed as:
(E[Cmax](2) − Cmax(1))/Cmax(1) · 100, and gap between the second and the third ones. While
the first gap represents the ‘extra’ processing time, on average, for applying a solution assuming
deterministic processing times, the second focuses on percentiles, showing the additional pro-
cessing time required to finish the product with a probability of 90% (note that this time could
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be negative). The next four columns provide the following results of the SIM-ILSEM algorithm,
which minimizes the expected makespan: E[Cmax](4), P[Cmax]pro(5), gap between the expected
makespan of the best solutions found by the ILSM and the SIM-ILSEM algorithms, and the gap
of percentiles among the same solutions. The third gap, which is expected to be null or nega-
tive, shows the benefit of using a simheuristic approach (i.e., taking into account the variability of
the processing times) in terms of expected makespan. The fourth gap quantifies the difference of
percentiles. Similarly, the next four columns refer to the best solution found by the SIM-ILSMP

algorithm, which minimizes the makespan percentile. In particular, they contain: E[Cmax](6),
P[Cmax]pro(7), and gaps of expected makespans and percentiles between the best solutions found
by the SIM-ILSEM and SIM-ILSMP algorithms. These gaps allow us to quantify the processing
time difference based on whether we minimize one measure or the other. Finally, the last column
shows the mean computational time of the three solutions obtained. In addition, a row is added at
the end of each table to gather the mean gaps and computational time among instances.

Boxplots in Figure 7.3 show the distributions of gaps of E[Cmax] and P[Cmax]pro regarding
the best values considering the three algorithms and a probability of 90%. While we expect that
the approach minimizing a given measure present a null value for the corresponding gap, this
figure reveals the difference between choosing one approach or the other, allowing us to analyze
the variability associated to these gaps. Focusing on the instance 14, Figure 7.4 represents the
30 solutions found (resulting of 3 algorithms and 10 seeds). Each column is a measure, and
colors and line formats are used to distinguish algorithms. As the previous figure, this analysis
provides insights about a “potential" trade-off between the measures. Additionally, this figure
gives information about the effect of using multiple seeds.

Figure 7.5 represents the relationship between probability required, variability level of the
processing times and P[Cmax]pro for the instance 14 using the SIM-ILSMP. Finally, Figure 7.6
shows the effects of different instance characteristics on P[Cmax]pro considering a medium level
of variability and a probability of 90%. First, an analysis of variance was carried out to identify
which factors and pairwise interactions had a statistically significant effect on the results. For
each of these elements (single factors or pair of them), a figure is drawn which shows the mean
value associated to each level of the factor or combination of levels for pair of factors. Given
the randomness in the generation of instances, we expect that all factors have significant positive
effects.

Figure 7.3: Boxplots of performance gaps for the DPFSP-ST instances consider-
ing a medium level of variability and p = 90%.

7.3.3 Analysis of results
Tables 7.2-7.4 provide detailed information on the performance of our algorithms. The following
comments refer to the results of the ILSM algorithm. Mean gaps between Cmax and E[Cmax] for
small, medium and high levels of variability are 1.02%, 2.78%, and 3.74%, respectively. These
values between E[Cmax] and P[Cmax]pro are 1.99%, 3.88%, and 4.73%. These values quantify the
extra processing time required, on average, when variability is not considered, and the process-
ing time needed to satisfy the deadline with a probability of 90%. For example, in the scenario
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Figure 7.4: Parallel coordinates plot showing different measures for the DPFSP-
ST instance ‘14’, considering a medium level of variability and 10 seeds.

Figure 7.5: P[S Cmax]pro as function of general probability and variability level
for the DPFSP-ST instance ‘14’ considering the SIM-ILSMP algorithm.

of low variability, the processing time will be on average 1.02% higher than that assumed, and
the processing time needed to finish with the specific probability will be 1.99% higher than the
E[Cmax]. Both gaps increase as the variability is incremented. Comparing the results of the ILSM

and the SIM-ILSEM algorithms, the mean gaps of E[Cmax] (−0.24%, −0.46% and −0.58%) and
P[S Cmax]pro (−0.15%, −0.36% and −0.46%) quantify the benefits of using a simheuristic algo-
rithm. Regarding the results of the SIM-ILSEM and SIM-ILSMP algorithms, the mean gaps of
E[Cmax] (0.06%, 0.10% and 0.09%) and P[Cmax]pro (−0.08%, −0.14% and −0.20%) at different
level of variability, evidence the benefits of using one or the other approach. Thus, the main
findings are: (i) ignoring the variability in processing times may have an important effect on the
performance measures (even in scenarios with a low level of variability); (ii) the solutions found
by the SIM-ILSEM and the SIM-ILSMP algorithms are relatively similar in terms of these measures
but not equal; and (iii) the gaps tend to increase with the variability, i.e., minimizing the expected
makespan is almost equivalent to consider the makespan percentile when the variability is low,
but the difference increases as the variability is incremented. As a consequence, a decision-maker
have to assess whether he prefers to minimize the expected makespan (i.e., processing finished
at the deadline, on average) or the percentile (i.e., be sure that the processing will be finished at
the deadline or before with a given probability), which may be seen as a more conservative or
risk-aversion approach.

Figure 7.3 compares performance measures among the algorithms proposed. The distributions
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Figure 7.6: Effect of different DPFSP-ST instance characteristics on P[Cmax]pro

considering the SIM-ILSMP algorithm.

of the gaps are relatively symmetric, with few outliers on right tails. It is easy to see that the biggest
gaps are related to the ILSM algorithm, while the gaps referring to P[S Cmax]pro values are higher.
Similarly, Figure 7.4 shows that there is a stronger correlation between the simheuristic-based
algorithms in the sense that the profiles are similar. It is interesting to analyze the differences
among the solutions obtained with multiple seeds. For instance, while solutions of the ILSM

algorithm have the same or a similar Cmax, these solutions may differ significantly in the other
measures (i.e., there are solutions more robust than others). For the instance studied, the ranges of
the last two measures are higher than that of the first.

Figure 7.5 represents a valuable tool for a decision-maker. It analyzes the relationship between
the probability required to process a product at the deadline or before and the processing time
needed. As the probability tends to 1 (i.e., no risk) the processing time tends to infinite. Instead
of having a single solution, the decision-maker may choose the best option (given risk-aversion,
company policies/situation, etc.) among many. As expected, for a given p value, P[Cmax]pro

increases as the variability is incremented.
Figure 7.6 reveals that factors total n, m, f , and the interaction between f and m have statis-

tically significant and positive effects (when considering the others elements) on P[Cmax]pro. The
ranges related to total n and m are the highest. While the effects of f and total n seem lineal, the
effect of m draws a convex function. Focusing on the interaction, it can be concluded that the effect
of f is positive for any value of m, but P[Cmax]pro increases as m is incremented.

7.4 Conclusions
The manufacturing industry is becoming increasingly complex and competitive. Companies need
powerful optimization algorithms to design proper strategies that make them efficient in order to
remain in the market. Although there is an extensive literature on classical scheduling problems,
there is a lack of works on richer and more realistic problems. This chapter studies a novel problem
called DPFSP-ST. It consists in the manufacturing of a product that requires several jobs that are
performed in independent factories. The sub-problem of each factory can be modelled as a PFSP-
ST. All factories are expected to finish at a given deadline or before. This problem describes
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several real-life applications where a company acquires intermediate products from others and
assembles them to obtain a final product with a higher added value.

Three algorithms are proposed to deal with this problem which aim to minimize a different
objective function: the makespan (ignoring the stochasticity), the expected makespan and the
makespan percentile given a probability p. This percentile is the value below which a given pro-
portion p of makespans fall when simulating scenarios, and can be interpreted as follow: if the
starting time in a factory is set to the deadline minus this percentile, the processing of the prod-
uct will be finished before or at the deadline with a probability p. While all algorithms rely on
the ILS metaheuristic, the second and the third ones are simheuristic algorithms, i.e., integrate
MCS techniques in order to deal with the stochasticity. Note that the second algorithm is intended
to provide good results on average whereas the third one aims to guarantee that the manufactur-
ing will be finished before or at the deadline with a given probability. A set of computational
experiments allow us to compare the algorithms in terms of makespan, expected makespan and
makespan percentile, and quantify these differences. It is proven that: (i) gaps among algorithms
for each measure increase as the level of stochasticity is incremented; (ii) while there is a strong
correlation between simheuristic algorithms (in the sense that solutions having the best perfor-
mance in terms of expected makespan are also of good quality regarding makespan percentile,
and the other way around), it is weaker between the first algorithm and any of the others; (iii) in
some cases the differences between the second and the third algorithm may be significant, so a
priority must be set by the decision-maker; (iv) the fact that the algorithms are so fast enable the
running of the third one considering different probabilities, which provides a deeper insight of the
relationship between probability (related to the risk-aversion, i.e., how sure decision-maker wants
to be about finishing at a given deadline or before) and makespan percentile (i.e., how much time
he needs to start before the deadline); (v) the effect of using different seeds is significant; and (vi)
the makespan percentile linearly depends on the number of factories, jobs and machines, and the
interaction between number of factories and machines.
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Chapter 8

Applications in finance

This chapter reviews works using metaheuristics in portfolio optimization and risk
management, studies the deterministic and stochastic portfolio optimization prob-
lem, and presents an application to stocks and individual commodity futures con-
tracts. It proposes hybrid algorithms based on the ILS or the VNS metaheuristics,
and MCS.
It is based on the following journal articles: Doering et al. (submitted[a]), Kizys
et al. (submitted), Calvet et al. (submitted[b]), and Doering et al. (submitted[b]).
This work has been presented at the following conferences: Doering et al. (2016b),
Calvet et al. (2016f), and Doering et al. (2016a).

8.1 Introduction
Investments play an essential role in improvements of welfare standards. This striving for improve-
ment is represented through the formulation of optimization problems for most of the questions in
financial economics. Traditionally, exact methods have been employed. The current international-
ization and integration of financial markets and institutions has caused financial decision-making
processes to become even more complex, both in terms of associated constraints as well as in terms
of the instances to solve. Metaheuristics constitute an attractive alternative for problem solving in
several knowledge areas in which real-time decisions are required. Applications of metaheuristics
in the financial sector are presented in Gilli et al. (2011).

The first section reviews the literature on metaheuristic optimization applications for portfolio
and risk management in a systematic way. The chapter identifies the linkages between portfolio
optimization and risk management. It is expected that the revocation of the strict classification of
financial COPs can lead to a methodological transfer of knowledge. In addition, the trends that
have gradually become apparent in the literature and are expected to dominate future research in
this knowledge area are outlined.

The second section focuses on a single-period version of the so-called constrained mean-
variance POP. Three realistic constraints are considered. First, justified on the grounds of the
investor’s preference and/or taste, the pre-assignments force some specific assets to be included
in the portfolio. Second, the quantity constraint keeps the quantity of each selected asset within
user-specified floor and ceiling values. The ceiling rules out excessive exposure to a specific asset.
The floor is introduced in order to rule out the possibility of tiny (and therefore disproportionately
costly) fractions of assets to be included in the portfolio. Third, the cardinality constraint, which
imposes a floor and a ceiling on the number of assets included in the portfolio, accounts for the
fact that diversification benefits decrease when the portfolio features a huge number of assets. In
the presence of these rich constraints, the problem becomesNP-hard (Bienstock, 1996) and, thus,
exact optimization methods quickly lose their efficiency as the number of considered assets grows.
The cardinality constraint also implies that the mean-variance frontier can become discontinuous
for certain values of expected return (Chang et al., 2000). Because our research involves the con-
strained efficient frontier (CEF), it is devised a matheuristic algorithm for rich portfolio optimiza-
tion (ARPO) that is based on the combination of an ILS metaheuristic, quadratic programming,
and biased randomization strategies.

Contrary to the well-established real-life constraints, the growing body of literature assumes
constant rates of returns and covariances. This empirically unsupported assumption poses a key
limitation when real-life approaches are sought. The aim of the third section is to address this
limitation. Indeed, since asset returns are random variables that obey certain probability density
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functions, and future returns are unpredictable, the minimum desired rate of return may not be
attained with certainty. More concretely, we relax the above simplifying assumptions and consider
rates of returns and covariances as random variables. The resulting problem is known as the SPOP.
Here a simheuristic algorithm to solve the SPOP is proposed based on the VNS metaheuristic.
While the metaheuristic generates promising portfolios for a deterministic version of the problem
-the one obtained when expected values are considered-, simulation techniques are applied to: (i)
estimate the expected risk of these portfolios under uncertainty conditions; (ii) complete a risk
analysis on each portfolio; and (iii) provide feedback to the metaheuristic in order to better guide
the searching process.

Finally, the last section addresses the rich POP, considering individual futures contracts in
addition to stocks. Recently, stock markets have become more integrated, resulting in higher
positive correlation among individual stocks and thus diminishing successful diversification (You
and Daigler, 2012). Because most research on metaheuristics applied to POPs relies on pre-
established benchmarks, the outcomes of such a development on the quality of the established
portfolios cannot be detected. Thus, it would be convenient to include a second asset class to
exemplify possible diversification benefits. Individual commodity futures contracts are selected
because they have been found to have low correlations with stocks (Jensen et al., 2002; Chong
and Miffre, 2010). Their correlational properties have been found to be caused among others by
an opposite reaction of futures to macroeconomic shocks (Silvennoinen and Thorp, 2013; Bansal
et al., 2014).

8.2 Survey on metaheuristics in portfolio optimization and risk
management

The increasing popularity of the application of metaheuristics to POPs and risk management prob-
lems (RMPs) is depicted in Figure 8.1 based on Scopus-indexed publications. The search for
POPs was conducted by examining the articles that explicitly consider portfolio optimization, in-
dex tracking or project selection in the abstract, title or keywords and make use of metaheuristics.
For risk management problems, the search terms were bankruptcy, credit risk or stock or foreign
exchange trading. In the case of portfolio optimization, it becomes obvious that the trend in publi-
cations is increasing. Continuing increases in computing power, the advancement of metaheuristic
frameworks and parallelization strategies favour metaheuristics when dealing with NP-hard finan-
cial COPs. On the contrary, risk management problems seem to have received much less attention.
These proportions are broken down in Figure 8.2, which shows that traditional portfolio optimiza-
tion represents the majority of metaheuristic applications.

Figure 8.1: Scopus-indexed publications applying metaheuristics to POPs and
RMPs for the period 2003 to 2016-1 (first semester).
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Figure 8.2: Number of publications on POPs and RMPs.

8.2.1 Portfolio optimization
Since Markowitz (1952) developed the portfolio optimization theory centred around the mean-
variance approach, the academic community has been highly engaged in advancing the tools for
portfolio optimization. The theory is based on two constituting assumptions, namely: (i) the
financial investors being concerned with the expected returns; and (ii) the risk of their respective
investment. It is thus the goal to minimize the level of risk expressed through the portfolio variance
for a given expected return level, resulting in the so-called unconstrained efficient frontier, from
which the portfolio choice is determined by the risk awareness of the investor. This established
the POP, which is a strategy of: (i) selection of financial assets; and (ii) determination of the
optimal weights allocated to those assets that results in a desired portfolio return and associated
minimum level of risk. Based on the investor’s involvement with the asset selection, two types of
investment management strategies can be identified. On the one hand, active investment strategies
aim at beating market returns. On the other hand, passive investment strategies aim at replicating a
benchmark index. This strategy has become specifically popular with equity funds and although it
is originally based on the efficient market hypothesis, passively indexed funds can still outperform
active funds and have shown to do so on average due to the increased management costs of active
funds in the presence of market failures (Malkiel, 2003). According to these conclusions, index
replication is not solely a hedging strategy, but provides stable profitability.

Table 8.1 presents a summary of the metaheuristics applied to each of the problems reviewed:
single-objective portfolio optimization, multi-objective portfolio optimization, index tracking, en-
hanced index tracking, and project portfolio selection. The number of articles found on each topic
and metaheuristic is included inside each cell. The classical portfolio optimization is an active in-
vestment strategy, particularly when active re-balancing of the portfolio takes place in multi-period
observations and, by its nature, investment appraisal requires the active selection of project port-
folios. Index tracking is traditionally a passive strategy, while enhanced index tracking involves
active management to some extent.

Table 8.1: Application of metaheuristics and hybridization to POPs.

Optimization problem Single-solution search Population-based search HybridSA TS FD SD GA FA ACO DE EA ABC PSO IWO AIS SS
Single-objective portfolio optimization 2 3 1 1 2 1 3 3
Multi-objective portfolio optimization 2 2 2 1 1 4 2
Index tracking 1 2 2 3 1 3
Enhanced index tracking 1 1 1 1 2 1 1 2 1
Project selection 3 2 6 1 2 5

Traditional portfolio optimization

While the original Markowitz problem can be solved using quadratic programming, metaheuris-
tics have increasingly been employed to cope with the fact that the problem becomes NP-hard
when more realistic constraints are introduced (Beasley, 2013). In effect, cardinality constraints,
quantity constraints, and pre-assignment constraints have received overwhelming attention in the
literature. The cardinality constraint defines a lower and upper limit for the numbers of assets
included in the portfolio. While the lower bound aims at portfolio diversification, the upper bound
accounts for the fact that marginal benefits of diversification diminish after a certain threshold
(Maringer, 2005), which increases managerial efforts and transaction costs. The quantity con-
straint sets boundaries for the weights of included assets. While the lower limit ensures a minimum
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investment as smaller investments may be prohibitively costly due to transaction costs (Kolm et al.,
2014), the upper limit prevents excessive exposure to a particular asset. Finally, the pre-assignment
constraint enables the investor to include certain assets in the portfolio based on individual prefer-
ences independent from their risk-return characteristics.

Single-objective portfolio optimization
The classical POP can be considered a single-objective optimization problem with either one of

the following model formulations: the investor minimizes the risk exposure subject to a minimum
attainable expected return, or the investor maximizes the expected return for a given maximum
level of risk. The first variant can be formulated as follows (Chang et al., 2000): A quadratic
objective function is computed by aggregating over the covariances of the constituent asset returns
and then minimized:

Min
N∑

i=1

N∑
j=1

wiw jσi j, (8.1)

subject to a minimum desired rate of return, the constraint that the weights have to add up to
one, and the constraint that all asset weights must lie between zero and one, inclusive, thus elimi-
nating short selling as a measure of preventing investors from excessive risk-taking by restricting
them to the available budget. In formal terms:

N∑
i=1

wiµi ≥ R, (8.2)

0 ≤ wi ≤ 1, ∀i ∈ {1, 2, . . . ,N} (8.3)

where N is the total number of available assets, µi is the expected return of an asset i, R is the
minimum required return, w are the respective weights of the assets making up the portfolio, and
σi j is the covariance between two assets i and j.

Chang et al. (2000) solved it using three metaheuristic approaches (GA, SA, and TS) in order
to generate a cardinality-constrained efficient frontier. They suggested pooling the results from
the different approaches because no single heuristic was uniformly dominating in all observed
datasets. However, Soleimani et al. (2009) introduced sector capitalization and minimum trans-
action lots as further constraints and found that the GA they developed outperformed TS and
SA. Following the suggestion of Chang et al. (2000) and combining GA, TS, and SA, Woodside-
Oriakhi et al. (2011) explored the pooling option. They found that, on average, SA contributes
little to the performance of the process and that thus a pooled GA and TS algorithm is superior to
single metaheuristic approaches at the expense of higher computational time.

As for the application of strict single metaheuristic methodologies, PSO was found to be com-
petitive with all three of the previously employed algorithms (GA, TS, and SA) for the cardinality-
constrained portfolio selection problem and especially successful in low-risk portfolios (Cura,
2009). To evaluate the performance of PSO for even more realistic instances, Golmakani and
Fazel (2011) further introduced minimum transaction lots, bounds on holdings, and sector capital-
ization in addition to cardinality constraints. These authors applied a combination of binary PSO
and improved PSO (CBIPSO), and found that CBIPSO outperforms GA in that it provides better
solutions in less computing time, especially for large-scale problems. As constraints become in-
creasingly complex, the question of constraint-handling in determining feasible solutions arises.
Reid and Malan (2015) investigated this research line and developed a portfolio repair constraint
handling technique applied in a PSO portfolio optimization. Employing this, they were able to
further improve the performance of the metaheuristic, again particularly for large instances.

Di Tollo and Roli (2008) provided a survey concerned with the early applications of meta-
heuristics to the POP and some of the proposed constraints explicitly highlighting the potential use
of hybrid approaches. Likewise, such a hybrid method was proposed by Maringer and Kellerer
(2003), who employed a hybrid local search algorithm combining principles of SA and EA to
optimize a cardinality-constrained portfolio. By combining exact mathematical programming and
metaheuristic methods, Woodside-Oriakhi et al. (2011) further hybridized and created different
matheuristics. This option was also investigated by Schaerf (2002) and Di Gaspero et al. (2011)
who respectively combined TS and first descent (FD) and steepest descent (SD) local search meta-
heuristics with quadratic programming to optimise a portfolio while accounting for cardinality
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constraints, lower and upper boundaries for the quantity of an included asset, and pre-assignment
constraints. According to their results, the developed solver finds the optimal solution in several
instances and is at least comparable to other state-of-the-art methods for the others. Concerning
optimality, Cesarone et al. (2013) were able to develop an exact increasing set algorithm that, for
small instances, solves the POP with quantity and cardinality constraints optimally and can be ex-
tended into a heuristic procedure to account for larger instances. It outperforms the metaheuristics
employed by Di Gaspero et al. (2011) and Schaerf (2002) in all instances.

Multi-objective portfolio optimization
Multi-objective optimization methods combine two objective measures into a single one that

is to be optimized (Mishra et al., 2014) or, more often, find a set of Pareto solutions while balanc-
ing two or more objective functions simultaneously. With respect to single-objective optimization
methods that require the ex-ante definition of an acceptable degree of profitability, multi-objective
optimization requires no previous knowledge about the investor’s degree of risk aversion and is
thus a more general approach transferrable to different decision-makers. The approach of com-
bining risk and return characteristics into a single objective function is taken by Zhu et al. (2011).
They introduced the Sharpe ratio as a simultaneous measure and, since GA and PSO have been
found to be competitively successful in solving the single-objective version, performed a com-
parison of these metaheuristics in solving the non-linear constrained portfolio optimization prob-
lem. As previously established, they also argue that PSO outperforms GAs, especially in large
instances. While they did not include realistic constraints other than a total portfolio weight equal
to one in addition to portfolio assets restricted to positive weights, in which the short selling of
the portfolio’s underlying assets is prohibited, the authors also investigated unrestricted portfolios.
The solution portfolios obtained with the PSO solver outperformed those constructed using GA
for all test problems in terms of Sharpe ratio, and the established efficient frontier was above that
of GA portfolios in all but one instance.

According to Streichert et al. (2003), the multi-objective POP can be formulated employing
two simultaneous objective functions as follows. For a multi-objective optimization it becomes
necessary to minimize the portfolio risk expressed by the portfolio variance:

Min
N∑

i=1

N∑
j=1

wiw jσi j, (8.4)

while maximizing the return of the portfolio, i.e.:

Max
N∑

i=1

wiµi, (8.5)

subject to:

N∑
i=1

wi = 1, (8.6)

0 ≤ wi ≤ 1, ∀i ∈ {1, 2, . . . ,N}. (8.7)

Alternatively, Equations 8.4 and 8.5 can be combined into a single one by incorporating ob-
jective weights as follows (Mishra et al., 2014):

Min λ
N∑

i=1

N∑
j=1

wiw jσi j − (1 − λ)
N∑

i=1

wiµi, (8.8)

subject to the aforementioned constraints. In this case, the weights as determined by the param-
eter λ represent the risk aversion of the investor. By varying this parameter and running repeatedly,
a Pareto efficient frontier can be established. Because of the high performance of PSO in solving
the single-objective POP, enhanced PSO algorithms for solving the multi-objective POP have been
proposed by Deng et al. (2012) and He and Huang (2012). Cardinality and bounding constraints
were incorporated by Deng et al. (2012) who find that their algorithm mostly outperforms GA,
SA, and TS algorithms as well as previous PSO approaches, especially in the case of low-risk
portfolios. It can be concluded that different findings unanimously favour PSO in situations when
low-risk investment is demanded in addition to a larger-scale potential asset pool. Similarly, He
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and Huang (2012) proposed a modified PSO (MPSO) algorithm that outperforms regular PSO for
their four optimization sets. More recently, they also developed a new PSO to deal with discon-
tinuous modelling of the POP and find that it generally outperforms PSO and also performs better
than MPSO in larger search spaces (He and Huang, 2014). Other population-based algorithms
applied in optimizing cardinality-constrained portfolios include firefly algorithms (FA) (Tuba and
Bacanin, 2014b) and artificial bee colony (ABC) algorithms (Tuba and Bacanin, 2014a). However,
because the results were satisfactory at most even after modifications, the authors hybridized FA
and ABC by incorporating the FA search strategy into ABC to enhance exploitation and found that
their data suggested the superiority of the methodology compared to GA, SA, TS, and PSO (Tuba
and Bacanin, 2014a). Streichert et al. (2003) accounted for further constraints: buy-in thresholds
(acquisition prices) and round lots (smallest volume of an asset that can be purchased). They
employed two MOEAs: a GA and an EA enhanced through the integration of a local search that
applies Lamarckism, thus allowing the individual improvements to be passed on to the offspring.
They found that this enhancement greatly improved the reliability of the results, especially with re-
spect to the additional constraints. Unfortunately, these approaches are hardly reproducible due to
their complexity, reinforcing the need for a less metaphorical and more scientifically reproducible
approach.

Nevertheless, apart from the neglect of realistic non-linear constraints, there is a second point
of criticism to the original Markowitz model, namely its assumption of normal financial returns,
which, in reality are characterised by a leptokurtic distribution (Krink and Paterlini, 2011), mak-
ing it necessary to consider non-parametric risk measures. Such a measure is the value-at-risk,
as employed by Babaei et al. (2015) who developed two multi-objective algorithms based on
PSO to solve a cardinality- and quantity-constrained POP. Through splitting the whole swarm into
sub-swarms that are then evolved distinctly, their methodology outperformed similar benchmark
metaheuristics. In order to optimize a non-parametric value-at-risk and to include further con-
straints, including lower and upper bounds for the weights of included assets, a threshold for asset
weight changes, lower and upper bounds for the weights of one asset class and a turnover rate that
determines the maximum asset allocation changes possible at once, Krink and Paterlini (2011)
developed the differential evolution (DE) for multi-objective portfolio optimization algorithm. An
extended version of a generalised DE metaheuristic was also employed in optimizing a highly
constrained POP by Ayodele and Charles (2015). The included constraints consist of bounds on
holdings, cardinality, minimum transaction lots, and expert opinion. An expert can form an opin-
ion based on indicators beyond the scope of the analysed data and influence whether or not an asset
should be included. Their methodology showed improved performance when compared to GA,
TS, SA, and PSO. Lwin et al. (2014) considered cardinality, quantity, pre-assignment and round
lot constraints and developed a MOEA that is improved through a learning-guided solution gener-
ation strategy, which promotes efficient convergence . It was shown that the developed algorithm
outperformed four benchmark state-of-the-art MOEAs in that its efficient frontier was superior.

An extensive review of the application of EAs to the POP is provided by Metaxiotis and Liagk-
ouras (2012). Likewise, for an extensive review on different POPs, including single- and multi-
objective optimization, the reader is referred to Mansini et al. (2014). It can be asserted that
population-based metaheuristics have yielded superior results compared to single-solution meta-
heuristics in the case of single-objective portfolio optimization. This has resulted in them being
dominantly applied to multi-objective portfolio optimization.

Passive investment

Closely related to portfolio optimization as an active portfolio management strategy, passive in-
vestment strategies have received less attention in the optimization literature. These strategies are
characterized by limited on-going buying and selling, as well as by ensuing limited maintenance.
Based on the traditional capital market theory stating that market portfolios offer the greatest return
per unit of risk, passive investment strategies have been shown to outperform actively managed
funds and thus gained popularity (Alexander and Dimitriu, 2004).

Index tracking
The index tracking problem (ITP) is a passive portfolio management strategy in that investors

aim at mimicking a market or sector index. This is done by either replicating the index or by
selecting a portfolio that follows the index behaviour as closely as possible without including all
the stocks that make up the original index. In the case of perfect replication, there are transaction
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costs associated with updating the portfolio to continuously accurately depict the index. There-
fore, the ITP is largely concerned with the latter, partial replication. There are thus two stages in
index tracking, the common goal of which is to minimize the resulting tracking error (the distance
between the portfolio and benchmark returns). The first consists of selecting the assets to include
in the portfolio and the second relates to determining the weights. Thus, it consists of a com-
binatorial and a continuous numerical problem, which both have to be addressed simultaneously
(Krink et al., 2009). Once similar constraints as in portfolio optimization are introduced (e.g. floor
and ceiling constraints, cardinality constraints, pre-assignments, or class constraints), minimizing
the objective function of the tracking error becomes extraordinarily difficult to solve with exact
methods.

The optimization problem can thus be addressed with the following formulation (Beasley et
al., 2003). Minimize the tracking error:

Min E =

[∑
t∈S |rt − Rt |

α]( 1
α )

T
, (8.9)

where S = 1, 2, . . . ,T are the time periods considered during which the portfolio return was
below that of the tracked index, rt is the tracking portfolio return, Rt is the return of the tracked
index itself, and α is the penalization power that is applied to the difference between the realized
return and the benchmark return. If we set α = 2, the tracking error is defined as the root mean
square error (RMSE). In the case of a perfect reproduction of an index, the tracking error would
naturally be equal to zero. In the most basic formulation, the following constraints have to be
considered:

N∑
i=1

zi = K, (8.10)

which represents the cardinality constraint and ensures that any new tracking portfolio contains
K stocks, as zi takes on the value of one if a stock is included in the replication portfolio and zero
otherwise. The weights have to be limited:

0 < wi ≤ 1, zi = 1, ∀i ∈ {1, 2, . . . ,N}, (8.11)

This limits the weights of the included stocks to be larger than zero and equal to or below one.
The non-included stocks must naturally dispose of a weighting of zero:

wi = 0, zi = 0, ∀i ∈ {1, 2, . . . ,N}. (8.12)

Maringer and Oyewumi (2007) investigated partial replication and introduced cardinality con-
straints concerning upper and lower weight limits and integer constraints in the ITP employing
a DE methodology. Their findings suggest that partial replication is indeed sufficient in replicat-
ing the benchmark index. This is due to the fact that only a decreasing marginal improvement is
reached by increasing the cardinality.

Scozzari et al. (2013) were able to develop a mixed integer quadratic programming formulation
to solve the ITP including hard constraints set by the European Union on ceilings of asset inclu-
sion weights as well as low turnover rates and resulting low transaction costs in small instances.
However, the introduction of realistic constraints generally makes it difficult to use exact methods
in solving large ITP instances. Early research by Beasley et al. (2003) introduced a population-
based evolutionary metaheuristics to solve the partial reproduction ITP with regard to stock indices
including constraints on transaction costs (as well as a ceiling for the total inclusion of stocks).
Derigs and Nickel (2004) developed a two-stage SA metaheuristic, in which they controlled for
cardinality constraints and transaction costs through turnover volume restrictions.

For larger instances, especially in multi-period analysis, Scozzari et al. (2013) proposed hy-
bridizing metaheuristics with exact methods. This has been done by Krink et al. (2009) who
addressed the two subtasks of ITP simultaneously and applied a metaheuristic approach based on
DE combined with a combinatorial search operator. Although their developed methodology ini-
tially failed to find acceptable solutions, they showed that extending DE with a search operator by
selecting the assets with highest weights in the benchmark improved the results greatly in com-
parison with GA, SA, and PSO. Ruiz-Torrubiano and Suárez (2009) employed a GA hybridized
with quadratic programming. More recently, Ni and Wang (2013) also tackled the ITP employing
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a hybridized GA with increased learning ability that is enabled through goal programming. The
authors included cardinality and integer constraints, as well as proportion constraints for individ-
ual portfolio assets. While both methodologies yielded successful solutions, the models neglect
transaction costs. The trade-off between transaction costs and tracking performance was then in-
vestigated by Chiam et al. (2013) who developed a multi-objective evolutionary index tracking
platform that considers multiple periods and simultaneously optimizes tracking performance and
transaction costs while considering round lots and non-negativity constraints as well as floor con-
straints as buy-in threshold to prevent unnecessary transaction costs and capital injections.

Although different metaheuristic approaches have been chosen to cope with the realistic con-
straints of the ITP, Affolter et al. (2016) found that due to the missing measure to define the
distance between portfolios with respect to their assets and weights, invasive weed optimization
(IWO) did not lead to satisfactory optimization results. Di Tollo and Maringer (2009) created a
framework for classifying the metaheuristics applied to ITP and present a review of the literature.

Enhanced index tracking
Beasley et al. (2003) defined an objective function that accounts for a trade-off between the

tracking error and excess returns above those of the benchmark index. This enhanced index track-
ing allows the manager discretion in pursuing risk-limited active strategies to enhance return. Con-
sidering that investors might see a trade-off between the trading error and excess returns above the
index has led to the enhanced index tracking problem (EITP), in which investors aim at beating
the benchmark index. This can either be done through active selection of the included assets and
weights or through a passive extension of the methodology by incorporating the excess return as
a further optimization objective. The EITP then becomes a multi-objective optimization problem,
in which the tracking error is minimized while maximizing the degree of beating the benchmark
index so that a solution dominates another if the excess return is higher given the same level of
trading inaccuracy or if the trading accuracy for the same level of excess return exceeds that of the
other solution. This can be formulated by including a second objective function that defines the
excess return between rt and Rt:

Min E =

[∑
t∈S |rt − Rt |

α]( 1
α )

T
, (8.13)

while maximising the excess return r∗:

Max r∗ =

T∑
t=1

rt − Rt

T
, (8.14)

subject to the aforementioned constraints:

N∑
i=1

zi = K, (8.15)

0 ≤ wi ≤ 1, zi = 1, ∀i ∈ {1, 2, . . . ,N}, (8.16)

wi = 0, zi = 0, ∀i ∈ {1, 2, . . . ,N}. (8.17)

Canakgoz and Beasley (2009) solved the ITP as well as the EITP including transaction costs,
an upper limit on the total number of stocks purchased, and a limit on the incurred transaction
costs using exact methods (mixed-integer linear programming formulations). However, Li et
al. (2011a) showed they could mostly outperform the methodology employed by Canakgoz and
Beasley (2009) by implementing an immunity-based optimization algorithm. It is an EA based on
the clonal selection of an immune system, or the immune response to antigens (De Castro and Von
Zuben, 2002). Including further constraints, Li and Bao (2014) also employed an immunity-based
multi-objective optimization algorithm with non-negativity and floor and ceiling buy-in thresholds.
They concluded that the inclusion of optimization of the tracking process in addition to optimizing
tracking error and excess return is valuable as the optimization of the tracking process improves
results in most instances. A perfectly enhanced tracking portfolio would outperform the index by
a low-frequency trend such as steady excess return while negative returns should be trendless and
characterised by high frequency variation. Thus, the tracking process can be enhanced by con-
sidering different frequencies for tracking error and excess returns when the former is minimized
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and the latter maximized (Li and Bao, 2014). Optimization of the tracking process is expected
to increase in importance for multi-period assessment; the authors, however, leave this for further
research. The question of multi-periodicity was investigated by Andriosopoulos et al. (2013) who
addressed the EITP employing both DE and GA. They could show that the so-constructed mim-
icking portfolios inhibit less risk compared to the underlying benchmark index, while proficiently
replicating their performance. Nevertheless, they concluded that the GA version outperforms DE
in terms of minimum tracking errors, as well as maximum mean excess returns. As they explic-
itly considered different time horizons for rebalancing the portfolio, these authors reinforced the
idea that there exists a trade-off between transaction costs, which decrease with longer rebalancing
periods, and Sharpe ratios (as a measure of the tracking performance and profitability), which is
negatively impacted by decreased rebalancing frequency as investigated by Chiam et al. (2013)
for the ITP.

An alternative approach was pursued by Guastaroba and Speranza (2012) who applied a ker-
nel search framework to both the ITP and the EITP. They argued that error measurements should
be undertaken as absolute values and introduced the possibility that an investor already holds a
portfolio as a further constraint to consider in addition to transaction costs. However, they treated
the EITP as a single-objective optimization by outperforming the market index, while keeping
the tracking error below a given threshold. Compared to a general-purpose solver, the perfor-
mance of the kernel search model was superior. Thomaidis (2011) considered an EITP problem
with restrictions on the maximum of tradable assets, and employed fuzzy set theory to consider
non-standard investment objectives, such as the probability of under-performing. The resulting
cardinality-constrained problem was solved using nature-inspired optimization techniques: SA,
GA, and PSO.

Lastly, while some authors declare active and passive portfolio management as mutually ex-
clusive concepts, the close connection between index tracking and portfolio optimization could
be illustrated by the approach taken by Di Tollo et al. (2014) who combined the two methods in
a multi-criteria optimization problem. They employed a hybrid metaheuristic consisting of lo-
cal search metaheuristics (FD, SD and TS) and quadratic programming to estimate the efficient
frontier. Combining the concepts of risk and return with tracking error led to a three-dimensional
objective function and Pareto frontiers. The developed methodology was found competitive in
performance with other metaheuristics such as TS.

Project portfolio selection

Unlike banks and institutional investors, non-financial companies as well as governments are faced
with a different type of portfolio choice. As a method to determine which proposals to pursue and
the corresponding budget allocation, investment or project appraisal is related to portfolio opti-
mization in its goal of maximizing a benefit figure. Usually, decisions cannot be altered or adjusted
during the course of the projects, or at least not without incurring considerable financial losses.
Thus, investment appraisal determines a strategic organizational path for the medium and long
term. This problem becomes NP-hard due to its sheer complexity (Fernandez et al., 2015). It is
by its very nature a multi-period problem and the budget-allocating entity usually pursues several
conflicting objectives, some of which can be of qualitative nature. For that matter, Doerner et al.
(2004) proposed a two-stage procedure. During the first phase, the Pareto frontier is constructed.
Then, in the second phase, it is interactively explored by the decision-makers to account for per-
sonal preferences. A formal description of this problem, based on the one presented in Doerner
et al. (2004), is included next. The benefit function blt(x) that comprises the value of the l different
benefit groups, such as generated funds, cash flows, patents or other beneficial outcomes of the
selected projects is to be maximized over all considered time periods t for all included projects,
i.e.:

blt(x) =

N∑
i=1

bilt xi, (8.18)

where xi is a binary variable that takes on the value of one for included projects and zero
otherwise, subject to constraints concerning resource limitations Rqt that apply to all resource
categories rq, such as budget, capacity, or manpower, as well as minimum benefit requirements Blt
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that define a threshold below which the decision-maker is uninterested in the implementation of
projects:

rqt(x) ≤ Rqt,∀q ∈ {1, . . . ,R} and ∀t ∈ {1, . . . ,T }, (8.19)

blt(x) ≤ Blt,∀l ∈ {1, . . . , B} and ∀t ∈ {1, . . . ,T }. (8.20)

Because of the modelled similarities, the methodological approaches employed are inspired by
the research on traditional portfolio optimization. Early work (Ghasemzadeh and Archer, 2000)
conducted optimization after the construction of a weighted objective function and constraints
concerning budget and man-hours in an integer linear programming approach. However, test in-
stances were very limited because the authors aspired a comparison between manually computed
portfolios and those constructed employing their decision support system. For their metaheuristic
two-stage approach Doerner et al. (2004) employed Pareto ACO (P-ACO). As there are possible
synergies between projects that should be evaluated in order to accurately estimate the benefits
of a project portfolio, the authors made an attempt at incorporating these considerations into their
methodology and pointed out that, unlike GA, SA, and TS that are adaptive metaheuristics, P-ACO
specifically constructs project portfolios through pheromone vectors. This has two advantages.
Firstly, infeasible solutions are avoided and secondly, project interactions can more naturally be
considered in the construction of solutions. They further took into account floor and ceiling con-
straints for inclusion of projects from any given subset, as well as resource limitations and mini-
mum benefit requirements for individual projects. Compared to Pareto SA and a non-dominated
sorting GA (NSGA), P-ACO yielded the most efficient results. This approach was then further
enhanced by Stummer and Sun (2005), who compared the performance of a P-ACO procedure
enhanced through adding a neighbourhood search routine, a TS procedure, and a variable neigh-
bourhood procedure. Their findings suggested that the improved P-ACO model performs better
than TS with many objective functions and a large set of efficient solutions and is thus specifically
suitable for real-life problems. Furthermore, Doerner et al. (2006) concluded that including both a
learning and a two step integer linear pre-processing procedure to initialize several initial efficient
project portfolios improves performance of the P-ACO algorithm.

More recently, research has also drawn on findings from other areas, such as scheduling: Gut-
jahr et al. (2008) and Gutjahr et al. (2010) also took employee competencies and the evolution of
their knowledge scores over time through learning or depreciation into account. While the earlier
work optimized a weighted average objective function using ACO and GA metaheuristic proce-
dures and found the GA to be superior when the search space is not highly constrained, the authors
developed a multi-objective optimization model, which simultaneously optimizes the objectives of
maximum economic gains and aggregated competence increase in their later work. They also di-
vided the problem into master and slave subproblems, the first of which is concerned with the
project selection, while the slave problem optimizes the allocation of personnel to the projects
over time. Although the slave problem can be solved using exact methods, the master problem
was solved using the NSGA-II and P-ACO metaheuristics. While both performed reasonably well,
NSGA-II outperformed P-ACO in synthetic test instances, while P-ACO outperformed NSGA-II
for the investigated real-life instances. Carazo et al. (2010) further investigated this research line
and included scheduling as a continuative concept following the project selection. Their devel-
oped metaheuristics approach is based on SS for project portfolio selection (SS-PPS). As previous
work, they also considered interdependences between different projects and can show that their
model outperformed other heuristic approaches based on EA (SPEA). Similar to Rabbani et al.
(2010), who presented a multi-objective PSO metaheuristic and found it to be competitive with
respect to SPEA II, Urli and Terrien (2010) formulated the project portfolio selection problem as
a multi-objective non-linear integer program, which they solved using the SSPMO metaheuristic
(Molina et al., 2007). In a first phase, they generated an initial set of efficient solutions through TS
and then combined these via SS. While this approach solved small and medium instances in satis-
factory computation time, the determination of all non-dominated project portfolios still remains
difficult when considering large, but realistically relevant instances (100 projects or more).

Another issue that has only recently been addressed is project divisibility. While business
projects are at least partially indivisible, research projects funded by governments can often also
be executed with partial funding and it is thus a further question how much of the sought after
funding is awarded, introducing further constraints to the budget allocation. Cruz et al. (2014)
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used ACO in solving a stationary project portfolio optimization problem, in which partial support
of the requested budget was allowed. They developed a non-outranked ACO approach, incorporat-
ing a fuzzy outranking preference model, and assumed that the preferences of the decision-maker
are to some extent known. Outranking was employed in an a priori preference system in order
to model that decision-makers will have preferences towards different portfolios on the efficient
frontier based on their personal goals concerning the achievement of objectives. Fernandez et al.
(2015) further enhanced this approach by including integer linear programming methods to gen-
erate an initial population. They also included synergies in their optimization, concluding that
their model outperformed state-of-the-art metaheuristics. It can be asserted that project syner-
gies, project divisibility, the incorporation of multi-periodicity, and outranking are the prominent
real-life constraints and trends that specifically increase the complexity of the portfolio selection
process.

8.2.2 Risk management
Risk management of companies refers to the evaluation of realistic data concerning the institution’s
exposure to a certain source of risk and it is further concerned with statistics on trends that will
influence that exposure in the future. While quantitative data is relevant and necessary for this, it
must be complemented by qualitative information for informed decision-making (Chorafas, 2007).
Risk management is addressed in terms of optimization through metaheuristics for credit risk as-
sessment and the resulting bankruptcy prediction. García et al. (2015) provide a review of systems
and applications to the optimization of trading rules in the financial markets. Table 8.2 presents
the metaheuristic methodologies applied to the different subproblems of risk management.

Table 8.2: Application of metaheuristics and hybridization to risk management.

Optimization problem Single-solution search Population-based search HybridSA TS GA ACO EA ABC PSO SS HBMO FA BA HS
Credit risk assessment 2 4 1 1 1 1 6
Bankruptcy prediction 4 1 2 6
Optimization in stock trading 2 4 1 2 1 1 1 7
Optimization in foreign exchange trading 3 1 4

From Table 8.2, several conclusions can be drawn. Firstly, GA are the preferred metaheuristics
in risk management as well. Furthermore, PSO has also received widespread attention. Contrary to
that, more exotic algorithms, such as harmony search (HS), FA, or bat algorithms (BA). Secondly,
it can be seen that bankruptcy prediction, as well as optimization of trading systems for foreign ex-
change markets, have received less attention in the literature and have been approached with fewer
methodologies. They thus represent interesting future research lines. Thirdly, it becomes evident
that hybridization among metaheuristics or other optimization methods is far more prevailing in
risk management optimization than in portfolio optimization. Lastly, it is evident that relatively
recently developed metaheuristics, such as IWO and honey bees mating optimization (HBMO),
have not been applied as comprehensively as well-established ones.

Credit risk assessment and optimization

Credit risk assessment is one of the most researched and recognized topics in the banking industry.
There are many different approaches for financial institutions. However, during the last years, non-
financial companies have also recognized the need to treat their trade credits to customers with the
same caution and scrutiny. While the use of metaheuristics is still scarce, they are increasingly
used as a pre-processing procedure in order to identify the most relevant predictors of credit risk
in the analysis of large datasets. Marinakis et al. (2008) classified a set of companies into different
classes of credit risk level. They propose and compare TS, GA, and ACO for solving the feature
selection subset problem, which are then used in determining the appropriate level of credit risk.
The employed accuracy measures are determined by whether or not a subject has been classified
in the right category (Table 8.3).
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Table 8.3: Definitions of the classified and the misclassified samples.

Actual class
1 2

Estimated class 1 T1 F2
2 F1 T2

The overall classification accuracy (OCA) can then serve as optimization objective that is to
be maximized:

Max OCA =
T1 + T2

T1 + F1 + T2 + F2
∗ 100. (8.21)

More recently, Marinaki et al. (2010) employed HBMO in determining the relevant features.
They were able to show that this metaheuristic reduced the number of used features by more than
half and still yielded superior results compared to PSO, ACO, GA, and TS. Oreski et al. (2012)
employed NN hybridized with GA (GA-NN) to enhance the classification accuracy of the NN
classifiers by choosing optimal features. Oreski and Oreski (2014) further improved the results by
employing a hybrid GA instead of GA. Their results suggested that they hence achieved a higher
and less volatile accuracy with on average fewer selected features through a reduction of the search
space and an incremental phase of the GA. Chi and Hsu (2012) employed GA in selecting relevant
variables to combine a bank’s internal behavioural scoring model with an external credit bureau
scoring model and thus creating a dual scoring model that outperformed the individual model. A
survey on the importance of employing the right fitness function in the GA for credit assessment
is provided in Kozeny (2015).

Trends in credit risk assessment concern the hybridization of metaheuristics with other tech-
niques for feature selection. Wang et al. (2010) developed a feature selection based on rough set
and TS. In comparison with non-preselecting models, the savings in computational time and per-
formance accuracy were significant. Similarly, Wang et al. (2012) used a rough set and scatter
search feature selection that is able to improve results in all three considered base sets, i.e. NN,
J48 decision tree and logistic regression (LR). Lastly, Danenas and Garsva (2015) pursued the
idea of optimizing the classifiers of a linear SVM using PSO. While their results were compara-
ble to the use of other classifiers (LR and radial basis function or RBS networks), the proposed
methodology, however, delivered less stable performance.

Bankruptcy prediction

Bankruptcy occurs when debtors are unable to repay outstanding debts. While bankruptcy pre-
diction constitutes part of the credit risk evaluation process, it is vital for banks and companies to
constantly monitor their credit risk exposure. Because of the two-classes framework (firms that
go bankrupt and firms that do not), the basic optimization framework is similar as suggested for
credit risk assessment. The difficulty and difference lies in the relatively longer aspired forecasting
period and the difficulty in predicting the exact time of bankruptcy.

It is worth considering to differently value the two classes of mistakes that occur. While falsely
classifying a subject as bankruptcy candidate (type II misclassification) merely leads to missed
revenues, a false classification as healthy company (type I misclassification) usually leads to at
least partial failure on a payment and thus has greater consequences for profitability.

Early research conducted by Back et al. (1996) highlighted the contribution of GA in predicting
bankruptcy when hybridized with NN. Shin and Lee (2002) introduced the prediction of corporate
bankruptcy using GA and historical financial data. Kim and Han (2003) further employed GA
to extract decision rules based on qualitative expert decisions and find their methodology to be
superior compared to NNs or inductive learning methods because the rules created by GA are more
accurate and have larger coverage. An extensive survey on the early research in this knowledge
area can be found in Kumar and Ravi (2007) who reviewed both statistical and computing methods.
Their evaluation concluded that all statistical methods are outperformed by back propagation NNs.
They further highlighted the prediction accuracy of SVM. More recently, Kirkos (2015) presented
the literature on artificial intelligence and machine learning techniques employed in bankruptcy
prediction.
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Min et al. (2006) improved the performance of SVM with regards to optimizing the feature
subset and parameters simultaneously. They showed that selecting an appropriate feature subject
has implications for the kernel and that their integration improved bankruptcy prediction accu-
racy. Chen (2011) highlighted that while intelligent techniques provide higher prediction accuracy
for smaller datasets and are adversely affected by increasing datasets, statistical methods perform
more accurately when the dataset is large. But the author also indicated that a hybrid between
PSO and SVM could yield a good balance between short- and long-term prediction accuracy.
This was consequently done by Lu et al. (2015) who combined switching PSO (SPSO) and SVM.
The SPSO was employed in searching the optimal parameter values of RBF kernel of the SVM
and the authors showed that this hybridization yielded superior results to GA-SVM and PSO,
respectively. These findings were supported by Chen (2011) and Chen (2014a) who also em-
ployed PSO-SVM and showed high accuracy with a significantly reduced number of parameters.
Furthermore, Gaspar-Cunha et al. (2014) proposed an evolutionary multi-objective approach that
simultaneously minimizes the number of features and maximizes the accuracy of the classifier in
SVM so that the algorithm is self-adaptive. The general advantage of multi-objective optimization
lies in the attainment of a set of efficient solutions from which the decision-maker can perform a
trade-off based on personal preferences.

Recently, ensemble learning has been applied to the bankruptcy prediction problem. Kim and
Kang (2010) proposed hybridizing an ensemble with NNs and showed that it improved prediction
accuracy compared to regular NNs. However, these attempts often suffer from high correlation
among the individual classifiers, and thus Kim and Kang (2012) improved their methodology to
include a GA-based coverage optimization to alleviate multicollinearity through classifier selec-
tion. More recently, Davalos et al. (2014) developed an accurate GA-based ensemble classifier
model with heterogeneous instead of individual classifiers that is comprehensible due to its if-
then-structure. They showed the improved performance of their approach.

However, the financial ratios employed in the main research lines are unavailable for a large
portion of companies. Small and medium-sized enterprises (SMEs) do not dispose of regular
audited financial data or market prices and public ratings due to publicly traded equity or debt
instruments and it is necessary to include available and relevant indicators for these individual
firms. Thus, with special regards to SMEs, Gordini (2014) compared the prediction accuracy of
GA, SVM, and LR. The author showed that the prediction of GA was superior, especially with
regard to type II misclassifications and with regard to prediction of bankruptcy for small firms.

Optimization of decision-support systems for trading

The development and optimization of automated trading systems has become of prevalent impor-
tance and special interest for broker investment banks and other institutional investors alike. A
large portion of the literature addresses stock trading, while some researchers have concentrated
on the foreign exchange markets.

Stock market trading Derigs and Nickel (2003) developed a decision support system (DSS)
for portfolio optimization and index tracking. They stressed the importance of hard (government-
imposed and compulsory) and soft (shaped by preferences of the investor) constraints. They imple-
mented a local search guided by SA in order to optimize the DSS with respect to floor and ceiling
constraints and transaction costs. These authors have shown for the application to passive tracking
of the DAX 30 that their system delivered solutions with minimal tracking errors in acceptable
computing time. Focusing on real-time decisions, Chavarnakul and Enke (2009) proposed a trad-
ing system for the stock market based on volume adjusted moving average that is hybridized with
NN to decrease the time of receiving trading signals, fuzzy logic to deal with uncertainty, and GA
techniques to optimize the trading signals to overall increase efficiency. Depending on the strength
and direction of a given signal, the system assumes a buy or sell position. If the signal is not con-
fident enough, a hold position is taken. The so established neuro-fuzzy based GA was shown to
lead to fewer trades and thus reduced transaction costs, while profitability was increased.

Gorgulho et al. (2011) also proposed a system to automatically manage a portfolio of assets
and highlighted the necessity of adapting the system to the state of the market. They employed
GA and technical analysis rules. The system requires the user to input the available budget, the
maximum of assets to be included in the portfolio at any time, whether or not short selling is con-
sidered and the allowed amount of transaction costs. Then, an initial portfolio is constructed em-
ploying a GA. Over the course of the investment, the system regularly updates the proposal based
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on technical trading rules based on closing positions and refilling empty positions. Teixeira and
De Oliveira (2010) combined technical trading rules with nearest neighbour classification. Their
analysis was based on historical data of stock closing prices and volume, on the basis of which
trading rules were formed. Their system outperforms a buy and hold strategy in most cases. Be-
cause the parameters in these functions have to be determined, metaheuristics have been applied.
The hybridization of technical trading rules and metaheuristics is seen as an especially promis-
ing research area. Brasileiro et al. (2013) further refined the strategy by Teixeira and De Oliveira
(2010) by searching for the best system parameters and number of lags with an ABC algorithm
and thus outperforming the previous trading system as well as the buy and hold strategy in most
instances. Nunez-Letamendia (2007) had already shown that GA is robust and powerful when
applied to optimizing technical trading rules. Similarly, Lin et al. (2011) applied a GA to improve
trading rules for individual stocks, which are then combined with echo state networks to provide
suggestions for trading. Their results showed an outperformance of the buy and hold strategy. In
a more recent work, Wang et al. (2014a) employed a time-variant PSO (TVPSO) to determine the
optimal parameter values of a complex trading system: performance-based reward strategy (PRS).
PRS combines moving average and trading range breakout trading rules. Considering transaction
costs and excluding short selling, the system was able to achieve high profits and the application
of the TVPSO significantly optimized the trading system.

Hybridizations of metaheuristics and NN have recently shown to provide accurate forecasts of
stock market prices. While both provide better results than a passive buy and hold strategy, HS
based models have been shown to outperform GA based models with regards to forecasting errors
(Göçken et al., 2016). Very recently, the hybridization of data mining techniques with metaheuris-
tics has created clustering metaheuristics able to predict patterns in the general movement of stock
markets, such as periods of lower and higher return (Prasanna and Ezhilmaran, 2015).

Foreign exchange market trading
Foreign exchange market trading can either concern hedging foreign exchange risk or spec-

ulation. Only the latter has the objective of making a profit by exploiting market inefficiencies.
Myszkowski and Bicz (2010) established a trading system based on decision trees that consider
technical trading indicators. EA then generates trading strategies. While these were able to achieve
a profit, the system is still too fragile to be used in automated trading. Mendes et al. (2012) pro-
posed employing GA to optimizing trading rules and although their developed trading system
performs well in terms of computational time because of the small population size employed, it
fails to perform well in terms of profitability when faced with transaction costs. Zhang and Ren
(2010) developed a high-frequency trading system based on the optimization of technical indica-
tors through GA that was able to produce annualised profits. In addition to intraday prediction,
Evans et al. (2013) implemented a trading system based on NNs, whose topology was optimized
using GA. In comparison with Zhang and Ren (2010), they were able to considerably improve
annualized net profits.

8.2.3 Linkage between portfolio optimization and risk management
Despite the fact they have been addressed as two independent types of problems in most of the
scientific literature, this section highlights the relationship between portfolio selection and risk
management. In the first place, POPs directly consider a risk measure (such as portfolio variance,
portfolio semivariance, value at risk, alpha and beta, among others) and, therefore, they can also be
seen as risk management problems. For example, the specification of adequate risk measures that
accurately depict return distributions is a well-established area of research of on-going interest.
It is concerned with one-dimensional risk measures of individual assets and multi-dimensional
measure to account for interaction of asset portfolios (Rachev et al., 2010).

In the second place, most risk management models related to optimization problems can be
seen as rich variants of POPs. For instance, stock market trading is in the essence of the prob-
lems concerned with constructing an initial portfolio and updating it over time to reflect current
macro- and microeconomic developments. Likewise, while credit risk and bankruptcy risk are
only estimated in the overwhelming majority of the risk management literature, it is the ultimate
goal to build low-risk portfolios by including preferably those assets with a lower credit risk and
excluding other assets expected to go bankrupt. Using a MOEA, Moreno-Paredes et al. (2013)
explicitly acknowledge the linkage between credit risk management and portfolio optimization by
treating the loan decision among a set of customers as a credit portfolio optimization problem.
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More generally, implicit in a POP is pooling assets with imperfectly correlated returns that leads
to a diversification of idiosyncratic sources of risk and a reduction in the overall risk of portfolio
investment.

Figure 8.3 depicts the relationship between risk management and POPs reviewed in this sec-
tion. The extension of the ovals representing risk management problems and portfolio optimization
problems respectively signifies the extension of possible solving approaches beyond traditional
optimization techniques. The risk management problems of bankruptcy and credit risk prediction
are located directly on the border to portfolio optimization, as the predictions are generally em-
ployed in a following portfolio selection process. Foreign exchange trading, unlike stock trading,
is considered a sole risk management problem. While stock trading consists of the establish-
ment and maintaining of a portfolio, speculative profits in foreign exchange trading are generated
through simultaneous buying and selling and not the establishment of a portfolio. Concerning the
subproblems of portfolio optimization, the ITP and EITP do not directly consider risk measures.
Unlike that, the POP is directly concerned with risk minimization and thus closely related to risk
management problems.

Figure 8.3: A unified classification of portfolio optimization and risk manage-
ment.

8.2.4 Emerging trends
From the previous discussion, one clear trend is the transfer of methodological knowledge from
portfolio optimization to risk management optimization. Another trend is related to the increasing
complexity of the problems being addressed, which makes even more evident the need for faster
(or parallelizable) metaheuristic approaches. These ‘fast metaheuristics’ will be needed as the
models introduce further constraints to account for real-life circumstances, and as the real-time
factor that is required in most of the decision-making processes will become even more relevant.
Strongly related to this point, distributed and parallel computing techniques can be employed to
accelerate the ‘wall clock times’ necessary to obtain near-optimal solutions to large-scale problems
(Juan et al., 2013b). Furthermore, the fact that two or more objectives have to be considered
simultaneously to account for the complexity has shown to increase the employment of multi-
objective optimization techniques.

Another clear trend is the predominance in the use of population-based metaheuristics over
single-point metaheuristics. It is our opinion that no family of metaheuristics are shown to be su-
perior in performance (regarding both quality of solutions as well as computing times) to another.
At least, we have not found any scientific evidence that supports that claim. Thus, a lot of research
can be done yet regarding the use of single-point metaheuristics (other than SA and TS). Related
to this, it is possible to observe in the reviewed literature a trend to develop hybrid algorithms,
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which combine different types of metaheuristics as well as metaheuristics with machine learning
and statistical techniques. While hybridization can be an effective strategy to solve complex prob-
lems, it might also add some degree of additional complexity to the solving algorithms. This, in
turn, might make them more difficult to be clearly understood, correctly implemented, and applied
in practical scenarios. Adding complexity to algorithms –e.g., additional parameters that require
fine tuning– also makes it difficult to reproduce their experimental results. For those reasons, only
in cases in which significant improvements in performance are obtained, is the hybridization of
algorithms justified.

With regards to data, recent research has shown a trend to employ different risk measures
to more accurately depict the characteristics of the underlying data. This is also a particularly
interesting research area as further stakeholders of financial optimizations (e.g. SMEs) do not
provide traditional optimization inputs (financial data) and thus alternative measurements of risk
are promising. Further concerning measuring, while hybridizations of simulation and optimiza-
tion have recently been developed and gained popularity in the application to SCOPs in different
application areas, the above finance-related problems have not yet been extensively addressed by
simheuristics, even though financial data is characterised by stochastic macro- as well as firm-level
uncertainty. It can thus be expected that this research line is promising, with respect to both, the
design of new problems at the interface of the two main research areas that have been treated sepa-
rately in the literature but are fairly interrelated and the application of simheuristics to established
COPs that previously neglected stochastic uncertainty on the one hand and the newly formulated
COPs on the other.

8.3 The POP
The single-objective POP has been already introduced in the previous section. Here, a richer
version is addressed which includes realistic constraints. A binary variable zi ∀i ∈ {1, 2, . . . ,N} is
created to reveal if an asset i is selected (zi = 1 if wi > 0) or not (zi = 0 otherwise). The number
of assets in the portfolio,

∑N
i=1 zi, is bounded by user-defined values, kmin and kmax (cardinality

constraints). Moreover, the user can pre-select certain assets to be included in the portfolio, i.e.:
∀i ∈ {1, 2, . . . ,N}, pi = 1 if the asset i is pre-assigned (i.e., wi > 0) and pi = 0 otherwise (pre-
assignment constraints). Finally, for each asset i, its associated quantity in the portfolio, wi, is
bounded by user-defined values, εi and δi (quantity constraints).

The complete mathematical model is:

Min
N∑

i=1

N∑
j=1

wiw jσi j, (8.22)

N∑
i=1

wiµi ≥ R (8.23)

N∑
i=1

wi = 1 (8.24)

0 ≤ wi ≤ 1,∀i ∈ {1, 2, . . . ,N} (8.25)

kmin ≤

N∑
i=1

zi ≤ kmax (8.26)

εizi ≤ wi ≤ δizi,∀i ∈ {1, 2, . . . ,N} (8.27)

0 ≤ εi ≤ δi ≤ 1,∀i ∈ {1, 2, . . . ,N} (8.28)

pi ≤ zi,∀i ∈ {1, 2, . . . ,N} (8.29)
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zi ≤ Mwi,∀i ∈ {1, 2, . . . ,N} (8.30)

zi ∈ {0, 1},∀i ∈ {1, 2, . . . ,N} (8.31)

Equations (8.22) – (8.25) outline the unconstrained optimization problem and determine the
unconstrained efficient frontier (UEF). Specifically, Equation (8.23) provides the lower bound for
the investor’s required return. Equation (8.24) ensures that portfolio weights add up to unity.
The purpose of Equation (8.25) is to regulate leveraged positions. By solving the constrained
optimization problem given by Equations (8.22) – (8.31) the CEF is obtained. Equation (8.26)
formulates cardinality constraints. Equation (8.27) defines quantity constraints. A minimum and
maximum quantities of wealth invested in asset i is given by εi and δi. Both parameters εi and δi

range from 0 to 1 (Equation (8.28)). Given a vector of N binary decision variables Z (Equation
(8.31)) (where zi takes on value 1 if included in the portfolio and 0 otherwise), and a binary vector
P of pre-assignments (in which pi takes on value 1 if pre-assigned and 0 otherwise), whenever
asset i is pre-assigned, it has to be included in the portfolio (Equation (8.29)). In Equation (8.30),
M is a large positive value such that Mwi ≥ 1 for all wi ≥ 0. Thus, if the quantity in the portfolio
of asset i, wi, is equal to 0, it means that this asset is not included in the portfolio (i.e., zi = 0).

According to the problem description, the output of the algorithm will be an assets-investment
plan, W = (w1,w2, . . . ,wN), satisfying all the aforementioned constraints and with the lowest
possible risk. In order to perform a fair comparison with some previous works and existing bench-
marks (Chang et al., 2000; Schaerf, 2002; Armañanzas and Lozano, 2005; Moral-Escudero et al.,
2006; Fernández and Gómez, 2007), in this paper we will not consider pre-selected assets. How-
ever, due to its flexibility, the ARPO algorithm could be adapted without too much effort to deal
with this constraint too.

8.3.1 Methodology
The ARPO matheuristic combines three main components: (i) an ILS framework; (ii) the use of
a biased randomization process that guides the generation of new ‘promising’ solutions (pertur-
bation stage); and (iii) the use of a quadratic programming solver that, given a current portfolio,
optimizes the levels of investment of each asset (local search). Pseudo-code 4 shows the main
procedure of the ARPO algorithm. Apart from the inputs defining the instance, also the maximum
computing time allowed, maxTime, and an additional parameter, beta, are passed to the procedure
–the use of this additional parameter will be discussed later.

The ARPO procedure starts by generating a ‘dummy’ initial solution. This initial solution is
constructed by including the assets with the highest return levels so that it provides the highest
possible expected return while satisfying all the remaining constraints. This way, if the expected
return provided by this solution does not reach the minimum return threshold imposed by the
investor, then the problem will be infeasible since no other solution will do it. Notice, however,
that it is also likely to obtain a high risk associated with this initial solution.

At this point, a quick local search is applied to this initial solution, which uses quadratic pro-
gramming in order to optimize the investment level assigned to each asset in the current solution.
The improved solution will be considered both as the current ‘base’ solution and the ‘best-so-
far’ solution. Now, the ARPO procedure resumes by starting an iterative improvement process. It
comprises three stages: (i) the perturbation stage, which applies strong changes to the current base
solution in order to increase exploration of the space of solutions; (ii) the local search stage, which
tries to perform a quick improvement of the current base solution by applying some operators –in
our case, it is based on the combined use of quadratic programming and a cache memory; and
(iii) the acceptation stage, which in our case makes use of a credit-based system in order to allow
accepting, under certain restrictive conditions, a new base solution even when it offers a slightly
higher risk than the current base solution.

As regards as the perturbation stage (Pseudo-code 5), this follows a destruction - reconstruc-
tion process. First, this process takes as an input the current base solution. Second, the current
base solution is partially destroyed according to some random criterion –in our case, a randomly
selected number of assets are deleted from the portfolio. Third, the destroyed solution is re-
constructed (completed) by adding new assets to the portfolio.
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Algorithm 4 Main procedure of the ARPO algorithm.

procedure ARPO(inputs, minReturn, maxTime, beta)
1: initSol← genInitSol(inputs) . generate sol with highest possible return rate
2: if {getReturn(initSol) < minReturn} then
3: return unfeasible . unfeasible problem
4: end if
5: genFriendshipLists(inputs) . generate a sorted list of “friends” for each asset
6: baseSol← QPOptimize(initSol, minReturn) . optimize levels for each asset in portf.
7: baseSol← cleanSol(baseSol) . delete from portf. assets with level = 0
8: bestSol← baseSol . initialize bestSol
9: elapsedTime← 0

10: credit← 0 . used in the acceptance criterion
11: while {elapsedTime < maxTime} do . iterated local search
12: newSol← perturbateSol(baseSol, inputs, beta) . destruction-construction stages
13: if {getMaxReturnAsset(newSol) < minReturn} then . fix solution if unfeasible
14: newSol← repairSol(newSol, inputs)
15: end if
16: if {newSol is in cache} then . already optimized levels
17: newSol← loadFromCache(newSol) . use optimized levels saved in cache
18: else . apply a local search based on quadratic programming optimization
19: newSol← QPOptimize(newSol, minReturn) . optimize levels f.e. asset in portf.
20: newSol← cleanSol(newSol) . delete from portf. assets with level = 0
21: saveInCache(newSol)
22: end if
23: delta← getRisk(newSol) - getRisk(baseSol) . newSol improves baseSol
24: if {delta < 0} then
25: credit← -delta
26: baseSol← newSol
27: if {getRisk(newSol) < getRisk(bestSol)} then . newSol improves bestSol
28: bestSol← newSol
29: end if
30: else{delta > 0 and delta ≤ credit} . acceptance criterion
31: credit← 0
32: baseSol← newSol
33: end if
34: update elapsedTime
35: end while
36: return bestSol

end procedure
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Algorithm 5 Perturbation procedure to generate new ‘promising’ solutions.

procedure perturbateSol(baseSol, inputs, beta)
1: newSol← copySol(baseSol)

. 1. Remove a random number of randomly selected assets (destruction stage)
2: nAssetsInSol← getNAssetsInSol(newSol)
3: if {nAssetsInSol > 1} then
4: nAssetsToRemove← genRandomNumber(1, nAssetsInSol - 1)
5: for {i = 1 to nAssetsToRemove} do
6: asset← selectRandomAsset(newSol)
7: newSol← removeAsset(asset, newSol)
8: end for
9: end if

. 2. Randomly select one asset in current portf. to add several of its “friends”
10: asset← getRandomAsset(newSol)

. 3. Use biased rand. to add friendly assets until reaching kMax (re-construction stage)
11: while {size(newSol) < getKMax(inputs)} do
12: listOfFriendlyAssets← getFriendlyList(asset) . Sorted list of friendly assets
13: do . Randomly select a position using a Geometric(beta) prob. distribution
14: position← biasedRandom(size(listOfFriendlyAssets), beta)
15: newAsset← getAsset(listOfFriendlyAssets, position)
16: while {newAsset in newSol} . Repeat until newAsset not in current portf.
17: newSol← addAsset(newAsset, newSol)
18: asset← newAsset
19: end while
20: return newSol

end procedure

During this re-construction process, the selection of each new asset added to the portfolio is
done following a ‘friendship’ criterion, i.e.: although the selection of the new asset is random, this
new asset will be most likely selected among those assets that are highly compatible –i.e., showing
a low covariance value– with the last asset added to the portfolio. This special behavior is attained
throughout the use of a biased randomization selection process, which makes use of a geometric
distribution of parameter beta (0 < beta < 1).

Finally, there might be times in which the newly generated solution does not fulfil the minimum
return requirement. In those cases, a ‘repair’ stage is used to swap a randomly selected asset in the
current portfolio by a high-return asset not currently in the portfolio (Pseudo-code 6).

Algorithm 6 Repair procedure to make newly generated solutions feasible.

procedure perturbateSol(baseSol, inputs, beta) procedure repairSolution(sol, inputs)
1: unusedAssets← getAssetsNotInSol(sol, inputs) . Consider assets not in portf.
2: unusedAssets← shuffle(unusedAssets) . Random sorting of the unused assets list
3: assetA← getRandomAsset(sol) . Select a random assetA in current portf.
4: sol← deleteAsset(assetA, sol) . Delete assetA from current portf.
5: for {each asset assetB in unusedAssets} do . Search unused assetB with high return
6: if {getReturn(assetB) ≥ minReturn} then
7: sol← addAsset(assetB, sol) . Add assetB to current port.
8: return sol
9: end if

10: end for
11: end procedure
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8.3.2 Computational experiments
The ARPO algorithm has been implemented as a Java application. We experiment with two sets
of stock market data already used in previous studies. The first set was retrieved from the reposi-
tory ORlib: http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html. These
instances were proposed by Chang et al. (2000) and were studied by Schaerf (2002), Armañanzas
and Lozano (2005), Moral-Escudero et al. (2006), Fernández and Gómez (2007), and Di Gaspero
et al. (2011). The data set comprises constituents of five stock market indices, Hang Seng (Hong
Kong), DAX 100 (Germany), FTSE 100 (United Kingdom), S&P 100 (United States) and NIKKEI
225 (Japan). These indices were extracted from DataStream and are measured at weekly frequency
spanning the period from March 1992 to September 1997.

The portfolio frontier was divided into 100 equidistant points on the vertical axis that repre-
sents the user-defined rate of expected portfolio return. Although the algorithm has been designed
for the constrained case, it is initially tested on the unconstrained mean-variance optimization
problem. The test results show that our solver is able to return solutions that are overlapping
with the UEF published at the OR Library, which contributes to validate the effectiveness of our
approach.

Next, the algorithm was executed on a constrained mean-variance frontier (the algorithm is
executed 30 times and both the best and average results are recorded). The maximum time of
execution for each instance is 20 seconds. The benchmark constraints are those imposed by the
previous authors. The constraints involve the following conditions: εi = 0.01, δi = 1, kmin =

1, kmax = 10, ∀i ∈ {1, 2, . . . , n}. As in the aforementioned studies, pre-assignment constraints
are not considered. Notice that, despite other authors claim that their approaches can solve the
constrained problem with all the aforementioned constraints, this fact is not clearly showed, since
the parameter values they use do not seem to impose a real challenge for their algorithms in terms
of tight constraints.

8.3.3 Analysis of results
Table 8.4 shows the values of average percentage loss (APL) and associated computational times.
Notice that, in terms of the minimum APL, our ARPO algorithm outperforms on Instances 2 –
5 the hybrid solvers proposed by Di Gaspero et al. (2011), which comprise combinations of first
descent and steepest descent with quadratic programming (FD+QP and SD+QP, respectively).
With regard to the first instance, our APL is greater, but this result may emanate from rounding
errors. In terms of computational time, ARPO shows a superior performance relative to that of
the solver’s SD+QP and is comparable or better than the solver’s FP+QP performance. We next
contrast our results with the results reported by Schaerf (2002) and Moral-Escudero et al. (2006).
Although the minimum APL provided by ARPO is slightly superior to the hybrid solver combining
a GA and QP in Moral-Escudero et al. (2006), on the remaining instances the minimum APL
accomplished by ARPO is lower. Furthermore, our computational times are considerably lower
than those reported by the TS in Schaerf (2002), and by GA+QP in Moral-Escudero et al. (2006).

The UEF (as provided in the ORlib) and CEF (as provided by ARPO) for the five stock market
indices are compared in Panels A – E of Figure 8.4.

Panel A depicts the CEF for the Hang Seng stock market. A visual inspection suggests that for
the Hang Seng stock index the CEF is hardly distinguishable from the UEF. However, as the rate
of expected return increases, along with increasing risk of investment, the CEF tends to diverge
relatively less from the UEF. In particular, at the higher end of the CEF that features rewarding but
risky portfolios, the expected rate of return can be attained with fewer assets.

Panel B depicts the CEF for the DAX 100 stock market. Visual inspection indicates that for
the DAX 100 stock index the CEF diverges from the UEF at the lower end of expected return,
more specifically, for R < 0.006. As the rate of expected return increases, the CEF becomes
indistinguishable from the UEF. Notably, portfolios with an expected return at the lower end of
the CEF tend to be riskier (i.e., with higher portfolio variance) than portfolios on the UEF.

Panel C depicts the CEF for the FTSE 100 stock market. It indicates that for the FTSE 100
stock index –similarly to the DAX 100 stock index– the CEF departs from the UEF at the lower
end of expected return. As the rate of expected return increases, the CEF converges to the UEF.
Noteworthy, portfolios featuring an expected return at the lower end of the CEF tend to be riskier
(i.e., with higher portfolio variance) than portfolios on the UEF. At the higher end of the CEF

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html
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Panel A – Hang Seng Stock Market Panel B – DAX 100 Stock Market

Panel C – FTSE 100 Stock Market Panel D – S&P 100 Stock Market

Panel E – NIKKEI Stock Market

Figure 8.4: UEF and CEF-ARPO.
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Figure 8.5: Portfolio weights for the FTSE 100 stock indices.

that features rewarding but risky portfolios, the expected rate of return can be achieved with fewer
assets.

Panel D depicts the CEF for the S&P 500 stock market. It indicates that for the S&P 500 stock
index –as with the DAX 100 and FTSE 100 stock indices– the CEF departs from the UEF at the
lower end of expected return. As the rate of expected return increases, the CEF becomes visually
indistinguishable from the UEF. Portfolio investments with an expected return at the lower end of
the CEF involve relatively more risk than portfolios with the same expected return located on the
UEF.

Finally, Panel E depicts the CEF for the NIKKEI stock market. It indicates that for the NIKKEI
stock index, the relation between the CEF and the UEF follows a pattern similar to the Hang Seng
stock index. Specifically, although the CEF departs from the UEF at the lower end of expected
return, the difference is visually very small. As the rate of expected return increases, the CEF
gradually approaches the UEF. At the higher end of the CEF that includes portfolios with high
expected return and high risk, the APL approaches to zero.

To evaluate differences between the UEF and the CEF-ARPO, we also provide the portfolio
weights for Instance 3 (FTSE 100) (Figure 8.5), where the required rate of return is 0.0041572635,
which is an approximately central value within the overall of returns. This instance was executed
twice with the same seed. The UEF considered all assets with weights ranging from 0 to 1 in-
clusively. The CEF was constrained to the minimum of 1 and the maximum of 10 assets, with
portfolio weights ranging from 0.01 to 1. The minimum values of the portfolio variance were
2.3872556507357437E-4 (the UEF) and 2.5098945345432527E-4 (CEF-ARPO). The percentage
loss is 5.137%. The UEF selected 26 assets, whereas the CEF portfolio selected 10 assets. The 10
assets are the subset of assets selected in the UEF portfolio.

8.4 The SPOP
The difference between the POP and the SPOP considered lies in the modelling of asset returns and
covariances. While they are represented by expected values in the first case, the second considers
realistic stochastic uncertainty and thus treats these as random variables. This results in a modified
return constraint where a return no lower than R must be achieved with a probability of, at least,
P0.

The mathematical formulation for the SPOP requires two modifications:

• Covariances (Ci j) in the objective function are considered to be random variables following
a given probability distribution (e.g., the one that best fits the historical data available):

f (x) =

n∑
i=1

n∑
j=1

wiw jCi j ≥ R (8.32)
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• Equation 8.23 is replaced by the following probabilistic constraint:

P(
N∑

i=1

Riwi ≥ R) ≥ P0 (8.33)

where Ri refers to the asset return modeled as a random variable. It ensures that the portfolio return
will be no lower than the threshold R with a probability of, at least, P0.

8.4.1 Methodology
The VNS metaheuristic is proposed as a base framework. The methodology includes biased
randomization techniques and employs the open-source quadratic programming solver ojAlgo
(http://ojalgo.org), developed in Java, to determine the weights allocated to a given set of
assets. Additionally, a cache memory (implemented as a hash map data structure) is used in order
to avoid calling the solver repeatedly for a specific set of assets.

The flowchart diagram of our approach is depicted in Figure 8.6 and described next:

1. Consider a SPOP instance defined by N assets. Each asset i has an associated return rate
Ri, which is a random variable following a probability distribution, either empirical or the-
oretical. Each pair of assets i, j is characterised by a covariance Ci j, which is also random
and depends on the correlation Pi j and the standard deviations S i and S j according to the
following equation: Pi j =

Ci j
S iS j

2. Transform the original stochastic problem into a POP instance by means of replacing the
random variables by their expected values µi and σi j.

3. Construct an initial solution (initS ol) by selecting the kmin assets with the highest returns,
after including the s assets pre-selected by the investor, and calling the solver. Afterwards,
simulation techniques are considered to compute the probability of satisfying the return
constraint in the stochastic environment described by the original instance. In particular,
a short number of scenarios (simshort) is used to simulate returns. The solution is stored
and one moves on to the fourth step, provided the constraint is satisfied. If this is not the
case, a feasible solution is searched using a randomised and iterative procedure. First, the
pre-selected assets compose a portfolio. In the next step, the non-preselected assets are
ordered according to their expected return, and a random number, between kmin − s and
kmax − s, are selected using biased randomization, relying on a geometric distribution with
a parameter β (Juan et al., 2011b). All weights are set to the minimum value initially, and
then, each weight is set to the maximum value possible (taking into account for an asset ai

the following elements: εi, δi, and the fraction that remains to be allocated, i.e., 1 −
∑n

i=1 xi)
in the order previously established. If an initial solution can be constructed through this, one
moves to step 4. It is worthwhile to remark that we avoid using the solver at this step because
the focus is on finding an initial feasible solution considering the stochastic environment and
not the one with the lowest risk. The time spent searching for a feasible solution is limited
by Tinit, and the algorithm execution stops if no feasible solution is obtained.

4. A list bestS ols is created for storing the l best-found solutions in terms of expected risk.
Then, initS ol is copied into currentS ol and k is set to one. Following this, the expected
risk of currentS ol is computed by using MCS, and the solution is included in the created
bestS ols list.

5. An iterative procedure is started and steps 6 and 7 are executed during a given amount of
time (Tloop).

6. A new solution (newS ol) is created by shaking the current one. This procedure consists
of randomly erasing a number of non pre-selected assets in the solution and randomly in-
troducing new assets until reaching kmax. The number of assets erased is determined by k.
Moreover, a local search is applied to the resulting solution. It aims to improve the solution
by replacing the asset with the lowest weight with another one from the list of non-selected
assets ordered

http://ojalgo.org
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Figure 8.6: Flowchart of the proposed approach for the SPOP.

7. newS ol is compared against currentS ol. If the former is better in terms of risk associated
with the deterministic version of the problem, newS ol is considered to be a promising port-
folio setting and the return constraint for the stochastic environment is checked for it. In
case of being satisfied, the expected risk is computed for the stochastic version of the prob-
lem. If the expected risk of newS ol is better than that of currentS ol, then newS ol replaces
currentS ol, k is set to one and bestS ols is updated. If it is not satisfied, the solution is
discarded. If newS ol is not better, k is increased in one unit if k < K or set to one otherwise.

8. Once the iterative procedure ends, the algorithm returns bestS ols. For each solution, a sam-
ple of risk measurements is obtained by simulating a large number of scenarios (simlarge).
We perform a risk analysis where solutions are compared using the distributions of risk.
In order to simplify the analysis, it is based on the expected values and the variances of
the distributions, and the reliabilities (or probabilities of satisfying the return constraint).
Accordingly, the Pareto dominant solutions (i.e., those that are not dominated by another
portfolio for one measure while the other measures are at least equally good) are reported to
the decision-maker.
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8.4.2 Computational experiments
The described algorithm has been implemented as a Java application. The algorithm is executed
ten times using different seeds; only the best results are stored. Stock market data from the
repository ORlib (http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html)
is used. This set was presented by Chang et al. (2000), and has been largely analyzed (Schaerf,
2002; Armañanzas and Lozano, 2005; Moral-Escudero et al., 2006; Fernández and Gómez, 2007;
Di Gaspero et al., 2011). This benchmark instance is deterministic. It has been adapted by replac-
ing the deterministic returns and covariances by random variables. More specifically, the following
complementary scenarios have been considered:

• S i (Standard deviation) follows a LN(µS , σS ), where LN represents a Log-Normal distri-
bution, and µS and σS are the mean and the standard deviation of the variable natural log-
arithm, respectively. They may be determined by the value of the mean and the standard
deviation of the variable that are set to σi and cσi, being c an input.

• Pi j (Correlation) follows a T N(µP, σP, l, u), referring T N to truncated Normal distribution,
where the parameters are the mean, the standard deviation, and the lower and upper limit,
respectively. µP is set to the original correlation ρi j, while σP is an input. By the definition
of correlation, l and u are set to −1 and 1, respectively. A special case is when i = j, then l
and u are equal to 1 (i.e., Pi j = 1).

• Ri follows a N(µR, σR), where µR and σR are the mean and the standard deviation of the
variable, respectively, which may be determined by the value of the mean and the standard
deviation of the variable that are set to ri and S i, respectively.

Three values for c(0.01, 0.025, 0.08) and σP(
√

0.00002,
√

0.0002,
√

0.002) have been tested in
order to explore three different levels of stochasticity. The former values have been selected after
performing some quick tests to explore the “reasonable” range for each parameter. Two compu-
tational experiments have been carried out. The first experiment considers stochastic covariances
(first two scenarios). The second experiment builds on the first one, but additionally introduces
stochastic returns (all three scenarios).

The parameter fine-tuning has been performed taking into account suggestions of other authors
and results from fast experimental tests. The recommended number of neighbours (K) is 3 (Hansen
et al., 2010a). A movement in each neighbour involves changing 25%, 35%, and 45% of the
assets, respectively. Regarding the number of solutions stored to analyse at the end (l), a total
of 10 are considered. As suggested in Juan et al. (2011b), β is randomly selected from a uniform
distribution with parameters 0.05 and 0.25. Finally, simshort and simlarge are set to 2500 and 12500,
respectively, Tinit and Tloop are set to 5 and 15, respectively.

8.4.3 Analysis of results
Table 8.5 summarises the results of the first experiment. The first experiment compares two types
of solutions: (i) the best-found solution to the deterministic version of the problem (BDS); and (ii)
the best-found solution to the stochastic version (BSS). Different levels of variability (variance)
in the random variables modelling covariances and returns are considered. For each of these
variability levels (low, medium, and high) a different stochastic scenario is defined. Notice that
portfolio configurations obtained for the deterministic version of the problem can also be used
as investment plans for the stochastic version of the problem. Different risk measures (costs)
associated with the BDS portfolio configuration are considered: the risk measure obtained when
employing the BDS in a deterministic scenario, and the expected risk value obtained when using
it in each stochastic scenario. The former could be considered as a lower bound for the BSS,
while the latter could be considered as an upper bound for the BSS. The first column reveals the
required return. The next four columns depict the BDS. The following three columns contain the
expected risk associated with the BSS for each of the stochastic environments analysed. Also,
the average computational time needed for finding the BSS is provided. The last five columns
gather some gaps: (i) the gap between the risk and the expected risk for a low level of stochasticity
of the BDS; (ii) the gap between the risk of the BDS and the expected risk of the BSS (also for
a low level of stochasticity); (iii) the gap between the expected risks for the BDS and the BSS
considering the environment of a low risk, which quantifies the benefit of using the simheuristic

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html
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Figure 8.7: Risk gaps between the best deterministic and stochastic solutions for
different levels of stochasticity (environments).

approach instead of assuming constant values; and (iv) the previous gap considering the other two
environments. Additionally, the average of each ratio has been added at the bottom of the table.
Figure 8.7 illustrates boxplots of the gaps regarding expected risk between the BDSs and BSSs for
the different environments. The expected risk of the BDS is subtracted from that of the BSS so
that negative gaps indicate an improvement in the expected risk of the solution. Mean values are
represented by diamonds.

Based on these outputs, it may be concluded that our algorithm is able to obtain a reasonably
good BSS in 0.73 seconds on the average. The gaps between the risk of the BDS and the expected
risk of the BDS (when used as a portfolio configuration for the stochastic environment) and the
BSS are quite high even for the low-variability scenario (11.82% and 9.92% on the average). As
expected, the measure of the BSS is closer to the lower-bound (the risk) than the one of the BDS.
Regarding the benefits of using the simheuristic approach in comparison with assuming constant
values in terms of expected risk, the mean gaps found for each environment are: -1.68%, -3.09%,
and -7.10%. It is important to remark that the gaps are never positive. Thus, the BSS shows a
lower expected portfolio variance than the BDS when the latter is used to solve the stochastic
version of the problem. Furthermore, the performance of the BDS deteriorates when covariances
become more uncertain.

Results from the second experiment are displayed in Table B.2. As in the previous table, the
first column identifies the required return. Columns 2, 3, and 4 detail the expected risk of the
BSSs under the lower, medium, and high levels of uncertainty, given a probability of 50% for
attaining the required rate of return. Columns 5, 6, and 7 report the gaps between the expected
values of risk of the BSSs under the lower, medium, and high levels of uncertainty, when the
probabilities of attaining the required return are 50% and 47%, respectively (since the benchmarks
used are extensions of classical ones for the deterministic version, only some probability values
make sense). Finally, the average computational time is provided.

It can be concluded that the gap between the expected risk of the BSS requiring a probability
of 47% and the one with a probability of 50% is relatively small, although it can be relevant and
high in some cases. The average values for the different environments are: 0.31%, 0.39%, and
1.84%. Therefore, the gap increases as the level of stochasticity gets higher.
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Table 8.6: Hang Seng Stock Market (Hong Kong) with stochastic covariances and correlations.

Required ER (50%) ER Gaps [%] (50-47%)
Time (s)

Return Low Medium High Low Medium High

0.002861137 0.0007006 0.0007872 0.0011358 0.00% 0.00% 4.38% 1.244
0.002941981 0.0007006 0.0007873 0.001135 0.00% 0.00% 4.44% 2.749
0.003022827 0.0007019 0.0007882 0.0011272 0.00% 0.00% 3.66% 2.647
0.003103671 0.0007027 0.00079 0.0011392 0.00% 0.00% 3.24% 1.7
0.003184516 0.0007068 0.0007925 0.0011075 0.33% 0.00% 1.23% 2.715
0.003265361 0.0007093 0.0007954 0.0011243 0.66% 0.00% 2.15% 1.438
0.003346206 0.0007085 0.000796 0.001137 0.09% 0.19% 2.67% 0.633
0.003427051 0.0007085 0.0007983 0.0011017 -0.11% 0.14% 0.00% 0.764
0.003507896 0.0007138 0.000799 0.0011144 0.54% 0.02% 0.05% 1.365
0.00358874 0.0007161 0.0008014 0.0011068 0.39% 0.00% 0.00% 1.726
0.010137479 0.0040004 0.0046595 0.0071471 0.00% 0.00% 1.05% 1.631
0.010218315 0.0041312 0.0048569 0.0074155 0.00% 0.82% 1.15% 2.8
0.010299151 0.004268 0.0049834 0.0076973 0.00% 0.00% 1.23% 1.421
0.010379986 0.0044359 0.0052031 0.0079926 0.57% 0.90% 1.31% 2.937
0.010460822 0.0045867 0.0053878 0.0083013 0.59% 0.93% 1.37% 4.313
0.010541657 0.0047435 0.0055803 0.0086235 0.61% 0.97% 1.42% 2.31
0.010622493 0.0049063 0.0057805 0.0089592 0.63% 1.00% 1.46% 3.76
0.010703329 0.0050752 0.0059884 0.0093083 0.65% 1.02% 1.49% 1.836
0.010784164 0.0052501 0.006204 0.0096709 0.67% 1.05% 1.52% 0.773
0.010865 0.0054126 0.0063772 0.0098998 0.37% 0.70% 3.06% 1.729

Average 0.30% 0.39% 1.84%

8.5 Example with stocks and individual commodity futures
contracts

Diversification is best achieved through combining assets with low or negative correlation into
an investment portfolio. Due to the increased correlation among individual stocks, diversification
possibilities of stock portfolios have become limited. Commodities in general and metals in par-
ticular on the contrary have shown to yield low correlation with stocks (Jaffe, 1989; Chua et al.,
1990; Hillier et al., 2006; Daskalaki and Skiadopoulos, 2011), especially because macroeconomic
shocks tend to impact stock and commodity prices in different directions (Silvennoinen and Thorp,
2013). Particularly concerning inflation, the reaction of commodities and stocks might differ fun-
damentally. Indeed, while unexpected inflation leads to an increase in the prices of commodities,
stocks have generally been found to be an inflation-protected asset class (Hardouvelis, 1987; Mc-
Queen and Roley, 1993) or, in case of fluctuation, have even yielded falling prices (Fama, 1981;
Amihud, 1996; Bansal et al., 2014). However, investment in physical commodities is charac-
terized by high costs (storage) and additional uncertainty (perishable nature, seasonal cycles of
the goods) so that commodity futures are a natural alternative, providing the same diversification
benefits without the implied disadvantages to an investor. Bansal et al. (2014) calculate the ef-
ficient frontier for an investment portfolio made up of indices of commodity futures and stocks
and find it to lie above that for a traditional stock and bond portfolio. This diversification takes
place independent of the state of the stock market: Crude oil futures contracts were shown to
lead to successful diversification in both upward and downward trending stock markets (Geman
and Kharoubi, 2008). Commodities emerge as a significant diversifier of both equity returns and
volatility (Brooks and Prokopczuk, 2013). Investment in commodities is also demonstrated to sig-
nificantly improve investor’s expected utility. In this regard, Garrett and Taylor (2001) find that
expected-utility-maximizing investors, depending on the degree of risk aversion, should invest 30
to 68% of their wealth in commodities. Unlike in Geman and Kharoubi (2008), this finding is
event-dependent and period-specific. In contrast to the above mentioned studies that were con-
ducted from the standpoint of a US-based investor, Belousova and Dorfleitner (2012) show that a
euro investor can also accrue diversification benefits from commodity investments. In particular,
the authors emphasize that industrial metals, agricultural commodities and livestock contribute to
the reduction of investment risk, while precious metals and energy are associated with both lower
portfolio risk and higher return. Investments in commodities become especially rewarding when
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the general financial climate becomes negative (Chow et al., 1999). In the quest for hedging and
‘save haven’ vehicles against losses in the sovereign bond market, Agyei-Ampomah et al. (2014)
highlight the superiority of industrial metals (aluminium, copper, lead, nickel, tin and zinc) over
precious metals (gold, silver, platinum and palladium). Antonakakis and Kizys (2015) underline
the information contents of gold, silver and platinum in improving forecast accuracy of returns
and volatilities of palladium, crude oil and the EUR/CHF and GBP/USD exchange rates. Promi-
nent among commodities is gold – commonly regarded as a ‘safe haven’ asset – that provides
wealth protection by hedging investments in the stock and foreign exchange markets, even during
extreme price movements during periods of turmoil (Pukthuanthong and Roll, 2011; Ciner et al.,
2013; Reboredo, 2013). The above results have previously been confirmed by You and Daigler
(2012). However, they employ individual stocks and futures contracts rather than stocks and com-
modity indices. This increases the complexity of the optimization problem. In order to cope with
this, they resort to a portfolio optimization software package, which is limited to 120 observations.
To circumvent this, a metaheuristic algorithm is applied in this paper that is not only capable of
dealing with an extensive number of observations, but also with further constraints.

However, an extensive analysis on the diversification benefits of commodity futures by Cheung
and Miu (2010) raises concerns about the universal validity of the above findings, indicating that
individual assessments become necessary. Furthermore, the ex-post performance of stock and
commodity futures portfolios was found to be inferior to that of a portfolio made up of traditional
assets by Daskalaki and Skiadopoulos (2011), thus making this another important question in the
evaluation. It is thus also evaluated whether the applied methodology is able to identify stable
asset weights based on ex-post performance and if so, whether the performance of the portfolio
including commodity futures outperforms the traditional stock portfolio.

8.5.1 Problem and data description
There is a set of potential assets to choose from. On the one hand, there is a set of n stocks
S = s1, s2, ..., sn and on the other hand, a set of m individual commodity futures contracts F =

f1, f2, ..., fm is included, resulting in a total number of potential assets A = a1, a2, ..., am+n equal to
m+n. For all assets, the expected return based on historical data of a specified time period E[Ri] is
calculated. The inclusion of assets with negative expected returns is allowed for two reasons. The
first is a technical one: As real-life investors choose from a potential pool of assets whose returns
are notably influenced by the historical time horizon chosen for analysis, it prevents introducing
a bias. Furthermore, the introduction of futures contracts with slightly negative returns can still
cause the portfolio to outperform that composed of only stocks. As a measure of riskiness of
the portfolio, its variance is calculated. The mathematical formulation and the methodology very
similar to the ones described in Section 3. For this reason, they are not reproduced here.

As the approach is concerned with the comparison of a stocks-alone and a stocks-and-futures
portfolio, individual daily historical closing price data for the Dow Jones 30 constituents on the
one hand and daily settlement prices for the 21 most actively traded commodity futures prices
in the United States covering the period from February 18, 2014 to April 1, 2016 are obtained,
resulting in 535 observations for each time series. Due to expiration of fixed-maturity futures
contracts, the continuous series are created by data providers by rolling over the futures contracts
of different maturities. Table 8.7 presents the average daily returns and the corresponding standard
deviations for each of the included stocks and commodity futures contracts.

The average correlations within the two asset classes, as well the mean overall correlation, are
presented in Table B.2. Due to the askew distribution of correlations these have been calculated
by transforming the individual correlations into Fisher-Z-values, taking the arithmetic mean and
then retransforming. It becomes obvious that the correlation between the potential stocks is sig-
nificantly higher than that within the class of commodity future contracts. Furthermore, the mean
correlation between stocks and futures is the lowest overall for the data sample. This reinforces
the assumption that a combined portfolio of stocks and futures can lead to superior diversification
and a resulting lowering of the associated expected risk for a given portfolio return.

8.5.2 Analysis of results
In the following the results for two experiments are analyzed first with respect to risk analysis of
the ex-ante portfolios and then with respect to the ex-post performance, or stability, of the found
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Table 8.7: Descriptive statistics of stocks and futures.

Assets Average return Standard deviation
Stocks 0.000307% 0.012996
Apple 0.076993% 0.015544
Microsoft 0.084877% 0.015512
Exxon Mobil Corporation -0.014890% 0.013191
Johnson & Johnson 0.035448% 0.009978
General Electric Company 0.047681% 0.012239
JPMorgan Chase & Co. 0.015270% 0.014037
The Procter & Gamble Company 0.013599% 0.009085
Verizon Communications Inc. 0.032659% 0.009721
Wal-Mart Stores Inc. -0.010853% 0.011372
Pfizer Inc. -0.004829% 0.011537
The Coca-Cola Company 0.038688% 0.009100
Chevron Corporation -0.021950% 0.015983
Visa Inc. 0.069322% 0.014216
The Home Depot, Inc. 0.110242% 0.012426
The Walt Disney Company 0.050015% 0.012805
Merck & Co. Inc. 0.002151% 0.012748
International Business Machines Corporation -0.026583% 0.012757
Intel Corporation 0.062516% 0.015464
Cisco Systems, Inc. 0.054523% 0.013921
UnitedHealth Group Incorporated 0.116388% 0.014094
McDonald’s Corp. 0.058294% 0.010550
3M Company 0.050225% 0.010810
NIKE, Inc. 0.103030% 0.014542
The Boeing Company 0.005434% 0.014169
United Technologies Corporation -0.017746% 0.011471
The Goldman Sachs Group, Inc. 0.005036% 0.013801
American Express Company -0.061105% 0.013448
E. I. du Pont de Nemours and Company 0.009985% 0.015360
Caterpillar Inc. -0.030999% 0.015346
The Travelers Companies, Inc. 0.067270% 0.009718

Commodity futures -0.000496% 0.000338
Brentcrudeoil -0.120960% 0.025457
Copper -0.043944% 0.012876
Crudeoil -0.125399% 0.025594
Cocoa 0.017888% 0.012117
Coffee -0.055508% 0.023227
Corn -0.031191% 0.014505
Cotton#2 -0.058913% 0.013930
Feedercattle -0.032845% 0.010810
Gold -0.004478% 0.009594
Heatingoil -0.120557% 0.023106
KCWheat -0.079898% 0.016955
Leanhog -0.054406% 0.023260
Livecattle -0.035734% 0.011952
Naturalgas -0.116111% 0.022118
Orangejuice -0.003081% 0.020640
Silver -0.017541% 0.016391
Soybean -0.047312% 0.015006
Soybeanmeal -0.030699% 0.020249
Soybeanoil -0.042044% 0.013330
Sugar#11 0.015679% 0.022557
Wheat -0.054146% 0.017646

Table 8.8: Average correlations between asset classes.

Within stocks Within futures Stocks and futures Overall
0.4385 0.0765 0.0075 0.1756
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Figure 8.8: POP solutions for minimum returns on the lower spectrum.

Figure 8.9: POP solutions for minimum returns on the higher spectrum.

solutions. Ex-ante portfolios are those portfolios with constituent assets and weights determined
by the matheuristic based on the data gathered for the sample period. Ex-post portfolios refer to
the application of the ex-ante portfolio asset weights to the data following the sample period at
time t + 1. It thus refers to a hypothetical investment at time t into the best-found portfolios that is
then evaluated one month later at time t + 1.

Figure 8.8 and 8.9 present two exemplary solutions. It is to be noted that assets 1 through 30
represent stocks and assets 31 through 51 represent commodity futures contracts. For low-level
minimum returns in Figure 8.8, the first stock portfolio contains portions of asset 7, 8, 9, 10, and 11
(all stocks), while the stocks and futures portfolio contains assets 11, 31, 39, 40, and 42 (one stock
and four futures contracts). For high-level minimum returns, the solutions are much more similar
with respect to the asset composition. The first exemplary stock solution in Figure 8.9 is composed
of assets 14, 20, 21, and 30 (all stocks), while the stocks and futures portfolio contains asset 39
instead of asset 21. The exemplary solutions showcase that the solutions for higher minimum
returns overlap further and are more similar in terms of selected assets constituents and weights
than for low levels of return. This illustrates the finding that the allocation of commodity futures
increases with increasing risk aversion of the investor, yielding that they represent a valuable
alternative as diversification means especially for lower-risk portfolios.

Risk analysis
Table 8.9 summarizes the results of the two experiments. It essentially compares the results

obtained for a particular minimum return. At first sight, the previously mentioned complexity of
the problem becomes obvious when the instance times are considered: They significantly increase
for the composite portfolios that are selected from an asset pool of 51 potential constituents as
opposed to the basic formulation that only considers a pool of 30 stocks. More importantly, the
associated risk is presented. As expected, it continuously increases with increasing returns de-
manded by the investor. The risks between two best-found solutions based on different asset pools
are then compared. The existence of a risk gap is explained by the inclusion of individual futures
contract in the best-found portfolio compared to the stock-alone portfolios. It is to be noted that
this was always done at the expense of excluding at least one previously included stock and not
through the addition of new assets in the portfolio, indicating no rise in managerial effort or trans-
action costs associated with including futures in a traditional stock portfolio. A positive risk gap
indicates that the risk was minimized with respect to the solution found for a stock-alone portfolio
and thus successfully diversified. This was the case for 94 out of the 99 return instances, while the
remainder showed a gap equal to zero. This and the average percentage gap of 26.84% strongly
reinforce the initial intuition that individual futures contracts increase diversification beyond that
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Table 8.9: POP results for a selected subset of minimum returns.

Stock-alone portfolio Stock-and-futures portfolio Gap Gap [%]
Minimum return Risk (1) Time [s] Risk (2) Time [s] (1) - (2) (1) - (2)
0.0000117564 0.0000531088 0.873 0.0000218480 10.202 0.0000312608 58.86180821%
0.0000822945 0.0000531088 0.042 0.0000230232 0.567 0.0000300856 56.64899226%
0.0001528327 0.0000531088 0.031 0.0000238688 3.141 0.0000292400 55.05678908%
0.0002233709 0.0000533257 0.183 0.0000265600 0.279 0.0000267657 50.19287135%
0.0002939091 0.0000533474 0.058 0.0000271226 12.655 0.0000262247 49.15853444%
0.0003644473 0.0000540647 0.014 0.0000311877 2.541 0.0000228770 42.31411623%
0.0004349855 0.0000546027 0.287 0.0000343818 16.648 0.0000202209 37.03278409%
0.0005055236 0.0000558261 0.225 0.0000375692 8.41 0.0000182569 32.70316214%
0.0005760618 0.0000573681 0.099 0.0000428111 19.99 0.0000145571 25.37472916%
0.0006466000 0.0000601832 1.1 0.0000473472 11.772 0.0000128360 21.32821120%
0.0007171382 0.0000642364 0.254 0.0000543535 17.792 0.0000098829 15.38520216%
0.0007876764 0.0000694180 0.4 0.0000619521 6.255 0.0000074659 10.75499150%
0.0008582145 0.0000766848 3.21 0.0000705611 16.555 0.0000061238 7.98554603%
0.0009287527 0.0000855374 0.091 0.0000812718 13.253 0.0000042656 4.98682448%
0.0009992909 0.0000965467 1.369 0.0000936730 5.567 0.0000028737 2.97648703%
0.0010698291 0.0001099596 1.089 0.0001090107 1.553 0.0000009488 0.86295330%
0.0011403673 0.0001373443 0.001 0.0001373443 0.001 0.0000000000 0.00000000%

Table 8.10: Ex-post performance of two exemplary solutions.

Solution 1 – Low return Solution 2 – High return
Required daily return 0.0000118% 0.0011051%
Actual return stocks portfolio -0.0009301% 0.0002369%
Actual return stocks and futures portfolio 0.0051194% 0.0003352%

which can be achieved through stock diversification alone.
The five instances, in which there was no difference between the asset constituents of the port-

folios, were the ones with the highest required minimum returns. Generally, the gap decreased
with increasing minimum returns. Two conclusions may be drawn. On the one hand, there is a
threshold return, beyond which additional returns require a more significant increase in associated
risk because this return is generally only achieved by fewer assets, reducing diversification bene-
fits. For this set of data, it is found at 0.00114%. From this threshold on, the minimum required
return could solely be achieved by certain assets, thus reducing the pool of potential assets and
leading to portfolios of fewer included assets than the maximum number of five dictated by the
cardinality constraint. This leads to portfolios composed of only stocks and thus also to a zero
gap between the two portfolio types. On the other hand, it becomes obvious that the gap is much
larger for low-return portfolios, from which one can conclude that risk-averse investors profit to a
larger extent from futures diversification.

Ex-post stability analysis
Concerning the stability of the resulting portfolios, an ex-post application of the resulting

portfolio weights has been conducted. Two of these are exemplarily presented below; the first cor-
responds to the lowest daily minimum return and the second corresponds to the highest minimum
return level at which the portfolios still differed. A one-month ahead analysis is considered and
the resulting returns of the portfolio are compared against the corresponding minimum return on
a monthly basis. The ex-post analysis consists of the hypothetical investment into the best-found
solution at the corresponding asset weights at the end of the sample period. Then, after a hold-
ing period of one month, the returns on the investment are calculated based on the actual price
movements of the constituent assets.

Table 8.10 presents the metrics of the ex-post analysis for the first of two best-found portfolios
presented in Figure 8.8 and 8.9, respectively. Solution 1 was found for an extremely risk-averse
investor, while solution 2 represents a risk-loving investor’s investment recommendation. The
daily minimum return was a user-defined input for the proposed matheuristic. The actual return
is presented below the minimum return for both the stocks and the combined stocks and futures
portfolio. Exemplified by the two solutions in Table 8.10 the ex-post performance differs greatly
depending on the required minimum return and the asset pool.

Figure 8.10 presents the risk-return characteristics of all ex-post portfolios for the ex-post pe-
riod. At first sight, it can be constated that, solely taking into consideration the positive portion of
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Figure 8.10: Frontiers of ex-ante optimal portfolios in ex-post analysis.

the return axis, the two curves resemble the shape of a Markowitz efficient frontier curve. It further
becomes obvious that stock-and-futures portfolios overall achieved positive average ex-post daily
returns, while a large portion of stock-alone portfolios presents the potential investor with negative
returns. Because these negative returns are the result of downside risk exposure of the accompany-
ing portfolios with high variance, it is intuitive that this part of the plot does not possess a positive
slope. Concluding, it becomes evident that adding futures to the portfolios significantly improved
the portfolio’s behavior with respect to traditional financial theory in that increased returns can
be achieved by assuming a more risk-exposed investment position. Moreover, the superiority of
the stock and futures portfolios in ex-post performance is reinforced when considering both in-
vestment dimensions, risk and returns. Figure 8.10 shows that the ex-post portfolios of stocks and
commodity futures can be a more effective vehicle of diversification than the portfolios of stocks
only. Indeed, the ex-post portfolio variance is smaller for the former than for the latter, as shown
by the minimum variance portfolio. Moreover, for a given value of the portfolio variance, average
returns are larger for the portfolio combining both stocks and commodity futures. Furthermore,
including commodity futures caters not only to risk-averse but also to risk-taking investors, since
a broader range of values for both portfolio variance and return can be obtained.

In the following, it is analyzed whether the remaining instability of the portfolio weights was
caused primarily by the risk or the return dimension of the portfolios. Figure 8.11 depicts the
return dimension and presents a contrast of the minimum required return and the ex-post achieved
one. If they were identical, the points should lie on the 45◦ line through the origin. However,
due to the generally volatile nature of financial returns, this is not the case. The ex-post stock-
alone portfolios significantly underperform the ex-ante portfolios and yield negative average daily
returns for low and medium risk portfolios. Furthermore, while the ex-ante portfolio weights pro-
vide stable portfolio returns in that the minimum return is outperformed by the stock-and-futures
portfolios for minimum returns on the lower spectrum of the analysis, the best-found solutions
do not provide the minimum returns for extraordinarily high returns. While the latter result is a
drawback to the investment, it is somewhat intuitive, as returns of such dimensions can only be
achieved by assuming a significant level of risk. Moreover, the differences in the asset weights
become almost negligible for minimum returns on the high end of the analysed spectrum. More
strikingly, however, are the results for low return levels and thus risk-averse investors. Not only
did the combined stock-and-futures portfolios generally outperform the traditional stock portfolio
in the ex-post analysis, but also were they generally the only ones achieving an ex-post return of at
least the originally required minimum return. This therefore reinforces the importance of futures
diversification not solely from a risk perspective, but also from the perspective of stable short-term
returns. However, the benefits of the portfolio optimization appear to be limited to lower risk
portfolios and thus risk-averse investors from a return dimension perspective.
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Figure 8.11: Comparison of ex-ante minimum required returns and ex-post actual
returns.

Figure 8.12: Comparison of ex-ante and ex-post portfolio risks.

Since the return dimension yields relatively stable performance for stock-and-futures portfo-
lios, while this is not the case for stock-alone portfolios, it can be constated that this is a significant
factor in distinguishing the different ex-post performances. Because, however, the ex-post com-
bined portfolios also underperformed their ex-ante counterparts, the risk dimension is analyzed
next. Overall, the non-stable risk variable of the portfolios seems to outweigh the volatility in
returns in causing ex-post portfolio instability. Figure 8.12 presents a comparison of ex-ante risk
and ex-post risk of the respective portfolios. If they were identical, the plotted points would lie on
the 45◦ graph through the origin. As becomes obvious, low-levels of ex-ante risk are characterized
by relatively non-stable ex-post risk levels and high variability. Contrary to that, high ex-ante risk
level portfolios generally translate into lower-risk ex-post portfolios. It is to be noted further that
the variability of the risk of stock-and-futures portfolios is higher than that of the stock portfolios.
This variability then explains the level of ex-post instability of the combined portfolios.

Concluding, it can be stated that the best-found portfolios provide investors with stability in
that the stock-and-futures portfolios outperform stock-alone portfolios in that they provide lower
risk for a given minimum return level. However, the risk and return characteristics of the individual
portfolios have shown to be instable over the observed period. While the return dimension mainly
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causes the difference in performance between the ex-post stock-alone and stock-and-futures port-
folios, the risk dimension explains the remaining instability between the ex-ante and ex-post per-
formance of the combined portfolios.

8.6 Conclusions
Finance constitutes a highly dynamic and stochastic field playing an essential role in economy and
social welfare. In this context, decision-makers frequently face diverse COPs such as the POP,
in which an investor aims to select a few risky assets and decide the proportion of the budget to
invest in each one in order to achieve a minimum return by minimizing a portfolio’s risk measure.
A richer version of the POP is defined by a number of additional constraints such as: cardinality,
quantity and pre-selection constraints. This problem is usually tackled by using expected values
for returns and covariances, which is an empirically unsupported assumption. A more realistic
scenario is covered by the SPOP, where the aforementioned inputs are modelled as random vari-
ables. In addition to provide a review on metaheuristics applied to rich portfolio optimization and
risk management, this chapter has presented solving methodologies based on metaheuristics and,
for the SPOP, simulation. Aiming to facilitate the maximum diversification, a study is performed
to quantify the benefit of introducing commodity futures to a portfolio of stocks.

The main conclusions are:

• The number of related publications has been increasing during the last decade, especially
in the case of POPs. Population-based metaheuristics, and in particular GA and PSO, have
been the predominant solving methodologies. Regarding single-solution metaheuristics, TS
and SA have been extensively applied too. There is not a ‘single winner’ approach, meaning
that different metaheuristic implementations have provided results of comparable quality to
different problems.

• There is a clear trend in promoting the development of hybrid algorithms, either by com-
bining different metaheuristics or by combining metaheuristics with statistical or machine
learning techniques. However, there is a lack of works considering stochastic versions of
the optimization problems.

• Most POPs include some kind of risk management and, in the other direction, most RMPs
considering optimization issues can be modelled as enriched variants of POPs.

• The methodologies presented are able to solve real-sized instances in small amounts of time.

• Even in an environment with a relatively low level of variability, a stochasticity-aware ap-
proach may provide much better results than a metaheuristic approach generating solutions
for the deterministic version of the POP.

• Futures contracts provide successful investment diversification. Particularly, risk-averse in-
vestors can drastically reduce their expected risk exposure by diversifying into stock-and-
futures portfolios. Likewise, these portfolios of risk-averse investors yield more stable actual
returns in the short term.
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Chapter 9

Applications in computing

This chapter studies two important issues related to metaheuristics: the parameter
fine-tuning and parallel computing. It presents a classification of works on pa-
rameter fine-tuning, and proposes a simple, general and automated methodology.
However, a set of computational experiments on different COPs are carried out in
order to analyze the effect of the number of agents and time on the performance of
classical heuristics.
It is based on the following journal article: Calvet et al. (2016b).
This work has been presented at the following conferences: Calvet et al. (2015c)
and Ruiz et al. (2015).

9.1 Introduction
Although the performance of metaheuristics is known to depend on its parameter values, the sci-
entific community has not formally addressed the PSP until the end of the last century. According
to Eiben et al. (1999), during the first decades of metaheuristics research, many scientists based
their choices on tuning the parameters “by hand”, i.e., experimenting with different values and
selecting the ones that provide the best outputs, or “by analogy”, applying settings that have been
proven successful for similar problems. More recently, the need for a systematic approach to-
wards setting of metaheuristic parameters has been increasingly outlined in the literature (Hooker,
1995; Johnson, 2002). Subsequently, researchers employ a scientific approach to tackle the PSP
more frequently. It is important to highlight that the selection of a systematic methodology leads
to a gain of efficiency, as in general, less time is required to fine-tune the parameters while the
performance of the metaheuristic is the same if not improved. However, there is no methodol-
ogy commonly accepted by the scientific community and there is also a lack of publications that
compare, in an exhaustive and objective manner, the main approaches and the techniques used
so far. Moreover, some of the proposed methodologies are not easily reproducible or are highly
metaheuristic and problem dependent. These are some of the reasons why, in spite of the amount
of parameter fine-tuning works, many practitioners go on tuning by hand or designing algorithms
without parameters (or with a very low number of them), even in the case when more parameter-
ized algorithms could lead to better performances. This chapter aims to contribute to the literature
by proposing a general and automated statistical learning based procedure to tackle the PSP. It
is accompanied by some methodological guidelines to validate the results. In order to test the
methodology and illustrate its application, the approach is employed to fine-tune a hybrid algo-
rithm implemented to solve the MDVRP.

The use of distributed and parallel computing systems (DPCS), which allows the aggregation
of multiple autonomous computing resources interacting to achieve a common goal (Coulouris
et al., 2005), may also have a significant effect on the performance of metaheuristics. This chapter
also describes and tests an efficient, flexible, and browser-based framework to facilitate access
to computational resources (Berry, 2009) and, ultimately, solve COPs in ‘real time’ (a few sec-
onds). This framework enables the employment of new versions of web browsers (such as Google
Chrome, Firefox, and Internet Explorer) as nodes in a cluster. The only required step is to visit a
website. The embedded JavaScript code into this website enables the communication with the job
dispatcher service. It may be considered a more scalable paradigm than traditional grid comput-
ing, since the connection of people is boosted by the fact that no third party software installation
is required. Due to the relevance of COPs for SMEs and the some academic works proposing
the implementation of DPCS for addressing them (Talbi, 2006; Talbi, 2009), the working and the
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potential benefits of the proposed approach are illustrated here by solving the CVRP and the PFSP
using different numbers of nodes running a simple metaheuristics with a given seed and a different
limit of computational time.

9.2 Parameter fine-tuning
Ries et al. (2012) define the parameter setting problem (PSP) as the search for a set of parameter
values θ∗ in the parameter space Θ such that ∀θ ∈ Θ : θ∗ � θ (where � denotes a relation of
preference), for a given metaheuristic m in the metaheuristic space M, and a given instance x or
group of them X in the instance space I. In practice, the amount of time available for experimenting
T may be a restriction. In this case, the solution is approximate (θ̂). With regards to the difficulty
of this problem, Montero et al. (2014) states that: (i) it is time consuming; (ii) the best set of
parameter values depends on the problem at hand; and (iii) the parameters can be interrelated.

During the last decades, a large number of methodologies have been put forward to solve the
PSP. These proposals can be classified in two groups (Birattari and Kacprzyk, 2009): parameter
control strategies (PCS), and parameter tuning strategies (PTS). This classification is extended
by instance-specific parameter tuning strategies (IPTS), which includes features of the aforemen-
tioned groups.

9.2.1 Literature review
This section provides a brief description of each approach and some of the most cited works. The
interested reader is refered to more specific publications such as Eiben et al. (1999), De Jong
(2007) and Battiti and Brunato (2010) for an expanded review of PCS, Birattari and Kacprzyk
(2009) in the case of PTS, and Ries (2009) for IPTS.

Parameter control strategies

These methodologies aim for a dynamic fine-tuning of the parameters by controlling and adapting
their values while solving a problem instance. They follow two basic steps: firstly, an initial set of
parameter values is chosen; secondly, an adaptation mechanism is integrated which changes rel-
evant parameter values. Most of these strategies apply adaptive parameter control, which means
that their adaptation mechanism is based on the assessment of particular information that is stored
during the iterative process of a metaheuristic. This information is usually related to the goodness
of intermediate solutions. The main drawbacks of this approach are the potentially high compu-
tational effort required and the lack of acquired understanding about good parameter values each
time an instance is solved.

Eiben et al. (1999) addressed the PSP in EAs. Three categories were defined to classify the
PCS. The first one, deterministic parameter control, alters the value of a parameter by some de-
terministic rule, which is usually time based. The second category, adaptive parameter control,
does employ feedback to determine the direction and/or magnitude of a parameter change. This
is the most used kind of control. The third, self-adaptive parameter control (Smith, 2008), en-
codes the parameters to be adapted into the chromosomes of an EA. De Jong (2007) described
the main motivations to use dynamic parameter setting strategies in EAs: first, as the running
proceeds, information about the fitness landscape is generated, which may be used to improve
the performance; also, changing the parameters is needed as an EA “evolves from a more diffuse
global search process to a more focused converging local search process”. Table 9.1 gathers a few
representative works following this approach.

Parameter tuning strategies

This approach relies on the concept of robustness (Viana et al., 2005). A robust algorithm provides
good results for a given set of instances of a problem using a fixed set of parameter values. The
basic procedure involves finding a set of parameter values providing satisfactory results for a set
of instances, usually using statistical and/or optimization techniques. Some authors analyse only
a representative subset of instances and apply the set of parameter values found to solve all the
instances. This approach also includes the case of solving one instance. Table 9.2 shows some
works relying on this approach. Many authors focus on minimizing the number of runs, presenting
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Table 9.1: Representative works employing PCS.

Work Main techniques Metaheuristic Optimization problem

Battiti and Tecchiolli
(1994) and Battiti
and Brunato (2005)

Reactive scheme TS QAP and maximum
clique problem

Zennaki and Ech-
Cherif (2010)

SVMs TS TSP

Lessmann et al.
(2011)

Regression models PSO Water supply network
planning problem

simple models without interactions (e.g., Coy et al., 2001; Pongcharoen et al., 2007; Xu et al.,
1998). DOE and regression analysis are the most employed techniques.

Table 9.2: Representative works implementing PTS.

Work Main techniques Metaheuristic Optimization problem

Xu et al. (1998) Tree growing and pruning
method based on statistical
tests

TS Steiner Tree-Star Problem

Bartz-
Beielstein
et al. (2004)

DOE, classification and re-
gression trees, and design and
analysis of computer experi-
ments

PSO and Nelder-Mead
simplex algorithm

Elevator group controller
problem

Birattari and
Kacprzyk
(2009) and
Birattari et al.
(2010)

Racing algorithm (Maron and
Moore, 1993) and the Fried-
man’s two-way analysis of
variance by ranks (Conover,
1999)

ILS and ACO QAP and TSP

Adenso-Diaz
and Laguna
(2006)

DOE and local search Neighbourhood struc-
ture, TS, SA, TS,
heuristic based on the
SA and the TS, and TS

Steiner problem, part-machine
grouping problem, part-
machine grouping problem,
single-machine scheduling,
proportionate flowshops, and
bandwidth packing

Pongcharoen et
al. (2007)

DOE GA TSP

Ridge and Ku-
denko (2007)

DOE and desirability func-
tions

ACO TSP

Gunawan et al.
(2013)

DOE, response surface
methodology and ParamILS
(Hutter et al., 2009)

SA Industry spares inventory opti-
mization problem

Instance-specific parameter tuning strategies

As in the case of PCS, IPTS aim for an instance-specific tailoring of the parameters. At the
same time, these strategies use a fixed set of parameter values, as the PTS, avoiding the need of
modifying the metaheuristic algorithm and reducing the potential computational effort required
to adapt parameter values during the algorithmic run. In order to implement these strategies the
relation between the parameter values and the performance of the metaheuristic has to be analysed,
taking into account instance features. The next step consists in developing a mechanism able to
use the features of a new instance to recommend a set of parameter values. The key element is
the selection of instance features easy and fast to compute, and good at discriminating instances
on the shape of their fitness landscapes, which analyse the relationship between the objective
function values and the parameters. This learning may take a non-negligible amount of time, but it
is assumed that this approach requires less computational time than the PCS approach does. Some
contributions are included in Table 9.3. The number of works is low since it is relatively new.

Approaches comparison

All approaches have different advantages. The dynamic adaptation of the parameter values that
characterizes PCS usually provides better results. However, the computational effort tends to be
higher. On the other hand, the PTS approach is the easiest and fastest to use, once a set of parameter



128 Chapter 9. Applications in computing

Table 9.3: Representative works implementing IPTS.

Work Main techniques Metaheuristic Optimization problem

Ries (2009) DOE and fuzzy logic Guided local
search and GA

TSP

Pavón et al.
(2009)

CBR and Bayesian net-
works

GA Root identification prob-
lem

Dobslaw (2010) DOE and NNs PSO TSP

values is selected. Although the code of the algorithm is not changed, finding an adequate set may
be also time-consuming. The last group of strategies represents a compromise solution: it takes
less computational time than the PCS approach, but requires implementing a learning mechanism,
for which statistical learning skills are needed. Therefore, there is no approach that stands out from
the others. Probably, the most adequate depends on the specific problem to tackle, the instances to
solve, the available time and the skills of the researcher. Despite this fact, some general guidelines
can be formulated. PTS can be considered as the best option when working with robust algorithms.
Regarding IPTS, they are more complex than PTS but provide better results when the algorithm
is not robust. In case of prioritizing the algorithm performance, PCS usually constitute the most
recommendable approach.

9.2.2 Methodology
We propose a methodology that follows the PTS approach. As described before, this approach
is not computationally intensive, and the inference from a representative sample of benchmark
instances to the whole set usually provides good results, specifically if the analysed algorithm
is robust. Another reason for focusing on PTS is that there is no methodology based on this
approach and widely employed, but at the same time, there are plenty of techniques that can be
used. Our methodology is based on clustering and DOE. The remainder of this section presents
a statistical learning based methodology to obtain a list of sets of parameter values, and a more
global procedure to validate and assess its goodness.

General methodology

It is assumed that the experimenter has described a problem and chosen the metaheuristic to tackle
it.

• The first step involves choosing a subset of the instances. Their fitness landscapes will be
analysed in order to obtain sets of parameter values that provide good results for them. The
subset has to be representative as these sets of parameter values will be used to solve the
whole set of instances. An approach to select a representative subset is, firstly, to determine
the instance features that have a major influence on which set of parameter values is the most
adequate, and then, choose the instances in such a way that the feature values of the subset
are representative of those of the entire set of instances. For example, if there is a parameter
for which its optimum value is known to depend on the instance size, a representative subset
of the instances will present the same proportion of instances of a given size that the whole
set does. A possible simplification for feature selection consists of choosing those that are
commonly used to discriminate instances of a specific problem. For instance, Ries et al.
(2012) studied the size, the distance metric, a ratio to describe the shape of the area within
which a set of cities is distributed and a measure of clustering for the TSP.

In contrast, a problem-independent approach is proposed here. Initially, for a given number
of randomly generated sets of parameter values, each instance is solved several times using
different seeds for the random number generator of the algorithm (or only once if the algo-
rithm is deterministic). Alternatively, the sets could also be generated using more advanced
statistical techniques such as DOE. We consider the median of the objective function values
found with the same parameter values but different seeds. It is essential to remark the im-
portance that a seed may have in the performance of an algorithm (Juan et al., 2015c; Czarn
et al., 2004). Afterwards, feature scaling is applied to the values obtained for each instance.
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Then, this data is used to cluster instances and select a representative one from each cluster.
These instances form the subset to analyse.

For each instance of the subset, the steps ranging from the second to the fourth are implemented
as follows.

• The second step requires selecting the range over which each parameter can be set. Some
experience or knowledge about the problem and the metaheuristic may be highly valuable.
The ranges should be large enough to cover at least one set of parameter values that can
provide a sufficiently good solution with a high probability. On the other hand, a smaller
range would allow the experimenter to describe more accurately, with the same resources,
the relationship between the parameter values and the objective function value. If there is
no a priori information about which are the best regions of the parameter space, a suitable
procedure is to perform a rough and fast landscape analysis.

• The third step consists of designing an experiment. A central composite design is studied.
Each parameter is considered a factor and the extreme values of its range define the levels.
According to this design, the algorithm is executed also several times for each combination
of factor values, each one with a different seed.

• In the fourth step, a procedure is developed to search the neighbourhood of the best set of
parameter values found. Specifically, another central composite design centred on this set is
applied.

Finally, the upshot is a list of recommended sets of parameter values, one per cluster; in particular,
those that reported the best results on the last step. The procedure is shown in Figure 9.1. An
extended proceeding (Figure 9.2) is described below in order to validate the list of sets of parameter
values obtained and analyse the results provided by it.

Figure 9.1: Outline of the procedure for parameter fine-tuning.

Before all else, a list of sets of parameter values, θ̂ = (θ̂1, θ̂2, . . . , θ̂K) where K is the number of
clusters, is chosen as has been explained in the precedent subsection. Later on, each instance of
the subset used to select θ̂ is solved with the corresponding set of θ̂‚ and with different sets, θ̄ j ( j =

1, 2, . . . , J) (equally spaced, randomly selected or relatively close to the set of θ̂ according to some
distance measure). To assess the performance of a set of θ̂ in a specific instance regarding the other
sets, the associated solutions are compared. Given a decision level parameter r (1 ≤ r ≤ J + 1),
if the rank of the objective function value provided by the proposed set is equal or lower than r,
then it is considered a good set for that instance. Once all the instances of the subset are examined,
it can be reckoned the proportion of them in which the corresponding set has been classified as
good. θ̂ is validated by comparing this proportion with a predefined parameter p (0 < p < 1); if
the proportion is higher, then the experimenter has enough evidence of the quality of θ̂ to go on to
test it with other instances in the next step.

If θ̂ is not validated, the process has to be readjusted and restarted. This readjustment may
be done in several ways, some options are: checking the robustness and the adequacy of the
clustering, adapting the ranges, dedicating more resources to the search, etc. The best strategy is
problem-dependent. As a consequence, the choice should rely on the opinion of the experimenter,
who will have acquired valuable information from the outputs observed.

Once the list of sets of parameter values has been labelled as valid, it is applied for solving the
other instances (each one with the set proposed for the representative instance of the cluster where
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Figure 9.2: Flowchart representing the proposed methodology.

it has been assigned). To examine the effectiveness of the procedure, it is desirable to compare the
solutions with others reported in the literature for the same instances, by performing the t-test for
paired samples if data is normal, or the Wilcoxon signed rank test otherwise. If the means (or the
mean ranks if data is not normal) do not differ significantly, it may be classified as a satisfactory
outcome as it will mean that the proposed methodology, automated and general, has been proven to
be competitive. If the results are unsatisfactory, the procedure should be modified and reinitiated.

It is useful to consider that, since the available resources are usually limited, the possible
readjustments should be also limited (T represents this limit). Consequently, the process may end
without a satisfactory list of sets of parameter values. In this case, the list which provides on
average the best solutions will be accepted.

9.2.3 Computational experiments
Our methodology was implemented to fine-tune the parameters of the hybrid algorithm described
in Juan et al. (2015c), which combines biased randomization and the ILS metaheuristic to ad-
dress the MDVRP. This algorithm has three main parameters: bM, bR and p∗, which take values
between 0 and 1.

The first step is the selection of a representative subset of instances. Initially, 10 randomly
generated sets of parameter values, 7 seeds and the 33 benchmark instances solved in the afore-
mentioned paper were selected. Therefore, information from 2310 runs was stored. Data from
different seeds was aggregated by computing the median; then feature scaling was applied. The
instances that were considered easy-to-solve, those that presented no variation in the results, were
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Table 9.4: Clustering of the benchmark instances.

Medoids Clusters

p01 p01
p07 p04, p07, p11, p18, pr02, pr05, pr09
p09 p03, p09, pr04, pr10
p17 p17
p19 p19
p22 p22
p23 p20, p23
pr06 p05, p06, p08, p10, p15, pr01, pr03, pr06, pr07, pr08

separated. Afterwards, a clustering using the k-medoids algorithm (Theodoridis and Koutroum-
bas, 2009) was performed. The range of values considered for setting the value of k was 2-12.
The final value was selected employing the average silhouette criteria (Rousseeuw, 1987). The
composition of the clusters and the representative instances can be observed in Table 9.4.

Once the subset of instances was formed, the second step, setting the ranges of the parameters,
was carried out. After a statistical analysis, it was concluded that just two parameters, bM and bR,
did significantly affect the performance of the algorithm. Therefore, only those two parameters
were studied. Five equally spaced values ranging from 0 to 1 were analysed for each parameter.
Each instance was solved seven times (considering different seeds) for each possible combination
of parameter values. The objective function values were aggregated as before. Then, the values
for other possible combinations were estimated by linear interpolation.

The ranges were set to cover the smallest rectangular area of the parameter space that included
the lowest objective function values. In particular, the values labelled as the lowest were those
meeting the following condition:

Objective solution ≤ minimum value + β · (maximum value − minimum value)
The value of β was set at a different value for each instance. More precisely, it was the mini-

mum value that encompassed, at least, 5% of the search space. Figure 9.3 shows the contour plot
and the area in which the search was intensified for each instance.

The next step was applying a design for each instance of the subset. It was performed to better
analyse the relation between the metaheuristic performance and the parameter values. A face-
centred central composite (FCC) design was selected, as in most of the cases the space parameter
could not be expanded (since all parameters could only take values between 0 and 1). Figure 9.4
displays the scheme for instance p01. The objective function values for the same instance are
represented in Figure 9.5.

Then, the neighbourhood of each set that provided the best solution for an instance was ex-
plored applying another FCC design, centred on that set and covering half of the area analysed with
the previous design. The sets that finally presented the best performance were stored. They are
outlined in Table 9.5. Random values were assigned to the instances that did not present variations
in the results when changing the parameter values.

Table 9.5: Proposed list of sets of parameter values.

Medoids Clusters bM bR

p01 p01 0.513 0.501
p07 p04, p07, p11, p18, pr02, pr05, pr09 0.001 0.372
p09 p03, p09, pr04, pr10 0.283 0.283

p17 random random
p19 p19 0.443 0.378
p22 p22 0.001 0.231
p23 p20, p23 0.449 0.250
pr06 p05, p06, p08, p10, p15, pr01, pr03, pr06, pr07,

pr08
0.500 0.231

p02, p12, p13, p14, p16, p21 random random
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Figure 9.3: Contour plots of the medoids sorted from left to right, and top to
bottom.
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Figure 9.4: Scheme of the FCC design applied to the instance ’p01’.

Figure 9.5: Solutions for the instance ’p01’.
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9.2.4 Analysis of results
The following parameters were chosen to validate the list of sets: J = 10, T = 3, α = 0.05, r = 6,
p = 0.7. The number of sets randomly generated was fixed considering the trade-off between the
reliability of our comparisons and the computational time required. The number of iterations was
set considering only the time available. The significance level is the one most commonly used in
the literature. The value of the fourth parameter is the mean rank that could be expected due to
randomness with 11 solutions (1 set proposed and 10 randomly generated). The last parameter was
calibrated to force the algorithm to provide good results at most of the instances. The algorithm
was run 7 times with different seeds for each combination of parameter values, the medians and
the minimum values were stored. The ranks of the results obtained are detailed in Table 9.6. Ties
receive a rank equal to the average of the ranks they span, shown inside the parentheses.

Table 9.6: Ranks of the results provided by our list and by 10 random sets.

Medoids Rank (medians) Rank (minimum values)

p01 1 3.5 (1-6)
p07 5 3.5 (1-6)
p09 2 2
p17 2 (1-3) 1
p19 6.5 (2-11) 10.5 (10-11)
p22 11 11
p23 1.5 (1-2) 1
pr06 5 1.5 (1-2)
Valid instances 0.75 0.75

According to our methodology, the list of sets can be considered valid as it presents a rank
equal to or below 6 in 75% of the analysed instances, both considering medians and minimum
values. In order to test our results, the algorithm was executed with the parameter values suggested
in Juan et al. (2015c). Both series of results are comparable as were obtained using the same
computer and stopping criteria based on the number of iterations. Table 9.7 presents the parameter
values used in the aforementioned paper. Instead of setting fixed values, the authors introduced
randomness by employing uniform distributions. The lower and upper bounds were selected after
some tests.

Table 9.7: Sets of parameter values for comparison.

bM bR p*

Uniform (0.5, 0.8) Uniform (0.1, 0.2) Uniform (0.1, 0.5)

Table 9.8 shows the results obtained solving all instances with the proposed list of sets (our
results, OR), and with the set proposed in Juan et al. (2015c) (JR).

The comparison of the solutions shows that our procedure achieves better results in most of
the instances. Table 9.9 presents the average and the standard deviation of the differences, and the
p-values of the test to compare the mean ranks of the results. It is a non-parametric test as the null
hypothesis of the Shapiro-Wilk test, a test of normality, was rejected in all cases. The means are
negatives, indicating that our methodology provides better solutions. The p-values reveal that the
differences of the mean ranks are not statistically significant. Even though, the magnitude of the
mean difference can be considered relevant in the context of the MDVRP.

9.3 Parallel computing
Desktop computers have become affordable machines that most people use every day for both
work and leisure. Despite their current capacity, numerous institutions and individuals require
more computational resources to execute intensive problem-solving processes. In these cases,
DPCS constitute a useful approach. Multi-processors and/or multi-computers paradigms may be
employed. A multi-computer schema presents a set of physical machines linked via network
connections. These machines can be coupled geographically or in a more distributed environment
(as in cloud computing). The main parallel paradigm is message passing, in which tasks and
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Table 9.8: Instances experimental results.

Inst. OR medians
(1)

OR, minimum
values (2)

JR, medians
(3)

JR, minimum val-
ues (4)

% Gap (1)
- (3)

% Gap (2)
- (4)

p01 585.000 576.866 593.829 576.866 -1.509 0.000
p02 480.261 476.660 480.261 476.660 0.000 0.000
p03 644.464 641.186 649.229 641.186 -0.739 0.000
p04 1022.085 1019.570 1024.473 1024.062 -0.234 -0.441
p05 760.341 756.281 764.325 754.882 -0.524 0.185
p06 882.827 879.072 880.418 879.763 0.273 -0.079
p07 899.709 897.974 906.395 897.974 -0.743 0.000
p08 4440.534 4434.552 4438.407 4426.747 0.048 0.176
p09 3920.743 3906.561 3923.248 3900.274 -0.064 0.161
p10 3706.763 3667.344 3705.012 3687.054 0.047 -0.537
p11 3598.972 3584.691 3592.891 3585.690 0.169 -0.028
p12 1318.955 1318.955 1318.955 1318.955 0.000 0.000
p13 1318.955 1318.955 1318.955 1318.955 0.000 0.000
p14 1360.115 1360.115 1360.115 1360.115 0.000 0.000
p15 2573.393 2556.846 2573.393 2557.528 0.000 -0.027
p16 2605.565 2585.373 2605.565 2600.099 0.000 -0.570
p17 2720.231 2714.663 2725.799 2725.799 -0.205 -0.410
p18 3831.996 3806.783 3835.388 3806.783 -0.089 0.000
p19 3883.686 3883.686 3883.686 3881.427 0.000 0.058
p20 4080.348 4074.779 4091.482 4091.482 -0.273 -0.410
p21 5706.530 5692.789 5701.902 5692.789 0.081 0.000
p22 5808.738 5806.370 5806.480 5786.288 0.039 0.346
p23 6134.441 6128.873 6145.576 6123.306 -0.182 0.091
pr01 861.319 861.318 861.319 861.318 0.000 0.000
pr02 1330.495 1310.679 1331.543 1314.364 -0.079 -0.281
pr03 1813.634 1813.634 1814.452 1813.634 -0.045 0.000
pr04 2084.843 2077.582 2089.785 2079.832 -0.237 -0.108
pr05 2379.075 2359.947 2379.797 2368.525 -0.030 -0.363
pr06 2709.792 2693.680 2713.593 2696.504 -0.140 -0.105
pr07 1109.235 1109.235 1109.235 1109.235 0.000 0.000
pr08 1680.896 1674.930 1678.872 1674.594 0.120 0.020
pr09 2148.216 2147.192 2153.317 2142.650 -0.237 0.212
pr10 3016.255 3008.129 3028.606 3014.874 -0.409 -0.224

Table 9.9: Means and standard deviations of the differences and statistical tests.

Mean of
the differ-
ences

Standard devia-
tion of the dif-
ferences

P-value of the
comparison of
mean ranks

All instances
Medians -0.149 0.330 0.954
Minimum values -0.070 0.219 0.980

All instances except the studied subset and
those not analysed

Medians -0.117 0.247 0.942
Minimum values -0.100 0.217 0.942

processes of different machines interchange data packets by sending and receiving messages to
communicate.

SMEs are responsible for a significant part of the wealth generated in all developed economies.
Often, they do neither possess advanced technical knowledge nor modern computational resources.
However, a number of them could benefit from having more resources, for example to speed up
intensive-computation processes or to obtain a higher performance. In order to access them, DPCS
offer two alternatives: (i) to pay for using resources from an external provider; and (ii) to employ
underutilized computer resources owned by the SME. This idea of aggregating idle or unused
resources characterizes also volunteer computing systems. The main difference between both
paradigms is that while the latter is usually associated to dynamic (any user can freely enter and
leave) and heterogeneous environments, an SME knows the characteristics and the availability of
its machines. Obviously, their scalability is also more limited. The alternative of using SME’s
underutilized resources presents several advantages. Firstly, SMEs do not have to send private
information to servers of an external enterprise. Secondly, it is a cheaper solution since the SME
does already have the resources. Finally, the energy consumption is reduced by seizing these re-
sources, which could be still consuming otherwise (Cabrera, 2014). These desktop grids systems
may be formed by personal computers with more computing capabilities than the required (stan-
dard computers in which employees mainly use word processors and spreadsheets, for instance)
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or that are not used during some specific days or hours. Moreover, resources from several SMEs
may be gathered to build a larger computing system. They can rely on a directory-of-resources
service that keeps updated information of available computing resources. Once a user requires
executing a process, he sends a query to this directory to select the resources and organize the
tasks to perform. Once these tasks have been completed, the result is sent back to the user.

9.3.1 Methodology
The platform designed aims at facilitating the aggregation of a high number of computational
resources by seizing underutilized or idle resources. It is based on software already installed in
most computers, web browsers. Using a modern version of some of the commonest (Google
Chrome, Firefox, or Internet Explorer), it may integrate a computer into the computing network.
The only action required is to visit a website with an embedded JavaScript code that enables the
communication in real-time with a job dispatcher service. Each one of the jobs includes a piece
of data and the computing task to perform. Additional steps such as downloading, installing,
or setting up additional software are not required, which makes this option a very attractive one
for most SMEs. Because the ease to add new resources, this approach can be considered highly
scalable. Thus, the described platform constitutes a flexible, simple, and scalable approach with
multiple applications in SMEs.

The platform architecture is the typical of a master-slave cluster. The system has been de-
signed to free the master from computationally expensive tasks. For the experiments described
later, a single master has been sufficient to handle all the workload. In a production environment,
the system could easily scale to thousands of slaves or even further when considering other archi-
tectures like a multi-master environment, etc. In our case, the master was placed on a dedicated
server located on a cloud provider (Softlayer). The slaves were located over 2 different locations:
The UOC’s Lab and the Incubio’s offices. The execution process goes as follows. First, the end-
user submits the task to be executed to the master. This task consists mainly in a set of Map and
Reduce functions written in JavaScript, as well as their input dataset. The master is responsible
of creating a list of jobs. Each job is composed of a chunk from the dataset and the source of
code that has to be executed over each piece of data. The master delivers and ensures that jobs
are evenly distributed. After each job is completed, the master receives the results and stores them
in a file or a database depending on the execution flow given by the user. The master keeps track
of the jobs that have been assigned and processed. Different measures handle unfinished jobs,
errors or exceptions that could appear unexpectedly by either rescheduling the jobs or stopping
the execution and reporting the error.

Most approximate methods for solving COPs are probabilistic, which means that their solution
depends on the seed used for a pseudo-random number generator. It has been proved that the
execution time that an algorithm needs to report high-quality solutions can be reduced depending
on this seed (Juan et al., 2014d). According to Talbi (2006) and Talbi (2009), DPCS are commonly
employed to solve COPs. The typical approach in the related literature applies a master-slave
scheme, in which a master or coordinator processor sends tasks to a set of slave processors in
order to execute an intensive-computing process. Each slave is responsible for solving the same
problem instance considering a different scenario, each one formed by a set of parameters and/or
a seed. Once a slave has completed its task, it sends the solution to the master that stores it. In the
simplest version, there is no communication between slaves. Following this approach, multiple
instances of the algorithm are executed at the same time, each with a different seed. As shown in
Figure 9.6, each of these instances can be considered a cloned agent that is searching the solution
space.

9.3.2 Computational experiments
In order to illustrate the benefits of the presented approach, two relevant COPs have been ad-
dressed: the CVRP and the PFSP. The randomized version of the CWS heuristic (Juan et al.,
2014d) has been chosen for the CVRP. The Kelly instances are used to test our approach (Golden
et al., 2008). The ILS-ESP algorithm (Juan et al., 2014a) has been employed to address the PFSP.
It relies on a biased-randomized version of the NEH heuristic. The Taillard’s benchmark instances
(Taillard, 1993) are employed. They are grouped in 12 sets of 10, which are characterized by
the following pairs of numbers of jobs and machines: 20x5, 20x10, 20x20, 50x5, 50x10, 50x20,
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Figure 9.6: A multi-agent approach for solving COPs.

100x5, 100x10, 100x20, 200x10, 200x20, and 500x20. The instance resolution has been per-
formed considering a specific combination of the parameters ‘limit of time’ (1, 5, 10, 15, 20, and
30 seconds) and ‘number of agents’ running in parallel (1, 4, 8, 16, 32, and 64).

All the experiments have been carried out using 64 slaves and 1 master. The master specifica-
tions are 3.5GHz Intel Xeon-IvyBridge with 8GB of RAM. The slaves are a heterogeneous set of
desktop computers not having more than 8GB of RAM and up to 8 cores each. The machines were
connected to the parallel computing environment using one of the following browsers: Microsoft
Internet Explorer, Google Chrome or Mozilla Firefox, all of them with JavaScript enabled. The
slaves were connected over a usual shared internet connection. For this reason, latencies or high
speed connections were considered negligible.

9.3.3 Analysis of results
Figure 9.7 shows the results obtained after running the algorithm for solving the Kelly instances
during 20 seconds of clock time per instance. Considering all instances, the first boxplot shows the
gaps between the BKS and the solution generated by the CWS heuristic. The remaining boxplots
show the gaps between the BKS and different executions of the randomized algorithm, each one
using a different number of agents running in parallel. The number of agents tested were: 64, 128,
and 256. It should be noticed that, for the 20 seconds considered, the distributed approach allows
to reduce the gap down to almost 5% even for a reasonably low number of agents.

Regarding the PFSP instances, Table 9.10 summarizes the results of our computational exper-
iments using a maximum time of 5 seconds. Each row refers to a different set of instances. Each
column shows the gap between the BKS and our solution for different numbers of agents (1, 4,
8, 16, 32, and 64). Notice that the gaps shrink as the number of agents working in parallel is
increased.

Figure 9.8 summarizes similar results for different values of the maximum clock time. It can
be observed that, as time increases or as the number of agents increases, the average gap (for the
entire set of benchmark instances) decreases. A detailed case is illustrated in Figure 9.9, which
displays the scatterplot of costs versus limit of time and number of agents for a given instance.
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Figure 9.7: Results for the CVRP using the Kelly instances.

Figure 9.8: Average gaps for different numbers of agents and limits of time.
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Table 9.10: Results for the PFSP considering the Taillard instances. Gaps for
different number of agents and a maximum time of 5 seconds.

Taillard set BKS - 1A BKS - 4A BKS - 8A BKS -16A BKS -32A BKS - 64A

20x5 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
20x10 0.08% 0.08% 0.04% 0.00% 0.00% 0.00%
20x20 0.06% 0.02% 0.01% 0.00% 0.00% 0.00%
50x5 0.01% 0.01% 0.01% 0.01% 0.00% 0.00%

50x10 0.84% 0.74% 0.72% 0.65% 0.61% 0.54%
50x20 3.21% 2.85% 2.76% 2.68% 2.65% 2.58%
100x5 0.05% 0.02% 0.00% 0.00% 0.00% 0.00%
100x10 0.53% 0.33% 0.25% 0.22% 0.21% 0.18%
100x20 3.14% 2.67% 2.66% 2.63% 2.56% 2.46%
200x10 0.40% 0.26% 0.24% 0.23% 0.20% 0.14%
200x20 2.36% 2.20% 2.17% 2.15% 2.06% 2.00%
500x20 1.88% 1.53% 1.42% 1.32% 1.32% 1.26%

Averages 1.05% 0.89% 0.86% 0.82% 0.80% 0.76%

Figure 9.9: Objective solutions for different numbers of agents and limits of time.

9.4 Conclusions
The performance of metaheuristics is significantly affected by the parameter fine-tuning and the
number of agents employed. These issues have not attracted as much attention as new meta-
heuristics and applications did. However, this trend is changing. In these lines, this chapter has
presented two contributions. First, an overview on the PSP, a classification, a methodology and
a description of a case study have been presented. Afterwards, an analysis of the computational
time and the number of agents (each using a different seed for the random number generator) on
the performance of two simple algorithms has been described. The conclusions drawn are:

• The parameter fine-tuning of a metaheuristic may be a time-consuming and complex prob-
lem, but may have a high effect on the quality of the solutions found.

• The literature on the PSP is diverse. Works can be grouped by whether the set of parame-
ter values chosen is instance-specific and/or whether it evolves during the execution of an
algorithm.
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• A number of statistical learning techniques for solving the PSP have been proposed in the
literature, but most works focus on DOE and/or lineal regression models. Thus, many op-
tions remain to be tested.

• SMEs may significantly benefit from DPCS by obtaining a higher number of computational
resources seizing the underutilized resources.

• Computational time tends to have a small marginal effect on the performance of metaheuris-
tic when it is set to more than a few seconds.

• The number of runs with a different seed executing a given metaheuristic may have an
important effect on its performance, but the marginal improvement decreases as the number
of runs increases.
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Chapter 10

Conclusions and future work

10.1 Final conclusions
This thesis has explored the combination of statistical learning and simulation with metaheuristics
for solving COPs. It includes both methodological contributions and applications in a wide range
of relevant and challenging fields.

First, an extensive review on works using statistical learning and metaheuristics as a solving
approach has been presented. While there is a high number of works, they are extremely different.
Two groups are created: metaheuristics for improving statistical learning, and statistical learning
for enhancing metaheuristics. Works in the first group can be classified according to the purpose
of the statistical learning technique: classification, regression, clustering, and rule mining. On the
other hand, the second group is splitted into two smaller groups: specifically-located hybridiza-
tions (including parameter fine-tuning, initialization, evaluation, population management, opera-
tors, and local search), and global hybridizations (reduction of search space, algorithm selection,
hyperheuristics, cooperative strategies, and new types of metaheuristics).

Then, a novel hybrid methodology integrating statistical learning in metaheuristic frameworks
has been proposed. It has been designed to address combinatorial optimization problems with
dynamic inputs, which depend on the structure of the solution. A number of potential applications
in popular fields have been identified, and an illustrative experiment has been carried out.

Applications to transportation constitute the main topic in applications. The multi-depot vehi-
cle routing problem has been introduced, and three richer novel extensions have been addressed.
First, uncertainty regarding demands has been considered. This issue may increase the total ex-
pected costs if no measures are undertaken to reduce the probability of route failures. A simheuris-
tic approach considering safety stocks has been designed and tested. Afterwards, a version con-
sidering the maximization of benefits, heterogeneous depots and customers’ preferences has been
studied. In order to solve it, a methodology combining predictive models and a metaheuristic has
been put forward. The third extension considers the introduction of sustainability indicators in
the objective function and presents an analysis relying on visualization techniques to study the
relationship between the different indicators. The aim is to take into account the negative im-
pacts of transport activities. Later, the waste collection problem has been addressed, presenting
methodologies for both the deterministic and stochastic versions. Finally, the heterogeneous site-
dependent asymmetric vehicle routing problem with stochastic demands has been tackled and a
simheuristic methodology based on a successive approximations method has been applied. The
potential applications of these problems in real-life has been described.

Regarding production, the distributed permutation flow-shop scheduling problem with stochas-
tic times has been introduced. It describes the realistic scenario where there is a product composed
of several intermediate products that have to be assembled at a given moment. These intermediate
products are processed in independent distributed manufacturing factories, and each sub-problem
is modeled as a permutation flow-shop scheduling problem. An approach relying on a simheuristic
algorithm based on the iterated local search metaheuristic has been presented and tested.

Metaheuristics are becoming popular in finance. A survey on metaheuristics in portfolio op-
timization and risk management has been presented. Afterwards, the deterministic and stochastic
versions of the portfolio optimization problem have been adressed. This problem is a strategy of
selection of financial assets and determination of the optimal weights allocated to those assets that
results in a desired portfolio return and associated minimum level of risk. The stochastic version
deals with returns and covariances modelled as random variables.
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Finally, two issues related to computing have been studied: the parameter fine-tuning, and the
effect of the number of seeds, and the maximum computing time on the performance of meta-
heuristics. While a methodology is presented and applied for the first issue, an exhaustive set of
computational experiments have been carried out to gain insights into the second.

10.2 Directions for future work
Numerous lines of future research stem from this thesis. They are summarized in the following
proposals:

• Extend the methodology of learnheuristics to address stochastic and/or multi-objective op-
timization problems, and develop an online version, in which information regarding new
inputs can be used to improve the predictive model, and a blended version, in which predic-
tions from several models are averaged, not necessarily giving the same weight to each of
them.

• Design and test more approaches relying on learnheuristics for problems in dynamic fields
such as telecommunications, volunteer computing or finance.

• Several rich vehicles routing problems have been addressed. Many realistic characteristics
may be added, which could increase the complexity of the problems. It would be interesting
to study the efficiency of repairing procedures for a given solution when unexpected events
take place. In addition, large supply chains with flexible structures with more agents than
clients and depots could be included.

• Production systems have dramatically changed during the last decades, and some gaps re-
main in the literature. The most natural extension of the problem analyzed is to study the
effects of dependent processing times.

• There are a high number of non-trivial optimization problems in finance. The uncer-
tainty/risk of this field calls for the combination of optimization techniques and predictive
models, and/or online optimization. Moreover, it would be interesting to analyze the impact
of the width of the sample period and associated bear and bull market activity periods for
the problems studied.

• In the computing arena, the calibration of parameters is still an open problem, since there is
no single methodology accepted by the scientific community. Even more, there is no general
agreement about the best techniques to use. However, journals devoted to applications of
metaheuristics are becoming more demanding regarding this issue. In addition, the trade-
off between number of computational experiments, maximum computing time, and perfor-
mance requires more attention. Similarly, the use of parallel and distributed paradigms are
just emerging in the field of metaheuristics. In an increasingly complex world where real-
time solving approaches are required and statistical learning techniques may help to develop
more inteligent/reactive approaches, these paradigms will play a relevant role.
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Chapter 11

List of publications and
presentations

This chapter lists the publications and presentations related to this thesis. It includes the accepted
or in process of reviewing journal papers, and works in conferences and seminars developed in the
last three years.

The relation between the publications and presentations, and the contributions described in
chapter 1 is shown below.

• C1 (approach combining metaheuristics and statistical learning, general classification and
review of works): J1, J2, S1, and S2.

• C2 (applications in routing): J4, J7, J12, J15, C3, C6, C8, and C10.

• C3 (applications in production): J10, C1, and C5.

• C4 (applications in finance): J5, J8, J9, J11, J14, J17, C2, and C9.

• C5 (applications in computing): J3, C4, and C7.

• Other works related to the methodologies employed: J6, J13, and J16.

11.1 Journal papers
First, the following articles have been submitted to ISI JCR and Elsevier-Scopus journals:

Indexed in ISI JCR
J1. Calvet, L., J. De Armas, D. Masip, and A. A. Juan (2017). “Learnheuristics: Hybridizing

metaheuristics with machine learning for optimization problems with solution-dependent
inputs”. In: Open Mathematics (indexed in ISI SCI, 2015 IF = 0.512, Q3; 2015 SJR =

0.521, Q2).

J2. Calvet, L., A. Ferrer, I. Gomes, A. A. Juan, and D. Masip (2016). “Combining statistical
learning with metaheuristics for the multi-depot vehicle routing problem with market seg-
mentation”. In: Computers and Industrial Engineering 94, pp. 93–104 (indexed in ISI SCI,
2015 IF = 2.086, Q1; 2015 SJR = 1.63, Q1).

J3. Calvet, L., A. A. Juan, C. Serrat, and J. Ries (2016). “A statistical learning based approach
for parameter fine-tuning of metaheuristics”. In: Statistics and Operations Research Trans-
actions 40.1, pp. 201–224 (indexed in ISI SCI, 2014 IF = 1.333, Q2; 2014 SJR = 0.324,
Q3).

J4. Gruler, A., C. Quintero, L. Calvet, and A. A. Juan (2016). “Waste collection under uncer-
tainty: A simheuristic based on variable neighborhood search”. In: European Journal of
Industrial Engineering (indexed in ISI SCI, 2014 IF = 0.736, Q3; 2014 SJR = 0.898, Q1).
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Under review
J5. Calvet, L., R. Kizys, A. A. Juan, and J. Doering (submitted). “A VNS-based simheuristic

methodology for the stochastic portfolio optimization problem”. In: Journal of the Opera-
tional Research Society.

J6. Calvet, L., M. Lopeman, J. De Armas, G. Franco, and A. A. Juan (submitted). “Statisti-
cal and machine learning approaches for the minimization of trigger errors in earthquake
catastrophe bonds”. In: Statistics and Operations Research Transactions.

J7. Calvet, L., D. Wang, and A. A. Juan (submitted). “A simheuristic algorithm for the stochas-
tic multi-depot vehicle routing problem”. In: International Transactions in Operational
Research.

J8. Doering, J., L. Calvet, A. Fito, R. Kizys, and A. A. Juan (submitted). “Metaheuristics for
realistic portfolio optimization and risk management: Current state and future trends”. In:
Annals of Operations Research.

J9. Doering, J., L. Calvet, R. Kizys, A. Fito, and A. A. Juan (submitted). “Rich portfolio
optimization with stocks and individual commodity futures contracts”. In: OR Spectrum.

J10. Hatami, S., L. Calvet, V. Fernandez-Viagas, J. Framinan, and A. A. Juan (submit-
ted). “Combining simulation with metaheuristics in distributed scheduling problems with
stochastic processing times”. In: International Transactions in Operational Research.

J11. Kizys, R., A. A. Juan, B. Sawik, and L. Calvet (submitted). “ARPO: An iterated local
search algorithm for portfolio optimization under realistic constraints”. In: Quantitative
Finance.

J12. Reyes, L., L. Calvet, C. Talens, A. A. Juan, and J. Faulin (submitted). “Sustainable Urban
Freight Transport: a multi-depot vehicle routing problem considering different cost dimen-
sions”. In: Journal of Heuristics.

Indexed in Elsevier-Scopus
J13. Calvet, L. and A. A. Juan (2015). “Educational data mining and e-learning analytics: An

overview of goals, quantitative methods, and time-line evolution”. In: International Journal
of Educational Technology in Higher Education 12.3 (indexed in ISI ESCI, 2014 SJR =

0.215, Q3).

J14. Calvet, L., A. A. Juan, R. Kizys, and J. De Armas (2016). “A SimILS-based methodology
for a portfolio optimization problem with stochastic returns”. In: Springer Lecture Notes in
Business Information Processing 254, pp. 3–11 (indexed in ISI Web of Science and Scopus,
2014 SJR = 0.244, Q3).

J15. Calvet, L., A. Pages, O. Travesset, and A. A. Juan (2016). “A simheuristic for the hetero-
geneous site-dependent asymmetric VRP with stochastic demands”. In: Springer Lecture
Notes in Computer Science / LNAI 9868, pp. 408-417 (indexed in ISI Web of Science and
Scopus, 2014 SJR = 0.339, Q2).

J16. De Armas, J., L. Calvet, G. Franco, M. Lopeman, and A. A. Juan (2016). “Minimizing
trigger error in parametric earthquake catastrophe bonds via statistical approaches”. In:
Springer Lecture Notes in Business Information Processing 254, pp. 167-175 (indexed in
ISI Web of Science and Scopus, 2014 SJR = 0.244, Q3).

J17. Doering, J., A. A. Juan, R. Kizys, A. Fito, and L. Calvet (2016). “Solving realistic portfolio
optimization problems via metaheuristics: A survey and an example”. In: Springer Lecture
Notes in Business Information Processing 254, pp. 22–30 (indexed in ISI Web of Science
and Scopus, 2014 SJR = 0.244, Q3).

11.2 Conferences and seminars
Some works have been presented in conferences or seminars:
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Indexed in ISI-WOS or Elsevier-Scopus
Co1. Calvet, L., V. Fernandez-Viagas, J. Framinan, and A. A. Juan (2016). “Combining sim-

ulation with metaheuristics in distributed scheduling problems with stochastic processing
times”. In: Proceedings of the 2016 Winter Simulation Conference. Washington D. C.,
USA, pp. 2347–2357.

Peer-review conferences
Co2. Calvet, L., J. Doering, R. Kizys, A. A. Juan, and A. Fito (2016). “The stochastic port-

folio optimization problem: A formulation and a hybrid methodology”. In: OR58 Annual
Conference. Portsmouth, UK, pp. 127–128.

Co3. Calvet, L., A. A. Juan, and N. Schefers (2015). “Solving the multi-depot vehicle routing
problem considering uncertainty and risk factors”. In: Proceedings of the ICRA6 / Risk 2015
Int. Conference. Barcelona, Spain, pp. 187-194.

Co4. Calvet, L., A. A. Juan, and C. Serrat (2015). “Técnicas estadísticas aplicadas a la cali-
bración de parámetros de metaheurísticas”. In: Proceedings of the X Congreso Español de
Metaheurísticas, Algoritmos Evolutivos y Bioinspirados. Mérida, Spain, pp. 409–416.

Co5. Calvet, L., M. Mateo, A. A. Juan, and C. Laroque (2016). “Optimizing starting times in par-
allel multiple production lines with stochastic processing times and a shared deadline”. In:
Proceedings of the 15th International Conference on Project Management and Scheduling.
Valencia, Spain.

Co6. Juan, A. A., J. Faulin, and L. Calvet (2015). “Supporting real-time decision-making in
logistics and transportation by combining simulation with heuristics”. In: Proceedings of
the 12th Int. Multidisciplinary Modeling & Simulation Conf. Bergeggi, Italy, pp. 35–38.

Co7. Ruiz, X., L. Calvet, J. Ferrarons, and A. A. Juan (2015). “SmartMonkey: a web browser
tool for solving combinatorial optimization problems in real time”. In: Proceedings of the
2015 Int. Conf. of the Forum for Interdisciplinary Mathematics. Barcelona, Spain.

Other international conferences
Co8. Calvet, L., A. Ferrer, A. A. Juan, and I. Gomes (2015). “Market segmentation issues in the

multi-depot vehicle routing problem”. In: EURO 2015. Glasgow, UK.

Co9. Doering, J., L. Calvet, R. Kizys, A. Fito, and A. A. Juan (2016). “Rich portfolio optimiza-
tion with stocks and individual commodity futures contracts”. In: Portsmouth-Fordham
Conference on Banking & Finance. Portsmouth, UK.

Co10. Juan, A. A., J. Faulin, L. Calvet, A. Pages, and C. Quintero (2015). “Applications of
simheuristics in transportation and logistics”. In: EURO 2015. Glasgow, UK.

Seminars
S1. Calvet, L. (2015). “Hybridizing machine learning and metaheuristics”. YouBRA Work-

shop. Barcelona, Spain.

S2. Calvet, L. (2015). “Neural networks for routing problems: review and challenges”. Green
COOP-CYTED Workshop. Madrid, Spain.
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for the single-period stochastic inventory-routing problem with stock-outs”. In: Simulation
Modelling Practice and Theory 46, pp. 40–52.

Juan, A. A., J. Faulin, J. Caceres, B. Barrios, and E. Martinez (2014c). “A successive approxima-
tions method for the heterogeneous vehicle routing problem: Analyzing different fleet config-
urations”. In: European Journal of Industrial Engineering 8.6, pp. 762–788.

Juan, A. A., J. Cáceres-Cruz, S. Gonzalez, D. Riera, and B. Barrios (2014d). “Biased random-
ization of classical heuristics”. In: Encyclopedia of Business Analytics and Optimization, IGI
Global 1, pp. 314–324.

Juan, A. A., J. Faulin, S. Grasman, M. Rabe, and G. Figueira (2015a). “A review of simheuris-
tics: extending metaheuristics to deal with stochastic optimization problems”. In: Operations
Research Perspectives 2, pp. 62–72.

Juan, A. A., J. Faulin, L. Calvet, A. Pages, and C. Quintero (2015b). “Applications of simheuristics
in transportation and logistics”. In: EURO 2015. Glasgow, UK.

Juan, A. A., I. Pascual, D. Guimarans, and B. Barrios (2015c). “Combining biased randomization
with iterated local search for solving the multidepot vehicle routing problem”. In: International
Transactions in Operational Research 22.4, pp. 647–667.

Juan, A. A., J. Faulin, and L. Calvet (2015d). “Supporting real-time decision-making in logistics
and transportation by combining simulation with heuristics”. In: Proceedings of the 12th Int.
Multidisciplinary Modeling & Simulation Conf. Bergeggi, Italy, pp. 35–38.
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Abstract
This paper reviews the existing literature on the combination of metaheuristics with machine learn-
ing methods and then introduces the concept of learnheuristics, a novel type of hybrid algorithms.
Learnheuristics can be used to solve combinatorial optimization problems with dynamic inputs
(COPDIs). In these COPDIs, the problem inputs (elements either located in the objective function
or in the constraints set) are not fixed in advance as usual. On the contrary, they might vary in a
predictable (non-random) way as the solution is partially built according to some heuristic-based
iterative process. For instance, a consumer’s willingness to spend on a specific product might
change as the availability of this product decreases and its price rises. Thus, these inputs might
take different values depending on the current solution configuration. These variations in the in-
puts might require from a coordination between the learning mechanism and the metaheuristic
algorithm: at each iteration, the learning method updates the inputs model used by the metaheuris-
tic.

Keywords: Hybrid Algorithms, Combinatorial Optimization, Metaheuristics, Machine Learn-
ing, Dynamic Inputs.

1. Introduction
Operations Research (OR) is a well-established field with a huge and active research community.
One of its main goals is to support decision-making processes in complex scenarios, i.e., providing
optimal (or near-optimal) solutions to combinatorial optimization problems (COPs) defined by a
given objective function and a set of realistic constraints. The number of applications is immense,
e.g.: transportation and logistics, finance, production, telecommunication systems, etc. A notice-
able part of the efforts developed by the OR community has focused on developing exact methods
to find optimal solutions to a wide range of COPs. When dealing with NP-hard COPs, this usu-
ally requires simplifying somewhat the model and/or addressing only small- and medium-sized
instances to avoid incurring in prohibitive computing times. Another noticeable part of the efforts
has been invested in developing heuristic and metaheuristic approaches that cannot guarantee opti-
mality of the provided solutions but are usually more powerful in terms of the size of the instances
they can solve in reasonable computing times (Talbi, 2009). Additionally, these approximated
methods are quite flexible, which makes them suitable for tackling more realistic and rich mod-
els. While heuristics are simple and fast procedures based on the specific COP being addressed,
metaheuristics are general templates that can be easily adapted to a huge variety of COPs.

The OR community shows a growing interest in coping with increasingly challenging COPs,
such as stochastic COPs (in which some of the problem inputs are random variables) and dynamic
COPs (in which some of the problem inputs evolve over time). This might be due to several
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factors, including: (i) the rich characteristics of real-life problems frequently faced by modern
companies in sectors such as logistics and transportation (Caceres et al., 2014); (ii) the technolog-
ical development; (iii) the availability of vast amounts of Internet-based data; and (iv) a shift to
a more data-driven culture. During the last years, hybrid approaches have been extensively em-
ployed due to their success when dealing with realistic problems, among others: those combining
different metaheuristics (Talbi, 2013), matheuristics (i.e., metaheuristics combined with mathe-
matical programming) (Maniezzo et al., 2009), and simheuristics (i.e., metaheuristics combined
with simulation) (Juan et al., 2015a).

The hybridization of metaheuristics with machine learning techniques is an emerging research
field in the OR community. In this context, the main contributions of this paper are: (i) providing a
survey on the existing works combining metaheuristics with machine learning techniques, as well
as a classification of the most relevant ones; and (ii) proposing a novel ‘learnheuristic’ framework,
combining a heuristic-based constructive procedure with machine learning, to deal with a special
kind of COPs with dynamic inputs (COPDIs). In these COPDIs, the inputs are deterministic (i.e.,
non-stochastic) but, instead of being fixed in advance, they vary according to the structure of the
solution (i.e., they change as the solution is being constructed following a heuristic-based iterative
process). In this sense, these COPDIs represent an extension of the classical deterministic COPs
in which all inputs are given in advance and are immutable. An example of such a COPDI is given
next for illustrative purposes. Suppose there is a set of heterogeneous radio access technologies
(RATs) that provide pay-per-use services to a group of users. Each user has to be assigned to just
one RAT, and each RAT can serve only a limited number of users. Being a pay-per-use service,
the goal here is to maximize the total benefit, which depends on the customers’ demands. Several
scenarios may be described based on the nature of the customers’ demands (Figure A.1): (i) they
are deterministic, static (do not change over time), and can be computed or accurately estimated;
(ii) they contain some degree of uncertainty but can be modeled as random variables or using fuzzy
techniques; and (iii) they are dynamic in the sense that they depend on the solution characteristics
(e.g., the number of users connected to the same RAT, which has an effect on the service quality
and, therefore, on the customers’ demands of that service).

Figure A.1: Different scenarios according to the nature of the inputs.

While the first case corresponds to a classical deterministic COP, the second case intro-
duces a level of uncertainty that usually requires the use of stochastic programming, simulation-
optimization, or fuzzy methods. In this paper we focus on the third case, and propose the use of
learnheuristic algorithms, in which the learning mechanism updates the input values as the solu-
tion is iteratively constructed using the heuristic logic (Calvet et al., 2016d). Notice, however,
that not all the metaheuristics rely on constructive procedures to generate new solutions. Thus, for
instance, evolutionary algorithms or scatter search algorithms typically generate new solutions by
simply combining already existing solutions, which might have been generated at random.

The rest of the paper is structured as follows: Section 2 provides a brief introduction to meta-
heuristics and machine learning, and proposes a classification of hybrid works combining both
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methodologies. Section 3 presents an overview of works in which machine learning techniques
have been used to enhance the performance of metaheuristics, while Section 4 reviews publica-
tions in which metaheuristics have been used to improve machine learning methods. Section 5
provides a formal description of the COPDIs we aim to solve and explains the main ideas behind
our learnheuristics solving framework. Section 6 discusses potential applications of learnheuristics
in different fields. Section 7 provides a numerical experiment that illustrates the use of learnheuris-
tics in a vehicle routing problem with dynamic demands. Finally, Section 8 summarizes the main
conclusions and identifies some future research lines.

2. Metaheuristics and machine learning
Definitions and evolution of the number of works

Metaheuristics represent a heterogeneous family of algorithms designed to solve a high number
of complex COPs without having to deeply adapt them to each problem. They do not guarantee
optimal solutions, but may provide near-optimal ones in a reasonable amount of computing time.
A number of them are nature-inspired, include stochastic components, and have several parame-
ters that must be fine-tuned and may interact (Boussaïd et al., 2013). Figure A.2 includes some of
the most popular metaheuristics (first works are cited): ant colony optimization (ACO) (Dorigo,
1992), artificial immune systems (AIS) (Farmer et al., 1986), genetic algorithms (GA) (Holland,
1962), greedy randomized adaptive search procedure (GRASP) (Feo and Resende, 1989), iterated
local search (ILS) (Martin et al., 1992), particle swarm optimization (PSO) (Kennedy and Eber-
hart, 1995), scatter search (SS) (Glover, 1977), simulated annealing (SA) (Kirkpatrick, 1984), tabu
search (TS) (Glover, 1986) and variable neighborhood search (VNS) (Mladenovic, 1995). They
are grouped according to the following criteria: (i) single-solution versus population-based meta-
heuristics (SMs and PMs, respectively); (ii) whether they use memory; and (iii) whether they are
nature-inspired. The success of the first implementations of metaheuristics aroused the interest of
journals in new versions of these methods, which increased the number of authors exploring this
topic. Unfortunately, some publications add only marginal contributions to the already existing
frameworks (Sörensen, 2015). As stated in Feo and Resende (1995), the effectiveness of a given
metaheuristic depends upon its ability to adapt to a particular instance problem, avoid entrap-
ment at local optima, and exploit the structure of the problem. In addition, the authors highlight
the potential benefit of restart procedures, controlled randomization, efficient data structures, and
pre-processing. A few fields where they are commonly applied are: logistics and transportation,
telecommunications, production and scheduling, bioinformatics, finance, smart cities, cryptology,
and nutrition, among many others. The reader interested in a complete review of metaheuristics is
referred to Gendreau and Potvin (2010).

Figure A.2: Main metaheuristics grouped by different criteria. Circles’ size is
proportional to the number of Google Scholar indexed articles, from 2006 to
2015, that include the complete name of the specific metaheuristic and “meta-

heuristics” or “heuristics” in the article (March 15, 2016).

Machine learning is a subfield of computer science and artificial intelligence that encompasses
a number of algorithms which learn from a dataset composed of examples or observations and are
capable of making predictions (Barber, 2012; Lantz, 2013). There are three styles of learning:
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supervised, unsupervised, and semi-supervised. The first relies on a set of procedures for func-
tion approximation. Based on a database of labelled samples, the goal is to predict a response
variable (or output) from the explanatory variables (or inputs). Supervised methods are used in
the following tasks: regression, classification, dimension reduction, time-series prediction, and
reinforcement learning. In contrast, unsupervised learning does not include any response variable,
and attempts to find compact descriptions of the data. The main tasks are: anomaly detection,
dimension reduction, time-series modeling, and latent variable models. Finally, semi-supervised
learning is similar to supervised learning but, in this case, not all the examples have associated an
output value. Semi-supervised methods are very useful in problems where large amounts of unla-
belled samples are available, and only a few of them can be manually labelled. Typical examples
are visual object recognition, where milions of untagged images are publicly available, or natu-
ral language processing. The most popular applications of machine learning techniques include
search engines, robotics, computer vision, finance, bioinformatics, finance, insurance, etc.

According to data from Google Scholar, both fields may be considered young (Figure A.3).
Although the use of machine learning techniques is much more extended, metaheuristics are more
employed in the context of COPs. An example of machine learning applied to solve these problems
is the work developed in neural networks for solving COPs, mainly in vehicle routing problems
(Potvin and Smith, 2003; Smith, 1999).

Figure A.3: Evolution of the number of works in Google Scholar (March 15,
2016). The number of works from the fields of metaheuristics and statistics or

data mining were 1880 and 785 in 2015, respectively.

Reviews on the combination of metaheuristics and machine learning

The existing literature analyzing the hybridization of metaheuristics and machine learning may be
mainly divided into two groups: works were machine learning is employed to enhance metaheuris-
tics, and those in which metaheuristics are used to improve the performance of machine learning
techniques.

Regarding the first group, there are several works providing overviews from different points
of view. For instance, the emergence of hybrid metaheuristics is studied in Talbi (2013), which
includes the combination of metaheuristics and: (i) complementary metaheuristics; (ii) exact meth-
ods; (iii) constraint programming; or (iv) machine learning. The author proposes a general two-
level classification. In this sense, it is possible to distinguish between low-level hybridizations, in
which a given internal function of a metaheuristic is replaced by another optimization method, and
high-level hybridizations, where the different optimization methods are self-contained. In a sec-
ond phase, these algorithms can be further classified into relay or teamwork hybridization. While
in the former the techniques are applied one after another (each using the output of the previous
as its input), the latter represents cooperative optimization models. In Jourdan et al. (2006), au-
thors describe applications of data mining techniques to help metaheuristics. Finally, a survey
on the integration of machine learning in evolutionary computation can be found in Zhang et al.
(2011). The work presented in Corne et al. (2012) gathers the synergies between OR and data
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FigureA.4: Classification of works combining metaheuristics and machine learn-
ing.

mining, remarking the growing importance of multi-objective approaches. The authors highlight
three benefits of employing data mining in OR: (i) increasing the quality of the results of OR al-
gorithms; (ii) speeding up OR algorithms; and (iii) selecting an OR algorithm based on instance
properties.

Our work builds on the classification in Jourdan et al. (2006) and extends it by proposing more
categories and analyzing a higher number of works. In our view, the classification in Jourdan et al.
(2006) is more suitable for works where machine learning is employed to enhance metaheuristics
than the one presented in Talbi (2013), which was designed to be more general and to include other
hybridizations. In particular, works are classified into specifically-located hybridizations (where
machine learning is applied in a specific procedure) and global hybridizations (in which machine
learning has a higher effect on the metaheuristic design). As part of the first group, the following
categories are defined: parameter fine-tuning, initialization, evaluation, population management,
operators, and local search. On the other hand, the second one includes: reduction of search space,
algorithm selection, hyperheuristics, cooperative strategies, and new types of metaheuristics.

Similarly, there are a few reviews on works where metaheuristics are used to improve the per-
formance of machine learning techniques. For instance, Freitas (2008) focuses on two evolution-
ary algorithms (EAs), namely GAs and genetic programming (GP), and discusses their application
to discovery of classification rules, clustering, attribute selection and attribute construction. Corne
et al. (2012) analyzes the role of OR in data mining discussing the relevance of exact methods,
heuristics and metaheuristics in supervised classification, unsupervised classification, rule mining
and feature selection. More recently, Dhaenens and Jourdan (2016) provides an overview of the
use of optimization in Big Data, focusing on metaheuristics. The book introduces the role of meta-
heuristics in clustering, association rules, classification, and feature selection in classification. It
also includes a chapter listing all available frameworks for metaheuristics, data mining, and the
combination of both. Building on these reviews, we arrange the literature works into the following
categories: classification, regression, clustering, and rule mining.

Figure A.4 shows the classification scheme we use. Some relevant and representative works,
both considering machine learning for enhancing metaheuristics and metaheuristics in machine
learning, are reviewed in Sections 3 and 4, respectively.
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3. Using machine learning for enhancing metaheuristics
In order to improve clarity, the review on how machine learning techniques have been used to
enhance metaheuristics has been divided into two sub-sections: the first one analyzes local-level
hybridizations while the second one discusses global-level hybridizations. Each of these, in turn,
have been classified by the corresponding topic.

Specifically-located hybridizations

The fine-tuning of metaheuristic parameters is known to have a significant effect on the algorithm
performance. However, this issue is not always properly addressed and many researchers still con-
tinue selecting parameter values by performing exhaustive testing or copying values recommended
for similar instances or problems.

Basically, there are three approaches:

1. Parameter control strategies (De Jong, 2007) apply a dynamic fine-tuning of the parameters
by controlling and adapting the parameter values during the solving of an instance. The
main types of control are: (i) deterministic, which modifies the parameter values by some
deterministic rule; and (ii) adaptive, which employs feedback from the search. For instance,
there are works relying on fuzzy logic (Jeong et al., 2009), support vector machine (SVM)
(Zennaki and Ech-Cherif, 2010), and linear and SVM regression (Lessmann et al., 2011).

2. Parameter tuning strategies assume that the algorithms are robust enough to provide good
results for a set of instances of the same problem with a fixed set of parameter values. Fre-
quently, researchers focus on a subset of the instances and analyze their fitness landscapes.
Popular techniques are: response surface (Gunawan et al., 2013), logistic regression (Ramos
et al., 2005), and tree-based regression (Bartz-Beielstein et al., 2004).

3. Instance-specific parameter tuning strategies present characteristics from the previous ap-
proaches. While the parameter values are constant as in the second approach, they are
specific for each instance as in the first. These strategies employ a learning mechanism able
to return recommended sets of parameter values given a number of instance features. Tech-
niques employed are: Bayesian networks (Pavón et al., 2009), case-based reasoning (CBR)
(Pereira et al., 2013), fuzzy logic (Ries et al., 2012), linear regression (Caserta and Rico,
2009), and neural networks (Dobslaw, 2010).

A highly popular approach related to the first category is known as reactive search (Battiti
and Brunato, 2010). It proposes the integration of sub-symbolic machine learning techniques into
heuristics, in order to allow the algorithm for self-tuning.

Typically, metaheuristics generate their initial solutions randomly, using design of experi-
ments (Leung and Wang, 2001), or via a fast heuristic. There are also works employing machine
learning techniques. For instance, some of them apply CBR to initialize GAs (Ramsey and Grefen-
stette, 1993; Louis and McDonnell, 2004; Li et al., 2011c), while others explore the use of Hopfield
neural networks (Yalcinoz and Altun, 2001). In De Lima et al. (2008) the authors suggest using the
Q-learning algorithm in the constructive phase of a GRASP and a reactive GRASP metaheuristics.
In this line, the hybridization of data mining and the GRASP metaheuristic is discussed in Santos
et al. (2008).

In real-life applications it is common to find objective functions and constraints that are com-
putationally expensive to evaluate (Lim et al., 2010; Tenne and Goh, 2010). In these cases, it
is required to build an approximation model to assess solutions employing polynomial regres-
sion (Zhou et al., 2005), neural networks (Hunger and Huttner, 1999; Adra et al., 2005; Pathak
et al., 2008), SVM (Yang et al., 2009), Markov fitness models (Brownlee et al., 2010), kriging
(Díaz-Manríquez et al., 2011) or radial basis functions (Regis, 2014), for example. Some authors
combine their use with that of real objective functions (Rasheed and Hirsh, 2000; Zhou and Zhang,
2010). An interesting survey of model approximation in evolutionary computation may be found
in Jin (2005). Another option to reduce evaluation costs is to evaluate only representative solu-
tions. Following this idea, in Yoo and Cho (2004) the authors apply fuzzy clustering. Similarly,
in Jin and Sendhoff (2004) the authors suggest using clustering techniques and neural networks
ensembles.

Regarding population management, many authors attempt to extract information from solu-
tions already visited and employ it to build new ones, aiming to explore more promising search
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spaces. A number of works rely on the Apriori algorithm (to identify interesting subsolutions)
(Dalboni et al., 2003; Santos et al., 2005; Ribeiro et al., 2006; Santos et al., 2006) or on CBR
(Louis, 2003). Another important issue in PMs is the population diversity, since maintaining it
may lead to better performances. The most common technique for promoting diversity is cluster-
ing analysis. In Streichert et al. (2003), for instance, individuals in a GA are separated in different
sub-populations based on their features and only those in the same cluster compete for survival.
The selection operator is applied independently to each cluster. In contrast, in Aichholzer et al.
(2002) the authors allow interactions among sub-populations of an evolutionary strategy when se-
lecting candidates for recombination. Other works relying on clustering analysis, but in the context
of multi-objective metaheuristics, are Pulido and Coello (2004) and Park and Lee (2009).

The search of a metaheuristic may be improved by introducing knowledge in operators such
as mutation or crossover operators in PMs. For example, Handa et al. (2002) propose a coevo-
lutionary GA that incorporates an extraction mechanism to be employed in the crossover. Two
classification algorithms are tested: C4.5 and CN2. In Michalski (2000), the authors design a
class of evolutionary computation processes called learnable evolution model (LEM), which uses
symbolic learning methods to create rules that explain why certain individuals are superior to oth-
ers. These rules are then employed to create new populations by avoiding past failures, using
recommendations or generating variants. In Jourdan et al. (2005), this class is extended to address
multi-objective problems seeking rules to identify why some individuals dominate others.

Some machine learning techniques have been used as local searches. For instance, Gaspar-
Cunha and Vieira (2004) employ a multi-objective EA combined with an inverse neural network.
This neural network is a local search aiming to discover better individuals from previous gen-
erations. In particular, it is trained considering parameters and criteria as inputs and outputs,
respectively. First, the criteria obtained from individuals of the present generation are slightly
modified. Then, the parameters for the new individuals are obtained using the neural network in a
reverse way. The authors test their approach on a set of benchmark bi-objective functions. A sim-
ilar approach is suggested in Adra et al. (2005) to be applied to an aircraft control system design
application.

Global hybridizations

A few works have attempted to reduce the search space in order to make more effective and effi-
cient searches. Machine learning techniques used are: clustering techniques (Hu and Huang, 2004;
Senjyu et al., 2005; Barreto et al., 2007; Adibi and Shahrabi, 2013), neural networks (ChangYoon
and Way, 2001; Marim et al., 2003) and principal component analysis (Auger and Hansen, 2005).

The algorithm selection problem (ASP) aims to predict the algorithm from a portfolio that will
perform best, employing a given set of instance features. The framework for this problem was ini-
tially proposed by Rice (1976), where it was applied to partial differential equation solvers. More
recently, Smith-Miles (2009) presents it in the context of optimization algorithms. There are four
basic elements in the framework: (i) the problem space P represents the set of problem instances;
(ii) the feature space F includes instance characteristics; (iii) the algorithm space A is the portfolio
of available algorithms; and (iv) the performance space Y is the mapping of each algorithm to the
performance metrics. Accordingly, the ASP can be stated as follows (Smith-Miles et al., 2014):
given a problem instance x ∈ P with feature vector f (x) ∈ F, the ASP searches the selection
mapping S ( f (x)) into algorithm space A such that the selected algorithm α ∈ A maximizes the
performance mapping y(α, x) ∈ Y . Thus, for instance, Smith (2008) develops a methodology to
predict the performance of metaheuristics and acquire insights into the relation between search
space characteristics of an instance and algorithm performance. The author tests the ILS and the
robust TS metaheuristics, as well as the max-min ant system for solving the quadratic assign-
ment problem. A neural network implementing genetic adaptive smoothing parameter selection
is trained to predict which algorithm will perform best. Also, in Kanda et al. (2011), an approach
is designed to select the best optimization method for solving a given travelling salesman prob-
lem (TSP) instance. Initially, 14 TSP properties and the performance values obtained with each
metaheuristic analyzed (GRASP, TS, SA and GA) are stored. Then, a rank of metaheuristics is
determined by using a multi-layer perceptron network. Several network architectures are assessed.
In Smith-Miles et al. (2014), the authors construct a methodology to compare the strengths and
weaknesses of a set of optimization algorithms. First, the instance space is generated. This step
includes selecting a subset of features to obtain a two-dimensional instance space (for a better
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visualization) and provide a good separation of easy and hard instances. Afterwards, classification
techniques are used to identify the regions where an algorithm performs well or poorly. Finally, an
analysis of the algorithmic power is performed considering the size and location of each algorithm
footprint. The experiment is carried out with 8 algorithms for solving the graph coloring problem.

According to Burke et al. (2010), hyperheuristics may be described as search methods or
learning mechanisms for selecting or generating heuristics to solve computational search prob-
lems. Typically, these methods do not aim to obtain better results than problem-specific meta-
heuristics, but to be able to automate the design of heuristic methods and/or deal with a wide range
of problems. The authors propose a basic classification, which takes into account the following
dimensions: (i) the nature of the heuristic search space (either heuristic selection or generation);
and (ii) the feedback, since hyperheuristics may learn (following online or offline learning strate-
gies) or not. Whereas online learning refers to methods that learn during the solving of a problem
instance, offline learning methods try to extract information from a set of training instances to be
applied for solving new instances. A comprehensive survey on hyper-heuristics may be found in
Burke et al. (2013). In Thabtah and Cowling (2008), the authors explore the potential of associative
classifiers in a hyperheuristic approach for solving the training scheduling problem. The classi-
fiers have to choose the low-level heuristic (which represents a given local search neighborhood)
to employ at each step while constructing a solution. Reinforcement learning is highly popular
in methodologies selecting heuristics employing an online learning strategy (e.g., see Berberoğlu
and Uyar, 2010). In this case, each heuristic has associated a score that determines the probability
of being selected. These scores are updated according to the intermediate solutions obtained with
each heuristic. There are also a number of works employing regression techniques. For instance,
related to the evaluation category, Li et al. (2011a) suggest employing neural networks and logis-
tic regression to predict objective function values of solutions in a hyperheuristic search. It is also
worth mentioning the approach described in Burke et al. (2006), where CBR is used for selecting
heuristics when addressing course and exam timetabling problems. In Ortiz-Bayliss et al. (2013),
the authors address a constraint satisfaction problem, where the order in which the variables are
selected affects the complexity of the search. The authors present a hyperheuristic based on a lo-
gistic regression model that decides which variable ordering heuristic should be applied given the
features of an instance at different steps of the search. In Asta and Ozcan (2014) an apprenticeship
learning hyperheuristic is proposed for vehicle routing. Taking a state-of-the-art hyperheuristic
as an expert, the authors follow a learning approach that yields various classifiers, which capture
different actions that the expert performs during the search. While this approach relies on a C4.5
algorithm, in Tyasnurita et al. (2015) it is improved by using a multilayer perceptron. Another
approach is presented in Asta et al. (2016), where a tensor-based online learning selection hy-
perheuristic is designed for nurse rostering. The proposed approach consists of the consecutive
iteration of four stages: during the first and second stage, two tensors are constructed considering
different heuristic selection and move acceptance methods; at the end of the second stage, each
tensor is subjected to factorization and, using the information of both tensors, the heuristic space
is partitioned; the third is a parameter control phase for the heuristics; and the final stage performs
the search switching between heuristics periodically, using appropriate heuristic parameter values.

During the last decades, a new trend in optimization has emerged as a consequence of the
technological development based on cooperative strategies. It consists in combining several al-
gorithms/agents to produce a hybrid strategy in which they cooperate in parallel or sequentially.
Communication among them can be either many-to-many (direct) or memory-based (indirect).
Agents may share partial or complete solutions and models, among others. It is broadly accepted
that strategies based on agents with unrestricted access to shared information may experiment
premature convergence. Commonly, there is an agent that coordinates the search of the others,
organizing the communication. This strategy attempts to develop a robust methodology that pro-
vides high-quality solutions by exploiting the specific advantages of each algorithm. For exam-
ple, Cadenas et al. (2009) develop a centralized hybrid metaheuristic cooperative strategy, where
knowledge is incorporated into the coordinator agent through fuzzy rules. These rules have been
defined from a knowledge extraction process applied to the results obtained by each metaheuristic.
Then, the coordinator agent collects information and sends orders to each solver agent that will
affect its search behaviour (such as re-initiate the search with a specific initial solution, or change
the parameter values). The strategy is tested on the knapsack problem, employing a TS, a SA, and
a GA. In Asta (2015), the author describes an approach to deal with the permutation flow shop
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scheduling problem (PFSP), where a set of agents run in parallel, each applying a given meta-
heuristic. The best solutions are stored and employed to form a tensor. This tensor is factorized
and the pattern obtained is sent to all agents, which will use it to try to build better solutions. In
Martin et al. (2016), a cooperative strategy relying on different metaheuristic / local search com-
binations is put forward. The architecture makes use of two types of agents: the launcher and the
metaheuristic agent. The launcher conducts the following tasks: queue instances, configure other
agents and gather solutions. Metaheuristic agents execute one of the metaheuristic / local search
heuristic combinations. Each of them continuously adapts itself according to a cooperation pro-
tocol based on reinforcement learning and pattern matching. This proposal is tested on the PFSP
and the capacitated vehicle routing problem.

There are several new metaheuristics based on learning procedures. Most rely on the fact that
a set of pseudo-optimal solutions may be considered a sample drawn from an unknown probability
distribution. This distribution may be estimated by employing a selected set of promising solutions
and used to generate new solutions. A review of these metaheuristics, called estimation of distri-
bution algorithms (EDAs), can be found in Pelikan et al. (2002). Typically, authors employ these
algorithms using fixed-length strings over a finite alphabet to represent solutions. They may be
classified into three groups depending on whether no interactions are considered, or only pairwise
or multiple ones. From the first group, the most popular are: the population-based incremen-
tal learning (PBIL) (Baluja, 1994), the compact genetic algorithm (cGA) (Harik, 1999), and the
univariate marginal distribution algorithm (UMDA) (Mühlenbein and Paass, 1996). Some well-
known algorithms assuming only pairwise interactions are: the mutual-information-maximizing
input clustering (MIMIC) (De Bonet et al., 1997) algorithm and the bivariate marginal distribution
algorithm (BMDA) (Pelikan and Mühlenbein, 1999). Considering multiple interactions, there are:
the extended compact genetic algorithm (ECGA) (Harik et al., 1999), the factorized distribution
algorithm (FDA) (Mühlenbein et al., 1999), and the Bayesian optimization algorithm (BOA) (Pe-
likan et al., 2000). These metaheuristics have been employed in a wide range of fields such as
routing (Euchi, 2014; Wang et al., 2015), scheduling (Ceberio et al., 2012), and nutrition (Gu-
mustekin et al., 2014).

4. Using metaheuristics to improve machine learning
Metaheuristics have been extensively employed to improve machine learning tasks. Briefly, we
review some of the most successful approaches in the supervised learning topic, both in classifica-
tion and regression, and in the unsupervised learning topic, including clustering and rule mining.

Classification is a popular problem in supervised learning, consisting in identifying to which
of a set of categories a new observation belongs, on the basis of a training set of data containing
observations whose category membership is known. In this context, metaheuristics have been
mainly applied for feature selection, feature extraction and parameter fine-tuning. In Escalante
et al. (2016) authors suggest that the bags of visual words algorithm could be improved when
non linear combinations of weighted features obtained with GP are considered. The approach
has successfully been applied to the object recognition field, learning both the weights of each
visual word (feature) and the non linear combination of them. Similar approaches have been
presented for large feature sets. Thus, Stein et al. (2005) employ GAs to select discriminant
features applied to intrusion detection using a decision trees classifier. Also studying classification
trees, Sörensen and Janssens (2003) implements a GA to generate a set of diverse trees, each
with a large explanatory power. In Fernández-Caballero et al. (2010), the authors present a multi-
classification algorithm relying on multi-layer perceptron neural network models. In order to
obtain high levels of sensitivity and accuracy (which may be conflicting measures), a Pareto-
based multi-objective optimization methodology based on a memetic EA is proposed. In Huang
and Wang (2006), the use of GAs is proposed to simultaneously optimize the parameters of the
SVM algorithm and perform a feature selection process. In Garrett et al. (2003), a GA performs
feature selection on electroencephalogram signals (EEG) applying non linear classifiers (SVM
and neural networks). Working on cancer diagnosis, García-Nieto et al. (2009) selects gene by
applying a GA combined with SVM. The approach focuses on sensitivity, specificity and number
of genes. A comparison between approaches with different criteria and one relying on the k-means
algorithm is put forward. In Yusta (2009) different metaheuristics are evaluated also in the context
of feature selection. The authors implement a TS, a memetic algorithm, a GRASP and a GA,
and compare their effectiveness with sequential forward feature selection. Different niching GAs
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for feature selection are proposed in Aguilera et al. (2007), which are applied to the design of
fuzzy rule-based classification systems. In Xue et al. (2012) two multi-objective PSO algorithms
are designed for feature selection, which aim to maximize the classification performance while
minimizing the number of features. They are compared against several conventional methods
and three well-known multi-objective EAs using the k-nearest neighbor algorithm as classifier. In
Candelieri (2011), the author employs a GA, a TS and an ACO for parameter fine-tuning of a
single classifier and classifiers ensemble optimization, working with SVM.

Regression aims to estimate the relationships among a response variable and one or more ex-
planatory variables, and has a wide range of applications. Typically, the use of machine learning
is related to the training of complex regression models. Neuroevolution is an emergent field which
employs EAs to train neural networks. Thus, Yao (1999) provides a literature review focusing on
elements evolved: connection weights, architectures, learning rules, and input features. In Stan-
ley and Miikkulainen (2002), the authors develop the neuroevolution of augmenting topologies
(NEAT) method, which evolves topologies and weights at the same time. They claim that its ef-
ficiency resides in: (i) employing a principled method of crossover of different topologies; (ii)
protecting structural innovation using speciation; and (iii) incrementally growing from minimal
structure. More recently, Turner and Miller (2014) has shown the benefits of optimizing each neu-
ron’s transfer function, creating heterogeneous networks. In a similar approach, Carvalho et al.
(2011) present a methodology to find the best architecture of a neural network using metaheuris-
tics. The authors tested the following ones: generalized extremal optimization, VNS, SA, and
canonical GA.

Clustering refers to grouping a set of objects in such a way that objects in the same group are
more similar to each other than to those in other groups. This vague definition encompasses a high
number of models. Centroid models are based on an NP-hard optimization problem (thus, only
approximated solving methods such as metaheuristics may be employed). In Das et al. (2009) dif-
ferential evolution algorithms are applied to clustering problems (single and multi-objective). In
Selim and Alsultan (1991) a TS metaheuristic is implemented to computationally deal with the non
convex optimization problem of the unsupervised clustering of data samples. Similarly, Shelokar
et al. (2004) use ACO to cluster objects, obtaining faster results in terms of the number of needed
operations (i.e., objective functions evaluations). Other authors use GAs for the same task (De
Jong et al., 1993; Chiou and Lan, 2001; Garai and Chaudhuri, 2004). In Marinakis et al. (2008),
a PSO metaheuristic is applied to the clustering problem, improving the results obtained using a
TS and classic unsupervised learning methods. In Govindarajan et al. (2013), the authors also use
a PSO metaheuristic to automatically cluster data from students in a learning management system
(LMS) to adapt teaching resources to specific students’ needs. Gene clustering is performed in
Banu and Andrews (2015), where a comparative study is presented based on the following meta-
heuristics: GA, PSO, cuckoo search and levy flight cuckoo search. More recently, Ferone et al.
(2016) present a GRASP metaheuristic for biclustering (i.e., considering both genes and condi-
tions) of gene expression data. A validation is completed with different synthetic datasets. The
reader can find more details in the applications of metaheuristics to unsupervised learning in the
surveys (Hruschka et al., 2009; Kurada et al., 2013).

Rule mining gathers methods for discovering relevant relations between variables in large
databases. For example, a hybrid approach is presented in Carvalho and Freitas (2002) for discov-
ering small-disjunct rules combining a decision tree algorithm (C4.5) and a GA. While the first is
employed for large-disjuncts rules, the metaheuristic works on small ones. This hybrid approach
achieves better predictive accuracy. In the book of Freitas (2002), in addition to present data min-
ing tasks and paradigms, the author describes the application of GAs and GP for rule discovery,
and EAs for generating fuzzy rules. After modeling association rules discovery as an optimiza-
tion problem, Khabzaoui et al. (2004) explore the use of a GA to obtain associations between
genes from DNA microarray data. Noticing that most approaches tend to seek only frequent rules,
Khabzaoui et al. (2008) propose a multi-objective approach combining a GA and exact methods
to discover interesting rules in large search spaces. A public micro-array database is employed
to carry out computational experiments. A multi-objective metaheuristic approach is proposed in
Ishida et al. (2009) to create rules and build a Pareto front considering the sensitivity and specificity
criteria. A GRASP with path-relinking is implemented.
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Figure A.5: Basic scheme of a learnheuristic framework.

5. Our learnheuristic framework for solving COPDIs
After reviewing in Sections 3 and 4 works where machine learning may enhance metaheuristics or
metaheuristics may improve machine learning, this section presents our learnheuristic framework.
It integrates both fields, making it possible to address a specific kind of COP.

As previously described, our learnheuristic framework aims at solving COPs in which the
model inputs (either located in the objective function or in the set of constraints) are not fixed in
advance. Instead, these inputs (e.g., customers’ demands, serving times, etc.) might vary in a
predictable way according to the current status of the partially-built solution at each iteration of
the constructive heuristic. More formally, these problems might be represented as follows:

Min C(s, IOF(s)) or, alternatively,
Max B(s, IOF(s)) (A.1)

subject to: Q j(s, IC(s)) ≤ r j ∀ j ∈ J (A.2)

s ∈ S (A.3)

where: (i) S refers to a discrete space of possible solutions s; (ii) C(s) represents a cost function
(alternatively, B(s) represents a benefits function); (iii) IOF(s) and IC(s) refer to inputs in the ob-
jective function or the constraints, respectively; and (iv) Equations 2 represent a set of constraints.
Thus, the aim of this type of problems is to minimize a function of costs (or, alternatively, max-
imize a function of benefits) subject to a number of constraints. The novel characteristic is that
inputs in the objective function and/or the constraints may depend on the solution structure, which
makes them to be dynamic as the partially-built solution evolves, and not fixed in advance. This is
a basic case of dynamic inputs, which could be easily extended to deal with multi-objective and/or
stochastic problems (Yang et al., 2013).

In order to deal with these COPDIs, we propose the use of a learnheuristic framework as
explained next in detail. Figure A.5 shows the basic scheme of this approach. Initially, historical
data on different system states (e.g., different assignments of users to RATs) and their associated
inputs (e.g., users’ demands observed for the corresponding assignments) are employed to generate
machine-learning predictive models (e.g., regression models, neural network models, etc.). Then,
these predictive models are iteratively used during the heuristic-based constructive process in order
to obtain updated estimates of the problem inputs (e.g., users’ demands) as the structure of the
solution (e.g., users-to-RAT assignment map) varies. Eventually, once the construction process
is finished, a complete solution is generated. Without the use of the learning mechanism, the
heuristic-based construction process will not take into account the variations in the inputs due to
changes in the solution structure, which will lead to sub-optimal solutions.

Pseudo-code 7 contains a more detailed description of the basic learnheuristic framework.
Notice that the main loop iterates over a list of elements that are provided by the constructive
heuristic (e.g., next user-to-RAT assignment). At each iteration, the algorithm evaluates the current
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status of the partially-built solution, makes use of the predictive model to update the problem
inputs according to this status, and follows the heuristic logic to take another solution-building
step based on the new problem inputs. This basic scheme could be extended in different ways,
e.g.: (i) by employing an online approach, where new inputs are used to update and improve the
predictive model; and (ii) by using an “assembled” or blending approach, in which several models
are built and then combined in order to generate the inputs estimates.

Algorithm 1 Basic scheme of learnheuristic algorithms.
Learnheuristics(historicalData, inputs)
% historicalData: historical data on different system states and their associated inputs
% inputs: problem instance

model←buildPredictiveModel(historicalData)
sol← empty
while (sol is not completely built) do % iterative learning-heuristic process

inputs←updateInputs(model, inputs, sol)
sol← nextHeuristicStep(inputs, sol)

end while
return sol

As any other heuristic procedure, the aforementioned learnheuristic approach can be integrated
into a more complex metaheuristic framework. For instance, it can be easily integrated into multi-
start, GRASP, or ILS frameworks. In order to do so, the learnheuristic algorithm may be combined
with biased-randomization strategies as the ones proposed in Juan et al. (2011b), which allow for
generating a number of high quality solutions from a deterministic heuristic (i.e., one that does not
include any random behavior, thus providing always the same solution, as opposed to a randomized
heuristic). Pseudo-code 15 gives an example of how this integration could be made in the case of
a simple multi-start framework.

Algorithm 2 Multi-start metaheuristic integrating a learnheuristic algorithm with biased-
randomization.
Multi-start(historicalData, inputs, distribution, maxTime)
% distribution: probability distribution and parameters for the biased-randomization process
% maxTime: maximum computing time allowed

initInputs← inputs % copy of initial inputs
elapsedTime← 0
initT ime← currentT ime
bestS ol← biasedRandLearnheuristic(historicalData, inputs, distribution)
inputs← initInputs % reset inputs
while (elapsedTime ≤ maxTime) do

newS ol← biasedRandLearnheuristic(historicalData, inputs, distribution)
newS ol← localSearch(newS ol)
if (cost(newS ol) ≤ cost(bestS ol)) then

bestS ol← newS ol
end if
inputs← initInputs % reset inputs
elapsedTime← currentTime−initT ime

end while
return bestS ol

5. Potential applications in different fields
This section provides a series of examples, belonging to different optimization areas, in which the
use of learnheuristics might facilitate the solving process of more realistic and rich models.

• Transportation: In the transportation area and, in particular, in vehicle and arc routing
problems, inputs such as the customers’ demands might be dynamic in the sense that they
might depend upon the delivery time and whether or not certain time-windows are satisfied.
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It is a function of the solution structure, e.g., the order in which the customers are visited, the
number and type of vehicles employed, etc. Similarly, the traveling times, which affect the
distribution cost, might also be dynamic and dependent on the solution structure, specially
in large cities where traffic jams occur frequently.

• Logistics: As discussed in Calvet et al. (2016d), the assignment of customers to certain
distribution centers might have a significant effect on the customers’ willingness to spend
(i.e., on their demands). Therefore, in realistic facility location problems and similar ones,
modelers might have to face dynamic inputs influenced by the shape of the solution (i.e.,
which facilities are open and how customers are assigned to them).

• Production: In scheduling problems, for instance, processing times of jobs into machines
might not be fixed but, instead, they may be a function of the order in which they are
processed by the machine (e.g., due to ‘fatigue’ issues or to breaks). A similar situation
can happen in project scheduling, where some working teams might be more efficient than
others and assigning them to a given sub-project could cause the delay of others.

• Finance: In problems such as portfolio optimization, the covariance matrix that measures
the risk associated with each pair of assets could also be a function of the current portfolio
structure (i.e., which other assets are already included and which percentage of investment
has been assigned to each of them). Likewise, the expected return for each asset might
depend on the current composition of the portfolio. This dynamic behavior of the inputs can
be extended to different risk-management problems which include some sort of portfolio
optimization.

6. A numerical experiment
This section describes a simple numerical experiment that illustrates the use of a learnheuristic
approach. We consider a vehicle routing problem in which each customer’s demand will depend on
the order in which the customer is visited. For each customer, its initial demand value is an upper-
bound of the real demand. In other words, this value will be valid only if the customer is visited
by a vehicle as the first stop in its route. Then, as the position in which the customer is visited
increases, the customer’s demand will be reduced (i.e., higher service times imply lower demands).
Therefore, if we use a constructive heuristic to solve the vehicle routing problem considering the
initial demands as fixed inputs, the solution will be overestimating the real demands. This, in turn,
will lead to higher costs, since the number of routes employed to satisfy the real demands will be
higher than necessary. Likewise, vehicles will be carrying more load than strictly required. On
the contrary, if we are able to forecast the real customers’ demands based on their position inside
a route, then each route might be able to cover additional customers and the total distance-based
costs will be reduced.

In order to compare both cases, the Clarke and Wright constructive heuristic (Clarke and
Wright, 1964) have been applied to a random instance belonging to the well known benchmarks for
the vehicle routing problem, particularly to the instance P-n70-k10 (http://neo.lcc.uma.es/vrp/wp-
content/data/instances/Augerat/P-VRP.zip). This instance consists of 12 vehicles with the same
capacity – 135 units – and 70 customers. The customers are scattered in an area with x axis rang-
ing from -34 to 30, and y axis ranging from -36 to 36. The depot is located at coordinates (0,0).
Initial customers demands range from 5 to 37.

On the one hand, we have considered fixed demands, i.e., the original demands provided by
the instance are used to obtain the solution through the heuristic in the standard way. On the
other hand, we have created a predictive model to calculate dynamic demands in order to apply
a learnheuristic algorithm following the scheme in Pseudo-code 7. In this case, for illustrative
purposes, the following linear regression model has been considered:

d = max{k1 · d0, d0 − k2 · d0 · (p − 1)} (A.4)

where d is the predicted demand of a given customer, d0 is the initial demand of the same
customer, k1 and k2 ∈ (0, 1), and p is the position order in the route of the aforementioned customer.
In particular, we have applied k1 = 0.20 and k2 = 0.05. The regression model aims at predicting a
customer’s demand taking into account the position in which the customer is served in the route,
so that the demand decreases as the position increases or until a certain demand lower-bound is
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Figure A.6: Routes obtained considering fixed demands.

Figure A.7: Routes obtained considering dynamic demands.

reached. Once we have the model, the heuristic starts the loop building routes until a solution is
obtained. Thus, each time the heuristic performs a step, incorporating a new customer in a route
or moving a customer from one route to another, the customer’s demand is predicted and updated
according to its new position in the corresponding route. As mentioned before, the total demand
in a route is limited by the capacity of the vehicle. Therefore, this prediction affects the next steps
that can be performed.

Accordingly, we have performed two experiments using these two versions of the Clarke and
Wright heuristic, both in its standard way and using the learnheuristic framework. When fixed
demands are considered, the best solution the constructive heuristic is able to obtain has an associ-
ated cost of 896.86, and it involves 11 routes (see Figure A.6). However, if demands are predicted
taking into account the delivery order, the same heuristic obtains a solution with 8 routes and a cost
of 791.26 (see Figure A.7). Therefore, the savings might be noticeable when dynamic demands
are considered.

7. Conclusions and future research
Real-life problems faced by companies are becoming increasingly complex. This can be due,
among other factors, to the existence of more competitive markets as well as to larger and more
interconnected supply chain systems. On the other hand, the technological development of the last
few decades allows the implementation of more powerful and faster algorithms, and the analysis
of huge amounts of diverse types of data. As a consequence, hybrid approaches for addressing
hard combinatorial optimization problems (COPs) are highly popular.
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This paper has focused on the combination of metaheuristics and machine learning. An
overview of the different approaches and a general classification have been provided. We have
presented a specific type of realistic COP which requires this hybridization. In particular, these
problems are characterized by inputs (located either in the objective function or the set of con-
straints) that are not fixed in advance, but may vary according to the solution characteristics.
Then we propose a new solving approach, learnheuristic algorithms, to cope with these dynamic
optimization problems. This approach relies on machine learning techniques to learn the relation-
ships between inputs and solution characteristics from historical data, and a constructive heuristic
(which may be embedded in a metaheuristic algorithm), to build a high quality solution using pre-
dictions. Different extensions of this approach can be considered, e.g.: (i) online version, in which
information regarding new inputs can be used to improve the predictive model and (ii) blended
version, in which predictions from several models are averaged, not necessarily giving the same
weight to each of them. Finally, some potential applications to a variety of fields have been also
pointed out.

From the work developed, we foresee several open research lines that could be explored: (i)
implement the methodologies proposed to specific fields/problems testing several techniques of
machine learning; (ii) extend the methodology to stochastic and/or multi-objective optimization
problems; and (iii) study the use of distributed and parallel computing paradigms to allow for
real-time decision-making.
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Abstract
In real-life logistics and distribution activities it is usual to face situations in which the distribution
of goods has to be made from multiple warehouses or depots to the final customers. This problem
is known as the Multi-Depot Vehicle Routing Problem (MDVRP), and it typically includes two
sequential and correlated stages: (a) the assignment map of customers to depots, and (b) the
corresponding design of the distribution routes. Most of the existing work in the literature has
focused on minimizing distance-based distribution costs while satisfying a number of capacity
constraints. However, no attention has been given so far to potential variations in demands due
to the fitness of the customer-depot mapping in the case of heterogeneous depots. In this paper,
we consider this realistic version of the problem in which the depots are heterogeneous –in terms
of their commercial offer– and customers show different willingness to consume depending on
how well the assigned depot fits their preferences. Thus, we assume that different customer-depot
assignment maps will lead to different customer-expenditure levels. As a consequence, market-
segmentation strategies need to be considered in order to increase sales and total income while
accounting for the distribution costs. To solve this extension of the MDVRP, we propose a hybrid
approach that combines statistical learning techniques with a metaheuristic framework. First, a set
of predictive models is generated from historical data. These statistical models allow estimating
the demand of any customer depending on the assigned depot. Then, the estimated expenditure of
each customer is included as part of an enriched objective function as a way to better guide the
stochastic local search inside the metaheuristic framework. A set of computational experiments
contribute to illustrate our approach and how the extended MDVRP considered here differs –in
terms of the proposed solutions– from the traditional one.

Keywords: Multi-Depot Vehicle Routing Problem, market segmentation applications, hybrid
algorithms, statistical learning

1. Introduction
In the distribution business, whenever a supplier operates from multiple warehouses or depots
it needs to decide two things: (a) which set of customers will be served from each depot, i.e.,
the customer-depot assignment map; and (b) the vehicle routing plan for the given assignment
map. This two-stage decision-making process is called the Multi-Depot Vehicle Routing Problem
(MDVRP). During the last decades, researchers have extensively addressed different variants of
this problem, among others those including heterogeneous fleets of vehicles, multiple products,
simultaneous pick-up and delivery, etc. (Caceres et al., 2014; Montoya-Torres et al., 2015). The
large majority of models aim at minimizing total distribution costs, which are often modeled by
means of a distance-based cost function. Minimization of distribution costs has a major impact
on the efficiency of any competitive shipping company. However, following the trend to consider
richer and more realistic Vehicle Routing Problems (Ehmke et al., 2015; Barbucha, 2014; Taş et al.,
2014), it should be noticed that these costs represent only half of the equation, i.e.: if a distribution
company wants to maximize its benefits, it has also to account for the expected incomes associated
with different customer-to-depot assignment plans. Thus, retail centers (depots) belonging to the
same organization may offer different products, trade credit policies, or complementary services,
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which often have a non-negligible impact on the customer’s willingness to buy. Accordingly, under
the existence of a diversity of depots and commercial offers, the customer-to-depot assignment
process should not only consider distribution costs but also expected sales or total income.

In order to increase sales revenue, companies use market segmentation strategies that allow
grouping customers according to their features (preferences, rent, age range, etc.). Ideally, each
group has homogeneous features that allow the development of tailored strategies and actions ori-
ented to increase the customer’s willingness to buy, i.e., the fitness between his/her utility function
and the commercial offer he/she is receiving. In this paper we address an extended version of
the MDVRP that also includes market segmentation issues in order to maximize benefits (sales
revenue minus distribution costs). Thus, in our model customer-to-depot assignation decisions
are taken considering not only the traditional distance-based cost but also other customers’ fea-
tures in an attempt to increase the expected expenditure by providing a more adequate assignation.
As a consequence of this, the assignment and routing solutions might be very different from the
ones associated with the classical MDVRP. For instance, Figure 1 shows two different solutions,
with the shape of each customer representing the shape of its best-fit depot. The one on the left
only considers distribution costs (to be minimized), while the one on the right considers expected
benefits (to be maximized), i.e.: not only distribution costs but also additional revenue due to a
’smarter’ customer-to-depot assignment. Notice that in the right-hand solution each depot tends to
deliver those customers that share a similar shape, unless they are too far away so that the increase
in distribution costs overshadows the potential increase in revenue. In the illustrative example of
Figure A.1, it is estimated that customer j will spend 20 monetary units when assigned to depot 2
(left-hand solution). On the other hand, if this same customer is assigned to depot 1 (right-hand
solution), it is estimated that his/her willingness to spend will increase up to 30 monetary units.
Therefore, assigning customer j to depot 1 instead of to its closes depot (depot 2) will pay off as far
as the increase in transportation costs will not exceed the marginal income attained (10 monetary
units in this case).

Figure A.1: Solutions for the classical MDVRP (left) and for the extended ver-
sion (right)

Our solving approach is based on the combination of statistical predictive models with a meta-
heuristic framework. In short, the algorithm develops in two main steps. Firstly, supported by
the company historical data concerning existent customers, new customers are assigned to depots.
This step is preceded by a historical data analysis so that expected expenditure from new cus-
tomers among depots is estimated throughout a multiple regression model. The regression model
will capture the relationship between each customer’s willingness to spend (response) as a func-
tion of several variables (predictors), including: the assigned depot as well as other customer’s
features (e.g.: preferences, rent, sex, age, etc.). In the second step, the routes associated to each
customer-to-depot assignment map are built. Given the interdependency between both decisions
(assignation and routing), our procedure is an iterative one. Different assignations are generated
together with the routing decisions and the top best solutions will be saved and locally improved
in the last step of the algorithm. The main contributions of our work are: (i) the description of
an extended version of the MDVRP with heterogeneous depots, which can be considered a rich
routing problem, (ii) the development of a methodology combining statistical learning and a meta-
heuristic for solving it, and (iii) an analysis of how the solutions found for the extended problem
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differ from those for the classical one in terms of both expected benefits and distribution costs for
a set of instances artificially generated.

The rest of the paper is organized as follows: Section 2 formally describes the well-known
Multi-Depot Vehicle Routing Problem and presents the extended version with heterogeneous de-
pots, while Section 3 reviews works addressing the classical version. Section 4 discusses the
importance of considering market segmentation. Section 5 provides an overview on our solving
approach, while Section 6 offers some low-level details. The computational experiments and a
discussion of the results are presented in Section 7. Lastly, the main contributions of this work are
highlighted in the Conclusion section.

2. Mathematical Formulation for the Multi-Depot Vehicle Routing Problem
The MDVRP may be formally described as an extension of the Capacitated Vehicle Routing Prob-
lem (CVRP) and it is defined as a complete directed graph G = (V, E), where V = {Vd,Vc} is
the set of nodes including the depots, Vd, and the customers, Vc, and E is the set of edges or arcs
connecting all nodes in V . Each customer i in Vc has a positive demand to be satisfied, qi. Each
edge in E has an associated cost ci, j > 0 and distance di, j > 0 between customers i and j. The
distance matrix D := [di, j] and the cost matrix C := [ci, j] are square matrices of order |V |. Usually,
both matrices are assumed to be symmetric (nevertheless, our approach could also be applied even
in the case of non-symmetric distances or costs).

For the MDVRP, a solution is a customer-to-depot assignment map together with a set of
routes covering all customers’ demands. Each route starts at one depot in Vd, connects one or
more customers in Vc, and ends at the same depot, without exceeding the capacity of the vehicle.
The number of vehicles based at each depot may be fixed or unlimited. The former defines a
harder problem, since it adds an additional constraint and there is also no guarantee that a feasible
solution exists (Chao et al., 1993). The latter simplifies the modelling and solving.

As mentioned before, when adopting a marketing perspective, companies focus on market
segmentation to group customers according to their features and preferences. Considering the
heterogeneity of markets, segmentation attempts to divide customers into subsets that behave in a
similar way. Our extension of the MDVRP aims at assigning customers to depots based not only
on distribution costs but also on customers’ features and preferences. The goal is then to optimize
expected benefits by considering both distribution costs and expected incomes.

To formally describe the mathematical model for the MDVRP with heterogeneous depots, we
will first introduce a model for the CVRP problem, which is a particular case of the MDVRP when
|Vd | = 1, i.e., Vd = {0}, and a model for the classical MDVRP.

Mathematical Model for the MDVRP with One Depot (CVRP)

In graph theory, a finite path, φ, of length r is a sequence of r + 1 vertices, {α0, α1, . . . , αr},
together with a sequence of r arcs, {φ1, φ2, . . . , φr}, such that

φk = (αk−1, αk), k = 1, 2, . . . , r.

Sometimes we will denote a finite path, φ, in the form:

φ : α0 → α1 → α2 → · · · → αr−1 → αr.

The vertex α0 is called the start vertex and the vertex αr is called the end vertex of the path. Both
of them are called terminal vertices of the path. The other vertices in the path are internal vertices.
A finite cycle is a path such that the start vertex and the end vertex are the same. Note that the
choice of the start vertex in a cycle is arbitrary. A path with no repeated vertices is called a simple
path, and a cycle with no repeated vertices or arcs aside from the necessary repetition of the start
and the end vertex is a simple cycle.

Definition A.2.1 In our context, a route, ρ, of order r is a simple finite cycle of length r + 2 in
which the start vertex and the end vertex is the depot node 0,

ρ : 0→ α1 → α2 → · · · → αr−1 → αr → 0.

We denote, R, the set of all routes of the complete directed graph G.



A.2. The multi-depot vehicle routing problem with market segmentation 197

Notice that the cardinality of R is |R| =
n∑

k=1
P(n, k), where P(n, k) represents the number of k-

permutations of a set of n elements (or customers in our case). Notice that |R| =
n∑

k=1
P(n, k) ≈ n!e,

where e represents the Euler’s number, e =
∑∞

k=0
1
k! .

Definition A.2.2 Two routes are independent when they have no internal vertices in common, i.e.,
the only vertex in common is the depot node. A non-empty set of independents routes, S ⊂ R, is
named a complete system of routes when every customer belongs to a route of S. The set of all
the complete system of routes of R is denoted by CSR.

Notice that from now, in order to simplify the notation, when we write α ∈ ρ, with ρ ∈ S, and
S ∈ CSR, we want to indicate that α is a node of the route ρ.

Traditionally, the cost of a route, cρ, and its distance, dρ, have been modeled as

cρ := cαr ,α0 +
r∑

k=1
cαk−1, αk , dρ := dαr ,α0 +

r∑
k=1

dαk−1, αk .

Then, the optimization problem to be solved consists in finding a complete system of routes, S,
minimizing the total cost, cT :=

∑
ρ∈S cρ subject to the following constraints: the total demand

served in each route ρ ∈ S does not exceed a maximum constant demand (or vehicles capacity)
Qmax,

∑
α∈ρ qα ≤ Qmax, and the total distance of each route ρ ∈ S does not exceed a maximum

constant distance Dmax, dρ ≤ Dmax. Therefore, the optimization problem is

minimize cT =
∑
ρ∈S

cρ

subject to:
∑
α∈ρ

qα ≤ Qmax, ρ ∈ S

dρ ≤ Dmax, ρ ∈ S
S ∈ CSR.

(A.1)

Mathematical Model for the classical MDVRP

The extension to a MDVRP goes as follows: consider a complete directed graph G = (V, E),
where V is the disjoint union (also named a partition) of the set of nodes including the depots, Vd,
and the set of nodes including customers Vc, V := Vd ∪ Vc, and E is the set of edges connecting
all nodes in V . Hereafter, m := |Vd | will represent the number of depots. A feasible solution for
the MDVRP is a partition of direct graphs Gi = (Vi, Ei), i = 1, . . . ,m, obtained from G such
that Vi := {0i; vi

1, . . . , vi
mi
}, for all i = 1, . . . ,m, with 0i ∈ Vd and vi

j ∈ Vc for all j = 1, . . . ,mi.
Then, the optimization problem to solve consists in finding a family of complete system of routes,
{S1, . . . ,Sm}, minimizing the total cost, cT :=

∑m
i=1

∑
ρ∈Si

cρ subject to the following constraints:
the total demand served in each route ρ ∈ Si, i = 1, . . . ,m, does not exceed a maximum constant
demand, Qmax, i.e., βρ :=

∑
α∈ρ qα ≤ Qmax, for all ρ ∈ Si, i = 1, . . . ,m, and the total distance

of each route ρ ∈ S does not exceed a maximum constant distance Dmax, i.e., for all ρ ∈ Si,
dρ ≤ Dmax, i = 1, . . . ,m. Therefore, the optimization problem is

minimize cT =
m∑

i=1

∑
ρ∈Si

cρ

subject to: βρ ≤ Qmax, ρ ∈ Si, i = 1, . . . ,m,
dρ ≤ Dmax, ρ ∈ Si, i = 1, . . . ,m,
Si ∈ CSR, i = 1, . . . ,m.

(A.2)

Mathematical Model for the MDVRP with heterogeneous depots

The heterogeneous version of the MDVRP analyzed in this paper does not assume depots are
equal (homogeneous), which leads to consider customers’ preferences. Then, demands will not
be fixed parameters, but depend on the assignment map of customers to depots. Following a
realistic approach, we assume demands are not known, but can be predicted relying on an historical
database and information about new customers. In the heterogeneous case the assignation of the
customers is not made in advance using the classical considerations of distance. Our procedure
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takes into account the combination of statistical predictive models with a metaheuristic, so three
main steps must be considered.

i) Analysis of the historical data so that expected expenditure from new customers among
depots is estimated using a multiple regression model. The model captures the relationship
between each customer’s willingness to spend (response) as a function of several variables
(predictors), which include the assigned depot as well as other customer’s characteristics as
preferences, rent, sex, age, and so on.

ii) Assignation of the new customers to the depots supported by the company historical data
with respect to the existent customers.

iii) Routes are built, which are associated to each customer-to-depot assignment map.

Notice that revenue incomes are not considered in the model for the classical MDVRP because they
do not depend on the assignation of customers to depots and, consequently, they are a constant
value. On the other hand, given the interdependency between both assignation and routing, the
procedure is an iterative one. Different assignations are generated (see Figure A.1) then, together
with the routing decisions. The top best solutions will be saved and locally improved in the last
step of the algorithm in order to maximize the total benefit, bT , obtained from the difference
between the total income, iT :=

∑m
i=1

(∑
ρ∈Si

βρ
)

and the total cost cT :=
∑m

i=1

(∑
ρ∈Si

cρ
)
.

bT := iT − cT =

m∑
i=1

∑
ρ∈Si

(
βρ − cρ

)
.

Thus, the optimization problem for the heterogeneous case can be described as

maximize bT :=
m∑

i=1

∑
ρ∈Si

(
βρ − cρ

)
subject to: βρ ≤ Qmax, ρ ∈ Si, i = 1, . . . ,m,

dρ ≤ Dmax, ρ ∈ Si, i = 1, . . . ,m,
Si ∈ CSR, i = 1, . . . ,m.

(A.3)

3. Literature Review on the classical MDVRP
The MDVRP has received a considerable amount of attention in the recent literature (Montoya-
Torres et al., 2015). Tillman (1969) is usually referred as the first paper to address this problem.
It considers a version where customer demands follow specific probability distributions, which is
solved with an extension of the well-known CWS heuristic (Clarke and Wright, 1964). Most works
may be classified according to the proposed approach: exact methods and heuristics/metaheuristics
methods. The main difference is that the former guarantee the optimality of the solution found,
while the latter usually provide a high-quality solution faster. Currently, hybrid approaches have
received more attention. Ceselli et al. (2009) is an example of work employing an exact methodol-
ogy. The authors describe a version of the Multi-Depot Heterogeneous Vehicle Routing Problem
with Time Windows (MDHVRPTW) including diverse constraints. A column generation algo-
rithm, in which the pricing problem is a resource-constrained elementary shortest-path problem,
is implemented to solve real instances. Another methodology to solve the MDHVRPTW is pro-
posed in Bettinelli et al. (2011). It describes a branch-and-cut-and-price algorithm, and different
pricing and cutting techniques. More recently, Contardo and Martinelli (2014) have formulated
the MDVRP employing a vehicle-flow and a set-partitioning formulation.

A higher number of published works rely on heuristics-based methodologies. For instance,
Cordeau et al. (1997) present a Tabu Search (TS) metaheuristic. In Salhi and Sari (1997), the
authors propose a multi-level composite heuristic for addressing a MDVRP in which the vehi-
cle fleet composition has to be determined. Nagy and Salhi (2005) consider the MDVRP with
Pickups and Delivers. Several heuristics from the Vehicle Routing Problem (VRP) literature are
adapted and some problem-specific are constructed. Metaheuristics are frequently implemented
to solve real-size instances. The Simulated Annealing (SA) metaheuristic is chosen in Wu et al.
(2002) for solving the Multi-Depot Location-Routing Problem. Polacek et al. (2004) employ the
Variable Neighborhood Search (VNS) metaheuristic for addressing the MDVRP with Time Win-
dows (MDVRPTW). The MDVRP with a heterogeneous fleet of vehicles is faced in Salhi et al.
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(2014), where an algorithm also based on the VNS metaheuristic is designed. Pisinger and Ropke
(2007) tackle different variants of the VRP, including the MDVRP, by transforming them into rich
pickup and delivery models and developing an Adaptive Large Neighborhood Search methodol-
ogy. A Genetic Algorithm (GA) is constructed in Ombuki-Berman and Hanshar (2009). Another
population-based metaheuristic, the Path Relinking, is presented in Rahimi-Vahed et al. (2013).

Regarding hybrid algorithms, Ho et al. (2008) introduce an algorithm relying on a GA. The
initialization procedure consists in a distance-based grouping, the CWS heuristic is employed for
routing, and the Nearest Neighbor Heuristic (NNH) for scheduling (i.e., sequencing each route in
every depot). Another hybrid GA is developed in Vidal et al. (2013) for addressing several rich
VRPs, including the MDVRPTW. It has diversity management mechanisms, and employs geo-
metric and structural problem decompositions for large instances. Mirabi et al. (2010) describe
a methodology combining a constructive heuristic search and improvement techniques. First, the
nearest depot method, the CWS heuristic and the NNH are implemented for grouping, routing,
and scheduling, respectively. The resulting solutions are improved by means of a deterministic,
stochastic, or the SA metaheuristic. Yu et al. (2011) construct an algorithm based on the Ant
Colony metaheuristic, applying a coarse-grain parallel strategy, an ant-weight strategy and muta-
tion operation. Cordeau and Maischberger (2012) design a parallel Iterated Tabu Search heuristic
which introduces the TS heuristic into the Iterated Local Search (ILS) framework, in order to en-
sure a broad exploration of the search space. The Particle Swarm Optimization (PSO) metaheuris-
tic is proposed in Geetha et al. (2012). It generates initial particles with the k-means algorithm
and the NNH. Lahrichi et al. (2012) present a multi-thread cooperative search method called the
Integrative Cooperative Search for multi-attribute combinatorial optimization problems. In Juan
et al. (2015c), the authors combine an ILS metaheuristic with biased-randomization techniques
to solve the MDVRP. The same metaheuristic framework is proposed in Li et al. (2015). In this
case, an adaptive neighborhood selection mechanism is integrated for the MDVRP with simulta-
neous deliveries and pickups. Luo and Chen (2014b) develop an improved Shuffled Frog Leaping
Algorithm (SFLA) and its multi-phase model for the MDVRP and the MDVRPTW. In order to
improve the efficiency of the metaheuristic, a Power Law Extremal Optimization Neighborhood
Search is used. The same problems are addressed in Luo and Chen (2014a), where a multi-phase
modified SFLA is applied. It implements the k-means algorithm and presents cluster and global
optimization procedures.

4. Importance of considering Market Segmentation
In a global and dynamic world, companies have to compete in order to build profitable and long-
lived relationships with customers. Analyzing customer needs and desires, capabilities, social
values, and objectives of a specific company –as well as how these interrelate– is a crucial area
in business intelligence. During many decades mass market-based strategies had prevailed, which
make profit from economies of scale, providing homogeneous goods and services for a vast num-
ber of customers. Technological developments and flexible manufacturing systems have boosted
the customization of goods and services according to customer preferences (Datta, 1996; Liu et al.,
2012b). Market segmentation is a key concept in this new approach.

Considering the heterogeneity of markets, segmentation attempts to divide customers into sub-
sets that behave in the same way or have similar needs (Bennett, 1995). As a result, a better under-
standing of customer requirements is obtained, which may assist in the developing of marketing
strategies as well as in the efficient allocation of resources among markets and products (Wind,
1978). According to Foedermayr and Diamantopoulos (2008), the segmentation process includes
the following stages (Figure A.2):

1. Market definition: The scope of the concept of market for a company is chosen. It should
be broad enough to cover as many potential customers as possible, but also manageable.

2. Selection of segmentation variables or bases: These bases should be capable of diminishing
the market heterogeneity and explaining why customers have different requirements and/or
do not respond similarly to marketing campaigns. From the point of view of the company,
they should be easy to obtain or infer in terms of cost and time, among others. The most pop-
ular are classified into the following groups (Kotler and Armstrong, 2011): (i) geographic
bases (e.g., location); (ii) demographic bases (e.g., age, occupation, and education level);
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(iii) behavioral bases (e.g., purchase occasion, degree of usage, and degree of loyalty); and
(iv) psychographic bases (customer activities and opinions).

3. Decision on segmentation method: A-priori versus post-hoc methods, and descriptive ver-
sus predictive methods, are the criteria most commonly employed to classify segmentation
methods (Foedermayr and Diamantopoulos, 2008). A-priori methods are based on intuitions
and prior experience, and/or secondary data. While in post-hoc methods the data analysis is
what leads to the segments. In descriptive methods, no distinction is made between depen-
dent and independent variables. The focus is on exploring the relation between the units of
analysis and the variables. In contrast, predictive methods link a dependent variable (e.g.,
degree of loyalty) to a set of independent variables, and use this set to segment. There
are plenty of techniques for segmentation, which includes: cross tabulation analysis, RFM
analysis, k-means clustering, hierarchical clustering, self-organizing map (SOM), automatic
interaction detection, classification and regression trees, logistic regression, support vector
machine, linear regression, clusterwise regression, neural networks, finite mixture model,
and metaheuristics, among others. For instance, McCarty and Hastak (2007) investigate
RFM, decision trees, and logistic regression. Vellido et al. (1999) present a strategy com-
bining SOM and factor analysis before clustering. Another two-stage approach involving
SOM is detailed in Kuo et al. (2014). These authors apply SOM to determine the number of
clusters and the starting point, and the k-means algorithm to find the final solution. Huang
et al. (2007) employ a support vector clustering algorithm. Fish et al. (1995) analyze the
performance of artificial neural networks, in comparison with those of discriminant analysis
and logistic regression. A case-based reasoning system is described in Chen et al. (2010). It
implements GAs for selecting variables and instances.

4. Formation of market segments: The method selected in the previous step is applied to obtain
a set of segments.

5. Profiling, evaluation, and final selection of target segments: A detailed analysis of the result-
ing segments and a selection of them are performed. There are several criteria to evaluate
market segments. Smith (1956), considered the first work to tackle this issue, highlights
the characteristics of identifiability, which means that customers in a segment should have a
similar profile, allowing for their identification, and responsiveness, i.e., customers in a seg-
ment should similarly respond to a marketing strategy. DeSarbo and DeSarbo (2007) gather
the main criteria that have been proposed in the literature. Some examples are: reachability,
feasibility, profitability, and stability.

6. Implementation: The next step is to translate the results of the previous work into specific
strategies. This step involves decisions that depend on a large number of factors as relevant
as company resources and ethics.

7. Segmentation strategy evaluation: Sales, profit, company expansion, reputation, and cus-
tomer satisfaction may be used to evaluate a strategy. Although these steps could be se-
quentially followed, all are interconnected. Therefore, it is recommendable to allow the
possibility to repeat previous steps in order to reconsider some selections.

Figure A.2: Scheme of the segmentation process.

As it has been shown, marketing segmentation has been extensively studied. It is an impor-
tant topic of research due to its potential applications. New lines of research emerge from the
development of data techniques, the gathering of empirical evidences, and the publication of new
marketing theories, among others. Many challenges still remain to be faced such as reducing the
gap between academic research and practitioner needs, studying implementation issues.
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5. Overview of Our Approach
The MDVRP includes two sequential and correlated stages: (a) the assignment map of customers
to depots; and (b) the corresponding design of distribution routes to satisfy all customers’ demands.
In order to assign customers, we take into account the heterogeneity of the depots. It can be con-
sidered a realistic approach, since depots belonging to the same organization usually have different
characteristics related to products, trade credit policies, and complementary services, among oth-
ers. The diversity of depots leads to consider customer preferences. Specifically, the willingness
to consume (or expenditure) of each customer depends on how well the assigned depot fits his/her
preferences. Market segmentation techniques are applied to identify subsets of customers with
similar profiles and assign them to the particular depot that better fits their preferences, consid-
ering the restrictions of the problem. Accordingly, we propose to study the relationship between
expenditure and customers’ features from data of existent customers by employing statistical learn-
ing methodologies (e.g., prediction techniques). It will enable the assignation of new customers in
such a way that the expected benefits (expected incomes minus distribution costs) is maximized.
The phases of our approach are represented in Figure A.3 and described next:

1. Data collection. Our approach requires several inputs: database of historical sales, descrip-
tion of new customers, location of depots, vehicle maximum capacity, number of available
vehicles at each depot, and maximum distribution costs per route. The sales database in-
cludes the following information for each existent customer: personal features, geograph-
ical location, expenditure level, and depot to which he/she has been assigned (randomly
or according to a metric not related to personal features such as distribution costs). The
description of new customers gathers personal features and geographical locations. This
information may be easily obtained, for instance, in e-commerce environments, where cus-
tomers have to register and provide personal data before buying. After processing and an-
alyzing this data, a company may assign a new client by redirecting him/her to a specific
directory/website and offering goods from a given depot. Regarding the information of both
existent and new customers, an initial selection of variables has to be performed by assess-
ing which ones may be valuable. Besides explaining the differences of expenditures among
depots, they should be easy to obtain, estimate or compute, and store.

2. Statistical learning. Given the database of existent customers, a statistical model exploring
the relationship between customers’ features and expenditure is performed for each group of
customers assigned to a specific depot. Considering several groups, we allow the existence
of a different trend in each one. A high number of methodologies are available to carry out
regression analysis (Hastie et al., 2009; Lantz, 2013). Probably, the most applied is Linear
Regression (Montgomery et al., 2012), which is easy to understand and interpret, highly
relevant in the marketing literature, and has associated a relatively low risk of overfitting
(i.e., the model describing noise). Neural Networks represent a popular alternative capable
of capturing non-linear relationships. However, they are computationally more intensive,
may overfit/underfit data more easily and are difficult to interpret. Support Vector Machines
constitute another powerful black box approach, which is more robust and less prone to
overfitting than Neural Networks. Its main disadvantage is that requires testing several
combinations of kernels and model parameters. Model Trees combine Decision Trees with
modeling of numeric data. It results in an approach that may fit some types of data better
than linear regression and perform automatic feature selection. On the other hand, it may be
difficult to determine the overall net effect of individual variables on the response.

3. Prediction of expenditure for new customers. Once a methodology has been selected and
the different functions have been fitted, the expenditure is predicted for each new customer
given his/her features if assigned to each depot. Here, it is assumed that the sample (set of
existent customers) is representative of the population (market).

4. Assignment of customers to depots. In order to perform an efficient and feasible assignation,
it is necessary not only to consider the predicted expenditure but also the distribution costs,
the maximum number of vehicles per depot, and their capacity. Taking a decision for each
customer individually may provide non-feasible and poor-quality solutions. Consequently,
we present a global and iterative strategy where customers are selected one at a time to
be assigned to a specific depot. It prioritizes the assignments of those customers that have
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associated a relatively high expected benefits only for a particular depot, and is based on the
procedure developed in Juan et al. (2015c). In particular, the following steps are proposed:

• For each depot k and customer i,

– Compute the expected benefits µk
i as the difference between the predicted expen-

diture pk
i and the distribution costs ck

i (computed as the cost of moving from k to
i).

– Compute the difference between the expected benefits of assigning i to k and the
maximum expected benefits of assigning i to a depot l other than k, i.e.:

sk
i = µk

i − maxl∈Vd\{k} µ
l
i ∀i ∈ Vc, ∀k ∈ Vd

We refer to this measure as “marginal savings”. Accordingly, sk
i will be high

in the case customer i reports relevant expected benefits only if assigned to k,
low (in absolute terms) if the expected benefits are similar for k and at least one
other depot, presenting both depots the highest expected benefits, and very low
(negative) when there is at least one depot where the expected benefits are larger
than those estimated for k.

• For each depot k, create a priority list of customers and sort it in descending order
according to the marginal savings sk

i .

• Create a list of unassigned customers. Then, select a depot and choose the next cus-
tomer to assign from its priority list. Update the list of unassigned customers and
repeat these steps while there are unassigned customers. Different policies may be
applied to determine which depot selects the next customer, as: (i) allowing the depot
with the highest remaining capacity to choose, (ii) using a round robin-based criterion,
or (iii) selecting it randomly.

5. Routing. Having an assignment map, the MDVRP can be solved as a set of independent
CVRPs. However, the most important challenge when addressing a MDVRP instance is the
interrelation between assignation and routing. Therefore, algorithms are required to take the
decisions associated to both phases ’simultaneously’. Thus, instead of finding an optimal or
near-optimal solution for the customer-to-depot assignment phase and then use this unique
solution as a starting point to solve the routing phase, an iteration process combines ’good’
and fast computed solutions for the first stage with ’good’ and fast computed solutions for
the second one in order to find a near-optimal solution for the overall problem.

Figure A.3: The proposed approach.

Note that our approach will be appropriate as long as the existent customers had been assigned
randomly or based on a variable not related to personal features. If regression functions were
estimated again after implementing this procedure (replacing existent customers by the new ones),
the predictive model could be not valid anymore, since the groups of customers assigned to each
depot may not be representative of all potential customers. At this point, a description of each
resulting group may be performed. Accordingly, a new customer would be assigned to the closest
group (considering standardized data, the Euclidean distance, and an average profile per group,
for instance).

In the described approach, the statistical learning techniques and the metaheuristic are se-
quentially employed. There are other realistic versions of the problem that may be addressed by
adapting our approach to integrate the statistical learning techniques inside the metaheuristic. For
instance, consider a dynamic scenario in which the willingness of customers to spend varies as
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new customers are assigned to each depot (e.g., due to the decrease in the service’s quality or
in the number of available offers). In this case, the learning mechanism would iteratively run
throughout the searching process in order to update each customer’s willingness to spend after
each assignment.

6. Detailed Algorithm
This section describes some low-level details of the proposed approach. Figure A.4 summarizes
it highlighting the main differences between the classical version of the problem and the proposed
one.

Since the phase of data collection is company-specific, we will assume it has already been
done. The second and the third phases are related to the development and use of predictive statis-
tical learning models. First, the database of existent customers is split into two subsets: a training
set, which will be used to build the models, and a test set, to assess their performance. These sub-
sets are generated by means of random sampling: 75% of customers are assigned to the training
set and 25% to the test set. Having different alternatives to explore the relationship between ex-
penditure and customers’ features, in our experiments (described later in this paper) we make use
of three well-known methodologies: Multiple Linear Regression (MLR), Multi-layer Feedforward
Network (MFN), and Model Tree.

• Regarding Multiple Linear Regression, given a database of customers with m features and
|Vd | depots, the models proposed may be described as follows:

Expi = β
j
0 + β

j
1 · f1i + β

j
2 · f2i + ... + β

j
m · fmi + εi ∀i ∈ V j

c , ∀ j ∈ Vd

where f1i,..., fmi represent the features of customer i, β j
0,...,β j

m are the parameters of the
model, Expi and εi denote the expenditure and an error term for customer i, and V j

c is the
set of customers assigned to depot j. The ordinary least squares method is applied to esti-
mate the parameters, and the stepwise regression approach with a bidirectional elimination
procedure is chosen to perform the variable selection.

• Regarding the Multi-layer Feedforward Network with one hidden layer, the generated mod-
els are:

Zli = σ(β jl
0 + β

jl
1 · f1i + β

jl
2 · f2i + ... + β

jl
m · fmi) ∀i ∈ V j

c , ∀ j ∈ Vd, l = 1, ..., p

Expi = α
j
0 + α

j
1 · Z1i + ... + α

j
p · Zpi ∀i ∈ V j

c , ∀ j ∈ Vd

where σ is the sigmoid function and p the number of hidden units. The value of p (4, 5, 6, 7,
or 8) and the decay value for regularization (0.2, 0.3, 0.4, 0.5 or 0.6) are set using 10-fold
cross validation based on the metric R2 (Kuhn, 2008). The back propagation method is
employed to estimate the parameters.

• The algorithm selected to implement a model tree is the standard M5P (Wang and Witten,
1996). Basically, it builds a decision-tree induction algorithm relying on a splitting criterion
that minimizes the intra-subset variation in the class values down each branch. The pruning
of the tree is performed back from each leaf. Instead of a constant value, the final solution
for each leaf is a linear regression model considering the variables participating in decisions.

Different criteria can be employed to select one of the former statistical learning methodologies.
The most common criteria are related to performance, easiness to apply and understand, required
time, or any combination of the aforementioned properties. Considering the first one, we compute
the Mean Squared Error (MSE) for each model (the number of models is the number of depots
multiplied by the number of methodologies tested) using the same problem instance. The Total
MSE (TMSE) is computed by aggregating the values of the models corresponding to the same
methodology. In mathematical terms:

MS Ea j =
1

|V j
c |

∑
∀i∈V j

c

(Êxpa
i − Expi)2 ∀a = 1, ..., o ∀ j ∈ Vd
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T MS Ea =

|Vd |∑
j=1

MS Ea j ∀a = 1, ..., o

where a represents the methodology assessed, and Êxpa
i refers to the predicted expenditure for

customer i employing the methodology a. In our experiments, for each instance we always select
the methodology associated with the lowest T MS E. Thus, during the third phase, the expenditure
that each new customer would make if he/she was assigned to each one of the depots is predicted
using the selected methodology and the customer’s features.

For the assignation and the routing phases, an existing methodology described in Juan et al.
(2015c) has been adapted. The authors propose an efficient algorithm based on an ILS metaheuris-
tic framework (Lourenço et al., 2010), which is a popular choice for solving routing problems (see
Cattaruzza et al., 2014). This metaheuristic guides the search by interspersing exploration and
intensification movements. Firstly, an initial solution is generated assigning customers to depots
according to the marginal savings (only the distribution costs are considered) and designing the
routes by implementing the classical CWS heuristic (Clarke and Wright, 1964). Afterwards, an
iterative procedure is started in which the base solution (the initial solution in the first iteration) is
perturbed. If the new solution is better than the base solution, then the latter is replaced. In case
no improvement is achieved, a Demon-based acceptance criterion (Talbi, 2009) is considered to
avoid entrapment at local optimum. It allows movements that deteriorate the base solution with
a higher frequency at the beginning, when a global search is required, and restricts them as the
execution proceeds. These steps are repeated until a termination condition is met. Finally, the top
best solutions are improved by means of a post optimization process, and the best one is returned.
The described algorithm includes Biased Randomization techniques to further diversify the search
(Juan et al., 2009c). These techniques are introduced in traditionally deterministic steps in order
to add biased randomization, which favors the generation of high-quality alternatives. In partic-
ular, they are implemented both in the assignation phase, to randomize the sorted priority list of
customers of each depot in such a way that the reasoning behind the sorting is not erased but many
orderings are provided, and in the routing phase, where the CWS heuristic is randomized.
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Figure A.4: Flow chart of our approach for solving the MDVRP with heteroge-
neous depots.

7. Numerical Experiments
An algorithm based on the described approach has been implemented and employed to solve
a number of generated instances. The computational experiments compare the results of our ap-
proach for the analyzed version of the MDVRP and for the classical version (i.e., the one assuming
homogeneous depots). This section provides the description of the instances and the tests carried
out, as well as the numerical results and their analysis.

Set of instances

A total of 15 instances have been generated. Each of them consists in three datasets: the first two
gather data concerning existent and new customers, respectively, and the third includes depots’
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locations and information related to restrictions. Regarding data of existent customers, four vari-
ables have been created: age (a discrete variable following a Uniform distribution with parameters
16 and 80), sex (a categorical variable with two equally probable values), estimated income (it
follows a Normal distribution with a mean of 1500 and standard deviation of 300), and preferred
article (a categorical variable including four equally probable values). Initially, each customer has
been assigned to his/her closest depot, while the expenditure level has been determined by a given
function that depends on the depot, the aforementioned variables and a white noise term. For a to-
tal of 100 new customers, the variables age, sex, estimated income and preferred article have been
generated using the same distributions. Customers’ and depots’ locations have been randomly
generated in a square of 100 x 100. In order to simplify the instances’ generation, Euclidean dis-
tances are employed as distribution costs. Different values have been chosen for the number of
depots, existent customers and vehicles, the maximum cost per route and vehicles’ capacity. This
information is shown in Table A.1.

Instance
Numb.
depots

Numb. existent
cust.

Numb.
vehicles

Vehicle
capacity

Max. cost

1 3 300 3 250 200
2 3 300 3 225 200
3 3 300 3 225 150
4 3 300 3 225 200
5 3 300 3 200 150
6 3 400 3 350 225
7 3 400 3 300 200
8 3 400 3 200 175
9 5 400 4 325 175

10 5 400 4 200 150
11 5 400 4 275 175
12 5 400 4 275 150
13 5 400 4 225 200
14 5 400 4 175 125
15 5 400 4 250 175

Table A.1: Description of the generated instances.

Test

Each instance has been adapted by modifying the expenditure of existent customers to analyze the
following scenarios: (1) low ratio (LR), the average ratio between average expenditure of existent
customers and average distribution costs is similar; (2) medium ratio (MR), average expenditure
is relatively higher than average distribution costs; and (3) high ratio (HR), average expenditure
is much higher than average distribution costs. The target ratio has been reached multiplying ex-
penditures by a coefficient. The resulting instances are available from the authors upon request.
The analysis of these scenarios will allow us to compare the expected benefits (expected incomes,
defined as the sum of predicted expenditures, minus distribution costs) associated to solutions con-
sidering only distribution costs and those taking into account also customer preferences (predicted
expenditure), thus exploring the consequences of having different weights of expenditure in the
objective solution. For the first scenario, it is expected that the gap between distribution costs will
be low (i.e., solutions are expected to be relatively similar). Likewise, it is expected that this gap
will be higher as the ratio increases. Similarly, it is also expected that the higher the ratio, the
higher the gap between the expected benefits of the solutions. The code has been implemented
with Java and R - version 2.15.0 (Team, 2008) (packages: caret, MASS, nnet, and RWeka). A
standard personal computer, Intel QuadCore i5 CPU at 3.2 GHz and 4 GB RAM with Windows
XP, has been used to perform all tests. The ILS process runs for 4,000 iterations, and all executions
are solved for 10 different seeds. Only the best values obtained after the 10 runs are reported.
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Results and analysis

The results of the experiments carried out are summarized in Figures A.5 and A.6. The boxplots
in the first figure show the expected benefits per scenario and version of the problem: considering
heterogeneous depots (rich) and assuming homogeneous ones (traditional). Even if the medians
associated to each ratio level do not differ significantly, the third and second quartile values do
present a higher value for the extended version of the problem. This behavior is caused by the
long right tails of the corresponding distributions, which indicate that for some instances the rich
version results in better solutions in terms of expected benefits. The second figure displays the
variables in which expected benefits are decomposed per scenario and considering the rich version.
We observe that differences of expected benefits between scenarios are mainly due to differences
between expected incomes.

Figure A.5: Boxplot of the expected benefits for each scenario and version of the
problem.

Figure A.6: Boxplot of the distribution costs and the expected incomes for the
rich version of the problem.
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Tables A.2, A.3 and A.4, provide a detailed description of the results. The information gath-
ered in the tables is the following: instance name; methodology selected for prediction; distri-
bution costs, expected incomes, expected benefits and time associated to the best solution found
considering only distribution costs (classical MDVRP) and to the best solution found when max-
imizing expected benefit (MDVRP with heterogeneous depots); and gaps between distribution
costs, expected incomes and expected benefits of both solutions. The average of each gap is also
shown.

Given the flexibility of Feedforward Neural Networks to model relationships between vari-
ables, and despite the basic topology and parameter fine-tuning, and the medium size of the train-
ing set, they have been selected to solve more than half of the instances (57.8%). Multiple Linear
Regression has provided the best TMSE in a high number of cases (31.1%). Although less fre-
quently, the algorithm M5P has also been used in some instances (11.1%). Being an experiment
for illustrative purposes, we show that different methodologies with particular strengths may be
easily applied, but we do not aim to perform a comprehensive comparison among them.

The gaps related to the distribution costs and the expected incomes are strictly positive except
in one case. It confirms the trade-off decision-makers face between both measures; that is to say,
higher distribution costs are required to obtain an increase in expected incomes. Regarding the
gap of expected benefits, it is strictly positive for all instances except for two where both solutions
are equal. Therefore, attempting to achieve the highest benefits studying only distribution costs
in instances with heterogeneous depots results in sub-optimal solutions. As expected, all average
gaps increase with the ratio, i.e., the difference between solutions (in terms of distribution costs,
expected incomes or expected benefits) is positively correlated to the average expenditure for
fixed average distribution costs. However, this rule does not apply for all cases. In some of them,
despite the fact that the gap of expected incomes increases, so does the gap of distribution costs.
As a consequence, the gap of expected benefit may be reduced.

Traditional (1) Rich(2) Gaps(2-1)

Inst. Meth. Dist.
cost

Exp.
inc.

Exp.
ben. Time Dist.

cost
Exp.
inc.

Exp.
ben. Time Dist.

cost
Exp.
inc.

Exp.
ben.

p01.1 MLR 898.6 961 62.4 82 930.6 1006 75.4 123 31.9 45.0 13.1
p02.1 M5P 834.3 943 108.7 112 834.5 947 112.6 335 0.1 4.0 3.9
p03.1 MFN 944.0 911 -33.0 143 964.4 939 -25.4 159 20.4 28.0 7.6
p04.1 MFN 891.8 852 -39.8 79 923.4 884 -39.4 165 31.6 32.0 0.4
p05.1 MFN 909.7 824 -85.7 189 914.4 829 -85.4 66 4.8 5.0 0.2
p06.1 MFN 868.5 1425 556.5 655 870.2 1429 558.8 613 1.7 4.0 2.3
p07.1 MFN 923.4 1073 149.6 103 925.7 1093 167.3 383 2.3 20.0 17.7
p08.1 M5P 898.2 867 -31.2 105 900.9 872 -28.9 122 2.7 5.0 2.3
p09.1 MLR 1039.2 2008 968.8 91 1127.5 2218 1090.5 33 88.3 210.0 121.7
p10.1 MFN 1029.6 1404 374.4 63 1062.5 1462 399.5 40 32.9 58.0 25.1
p11.1 MLR 880.7 1469 588.3 47 939.1 1609 669.9 464 58.4 140.0 81.6
p12.1 MFN 1858.4 1699 -159.4 108 1864.2 1709 -155.2 328 5.8 10.0 4.2
p13.1 MLR 1428.3 1495 66.7 437 1568.0 1691 123.0 144 139.6 196.0 56.4
p14.1 MFN 930.0 1163 233.0 43 930.0 1163 233.0 40 0.0 0.0 0.0
p15.1 M5P 1268.1 1401 132.9 374 1375.0 1512 137.0 59 107.0 111.0 4.0

Average 35.2 57.9 22.7

Table A.2: Results obtained for 15 instances: scenario characterized by a low
ratio.

8. Conclusions
This paper addresses an extension of the Multi-Depot Vehicle Routing Problem (MDVRP) in
which heterogeneous depots are considered. The resolution of the classical MDVRP has two se-
quential and interrelated stages: (a) the assignment of customers to depots, and (b) the correspond-
ing design of distribution routes. Typically, the assignment map is generated by minimizing the
total distance, which is intended to lead to the minimization of distribution costs. Implementing
this approach, researchers assume that depots are homogeneous. However, this is an unrealistic
assumption since several factors may result in differences between depots from a particular orga-
nization. We propose to take into account the existence of heterogeneous depots, which allows
the consideration of customers’ preferences. The customers’ willingness to consume is affected
by how well the assigned depot fits their preferences. Thus, the main contribution of this work
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Traditional (1) Rich(2) Gaps(2-1)

Inst. Meth. Dist.
cost

Exp.
inc.

Exp.
ben. Time Dist.

cost
Exp.
inc.

Exp.
ben. Time Dist.

cost
Exp.
inc.

Exp.
ben.

p01.2 MLR 925.3 1383 457.7 277 978.0 1483 505.0 173 52.7 100.0 47.3
p02.2 MLR 901.2 1334 432.8 301 921.9 1385 463.1 254 20.7 51.0 30.3
p03.2 MLR 959.3 1405 445.7 134 979.1 1438 458.9 89 19.8 33.0 13.2
p04.2 MFN 942.5 1280 337.5 124 947.8 1292 344.3 101 5.3 12.0 6.7
p05.2 MFN 919.0 1264 345.0 51 921.3 1269 347.8 221 2.3 5.0 2.7
p06.2 MFN 945.6 2103 1157.4 106 948.6 2122 1173.4 327 3.1 19.0 15.9
p07.2 MFN 962.8 1581 618.2 394 992.3 1617 624.7 139 29.5 36.0 6.5
p08.2 MFN 969.9 1302 332.1 300 969.9 1302 332.1 296 0.0 0.0 0.0
p09.2 MFN 1169.6 2897 1727.4 36 1336.1 3335 1998.9 173 166.5 438.0 271.5
p10.2 MFN 1165.1 2109 943.9 161 1222.9 2222 999.1 97 57.8 113.0 55.2
p11.2 MLR 1001.8 2212 1210.2 80 1054.4 2288 1233.7 253 52.5 76.0 23.5
p12.2 MFN 1050.0 2571 1521.0 75 1070.5 2620 1549.5 41 20.6 49.0 28.4
p13.2 MLR 1633.4 2178 544.6 106 1778.2 2446 667.8 270 144.8 268.0 123.2
p14.2 MFN 1020.2 1703 682.8 63 1026.8 1717 690.2 67 6.6 14.0 7.4
p15.2 M5P 1419.6 2090 670.4 69 1560.2 2257 696.8 106 140.5 167.0 26.5

Average 48.2 92.1 43.9

TableA.3: Results obtained for 15 instances: scenario characterized by a medium
ratio.

Traditional (1) Rich(2) Gaps(2-1)

Inst. Meth. Dist.
cost

Exp.
inc.

Exp.
ben. Time Dist.

cost
Exp.
inc.

Exp.
ben. Time Dist.

cost
Exp.
inc.

Exp.
ben.

p01.3 MLR 1060.3 1930 869.7 199 1153.7 2132 978.3 42 93.4 202.0 108.6
p02.3 M5P 1070.7 1803 732.3 253 1097.0 1864 767.0 174 26.3 61.0 34.7
p03.3 MFN 1042.7 1864 821.3 23 1067.1 1923 855.9 162 24.4 59.0 34.6
p04.3 MFN 1043.2 1701 657.8 54 1080.5 1755 674.5 393 37.2 54.0 16.8
p05.3 MFN 994.0 1621 627.0 174 1011.0 1657 646.0 68 17.0 36.0 19.0
p06.3 MFN 1068.1 2856 1787.9 109 1102.7 2906 1803.3 208 34.6 50.0 15.4
p07.3 MFN 1064.1 2115 1050.9 152 1081.2 2139 1057.8 71 17.1 24.0 6.9
p08.3 M5P 1069.6 1741 671.5 32 1069.6 1741 671.5 261 0.0 0.0 0.0
p09.3 MLR 1420.5 4269 2848.5 37 1690.6 4825 3134.4 138 270.1 556.0 285.9
p10.3 MFN 1434.8 2913 1478.2 113 1734.8 3396 1661.2 33 299.9 483.0 183.1
p11.3 MLR 1238.0 3020 1782.0 25 1486.3 3407 1920.7 265 248.3 387.0 138.7
p12.3 MFN 1195.7 3385 2189.3 37 1216.1 3452 2235.9 125 20.3 67.0 46.7
p13.3 MLR 1843.3 2801 957.7 79 2321.4 3387 1065.6 101 478.1 586.0 107.9
p14.3 MFN 1198.9 2297 1098.1 17 1251.0 2351 1100.0 23 52.1 54.0 1.9
p15.3 M5P 1416.0 2086 670.0 164 1595.5 2311 715.6 210 179.5 225.0 45.5

Average 119.9 189.6 69.7

Table A.4: Results obtained for 15 instances: scenario characterized by a high
ratio.

is the development of a simple yet comprehensive metaheuristic-based approach including mar-
ket segmentation issues in order to maximize expected benefits (expected sales incomes minus
distribution costs).

The proposed methodology consists of five steps: (i) data collection, in which information
basically related to existent customers that have been already served and new customers is gath-
ered; (ii) statistical learning, where the relationship between customers’ features and expenditure
for different depots is studied employing existent customer data; (iii) expenditure prediction for
new customers; (iv) assignment of new customers; and (v) routing. A set of computational experi-
ments has been carried out in order to illustrate our methodology. A total of 15 instances have been
artificially generated and analyzed considering three scenarios, which vary in the weight of the ex-
penditure of existent customers. It has been shown how our approach differs from an approach
based only on minimizing distribution costs when solving instances with heterogeneous depots.
Our experiment also allows quantifying how the performance gap between both approaches in-
creases as the weight of the expenditures is incremented.
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Abstract
Metaheuristics are approximation methods used to solve combinatorial optimization problems.
Their performance usually depends on a set of parameters that need to be adjusted. The selection
of appropriate parameter values causes a loss of efficiency, as it requires time, and advanced an-
alytical and problem-specific skills. This paper provides an overview of the principal approaches
to tackle the Parameter Setting Problem, focusing on the statistical procedures employed so far by
the scientific community. In addition, a novel methodology is proposed, which is tested using an
already existing algorithm for solving the Multi-Depot Vehicle Routing Problem.

Keywords: Parameter Fine-Tuning, Metaheuristics, Statistical Learning, Biased Randomiza-
tion.

1. Introduction
Mathematical optimization plays an important role both in research and in our everyday lives.
Management of portfolios, vehicle routing or DNA sequence assembly, are only some of the fields
in which optimization techniques are employed.

Most of the existing proposals to solve optimization problems can be classified into exact
methods or heuristic/metaheuristic approaches (Talbi, 2009). The former guarantee the optimality
of the solution found. Unfortunately, a number of relevant problems are particularly complex,
and tackling them with state-of-the-art exact methods would require substantial computer mem-
ory and time. Problems of this kind are known to be NP-hard (Bovet and Crescenzi, 1994). The
Facility Location Problem, the Knapsack Problem and the Multi-Depot Vehicle Routing Prob-
lem (MDVRP) are some examples of NP-hard problems. In these cases, heuristics present some
experience-based techniques that implement strategies to obtain a sufficiently good solution in a
reasonable amount of time. Although they do not provide any theoretical guarantee, they are a
popular choice when solving NP-hard problems. Owing to its nature, any heuristic is problem-
dependent, which restricts its application to one particular class of problems. Also, heuristics
usually provide sub-optimal solutions. These factors have led to the introduction of metaheuris-
tics.

Birattari and Kacprzyk (2009) defines metaheuristics as “general algorithmic templates that
can be easily adapted to solve the most different optimization problems”. A number of them
are nature-inspired, include stochastic components and have several parameters (Boussaïd et al.,
2013). They are present in a large number of research areas as telecommunications (Martins and
Ribeiro, 2006), machine learning (Carvalho et al., 2011), and vehicle routing (Gendreau et al.,
2008), among others.

Although the performance of metaheuristics is known to depend on its parameter values, the
scientific community has not formally addressed the so-called Parameter Setting Problem (PSP)
until the end of the last century. According to Eiben et al. (1999), during the first decades of
metaheuristics research, many scientists based their choices on tuning the parameters “by hand”,
i.e., experimenting with different values and selecting the ones that provide the best outputs, or
“by analogy”, applying settings that have been proven successful for similar problems. More
recently, the need for a systematic approach towards setting of metaheuristic parameters has been
increasingly outlined in the literature (Hooker, 1995; Johnson, 2002). Subsequently, researchers
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employ a scientific approach to tackle the PSP more frequently. It is important to highlight that
the selection of a systematic methodology leads to a gain of efficiency, as in general, less time is
required to fine-tune the parameters while the performance of the metaheuristic is the same if not
improved. However, there is no methodology commonly accepted by the scientific community
and there is also a lack of publications that compare, in an exhaustive and objective manner, the
main approaches and the techniques used so far. Moreover, some of the proposed methodologies
are not easily reproducible or are highly metaheuristic and problem dependent. These are some of
the reasons why, in spite of the amount of parameter fine-tuning works, many practitioners go on
tuning by hand or designing algorithms without parameters (or with a very low number of them),
even in the case when more parameterized algorithms could lead to better performances.

This article aims to contribute to the literature by proposing a general and automated statistical
learning based procedure to tackle the PSP. It is accompanied by some methodological guidelines
to validate the results. In order to test the methodology and illustrate its application, the approach
is employed to fine-tune a hybrid algorithm implemented to solve the MDVRP. The remainder of
this article is organized as follows. Section 2 presents a formal definition of the PSP, the existing
approaches, and their main contributions. Our methodology is outlined in Section 3, followed
by Section 4, which shows its application on a hybrid algorithm. A discussion of the results is
reported in Section 5. Finally, Section 6 presents concluding remarks.

2. Related work on the Parameter Setting Problem
Ries et al. (2012) define the PSP as the search for a set of parameter values θ∗ in the parameter
space Θ such that ∀θ ∈ Θ : θ∗ � θ (where � denotes a relation of preference), for a given
metaheuristic m in the metaheuristic space M, and a given instance x or group of them X in the
instance space I. In practice, the amount of time available for experimenting T may be a restriction.
In this case, the solution is approximate (θ̂). With regards to the difficulty of this problem, Montero
et al. (2014) states that: (a) it is time consuming; (b) the best set of parameter values depends on
the problem at hand; and (c) the parameters can be interrelated.

During the last decades, a large number of methodologies have been put forward to solve the
PSP. These proposals can be classified in two groups (Birattari and Kacprzyk, 2009): Parameter
Control Strategies (PCS), and Parameter Tuning Strategies (PTS). This classification is extended
by Instance-specific Parameter Tuning Strategies (IPTS), which includes features of the aforemen-
tioned groups.

This section provides a brief description of each approach and some of the most cited works.
We refer the interested reader to more specific publications such as Eiben et al. (1999), De Jong
(2007) and Battiti and Brunato (2010) for an expanded review of PCS, Birattari and Kacprzyk
(2009) in the case of PTS, and Ries (2009) for IPTS.

Parameter Control Strategies (PCS)

These methodologies aim for a dynamic fine-tuning of the parameters by controlling and adapting
their values while solving a problem instance. They follow two basic steps: firstly, an initial set
of parameter values is chosen; secondly, an adaptation mechanism is integrated which changes
relevant parameter values. Most of these strategies apply Adaptive Parameter Control, which
means that their adaptation mechanism is based on the assessment of particular information that
is stored during the iterative process of a metaheuristic. This information is usually related to
the goodness of intermediate solutions. Figure A.1 outlines the main instructions of a PCS based
on Adaptive Parameter Control. The main drawbacks of this approach are the potentially high
computational effort required and the lack of acquired understanding about good parameter values
each time an instance is solved.

Eiben et al. (1999) addressed the PSP in Evolutionary Algorithms (EAs). Three categories
were defined to classify the PCS. The first one, Deterministic Parameter Control, alters the value
of a parameter by some deterministic rule, which is usually time based. The second category,
Adaptive Parameter Control, does employ feedback to determine the direction and/or magnitude
of a parameter change. This is the most used kind of control. Consequently, we will focus on it.
The third, Self-Adaptive Parameter Control (Smith, 2008), encodes the parameters to be adapted
into the chromosomes of an EA. De Jong (2007) described the main motivations to use dynamic
parameter setting strategies in EAs: first, as the running proceeds, information about the fitness
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Figure A.1: Scheme of PCS applying an Adaptive Parameter Control.

landscape is generated, which may be used to improve the performance; also, changing the pa-
rameters is needed as an EA “evolves from a more diffuse global search process to a more focused
converging local search process”.

Table A.1 gathers a few representative works following this approach. Nowadays, it constitutes
a popular choice, mostly in EAs. From the literature, it can be concluded that the parameter fine-
tuning is a difficult task, partly due to the potential interactions between parameters (Eiben et al.,
1999; De Jong, 2007; Smith, 2008). The worth of applying PCS is sometimes doubted (Beasley
et al., 1993) or not recommended for static optimization problems (De Jong, 2007). However,
most authors agree that this approach has a long way to go.

Table A.1: Representative works employing PCS.

Work Main techniques Metaheuristic Optimization problem
Battiti and Tecchiolli
(1994) and Battiti
and Brunato (2005)

Reactive Scheme Tabu Search (TS) Quadratic Assignment
Problem (QAP), and
Maximum Clique Prob-
lem

Zennaki and Ech-
Cherif (2010)

Support Vector Ma-
chines

TS TSP

Lessmann et al.
(2011)

Regression Models Particle Swarm Opti-
mization (PSO)

Water Supply Network
Planning Problem

Parameter Tuning Strategies (PTS)

This approach relies on the concept of robustness (Viana et al., 2005). A robust algorithm provides
good results for a given set of instances of a problem using a fixed set of parameter values. The
basic procedure (Figure A.2) involves finding a set of parameter values providing satisfactory
results for a set of instances, usually using statistical and/or optimization techniques. Some authors
analyse only a representative subset of instances and apply the set of parameter values found to
solve all the instances. This approach also includes the case of solving one instance.

Figure A.2: Scheme of PTS.

The work of Czarn et al. (2004) is an outstanding contribution from a statistical point of view.
It addresses the issues of blocking when using Design of Experiments (DOE) for variation or noise
due to seed, testing individual parameters and interactions, and performing power analyses, among
others.
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Table A.2 shows some works relying on this approach. Many authors focus on minimizing the
number of runs, presenting simple models without interactions (e.g., Coy et al., 2001; Pongcharoen
et al., 2007; Xu et al., 1998). DOE and regression analysis are the most employed techniques.
The main criticism these works may receive is that most need an initialization of methodology-
specific parameters that in some cases is not fully reported. Fortunately, the number of papers that
report applications of their methodology in more than one problem or in real-world problems is
increasing.

Table A.2: Representative works implementing PTS.

Work Main techniques Metaheuristic Optimization problem
Park and Kim
(1998)

Simplex method SA Graph Partitioning Prob-
lem, Permutation Flow
Shop Scheduling Problem,
and Short-term Production
Scheduling Problem

Xu et al. (1998) Tree growing and pruning
method based on statistical
tests

TS Steiner Tree-Star Problem

Coy et al.
(2001)

DOE and Linear Regression Routing heuristics Vehicle Routing Problem

Bartz-
Beielstein
et al. (2004)

DOE, Classification and Re-
gression Trees, and Design and
Analysis of Computer Experi-
ments

PSO and Nelder-Mead
Simplex Algorithm

Elevator Group Controller
Problem

Ramos et al.
(2005)

Logistic Regression EA TSP

Birattari and
Kacprzyk
(2009) and
Birattari et al.
(2010)

Racing Algorithm (Maron and
Moore, 1993) and the Fried-
man’s two-way analysis of
variance by ranks (Conover,
1999)

Iterated Local Search
(ILS) and Ant Colony
Optimization (ACO)

QAP and TSP

Adenso-Diaz
and Laguna
(2006)

DOE and Local Search Neighbourhood struc-
ture, TS, SA, TS,
Heuristic based on the
SA and the TS, and TS

Steiner Problem, Part-
Machine Grouping Problem,
Part-Machine Grouping
Problem, Single-Machine
Scheduling, Proportionate
Flowshops, and Bandwidth
Packing

Pongcharoen et
al. (2007)

DOE GA TSP

Ridge and Ku-
denko (2007)

DOE and Desirability Func-
tions

ACO TSP

Gunawan et al.
(2013)

DOE, Response Surface
Methodology and ParamILS
(Hutter et al., 2009)

SA Industry Spares Inventory Op-
timization Problem

Instance-specific Parameter Tuning Strategies (IPTS)

As in the case of PCS, IPTS aim for an instance-specific tailoring of the parameters. At the
same time, these strategies use a fixed set of parameter values, as the PTS, avoiding the need of
modifying the metaheuristic algorithm and reducing the potential computational effort required
to adapt parameter values during the algorithmic run. In order to implement these strategies the
relation between the parameter values and the performance of the metaheuristic has to be analysed,
taking into account instance features. The next step consists in developing a mechanism able to
use the features of a new instance to recommend a set of parameter values. The key element is
the selection of instance features easy and fast to compute, and good at discriminating instances
on the shape of their fitness landscapes, which analyse the relationship between the objective
function values and the parameters. This learning may take a non-negligible amount of time, but
it is assumed that this approach requires less computational time than the PCS approach does. The
procedure is shown in Figure 3.

Some contributions are included in Table A.3. The number of works is low since it is relatively
new. As in the previous cases, they employ a variety of techniques and analyse several problems.

It has been seen that the literature on the PSP is relatively diverse. However, more research is
needed to fully explore and compare the performance of different techniques from statistics and
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Figure A.3: Scheme of IPTS.

Table A.3: Representative works implementing PTS.

Work Main techniques Metaheuristic Optimization problem
Ries (2009) DOE and Fuzzy Logic Guided Local

Search and GA
TSP

Pavón et al.
(2009)

Case-Based Reasoning
and Bayesian Networks

GA Root Identification Prob-
lem

Dobslaw (2010) DOE and Artificial Neu-
ral Networks

PSO TSP

operations research (OR), and to achieve that researchers and practitioners become aware of the
relevant effect that an adequate parameter-fine tuning may have. In this paper we mainly focus on
the parameter fine-tuning of metaheuristic algorithms from an OR perspective. Notice, however,
that the literature on parameter fine-tuning of general algorithms is much more extensive, and it has
been mainly developed by the computer science community. This community addresses a larger
variety of problems (not only of optimization nature), tends to employ algorithms with a larger
number of parameters, and uses to consider more complex and/or time-consuming approaches
for setting the parameters of different types of algorithms -including searching and classification
algorithms, etc. Thus, for example, Ansótegui et al. (2015) or Hutter et al. (2011) describe general
but complex methods that can be used in the fine-tuning process of several types of algorithms.
These general approaches are rarely considered by the OR community. Accordingly, one of the
main contributions of this paper is to provide the OR community with an alternative methodology,
which is easier to use and faster, and that can be employed to simplify and make more agile the
fine-tuning process of metaheuristic algorithms.

Approaches comparison

All approaches have different advantages. The dynamic adaptation of the parameter values that
characterizes PCS usually provides better results. However, the computational effort tends to be
higher. On the other hand, the PTS approach is the easiest and fastest to use, once a set of parameter
values is selected. Although the code of the algorithm is not changed, finding an adequate set may
be also time-consuming. The last group of strategies represents a compromise solution: it takes
less computational time than the PCS approach, but requires implementing a learning mechanism,
for which statistical learning skills are needed. Therefore, there is no approach that stands out from
the others. Probably, the most adequate depends on the specific problem to tackle, the instances to
solve, the available time and the skills of the researcher. Despite this fact, some general guidelines
can be formulated. PTS can be considered as the best option when working with robust algorithms.
Regarding IPTS, they are more complex than PTS but provide better results when the algorithm
is not robust. In case of prioritizing the algorithm performance, PCS usually constitute the most
recommendable approach.

3. Our approach
We propose a methodology that follows the PTS approach. There are several reasons for choosing
it. Firstly, it is not computationally intensive, since it may focus on a subset of instances. The
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inference from a representative sample of benchmark instances to the whole set usually provides
good results, specifically if the analysed algorithm is robust. There are two conditions that imply
robustness. First, the algorithm has to be little sensitive to small changes in the parameter values,
and second, the fitness landscapes for different instances have to be similar. These conditions guar-
antee that the best set of parameter values for one instance will probably provide good results for
the others. The high number of works following this approach, which cover several metaheuristics
and optimization problems, shows that many metaheuristic algorithms can be considered robust.
Another reason for focusing on PTS is that there is no methodology based on this approach and
widely employed, but at the same time, there are plenty of techniques that can be used. Some of
them have been intensively tested as DOE and Regression Analysis. However, others remain to be
investigated.

Our methodology is based on clustering (Hastie et al., 2009) and DOE (Montgomery, 2008).
These are two well-established techniques that can be easily implemented using free statistical
software. The clustering groups instances that have a similar fitness landscape. It facilitates the
selection of representative instances and also provides information that can be used to perform a
more flexible fine-tuning if each group is treated independently, i.e., exploring the fitness landscape
of an instance to find a good set of parameter values and applying it to solve the instances assigned
to the same group. Regarding DOE, it enables experimenters to identify and quantify the effects
of several parameters and their interactions on the objective function value.

The remainder of this section presents a statistical learning based methodology to obtain a list
of sets of parameter values, and a more global procedure to validate and assess its goodness.

General methodology

A 4-step procedure is exposed herein. It is assumed that the experimenter has described and
modelled a problem, and has chosen the metaheuristic to tackle it and a set of benchmark instances.

• The first step involves choosing a subset of the instances. Their fitness landscapes will be
analysed in order to obtain sets of parameter values that provide good results for them. The
subset has to be representative as these sets of parameter values will be used to solve the
whole set of instances. An approach to select a representative subset is, firstly, to determine
the instance features that have a major influence on which set of parameter values is the most
adequate, and then, choose the instances in such a way that the feature values of the subset
are representative of those of the entire set of instances. For example, if we have a parameter
for which its optimum value is known to depend on the instance size, a representative subset
of the instances will present the same proportion of instances of a given size that the whole
set does. This approach can be particularly difficult when there are several non-independent
parameters. A possible simplification for feature selection consists of choosing those that
are commonly used to discriminate instances of a specific problem. Several examples can
be found in the literature. Coy et al. (2001) considered, when addressing the Capacitated
Vehicle Routing Problem (CVRP), the distribution of customers, the distribution of demand
and the location of the depot. Ries et al. (2012) studied the size, the distance metric, a ratio
to describe the shape of the area within which a set of cities is distributed and a measure of
clustering for the TSP.

In contrast, a problem-independent approach is proposed here. Initially, for a given number
of randomly generated sets of parameter values, each instance is solved several times using
different seeds for the random number generator of the algorithm (or only once if the algo-
rithm is deterministic). Alternatively, the sets could also be generated using more advanced
statistical techniques such as DOE. We consider the median of the objective function values
found with the same parameter values but different seeds. The median is a robust measure to
aggregate data, but many others could be employed. It is essential to remark the importance
that a seed may have in the performance of an algorithm (Juan et al., 2015c; Czarn et al.,
2004). Afterwards, feature scaling is applied to the values obtained for each instance. Then,
this data is used to cluster instances and select a representative one from each cluster. These
instances form the subset to analyse.

Although it is a computationally intensive approach, we think it is effective to assess which
instances show a similar relation between parameter values and the performance of an algo-
rithm.
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For each instance of the subset, the steps ranging from the second to the fourth are implemented
as follows.

• The second step requires selecting the range over which each parameter can be set. Some
experience or knowledge about the problem and the metaheuristic may be highly valuable.
The ranges should be large enough to cover at least one set of parameter values that can
provide a sufficiently good solution with a high probability. On the other hand, a smaller
range would allow the experimenter to describe more accurately, with the same resources,
the relationship between the parameter values and the objective function value. If there is
no a priori information about which are the best regions of the parameter space, a suitable
procedure is to perform a rough and fast landscape analysis. Specifically, some possible
combinations of parameter values can be selected and utilised to run the algorithm. The
best results will identify promising regions. There are several ways of choosing the com-
binations, as equally-spaced or randomly generated sets. This analysis holds a trade-off

between the computational time required and the reliability of the conclusions.

• The third step consists of designing an experiment. A Central Composite Design is studied.
Each metaheuristic parameter is considered a factor and the extreme values of its range
define the levels. According to this design, the algorithm is executed also several times for
each combination of factor values, each one with a different seed.

• In the fourth step, a procedure is developed to search the neighbourhood of the best set of
parameter values found. Specifically, another Central Composite Design centred on this set
is applied.

Finally, the upshot is a list of recommended sets of parameter values, one per cluster; in particular,
those that reported the best results on the last step. The procedure is shown in Figure A.4.

Figure A.4: Outline of the procedure for parameter fine-tuning.

An extended proceeding (Figure A.5) is described below in order to validate the list of sets of
parameter values obtained and analyse the results provided by it.

Before all else, a list of sets of parameter values, θ̂ = (θ̂1, θ̂2, . . . , θ̂K) where K is the number of
clusters, is chosen as has been explained in the precedent section. Later on, each instance of the
subset used to select θ̂ is solved with the corresponding set of θ̂‚ and with different sets, θ̄ j ( j =

1, 2, . . . , J) (equally spaced, randomly selected or relatively close to the set of θ̂ according to some
distance measure). To assess the performance of a set of θ̂ in a specific instance regarding the other
sets, the associated solutions are compared. Given a decision level parameter r (1 ≤ r ≤ J + 1),
if the rank of the objective function value provided by the proposed set is equal or lower than r,
then it is considered a good set for that instance. Once all the instances of the subset are examined,
it can be reckoned the proportion of them in which the corresponding set has been classified as
good. θ̂ is validated by comparing this proportion with a predefined parameter p (0 < p < 1); if
the proportion is higher, then the experimenter has enough evidence of the quality of θ̂ to go on to
test it with other instances in the next step.

If θ̂ is not validated, the process has to be readjusted and restarted. This readjustment may
be done in several ways, some options are: checking the robustness and the adequacy of the
clustering, adapting the ranges, dedicating more resources to the search, etc. The best strategy is
problem-dependent. As a consequence, the choice should rely on the opinion of the experimenter,
who will have acquired valuable information from the outputs observed.
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Figure A.5: Flowchart representing the proposed methodology.

Once the list of sets of parameter values has been labelled as valid, it is applied for solving the
other instances (each one with the set proposed for the representative instance of the cluster where
it has been assigned). To examine the effectiveness of the procedure, it is desirable to compare the
solutions with others reported in the literature for the same instances, by performing the t-test for
paired samples if data is normal, or the Wilcoxon signed rank test otherwise. If the means (or the
mean ranks if data is not normal) do not differ significantly, it may be classified as a satisfactory
outcome as it will mean that the proposed methodology, automated and general, has been proven to
be competitive. If the results are unsatisfactory, the procedure should be modified and reinitiated.

It is useful to consider that, since the available resources are usually limited, the possible
readjustments should be also limited (T represents this limit). Consequently, the process may end
without a satisfactory list of sets of parameter values. In this case, the list which provides on
average the best solutions will be accepted.

4. Experimental results
Case study: Biased Randomization and ILS for solving the Multi-Depot Vehicle Routing
Problem (MDVRP)

In order to test our methodology, it was implemented to fine-tune the parameters of the hybrid
algorithm described in Juan et al. (2015c), which combines Biased Randomization and the ILS
metaheuristic to address the MDVRP. A brief introduction to both the problem and the algorithm
are presented in this subsection.
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The MDVRP is a variant of the well-known CVRP that consists in planning routes to service
a number of customers with a homogeneous fleet of vehicles that have a maximum capacity. All
routes begin and end at one depot, where all resources are initially located. The objective is to find
a solution (Figure A.6) that minimizes the total cost while satisfying the associated constraints.
Typically, these constraints imply that a single vehicle supplies each customer and it cannot stop
twice at the same customer. The MDVRP integrates an allocation problem, in which the customers
are assigned to one depot, with several CVRPs, one per depot. In the test case, there is also a max-
imum number of vehicles per depot and a maximum route length. It is considered a challenging
problem as allocation and routing issues are interrelated.

Figure A.6: Solution for a medium-size MDVRP with 4 depots (cylinders).

The algorithm follows several steps. Initially, a priority list of potentially eligible customers
is computed for each depot. The lists are sorted according to a distance-based criterion. Then,
they are randomized based on a geometric distribution and used to allocate customers to depots.
Afterwards, an initial solution is built by solving each routing problem independently with a ver-
sion of the Clarke & Wright’s Savings (CWS) heuristic (Clarke and Wright, 1964). In short, CWS
starts building an initial solution in which each route includes just one customer. Following that,
the heuristic considers the possibility of merging two routes if the total cost is reduced. This op-
eration is repeated until no more merges are possible. For this project, the authors developed a
biased-randomized version (Juan et al., 2011a); while the original seeks always the best possible
merging, this version applies biased randomization to select one merging (i.e., multiple solutions
can be obtained). In the next phase, an ILS procedure is implemented. A new solution is com-
puted by perturbing the current solution, which implies the reallocation of a given percentage of
customers. The new solution replaces the current solution if the former is better. If it is also better
than the best solution found so far, the latter is updated. On the other hand, if the new solution
is worse than the current one, an acceptance criterion is applied and, consequently, the current
base solution can still be modified. This phase ends after a fixed number of iterations. Finally, a
post-optimization process is applied to the five best solutions.

This algorithm has three main parameters:

• bM: the parameter of the distribution assigning nodes to depots.

• bR: the parameter of the distribution selecting edges in the CWS heuristic.

• p∗: the percentage of nodes that are reallocated in the ILS phase.

Note that these parameters take values between 0 and 1.

5. Implementation details
The first step is the selection of a representative subset of instances. Initially, 10 randomly gener-
ated sets of parameter values, 7 seeds and the 33 benchmark instances solved in Juan et al. (2015c)
were selected. Therefore, information from 2310 runs was stored. Data from different seeds was
aggregated by computing the median; then feature scaling was applied. The instances that were
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considered easy-to-solve, those that presented no variation in the results, were separated. This was
done to focus the analysis on the instances for which results could be improved by fine-tuning the
parameters. Afterwards, a clustering using the k-medoids algorithm (Theodoridis and Koutroum-
bas, 2009) was performed. The range of values considered for setting the value of k was 2-12.
The final value was selected employing the average silhouette criteria (Rousseeuw, 1987). The
composition of the clusters and the representative instances (or medoids) can be observed in Table
A.4.

Table A.4: Clustering of the benchmark instances.

Medoids Clusters
p01 p01
p07 p04, p07, p11, p18, pr02, pr05, pr09
p09 p03, p09, pr04, pr10
p17 p17
p19 p19
p22 p22
p23 p20, p23
pr06 p05, p06, p08, p10, p15, pr01, pr03, pr06, pr07, pr08

Once the subset of instances was formed, the second step, setting the ranges of the parameters,
was carried out. After a statistical analysis, it was concluded that just two parameters, bM and bR,
did significantly affect the performance of the algorithm. Therefore, only those two parameters
were studied. Five equally spaced values ranging from 0 to 1 were analysed for each parameter.
Each instance was solved seven times (considering different seeds) for each possible combination
of parameter values. The objective function values were aggregated as before. Then, the values
for other possible combinations were estimated by linear interpolation.

The ranges were set to cover the smallest rectangular area of the parameter space that included
the lowest objective function values. In particular, the values labelled as the lowest were those
meeting the following condition:

Objective solution ≤ minimum value + β · (maximum value − minimum value)
The value of β was set at a different value for each instance. More precisely, it was the mini-

mum value that encompassed, at least, 5% of the search space. Figure A.7 shows the contour plot
and the area in which the search was intensified for each instance.

The next step was applying a design for each instance of the subset. It was performed to
better analyse the relation between the metaheuristic performance and the parameter values. A
Face-Centred Central Composite (FCC) Design was selected, as in most of the cases the space
parameter could not be expanded (since all parameters could only take values between 0 and 1).
Figure A.8 displays the scheme for instance p01. The objective function values for the same
instance are represented in Figure A.9.

Then, the neighbourhood of each set that provided the best solution for an instance was ex-
plored applying another FCC Design, centred on that set and covering half of the area analysed
with the previous design. The sets that finally presented the best performance were stored. They
are outlined in Table A.5. Random values were assigned to the instances that did not present
variations in the results when changing the parameter values.

Table A.5: Proposed list of sets of parameter values.

Medoids Clusters bM bR
p01 p01 0.513 0.501
p07 p04, p07, p11, p18, pr02, pr05, pr09 0.001 0.372
p09 p03, p09, pr04, pr10 0.283 0.283

p17 random random
p19 p19 0.443 0.378
p22 p22 0.001 0.231
p23 p20, p23 0.449 0.250
pr06 p05, p06, p08, p10, p15, pr01, pr03, pr06, pr07,

pr08
0.500 0.231

p02, p12, p13, p14, p16, p21 random random
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Figure A.7: Contour plots of the medoids sorted from left to right, and top to
bottom.
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Figure A.8: Scheme of the FCC Design applied to the instance p01.

Figure A.9: Solutions of the instance p01.
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Results

The following parameters were chosen to validate the list of sets: J = 10, T = 3, α = 0.05, r = 6,
p = 0.7. The number of sets randomly generated was fixed considering the trade-off between the
reliability of our comparisons and the computational time required. The number of iterations was
set considering only the time available. The significance level is the one most commonly used in
the literature. The value of the fourth parameter is the mean rank that could be expected due to
randomness with 11 solutions (1 set proposed and 10 randomly generated). The last parameter was
calibrated to force the algorithm to provide good results at most of the instances. The algorithm
was run 7 times with different seeds for each combination of parameter values, the medians and
the minimum values were stored. The ranks of the results obtained are detailed in Table A.6. Ties
receive a rank equal to the average of the ranks they span, shown inside the parentheses.

Table A.6: Ranks of the results provided by our list and by 10 random sets.

Medoids Rank (medians) Rank (minimum values)
p01 1 3.5 (1-6)
p07 5 3.5 (1-6)
p09 2 2
p17 2 (1-3) 1
p19 6.5 (2-11) 10.5 (10-11)
p22 11 11
p23 1.5 (1-2) 1
pr06 5 1.5 (1-2)
Valid instances 0.75 0.75

According to our methodology, the list of sets can be considered valid as it presents a rank
equal to or below 6 in 75% of the analysed instances, both considering medians and minimum
values. In order to test our results, the algorithm was executed with the parameter values suggested
in Juan et al. (2015c). Both series of results are comparable as were obtained using the same
computer and stopping criteria based on the number of iterations. Table A.7 presents the parameter
values used in the aforementioned paper. Instead of setting fixed values, the authors introduced
randomness by employing uniform distributions. The lower and upper bounds were selected after
some tests.

Table A.7: Sets of parameter values for comparison.

bM bR p*
Uniform (0.5, 0.8) Uniform (0.1, 0.2) Uniform (0.1, 0.5)

Table A.8 shows the results obtained solving all instances with the proposed list of sets (our
results, OR), and with the set proposed in Juan et al. (2015c) (JR).

6. Discussion of the results
The comparison of the solutions shows that our procedure achieves better results in most of the
instances. Table A.9 presents the average and the standard deviation of the differences, and the
p-values of the test to compare the mean ranks of the results. It is a non-parametric test as the null
hypothesis of the Shapiro-Wilk test, a test of normality, was rejected in all cases. The means are
negatives, indicating that our methodology provides better solutions. The p-values reveal that the
differences of the mean ranks are not statistically significant. Even though, the magnitude of the
mean difference can be considered relevant in the context of the MDVRP.

Results on all instances except the subset of representative instances selected initially and those
not analysed because of the null variation of their results allow us to demonstrate the good per-
formance of our methodology, which is not directly attributed to the instances deeply studied but
to their representativeness, without considering the changes in the instances that where discarded,
which are due to randomness.
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Table A.8: Instances experimental results.

Inst. OR medians
(1)

OR, minimum
values (2)

JR, medians
(3)

JR, minimum val-
ues (4)

% Gap (1)
- (3)

% Gap (2)
- (4)

p01 585.000 576.866 593.829 576.866 -1.509 0.000
p02 480.261 476.660 480.261 476.660 0.000 0.000
p03 644.464 641.186 649.229 641.186 -0.739 0.000
p04 1022.085 1019.570 1024.473 1024.062 -0.234 -0.441
p05 760.341 756.281 764.325 754.882 -0.524 0.185
p06 882.827 879.072 880.418 879.763 0.273 -0.079
p07 899.709 897.974 906.395 897.974 -0.743 0.000
p08 4440.534 4434.552 4438.407 4426.747 0.048 0.176
p09 3920.743 3906.561 3923.248 3900.274 -0.064 0.161
p10 3706.763 3667.344 3705.012 3687.054 0.047 -0.537
p11 3598.972 3584.691 3592.891 3585.690 0.169 -0.028
p12 1318.955 1318.955 1318.955 1318.955 0.000 0.000
p13 1318.955 1318.955 1318.955 1318.955 0.000 0.000
p14 1360.115 1360.115 1360.115 1360.115 0.000 0.000
p15 2573.393 2556.846 2573.393 2557.528 0.000 -0.027
p16 2605.565 2585.373 2605.565 2600.099 0.000 -0.570
p17 2720.231 2714.663 2725.799 2725.799 -0.205 -0.410
p18 3831.996 3806.783 3835.388 3806.783 -0.089 0.000
p19 3883.686 3883.686 3883.686 3881.427 0.000 0.058
p20 4080.348 4074.779 4091.482 4091.482 -0.273 -0.410
p21 5706.530 5692.789 5701.902 5692.789 0.081 0.000
p22 5808.738 5806.370 5806.480 5786.288 0.039 0.346
p23 6134.441 6128.873 6145.576 6123.306 -0.182 0.091
pr01 861.319 861.318 861.319 861.318 0.000 0.000
pr02 1330.495 1310.679 1331.543 1314.364 -0.079 -0.281
pr03 1813.634 1813.634 1814.452 1813.634 -0.045 0.000
pr04 2084.843 2077.582 2089.785 2079.832 -0.237 -0.108
pr05 2379.075 2359.947 2379.797 2368.525 -0.030 -0.363
pr06 2709.792 2693.680 2713.593 2696.504 -0.140 -0.105
pr07 1109.235 1109.235 1109.235 1109.235 0.000 0.000
pr08 1680.896 1674.930 1678.872 1674.594 0.120 0.020
pr09 2148.216 2147.192 2153.317 2142.650 -0.237 0.212
pr10 3016.255 3008.129 3028.606 3014.874 -0.409 -0.224

Table A.9: Means and standard deviations of the differences and statistical tests.

Mean of
the differ-
ences

Standard devia-
tion of the dif-
ferences

P-value of the
comparison of
mean ranks

All instances
Medians -0.149 0.330 0.954
Minimum values -0.070 0.219 0.980

All instances except the studied subset and
those not analysed

Medians -0.117 0.247 0.942
Minimum values -0.100 0.217 0.942
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7. Conclusions
This paper has addressed the Parameter Setting Problem which, due to the relevance of meta-
heuristics in a number of fields, is increasingly getting more attention.

We have presented an overview of the main approaches: Parameter Control Strategies (PCS),
Parameter Tuning Strategies (PTS), and Instance-specific Parameter Tuning Strategies (IPTS).
While PCS dynamically adapt the parameter values during the resolution of an instance, PTS let
the parameter values fixed and employ them to solve several instances. IPTS represent a compro-
mise solution, the parameter values are not modified during the search but they can be different for
each instance, depending on its features. The benefits and pitfalls of each approach have been dis-
cussed. In addition, a new methodology which stands out for being automated and, problem- and
metaheuristic-independent, has been presented. It incorporates techniques of clustering, which al-
lows splitting the set of instances and, as a consequence, gives more flexibility to the fine-tuning by
analysing each subset independently, and Design of Experiments. As a result, we have developed
a methodology that avoids the strictness of common PTS, which present only a set of parameter
values, and the need of modifying the main algorithm and spending more time on the resolution
of instances that characterizes PCS. At the same time, our methodology is simpler than IPTS as
it does not require a learning procedure able to recommend an instance-specific set of parameter
values. In order to illustrate and test our methodology, it has been applied to a hybrid algorithm.
The case study provides promising results.
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Abstract
Ongoing population growth in cities and increasing waste production has made the optimization of
urban waste management a critical task for local governments. Route planning in waste collection
can be formulated as an extended version of the well-known Vehicle Routing Problem, for which
a wide range of solution methods already exist. Despite the fact that real-life applications are char-
acterized by high uncertainty levels, most works on waste collection assume deterministic inputs.
In order to partially close this literature gap, this paper first proposes a competitive metaheuris-
tic algorithm based on a Variable Neighborhood Search framework for the deterministic Waste
Collection Problem. Then, this metaheuristic is extended to a simheuristic algorithm in order to
deal with the stochastic problem version. This extension is achieved by integrating simulation into
the metaheuristic framework, which also allows a closer risk analysis of the best-found stochastic
solutions. Different computational experiments illustrate the potential of our methodology.

Keywords: waste collection management, vehicle routing problem, metaheuristics, simula-
tion, risk analysis, stochastic optimization, simheuristics.

1. Introduction
In the face of rising population densities in urban areas around the world, a large number of
cities are currently reorganizing their municipal responsibilities (Nations, 2015). In this context,
solid waste management is arguably "the most important municipal service" a city provides for
its residents (The World Bank, 2012). A number of strategic, tactical, and operational issues –for
example related to the location of disposal sites or landfills, clustering of service territory, vehicle
routing, etc.– need to be addressed (Ghiani et al., 2014a). Especially the collection phase is highly
important. On the one hand, uncollected garbage can lead to pollution of the environment and
health-issues, while noise and road congestions through extensive use of waste collection vehicles
decrease urban living standards. On the other hand, waste collection represents up to two thirds of
operational waste management costs (Malakahmad et al., 2014; Son, 2014; Tavares et al., 2009).
Consequently, the Waste Collection Problem (WCP) for effective route planning in municipal
waste collection is of high practical importance, especially in the context of smart city initiatives
(Neirotti et al., 2014).

Typically, the WCP is either modeled as a rich Vehicle Routing Problem (VRP) (Toth and
Vigo, 2014; Caceres et al., 2014) or as an Arc Routing Problem (ARP) (Corberán and Laporte,
2014), depending on the type of waste to be collected. While the collection of household refuse
in small bins from private homes is often modeled as an ARP, the VRP as node routing model
is more suitable for the collection of waste from larger containers, which are often located close
to retailers, construction sites, or waste collection points of building blocks in metropolitan areas.
This work addresses the WCP as a VRP in the following. The reader is referred to Ghiani et al.
(2014b) and Han and Ponce-Cueto (2015) for a more detailed discussion between both modeling
types.

Extending the classical VRP formulation, the WCP consists of a set of waste containers (cus-
tomers) with associated waste levels (demands) and a central depot in which a capacitated vehicle
fleet is located. Furthermore, there is a set of landfills at which collected waste is disposed. The
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arcs (edges) connecting any two nodes are characterized by travel costs, e.g.: distance, time, or
CO2 emissions. Figure A.1 illustrates an example of a WCP solution with two routes. Vehicles
start at the central depot to visit a number of waste containers. A WCP specific problem constraint
is that vehicles start and end their routes empty. For this reason, at least one additional landfill
trip is included on every route before the collection vehicle returns to the central depot. As can
be seen in Route 2, multiple landfill visits during the same trip are also possible. Thus, a vehicle
might visit a disposal site once its capacity is reached and then continue the same trip as long as
no further route constraints (e.g., time windows, maximum number of stops, etc.) are violated.

Figure A.1: Example of a 2-route solution for a simple WCP instance.

In many real-world applications of routing problems, uncertainty is one of the major factors to
be considered during operational planning. Typically, relevant information and input data is not
perfectly available. While uncertainty can practically influence any variable, the most considered
cases of stochasticity include: (i) customer demands; (ii) travel times; and (iii) stochastic cus-
tomers (Gendreau et al., 2014). For a more detailed overview on stochastic optimization problems
and available solution approaches, see Bianchi et al. (2006), Bianchi et al. (2009), and Pillac et al.
(2013), or Ritzinger et al. (2016). A typical application area experiencing high levels of uncer-
tainty is urban waste collection (Beliën et al. (2014)). As waste generation and travel times of
vehicles cannot be predicted with full certainty, there is a need for fast and risk-aware solutions of
high quality which are able to take stochastic input variables into account. Accordingly, this paper
presents a simheuristic methodology (Juan et al., 2015a) that combines a metaheuristic algorithm
with simulation techniques to address the WCP with stochastic waste levels.

Given a WCP with uncertain inputs, our methodology transforms the stochastic problem in-
stance into its deterministic counterpart by using expected values. Then, a competitive meta-
heuristic for the deterministic WCP is employed to obtain a set of promising a priori solutions,
each defining a certain order of nodes to visit and the associated deterministic costs. As the actual
amount of waste to be collected at each container is only revealed once reached by the vehicle,
the predefined route is subject to the risk of route failures, where vehicles reach their capacities
before the planned landfill stop. In this case, an additional and costly landfill trip is necessary.
For this reason, Monte Carlo simulation (MCS) is employed to simulate different waste levels and
assess the performance of the most promising deterministic solutions to different stochastic sce-
narios. Therefore, our approach reaches high-quality solutions to large-sized problem instances
with up to 2100 nodes in only a few minutes for both the deterministic and stochastic cases. The
contributions of this paper are threefold: (i) a competitive Variable Neighborhood Search (VNS)
metaheuristic is presented, outperforming the current best known solutions of a well-known bench-
mark set for the deterministic WCP; (ii) the metaheuristic is extended using MCS to allow a fast
solution to realistic WCP problems experiencing uncertainty regarding waste levels; and (iii) a
risk-analysis of the generated solutions based on the expected reliability according to different
waste level variances and vehicle capacity safety levels is performed.

This paper is structured as follows: a literature review on related work is provided in Section
2; the WCP is defined in Section 3; our approach to the deterministic WCP is outlined in Section
4, before Section 5 discusses its simheuristic extension of the stochastic version; in Section 6 a
set of computational experiments conducted to validate our approach based on large-sized WCP
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instances with stochastic input variables is described and analyzed; and finally, the conclusions of
this work and possible lines of future research are discussed in Section 7.

2. Related Work
Probably the first work to address municipal solid waste collection was introduced by Beltrami
and Bodin (1974). Since then, various solution techniques for different variants of the WCP and
its extensions have been proposed. While some works formulating the WCP as an ARP can
be found (Ghiani et al. (2005) and Bautista et al. (2008)), the following discussion focuses on
recent publications using VRP formulations. More extensive literature reviews are provided by
Golden14; Beliën et al. (2014) and Ghiani et al. (2014b) and Han and Ponce-Cueto (2015).

The deterministic Waste Collection Problem

Most works on the deterministic WCP focus on case studies with some problem extension, e.g.:
combined routing and vehicle scheduling. For example, Baptista et al. (2002) elaborated an exten-
sion of the Christofides and Beasley heuristic for the multi-period WCP (Christofides and Beasley,
1984), modeled as a periodic VRP (PVRP) to combine vehicle scheduling over multiple time pe-
riods with route planning. The authors used their approach to improve municipal waste collection
in a Portuguese city. Also addressing a multi-period WCP, Teixeira et al. (2004) developed a
cluster-first route-second heuristic to schedule and plan waste collection routes for different waste
types in a case study in Portugal with over 1600 collection sites. Nuortio et al. (2006) presented
a guided variable thresholding metaheuristic to solve a multi-period WCP with several thousand
collection points in Eastern Finland. Hemmelmayr et al. (2013) addressed the PVRP with different
waste types and up to 288 containers, which they solved with a VNS metaheuristic. They consider
the landfills as intermediate facilities, which are inserted in pre-constructed routes using dynamic
programming. In the same work, the authors also discussed the single period WCP with multiple
depots, in which the landfills serve as vehicle depots and disposal sites at the same time. Later,
Hemmelmayr et al. (2014) discussed the integrated vehicle routing- and bin allocation problem
using the same real-life problem set, which they solved with a combination of a VNS metaheuris-
tic for the routing part and a mixed integer linear programming-based exact method for the bin
allocation. Ramos et al. (2014) extended the typical objective of minimizing routing costs in order
to include environmental concerns, considering multiple waste types and numerous vehicle depots
in a case study in Portugal.

Only focusing on waste collection routing, Kim et al. (2006) developed an extension of
Solomon’s insertion algorithm (Solomon, 1987) to optimize routes of a North American waste
management service provider, considering a capacitated vehicle fleet, time windows, and driver
lunch breaks. The authors reported reduced routing distances of up to 10%. Furthermore, a bench-
mark set of 10 realistic instances based on the original case study ranging from 102-2100 nodes is
provided. This benchmark set was later employed by Ombuki-Berman et al. (2007) to test a multi-
objective Genetic Algorithm. Furthermore, the same benchmark set was used by Benjamin and
Beasley (2010) and Buhrkal et al. (2012) to test their metaheuristic solution methods. Benjamin
and Beasley (2010) combined Tabu Search with VNS. By exchanging containers and landfills
within and between routes, the solution search space is systematically increased. Buhrkal et al.
(2012) put forward an Adaptive Large Neighborhood Search metaheuristic. Based on an initial
solution, this approach applies a range of destroy-and-repair methods to examine several solution
neighborhoods. It is called adaptive since the choice of methods depends on the solution quality
obtained during the construction of earlier solutions. Moreover, an acceptance criterion for new
solutions based on Simulated Annealing is included. Recently, Markov et al. (2016) presented a
multiple neighborhood search heuristic for a real-word application of the waste collection VRP
with intermediate facilities. The authors consider a heterogeneous vehicle fleet and flexible depot
destinations in their approach.

The stochastic Waste Collection Problem

Concerning the WCP with stochastic demands, the literature is more scarce. Ant Colony Opti-
mization and a hybrid approach based on a Genetic Algorithm and Tabu Search for a case study
with 50 containers in Malaysia is presented in Ismail and Irhamah (2008) and Ismail and Loh
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(2009). After planning a priori routes, waste levels are simulated according to a discrete proba-
bility distribution. Routes undergo a recourse action (i.e., an additional disposal trip) whenever
actual demand exceeds the planned collection amount. Nolz et al. (2014) formulated a collector-
managed inventory routing problem for a case study on the collection of infectious waste. By using
real information obtained through radio frequency identification, their Adaptive Large Neighbor-
hood Search algorithm is able to consider stochastic inputs. Alshraideh and Abu Qdais (2016)
combined a multi-period WCP with time windows and stochastic demands in an areal case study
of medical waste collection from 19 hospitals in Northern Jordan. They used a Genetic Algorithm
and a probability constraint regarding a pre-defined service level to solve the problem.

Related to the dynamic WCP in combination with modern Information- and Communication
Technology (ICT), Johansson (2006) tested the introduction of volumetric sensors in Malmoe
(Sweden) through analytic modeling and discrete-event simulation. They compare static rout-
ing with its dynamic counterpart in which containers raise alarms when a certain waste level is
exceeded, suggesting that dynamic waste collection routing could lead to improved operations.
Later, Faccio et al. (2011) elaborated a real-time tractability system for multi-objective waste col-
lection in an Italian city. They discuss the use of ICT (e.g., volumetric sensors, Radio Frequency
Identification, GPS, etc.) to connect containers, vehicles, and the operations center in an eco-
nomic feasibility analysis. More related to simulation than optimization, Wang (2001) developed
an integrated simulation model for solid waste collection with both deterministic and stochastic
waste generation- and household set-out rates. Their decision support tool can be used to evaluate
collection systems concerning environmental and operational costs and optimize the system de-
sign under different circumstances. Also related to stochastic waste collection, Yeomans (2007)
integrated grey programming into evolutionary simulation-optimization to solve solid waste col-
lection problems with high levels of uncertainty. Gruler et al. (2015a) describe the combination
of a multi-start algorithm with simulation to solve the WCP with stochastic demands. While they
propose some generic ideas on which our approach is built, their paper only provides a general
overview of a basic solving approach and no computational experiments were run.

Regarding simheuristic methodologies for tackling routing problems under uncertainty, Juan et
al. (2011b) addressed the VRP with stochastic demands, analyzing the effect of safety stocks con-
cerning total routing costs and solution reliability. Gonzalez et al. (2016) presented a simheuristic
algorithm to deal with the ARP with stochastic demands. The Inventory Routing Problem with
stock-outs and stochastic demands was discussed by Juan et al. (2014b), outlining the effect of
different refill strategies on inventory and routing costs in a two-echelon supply chain.

3. Description of the problem
As a rich extension of the VRP, the WCP is NP-hard (Caceres et al., 2014). To start with, this
Section defines a basic version of the problem, including the mathematical formulation and a small
computational experiment justifying the need of a metaheuristic-based approach. Afterwards, a
richer and more realistic version is presented.

Basic version of the WCP

The WCP can be described on a graph G = (V, A), where the set of nodes V = Vd ∪ V f ∪ Vc ∪ Vb

includes: (i) a set of starting and ending depots Vd = {0, 0′} (in practice both depots could be
the same), with the starting depot being the initial location of a fleet of homogeneous vehicles
K = {1, 2, . . . , k}, each of them having a capacity C; (ii) a set V f = {1, 2, . . . ,m} describing m
landfills at which collected waste must be disposed at least once before visiting the ending depot
(see Figure A.1); (iii) a set of waste containers (customers) Vc = {m+1, . . . ,m+n} with associated
waste levels qi > 0 (∀i ∈ Vc); and (iv) a set Vb = {0∗} representing a virtual lunch-break node
that has to be included in each route. Each node i ∈ V \ Vd has an associated time window
represented by [ai, bi] (with 0 ≤ ai < bi). Necessary service times for emptying any container
and the duration of the lunch break are formulated as ri > 0 (∀i ∈ Vc ∪ Vb). Likewise, the set
A = {(i, j)/i, j ∈ V, i , j} describes the arcs connecting any pair of different nodes. Each pair is
characterized by its respective travel costs, ci j = c ji ≥ 0, and travel times, ti j = t ji ≥ 0. The travel
time associated with going from any node i ∈ V ∪ Vb to the virtual lunch-break node (and vice
versa) is equal to zero, i.e.: ti0∗ = t0∗i = 0. Notice, however, that the travel cost associated with
‘crossing’ the lunch-break virtual node is given by the travel cost of the origin and destination
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nodes, i.e.: ci0∗ + c0∗ j = ci j . The decision variables xi jl (∀(i, j) ∈ A, ∀l ∈ K) equal 1 if arc
(i, j) is employed by vehicle l and 0 otherwise. Our mathematical model is presented next. It
extends the one proposed in Buhrkal et al. (2012) (e.g. by including the lunch break constraints)
and the one proposed in Sahoo et al. (2005) (which only considers traveling times). In our model,
dil represents the accumulated load of vehicle l before serving node i, hil represents the service
starting time of vehicle l at node i, and M1 is a large-enough constant that can be defined as
M1 = max{bi}(∀i ∈ V \ Vd) + max{si}(∀i ∈ V \ Vd) + max{ti j} (∀(i, j) ∈ A).

Min
∑

(i, j)∈A

ci j

∑
l∈K

xi jl (A.1)

Subject to:∑
j∈V\Vd

x0 jl = 1 ∀l ∈ K (A.2)

∑
i∈V f

xi0′l = 1 ∀l ∈ K (A.3)∑
i∈V

∑
l∈K

xi jl = 1 ∀ j ∈ Vc (A.4)∑
i∈V
i, j

xi jl =
∑
i∈V
i, j

x jil ∀ j ∈ V \ Vd,∀l ∈ K (A.5)

ai ≤ hil ≤ bi ∀i ∈ V \ Vd,∀l ∈ K (A.6)
hil + ri + ti j ≤ h jl + (1 − xi jl)M1 ∀(i, j) ∈ A,∀l ∈ K (A.7)

dil = 0 ∀i ∈ Vd,∀l ∈ K (A.8)

d jl + C(1 − xi jl)
d jl −C(1 − xi jl) ≤ dil + qi ≤

∀i ∈ Vc ∪ Vb ∪ {0},∀ j ∈ V \ Vd,∀l ∈ K (A.9)

d jl ≤ C(1 − xi jl) ∀i ∈ V f ,∀ j ∈ Vc ∪ Vb,∀l ∈ K (A.10)∑
i∈V

xi0∗l = 1 ∀l ∈ K (A.11)∑
j∈V

x0∗ jl = 1 ∀l ∈ K (A.12)

h jl + (2 − xi0∗l − x0∗ jl)(M1 + r0∗ )
hil + ri + r0∗ + ti j ≤

∀(i, j) ∈ A,∀l ∈ K (A.13)

dil ≤ C ∀i ∈ V f ,∀l ∈ K (A.14)
ci0∗ + c0∗ j ≥ ci j ∀(i, j) ∈ A (A.15)
dil ≥ 0 ∀i ∈ V,∀l ∈ K (A.16)
xi jl ∈ {0, 1} ∀(i, j) ∈ A,∀l ∈ K (A.17)

Figure A.2: Representation of the WCP.

The objective function of minimizing total cost is formulated in Equation (1), which represents
the costs of the edges selected (including the ones ‘crossing’ a lunch-break node). Constraints (2)
imply that each vehicle leaves the starting depot, while constraints (3) impose that each vehicle
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must visit a landfill right before reaching the ending depot. Constraints (4) ensure that each con-
tainer is visited exactly once. Constraints (5) guarantee that inflow and outflow to each non-depot
node must be equal. Constraints (6) force to the compliance of time windows. Constraints (7) de-
fine the earliest possible starting time for the next customer taking into account service and travel
times. Constraints (8) reset the vehicle load to zero when leaving from or arriving at a depot.
Constraints (9) take care of the accumulating load levels after visiting each container. Constraints
(10) force that vehicles are empty after a visit to a landfill. Constraints (11) and (12) introduce a
lunch break during each route. Constraints (13) impose that travel times between the stops before
and after the lunch break are taken into account to fix the earliest possible starting time of the next
container. Constraints (14) limit the maximum waste a vehicle may carry at any time. Constraints
(15) define the costs of crossing a virtual lunch-break node. Notice that these costs are calculated
as the travel cost between the origin- and destination node, i.e.: ci0∗ + c0∗ j = ci j. Thus, ci0∗ and c0∗ j

are not inputs but decision variables satisfying the aforementioned constraint. Finally, constraints
(16) and (17) define variable domains.

The previous model was implemented in the GAMS language (Version 23.5.2). Then, the
CPLEX solver (Version 12.2.0.0) was used to try solving the smallest instance provided by Kim
et al. (2006), which has 1 depot, 99 containers, and 2 landfills. However, the solver ran out of
memory after 54 minutes of computation. Therefore, we generated three smaller instances with
20, 24, and 44 containers, respectively. The number of landfills used was 2, as in the original
instances. The CPLEX solver was allowed to run for a maximum time of 48 hours or until a gap
lower than 1% was reached. Then, we also employed our VNS algorithm –described in future
sections– to solve the same instances. Table A.1 shows the comparison of results between CPLEX
and our VNS algorithm for the aforementioned instance. For each solving method, we include
the best solution found (Z), the time consumed to find that solution (TC Z) and the maximum
computing time allowed(TC). Notice that both methods provide optimal solutions for the first two
instances, but the VNS clearly outperforms the exact method in computing times (less than 1
second compared to 126 and 854 seconds required by CPLEX, respectively). Regarding the third
instance, CPLEX ran out of memory after 5864 seconds. The best solution found by the exact
method –after 2306 seconds– has an objective value of 70.85 (relative gap of 65% with respect to
the lower bound), while our VNS algorithm provides an objective value of 63.09 in 1.5 seconds.
These results reveal how difficult it becomes for the CPLEX solver to find optimal/near-optimal
solutions in low computing times, even for small instances of the basic WCP version. For that
reason, in the following sections we will focus on developing heuristic-based approaches, which
allow us to deal with richer and more realistic versions of the problem.

Table A.1: Comparison of results among CPLEX and our VNS

CPLEX VNS
Instances Z TC Z (sec.) TC (sec.) Z TC Z (sec.) TC(sec.) GAP

Kim102(20) 38.19 126.31 8916 38.19 <1 300 0.00%
Kim102(24) 24.88 854.05 3641.51 24.88 <1 300 0.00%
Kim102(44) 70.85 2306.55 5864.28* 63.09 1.5 300 -10.95%

Average -3.65%

A richer and more realistic version of the WCP

The following restrictions, which significantly increase the difficulty of the problem, are added to
the basic version described before: (i) the number of vehicles used is not predetermined, only the
maximum number of available vehicles is given; (ii) the lunch break is automatically included in
a route whenever a certain time window is reached; (iii) there is a maximum number of stops at
containers and landfills per route; (iv) there is a maximum amount of waste that can be collected
on a single vehicle route; and (v) the depot also has a time window. In the next sections of this
paper, we will develop methodologies for both the deterministic and the stochastic versions of this
rich WCP.

4. A VNS metaheuristic for the deterministic Waste Collection Problem
In order to solve the deterministic WCP we propose a VNS metaheuristic, which is based on the
construction of different solution neighborhoods and the following descent phase to define a local
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minimum in the corresponding neighborhood structure (Hansen et al., 2010b). An initial solution
is obtained by applying the well-known savings routing heuristic (Clarke and Wright, 1964) and
its biased-randomized extension as described in Faulin et al. (2008) and in Juan et al. (2013a).
This procedure is adapted to the special case of waste collection by changing the calculation of
savings values used for merging two customers i and j, originally calculated as si j = ci0 + s0 j − ci j

(Figure A.3 - left). In the WCP, the costs of traveling between a customer and the depot are
asymmetric due to the additional landfill visit. To address this new situation, we employ a simple
transformation based on the average savings associated to each arc (Figure A.3 - right).

Figure A.3: Savings of the original CWS heuristic (left) and expected savings
proposed for the WCP (right)

Based on the initial solution baseS ol, different neighborhood structures Nk(k = 1, ..., kmax) are
created. The shaking procedures applied in this work to create new solution structures are outlined
in Table A.2. Within each neighborhood Nk(baseS ol), different local descent heuristics described
in Table A.3 are randomly applied to find the local minimum of Nk(baseS ol). To conclude the
local search phase, a quick solution improvement procedure based on a cache memory technique
(Juan et al., 2013a) is implemented: the best-known order of traveling between a set of nodes
establishing a sub-route –i.e., starting at the depot or a landfill and ending at a disposal site–
is stored in a hash-table data structure, thus allowing new solutions to benefit from previously
constructed ones. Whenever the local search phase leads to a more competitive objective function
value than that of baseS ol, baseS ol is updated and k is returned to its initial value of 1. If baseS ol
cannot be improved through the local minimum of Nk, k is incremented by 1 and the next shaking
operator is applied. Once each neighborhood has been constructed (k = kmax), the process is
repeated until a certain predefined stopping criterion (e.g.: time, iterations, etc.) has been reached.
Note that we shuffle the list of neighborhood operators every time k > kmax. A description of the
VNS procedure for the deterministic WCP can be seen in Algorithm 1.

Table A.2: Shaking operators

Operator (k) Description
Customer Swap Inter-Route Swaps two random customers between different routes.
2-Opt Inter-Route Interchanges two chains of randomly selected customers between different routes.
Reinsertion Inter-Route Inserts a random customer in a different route.
Cross-Exchange Interchanges positions of 2-4 random, non-consecutive customers from

different routes.

Table A.3: Local Search operators

Operator (LS-Scheme) Description
Best Position Insertion Reinserts the container with the highest objective function increase into the best

available position of any route.
Re-allocate all Iteratively calculates the objective function increase of each container and

reinserts it at the best possible position.
Random Swaps Randomly selects and interchanges two nodes (from the same or different routes)

if the objective function improves.
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Algorithm 1
1: baseS ol← solve biased randomized CWS for the WCP . Juan et al. (2013a)
2: while stopping criteria not reached do
3: shuffle(ListO f S hakingOperators)
4: k ← 1
5: repeat
6: newS ol← shake(baseS ol, k) . see Table A.2
7: improving← true . Start Local Search
8: while improving do
9: newS ol∗ ← localDescent(newS ol, randomLS operator)

. see Table A.3
10: if costs(newS ol∗) ≤ costs(newS ol) then
11: newS ol← newS ol∗
12: else
13: improving← false
14: end if
15: cacheSubRoutes(newS ol) . End Local Search
16: if costs(newS ol) < costs(baseS ol) then
17: baseS ol← newS ol
18: k ← 1
19: else
20: k ← k + 1
21: end if
22: end while
23: until k > kmax

24: end while
25: bestS ol← baseS ol
26: return bestS ol

To test the competitiveness of our algorithm we use the benchmark instances provided by
Kim et al. (2006), which were later also adopted by Benjamin and Beasley (2010) and Buhrkal
et al. (2012) to validate their solution approaches for the WCP. This benchmark set includes 10
realistic instances, ranging from 102-2100 nodes with time windows, multiple landfills, a single
depot, a driver lunch break during each route, and a homogeneous vehicle fleet. Furthermore, we
compare our approach to the clustered instances presented by Buhrkal et al. (2012). A clustering
procedure is applied to nodes with the same location and time windows to change the total number
of nodes. The algorithm was implemented as Java application and run on a personal computer
with an Intel R©XeonTMCPU E5-2630 v2 @ 2.60GHz processor. The initial solutions constructed
with the biased randomized version of the savings heuristic are based on a distribution parameter
randomly chosen within the range (0.4, 0.5) at each solution construction step.

The results are summarized in Table A.4. Column (1) reports the best known solution (BKS)
for each instance (listed as Kim_numberOfNodes) as reported in the works of Kim et al. (2006),
Benjamin and Beasley (2010), and Buhrkal et al. (2012). The computational times (CT) in sec-
onds, to reach each solution can be seen in column (2), while column (3) lists the average results
with 10 different random number seeds as presented in the benchmark papers. Notice that the
benchmark papers use different computers, computational times, and programming languages to
implement and execute their described algorithms, making a fair comparison difficult. For this
reason, we have tested our VNS metaheuristic with two different stopping criteria. On the one
hand, our best solution (achieved with 10 different random number seeds) when applying the CTs
listed in column (2) is reported in column (4). Furthermore, we report our average solution with
10 different random number seeds (5) and our best solution (6) with a stopping criterion of 300
seconds per instance as suggested by Benjamin and Beasley (2010). It can be seen that our algo-
rithm outperforms current BKS’s by an average of -0.85% and -2.65%. Moreover, our algorithm
reaches 9 new BKS’s (11 with the extended algorithm running time). As can be observed, the per-
centage gap compared to the BKS extends to more than 10% in some cases. These differences are
supported by results described in a technical report by Markov et al. (2015), in which the authors
use the five smallest (non-clustered) instances of the applied benchmark set to test a heuristic for
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Table A.4: Computational results for the deterministic case and comparison with
BKSs

Instance (1)
BKS

(2)
CT BKS

(s)

(3)
BKS

average

(4)
Our

best sol1

(5)
Our sol

average2

(6)
Our

best sol2

(7)
CT our

best sol (s)

%-Gap
(1)-(4)

%-Gap
(1)-(6)

Kim102 174.5 3 176.03 158.61 158.64 154.62 5 -9.11 -11.39
Kim277 447.6 8 455.7 472.73 457.14 450.6 299 5.61 0.67
Kim335 182.1 10 196.49 189.79 187.36 184.22 298 4.22 1.16
Kim444 78.3 18 78.99 80.22 80.09 79.49 292 2.45 1.52
Kim804 604.1 72 650.65 603.17 601.14 593.2 300 -0.15 -1.80

Kim1051 2250.6 194 2387.7 2128.37 2119.50 2077.37 294 -5.43 -7.70
Kim1351 871.9 105 891.17 929.5 929.40 910.6 238 6.61 4.44
Kim1599 1337.5 252 1385.3 1184.67 1208.54 1182.58 292 -11.43 -11.58
Kim1932 1162.5 285 1192.2 1149.45 1169.95 1136.34 273 -1.12 -2.25
Kim2100 1749 356 1916.8 1595.48 1622.29 1603.93 293 -8.78 -8.29

Clustered Instances
Kim86 174.5 3 176.6 155.68 158.35 155.68 10 -10.79 -10.79
Kim267 450.7 8 456.4 460.4 455.96 449.41 294 2.15 -0.29
Kim322 182.4 10 190.7 189.78 185.93 184.26 298 4.05 1.02
Kim444 78.6 18 79.2 80.22 80.09 79.49 292 2.06 1.13
Kim602 586.2 72 647.8 610.52 593.25 586.11 297 4.15 -0.02

Kim1011 2295.2 116 2370.5 2151.51 2131.00 2102.23 299 -6.26 -8.41
Kim536 850 105 850.9 885.83 877.69 850.46 292 4.22 0.05
Kim870 1170.2 252 1230.6 1156.15 1180.07 1145.83 286 -1.20 -2.08

Kim1860 1128.7 285 1180.9 1129.89 1154.48 1138.6 295 0.11 0.88
Kim1877 1594.2 266 1650.8 1620.89 1642.20 1604.33 186 1.67 0.64
Average 868.44 122 908.27 846.64 849.65 833.47 257 -0.85 -2.65

1computational times per instance equal to column (2)
2computational times per instance equal to column (7)

the WCP.
Some final remarks concerning the algorithm can be made. The initial solution for all instances

is constructed in under 3 seconds (only a few milliseconds for the smaller problem cases). In
comparison to the previous BKS’s, the average gap of the initial solutions is 8.92%. A similar
comparison to our best solution is done with the different local search operators. When only
running the algorithm with the “best position insertion"-, the “re-allocate all"-, and the “random-
swaps" local search, the average percentage gaps are -0.38%, 1.28%, and 2.34% respectively.
While performance differences between the operators can be observed, these results suggest that
the combination of various local search techniques is useful in the solution of the WCP.

5. Solving the stochastic Waste Collection Problem
In contrast to deterministic cases of the WCP, waste levels cannot be predicted with full certainty
when solving a more realistic stochastic version of the problem. The fact that actual waste levels
in containers are only known when reaching designated pick-up points can lead to route failures
whenever collected garbage exceeds the planned collection amount. In these cases, the collection
vehicle needs to add an additional and expensive landfill visit to its route. The proposed simheuris-
tic methodology outlined in Algorithm 2 allows an estimation of the solution quality of previously
created outputs using the VNS metaheuristic proposed in Section 4 by integrating MCS into the
solution procedure. Note that the simheuristic structure for the WCP can theoretically be com-
bined with any metaheuristic approach addressing the problem setting. However, the quality of
the stochastic solution is directly related to the results obtained in the deterministic metaheuristic
process (Juan et al., 2015a). For this reason, the use of an efficient deterministic solution process
such as the one outlined in Section 4 is beneficial.

Before simulating waste levels, our methodology starts by transforming the stochastic input
variables into their deterministic counterpart, which is used to establish initial WCP solutions.
Even though waste levels (especially in urban settings) face different levels of stochasticity, their
behavior can typically be modeled according to some kind of theoretical or empirical distribution
(e.g., based on historical data). This allows the (stochastic) waste levels wi at each container i
to be replaced with expected values E[wi]. Using these deterministic values, an initial solution
baseS ol is constructed. In the following, the solution quality in a stochastic environment is tested
by randomly simulating the waste levels of each container i for a certain number of iterations
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(or simulation runs) within the predefined probability distribution. During each run the occurring
route failure costs are estimated by penalizing situations in which vehicle capacities are reached
before a scheduled landfill trip. More specifically, route failure costs are calculated as corrective
actions to the predefined routes –i.e., the necessary additional landfill trip starting and ending at
the container at which the vehicle capacities are reached. Finally, the sum of all route failure costs
of all simulation runs are divided by the number of simulation runs. Thus, the expected total costs
of baseS ol now consist not only of the deterministic routing costs, but rather in the addition of
the deterministic routing costs with the expected route failure costs. At this stage we propose the
application of a small number of iterations shortS imIter. On the one hand, a larger number of
simulation runs lead to more reliable estimates of the stochastic route costs. On the other hand, at
this stage a shorter simulation procedure can be used to keep the computational effort through the
simulation reasonable.

Algorithm 2
1: replace stochastic waste levels by expected values . Creation of det. inputs
2: baseSol← solve biased randomized CWS for the WCP
3: shortSimulation(baseS ol) . MCS
4: while stopping criteria not reached do
5: k ← 1
6: repeat
7: newSol← shake(baseSol, k) . see Algorithm 1
8: localSearch(newSol) . see Algorithm 1
9: if detCosts(newS ol) < detCosts(baseS ol) then . Solution is promising

10: shortSimulation(newSol) . MCS
11: if totalCosts(newS ol) < totalCosts(baseS ol) then
12: update(eliteS ols)
13: baseS ol← newS ol
14: k ← 1
15: else
16: k ← k + 1
17: end if
18: end if
19: until k > kmax

20: end while
21: for each eliteS ol do
22: longSimulation(eliteS ol)
23: estimateReliability(eliteS ol)
24: end for

Once detCosts(baseS ol), stochCosts(baseS ol), and totalCosts(baseS ol) have been defined,
new deterministic solution neighborhoods are constructed and locally improved as described pre-
viously. A newly constructed solution newS ol is considered as promising whenever it yields lower
deterministic costs than the current base solution. The behavior of each promising solution un-
der waste level uncertainty is then evaluated by applying a short simulation run, leading to a first
estimation of the total solution costs. Whenever totalCosts(newS ol) < totalCosts(baseS ol), the
current base solution is updated and k is returned to its initial value. Furthermore, the solution
is stored as elite stochastic solution. With each elite solution, a more extensive simulation run is
started for longS imIter iterations once the metaheuristic stopping criteria has been reached. As
discussed in Juan et al. (2015a), it is recommendable to use a restricted number of solutions for
the more extensive simulation run at this stage. For this reason, we limit the number of stored
eliteS ols to a maximum of 10. While some changes in the stochastic objective function of single
solutions can be observed through the more detailed simulation, an augmented elite solution list
has not shown any significant changes in the final ranking of the best stochastic solutions.

In addition to calculating the stochastic objective function value of promising determinis-
tic solutions, our methodology allows the estimation of a solution reliability by considering the
proportion of runs where the solution plan can be implemented without any route failure (a
route failure occurs whenever the actual demand at any container exceeds the vehicle capacity,
which forces the vehicle to visit a disposal site before resuming the original route). Thus, the
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reliability reliabr of each route r of any solution S is computed as the quotient of the num-
ber of runs in which a route failure occurs divided by the total number of simulation runs, i.e.
reliabr = simRunsWithRouteFailue/simRuns. Notice that each route in a solution can be seen as
an independent component of a series system (i.e., the proposed solution will fail if, and only if,
a failure occurs in any of its routes). Therefore, the overall reliability of a solution with R routes

can be computed as
R∏

r=1
reliabr. This leads to another valuable decision variable for waste collec-

tion route planners, especially due to the fact that more than one solution is evaluated in the same
manner when applying the described reliability calculation to each elite solution. Furthermore,
it allows for a closer risk and sensitivity analysis of the considered solutions, as explained in the
following Section.

6. Computational experiments for the stochastic Waste Collection Problem
Similar to the deterministic case, a set of computational experiments have been performed for the
WCP under uncertainty, which are described in this Section. Furthermore, the obtained results are
discussed and analyzed.

Description of Experiments

Since there is a lack of stochastic benchmark instances with similar characteristics, we use the
non-clustered instances of Kim et al. (2006) as reference. The deterministic instances are then
transformed into stochastic ones by using random waste levels following a log-normal distribu-
tion with expected values equal to the original deterministic value. This probability distribution
has been chosen because it is quite flexible and among the most popular ones when modeling
non-negative random variables. Other probability distributions, like the normal one, are rarely
employed to model non-negative random variables. Nevertheless, our approach could be used
with any other probability distribution (e.g., Weibull, gamma, etc.). Note that any probability dis-
tribution will allow the easy construction of the deterministic case by putting the variance level
Var[wi] of any container equal to 0, considering that the deterministic values provided by the
instances are used as the distribution mean.

We test our approach using low (Var[wi] = 0.05), medium (Var[wi] = 0.15), and high variance
levels (Var[wi] = 0.25) concerning the waste level distribution at any container. The number of
short simulation runs is set to 500, while a more extensive simulation with 5000 runs is applied
only to the elite solutions. Moreover, we propose the inclusion of vehicle safety stocks k to better
deal with unexpected demands, as discussed in more detail by Juan et al. (2011b). Instead of
considering the complete available vehicle capacity C in the construction of the deterministic
solution, a decreased capacity C∗ = C ∗ (1−k) is applied. On the one hand, high levels of k will, on
average, lead to higher deterministic costs (and increased solution reliabilites), as the considered
vehicle capacity during the route construction is reduced. On the other hand, it can be expected
that the stochastic route failure costs will decrease. For the following analysis and discussion of
results we will therefore consider 6 different safety stock levels k: 0, 0.02, 0.04, 0.06, 0.08, and
0.1. Combined with the three variance levels, this leads to a total of 18 different scenarios for each
instance. Tables A.5-A.7 show the deterministic costs (1), the total costs including the expected
route failure penalties (2), and the related reliability calculated as described in the previous Section
(3) of each tested scenario, where listed results refer to the best obtained solution according to the
overall costs. The average calculation time (to complete the VNS procedure and the subsequent
extensive simulation for the elite solutions) of all scenarios was 351.92 seconds.

Discussion and Analysis of Results

Figure A.4 shows the expected total costs and reliabilities for the average of all tested instances
for each waste variance level/safety capacity factor combination. As can be observed, the highest
total costs for each waste variance level is obtained when no safety capacity factor is considered as
a result of high expected route failure costs. Furthermore, it can be seen that the lowest total costs
over all instances for a low variance level are obtained with a safety capacity factor of 2%. For
medium and high waste variance, a safety capacity factor of 4% seems to yield the most promis-
ing results concerning total costs. As expected however, the reliability levels (also calculated as an
average of all instances) increase for all variance levels as the vehicle safety capacity is increased.
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It can also be concluded that the inclusion of only a small safety capacity already significantly in-
creases reliability levels (up to around 60% in the most extreme case). In contrast to the stochastic
case, safety capacity levels negatively impact the deterministic results as vehicle capacity levels
are reduced. This can be clearly seen in Figure A.5, showing the average deterministic costs of all
instances and variance levels with different safety stock levels.

(a)

(b)

Figure A.4: Two numerical solutions: Expected total costs (a) and reliabilities
(b) over all instances

A more detailed risk analysis is done in Figure A.6, which shows a boxplot of the long simula-
tion outputs for the three most competitive elite solutions of the Kim277 instance. In this specific
case the first solution seems to be the most promising one, as it has the lowest mean and the lowest
quartiles. However, this is not necessarily always the case. In Table A.8, the mean and standard
deviation of the results from the long simulation concerning total costs of the three best solutions
of each instance (obtained with a single random-number seed) are listed. From the table it can
be concluded that the solution with the lowest mean does not always have the lowest standard
deviation (see for example Kim444). Thus, this information can be used by decision-makers to
select the solution that he/she prefers according to his/her risk preference. In a similar manner,
our solution approach allows the consideration of different risk-aversion levels of decision takers
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Figure A.5: Deterministic costs over all instances and variance levels

by comparing solutions with different safety capacity levels. A more risk-averse route planner
will choose to construct routes with higher safety capacity levels, which typically lead to higher
routing costs while experiencing lower route failure, and vice versa.

To assess the relationship between reliability levels and associated solution costs, Pearson’s
product-moment correlation test has been completed by calculating the normalized values of the
reliabilities, expected route failure costs, and the total costs of all elite solutions for each instance.
Hereby, a 4% vehicle safety capacity and all variance levels have been considered. When com-
paring reliability levels and total solution costs, only a very weak negative correlation of -0.072
(p-value = 0.3035) can be observed. As could be expected however, the negative correlation be-
tween reliability levels and expected route failure costs is more clear, with a Pearson correlation
of -0.674 (p-value < 2.2e-16).

Figure A.6: Boxplot of the total costs of each long simulation run of the Kim277
instance for the best three solutions considering a high waste variance level and

a 2% safety capacity level
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Table A.8: Comparison of different elite solutions in terms of the mean and stan-
dard deviation of total costs

Elite
Solutions Best 1 Best 2 Best 3

Instance
Name Mean St. Dev. Mean St. Dev. Mean St. Dev.

Kim102 157.05 3.54 157.14 3.38 157.22 3.65
Kim277 498.66 4.53 499.07 4.45 499.12 4.59
Kim335 187.84 1.81 187.96 1.84 188.25 1.85
Kim444 87.79 0.84 87.80 0.79 91.35 0.82
Kim804 633.97 5.93 634.34 5.74 635.00 5.90
Kim1051 2342.85 16.67 2343.58 15.48 2345.62 16.29
Kim1351 1009.88 26.48 1012.78 26.57 1025.50 26.54
Kim1599 1290.02 24.34 1291.67 23.40 1292.07 23.83
Kim1932 1199.85 29.77 1202.21 30.50 1245.03 30.14
Kim2100 1742.47 13.97 1742.81 14.62 1748.34 13.83

7. Conclusions
The Waste Collection Problem (WCP) is becoming increasingly popular due to the growth of
urban areas and smart cities around the world. Efficient waste management has relevant benefits
for society, such as the reduction of environment pollution, hygiene problems, traffic jams, and
direct costs. Formulated as an optimization problem, the WCP can be seen as an extension of
the Capacitated Vehicle Routing Problem. Special problem characteristics include the pick-up
activities of waste and the inclusion of additional landfill trips. Despite the amount of works
in the literature devoted to this problem, most works assume that waste levels are known when
designing vehicle routes, which is not the case in real-life applications. In addition to a competitive
Variable Neighborhood Search metaheuristic for the deterministic WCP, this paper has presented
an efficient approach to solve the WCP under uncertainty by modeling waste levels as random
variables following an empirical or theoretical probability distribution. The algorithm is tested
using a large-scaled benchmark set for the WCP with several realistic constraints.

The proposed methodology for the WCP with stochastic waste levels is based on a simheuristic
algorithm in which a VNS metaheuristic is combined with simulation techniques. Initially, a
stochastic problem instance is transformed into a deterministic one by replacing random variables
with their means. In the following the metaheuristic explores the search space to find a set of
promising solutions, which are then assessed in a stochastic environment by using Monte Carlo
simulation. Apart from finding different solutions in only a few minutes (even for stochastic WCP
cases with over 2000 nodes solutions are found in under 400 seconds), the results allow a risk
analysis considering waste level variances and vehicle safety capacities. A further advantage of
our approach is its easiness to be understood and implemented. In addition, no strong assumptions
are made related to the probability distribution of the random variables. As the results of our
computational experiment show, our algorithm yields competitive solutions in a relatively small
amount of time.

A number of possible future research lines stem from this work. The most natural extension
would be the inclusion of stochastic travel and/or service times. Especially in urban settings, these
variables may experience high uncertainty levels due to the unpredictability of traffic jams, road
works, adverse weather, etc. A second research line extends the stochastic problem by consider-
ing on-line optimization techniques. In the development of smart cities for example, total waste
collection costs could be reduced by using real-time waste level information obtained through
volumetric sensors in containers. Another interesting topic would be the introduction of routing
externalities (pollution, benefits for society, etc.) in the objective function. Finally, a multi-stage
version of our problem (e.g., daily waste collection over a weekly or monthly planning horizon)
could be addressed.
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Abstract
The goal of the portfolio optimization problem is to minimise risk for an expected portfolio
return by determining the proportions of included assets. As the pool of assets increases and
additional constraints are considered, the problem becomes NP-hard. Thus, metaheuristics are
commonly employed for solving large instances of rich versions. However, metaheuristics fail
to account for stochastic returns and covariances, rendering them unrealistic in the presence of
heightened uncertainty in financial markets. This paper aims at closing this gap by proposing a
simulation-optimization approach, specifically a simheuristic algorithm that integrates a variable
neighbourhood search metaheuristic with Monte Carlo simulation, to deal with returns and covari-
ances modelled as random variables. Computational experiments performed on a well-established
benchmark instance illustrate the use of our methodology and analyse how the solutions change
in response to varying the degree of randomness, minimum required return, and probability of
obtaining at least the specified return.

Keywords: constrained portfolio optimization, metaheuristics, efficiency indices, financial
assets, iterated local search, biased randomization.

1. Introduction
Investments play an essential role in our society through wealth creation, sustainable economic
growth and ultimately improvements in welfare standards. They provide companies with the nec-
essary funds to transform ideas and resources into profitable projects, social benefits and jobs.
Most of the related questions in financial economics can be formulated as combinatorial optimiza-
tion problems (COPs).

Optimization methods may be classified into exact methods and heuristics/metaheuristics
(Talbi, 2009). The first group includes procedures that guarantee the optimality of a solution.
However, exact methods may require strict assumptions or simplifying formulations to render it
solvable, thus reducing the informative value for real-life operational applications. Furthermore,
when they are used to solve large instances of NP-hard optimization problems, they require enor-
mous computing times. Within the second group, heuristics are experience-based procedures,
which usually provide reasonably good solutions in very short computing times (a few seconds
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or even less). By contrast, metaheuristics (Boussaïd et al., 2013) are general solving procedures,
which are able to provide near-optimal solutions for a broad range of optimization problems in
reasonable computing times (typically in the order of a few minutes).

Founded by Harry Markowitz (Markowitz, 1952) and a milestone in modern portfolio theory,
the portfolio optimization problem (POP) defines the investment decision as the strategy of: (i)
selecting financial assets; and (ii) determining the optimal weights allocated to those assets that
results in a desired portfolio return and an associated minimum level of risk. This is implemented
through a quadratic objective function that aggregates the weighted covariances of the constituent
asset returns, which is then minimised subject to a desired rate of return. It is noteworthy that other
risk measures, such as value-at-risk or Sharpe ratio have been employed too. In its most basic defi-
nition the POP is constrained in that portfolio weights must add up to one and take on non-negative
values, prohibiting short-selling. This basic version of the problem can be solved through exact
methods and, in fact, these methods have been predominant in the POP literature (Mansini et
al., 2014; Sawik, 2012a). However, metaheuristics are increasingly employed to deal with more
realistic and complex versions of the problem (Adebiyi and Ayo, 2015), in which additional con-
straints are considered. In particular, pre-assignment, quantity, and cardinality constraints have
received overwhelming attention in extant literature (Chang et al., 2000; Soleimani et al., 2009).
Pre-assignment constraints allow the preselection of some assets, irrespective of their risk-return
characteristics. Quantity constraints confine the weight allocated to an asset in the portfolio within
a floor and ceiling constraint, thus simultaneously limiting the exposure to specific assets and
ruling out investments in negligible quantities –a practice that may be prohibitively costly, since
the transaction costs may reduce or erase the benefit. While recognising that the quantity con-
straints arise as a result of the investor’s discretionary decisions, these constraints have received
growing interest. A recent example is Babaei et al. (2015), which is further supported by Kolm
et al. (2014). The latter authors argue that the inclusion of quantity constraints can lead to an
improved performance, can help contain portfolio volatility, and can decrease downside risk and
shortfall probability. Behr et al. (2013) further assert that tightening these constraints helps ensure
that portfolio weights are not driven by the sampling error that stems from parameter estimates
based on historical data. Finally, cardinality constraints determine a lower and upper bound for
the number of assets included in the portfolio. Diversification is to some extent ensured through
the allocation of resources to a minimum number of imperfectly correlated assets, while the up-
per bound is dictated by the trade-off between diversification and incurred costs. After a certain
threshold the marginal benefits of portfolio diversification decrease (Maringer, 2005), while port-
folios with a large number of assets are more costly in terms of complexity, managerial effort, and
the ensuing increased transaction costs. All in all, these additional constraints make the problem
NP-hard (Bienstock, 1996), thus requiring the use of metaheuristics.

Contrary to the well-established real-life constraints, the growing body of literature assumes
constant rates of returns and covariances. This empirically unsupported assumption poses a key
limitation when real-life approaches are sought, and the main contribution of this paper is to ad-
dress this limitation. Indeed, since asset returns are random variables that obey certain probability
density functions, and future returns are unpredictable, the minimum desired rate of return may
not be attained with certainty. More concretely, we relax the above simplifying assumptions and
consider rates of returns and covariances as random variables. The resulting problem is known
as the stochastic POP (SPOP). Figure B.1 shows two resulting portfolios with a different required
return for Hang Seng Stock Market data with a medium level of stochasticity for covariances (in
this illustrative example, returns are maintained constant). As expected, the higher the required
return, the higher the expected risk and the lower the number of assets selected (only those with a
relatively high expected return are considered).

The relation between the required return and the expected risk (i.e., the constrained efficient
frontier or CEF) is analysed in more detail in Figure B.2 for four different levels of stochasticity
(zero, low, medium, and high). The circles on the vertical axis indicate the required returns of the
two solutions analysed in the previous figure, while crossings identify the expected risk of the first
solution for each level of stochasticity.

In this paper, we propose a simheuristic algorithm to solve the SPOP. As described in Juan et
al. (2015a), simheuristic algorithms integrate metaheuristics with simulation techniques in order to
deal with the random nature of stochastic COPs. In particular, we use an extension of the variable
neighbourhood search (VNS) metaheuristic (Hansen et al., 2010a) that integrates Monte Carlo
simulation (MCS) techniques. In short, while the metaheuristic generates promising portfolios for
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Figure B.1: Representation of two solutions for the SPOP.

Figure B.2: CEFs of Hang Seng Stock Market (Hong Kong) data.
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a deterministic version of the problem -the one obtained when expected values are considered-
, simulation techniques are applied to: (i) estimate the expected risk of these portfolios under
uncertainty conditions; (ii) complete a risk analysis on each portfolio; and (iii) provide feedback
to the metaheuristic in order to better guide the searching process. All in all, the main contributions
of this paper are: (i) to derive a mathematical formulation for the stochastic POP; (ii) to develop an
efficient solving methodology for it; and (iii) to illustrate its use by solving an adapted benchmark
instance.

The remainder of this paper is organised as follows. The next section presents a literature
review. Afterwards, the descriptions and the mathematical models for the POP and the SPOP are
provided. Then, a solving methodology for the SPOP is proposed. The following sections explain
the computational experiments carried out and analyse the results. Finally, the last section gathers
the main conclusions of this work.

2. Literature review
Implicit in the mean-variance efficient frontier (MVEF) proposed by Markowitz (1952) are the
assumptions that: (i) first and second moments of a return distribution do not vary over time; and
(ii) current and past asset price changes can be used to predict future movements in financial asset
prices. It is worth noting that the first assumption has received very little empirical support in the
related literature, whereas the second rules out the efficient market hypothesis in the semi-strong
efficiency form. Even so, the MVEF has received an overwhelming interest from academics and
practitioners for more than six decades and has spawn a large number of theoretical extensions and
practical applications (Kolm et al., 2014). In fact, and despite the aforementioned shortcomings,
there has been little attempt to reconcile the MVEF with the random and uncertain nature of
financial asset returns. Early research addresses uncertainty in the parameters, i.e., risk, return,
and the covariance matrix of asset returns, through robust model formulation of the mean-variance
optimization (Bertsimas and Thiele, 2006). However, these formulations present a deterministic
uncertainty model in that it cannot adopt different uncertainty sets (Dangi, 2013).

Huang (2007) addresses this issue and defines returns not as random, but as uncertain and ex-
posed to subjective imprecisions. The author thus combines the MVEF with uncertainty theory
and bases returns mainly on expert opinions rather than historical data. A genetic algorithm (GA)
is used in order to optimise the resulting mean-variance and mean-semivariance models. However,
Qin (2015) argues that a distinction between different securities is to be made and addresses the
real-world complexity of financial markets by solving a hybrid POP that distinguishes between
random and uncertain returns. If there is ample historical information available on a security, then
the security return is considered a random variable. If however there exists a lack of historical
information on a security –which applies to newly listed securities on a stock exchange– then the
return is treated as fuzzy or uncertain. In the latter case, to estimate the first and second moments
of asset returns experts’ opinions are sought. In the presence of assets with random and uncertain
returns, the author derives an optimal solution of the POP that comprises assets from Shanghai
Stock Exchange. Although the aforementioned work is an interesting and significant extension of
the MVEF, it ignores several fundamental issues. First, in addition to the presence of random and
uncertain asset returns, the investor might be less concerned with keeping a hypothetical expected
rate of return on or above a certain threshold. Indeed, it is highly unlikely that all the individual
assets will take on average returns at the end of the investment period. It would be more natural
and practical if the investor instead maximises the probability that the actual return on a portfolio
investment will be on or above a certain threshold. Second, in real life investors face additional
constraints, such as cardinality, quantity and pre-assignment constraint. These issues are echoed
in Nazemi et al. (2015). They formulate and solve several POPs under the assumption that returns
behave as normal, rectangular and trapezoidal uncertain variables. This assumption allows reduc-
ing the POPs to linear programming (LP) problems. A neural network model is then designed to
solve dynamic version of the POPs. An alternative measure of return uncertainty is introduced
by Ning et al. (2015). In the standard MVEF, they consider a POP with triangular entropy as an
additional constraint that controls the level of uncertainty in the POP, whilst leaving unresolved
the above mentioned issues. The first issue is partially alleviated by Huang (2007), who supports
the argument of maximizing actual return on portfolio as opposed to maximizing expected value
of portfolio returns. Consequently, the author designs a hybrid intelligent algorithm to solve a
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SPOP, which seeks to maximise the actual portfolio return with certain probability under the con-
straint that the ratio of the expected portfolio return to the variance of portfolio returns is greater
than a pre-set tolerance level. Whilst the article considers stochastic asset returns, it continues to
treat the second moments as constant. Moreover, the author’s assumption that the investors face
no further constraints in the POP still remains an interesting area of opportunity. Along similar
lines, Liu et al. (2012a) treat asset return as a fuzzy random variable and formulates several POPs
in hybrid uncertain decision systems. The first optimization problem consists in minimizing the
variance of the portfolio return subject to a chance constraint. The chance constraint specifies a
desired rate of return that can be attained under a prescribed chance level. The second problem
caters to tail risk aversion. Specifically, if only the tail of a chance distribution matters for a highly
risk averse investor, then she will maximise the chance that fuzzy random return on a portfolio
is at least as high as a desired rate of return under the maximum acceptable level of risk. To
solve the above optimization problems, these authors employ a combination of MCS and a parti-
cle swarm optimization (PSO) algorithm. Concretely, the simulation method is used to simulate
probability density functions, whereas the PSO algorithm is utilised to solve stochastic program-
ming problems. They further compare the computational results obtained with the chance-variance
based SPOP and with a conventional mean-variance based POP and identify notable differences
in optimal portfolio weights across the two settings. While they also continue to treat the second
moments as constant, the authors account for uncertainty in the constraints (chance or variance
constraint depending on the risk awareness of the investor) by further employing MCS in the
simulation of the probability density functions of the constraints. Zhang et al. (2012) further ex-
plore fuzzy modelling of returns and combine it with the mean-semivariance-entropy approach in
a multi-period setting, in which they explicitly consider four dimensions to the POP, namely the
level of risk and return, transaction costs and the degree of diversification of the portfolio. The re-
sulting model is solved using a hybrid algorithm that combines GA and simulated annealing (SA).
The entropy measure for diversification is further employed in a mean-variance entropy approach
by Chen (2014b). Unlike the former authors, the latter author further employs uncertainty theory
in describing investment risk as uncertain portfolio variance and solves the resulting model using
an artificial bee colony algorithm (ABC). The shortcomings of previous research are diminished
by modelling second moments as uncertain variables and considering further constraints, namely
transaction costs. Recognizing that not only returns are subject to uncertainty, Nguyen et al. (2015)
develops a model, in which the uncertainty of the fuzzy portfolio returns is minimised, while the
Sharpe ratio (as simultaneous measure of risk and profitability) is initiated in a fuzzy context and
subsequently maximised. The resulting model is solved twice, employing a fuzzy approach and
a GA, and both provide superior solutions to the traditional mean-variance optimization based on
the workings by Markowitz (1952).

Based on previous work recognizing the importance of stochastic modelling of returns, this
paper takes a further important step in acknowledging stochasticity not only in the stock returns,
but also in the objective function by considering the covariances random variables. Furthermore,
it combines a novel simheuristic approach with rich constraints that have not previously been
considered in stochastic POPs, namely pre-selection, quantity, and cardinality constraints.

3. Problem definition
This section provides the descriptions of the POP and SPOP introducing the notation employed
and the mathematical formulations, which are based on Di Tollo and Roli (2008).

Notation and description

In the POP, there is a set A = {a1, a2, . . . , an} of n assets. Each asset ai (∀i ∈ {1, 2, . . . , n}) is
characterised by an expected return ri. The covariance between two assets ai and a j (∀i, j ∈
{1, 2, . . . , n}) is denoted byσi j. A solution for this problem consists of a vector X = (x1, x2, . . . , xn),
where each element xi(0 ≤ xi ≤ 1) represents the weight or fraction of the investment allocated
to the asset ai. The basic aim is to minimise the portfolio risk while obtaining an expected return
greater than an investor-given threshold R. To adjust for real-life settings, the rich version of the
POP considers pre-selection, quantity, and cardinality constraints. Pre-selection constraints dictate
whether an asset ai has been pre-selected by the investor and is to be included in the solution (i.e.,
xi > 0) by means of the parameter pi: pi = 1 if ai is pre-selected, and pi = 0 otherwise. Quantity
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constraints specify a lower and an upper bounds for the weights xi, εi and δi (0 ≤ εi ≤ δi ≤ 1),
respectively. Finally, the cardinality constraint defines the minimum and maximum number of
assets included in the portfolio, kmin and kmax (1 ≤ kmin ≤ kmax ≤ n).

The difference between the POP and the SPOP considered in this paper lies in the modelling of
asset returns and covariances. While they are represented by expected values in the first case, the
second considers realistic stochastic uncertainty and thus treats these as random variables. This
results in a modified return constraint where a return no lower than R must be achieved with a
probability of, at least, P0.

Mathematical model

The POP can mathematically be defined as follows:

min f (x) =

n∑
i=1

n∑
j=1

σi jxix j (B.1)

subject to:

n∑
i=1

rixi ≥ R (B.2)

n∑
i=1

xi = 1 (B.3)

εizi ≤ xi ≤ δizi,∀i ∈ {1, 2, . . . , n} (B.4)

0 ≤ εi ≤ δi ≤ 1,∀i ∈ {1, 2, . . . , n} (B.5)

zi ≤ Mxi,∀i ∈ {1, 2, . . . , n} (B.6)

pi ≤ zi,∀i ∈ {1, 2, . . . , n} (B.7)

kmin ≤

n∑
i=1

zi ≤ kmax (B.8)

zi ∈ {0, 1},∀i ∈ {1, 2, . . . , n} (B.9)

As pointed out before, the objective function in Equation (1) quantifies the riskiness of the
investment and is to be minimised. Equation (2) guarantees that the expected return of the invest-
ment does not fall below the threshold R. Equation (3) restrains portfolio investment to existing
and pre-defined resources. An auxiliary variable is introduced to indicate whether the asset ai is
included in the solution (zi = 1; zi = 0 otherwise). For all assets ai, Equation (4) sets lower and
upper bounds (εi and δi, respectively) for xi in case the asset is selected (i.e., zi = 1). The two
bounds are themselves bound by zero and one inclusive (Equation 5). In Equation (6), M is a very
large positive value such that Mxi ≥ 1 for all i if xi > 0. Equation (7) defines the pre-assignment
constraint, where zi depends on the parameter pi. If the asset ai is pre-selected (i.e., pi = 1), it must
be included in the solution (i.e., zi = 1) irrespective of its risk-return characteristics. Equation (8)
describes the cardinality constraint. Finally, Equation (9) defines zi as a binary variable.

The mathematical formulation for the SPOP requires two modifications:

• Covariances (Ci j) in the objective function are considered to be random variables following
a given probability distribution (e.g., the one that best fits the historical data available):

f (x) =

n∑
i=1

n∑
j=1

Ci jxix j ≥ R (B.10)
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• Equation (2) is replaced by the following probabilistic constraint:

P(
n∑

i=1

Rixi ≥ R) ≥ P0 (B.11)

where Ri refers to the asset return modeled as a random variable. It ensures that the portfolio return
will be no lower than the threshold R with a probability of, at least, P0.

4. Proposed methodology for the SPOP
In this section, we propose a simheuristic algorithm to address the SPOP previously introduced.
Generally, this class of algorithms relies on two facts: (i) a stochastic COP can be considered a
generalization of the deterministic COP, meaning that the latter can be interpreted as a special case
of the former when variances are zero; and (ii) although stochastic COPs have not been extensively
studied (Bianchi et al., 2009), there is usually a vast literature on the associated deterministic
COPs. Thus, the approach suggests selecting an efficient algorithm for the deterministic version
of a problem and extending it in a natural way by hybridizing it with simulation techniques. This
section introduces the proposed simheuristic as well as relevant elements of its implementation in
order to allow reproducibility.

VNS metaheuristic and implementation components
As a base framework we employ the VNS metaheuristic, which was first proposed by Mladenović
and Hansen (1997). Besides being a popular metaheuristic in combinatorial as well as global
optimization, it has been used in a wide range of research fields such as scheduling, vehicle routing,
telecommunications, biology, and artificial intelligence. For extensive reviews on applications,
the reader is referred to Moreno-Vega and Melián (2008), Hansen et al. (2008a), and Hansen et
al. (2008b). In essence, the VNS metaheuristic proposes systematic changes of neighbourhood
to find a local minimum by intensifying the search, and to escape from the associated valley by
diversifying. It relies on three facts (Hansen et al., 2010a): (i) a local minimum with respect to
one neighbourhood structure is not necessarily so for another; (ii) a global minimum is a local
minimum with respect to all possible neighbourhood structures; and (iii) for many problems, local
minima with respect to one or several neighbourhoods are relatively close to each other. Pseudo-
code 1 shows a simple version of the VNS used in this work. Its inputs are the problem instance to
solve, the number of neighbourhoods considered (K) and the maximum computational time (T ).
Frequently, K is set to two or three, and the neighbourhoods are nested. First, the variable t for
measuring the time is initialised at zero. Afterwards, an initial solution is obtained and stored
in currentS ol. An outer loop sets the current neighbourhood to the first one and controls that
the time-based constraint is satisfied. Inside, another loop builds and tests new solutions. Within
this loop, the current solution is initially shaken (or perturbed), generating a solution from the kth
neighbourhood of currentS ol. The resulting solution is stored in newS ol, which is then improved
by means of a local search. If there is an improvement (i.e., newS ol is preferred over currentS ol),
newS ol is copied into currentS ol and the current neighbourhood is set to the first. This constitutes
a descendent phase aimed to find a local minimum. Otherwise, the next neighbourhood is analysed
(i.e., k is set to k + 1). The inner loop is executed until the last neighbourhood is explored (i.e.,
k = K). Finally, currentS ol is returned.

Our implementation of the VNS metaheuristic includes biased randomization techniques (Juan
et al., 2011a), referring to the introduction of randomization in classical deterministic heuristics in
order to obtain a number of solutions. Heuristics include at least one step in which one element
is to be selected from a list sorted according to a specific criterion. Typically, choosing the first
is expected to be the optimal option to construct a high-quality solution. For instance, in the
permutation flow-shop problem (Fernandez-Viagas and Framinan, 2015c), which determines a
sequence of jobs with the aim of minimizing a time-related measure, the classical NEH heuristic
creates a list of jobs that are ordered from more to less time-consuming, iteratively extracts the
first, and then chooses the best allocation in the solution. While this is an intuitively logical
procedure, it does not necessarily lead to the best solution. In Juan et al. (2014f), the authors
propose assigning a probability to each element in the sorted list according to the measure of
reference (i.e., the higher in the list an item is ranked, the higher the probability of choosing the
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Algorithm 1 Basic structure of the VNS metaheuristic.

VNS(instance,K,T )
1: t← 0
2: initSol← initialSolution(instance)
3: currentSol← initSol
4: while {t < T} do
5: k← 1
6: while {k ≤ K} do
7: newSol← shake(currentSol,k)
8: newSol← localSearch(newSol)
9: if {newSol � currentSol} then

10: currentSol← newSol
11: k← 1
12: elsek← k+1
13: end if
14: end while
15: t← elapsedTime
16: end while
17: return currentSol

specific item). Consequently, different solutions are generated when the procedure is executed
repeatedly, and it can be expected that some will be of significantly higher quality than the one
obtained employing the deterministic heuristic. In order to efficiently implement these ideas in
code, they make use of skewed probability distributions, such as the geometric or the decreasing
triangular ones. All in all, the biased randomization approach allows us to obtain multiple solutions
based on a deterministic heuristic. As further advancement, our algorithm includes MCS, which
is applied during the search to assess the performance of a number of solutions in a stochastic
environment by generating scenarios with specific values for each random variable, and computing
the expected value of the objective solution (i.e., the expected risk of the portfolio). The open-
source quadratic programming solver ojAlgo (http://ojalgo.org), developed in Java, is called
to determine the optimal weights allocated to a given set of assets. Additionally, a cache memory
(implemented as a hash map data structure) is used in order to avoid calling the solver repeatedly
for a specific set of assets.

Details of the proposed methodology

The flowchart diagram of our approach is depicted in Figure B.3 and described next:

1. Consider a SPOP instance defined by n assets. Each asset ai (∀i ∈ {1, 2, . . . , n}) has an asso-
ciated return rate Ri, which is a random variable following a probability distribution, either
empirical or theoretical. Each pair of assets ai, a j (∀i, j ∈ {1, 2, . . . , n}) is characterised by
a covariance Ci j, which is also random and depends on the correlation Pi j and the standard
deviations S i and S j according to the following equation: Pi j =

Ci j
S iS j

2. Transform the original stochastic problem into a POP instance by means of replacing the
random variables by their expected values ri and σi j.

3. Construct an initial solution (initS ol) by selecting the kmin assets with the highest returns,
after including the s assets pre-selected by the investor, and calling the solver. Afterwards,
simulation techniques are considered to compute the probability of satisfying the return
constraint in the stochastic environment described by the original instance. In particular,
a short number of scenarios (simshort) is used to simulate returns. The solution is stored
and one moves on to the fourth step, provided the constraint is satisfied. If this is not the
case, a feasible solution is searched using a randomised and iterative procedure. First, the
pre-selected assets compose a portfolio. In the next step, the non-preselected assets are
ordered according to their expected return, and a random number, between kmin − s and
kmax − s, are selected using biased randomization, relying on a geometric distribution with
a parameter β (Juan et al., 2011a). All weights are set to the minimum value initially, and

http://ojalgo.org
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then, each weight is set to the maximum value possible (taking into account for an asset ai

the following elements: εi, δi, and the fraction that remains to be allocated, i.e., 1 −
∑n

i=1 xi)
in the order previously established. If an initial solution can be constructed through this, one
moves to step 4. It is worthwhile to remark that we avoid using the solver at this step because
the focus is on finding an initial feasible solution considering the stochastic environment and
not the one with the lowest risk. The time spent searching for a feasible solution is limited
by Tinit, and the algorithm execution stops if no feasible solution is obtained.

4. A list bestS ols is created for storing the l best-found solutions in terms of expected risk.
Then, initS ol is copied into currentS ol and k is set to one. Following this, the expected
risk of currentS ol is computed by using MCS, and the solution is included in the created
bestS ols list.

5. An iterative procedure is started and steps 6 and 7 are executed during a given amount of
time (Tloop).

6. A new solution (newS ol) is created by shaking the current one. This procedure consists
of randomly erasing a number of non pre-selected assets in the solution and randomly in-
troducing new assets until reaching kmax. The number of assets erased is determined by k.
Moreover, a local search is applied to the resulting solution. It aims to improve the solution
by replacing the asset with the lowest weight with another one from the list of non-selected
assets ordered

7. newS ol is compared against currentS ol. If the former is better in terms of risk associated
with the deterministic version of the problem, newS ol is considered to be a promising port-
folio setting and the return constraint for the stochastic environment is checked for it. In
case of being satisfied, the expected risk is computed for the stochastic version of the prob-
lem. If the expected risk of newS ol is better than that of currentS ol, then newS ol replaces
currentS ol, k is set to one and bestS ols is updated. If it is not satisfied, the solution is
discarded. If newS ol is not better, k is increased in one unit if k < K or set to one otherwise.

8. Once the iterative procedure ends, the algorithm returns bestS ols. For each solution, a sam-
ple of risk measurements is obtained by simulating a large number of scenarios (simlarge).
We perform a risk analysis where solutions are compared using the distributions of risk.
In order to simplify the analysis, it is based on the expected values and the variances of
the distributions, and the reliabilities (or probabilities of satisfying the return constraint).
Accordingly, the Pareto dominant solutions (i.e., those that are not dominated by another
portfolio for one measure while the other measures are at least equally good) are reported to
the decision-maker.

Besides being a simple and natural approach, it is also efficient, providing solutions in real
time (see Section 5). However, since MCS techniques tend to be time-consuming, their use is
minimised by conducting only few runs to assess promising solutions, and a more thorough simu-
lation at the end of the procedure to obtain reliable measures for the decision-makers to base their
conclusions on future investments on.

5. Computational experiments
The described algorithm has been implemented as a Java application. A standard personal com-
puter, Intel Core i5 CPU at 3.2 GHz and 4GB RAM with Windows 7 has been used to per-
form all tests. Our algorithm is executed ten times using different seeds; only the best re-
sults are stored. We have experimented with stock market data from the repository ORlib
(http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html). This set was
presented by Chang et al. (2000), and has been largely analyzed (Schaerf, 2002; Armañanzas
and Lozano, 2005; Moral-Escudero et al., 2006; Fernández and Gómez, 2007; Di Gaspero et al.,
2011). It represents a market index measured at weekly frequency spanning the period from March
1992 to September 1997: Hang Seng (Hong Kong). As suggested by Di Gaspero et al. (2011), the
portfolio frontier has been divided into 100 equidistant points on the axis representing the rate of
portfolio expected return.

This benchmark instance is deterministic. In order to assess our simheuristic approach, it
has been adapted by replacing the deterministic returns and covariances by random variables.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html
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Figure B.3: Flowchart of the proposed approach.
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Figure B.4: Probability distributions employed.

More specifically, we have considered the following complementary scenarios, which add different
degrees of uncertainty on the deterministic POP:

• S i (Standard deviation) follows a LN(µS , σS ), where LN represents a Log-Normal distri-
bution, and µS and σS are the mean and the standard deviation of the variable natural log-
arithm, respectively. They may be determined by the value of the mean and the standard
deviation of the variable that are set to σi and cσi, being c an input.

• Pi j (Correlation) follows a T N(µP, σP, l, u), referring T N to truncated Normal distribution,
where the parameters are the mean, the standard deviation, and the lower and upper limit,
respectively. µP is set to the original correlation ρi j, while σP is an input. By the definition
of correlation, l and u are set to −1 and 1, respectively. A special case is when i = j, then l
and u are equal to 1 (i.e., Pi j = 1).

• Ri follows a N(µR, σR), where µR and σR are the mean and the standard deviation of the
variable, respectively, which may be determined by the value of the mean and the standard
deviation of the variable that are set to ri and S i, respectively.

Three values for c(0.01, 0.025, 0.08) and σP(
√

0.00002,
√

0.0002,
√

0.002) have been tested in
order to explore three different levels of stochasticity, from lowest to highest. The former values
have been selected after performing some quick tests to explore the “reasonable” range for each
parameter. Figure B.4 displays the probability distributions of a standard deviation with a mean
of 0.0472 (average standard deviation of assets) (left) and those of a correlation with a mean of
0.5562 (average standard correlation among assets) (right). It is worth noting that, being based
on simulation, our methodology admits any probability distribution, either theoretical or empirical
(in a real-life scenario, empirical data would be employed to find the best fit distribution for each
random variable considered). In order to illustrate and analyse our approach, two computational
experiments have been carried out. The first experiment considers stochastic covariances (first two
scenarios). The second experiment builds on the first one, but additionally introduces stochastic
returns (all three scenarios).

The parameter fine-tuning of our algorithm has been performed taking into account sugges-
tions of other authors and results from fast experimental tests. The recommended number of
neighbours (K) is 3 (Hansen et al., 2010a). A movement in each neighbour involves changing
25%, 35%, and 45% of the assets, respectively. Regarding the number of solutions stored to anal-
yse at the end (l), a total of 10 are considered. As suggested in Juan et al. (2011a), β is randomly
selected from a uniform distribution with parameters 0.05 and 0.25. Finally, simshort and simlarge

are set to 2500 and 12500, respectively, Tinit and Tloop are set to 5 and 15, respectively.
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6. Analysis of results
First experiment: stochastic covariances

Table B.1 summarises the results of the first experiment, where only the covariances are stochastic.
The first experiment essentially contrasts and compares two types of solutions: (i) the best-found
solution to the deterministic version of the problem (BDS); and (ii) the best-found solution to the
stochastic version of the problem (BSS). In fact, we consider different levels of variability (vari-
ance) in the random variables modelling covariances and returns. For each of these variability
levels (low, medium, and high) a different stochastic scenario is defined. Notice that portfolio con-
figurations obtained for the deterministic version of the problem can also be used as investment
plans for the stochastic version of the problem –even when good solutions for the deterministic
version might constitute suboptimal solutions in the stochastic scenario. Put in different words,
each portfolio configuration has a different risk measure (cost) for each different environment (de-
terministic or stochastic). In particular, we are interested in considering different risk measures
(costs) associated with the BDS portfolio configuration: the risk measure obtained when employ-
ing the BDS in a deterministic scenario, and the expected risk value obtained when using it in
each stochastic scenario. To some extend, the former could be considered as a lower bound for
the BSS, while the latter could be considered as an upper bound for the BSS. The information
gathered in the columns is explained next. The first column reveals the required return, showing
only the first and the last 10 values. The next four columns depict the BDS. The following three
columns contain the expected risk associated with the BSS for each of the stochastic environments
analysed. Also, the average computational time needed for finding the BSS is provided. The last
five columns gather some gaps: (i) the gap between the risk and the expected risk for a low level
of stochasticity of the BDS; (ii) the gap between the risk of the BDS and the expected risk of the
BSS (also for a low level of stochasticity), being the former a lower-bound of the expected risk of
the BDS and the expected risk of the BSS; (iii) the gap between the expected risks for the BDS
and the BSS considering the environment of a low risk, which quantifies the benefit of using the
simheuristic approach instead of assuming constant values; and (iv) the previous gap considering
the other two environments. Additionally, the average of each ratio has been added at the bottom
of the table. Figure B.5 illustrates boxplots of the gaps regarding expected risk between the BDSs
and BSSs for the different environments. The expected risk of the BDS is subtracted from that of
the BSS so that negative gaps indicate an improvement in the expected risk of the solution. Mean
values are represented by diamonds.

Based on these outputs, we may conclude that our algorithm is able to obtain a reasonably
good BSS in 0.733 seconds on the average. The gaps between the risk of the BDS and the expected
risk of the BDS (when used as a portfolio configuration for the stochastic environment) and the
BSS are quite high even for the low-variability scenario (11.82% and 9.92% on the average). As
expected, the measure of the BSS is closer to the lower-bound (the risk) than the one of the BDS.
Regarding the benefits of using the simheuristic approach in comparison with assuming constant
values in terms of expected risk, the mean gaps found for each environment are: -1.68%, -3.09%,
and -7.10%. It is important to remark that the gaps are never positive. Thus, the BSS shows a
lower expected portfolio variance than the BDS when the latter is used to solve the stochastic
version of the problem. Furthermore, the performance of the BDS deteriorates when covariances
become more uncertain (i.e., as the variability increases). Intuitively, the BDS can be thought of
as a restricted version of the BSS. Such a restriction is costly in terms of the expected portfolio
variance, giving rise to a positive variance gap between the BDS and the BSS. Importantly, our
research findings are indicative of a potential bias in the solution to a deterministic POP when in
fact covariances are stochastic. The size of this bias grows larger when covariances become more
uncertain. To correct for this bias, a stochastic POP ought to be solved instead of a deterministic
POP.

Second Experiment: Stochastic Covariances and Returns

Results from the second experiment are displayed in Table B.2. As in the previous table, the
first column identifies the required return. Columns 2, 3, and 4 detail the expected risk of the
BSSs under the lower, medium, and high levels of uncertainty, given a probability of 50% for
attaining the required rate of return. Columns 5, 6, and 7 report the gaps between the expected
values of risk of the BSSs under the lower, medium, and high levels of uncertainty, when the
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Figure B.5: Risk gaps between the best deterministic and stochastic solutions for
different levels of stochasticity (environments).

probabilities of attaining the required return are 50% and 47%, respectively (since our benchmarks
are extensions of classical ones for the deterministic version of the problem, only some probability
values make sense if we wish to keep the feasibility of the optimization problem). Finally, the
average computational time is provided. This table also includes the ratio averages (see the last
row). Figure B.6 displays the confidence intervals for the mean of expected risk gaps between the
solutions for the two probabilities considered. As usual in most studies, a confidence level of 95%
is employed to generate the confidence intervals. These confidence intervals are generated from
the observations provided by the MCS stage. Also, for illustrative purposes, we have focused on
the results associated with a specific required return, 0.0028611366, a probability of 50%, and the
environment with a high level of stochasticity. Thus, Figure B.7 shows the confidence intervals for
the mean of risks and the reliabilities for the BDS and the three BSSs, i.e, the three best stochastic
solutions. Here, the reliability of a given solution refers to the probability that it provides a return
higher than the given threshold, and is also obtained during the MCS process.

It can be concluded that the gap between the expected risk of the BSS requiring a probability
of 47% and the one with a probability of 50% is relatively small, although it can be relevant and
high in some cases. The average values for the different environments are: 0.31%, 0.39%, and
1.84%. Therefore, the gap increases as the level of stochasticity gets higher. From the confidence
intervals (Figure B.6), we observe that means are significantly different from zero (i.e., the average
gaps are positive), and while they overlap for the first and second environment (although the point
estimate is slightly higher for the second), the third is far from that region and does not overlap.

Finally, the last figure displays the confidence intervals for the mean of the risk for the BDS
and the three BSSs. The point estimates for the BSSs are clearly lower than that for the BDS, but
the difference among the three BSSs are relatively small. The lowest variability (i.e., the narrowest
interval) is the associated to the BSS2. Regarding the reliabilities, they are similar too. Overall, the
BSS3 could be discarded (is Pareto-dominated), since it has the lowest reliability, a relatively high
point estimate, and a wide interval. At the end, the decision-maker should prioritise the different
measures to select the best solution according to his/her preferences. Probably, in this case, most
decision-makers would choose BSS1, since it offers a low average risk and a high reliability level.

7. Conclusions
This work has addressed a rich (NP-hard) and stochastic variant of the portfolio optimization
problem (POP) in which the covariances and the return rates are considered to be random vari-
ables instead of constant values as it is usual in the existing literature. A literature review on the
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Table B.2: Hang Seng Stock Market (Hong Kong) with stochastic covariances and correlations.

Required ER (50%) ER Gaps [%] (50-47%)
Time (s)

Return Low Medium High Low Medium High
0.002861137 0.0007006 0.0007872 0.0011358 0.00% 0.00% 4.38% 1.244
0.002941981 0.0007006 0.0007873 0.001135 0.00% 0.00% 4.44% 2.749
0.003022827 0.0007019 0.0007882 0.0011272 0.00% 0.00% 3.66% 2.647
0.003103671 0.0007027 0.00079 0.0011392 0.00% 0.00% 3.24% 1.7
0.003184516 0.0007068 0.0007925 0.0011075 0.33% 0.00% 1.23% 2.715
0.003265361 0.0007093 0.0007954 0.0011243 0.66% 0.00% 2.15% 1.438
0.003346206 0.0007085 0.000796 0.001137 0.09% 0.19% 2.67% 0.633
0.003427051 0.0007085 0.0007983 0.0011017 -0.11% 0.14% 0.00% 0.764
0.003507896 0.0007138 0.000799 0.0011144 0.54% 0.02% 0.05% 1.365
0.00358874 0.0007161 0.0008014 0.0011068 0.39% 0.00% 0.00% 1.726
0.010137479 0.0040004 0.0046595 0.0071471 0.00% 0.00% 1.05% 1.631
0.010218315 0.0041312 0.0048569 0.0074155 0.00% 0.82% 1.15% 2.8
0.010299151 0.004268 0.0049834 0.0076973 0.00% 0.00% 1.23% 1.421
0.010379986 0.0044359 0.0052031 0.0079926 0.57% 0.90% 1.31% 2.937
0.010460822 0.0045867 0.0053878 0.0083013 0.59% 0.93% 1.37% 4.313
0.010541657 0.0047435 0.0055803 0.0086235 0.61% 0.97% 1.42% 2.31
0.010622493 0.0049063 0.0057805 0.0089592 0.63% 1.00% 1.46% 3.76
0.010703329 0.0050752 0.0059884 0.0093083 0.65% 1.02% 1.49% 1.836
0.010784164 0.0052501 0.006204 0.0096709 0.67% 1.05% 1.52% 0.773
0.010865 0.0054126 0.0063772 0.0098998 0.37% 0.70% 3.06% 1.729

Average 0.30% 0.39% 1.84%

Figure B.6: Confidence intervals for the means of expected risk gaps between
solutions considering different probabilities.
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Figure B.7: Confidence intervals for the means of risks for the best deterministic
and stochastic solutions.

stochastic POP has been provided, which reveals an emerging research topic mainly relying on
uncertainty theory where usually only few small illustrative examples are analysed. Then, mathe-
matical formulations for both the rich POP and the rich stochastic POP have been described.

Since real-life financial activities underlie plenty of uncertainty, adding randomness to these el-
ements contributes to diminish the gap between theory and practice. In order to solve the stochastic
version of the POP, we have proposed a simheuristic algorithm that combines the VNS metaheuris-
tic (which guides the search of promising solutions) with Monte Carlo simulation techniques. Two
computational experiments have been performed to illustrate its use and analyse how the solutions
change in terms of expected risk when varying the level of stochasticity, the minimum required
return (threshold), and the probability of obtaining a return equal to or greater than that thresh-
old return. Our methodology is able to solve real-sized stochastic instances in small amounts of
time. Also, it has been shown that, even in an environment with a relatively low level of variabil-
ity, a stochasticity-aware (simheuristic) approach may provide much better results than a classical
metaheuristic approach generating solutions for the deterministic version of the POP.
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Abstract
Catastrophe (CAT) bonds are financial instruments designed to transfer risk of monetary losses
arising from earthquakes, hurricanes, or floods to the capital markets. The insurance and reinsur-
ance industry, governments, and private entities employ them frequently to obtain coverage for
large losses. Parametric CAT bonds constitute a special sub-class that bases its payments on cer-
tain physical features of events. For instance, given certain event parameters such as magnitude
of the earthquake and the location of its epicenter, the bond may pay a fixed amount or not pay
at all, according to a binary outcome. This paper reviews eight statistical and machine learning
techniques for classification of events in order to design a trigger mechanism that identifies which
events should produce bond payments while minimizing basis risk (trigger error). Use of these
techniques relies on training data from CAT models containing large samples of simulated earth-
quakes that characterize the seismic risk of a given region. Although the numerical accuracy and
the computational performance of all methods is very high, non-linear techniques provide better
results. Several lines of future research based on parametric trigger mechanisms are discussed.

Keywords: catastrophe bonds, risk of natural hazards, classification techniques, earthquakes,
insurance.

1. Introduction
Catastrophe (CAT) bonds are financial instruments that package catastrophe risk in a tradeable
security. These tools are in effect responsible for the existence of a new market for trading risk
at the frontier between finance and insurance, the so-called convergence market (Cummins and
Weiss, 2009), which promises an enormous supply of capital for CAT risk transfer as long as
pricing remains attractive for all parties involved. By purchasing a CAT bond, investors take
the risk from a sponsor (risk ceding party) in exchange for some interest or spread. This spread
constitutes the “premium” that compensates the risk-taking party.

CAT bonds can be of different types depending on how their payment behavior is structured.
Earthquake CAT bonds in particular can base their payments on a variety of proxies (Wald and
Franco, 2017). While some base payments on actual, experienced losses (indemnity), others (para-
metric) base them on the observable and measurable parameters that describe an event. Strategies
to provide coverage for large losses ensuing after earthquakes through these parametric tools have
been in use since the 1990s (Franco, 2014). These instruments have allowed insurers, reinsur-
ers, governments, private entities and catastrophe pools to cede risks of earthquake losses to the
capital markets via transparent mechanisms associated with physical event features. Since they
bypass the claims adjusting process, these tools provide a very fast recovery of funds to their
sponsor after an event. Their popularity in the market is due to historically lower prices relative to
traditional (re)insurance and their appeal among investment and hedge funds is due to their trans-
parency. Lately, as traditional reinsurance pricing has decreased significantly, the price differential
between traditional and alternative risk transfer (sometimes referred to as ART) is very small and
is no longer the driving rationale for seeking parametric coverage. Rather, sponsors now look to
parametric risk transfer for the flexibility and the ease of payment it provides.

Parametric earthquake CAT bonds employ a kind of trigger mechanism, typically a numerical
check of some sort, to determine the payment that should take place when an earthquake occurs.
These trigger mechanisms rely on obtainable physical characteristics of the event via respected
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third parties, often public agencies (Cummins, 2007; Croson and Kunreuther, 1999). Since neither
the investor nor the sponsor has the ability to manipulate this information, the risk transfer process
is without moral hazard (the risk that the parties involved influence the payment outcome). Within
the realm of parametric earthquake CAT bonds there are also several classes of tools. Some, first-
generation parametric CAT bonds or so-called “CAT-in-a-box” triggers, rely on the main physical
descriptors of an earthquake event (see for instance Cardenas et al., 2007; Franco, 2010; Franco,
2013). Others, second-generation indexes, rely on spatially-distributed features such as ground
motions recorded at sensors located throughout a region (see for instance Goda, 2013; Goda,
2014; Pucciano et al., under review).

Earthquakes around the world cause enormous losses, of which only about 30% have insurance
coverage (Guy Carpenter, 2014). These financial impacts often disrupt individual livelihoods and
national economies. Therefore, the possibility of expanding the coverage of insurance to minimize
these impacts is very appealing. Making earthquake insurance more accessible, however, is dif-
ficult for traditional providers since their operations are typically resource- and time-consuming.
Parametric risk transfer, in contrast, can be seamless, fast and cheap but in order to be viable,
parametric solutions need to be accurate. They also need to be designed and customized without
much effort so they can be easily industrialized.

This work focuses on exploring strategies from statistical and machine learning approaches
to design trigger mechanisms accurately and quickly. We review eight techniques to classify
events as to whether they should trigger a payment or not, following a binary payment scheme
often used in the industry. Events are classified using the four fundamental parameters of focal
location (longitude, latitude and depth) and moment magnitude. The characteristics of the trigger
mechanism are introduced in detail in Section 2.

The eight techniques used for classification are the Nearest Neighbors Classifier, the Naïve
Bayes Classifier, Linear/Quadratic Discriminant Analysis, Classification Trees, Logistic Regres-
sion, Clusterwise Logistic Regression, Neural Networks, and Support Vector Machines. These
techniques are all introduced in Section 3, where we present a brief description of each of them.
Note that all the approaches need to be trained with a given dataset. These data need to constitute
a large sample of events and need to include a monetary loss for each earthquake. Therefore,
we turn to an earthquake CAT model to obtain a viable training dataset since historical catalogs
usually do not contain a large enough sample of this type of information.

CAT Models have been discussed in previous studies (e.g. Grossi and Kunreuther, 2005) and
we will not discuss the CAT modeling process in detail in this paper. It is sufficient to realize
that an earthquake loss model (such as GEM’s OpenQuake for example) can be used to produce
a dataset containing a large amount of simulated earthquakes in harmony with the local seismic
setting. These records should include the four main physical parameters enumerated before and
the corresponding simulated loss. For each synthetic earthquake event in the catalog, the model
computes a ground motion footprint, which is in turn translated into estimated levels of damage to
a user-defined portfolio of properties distributed in space. The target of the classifier algorithms, in
short, is to discriminate events based on their physical parameters to identify large loss-producing
events. This will be discussed in detail in the following sections.

In order to test the performance of these techniques against a known benchmark, we recapture
the analysis presented in Franco (2010) and solve the same problem again in Section 4, using the
same dataset, with each of the new approaches. We then compare across methods on such issues
as accuracy, computational effort, and spatial correlation of the classifier results. Our conclusions
and suggestions for future research are collected in Section 5.

2. The Trigger Mechanism
Consider a set of l earthquake events in a geographic region of interest A. An earthquake event
i is characterized by a magnitude mi, a hypocenter depth di, and epicenter coordinates (xi, yi)
within A. A binary trigger will determine whether a payment should be disbursed due to event
i. This response is represented by the variable B′, whose values 1/0 indicate trigger/no-trigger
(payment/no-payment). Two situations may arise: (1) at least one earthquake i triggers the bond
(B′i = 1) during its contract life, which means that the entire bond principal has to be disbursed
and, as a consequence, the buyers of the bond lose their investment (and the bond sponsors receive
compensation), or (2) no earthquake triggers the bond during its life, in which case the principal
is returned to the investors with interest.
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Since the payment of a large sum of money is at stake, it is important that the trigger performs
as desired, i.e. that the trigger responds positively to events that cause a large loss beyond a
design threshold and that it does not respond for events that cause a loss below this threshold. The
accuracy of the trigger determines its success in the market. Triggers that behave erratically erode
the confidence of the markets in these tools and therefore jeopardize the risk transfer process. It is
crucial to design triggers that behave as they should.

To describe the accuracy of the trigger, first consider a reference variable B that represents its
idealized behavior and that depends on a measure based on the losses (typically monetary). For an
earthquake event i, this variable can be described as follows:

Bi =

0 if Li ≤ L
1 otherwise

(B.1)

where Li is the actual loss caused and L is a loss threshold specified by the sponsor, usually
expressed in terms of a specific return period. In this idealized scenario, events trigger this CAT
bond only if the corresponding loss is above a given pre-specified threshold L.

The objective of parametric trigger mechanism design is to develop a classification mecha-
nism that uses physical parameters of events to determine the trigger behavior B′. Discrepancies
between variables B and B′ or the sum of errors (E =

∑l
i=1 I(Bi = B′i)), represent lack of correla-

tion between the output of the trigger and the ideal trigger. Effective parametric trigger mechanism
design aims to minimize these discrepancies.

A database including a set of events, their characteristics and the variable B can be used to
calculate trigger errors for this specific set of events. A measure of the loss has to be obtained
or estimated to compute B. It is preferable to have a reliable historical dataset including a high
number of events but in earthquake research, this is not possible due to the low frequency of
earthquakes and the great uncertainty surrounding their associated losses. For this reason, the
design of triggers for seismic risk relies on simulated CAT model output.

According to the description offered in this section, the development of a trigger mechanism
can be labelled as a binary classification problem, allowing us to employ a wide range of tech-
niques to address it. In the following sections, some of them are introduced and tested, and their
use is illustrated.

3. Statistical and Machine Learning Approaches
Classification techniques (Kotsiantis, 2007) constitute a set of procedures from statistics and ma-
chine learning (more specifically, supervised learning) to determine a category or class for a given
observation. Having a dataset of l observations composed of explanatory or independent variables
(X1, X2, ..., Xn), and a response or dependent variable Y , these techniques attempt to explain the re-
lationships between variables and/or classify new observations based on the explanatory variables.

Nowadays, there are plenty of classification techniques. Some of the most employed, e.g., Lin-
ear Discriminant Analysis or Logistic Regression, have been applied for more than five decades.
These are mainly linear methods. Boosted by the computing advances in the 1980s and 1990s,
non-linear methods such as Classification Trees, Neural Networks and Support Vector Machines
emerged and/or started to attract attention.

This section introduces some well-known and powerful techniques that we propose to auto-
matically design a trigger. The reader interested in comprehensive and practical descriptions is
referred to the books written by Hastie et al. (2009) and Lantz (2013).

The Nearest Neighbors Classifier

The Nearest Neighbors classifier is a simple technique that assigns a new observation to the class
of the most similar observations, so-called neighbors. Therefore, it is suitable when observations
of the same class tend to be homogeneous. Its main weaknesses are: not producing a model (which
hinders the exploration of relationships among variables), taking a relatively high amount of time,
and consuming a large amount of memory. This classifier depends on a parameter k representing
the number of neighbors. The neighbors are selected according to a distance function, usually
Euclidean. This parameter allows the balance between overfitting and underfitting (also known as
bias-variance trade-off): a large k reduces the variance caused by noisy data or outliers but may
ignore small/local patterns; conversely, a small value may introduce too bias.
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The Naïve Bayes Classifier

The naïve Bayes classifier is based on Bayes’ theorem. “Naïve” refers to the assumption that all
variables are independent and equally important. Even if this condition is not usually met in real-
life applications, this classifier frequently provides competitive results. The posterior probability
for a given class y is computed as:

P(Y = y | X1 = x1 ∩ X2 = x2 ∩ ... ∩ Xn = xn) =

P(X1 = x1 | Y = y)P(X2 = x2 | Y = y)...P(Xn = xn | Y = y)P(Y = y)
P(X1 = x1)P(X2 = x2)...P(Xn = xn)

(B.2)

The classification for a given observation is obtained by comparing the probabilities of each
class given the values of the explanatory variables, and selecting the class associated to the highest
probability. There are many classifiers differing in the assumption made regarding the distribution
of P(X j = x j | Y = y). Gaussian distributions constitute a typical choice. This technique employs
frequency tables and, consequently, each variable must be categorical. Numeric variables are
usually discretized.

Linear and Quadratic Discriminant Analyses

In Linear Discriminant Analysis, the distribution of the explanatory variables is separately mod-
eled in each of the classes, and then the Bayes’ theorem is used to flip these around into estimates
for the probability of the response variable taking a specific value given the explanatory variables.
Commonly, these distributions are assumed to be Gaussian. In this case, the resulting models are
similar to those provided by Logistic Regression. Linear Discriminant Analysis is more commonly
employed when there are more than two classes. While this technique assumes that observations
are drawn from a distribution with a common covariance matrix in each class (which leads to
linear decision boundaries), Quadratic Discriminant Analysis does not make assumptions on the
covariance matrix (producing quadratic decision boundaries).

Classification Trees

Contrary to global models (where a predictive formula is supposed to hold in the entire data space)
such as those of Logistic Regression, Classification Trees try to partition the data space into small
enough parts where a simple model can be applied. The results can be represented as a tree
composed of internal and terminal (or leaf) nodes, and branches. Its non-leaf part is a procedure
to determine for each observation which model (i.e., terminal node) will be used to classify it. At
each internal node of the tree, the value of one explanatory variable is checked and, depending on
the binary answer, the procedure continues to the left or to the right sub-branch. A classification
is made when a leaf is reached.

The most relevant advantage of this classifier is the easiness to understand what trees repre-
sent. They mirror human decision-making more closely than other techniques. Furthermore, trees
require little data preparation, are able to handle both numerical and categorical data, and perform
well (i.e., use standard computing resources in reasonable time) with large datasets.

Logistic Regression

Logistic Regression techniques are designed to model the posterior probabilities of each class by
means of linear functions. These probabilities, such as the one shown below, must be non-negative
and sum to one.

P(Y = y | X1 = x1 ∩ X2 = x2 ∩ ... ∩ Xn = xn) =

exp(β0 + β1x1 + β2x2 + ... + βnxn)
1 + exp(β0 + β1x1 + β2x2 + ... + βnxn)

(B.3)

These models are usually fit by maximum likelihood employing Newton’s method. The previ-
ous expression can be rewritten in terms of log-odds as follows:
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log
( P(Y = y | X1 = x1 ∩ X2 = x2 ∩ ... ∩ Xn = xn)
1 + P(Y = y | X1 = x1 ∩ X2 = x2 ∩ ... ∩ Xn = xn)

)
=

β0 + β1x1 + β2x2 + ... + βnxn (B.4)

This technique is especially useful when the aim is to explain (i.e., not only classify) the
outcome based on the explanatory variables. Non-linear functions can be considered including
interactions and transformations of the original variables.

Clusterwise Logistic Regression

While Regression Analysis consists of fitting functions to analyze the relationship between vari-
ables, Clustering seeks subsets of similar observations (or variables) in a dataset. Thus, the aim
of Clusterwise Regression is to combine both techniques in order to discover trends within data
when more than one trend is likely to exist (DeSarbo and Cron, 1988). This technique is highly
flexible because different functions can be estimated. It is considered a “white-box technique” in
that its mathematical systems are not complex and its results are relatively easy-to-interpret.

Neural Networks

Neural Networks model the relationship between the explanatory variables and the response vari-
able using a model inspired by how a biological brain responds to stimuli from sensory inputs.
They extract linear combinations of the explanatory variables as derived variables and model the
response variable as a non-linear function of these transformed variables. These models have sev-
eral kinds of layers: the input layer, the output layer, and one or more hidden layers between them.
Each layer contains neurons representing the variables. Increasing the number of hidden layers
and/or neurons adds complexity and may improve computational capacity. With too few layers,
the model may lack the flexibility to capture non-linearities in data. Neural Networks tend to have
many weights, which can cause problems of overfitting. Weight decay is a method of regular-
ization to prevent it. The “backpropagation” algorithm is a commonly-employed technique for
parameter estimation or training a Neural Network.

Support Vector Machines

A Support Vector Machine can be imagined as a surface that defines a boundary between various
points of data that represent observations plotted in a multidimensional space. The goal is to create
a flat boundary, called a hyperplane, which leads to fairly homogeneous partitions of data on either
side. Among all potential hyperplanes, the one that creates the greatest separation between classes
(a soft margin may be considered for the case on non-linearly separable data) is selected. The
support vectors are the points from each class that are the closest to the hyperplane; each class
must have at least one. In many real-life applications, the relationships between variables are
non-linear. A key feature of this technique is its ability to efficiently map the observations into a
higher dimension space by using the kernel trick. As a result, a non-linear relationship may be
transformed into a linear one.

Discussion of Classification Techniques

Several techniques have been presented in the literature to design trigger mechanisms that de-
termine –from an earthquake’s physical characteristics– whether a principal bond should be paid
(Franco, 2010; Franco, 2013). As mentioned, the aim of this work is to introduce and illustrate the
application of simple, well-known, and efficient techniques that have heretofore not been explored
in this context.

Neural Networks and Support Vector Machines constitute two relatively modern and power-
ful techniques. Typically, they are able to reach high levels of accuracy by capturing non-linear
relationships between variables. However, this same characteristic makes them prone to overfit-
ting. There are many procedures to avoid this problem such as the addition of a parameter to limit
the growth of the weights or the introduction of randomness into the training data or the training
algorithm. Sometimes it may be difficult to avoid overfitting and underfitting. Training Neural
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Networks often takes a long time, and both techniques require a non-trivial process of fine-tuning
parameters. Furthermore, the resulting models are difficult if not impossible to interpret. For
this reason, application of these techniques is almost always limited to classification/prediction
purposes.

Techniques such as Nearest Neighbors and Naïve Bayes Classifiers are easier to understand
and implement and may provide relatively high accuracy. While the first is non-parametric and,
consequently, flexible or unstable, the second relies on some assumptions that may be quite unre-
alistic in most cases.

Logistic Regression is a well-established technique, which enables the understanding of the
effects of the explanatory variables on the response. Clusterwise Logistic Regression aims to
incorporate the strengths of Logistic Regression while offering more flexibility, which should lead
to a better understanding of the relationships among variables and higher accuracy. Classification
Trees constitute an efficient technique that only uses the most important variables and results
in a logic model. As other techniques studying non-linear relationships, these three techniques
are particularly susceptible to overfitting or underfitting the model. Typically, small changes in
training data may lead to significant modifications. In addition, Classification Trees may derive
decisions that seem counterintuitive or are unexpected.

Closely related to Logistic Regression, the classic Linear/Quadratic Discriminant Analysis
techniques search for the linear/quadratic combination of variables that explains the data the best.
Logistic Regression is preferred if the assumption of normally-distributed explanatory variables
does not hold. Otherwise, Discriminant Analysis can provide better results.

All these techniques have different features worthy of consideration when addressing a classi-
fication problem. Consequently, all are included in the following computational experiments.

4. Computational Experiments
This section illustrates the application of the techniques introduced in Section 3 and compares
the results with those obtained in Franco (2010). A framework for evaluation is presented such
that the techniques can be compared to one another and to the reference methodology along the
dimensions of accuracy, efficiency, and spatial correlation.

The dataset analyzed is an earthquake catalog representing 10,000 years of simulated seismic
activity in and around Costa Rica. The catalog contains a total of 24,957 earthquakes, and a
more detailed description can be found in the aforementioned work. The threshold for identifying
triggering events corresponds to the 100-year return period loss.

4.1 Evaluation Framework

In the case of parametric trigger design, it is difficult a priori to select the “best" classification
technique for two main reasons. First, it is a multi-objective problem. Although from a statistical
perspective, the sole objective may be to maximize accuracy, in real-life applications many other
characteristics will likely play an important role. These may include ease of implementation, ease
of explanation to non-experts, popularity, and existence of graphical representations or summaries
of the outputs, among many others. The second reason is that, assuming we are only interested
in the accuracy, the best technique will depend on the data at hand. Consequently, we present a
general discussion of all techniques, and evaluate the trigger mechanisms they produce in three
ways.

First, the confusion matrix (Table B.1) is obtained for each trigger mechanism. This table sum-
marizes the alignments and discrepancies between the behavior of the designed trigger mechanism
and the idealized trigger behavior (described in Section 2). In the context of parametric triggers,
B′ is a function representing the predicted trigger behavior and B is a function representing the
idealized trigger behavior. In both cases, the function is equal to 1 if the bond triggers and is equal
to 0 otherwise.

Table B.1: Structure of a confusion matrix

Predicted Class
B′ = 0 B′ = 1

Idealized Class B = 0 True Positive (TP) False Positive (FP)
B = 1 False Negative (FN) True Negative (TN)
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Next, several metrics are computed from the confusion matrix to quantify performance of each
technique’s trigger mechanism: error, sensitivity, and specificity. The formula for computation
thereof are shown below.

Error =
FP + FN

T P + FP + FN + T N
(B.5)

S ensitivity =
T P

T P + FN
(B.6)

S peci f icity =
T N

T N + FP
(B.7)

Both false positive and false negative are equally penalized in this framework. In other words,
we simply focus on minimizing the total number of errors. The Error metric above quantifies the
rate at which the trigger mechanism misclassifies events. 1 Sensitivity characterizes how often the
mechanism triggers when it should trigger, and specificity characterizes how often the mechanism
does not trigger when it should not. The time required to design the trigger mechanism is also
reported for each technique. The metrics described above constitute the numerical evaluation of
the trigger mechanisms, and are presented in Section 4.4. Moreover, maps of the resulting trigger
patterns are produced for a subset of techniques. This exercise is intended to assess whether
classification techniques produce trigger mechanisms with realistic geospatial trigger patterns.

4.2 Application of Classification Techniques

As mentioned in Section 2, the design of a parametric trigger mechanism is driven by the mini-
mization of discrepancies between its outputs and those from a trigger with an idealized behavior
(one based directly on the losses). If the resulting trigger mechanism is expected to be useful
for new or unseen observations, one should avoid employing the same observations for develop-
ing the mechanism and assessing its performance. This could lead to a problem of overfitting
(i.e., obtaining complex models that capture specificities of the data but do not generalize well for
other observations). An effective technique to avoid this problem is to split the dataset into three
subsets: a training set used for constructing the triggers, a validation set employed to tune the
parameters, and a test set required to assess their performance. We apply this approach using 50%
of the observations for training, 25% for validation, and the remaining 25% for testing. z-score
standardization has been applied for all techniques except Classification Trees, Logistic Regres-
sion and Clusterwise Logistic Regression. A confidence level of 95% has been considered for the
statistical tests. Details of the application of each of the classification techniques are provided in
the following paragraphs. The R program (R Core Team, 2012) has been used.

The Nearest Neighbors Classifier. This technique requires a choice of the number of nearest
neighbors to consider. Values ranging from 3 to 10 have been tested, and the corresponding accu-
racies associated to each value have been assessed using the validation set. Ultimately, 5 nearest
neighbors are considered for construction of the trigger mechanism, since this provides the highest
accuracy but is still small enough to reduce both the variance and the computational time required
to make predictions.

Classification Trees. Construction of a Classification Tree relies on selection of the complex-
ity parameter (a parameter to measure the tree cost-complexity). Values from 0.01 up to 0.20 have
been tested, and the most accurate results correspond to the value 0.05. Figure B.1 shows the
final tree representation. Observations which satisfy the condition shown for each internal node
terminate to the left, otherwise, they proceed to the right. The percentage shown at the bottom
of each node indicates the proportion of observations that reach that node. The value above that
percentage refers to the binary classification.

1Note that error is equal to one minus accuracy.
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Figure B.1: Classification Tree

Neural Networks. Even if complex and powerful Neural Networks exist, we focus on a topol-
ogy characterized by only one hidden layer. Despite its minimalism, this approach is commonly
used, tends to provide good results and is conceptually simple. The number of units in the hidden
layer (26) has been tuned by testing the set of values ranging from 10 to 40.

Support Vector Machines. In order to efficiently employ this technique, it is required to select
a kernel and tune the corresponding parameters. The most popular kernels have been considered
and are shown in Table B.2. There is also a parameter related to the cost of a misclassification for
which the following values have been considered: 0.01, 0.1, 1, 5, and 10. The results reveal that
the best option is a polynomial kernel with the following parameters: cost = 10, α = 0.4, c = 0.4,
d = 4.

TableB.2: Kernels considered for Support Vector Machines

Linear k(a, b) = aT b
Polynomial a k(a, b) = (αaT b + c)d

Radial Basis b k(a, b) = exp(−γ|a − b|2)
Sigmoid c k(a, b) = tanh(σaT b + e)

aValues tested for α, c, and d, respectively: {0.1, 0.2, 0.3, 0.4}, {0, 0.2, 0.4, 0.6}, and {2, 3, 4, 5}.
bValues tested for γ : {0.1, 0.2, 0.3, 0.4}.
cValues tested for σ and e, respectively: {0.1, 0.2, 0.3, 0.4} and {0, 0.2, 0.4, 0.6}.

4.3 External Validation

In order to validate the application of these techniques to the development of parametric triggers
for earthquake catastrophe bonds, we compare our results with those provided by the methodology
in Franco (2010). In this paper, the author proposes the construction of binary “cat-in-a-box”
trigger mechanisms, where the geographical space is discretized in square boxes or subregions of
the same size. Each sub-region belongs to a specific zone denoted as k. This approach relies on
the concept of optimization and its aim is to determine the parameters of a trigger mechanism for
each zone as well as the zone assignment of each sub-region such that the total trigger error is
minimized. Concretely, the trigger mechanism for zone k has the following structure:

∀(xi, yi) ∈ Ak, B′i =

0 if mi ≤ Mk or di ≥ Dk

1 if mi ≥ Mk or di ≤ Dk
(B.8)

where Mk and Dk represent the parametric triggers for the zone, namely the magnitude and
depth thresholds, respectively. All sub-regions belonging to zone k have the same trigger structure.
An Evolutionary Algorithm (EA) is implemented to address this optimization problem and is
executed for different combinations of geographic resolution and number of zones. Although the
paper does not report computational times, these methods may consume several hours to perform
the parameter optimization.
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4.4 Performance

The performance of the trigger mechanisms designed using all nine statistical and machine learn-
ing techniques and using the EA employed in Franco (2010) is reported and discussed here. Per-
formance measures are shown in Table B.3. Total time takes into account the time to construct the
trigger, fine-tune its parameters and test its performance.

Table B.3: Parametric trigger mechanism performance for ten techniques.

Technique Error Sensitivity Specificity Time (sec.)
Nearest Neighbors classifier 0.18% 99.84% 94.44% 7.22
Naïve Bayes classifier 0.77% 99.58% 4.35% 1.62
Linear Discriminant Analysis 0.64% 99.57% 0.00% 0.28
Quadratic Discriminant Analysis 0.42% 99.63% 57.14% 0.12
Classification Trees 0.24% 99.79% 87.50% 2.62
Logistic Regression 0.45% 99.58% 33.33% 0.87
Cluster-wise Logistic Regression 0.43% 99.57% undefined 5.7
Neural Networks 0.14% 99.94% 82.14% 190.86
Support Vector Machines 0.27% 99.78% 81.25% 161.25
Evolutionary Algortihm (Franco, 2010) 0.34% 99.86% 55.56% hours

A suitable trigger mechanism design should exhibit low error and high specificity and sensi-
tivity and should require minimal computational effort. It can be concluded from the table that
the non-linear and non-parametric techniques obtain the best performances of the statistical tech-
niques in terms of accuracy, sensitivity and specificity. In particular, Nearest Neighbors classifier,
Classification Trees, Neural Networks and Support Vector Machines are all consistently superior
across the three metrics. The results reveal a high variability with respect to computational time,
ranging from a few seconds to several minutes. There tends to be trade-off between accuracy and
time-required, particularly in the cases of Neural Networks and Support Vector Machines, both of
which require significantly more time than the other techniques.

Several techniques exhibit superior performances to the EA in terms of accuracy, sensitivity
and specificity. While EA produces relatively low error rates, the time required is significantly
longer than all of the statistical and machine learning techniques.

The triggering events in the idealized trigger mechanism (those for which B = 1) comprise
less than 0.5% of the total test catalog, while the other 99.5% of catalog events do not trigger
the idealized bond. Hence, a supposed “null” trigger mechanism in which no events ever trigger
the bond would exhibit 99.5% accuracy (0.5% error), 100% sensitivity and 100% specificity. The
burden in this case is therefore on any designed trigger mechanisms to outperform this null trigger
mechanism benchmark. Eight out of the ten techniques produce trigger mechanisms superior to
the null trigger mechanism in terms of accuracy, while the Naïve Bayes Classifier and Linear
Discriminant Analysis perform worse by a small margin.

That so few events trigger the bond in the idealized scenario suggests that a larger catalog
might produce more informative and nuanced results using the statistical and machine learning
techniques for parametric trigger mechanism design. With a larger catalog to “learn” from, the
techniques would have more triggering events from which to decipher patterns and connections.
Reduction of the loss threshold used to construct the idealized trigger scenario would also generate
more triggering events from which the statistical techniques could “learn”, but since CAT bonds
are typically constructed for relatively high return period losses (greater than 100 years), these
solutions would not be relevant from a practical standpoint.

While accuracy is certainly an indispensable feature of any suitable technique for design of
parametric trigger mechanisms, a technique should also produce trigger behavior that is meaning-
ful from a physical perspective. Namely, a suitable technique for parametric trigger mechanism
design should produce trigger behavior that reflects the seismic hazard and/or development pat-
terns in the region of study. For this reason, the physical performance of the techniques’ trigger
mechanisms was evaluated representing earthquakes falling into the test set in maps. Figure B.2
shows the evaluation of two techniques that produce trigger mechanisms suitable from a numeri-
cal perspective: Neural Networks and the EA from Franco (2010). The plots include three layers:
white points represent all earthquakes, and black points and gray triangles identify those in the test
set with B′ = 0 or B′ = 1, respectively. While the plot on the left (Neural Networks) gathers all
gray points in the center, the plot on the right (EA) shows more dispersion.
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Figure B.2: Map of predictions obtained with Neural Networks (left) and the EA
described in Franco (2010) (right).

5. Conclusions and Future Research
Natural catastrophes continue to cause enormous losses that remain largely uninsured, leaving
populations vulnerable to severe financial impacts. The insurance and reinsurance industry, gov-
ernments and catastrophe pools have started to employ financial instruments such as parametric
CAT bonds to cede these catastrophic risks to the capital markets. Were these tools extended for
more widespread usage at the retail level, we could progressively and massively reduce the “insur-
ance gap” for earthquake risks. However, this requires the construction of accurate and unbiased
parametric triggers with extreme efficiency and automation, something that is not available in the
industry today.

To address this problem, we have explored solving the trigger design challenge as a classi-
fication problem, employing well-known and powerful techniques from statistics and machine
learning. From a numerical perspective, it has been shown that these techniques can produce trig-
ger mechanisms of equal or better accuracy than previously published techniques (Franco, 2010).
And furthermore several statistical and machine learning methods provide huge efficiency gains in
terms of decreasing classification time. Additionally, they provide scalability, being easily adapted
to a larger parameter space and larger catalogs without losing much efficiency, and ease of imple-
mentation since there is a wide range of programs and programming languages that enable free
and simple implementation of these statistical and machine learning techniques such as R (R Core
Team, 2012), Octave (Eaton et al., 2014) and Scilab (Scilab Enterprises, 2012). Application of
these statistical and machine learning techniques to the problem of parametric trigger design is not
without complication, however, because while these methods provide accuracy and efficiency im-
provements, some of the examples shown in this paper produce trigger mechanisms with relatively
low specificity values.

Several lines of future research emerge from the introduction of classification techniques to
the development of trigger mechanisms for earthquake CAT bonds. First, it is apparent from the
experiments in this paper that more meaningful insights as to the applicability of classification
techniques to the development of trigger mechanisms could be gleaned from the use of a larger
earthquake catalog. It would also be worthwhile to examine the behavior of the trigger mech-
anisms at multiple return periods, particularly lower ones. There is a natural imbalance in the
data at high return periods since very few events trigger the bond. Consequently, there are two
groups of events subjected to classification (depending on whether they should trigger a given
CAT bond), but they greatly differ in size. Techniques may present low accuracy with respect to
the minority (triggering) group and still have a good global accuracy. Analysis of the same simu-
lated earthquake catalog at lower return periods would reduce this classification group imbalance
but would not produce a usable trigger mechanism, since CAT bonds are typically constructed to
protect against high return period losses. Therefore, such an experiment could provide valuable
insights into the different classification techniques but would not produce directly usable trigger
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mechanisms. A popular numerical alternative to this complication is to oversample events in the
minority group, which would constitute an artificial expansion of the original earthquake catalog.

Introduction of such a large number of alternative techniques for parametric trigger mechanism
design motivates the development of a selection framework. From the standpoint of practical
implementation, it would be interesting to identify the most desirable characteristics for a trigger
mechanism and order them. For instance, if accuracy is supreme, one should explore the use of
more modern and complex techniques such as Random Forests and Multi-Layer Neural Networks
(provided a larger catalog was available). In contrast, if the interpretability plays the largest role,
it would make sense to employ more classical techniques and study graphical tools.

The technological developments characterizing the era of Big Data and the Internet of Things
have potentially fascinating implications in this field. These avenues open the possibility of de-
signing triggers not only based on few physical characteristics of an earthquake but on much more
information obtained through broad networks of sensors. Metaheuristics, simheuristics (i.e., algo-
rithms combining metaheuristics and simulation techniques) and other classical instruments may
be used to perform a feature selection or extraction. Finally, the capacity of simulators to create
larger catalogs is ever-increasing, constantly being able to generate more and more data, more
and more reliably. In this scenario, non-linear approaches such as Deep Learning would be worth
exploration.
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Abstract
When capacity constraints exist at each depot, the Multi-Depot Vehicle Routing Problem (MD-
VRP) is a non-trivial extension of the well-known Capacitated Vehicle Routing Problem (CVRP),
since it combines a customer-to-depot assignment problem with several CVRPs. In real-life sce-
narios, it is usual to find uncertainty in the customers’ demands. There are few works on the
Stochastic MDVRP and, to the best of our knowledge, all assume unlimited capacity at each de-
pot. This paper presents a simheuristic framework combining Monte Carlo simulation with a
metaheuristic algorithm to deal with this problem. Its efficiency is tested on a set of stochastic
instances.

Keywords: logistics & transportation, multi-depot vehicle routing problem, stochastic opti-
mization problems, simheuristics.

1. Introduction
A considerable number of decision-making problems in fields such as logistics and transportation,
finance, or production, can be formulated as Combinatorial Optimization Problems (COPs). In
these problems, the goal is to find, in a reasonable amount of time, an optimal or near-optimal
solution from a finite —although usually very large— set of possible combinatorial alternatives.
Design of distribution routes, portfolio management, facilities location, and flight scheduling, are
some of the many popular examples of COPs. In the scientific literature, it has been frequently
assumed that these problems were deterministic in nature, i.e., that all the required information
was available in advance. Although this assumption makes optimization easier, in most cases is
quite unrealistic and may lead to solutions of poor quality for real-life scenarios characterized by
high levels of uncertainty. Therefore, there is a need for developing new methods able to provide
robust and risk-aware solutions to COPs under uncertain and dynamic environments.

According to Bianchi et al. (2009), COPs may be classified depending on the way uncertain
information is formalized. In Stochastic COPs (SCOPs), uncertainty is identified with random
variables following a probability distribution (Juan et al., 2011b). Fuzzy COPs deal with fuzzy
quantities and constraints with fuzzy sets (Erbao and Mingyong, 2009). Robust COPs analyze
information given in the form of interval values (Kouvelis and Yu, 1997). In all these cases,
problems may be solved by designing a solution usable for any specific scenario (aprioristic or
robust optimization) or by taking decisions each time uncertain information is revealed (online or
reactive optimization). When there is complete uncertainty, the last strategy is mostly preferred
(Jaillet and Wagner, 2008). Aprioristic optimization may lead to a poor performance as it is often
difficult or unfeasible to find a solution that provides satisfactory results in all possible scenarios.
On the other hand, applying online optimization may be time-consuming and requires having
computing resources permanently available. When there is a set of similar problem instances to
solve, it can be advantageous employing always the same (or a similar) solution. For example, a
company that each day sends goods to retailers will probably prefer to design specific routes and
always use them, because drivers will perfectly know them, and customers will appreciate to get
to know their driver and receive the goods each day at the same time. An intermediate approach
consists in computing an aprioristic solution and, as events occur, allowing the possibility of taking
corrective actions, i.e., adapting the solution each time new information is revealed.

Some of the earliest works in the field of Stochastic Vehicle Routing Problems were based on
exact methods (Laporte et al., 1994; Gendreau et al., 1995), which guarantee the optimality of the
solution. However, due to the complexity of these problems, those approaches are only feasible
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for small-scale instances. In contrast, approaches including heuristics (Dror and Trudeau, 1986)
and metaheuristics (Bianchi et al., 2006; Moghaddam et al., 2012) usually provide near-optimal
solutions in reasonable times, even for realistic size instances. This paper addresses the Stochastic
version of the Capacitated Multi-Depot Vehicle Routing Problem (or Stochastic and Capacitated
MDVRP), where customers’ demands are assumed to be random variables –a similar approach
to the one introduced here could be applied if the transportation times were random variables
too. The MDVRP with capacity constraints is a challenging extension of the Capacitated Vehicle
Routing Problem (CVRP), which combines a customer-to-depot assignment problem with several
CVRPs (Figure B.1).

Figure B.1: Customer-depot assignment (left) and posterior routing (right) pro-
cesses.

Since assignation and routing issues are often interrelated, this problem is a two-stage decision
process, where the assignment map will affect the quality of the posterior routing. Montoya-Torres
et al. (2015) highlight a noticeable growing interest in the MDVRP during the last decade, with
over 103 publications between 2006 and 2014. In the Stochastic and Capacitated MDVRP, a set of
customers with random demands must be served by a fleet of homogeneous capacitated vehicles
departing from one among several capacitated depots. The main goal of this problem is to deter-
mine the set of routes that minimizes the expected total routing cost –including recursive actions–,
subject to a number of capacity-related constraints. The problem has numerous applications in
real-life, e.g.: garbage collection, gas distribution, stocking of vending machines, and other simi-
lar activities in which the specific amount of goods to leave or pick up is not known until the place
is reached. Despite its relevance, there are few works on the Stochastic MDVRP. This paper aims
to reduce the gap between theory and practice by introducing a simheuristic algorithm (Juan et
al., 2015a). Simheuristics is an optimization-simulation framework that combines metaheuristics
(in a general sense, i.e., including heuristics, matheuristics, and hyperheuristics) and simulation
(Monte Carlo, discrete-event, agent-based, etc.) to solve SCOPs. This hybrid approach has been
successfully implemented in several fields, including: Internet computing (Cabrera et al., 2014),
transportation and logistics (Juan et al., 2011b; Juan et al., 2014b; Gonzalez et al., 2016), and pro-
duction scheduling (Juan et al., 2014a). The main advantages of simheuristics are their flexibility
(since they only assume that each random variable follows a known probability distribution with
an existing mean), accuracy, and relatively ease of implementation. Accordingly, the main contri-
butions of this work are: (i) to the best of our knowledge, this is the first paper that addresses the
Stochastic and Capacitated MDVRP, which is a realistic extension of the CVRP; (ii) it proposes a
novel simheuristic framework that combines different metaheuristics –a Multi-Start (MS) (Martí
et al., 2013), an Iterated Local Search (ILS) (Lourenço et al., 2010), and a Large Neighborhood
Search (LNS) (Pisinger and Ropke, 2010)–, with Monte Carlo simulation (MCS); and (iii) it pro-
poses a well-defined set of benchmarks (i.e., reproducible) that extend, in a natural way, the ones
traditionally employed in the deterministic version of the Capacitated MDVRP.

The remaining of this paper is structured as follows. Section 2 provides a description of the
Stochastic and Capacitated MDVRP. Section 3 reviews the related work. The proposed approach
and its implementation are presented in Section 4. Section 5 describes the computational exper-
iments carried out to illustrate and test our algorithm. Section 6 analyses the results obtained in
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these experiments. Finally, Section 7 summarizes the main conclusions of this paper and identifies
some lines of research for future work.

2. The Stochastic and Capacitated MDVRP
The Stochastic and Capacitated MDVRP is characterized by the randomness of at least one of its
parameters or structural variables. These random variables follow specific probability distribu-
tions. This problem may be seen as a non-trivial extension of the Stochastic CVRP (Gendreau
et al., 1996; Stewart and Golden, 1983). There are three problems belonging to this family: the
CVRP with Stochastic Demands, which is the most popular (Bianchi et al., 2006); the CVRP with
Stochastic Customers (Bertsimas, 1988); and the CVRP with Stochastic Times (Laporte et al.,
1992; Kenyon and Morton, 2003). The Stochastic and Capacitated MDVRP is a SCOP that may
be described as follows. Let G = {V, E} be a complete directed graph, where V = {Vd,Vc} is the
set of vertices including the depots (Vd) and the customers (Vc), and E is the set of edges connect-
ing all vertices in V . Each customer i ∈ Vc has a positive demand Di that follows a probability
distribution, either theoretical or empirical. It is assumed that its mean, denoted by E[Di], exists.
While this distribution is known beforehand, the exact demand cannot be revealed until the vehicle
reaches the customer. Each depot p ∈ Vd has assigned a maximum number of vehicles, m. All
vehicles are supposed to have the same capacity W, which is greater than the highest demand.
Each edge in E has an associated cost ci j = c ji ≥ 0, that usually depends on the distance between
vertices i and j. A solution of this problem is a set of routes in which each route starts at one depot
in Vd, connects one or more customers in Vc, and ends at the same depot (Figure B.1). Moreover,
each customer must be visited only once, except in the undesirable case in which a route failure
occurs.

The classical goal here is to find a feasible solution that minimizes the expected routing cost
while satisfying the customer demands, and the constraints related to the number of vehicles, and
the vehicles’ capacity. However, other constraints may also apply, e.g.: a maximum allowable
cost for a route, time windows for visiting each customer, etc. In addition, different goals may be
proposed such as solution balance or minimization of environmental costs. Even in its simplest
version, this problem represents a challenge since it integrates a combinatorial assignment problem
–in which each customer is assigned to one depot– with several Stochastic CVRPs, one per depot.
The additional complexity lies in the interrelation between assigning and routing issues.

One way to model a Stochastic and Capacitated MDVRP is as a two-stage problem. In the first
stage (design stage), a set of routes is designed considering the probability distributions associated
with each customer’s demand. The second stage (corrective stage) specifies the actual route of each
vehicle, which may include corrective actions if the route fails, i.e., if the demand of a customer
visited by a given vehicle is higher than the remaining vehicle capacity. In this case, the vehicle
must return to the depot to reload. Often, the possibility of re-stocking is allowed, that means that
a vehicle may return to the depot before it has run out of capacity. For instance, if the remaining
vehicle capacity is not enough to satisfy the expected demands of the customers that still have to
be served. The solution must minimize the expected total cost, which is the sum of the costs of
the routes planned in the first stage (fixed cost), and the expected costs due to corrective actions
(variable cost).

3. Related Work
Despite the growing interest in the MDVRP and in analyzing COPs under realistic assumptions,
including uncertainty (Caceres et al., 2014), there are just a few works focused on the Stochastic
MDVRP. For this reason, this section will first review the literature on the (deterministic) MDVRP
and some extensions. Then, a number of relevant works addressing the Stochastic VRP and other
related problems will be also reviewed. Finally, the section will conclude with some comments
regarding the state-of-the-art in the Stochastic MDVRP.

The Multi-Depot Vehicle Routing Problem and extensions

The MDVRP has been intensively studied in the last decades. The first works were published
in the late 1960s and 1970s, and relied on heuristics or exact methods. Metaheuristics became
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more popular during the following decades. More recently, powerful hybrid algorithms are being
proposed. Table B.1 presents related works.

The VRP with Stochastic Demands and related problems

Regarding the VRP with Stochastic Demands (VRPSD), the first works appear in the 80s. Table
B.2 shows some related works. It is worth highlighting a few outstanding contributions. In Dror
and Trudeau (1986), the concept of route failure is introduced, and its effects on the expected
cost of a route are illustrated. A review on the Stochastic CVRP is presented in Gendreau et al.
(1996), where the main variants are presented. Yang et al. (2000) suggest anticipating possible
stock-outs by incorporating preventive breaks or restocking in the route design. The aim is to
reduce the probability of route failure and, as a result, the cost. During the last decades, the
scientific community has focused on the implementation of metaheuristics. In this context, Bianchi
et al. (2006) compare the performance of several methodologies embedding one of the following
metaheuristics: SA, TS, ILS, Ant Colony Optimization, and Evolutionary Algorithm (EA).

There are several simheuristic-based approaches that tackle routing SCOPs. Since we propose
a simheuristic algorithm, they are presented in more detail. Juan et al. (2011b) present a procedure
following these steps: (i) transform a VRPSD instance into a set of different CVRP instances by
employing the mean values of the demand distributions as actual demands and using different
safety stock levels in the vehicles; (ii) solve each of the CVRP instances (one per level) with an
efficient metaheuristic; and (iii) estimate the reliability of the CVRP solution for the VRPSD and
the cost of potential corrective actions by employing MCS. An enhanced version of the algorithm,
including parallelization issues, is presented in Juan et al. (2013b). Finally, Gonzalez et al. (2012)
address the Arc Routing Problem (ARP) with Stochastic Demands. The procedure also relies on
MCS and an existing metaheuristic for solving the Capacitated ARP.

The Stochastic Multi-Depot Vehicle Routing Problem

The number of works analyzing the Stochastic MDVRP is rather limited. Tillman (1969) expands
the CWS heuristic to address it. The procedure proposed may be applied to demands with Poisson,
Exponential, Normal, Binomial or Chi-squared distributions. In Chan et al. (2001), a Multi-Depot,
Multiple-Vehicle, Location Routing Problem with Stochastically Processed Demands is formu-
lated. The probable demands are estimated by stochastic processes before the vehicle location-
routing decisions. Tatarakis and Minis (2009) study the Stochastic MDVRP considering both the
case in which products are stored dedicatedly or together in a compartment. Dynamic program-
ming algorithms are proposed to determine the minimal routing cost, and an optimal routing policy
is derived to decide whether a vehicle has to return to the depot for a reload after serving the cur-
rent customer or should continue to the next customer. Tauhid et al. (2012) solve the Stochastic
MDVRP in three phases: first a Nearest Neighbor classification method is used for grouping the
customers; then, the sum-of-subsets method is applied for routing; and finally, the routes are opti-
mized throughout a greedy method. They aim to minimize the number of routes and, accordingly,
the number of vehicles needed.

None of the aforementioned works deals with the Stochastic and Capacitated MDVRP ana-
lyzed here. In particular, Tillman (1969) and Tauhid et al. (2012) consider unlimited capacities at
each depot -which significantly reduces the difficulty of the problem and constitutes an unrealistic
assumption. In addition, Tauhid et al. (2012) do not really consider stochastic demands. Also,
Tillman (1969) makes strong assumptions on the probability distributions of these demands. Chan
et al. (2001) and Tatarakis and Minis (2009) deal with problems that, although somewhat related,
can not be considered Stochastic and Capacitated MDVRPs. While the former focuses on location
issues, in the latter a single vehicle must deliver multiple products given a predefined customer
sequence.

4. A Simheuristic for the Stochastic and Capacitated MDVRP
General overview

Our approach relies on two facts: (i) the Stochastic and Capacitated MDVRP can be considered a
generalization of the Capacitated MDVRP, i.e., the Capacitated MDVRP can be seen as a Stochas-
tic and Capacitated MDVRP in which the random demands have zero variance; and (ii) despite
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the fact that the Stochastic and Capacitated MDVRP has not been intensively studied, there exists
efficient algorithms for solving the Capacitated MDVRP.

The general ideas behind our approach are described next. Initially, given an instance of the
Stochastic and Capacitated MDVRP, it is transformed into a deterministic instance by replacing
each random variable by its mean. A set of high-quality solutions for the deterministic version is
then obtained by using an efficient algorithm. While the search takes place, MCS techniques are
employed to assess the performance of these promising solutions for the stochastic version. We
define the best solution as the one with the lowest expected total cost. This assessment is carried
out according to the following steps: (i) run hundreds of executions (or thousands, if more time is
available), where each execution implies the generation of random values for each random demand
according to the associated probability distribution; (ii) assess the performance of each solution by
estimating the expected total cost as the average of the total costs obtained at each execution; and
(iii) use the simulation feedback to better guide the searching process inside the metaheuristic. In
this step it is assumed that there is a correlation between the solutions for the Capacitated MDVRP
and those for the Stochastic and Capacitated MDVRP. In other words, the best solutions for the
deterministic version are likely to be also high-quality solutions for the stochastic version. The
correlation is expected to be stronger (or more significant) as the demand variances tend to zero.

Our methodology employs safety stocks as suggested in Juan et al. (2011b). A safety stock is
a certain amount of the vehicle capacity that is not considered while designing the routes. Then, if
the final routes’ demands surpass their expected values, this stock can be employed to try to satisfy
them. Thus, the aim of considering safety stocks is to reduce the probability of a route failure.

Proposed steps

The flowchart diagram of our approach is depicted in Figure B.2 and described next (additional
low-level details are provided in the next subsection):

1. Consider a Stochastic and Capacitated MDVRP instance defined by a set of n customers.
Each customer i has associated a demand Di (1 ≤ i ≤ n) that follows a known probability
distribution with an existing mean E[Di].

2. Determine a set K of percentages, where each element kl is the percentage of the vehicle
capacity (W) that can be used during the route design phase; in other words, 1−kl represents
a fixed level of safety stock. For each of these elements, follow the steps 3 to 9.

3. Consider the Capacitated MDVRP(kl) with a total vehicle capacity of W∗l = kl · W and
deterministic demands di = E[Di].

4. Generate an initial solution for the Capacitated MDVRP(kl). This solution is also an apri-
oristic solution for the Stochastic and Capacitated MDVRP. It will be employed “as it is"
as long as there is no need of corrective actions (routes failures and re-stockings). There-
fore, the cost associated to this solution, CC.MDVRP(kl), can be considered a base or fixed
cost of the Stochastic and Capacitated MDVRP solution. In the case of the stochastic prob-
lem, there is also a variable cost CCA(kl) that depends on the corrective actions undertaken.
Consequently, for a given value of kl, the total cost of the ‘stochastic’ solution (the one
associated with the Stochastic and Capacitated MDVRP) is the sum of the fixed cost corre-
sponding to the ‘deterministic’ solution (the one associated with the Capacitated MDVRP)
and the variable cost due to corrective actions, CS .C.MDVRP(kl) = CC.MDVRP(kl) + CCA(kl).

5. Use MCS to estimate the expected cost due to corrective actions for each route j of the
aprioristic solution, E[C j

CA(kl)] (1 ≤ j ≤ m). Then, aggregate the expected total cost for

all routes, E[CCA(kl)]) =
m∑

j=1
E[C j

CA(kl)]. In this phase, a short simulation (i.e., one with a

‘reduced’ number of runs) is used to quickly get that estimate. Then, the expected total cost
of the solution is calculated as follows: E[CS .C.MDVRP(kl)] = CC.MDVRP(kl) + E[CCA(kl)].

6. Set a base solution as the initial solution.

7. Employ a metaheuristic algorithm, which starts an improvement process that will continue
until a stopping condition, based on time or a fixed number of iterations, is reached. At each
iteration the following steps are implemented. First, a perturbation is applied to the base
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solution to generate a new one. If the fixed cost of the new solution is lower than the fixed
cost of the current base solution, then the list of the best deterministic solutions is updated
(only if it is not full or if the worst solution has a higher cost, then a swap is performed)
and the expected total cost of the new solution is estimated with a short simulation. If this
cost is lower than the expected total cost of the base solution, the latter is replaced and the
list of the best stochastic solutions is updated. Otherwise, an acceptance criterion is used
to decide whether the base solution is deteriorated to the new one. Before that, if the fixed
cost of the new solution is higher, then that solution is discarded. This iterative process
will provide, after analyzing many possible solutions, a list of promising solutions for the
Stochastic version of the Capacitated MDVRP.

8. Try to improve all promising solutions with an intensive routing algorithm.

9. Use a long simulation (i.e., one with a ‘large’ number of runs) to generate a sample of total
costs for each promising solution. Large samples are required to obtain estimates with small
confidence intervals.

10. Finally, return the top best stochastic solutions (considering all solutions found with the
different values in K), and the corresponding samples (they will be used for completing a
risk analysis).

Details and further considerations

Some key issues of our approach should be explained in detail. The algorithm used to get the initial
solution (step 4) for the Capacitated MDVRP is the one proposed in Juan et al. (2015c) and has two
stages. Initially, a customer-depot assignment map is set, and then the savings heuristic (Clarke
and Wright, 1964) is applied to obtain a fast routing plan. The first step is performed by computing
a priority list of potentially eligible customers for each depot. These lists are sorted according to a
distance-based criterion called marginal savings: for a given depot r ∈ Vd and a customer i ∈ Vc,
the marginal saving is calculated as the difference between the distance-based cost of assigning i
to the closest depot q (q , r), and the distance-based cost of assigning i to r. Afterwards, each list
is randomized through a Geometric distribution as described in Juan et al. (2010). This technique
makes it possible the generation of numerous lists without losing the logic behind the priority list
based on the computed marginal savings. Then, two policies are iteratively considered to assign
customers to depots: the first allows the depot with the most remaining serving capacity to choose
the next customer from its priority list, while the second employs a round robin criterion to select
which depot chooses next. The second step consists in solving each resulting CVRP independently
by employing the savings heuristic.

Regarding safety stocks, it is expected that lower values of kl will provide more reliable routes
(i.e., routes with a lower probability of failure), as a high percentage of the vehicle capacity will
be reserved as safety stock. However, a high fixed cost will result too, since more vehicles will
be needed to cover all the customers’ demands. In the worst case, the problem instance could
become unsolvable. On the other hand, a high value of kl is related to a lower fixed cost but a
higher variable cost due to the elevated risk of having to return to the depot to reload. Considering
the trade-off between these two costs, we try different values as indicated in step 2.

The cost due to corrective actions (step 5) is computed as follows. In case of route failure, it
includes the cost of returning to the depot first and then to the customer being served. It is assumed
that the vehicle delivers all the remaining stock before going back to reload. A re-stocking is
carried out when the expected demand of the next customer is higher than the current remaining
stock. The cost of this strategy incorporates the costs on the edges that link a customer with the
depot and the depot with the next customer minus the cost of the edge linking both customers.
Other re-stocking policies could be tested.

The perturbation operator (step 7) employed in the iterative part of the metaheuristic frame-
work modifies the current solution by reallocating a given percentage p of customers, considering
the remaining capacity of the depots, and the distance-based cost for each pair of customer and
depot. The savings heuristic is applied again to design the routes. A Demon-like acceptance cri-
terion (Talbi, 2009) is used to diversify the search. It allows the base solution to be deteriorated
to a new solution if two conditions are met: (i) no consecutive deteriorations take place; and (ii)
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Figure B.2: Flowchart diagram of the proposed approach



290 Appendix B. Journal papers under review in ISI JCR

Table B.3: Description of the benchmark instances

Instance N. customers N. vehicles N. depots Max. route length V. max. cap.

p01 50 4 4 n/a 80
p02 50 2 4 n/a 160
p03 75 3 5 n/a 140
p04 100 8 2 n/a 100
p05 100 5 2 n/a 200
p06 100 6 3 n/a 100
p07 100 4 4 n/a 100
p08 249 14 2 310 500
p09 249 12 3 310 500
p10 249 8 4 310 500
p11 249 6 5 310 500
p12 80 5 2 n/a 60
p13 80 5 2 200 60
p14 80 5 2 180 60
p15 160 5 4 n/a 60
p16 160 5 4 200 60
p17 160 5 4 180 60
p18 240 5 6 n/a 60
p19 240 5 6 200 60
p20 240 5 6 180 60
p21 360 5 9 n/a 60
p22 360 5 9 200 60
p23 360 5 9 180 60

the degradation does not exceed the value of the last improvement. The reason to implement this
acceptance criterion is to reduce the risk of getting trapped in a local optimum.

In order to improve the most promising solutions found within the metaheuristic framework,
the routing algorithm proposed by Juan et al. (2011a) is applied to each one. This algorithm is
based on a randomized version of the savings heuristic that employs a Geometric distribution to
guide the random search, and a cache and splitting techniques to make it more efficient. This
algorithm has been adapted for the stochastic solutions.

Finally, it is interesting to observe that, considering the parameters (not the estimates), the
fixed cost and the expected total cost of the best deterministic solution represent a lower and an
upper bound, respectively, of the expected total cost associated to the best stochastic solution. The
set of samples will allow us to compare the solutions not only focusing on the expected total cost,
but also on the distribution of the total cost.

5. Computational Experiments
The algorithm described in the previous section has been implemented as a Java application. A
standard personal computer, Intel QuadCore i5 CPU at 3.2 GHz and 4 GB RAM with Windows 7,
has been used to execute all tests. Our algorithm was tested on 23 MDVRP benchmark instances:
the first seven instances were proposed by Christofides and Eilon (1969), the following four were
created by Gillett and Johnson (1976) and the remaining are described in Chao et al. (1993). Vidal
et al. (2012), Escobar et al. (2014), and Juan et al. (2015c) are some recent works using them.
The best known solutions have been extracted from these works. Table B.3 summarizes the main
instance characteristics. It includes the instance name, the number of customers, the maximum
number of vehicles per depot, the number of depots, the maximum route length allowed, and
vehicles maximum capacity. These instances have been adapted for the Stochastic and Capacitated
MDVRP as described next. The demand of each customer (di) has been considered as a random
variable Di following a Lognormal distribution with mean di and variance vdi. Three different
scenarios have been considered, each one with a respectively different variance: 0.1 E[Di], 0.5
E[Di], and 1 E[Di], where E[·] represents the mean or expected value (Figure 3). In order to
choose the percentage of the vehicle capacity in the route design phase (1 − kl), 5 equally-spaced
values varying from 0.90 to 1.00 have been tested.
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Table B.4: Parameters’ values for each algorithm

ILS LNS MS

bM [0.3, 0.4] [0.2, 0.3] [0.3, 0.4]
bR [0.2, 0.3] [0.2, 0.3] [0.1, 0.2]
p [0.3, 0.4] [0.1 − 0.4] [0.2, 0.3]
iT N/A 100 N/A
α N/A 0.97 N/A

Figure B.3: Probability distributions with different levels of demand variability,
for E[Di] = 25

In addition to test the simheuristic algorithm described, a computational experiment is per-
formed where other metaheuristics are considered. This allows us to compare them in terms of
performance. In particular, there are 2 more algorithms based on:

• a Multi-Start algorithm: the base solution (and, as a consequence, the perturbation proce-
dure) is erased, so a new solution is created in each iteration of the loop.

• a Large Neighborhood Search algorithm: While in the ILS algorithm a Demon-based ac-
ceptance criterion was implemented, here one based on a Simulated Annealing (Nikolaev
and Jacobson, 2010) is applied. It requires an initial temperature (iT ) and a parameter (α)
which controls the temperature’s update.

The computational time is limited to 30 seconds, which seems a reasonable time period for
real-life applications. The number of seeds is set to 10, and only the best result are stored (no-
tice that these runs can be executed in parallel, and thus a decision maker is mainly interested in
the best solution). Concerning the number of iterations in each simulation, we have employed
200 runs (observations) for the short simulations (this allows us to obtain rough estimates of the
stochastic costs in a reasonable amount of computing time) and 2, 000 runs for the long simula-
tions (which allows us to obtain more accurate estimates of the stochastic costs for each of the
promising solutions). The selection of these values, as well as of the number of solutions stored
in the list of top solutions (4 in our experiments), is mainly driven by the total computing time
available. If more time is available, then these values can be incremented in order to obtain even
better and/or more accurate results. Biased randomization techniques are used in the generation
and repair of solutions, and in the intensive routing algorithm. These techniques rely on two Geo-
metric distributions (one for mapping and one for routing) and, therefore, they require distribution
parameters: bM and bR, respectively. Additionally, there is a parameter p which controls the per-
centage of nodes that may be reallocated in a solution when perturbing it. All these parameters are
tuned independently for each algorithm (ILS, LNS, and MS) following these steps: (i) randomly
select three instances; (ii) design a full factorial experiment, considering that each parameter can
be randomly chosen from a ‘reasonable’ range; and (iii) select the values providing the best re-
sults. In the case of the LNS-based approach, iT and α are tuned following the same steps, and p
is initially set at a specific value which is increased until reaching a maximum, adding the same
quantity at each iteration of the loop. Values selected are shown in Table B.4.

Results are displayed in Tables B.5, B.6, and B.7. Each of these tables represents a specific
scenario. The first column identifies the instance and the second shows the best-known solution
(BKS) for the deterministic Capacitated MDVRP. The next six columns are associated with the
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solution with the lowest fixed cost: the first, the best deterministic solution - fixed cost (BDS-FC),
represents the fixed cost; the second calculates the gap between the BKS and the BDS-FC, which
reveals the performance of our algorithm for the deterministic version of the problem; the third, the
best deterministic solution - total expected cost (BDS-TEC), is the expected total cost; the fourth,
the best deterministic solution - reliability (BDS-R), has been computed as one minus the number
of route failures divided by the number of routes; the fifth, best deterministic solution - k (BDS-
K), provides the percentage of the vehicle total capacity chosen; and the sixth, best deterministic
solution - time (BDS-T), indicates the seconds that the execution has lasted. The following column
represents the gap between the BDS-TEC and the BDS-FC. The next four columns are associated
with the solution with the lowest expected total cost: the best stochastic solution - total expected
cost (BSS-TEC) contains the expected total cost; the following three columns, the best stochastic
solution - reliability (BSS-R), the best stochastic solution - k (BSS-K), and the best stochastic
solution - time (BSS-T), show the associated reliability, k-value, and time required, respectively.
The next two columns are the gaps between the BSS-TEC and the BKS, and between the BSS-
TEC and the BDS-FC, respectively. It is important to highlight that, provided a ‘large’ number
of simulation iterations is used, the BSS-TEC is bounded by the BDS-FC and the BKS (lower
bounds), and the BDS-TEC (upper bound). Therefore, the previous gaps show the difference
between the BSS-TEC and its lower bounds. The last column is the gap between the expected
total costs of both solutions.

6. Analysis of results
The results obtained by the ILS-based simheuristic algorithm show that assuming a problem being
deterministic can lead to solutions with poor performance even in scenarios characterized by de-
mands with a relatively low variance. In all experiments, the expected total cost obtained with the
best stochastic solution is better than the one obtained with the best deterministic solution. There
is a case in which the gap reaches the −9.39% (instance p08 with high variance). The reason is
that the deterministic solution is not balanced, and a high variance results in an increasing of the
expected total cost. Figure B.4 illustrates the case of the instance p02 with a high variance. The
vehicle capacity is 160. The left and right plots represent the best deterministic solution and the
best stochastic solution, respectively. The numbers in the nodes reveal the expected customer de-
mands, while the numbers in the center of each route are the total demands. Although the routes
are similar, notice that the best stochastic solution seems more ‘balanced’ in terms of demands,
which explains why it is also more reliable.

Figure B.4: Best deterministic (left) and stochastic solutions (right) for instance
p02

Table B.8 summarizes the results described in Tables B.5, B.6, B.7. For each scenario, it shows
the mean gaps. The gaps between the BDS-FC and the BKS, which ranges from 1.74% to 1.83%,
show that our approach is relatively competitive for finding the best solution to the deterministic
problem. The third column reveals that the difference between the BDS-TEC and the BDS-FC
(i.e., the total cost if there was no stochasticity) is positive and positively correlated with the



B.3. The stochastic multi-depot vehicle routing problem 293

Ta
b
le

B
.5

:C
os

ts
co

ns
id

er
in

g
di

ff
er

en
ti

ns
ta

nc
es

w
ith

a
lo

w
de

m
an

d
va

ri
ab

ili
ty

In
st

.
B

K
S

(1
)

B
D

S-
FC

(2
)

G
.(

2)
-(

1)
B

D
S-

T
E

C
(3

)
B

D
S-

R
B

D
S-

K
B

D
S-

T
G

.(
3)

-(
2)

B
SS

-T
E

C
(4

)
B

SS
-R

B
SS

-K
B

SS
-T

G
.(

4)
-(

1)
G

.(
4)

-(
2)

G
.(

4)
-(

3)

p0
1

57
6.

87
58

3.
11

1.
08

%
59

4.
85

1.
00

1.
00

0
2.

01
%

59
4.

85
1.

00
1.

00
0

3.
12

%
2.

01
%

0.
00

%
p0

2
47

3.
53

48
0.

72
1.

52
%

48
7.

43
1.

00
1.

00
0

1.
39

%
48

3.
63

1.
00

0.
92

5
5

2.
13

%
0.

60
%

-0
.7

8%
p0

3
64

1.
19

64
8.

60
1.

16
%

66
8.

71
1.

00
1.

00
0

3.
10

%
65

4.
34

1.
00

0.
95

2
2.

05
%

0.
88

%
-2

.1
5%

p0
4

10
01

.0
4

10
43

.0
5

4.
20

%
11

08
.6

3
1.

00
1.

00
2

6.
29

%
10

73
.7

7
1.

00
0.

95
1

7.
27

%
2.

95
%

-3
.1

4%
p0

5
75

0.
03

77
5.

13
3.

35
%

79
2.

15
1.

00
1.

00
0

2.
19

%
77

8.
85

1.
00

0.
97

5
0

3.
84

%
0.

48
%

-1
.6

8%
p0

6
87

6.
50

89
7.

16
2.

36
%

96
6.

85
1.

00
1.

00
0

7.
77

%
92

4.
28

1.
00

0.
92

5
0

5.
45

%
3.

02
%

-4
.4

0%
p0

7
88

1.
97

89
9.

96
2.

04
%

96
1.

25
1.

00
1.

00
0

6.
81

%
94

0.
16

1.
00

0.
97

5
16

6.
60

%
4.

47
%

-2
.1

9%
p0

8
43

71
.6

6
44

95
.1

7
2.

83
%

50
58

.7
4

0.
99

1.
00

0
12

.5
4%

46
23

.2
5

1.
00

0.
97

5
1

5.
75

%
2.

85
%

-8
.6

1%
p0

9
38

58
.6

6
39

62
.6

4
2.

69
%

42
73

.8
6

1.
00

1.
00

0
7.

85
%

40
56

.4
9

1.
00

0.
97

5
15

5.
13

%
2.

37
%

-5
.0

9%
p1

0
36

29
.6

0
37

38
.8

0
3.

01
%

39
25

.7
1

1.
00

1.
00

0
5.

00
%

37
94

.0
6

1.
00

0.
97

5
16

4.
53

%
1.

48
%

-3
.3

5%
p1

1
35

45
.1

8
36

12
.2

6
1.

89
%

38
15

.8
4

1.
00

1.
00

0
5.

64
%

36
77

.3
2

1.
00

0.
97

5
1

3.
73

%
1.

80
%

-3
.6

3%
p1

2
13

18
.9

5
13

18
.9

5
0.

00
%

13
26

.8
9

1.
00

1.
00

15
0.

60
%

13
26

.7
4

1.
00

0.
97

5
0

0.
59

%
0.

59
%

-0
.0

1%
p1

3
13

18
.9

5
13

18
.9

5
0.

00
%

13
26

.7
1

1.
00

0.
95

0
0.

59
%

13
26

.6
8

1.
00

1.
00

0
0.

59
%

0.
59

%
0.

00
%

p1
4

13
60

.1
2

13
60

.1
2

0.
00

%
13

61
.9

3
1.

00
0.

90
0

0.
13

%
13

61
.5

0
1.

00
0.

97
5

0
0.

10
%

0.
10

%
-0

.0
3%

p1
5

25
05

.4
2

25
57

.5
3

2.
08

%
26

66
.4

2
1.

00
1.

00
0

4.
26

%
25

90
.1

5
1.

00
0.

92
5

2
3.

38
%

1.
28

%
-2

.8
6%

p1
6

25
72

.2
3

25
87

.8
6

0.
61

%
26

16
.1

3
1.

00
0.

97
5

0
1.

09
%

26
16

.1
3

1.
00

0.
97

5
0

1.
71

%
1.

09
%

0.
00

%
p1

7
27

09
.0

9
27

14
.6

6
0.

21
%

27
18

.2
7

1.
00

1.
00

24
0.

13
%

27
18

.2
7

1.
00

1.
00

24
0.

34
%

0.
13

%
0.

00
%

p1
8

37
02

.8
5

38
12

.3
0

2.
96

%
38

41
.5

1
1.

00
1.

00
0

0.
77

%
38

33
.5

2
1.

00
0.

97
5

20
3.

53
%

0.
56

%
-0

.2
1%

p1
9

38
27

.0
6

38
76

.1
5

1.
28

%
39

18
.5

2
1.

00
1.

00
20

1.
09

%
39

18
.5

2
1.

00
1.

00
20

2.
39

%
1.

09
%

0.
00

%
p2

0
40

58
.0

7
40

85
.9

1
0.

69
%

40
91

.2
6

1.
00

0.
90

2
0.

13
%

40
91

.2
6

1.
00

0.
90

2
0.

82
%

0.
13

%
0.

00
%

p2
1

54
74

.8
4

56
81

.1
6

3.
77

%
58

49
.6

8
1.

00
1.

00
6

2.
97

%
57

41
.3

4
1.

00
0.

92
5

19
4.

87
%

1.
06

%
-1

.8
5%

p2
2

57
02

.1
6

58
08

.7
4

1.
87

%
58

64
.1

3
1.

00
0.

97
5

29
0.

95
%

58
64

.1
3

1.
00

0.
97

5
29

2.
84

%
0.

95
%

0.
00

%
p2

3
60

78
.7

5
61

40
.0

1
1.

01
%

61
47

.8
1

1.
00

0.
90

0
0.

13
%

61
47

.4
7

1.
00

0.
90

0
1.

13
%

0.
12

%
-0

.0
1%



294 Appendix B. Journal papers under review in ISI JCR

T
a
b
le

B
.6:C

osts
considering

differentinstances
w

ith
a

m
edium

dem
and

variability

Inst.
B

K
S

(1)
B

D
S-FC

(2)
G

.(2)-(1)
B

D
S-T

E
C

(3)
B

D
S-R

B
D

S-K
B

D
S-T

G
.(3)-(2)

B
SS-T

E
C

(4)
B

SS-R
B

SS-K
B

SS-T
G

.(4)-(1)
G

.(4)-(2)
G

.(4)-(3)

p01
576.87

580.49
0.63%

621.78
0.99

1.00
0

7.11%
607.92

1.00
0.925

0
5.38%

4.73%
-2.23%

p02
473.53

481.05
1.59%

495.72
0.99

1.00
0

3.05%
484.47

1.00
0.925

0
2.31%

0.71%
-2.27%

p03
641.19

648.80
1.19%

672.36
1.00

1.00
0

3.63%
663.64

1.00
0.925

9
3.50%

2.29%
-1.30%

p04
1001.04

1039.64
3.86%

1194.31
0.98

1.00
0

14.88%
1136.68

0.99
0.95

0
13.55%

9.33%
-4.83%

p05
750.03

775.40
3.38%

814.19
0.99

1.00
8

5.00%
797.13

1.00
0.95

1
6.28%

2.80%
-2.10%

p06
876.50

896.83
2.32%

991.64
0.98

1.00
1

10.57%
947.47

1.00
0.925

4
8.10%

5.65%
-4.45%

p07
881.97

901.93
2.26%

988.31
0.98

1.00
0

9.58%
975.88

0.99
0.975

0
10.65%

8.20%
-1.26%

p08
4371.66

4496.87
2.86%

5173.76
0.99

1.00
1

15.05%
4726.09

1.00
0.95

0
8.11%

5.10%
-8.65%

p09
3858.66

3981.77
3.19%

4290.58
0.99

1.00
0

7.76%
4116.24

1.00
0.95

28
6.68%

3.38%
-4.06%

p10
3629.60

3754.90
3.45%

4032.78
1.00

1.00
0

7.40%
3866.11

1.00
0.95

25
6.52%

2.96%
-4.13%

p11
3545.18

3607.04
1.75%

3953.10
0.99

1.00
0

9.59%
3767.31

1.00
0.925

10
6.27%

4.44%
-4.70%

p12
1318.95

1318.95
0.00%

1356.83
1.00

0.975
0

2.87%
1356.83

1.00
0.975

0
2.87%

2.87%
0.00%

p13
1318.95

1318.95
0.00%

1355.84
1.00

0.975
0

2.80%
1355.84

1.00
0.975

0
2.80%

2.80%
0.00%

p14
1360.12

1360.12
0.00%

1393.37
1.00

0.90
0

2.45%
1392.10

1.00
0.925

0
2.35%

2.35%
-0.09%

p15
2505.42

2549.17
1.75%

2722.47
0.99

1.00
0

6.80%
2635.44

1.00
0.90

0
5.19%

3.38%
-3.20%

p16
2572.23

2587.86
0.61%

2671.31
1.00

0.975
0

3.22%
2671.31

1.00
0.975

0
3.85%

3.22%
0.00%

p17
2709.09

2714.66
0.21%

2783.04
1.00

1.00
24

2.52%
2783.04

1.00
1.00

24
2.73%

2.52%
0.00%

p18
3702.85

3814.73
3.02%

3930.95
1.00

1.00
12

3.05%
3916.54

1.00
0.925

21
5.77%

2.67%
-0.37%

p19
3827.06

3875.40
1.26%

4002.83
1.00

1.00
28

3.29%
4002.83

1.00
1.00

28
4.59%

3.29%
0.00%

p20
4058.07

4085.91
0.69%

4187.05
1.00

0.90
2

2.48%
4187.05

1.00
0.90

2
3.18%

2.48%
0.00%

p21
5474.84

5690.22
3.93%

5891.98
1.00

1.00
19

3.55%
5870.96

1.00
0.925

17
7.24%

3.18%
-0.36%

p22
5702.16

5796.48
1.65%

5980.72
1.00

0.975
4

3.18%
5980.72

1.00
0.975

4
4.89%

3.18%
0.00%

p23
6078.75

6140.01
1.01%

6290.98
1.00

0.90
0

2.46%
6289.53

1.00
0.90

0
3.47%

2.44%
-0.02%



B.3. The stochastic multi-depot vehicle routing problem 295

Ta
b
le

B
.7

:C
os

ts
co

ns
id

er
in

g
di

ff
er

en
ti

ns
ta

nc
es

w
ith

a
hi

gh
de

m
an

d
va

ri
ab

ili
ty

In
st

.
B

K
S

(1
)

B
D

S-
FC

(2
)

G
.(

2)
-(

1)
B

D
S-

T
E

C
(3

)
B

D
S-

R
B

D
S-

K
B

D
S-

T
G

.(
3)

-(
2)

B
SS

-T
E

C
(4

)
B

SS
-R

B
SS

-K
B

SS
-T

G
.(

4)
-(

1)
G

.(
4)

-(
2)

G
.(

4)
-(

3)

p0
1

57
6.

87
58

7.
18

1.
79

%
63

3.
62

0.
99

1.
00

0
7.

91
%

62
0.

93
1.

00
0.

92
5

0
7.

64
%

5.
75

%
-2

.0
0%

p0
2

47
3.

53
47

9.
45

1.
25

%
49

1.
96

0.
99

1.
00

12
2.

61
%

48
5.

77
1.

00
0.

90
0

2.
58

%
1.

32
%

-1
.2

6%
p0

3
64

1.
19

64
9.

87
1.

35
%

67
9.

88
1.

00
1.

00
6

4.
62

%
67

1.
69

1.
00

0.
92

5
0

4.
76

%
3.

36
%

-1
.2

0%
p0

4
10

01
.0

4
10

42
.0

5
4.

10
%

11
97

.0
8

0.
97

1.
00

0
14

.8
8%

11
77

.3
5

0.
98

0.
95

6
17

.6
1%

12
.9

8%
-1

.6
5%

p0
5

75
0.

03
77

7.
41

3.
65

%
82

1.
53

0.
98

1.
00

0
5.

67
%

80
6.

97
0.

99
0.

95
0

7.
59

%
3.

80
%

-1
.7

7%
p0

6
87

6.
50

89
7.

48
2.

39
%

10
21

.0
6

0.
97

1.
00

0
13

.7
7%

97
1.

84
0.

99
0.

92
5

10
10

.8
8%

8.
29

%
-4

.8
2%

p0
7

88
1.

97
90

7.
38

2.
88

%
10

11
.0

2
0.

97
1.

00
0

11
.4

2%
99

1.
80

0.
97

1.
00

2
12

.4
5%

9.
30

%
-1

.9
0%

p0
8

43
71

.6
6

44
98

.6
5

2.
90

%
52

67
.6

0
0.

98
1.

00
0

17
.0

9%
47

72
.7

4
1.

00
0.

92
5

6
9.

17
%

6.
09

%
-9

.3
9%

p0
9

38
58

.6
6

39
62

.3
0

2.
69

%
43

98
.5

1
0.

99
1.

00
22

11
.0

1%
41

85
.0

1
1.

00
0.

95
17

8.
46

%
5.

62
%

-4
.8

5%
p1

0
36

29
.6

0
37

47
.9

1
3.

26
%

41
06

.3
6

0.
99

1.
00

0
9.

56
%

39
40

.0
2

1.
00

0.
95

15
8.

55
%

5.
13

%
-4

.0
5%

p1
1

35
45

.1
8

36
25

.2
6

2.
26

%
40

10
.2

9
0.

99
1.

00
0

10
.6

2%
37

88
.7

2
1.

00
0.

92
5

11
6.

87
%

4.
51

%
-5

.5
3%

p1
2

13
18

.9
5

13
18

.9
5

0.
00

%
13

77
.6

6
1.

00
1.

00
0

4.
45

%
13

77
.6

6
1.

00
1.

00
0

4.
45

%
4.

45
%

0.
00

%
p1

3
13

18
.9

5
13

18
.9

5
0.

00
%

13
76

.2
8

0.
99

1.
00

0
4.

35
%

13
76

.2
8

0.
99

1.
00

0
4.

35
%

4.
35

%
0.

00
%

p1
4

13
60

.1
2

13
60

.1
2

0.
00

%
14

17
.0

1
0.

99
0.

90
0

4.
18

%
14

14
.0

6
0.

99
0.

92
5

0
3.

97
%

3.
97

%
-0

.2
1%

p1
5

25
05

.4
2

25
53

.9
0

1.
93

%
27

55
.7

4
0.

98
1.

00
0

7.
90

%
26

73
.1

1
1.

00
0.

90
2

6.
69

%
4.

67
%

-3
.0

0%
p1

6
25

72
.2

3
25

90
.7

7
0.

72
%

27
12

.3
0

0.
99

0.
97

5
30

4.
69

%
27

12
.3

0
0.

99
0.

97
5

30
5.

45
%

4.
69

%
0.

00
%

p1
7

27
09

.0
9

27
14

.6
6

0.
21

%
28

23
.9

7
1.

00
0.

90
29

4.
03

%
28

23
.9

7
1.

00
0.

90
29

4.
24

%
4.

03
%

0.
00

%
p1

8
37

02
.8

5
38

13
.2

2
2.

98
%

40
05

.6
1

0.
99

0.
97

5
0

5.
05

%
39

71
.5

5
1.

00
0.

92
5

24
7.

26
%

4.
15

%
-0

.8
5%

p1
9

38
27

.0
6

38
76

.1
5

1.
28

%
40

54
.7

6
0.

99
1.

00
0

4.
61

%
40

54
.7

6
0.

99
1.

00
0

5.
95

%
4.

61
%

0.
00

%
p2

0
40

58
.0

7
40

85
.9

1
0.

69
%

42
52

.7
1

0.
99

0.
90

2
4.

08
%

42
52

.7
1

0.
99

0.
90

2
4.

80
%

4.
08

%
0.

00
%

p2
1

54
74

.8
4

56
77

.6
2

3.
70

%
59

74
.1

9
0.

99
1.

00
20

5.
22

%
59

57
.6

6
0.

99
0.

92
5

13
8.

82
%

4.
93

%
-0

.2
8%

p2
2

57
02

.1
6

58
12

.0
3

1.
93

%
60

79
.2

7
0.

99
0.

97
5

5
4.

60
%

60
79

.2
7

0.
99

0.
97

5
5

6.
61

%
4.

60
%

0.
00

%
p2

3
60

78
.7

5
61

40
.0

1
1.

01
%

63
88

.0
7

1.
00

0.
90

0
4.

04
%

63
86

.5
8

1.
00

0.
97

5
0

5.
06

%
4.

02
%

-0
.0

2%



296 Appendix B. Journal papers under review in ISI JCR

Table B.8: Tabulated summary of the results

Scenario G. BDS-FC -
BKS

G. BDS-TEC -
BDS-FC

G. BSS-TEC -
BKS

G. BSS-TEC -
BDS-FC

G. BSS-TEC -
BDS-TEC

Var: 0.10E[Di] 1.83% 3.10% 3.12% 1.26% −1.69%
Var: 0.50E[Di] 1.83% 5.89% 5.53% 3.62% −2.06%
Var: 1.00E[Di] 1.74% 7.48% 7.12% 5.27% −1.97%

variability of the scenario. Next two columns quantify the gaps between the BSS-TEC and its
lower bounds, the BKS and the BDS-FC. They both increase as the variability of the scenario gets
higher. Finally, the last gap shows the benefit of using our simheuristic approach. Thus, it can be
concluded that the higher the variability the higher the benefit.

Here we present a risk analysis in which the four best stochastic solutions and the best deter-
ministic solution are compared. It is illustrated on a specific case, the instance p09 with high vari-
ance. Thus, Figure B.5 shows a boxplot of the total costs obtained by means of MCS. The means
of the observations and their corresponding confidence intervals are displayed in Figure B.6. In
Figure B.7, the empirical Cumulative Distributions Functions (CDFs) for the best deterministic
and stochastic solutions are drawn. It can be stated that the variability of total costs associated to
the best deterministic solution is the highest (Figure B.5), and all distributions present a positive
skew. Figure B.6 shows that the confidence intervals of the means related to the best stochastic
solutions do not overlap, which indicates that the differences are statistically significant. Note that
the big sample size of each group (2,000) leads to relatively narrow intervals. In Figure B.7, the
probability distribution function of the best stochastic solution is above the other almost for the
entire domain. In other words, the probability of having a total cost equal to or lower than a given
value is usually higher with this solution. As a consequence, a risk-averse decision-maker would
prefer it. Nevertheless, the minimum values are provided by the deterministic solution, which
makes sense since this solution will be the one selected in scenarios where the customer demands
are similar to the corresponding mean of the distributions.

Figure B.5: Boxplots of best solutions for instance p09 with high variability
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Figure B.6: Expected total cost and CIs of best solutions for instance p09 with
high variability

Figure B.7: CDFs of best deterministic and stochastic solutions for instance p09
with high variability

Regarding the comparison among algorithms, an analysis of variance (Montgomery, 2008) is
performed by using the gaps between the BSS-TEC and the BKS for the second scenario (i.e.,
medium level of variability). Since the normality assumption is not fully satisfied, we apply the
Kruskal-Wallis test by ranks. The p-value is 0.90, which indicates that the differences between
medians are not statistically significant. Boxplots in Figure B.8 show the distributions of the
gaps for each algorithm, revealing that the simheuristic based on the LNS metaheuristic seems to
provide slightly better results on average.
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Figure B.8: Comparison among simheuristic algorithms

7. Conclusions and future research
In this paper we have presented a simheuristic algorithm for solving the Stochastic and Capaci-
tated Multi-Depot Vehicle Routing Problem (MDVRP). It is based on the idea that this problem
can be analyzed as a generalization of the deterministic version, which allows to combine efficient
metaheuristic algorithms with simulation to solve the stochastic version. We propose a two-stage
methodology. Initially, routes are designed considering the expected demands and a vehicle ca-
pacity lower than the real one. This capacity surplus is to be employed when demands are higher
than expected. Then, in the routing phase, the actual routes are specified. In case of a route failure,
the vehicle returns to the depot to reload and continues the planned route. In order to reduce the
risk of a route failure, preventive re-stocking is carried out when the remaining vehicle capacity is
lower than the expected demand of the next customer.

Our methodology combines a metaheuristic framework, which guides the exploration of the
search space, with Monte Carlo simulation techniques, which assess the quality of the promis-
ing solutions. Using simulation techniques, it is possible to perform a risk analysis in order to
take into account the risk-aversion of the decision-maker for selecting the best solution. The ef-
ficiency of our algorithm is evaluated throughout a set of experiments considering different levels
of demand variability, comparing three algorithms relying on different metaheuristics and provid-
ing both lower and upper bounds. There are very few works addressing the Stochastic MDVRP
and they consider uncapacitated depots. In addition, these works usually make strong assump-
tions about the probability distribution of the demands and their independence. Relying on the
simheuristic framework, we relax these assumptions, just requiring historical data or theoretical
distributions with an existing mean. Thus, our methodology aims to deal with more realistic sce-
narios. Our results show the importance of tackling Combinatorial Optimization Problems taking
into account the uncertainty that characterizes our world, avoiding the traditional approach that
assumes that these problems are (or can be solved as if they were) deterministic.

In this work it has been assumed that all customers have to be visited and their demands are
required to be completely satisfied. Thus, we have focused on constructing ‘robust’ or ‘reliable’
solutions (i.e., solutions with lower expected cost but also with lower variability or risk). In our
view, these robust solutions can reduce the intensity/impact of corrective actions over the sched-
uled distribution plan and, therefore, they constitute a first step towards a complete – and yet to
be fully explored – framework that also takes into account these corrective actions as a response
to stochastic and dynamic environments. Similarly, there are other realistic and richer extensions
that could be studied such as the Stochastic and Capacitated MDVRP with Heterogeneous Depots,
Multiple Products, or Stochastic Distances.
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Abstract
Computational finance is an emerging application field of metaheuristic algorithms. In particular,
these optimisation methods are becoming the solving approach alternative when dealing with real-
istic versions of several decision-making problems in finance, such as rich portfolio optimisation
and risk management. This paper reviews the scientific literature on the use of metaheuristics for
solving NP-hard versions of these combinatorial optimisation problems and illustrates their capac-
ity to provide high-quality solutions under scenarios considering realistic constraints. The paper
contributes to the existing literature in three ways. Firstly, it reviews the literature on metaheuris-
tic optimisation applications for portfolio and risk management in a systematic way. Secondly, it
identifies the linkages between portfolio optimisation and risk management and presents a unified
view and classification of both problems. Finally, it outlines the trends that have gradually be-
come apparent in the literature and will dominate future research in order to further improve the
state-of-the-art in this knowledge area.

Keywords: portfolio optimisation, risk management, combinatorial optimisation, metaheuris-
tics.

1. Introduction
Since the last century, the direct relationship between financial decisions and wealth creation
through capital accumulation and economic development has been widely accepted (Patrick,
1966). Thus, investments play an essential role in improvements of welfare standards. This striv-
ing for improvement is represented through the formulation of optimisation problems for most of
the questions in financial economics. Traditionally, exact methods have been employed in deter-
mining optimal solutions to these. These methods, however, present some limitations when solv-
ing realistic and large-scale combinatorial optimisation problems (COPs) of NP-hard nature, since
under these circumstances they require either the use of simplifying (non-realistic) assumptions
or extraordinarily long computing times. Because this approach neglects depicting the complex
intricacies of the real-life problems that decision-makers face in their everyday actions, the re-
sults are predominantly not transferrable to real-life operations without reservations. Furthermore,
the current internationalisation and integration of financial markets and institutions has caused
financial decision-making processes to become even more complex, both in terms of associated
constraints as well as in terms of the instances to solve. Advances in Operations Research and
Computer Science have brought forward new solution approaches in optimisation theory, such
as heuristics and metaheuristics (Boussaïd et al., 2013). While the former are experience-based
procedures, which usually provide ‘good’ solutions in short computing times, metaheuristics are
general templates that can easily be tailored to address a wide range of problems. They have shown
to provide near-optimal solutions in reasonable computing times to problems for which traditional
methods are not applicable (Michalewicz and Fogel, 2013). Since they usually require relatively
little computational time, metaheuristics constitute an attractive alternative for problem solving in
several knowledge areas in which real-time decisions are required. Among others, Talbi (2009)
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provide an excellent overview of metaheuristic methodologies and their applications. In particu-
lar, applications of metaheuristics in the financial sector are presented in Gilli et al. (2011). While
metaheuristics do not guarantee finding a globally optimal solution, Gilli and Schumann (2012)
point out that the goal of optimisation in most real-life instances is not to provide an optimal so-
lution, but one that fulfils the decision-maker’s objectives to a highly satisfactory extent. Hence,
these authors promote the use of metaheuristic approaches in practical applications. In effect, with
respect to exact methods that provide an optimal solution to a simplified model of a real-life prob-
lem, metaheuristics can provide a near-optimal solution to a realistic model of the same problem,
which might be preferable for most decision-makers. The contributions of this work to the existing
literature are threefold. Firstly, it reviews the literature on metaheuristic optimisation applications
for portfolio and risk management in a systematic way. This classification, in conjunction with
the corresponding subproblems, is depicted in Fig. B.1. For investment decisions it is indicated
whether the corresponding problem refers to an active or passive strategy. Further, an exemplary
recent paper is provided for each subproblem.

As second contribution, the work identifies the linkages between portfolio optimisation and
risk management and presents a unified view and classification of these problems. It is expected
that the revocation of the strict classification of financial COPs can lead to a methodological trans-
fer of knowledge in between different applications that enable more effective and efficient selec-
tions of decision-makers. Finally, the work also outlines the trends that have gradually become
apparent in the literature and are expected to dominate future research in this knowledge area.
Table B.1 presents an overview of these trends and challenges classified into problem-specific and
methodology-specific dimensions.

The remainder of the paper is structured as follows: Section 2 presents the research methodol-
ogy and an overview of recent publications. Section 3 consists of a short overview of metaheuris-
tics for those readers who are less familiar with these methods. Following this, a review of the
recent literature on portfolio optimisation and the corresponding subproblems is presented in Sec-
tion 4, while Section 5 reviews the research on risk management problems. Further, the linkage
between the two is discussed in Section 6. Future trends in the application of metaheuristics in the
areas of portfolio optimisation and risk management are analysed in Section 7. Finally, Section 8
highlights the main findings and contributions of this work and concludes it.

2. Review Strategy
The increasing popularity of the application of metaheuristics to portfolio optimisation problems
(POPs) and risk management problems (RMPs) is depicted below in Fig. B.2 based on Scopus-
indexed publications that explicitly consider metaheuristics as an approach in solving different
financial COPs. In the case of 2016, only the first semester (2016-1) has been considered.

The search for POPs was conducted by examining the articles that explicitly consider portfolio
optimisation (or the American English equivalent), index tracking or project selection in the ab-
stract, title or keywords and make use of metaheuristics. For risk management problems, the search
terms were bankruptcy, credit risk or stock or foreign exchange trading. In the case of portfolio
optimisation, it becomes obvious that the trend in publications is increasing, i.e., metaheuristics
have received increased attention as solving approaches. This has previously been predicted by
researchers due to their power in obtaining high quality solutions to many real world complex
problems (Osman and Kelly, 1996). More specifically, continuing increases in computing power,
the advancement of metaheuristic frameworks and parallelisation strategies favour these method-
ologies when dealing with NP-hard financial COPs. On the contrary, risk management problems
seem to have received much less attention. These proportions are broken down in Fig. B.3, which
shows that traditional portfolio optimisation represents the majority of metaheuristic applications.

One of the major contributions of this work is to discuss the idea that most risk management
variants are strongly correlated with portfolio optimisation, i.e., that risk management problems
can oftentimes be partially expressed as portfolio optimisation problems. To exemplify this as-
sumption imagine a decision-maker in a loan decision process who is choosing a portfolio of
successful applicants from a pool of potential loan receivers based on his acceptance criteria and
budget. Accordingly, it is possible to transfer methodological knowledge from the well-studied
portfolio optimisation problem to the less explored area of risk management problems.
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Table B.1: Open research challenges associated with portfolio optimisation and
risk management problems

Dimension Research trends and challenges

Problem-specific

Realistic
problem
modelling

(1) Deviating from the traditional formulation,
more accurate risk measures – such as value-at-
risk variations – are to be evaluated with regard to
their ability in improving the depiction of portfo-
lio risk.
(2) Hybridisations of simulation and optimisation
should be employed to include in the optimisation
model the macro- and micro-level uncertainty of
financial markets.

Problem
complexity

(1) The introduction of additional required con-
straints and a more narrow execution of traditional
constraints in a uniform way are yet to be pre-
sented.
(2) The internationalisation and integration of fi-
nancial markets call for the inclusion of an ex-
tended asset pool in portfolio optimisation prob-
lems.

Methodology-specific

Computational
times

(1) The increasing complexity of the prob-
lem modelling calls for faster metaheuristic ap-
proaches.
(2) Especially for large-scale problems, dis-
tributed and parallel computing techniques could
be explored for real-time problem solving.

Methodological
complexity

(1) The predominance of population-based meta-
heuristics is not uniformly justified by the quality
of the results; thus single-point metaheuristic ap-
proaches can be further explored.
(2) The hybridisation of methodologies is a clear
trend; however, this hybridisation should be done
with care to avoid developing methods of increas-
ing complexity that are difficult to reproduce in
practice.

Figure B.2: Scopus-indexed publications applying metaheuristics to POPs and
RMPs for the period 2003 to 2016-1
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Figure B.3: Number of publications on the respective subproblems

Figure B.4: Scheme of the most popular traditional metaheuristics

3. An Overview of Metaheuristics
Heuristics may be described as intelligent search strategies for solving problems (Pearl, 1984).
They tend to be used in applications where exact methods fail to find a solution to a computation-
ally hard problem and to speed up the search for high-quality solutions. Despite not guaranteeing
optimality, heuristics have been extensively employed due to their high number of successful ap-
plications. Their main disadvantage is that most are problem- or even instance-dependent (Asta,
2015). As a consequence, considerable efforts to adapt them for addressing different problems or
instances are needed.

Metaheuristics are intended to overcome this drawback. The term, first introduced by Glover
(1986), can be described as a set of guidelines or strategies to develop heuristic optimisation algo-
rithms. It is important to note that while metaheuristics (as frameworks) are domain-independent,
their implementation is domain-specific. According to Feo and Resende (1995), the effective-
ness of these methods greatly depends on their ability to adapt to a specific instance to solve,
to avoid getting stuck in local optima, and to exploit the structure of a problem. The authors
discuss the relevant role of restart procedures, controlled randomisation, efficient data structures,
and pre-processing. The popularity of metaheuristics has grown rapidly among both the scientific
community and practitioners. Research fields in which they are commonly and highly success-
fully employed include logistics and transportation, finance, machine learning, computer vision,
cryptology, and healthcare sciences.

Metaheuristics can be classified into population-based metaheuristics, which work with a set
of individual solutions that form a population, and single-solution metaheuristics, which maintain
a single solution. While the former focus on exploration (diversification), searching a relatively
large area of the search space, the latter centre on exploitation (intensification), applying local
search within a limited region. Fig. B.4 lists the most employed metaheuristics with regards to
this classification and includes the references of the first applications.

Despite this list being relatively short, a vast variety of metaheuristic methodologies exist, es-
pecially through hybridisations, and frequently, research communities focus only on a subset. The
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Table B.2: The application of traditional metaheuristics and hybridisation to sub-
problems of portfolio optimisation

Optimisation Problem Single-solution search Population-based search HybridSA TS FD SD GA FA ACO DE EA ABC PSO IWO AIS SS
Single-objective portfolio optimisation 2 3 1 1 2 1 3 3
Multi-objective portfolio optimisation 2 2 2 1 1 4 2
Index tracking 1 2 2 3 1 3
Enhanced index tracking 1 1 1 1 2 1 1 2 1
Project selection 3 2 6 1 2 5

successful application of metaheuristics has led to an increase in interest in improvements and
new developments of these methodologies in the academic community. However, more recently,
while recognising the high value of many modern contributions, researchers occasionally criticise
the lack of a scientific base, which is replaced by the most diverse metaphors (Sörensen, 2015),
and leads to irreproducibility of the results and thus lack of reliability of the computational exper-
iments. As we will show, this has also been the case for individual papers reviewed in this article.
This is why the application of simplified, reproducible metaheuristics is a pressing open line of
further research. Finally, we refer the reader interested in an extensive review of metaheuristics to
Talbi (2009) and Gendreau and Potvin (2010).

4. Portfolio Optimisation
Since Markowitz (1952) developed the portfolio optimisation theory centred around the mean-
variance approach, the academic community has been highly engaged in advancing the tools for
portfolio optimisation. The theory is based on two constituting assumptions, namely: (i) the
financial investors being concerned with the expected returns; and (ii) the risk of their respective
investment. It is thus the goal to minimise the level of risk expressed through the portfolio variance
for a given expected return level, resulting in the so-called unconstrained efficient frontier, from
which the portfolio choice is determined by the risk awareness of the investor. This established
the portfolio optimisation problem, which is a strategy of: (i) selection of financial assets; and (ii)
determination of the optimal weights allocated to those assets that results in a desired portfolio
return and associated minimum level of risk. Based on the investor’s involvement with the asset
selection, two types of investment management strategies can be identified. On the one hand,
active investment strategies aim at beating market returns. On the other hand, passive investment
strategies aim at replicating a benchmark index. This strategy has become specifically popular
with equity funds and although it is originally based on the efficient market hypothesis, passively
indexed funds can still outperform active funds and have shown to do so on average due to the
increased management costs of active funds in the presence of market failures (Malkiel, 2003).
According to these conclusions, index replication is not solely a hedging strategy, but provides
stable profitability.

Table B.2 presents a summary of the metaheuristics applied to each of the problems reviewed
in this section: single-objective portfolio optimisation, multi-objective portfolio optimisation, in-
dex tracking, enhanced index tracking, and project portfolio selection. The number of articles
found on each topic and metaheuristic is included inside each cell. The classical portfolio op-
timisation is an active investment strategy, particularly when active re-balancing of the portfolio
takes place in multi-period observations and, by its nature, investment appraisal requires the active
selection of project portfolios. Index tracking is traditionally a passive strategy, while enhanced
index tracking involves active management to some extent. Different metaheuristics can be clas-
sified with respect to different characteristics. As previously pointed out, they are classified in
the following depending on whether they conduct a population-based or a single-solution search.
While the latter can be categorised as trajectory and perform a closed walk on the neighbourhood
graph with the possibility of accepting a worse solution temporarily to escape local minima, the
former are discontinuous and tend to jump through the search space (Birattari et al., 2001).

From Table B.2, the following conclusions can be drawn: TS, followed by SA, is the favoured
single-solution search metaheuristic to approach POPs, while in general population-based meta-
heuristics, especially GA and PSO, are the most employed methodologies. It also becomes ev-
ident that, while the methodologies employed to approach index tracking have been applied to
enhance index tracking, multi-objective portfolio optimisation has received more attention than
single-objective portfolio optimisation with respect to population-based methodological coverage.
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Furthermore, no single-solution approach has been used to address the multi-objective POP. It
is further striking that ant colony optimisation (ACO) is by most the favoured metaheuristic to
address the selection of project portfolios. Lastly it is noteworthy that hybridisation of differ-
ent metaheuristics in order to improve the optimisation solutions has increased together with the
complexity of the methodologies. In the following, the metaheuristic approaches to solving the
individual subproblems are reviewed.

Traditional Portfolio Optimisation

While the original Markowitz problem can be solved using quadratic programming, metaheuris-
tics have increasingly been employed to cope with the fact that the problem becomes NP-hard
when more realistic constraints are introduced (Beasley, 2013). In effect, cardinality constraints,
quantity constraints, and pre-assignment constraints have received overwhelming attention in the
literature. The cardinality constraint defines a lower and upper limit for the numbers of assets
included in the portfolio. While the lower bound aims at portfolio diversification, the upper bound
accounts for the fact that marginal benefits of diversification diminish after a certain threshold
(Maringer, 2005), which increases managerial efforts and transaction costs. The quantity con-
straint sets boundaries for the weights of included assets. While the lower limit ensures a minimum
investment as smaller investments may be prohibitively costly due to transaction costs (Kolm et al.,
2014), the upper limit prevents excessive exposure to a particular asset. Finally, the pre-assignment
constraint enables the investor to include certain assets in the portfolio based on individual prefer-
ences independent from their risk-return characteristics.

Single-objective Portfolio Optimisation
The classical POP can be considered a single-objective optimisation problem with either one of

the following model formulations: the investor minimises the risk exposure subject to a minimum
attainable expected return, or the investor maximises the expected return for a given maximum
level of risk. The first variant can be formulated as follows (Chang et al., 2000): A quadratic
objective function is computed by aggregating over the covariances of the constituent asset returns
and then minimised:

Min
N∑

i=1

N∑
j=1

wiw jσi j, (B.1)

subject to a minimum desired rate of return, the constraint that the weights have to add up to
one, and the constraint that all asset weights must lie between zero and one, inclusive, thus elimi-
nating short selling as a measure of preventing investors from excessive risk-taking by restricting
them to the available budget. In formal terms:

N∑
i=1

wiµi = R∗, (B.2)

0 ≤ wi ≤ 1, ∀i = 1, 2, ...,N (B.3)

where N is the total number of available assets, µi is the expected return of an asset i, R∗ is the
minimum required return, w are the respective weights of the assets making up the portfolio, and
σi j is the covariance between two assets i and j.

Chang et al. (2000) solved the above classical problem definition using three different meta-
heuristic approaches (GA, SA, and TS) in order to generate a cardinality-constrained efficient fron-
tier. They suggested pooling the results from the different approaches because no single heuristic
was uniformly dominating in all observed datasets. However, Soleimani et al. (2009) introduced
sector capitalisation and minimum transaction lots as further constraints and found that the GA
they developed outperformed TS and SA. Following the suggestion of Chang et al. (2000) and
combining GA, TS, and SA, Woodside-Oriakhi et al. (2011) explored the pooling option. They
found that, on average, SA contributes little to the performance of the process and that thus a
pooled GA and TS algorithm is superior to single metaheuristic approaches at the expense of
higher computational time.

As for the application of strict single metaheuristic methodologies, PSO was found to be com-
petitive with all three of the previously employed algorithms (GA, TS, and SA) for the cardinality-
constrained portfolio selection problem and especially successful in low-risk portfolios (Cura,
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2009). To evaluate the performance of PSO for even more realistic instances, Golmakani and
Fazel (2011) further introduced minimum transaction lots, bounds on holdings, and sector capital-
isation in addition to cardinality constraints. These authors applied a combination of binary PSO
and improved PSO (CBIPSO), and found that CBIPSO outperforms GA in that it provides better
solutions in less computing time, especially for large-scale problems. As constraints become in-
creasingly complex, the question of constraint-handling in determining feasible solutions arises.
Reid and Malan (2015) investigated this research line and developed a portfolio repair constraint
handling technique applied in a PSO portfolio optimisation. Employing this, they were able to
further improve the performance of the metaheuristic, again particularly for large instances.

Di Tollo and Roli (2008) provided a survey concerned with the early applications of meta-
heuristics to the POP and some of the proposed constraints explicitly highlighting the poten-
tial use of hybrid approaches. Likewise, such a hybrid method was proposed by Maringer and
Kellerer (2003), who employed a hybrid local search algorithm combining principles of SA and
evolutionary algorithms (EA) to optimise a cardinality-constrained portfolio. By combining ex-
act mathematical programming and metaheuristic methods, Woodside-Oriakhi et al. (2011) fur-
ther hybridised and created different matheuristics. This option was also investigated by Schaerf
(2002) and Di Gaspero et al. (2011) who respectively combined TS and first descent (FD) and
steepest descent (SD) local search metaheuristics with quadratic programming to optimise a port-
folio while accounting for cardinality constraints, lower and upper boundaries for the quantity of
an included asset, and pre-assignment constraints. According to their results, the developed solver
finds the optimal solution in several instances and is at least comparable to other state-of-the-art
methods for the others. Concerning optimality, Cesarone et al. (2013) were able to develop an
exact increasing set algorithm that, for small instances, solves the POP with quantity and cardi-
nality constraints optimally and can be extended into a heuristic procedure to account for larger
instances. It outperforms the metaheuristics employed by Di Gaspero et al. (2011) and Schaerf
(2002) in all instances.

Multi-objective Portfolio Optimisation
While single-objective optimisation methods consider either a minimal risk for a given ex-

pected return or a maximum return for a given expected level of risk, multi-objective optimisation
methods combine two objective measures into a single one that is to be optimised (Mishra et al.,
2014) or, more often, find a set of Pareto solutions while balancing two or more objective functions
simultaneously. With respect to single-objective optimisation methods that require the ex-ante def-
inition of an acceptable degree of profitability, multi-objective optimisation requires no previous
knowledge about the investor’s degree of risk aversion and is thus a more general approach trans-
ferrable to different decision-makers. The approach of combining risk and return characteristics
into a single objective function is taken by Zhu et al. (2011). They introduced the Sharpe ratio as
a simultaneous measure and, since GA and PSO have been found to be competitively successful
in solving the single-objective version, performed a comparison of these metaheuristics in solving
the non-linear constrained portfolio optimisation problem. As previously established, they also ar-
gue that PSO outperforms GAs, especially in large instances. While they did not include realistic
constraints other than a total portfolio weight equal to one in addition to portfolio assets restricted
to positive weights, in which the short selling of the portfolio’s underlying assets is prohibited, the
authors also investigated unrestricted portfolios. The solution portfolios obtained with the PSO
solver outperformed those constructed using GA for all test problems in terms of Sharpe ratio, and
the established efficient frontier was above that of GA portfolios in all but one instance.

According to Streichert et al. (2003), the multi-objective POP can be formulated employing
two simultaneous objective functions as follows. For a multi-objective optimisation it becomes
necessary to minimise the portfolio risk expressed by the portfolio variance:

Min
N∑

i=1

N∑
j=1

wiw jσi j, (B.4)

while maximising the return of the portfolio, i.e.:

Max
N∑

i=1

wiµi, (B.5)
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subject to:

N∑
i=1

wi = 1, (B.6)

0 ≤ wi ≤ 1, ∀i = 1, 2, ...,N. (B.7)

Alternatively, equations B.4 and B.5 can be combined into a single one by incorporating ob-
jective weights as follows (Mishra et al., 2014):

Min λ
N∑

i=1

N∑
j=1

wiw jσi j − (1 − λ)
N∑

i=1

wiµi, (B.8)

subject to the aforementioned constraints. In this case, the weights as determined by the param-
eter λ represent the risk aversion of the investor. By varying this parameter and running repeatedly,
a Pareto efficient frontier can be established. Because of the high performance of PSO in solving
the single-objective POP, enhanced PSO algorithms for solving the multi-objective POP have been
proposed by Deng et al. (2012) and He and Huang (2012). Cardinality and bounding constraints
were incorporated by Deng et al. (2012) who find that their algorithm mostly outperforms GA,
SA, and TS algorithms as well as previous PSO approaches, especially in the case of low-risk
portfolios. It can be concluded that different findings unanimously favour PSO in situations when
low-risk investment is demanded in addition to a larger-scale potential asset pool. Similarly, He
and Huang (2012) proposed a modified PSO (MPSO) algorithm that outperforms regular PSO for
their four optimisation sets. More recently, they also developed a new PSO to deal with discontinu-
ous modelling of the POP and find that it generally outperforms PSO and also performs better than
MPSO in larger search spaces (He and Huang, 2014). Other population-based algorithms applied
in optimising cardinality-constrained portfolios include firefly algorithms (FA) (Tuba and Bacanin,
2014b) and artificial bee colony (ABC) algorithms (Tuba and Bacanin, 2014a). However, because
the results were satisfactory at most even after modifications, the authors hybridised FA and ABC
by incorporating the FA search strategy into ABC to enhance exploitation and found that their data
suggested superiority of the methodology compared to GA, SA, TS, and PSO (Tuba and Bacanin,
2014a). Streichert et al. (2003) accounted for further constraints: buy-in thresholds (acquisition
prices) and round lots (smallest volume of an asset that can be purchased). They employed two
multi-objective evolutionary algorithms (MOEA): GA and an EA enhanced through the integra-
tion of a local search that applies Lamarckism, thus allowing the individual improvements to be
passed on to the offspring. They found that this enhancement greatly improved the reliability of
the results, especially with respect to the additional constraints. Unfortunately, these approaches
are hardly reproducible due to their complexity, reinforcing the need for a less metaphorical and
more scientifically reproducible approach.

Nevertheless, apart from the neglect of realistic non-linear constraints, there is a second point
of criticism to the original Markowitz model, namely its assumption of normal financial returns,
which, in reality are characterised by a leptokurtic distribution (Krink and Paterlini, 2011), mak-
ing it necessary to consider non-parametric risk measures. Such a measure is the value-at-risk,
as employed by Babaei et al. (2015) who developed two multi-objective algorithms based on
PSO to solve a cardinality- and quantity-constrained POP. Through splitting the whole swarm
into sub-swarms that are then evolved distinctly, their methodology outperformed similar bench-
mark metaheuristics. In order to optimise a non-parametric value-at-risk and to include further
constraints, including lower and upper bounds for the weights of included assets, a threshold for
asset weight changes, lower and upper bounds for the weights of one asset class and a turnover
rate that determines the maximum asset allocation changes possible at once, Krink and Pater-
lini (2011) developed the differential evolution (DE) for multi-objective portfolio optimisation
(DEMPO) algorithm. An extended version of a generalised DE metaheuristic was also employed
in optimising a highly constrained POP by Ayodele and Charles (2015). The included constraints
consist of bounds on holdings, cardinality, minimum transaction lots, and expert opinion. An ex-
pert can form an opinion based on indicators beyond the scope of the analysed data and influence
whether or not an asset should be included. Their methodology showed improved performance
when compared to GA, TS, SA, and PSO. Lwin et al. (2014) considered cardinality, quantity, pre-
assignment and round lot constraints and developed a multi-objective evolutionary algorithm that
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is improved through a learning-guided solution generation strategy, which promotes efficient con-
vergence (learning-guided multi-objective evolutionary algorithm with external archive, MODE-
wAwL). It was shown that the developed algorithm outperformed four benchmark state-of-the-art
multi-objective evolutionary algorithms in that its efficient frontier was superior.

An extensive review of the application of evolutionary algorithms to the POP is provided
by Metaxiotis and Liagkouras (2012). Likewise, for an extensive review on different portfolio
optimisation problems, including single- and multi-objective optimisation, the reader is referred
to Mansini et al. (2014). It can be asserted that population-based metaheuristics have yielded
superior results compared to single-solution metaheuristics in the case of single-objective portfolio
optimisation. This has resulted in them being dominantly applied to multi-objective portfolio
optimisation.

Passive Investment

Closely related to portfolio optimisation as an active portfolio management strategy, passive in-
vestment strategies have received less attention in the optimisation literature. These strategies are
characterised by limited on-going buying and selling, as well as by ensuing limited maintenance.
Based on the traditional capital market theory stating that market portfolios offer the greatest return
per unit of risk, passive investment strategies have been shown to outperform actively managed
funds and thus gained popularity (Alexander and Dimitriu, 2004).

Index Tracking
The index tracking problem (ITP) is a passive portfolio management strategy in that investors

aim at mimicking a market or sector index. This is done by either replicating the index or by
selecting a portfolio that follows the index behaviour as closely as possible without including all
the stocks that make up the original index. In the case of perfect replication, there are transaction
costs associated with updating the portfolio to continuously accurately depict the index, which
thus have to be deducted when evaluating the performance. Therefore, the ITP is largely con-
cerned with the latter, partial replication. There are thus two stages in index tracking, the common
goal of which is to minimise the resulting tracking error (the distance between the portfolio and
benchmark returns). The first consists of selecting the assets to include in the portfolio and the
second relates to determining the weights. Thus, it consists of a combinatorial and a continuous
numerical problem, which both have to be addressed simultaneously (Krink et al., 2009). Once
similar constraints as in portfolio optimisation are introduced (e.g. floor and ceiling constraints,
cardinality constraints, pre-assignments, or class constraints), minimising the objective function
of the tracking error becomes extraordinarily difficult to solve with exact methods.

The optimisation problem can thus be addressed with the following formulation (Beasley et
al., 2003). Minimise the tracking error:

Min E =

[∑
t∈S |rt − Rt |

α]( 1
α )

T
, (B.9)

where S = 1, 2, ...,T are the time periods considered during which the portfolio return was
below that of the tracked index, rt is the tracking portfolio return, Rt is the return of the tracked
index itself, and α is the penalisation power that is applied to the difference between the realised
return and the benchmark return. If we set α = 2, the tracking error is defined as the root mean
square error (RMSE). In the case of a perfect reproduction of an index, the tracking error would
naturally be equal to zero. In the most basic formulation, the following constraints have to be
considered:

N∑
i=1

zi = K, (B.10)

which represents the cardinality constraint and ensures that any new tracking portfolio contains
K stocks, as zi takes on the value of one if a stock is included in the replication portfolio and zero
otherwise. As in portfolio optimisation, the weights have to be limited:

0 < wi ≤ 1, zi = 1, ∀i = 1, 2, ...,N. (B.11)
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This limits the weights of the included stocks to be larger than zero and equal to or below one.
The non-included stocks must naturally dispose of a weighting of zero:

wi = 0, zi = 0, ∀i = 1, 2, ...,N (B.12)

Maringer and Oyewumi (2007) investigated partial replication and introduced cardinality con-
straints concerning upper and lower weight limits and integer constraints in the ITP employing
a DE methodology. Their findings suggest that partial replication is indeed sufficient in replicat-
ing the benchmark index. This is due to the fact that only a decreasing marginal improvement is
reached by increasing the cardinality.

Scozzari et al. (2013) were able to develop a mixed integer quadratic programming formulation
to solve the ITP including hard constraints set by the European Union on ceilings of asset inclu-
sion weights as well as low turnover rates and resulting low transaction costs in small instances.
However, the introduction of realistic constraints generally makes it difficult to use exact methods
in solving large ITP instances. Early research by Beasley et al. (2003) introduced a population-
based evolutionary metaheuristics to solve the partial reproduction ITP with regard to stock indices
including constraints on transaction costs (as well as a ceiling for the total inclusion of stocks).
Derigs and Nickel (2004) developed a two-stage SA metaheuristic, in which they controlled for
cardinality constraints and transaction costs through turnover volume restrictions.

For larger instances, especially in multi-period analysis, Scozzari et al. (2013) proposed hy-
bridising metaheuristics with exact methods. This has been done by Krink et al. (2009) who
addressed the two subtasks of ITP simultaneously and applied a metaheuristic approach based on
DE combined with a combinatorial search operator. Although their developed methodology ini-
tially failed to find acceptable solutions, they showed that extending DE with a search operator by
selecting the assets with highest weights in the benchmark improved the results greatly in compar-
ison with GA, SA, and PSO. Ruiz-Torrubiano and Suárez (2009) employed a GA hybridised with
quadratic programming. More recently, Ni and Wang (2013) also tackled the ITP employing a
hybridised GA with increased learning ability that is enabled through goal programming. The au-
thors included cardinality and integer constraints, as well as proportion constraints for individual
portfolio assets. While both methodologies yielded successful solutions, the models neglect trans-
action costs, which are however indicated by the authors as a variable important to investigate
in future research. The trade-off between transaction costs and tracking performance was then
investigated by Chiam et al. (2013) who developed a multi-objective evolutionary index track-
ing platform that considers multiple periods and simultaneously optimises tracking performance
and transaction costs while considering round lots and non-negativity constraints as well as floor
constraints as buy-in threshold to prevent unnecessary transaction costs and capital injections.

Although different metaheuristic approaches have been chosen to cope with the realistic con-
straints of the ITP, Affolter et al. (2016) found that due to the missing measure to define the
distance between portfolios with respect to their assets and weights, invasive weed optimisation
(IWO) did not lead to satisfactory optimisation results. Di Tollo and Maringer (2009) created a
framework for classifying the metaheuristics applied to ITP and present a review of the literature.

Enhanced Index Tracking Beasley et al. (2003) defined an objective function that accounts
for a trade-off between the tracking error and excess returns above those of the benchmark in-
dex. This enhanced index tracking allows the manager discretion in pursuing risk-limited active
strategies to enhance return. Considering that investors might see a trade-off between the trading
error and excess returns above the index has led to the enhanced index tracking problem (EITP),
in which investors aim at beating the benchmark index. This can either be done through active
selection of the included assets and weights or through a passive extension of the methodology
by incorporating the excess return as a further optimisation objective. The EITP then becomes a
multi-objective optimisation problem, in which the tracking error is minimised while maximising
the degree of beating the benchmark index so that a solution dominates another if the excess return
is higher given the same level of trading inaccuracy or if the trading accuracy for the same level
of excess return exceeds that of the other solution. This can be formulated by including a second
objective function that defines the excess return between rt and Rt:

Min E =

[∑
t∈S |rt − Rt |

α]( 1
α )

T
, (B.13)
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while maximising the excess return r∗:

Max r∗ =

T∑
t=1

rt − Rt

T
, (B.14)

subject to the aforementioned constraints:

N∑
i=1

zi = K, (B.15)

0 ≤ wi ≤ 1, zi = 1, ∀i = 1, 2, ...,N, (B.16)

wi = 0, zi = 0, ∀i = 1, 2, ...,N. (B.17)

Canakgoz and Beasley (2009) solved the ITP as well as the EITP including transaction costs,
an upper limit on the total number of stocks purchased, and a limit on the incurred transaction
costs using exact methods (mixed-integer linear programming formulations). However, Li et
al. (2011b) showed they could mostly outperform the methodology employed by Canakgoz and
Beasley (2009) by implementing an immunity-based optimisation algorithm. It is an EA based on
the clonal selection of an immune system, or the immune response to antigens (De Castro and Von
Zuben, 2002). Including further constraints, Li and Bao (2014) also employed an immunity-based
multi-objective optimisation algorithm with non-negativity and floor and ceiling buy-in thresholds.
They concluded that the inclusion of optimisation of the tracking process in addition to optimising
tracking error and excess return is valuable as the optimisation of the tracking process improves
results in most instances. A perfectly enhanced tracking portfolio would outperform the index by
a low-frequency trend such as steady excess return while negative returns should be trendless and
characterised by high frequency variation. Thus, the tracking process can be enhanced by con-
sidering different frequencies for tracking error and excess returns when the former is minimised
and the latter maximised (Li and Bao, 2014). Optimisation of the tracking process is expected to
increase in importance for multi-period assessment; the authors, however, leave this for further
research. The question of multi-periodicity was investigated by Andriosopoulos et al. (2013) who
addressed the EITP employing both DE and GA. They could show that the so-constructed mim-
icking portfolios inhibit less risk compared to the underlying benchmark index, while proficiently
replicating their performance. Nevertheless, they concluded that the GA version outperforms DE
in terms of minimum tracking errors, as well as maximum mean excess returns. As they explic-
itly considered different time horizons for rebalancing the portfolio, these authors reinforced the
idea that there exists a trade-off between transaction costs, which decrease with longer rebalancing
periods, and Sharpe ratios (as a measure of the tracking performance and profitability), which is
negatively impacted by decreased rebalancing frequency as investigated by Chiam et al. (2013)
for the ITP.

An alternative approach was pursued by Guastaroba and Speranza (2012) who applied a kernel
search framework to both the ITP and the EITP. They argued that error measurements should
be undertaken as absolute values and introduced the possibility that an investor already holds a
portfolio as a further constraint to consider in addition to transaction costs. However, they treated
the EITP as a single-objective optimisation by outperforming the market index, while keeping the
tracking error below a given threshold. Compared to a general-purpose solver, the performance
of the kernel search model was superior. Further including metaheuristics into the optimisation,
Thomaidis (2011) considered an EITP problem with restrictions on the maximum of tradable
assets, and employed fuzzy set theory to consider non-standard investment objectives, such as the
probability of under-performing. The resulting cardinality-constrained problem was solved using
nature-inspired optimisation techniques: SA, GA, and PSO.

Lastly, while some authors declare active and passive portfolio management as mutually ex-
clusive concepts, the close connection between index tracking and portfolio optimisation could
be illustrated by the approach taken by Di Tollo et al. (2014) who combined the two methods
in a multi-criteria optimisation problem. They employed a hybrid metaheuristic consisting of lo-
cal search metaheuristics (FD, SD and TS) and quadratic programming to estimate the efficient
frontier. Combining the concepts of risk and return with tracking error led to a three-dimensional
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objective function and Pareto frontiers. The developed methodology was found competitive in
performance with other metaheuristics such as TS.

Project Portfolio Selection

Unlike banks and institutional investors, non-financial companies as well as governments are faced
with a different type of portfolio choice. As a method to determine which proposals to pursue and
the corresponding budget allocation, investment or project appraisal is related to portfolio optimi-
sation in its goal of maximising a benefit figure. This figure can be monetary, but also related to
knowledge gain in the case of research projects. Usually, decisions cannot be altered or adjusted
during the course of the projects, or at least not without incurring considerable financial losses.
Thus, investment appraisal determines a strategic organisational path for the medium and long
term. This problem becomes NP-hard due to its sheer complexity (Fernandez et al., 2015). It is
by its very nature a multi-period problem and the budget-allocating entity usually pursues several
conflicting objectives, some of which can be of qualitative nature. For that matter, Doerner et al.
(2004) proposed a two-stage procedure. During the first phase, the Pareto frontier is constructed.
Then, in the second phase, it is interactively explored by the decision-makers to account for per-
sonal preferences. The optimisation process is carried out in the first phase. A formal description
of this problem, based on the one presented in Doerner et al. (2004), is included next. The benefit
function bl,t(x) that comprises the value of the l different benefit groups, such as generated funds,
cash flows, patents or other beneficial outcomes of the selected projects is to be maximised over
all considered time periods t for all included projects, i.e.:

bl,t(x) =

N∑
i=1

bi,l,t xi, (B.18)

where xi is a binary variable that takes on the value of one for included projects and zero
otherwise, subject to constraints concerning resource limitations Rq,t that apply to all resource
categories rq, such as budget, capacity, or manpower, as well as minimum benefit requirements
Bl,t that define a threshold below which the decision-maker is uninterested in the implementation
of projects:

rq,t(x) ≤ Rq,t; q = 1, ...,R and t = 1, 2, ...,T, (B.19)

bl,t(x) ≤ Bl,t; l = 1, ..., B and t = 1, 2, ...,T. (B.20)

Because of the modelled similarities, the methodological approaches employed are inspired by
the research on traditional portfolio optimisation. Early work (Ghasemzadeh and Archer, 2000)
conducted optimisation after the construction of a weighted objective function and constraints
concerning budget and man-hours in an integer linear programming approach. However, test in-
stances were very limited because the authors aspired a comparison between manually computed
portfolios and those constructed employing their decision support system. For their metaheuristic
two-stage approach Doerner et al. (2004) employed Pareto ACO (P-ACO). As there are possible
synergies between projects that should be evaluated in order to accurately estimate the benefits
of a project portfolio, the authors made an attempt at incorporating these considerations into their
methodology and pointed out that, unlike GA, SA, and TS that are adaptive metaheuristics, P-ACO
specifically constructs project portfolios through pheromone vectors. This has two advantages.
Firstly, infeasible solutions are avoided and secondly, project interactions can more naturally be
considered in the construction of solutions. They further took into account floor and ceiling con-
straints for inclusion of projects from any given subset, as well as resource limitations and mini-
mum benefit requirements for individual projects. Compared to Pareto SA and a non-dominated
sorting GA (NSGA), P-ACO yielded the most efficient results. This approach was then further
enhanced by Stummer and Sun (2005), who compared the performance of a P-ACO procedure
enhanced through adding a neighbourhood search routine, a TS procedure, and a variable neigh-
bourhood procedure. Their findings suggested that the improved P-ACO model performs better
than TS with many objective functions and a large set of efficient solutions and is thus specifically
suitable for real-life problems. Furthermore, Doerner et al. (2006) concluded that including both a
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learning and a two step integer linear pre-processing procedure to initialise several initial efficient
project portfolios improves performance of the P-ACO algorithm.

More recently, research has also drawn on findings from other areas, such as scheduling: Gut-
jahr et al. (2008) and Gutjahr et al. (2010) also took employee competencies and the evolution of
their knowledge scores over time through learning or depreciation into account. While the earlier
work optimised a weighted average objective function using ACO and GA metaheuristic proce-
dures and found the GA to be superior when the search space is not highly constrained, the authors
developed a multi-objective optimisation model, which simultaneously optimises the objectives of
maximum economic gains and aggregated competence increase in their later work. They also
divided the problem into master and slave subproblems, the first of which is concerned with the
project selection, while the slave problem optimises the allocation of personnel to the projects over
time. Although the slave problem can be solved using exact methods, the master problem was
solved using the NSGA-II and P-ACO metaheuristics. While both performed reasonably well,
NSGA-II outperformed P-ACO in synthetic test instances, while P-ACO outperformed NSGA-II
for the investigated real-life instances. Carazo et al. (2010) further investigated this research line
and included scheduling as a continuative concept following the project selection. Their developed
metaheuristics approach is based on scatter search (SS) for project portfolio selection (SS-PPS).
As previous work, they also considered interdependences between different projects and can show
that their model outperformed other heuristic approaches based on EA (SPEA). Similar to Rabbani
et al. (2010), who presented a multi-objective PSO metaheuristic and found it to be competitive
with respect to SPEA II, Urli and Terrien (2010) formulated the project portfolio selection problem
as a multi-objective non-linear integer program, which they solved using the SSPMO metaheuris-
tic (Molina et al., 2007). In a first phase, they generated an initial set of efficient solutions through
TS and then combined these via SS. While this approach solved small and medium instances in
satisfactory computation time, the determination of all non-dominated project portfolios still re-
mains difficult when considering large, but realistically relevant instances (100 projects or more).
While this might not be relevant in most firm investment decisions, it is a significant drawback for
governments or bodies awarding funding for projects.

Another issue that has only recently been addressed is project divisibility. While business
projects are at least partially indivisible, research projects funded by governments can often also
be executed with partial funding and it is thus a further question how much of the sought after
funding is awarded, introducing further constraints to the budget allocation. Hence, more recent
research increasingly focused on large-scale instances and partial allocation. Cruz et al. (2014)
used ACO in solving a stationary project portfolio optimisation problem, in which partial support
of the requested budget was allowed. They developed a non-outranked ACO approach, incor-
porating a fuzzy outranking preference model. Unlike previous research, they assumed that the
preferences of the decision-maker are to some extent known. Outranking was employed in an a
priori preference system in order to model that decision-makers will have preferences towards dif-
ferent portfolios on the efficient frontier based on their personal goals concerning the achievement
of objectives. Incorporating these preferences allows identifying those portfolios that lie on the
efficient frontier and simultaneously are not outranked by another portfolio. They incorporated
budgetary constraints in that they defined upper and lower bounds for inclusion of projects from a
particular group. Fernandez et al. (2015) further enhanced this approach by including integer linear
programming methods to generate an initial population and thus hybridising the metaheuristic fur-
ther. They also included synergies in their optimisation, concluding that their model outperformed
state-of-the-art metaheuristics. It can be asserted that project synergies, project divisibility, the in-
corporation of multi-periodicity, and outranking are the prominent real-life constraints and trends
that specifically increase the complexity of the portfolio selection process and thus distinguish this
COP from a classical POP.

5. Risk Management
Risk management of financial and non-financial companies refers to the evaluation, often in real
time, of realistic data concerning the institution’s exposure to a certain source of risk and it is
further concerned with statistics on trends that will influence that exposure in the future. While
quantitative data is relevant and necessary for this, it must be complemented by qualitative in-
formation for informed decision-making, both in financial as well as non-financial institutions
(Chorafas, 2007). Risk management is addressed in terms of optimisation through metaheuristics
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for credit risk assessment and the resulting bankruptcy prediction. García et al. (2015) provide a
detailed review of developed systems and, to a less obvious extent, applications to the optimisa-
tion of trading rules in the financial markets. As depicted previously for portfolio management,
Table B.3 presents the metaheuristic methodologies applied to the different subproblems of risk
management. As before, the numbers inside each cell refer to the number of articles reviewed for
each topic and methodology.

Table B.3: The application of traditional metaheuristics and hybridisation to sub-
problems of risk management

Optimisation Problem Single-solution search Population-based search HybridSA TS GA ACO EA ABC PSO SS HBMO FA BA HS
Credit risk assessment 2 4 1 1 1 1 6
Bankruptcy prediction 4 1 2 6
Optimisation in stock trading 2 4 1 2 1 1 1 7
Optimisation in foreign exchange trading 3 1 4

From Table B.3, several conclusions can be drawn. Firstly, GA are the preferred metaheuristics
in risk management as well; their popularity is expressed through the use in every single reviewed
problem. Furthermore, PSO has also received widespread attention. Contrary to that, more exotic
algorithms, such as harmony search (HS), firefly algorithms (FA), or bat algorithms (BA). Sec-
ondly, it can be seen that bankruptcy prediction – as an advancement of credit risk analysis –, as
well as optimisation of trading systems for foreign exchange markets – as an advancement of opti-
misation in stock trading –, have received less attention in the literature and have been approached
with fewer methodologies. They thus represent interesting future research lines. Thirdly, it be-
comes evident that hybridisation among metahueristics or other optimisation methods is far more
prevailing in risk management optimisation than in portfolio optimisation. Lastly, it is evident that
relatively recently developed metaheuristics, such as IWO and honeybees mating optimisation
(HBMO), have not been applied as comprehensively as well-established ones.

Credit Risk Assessment and Optimisation

Credit risk assessment is one of the most researched and recognised topics in the banking industry.
There are many different approaches and sophisticated credit risk assessment tools for financial
institutions. However, during the last years, non-financial companies have also recognised the need
to treat their trade credits to customers with the same caution and scrutiny. Thus, both financial
and non-financial analysts have to decide on the granting as well as the extension of loans. While
the use of metaheuristics is still scarce in this area of application, they are increasingly used as
a pre-processing procedure in order to identify the most relevant predictors of credit risk in the
analysis of large datasets of information. Marinakis et al. (2008) classified a set of companies into
different classes of credit risk level. They propose and compare TS, GA, and ACO for solving
the feature selection subset problem, which are then used in determining the appropriate level of
credit risk. The employed accuracy measures are determined by whether or not a subject has been
classified in the right category. In a simple two-classes model, this is based on the four scenarios
depicted in Table B.4.

Table B.4: Definitions of the classified and the misclassified samples

Actual class
1 2

Estimated class 1 T1 F2
2 F1 T2

The overall classification accuracy (OCA) can then serve as optimisation objective that is to
be maximised:

Max OCA =
T1 + T2

T1 + F1 + T2 + F2
∗ 100. (B.21)

This framework can be extended to include as many different credit risk classes as the decision-
maker considers.
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More recently, Marinaki et al. (2010) employed HBMO in determining the relevant features.
They were able to show that this metaheuristic reduced the number of used features by more
than half and still yielded superior results compared to PSO, ACO, GA, and TS. Oreski et al.
(2012) employed neural networks (NN) hybridised with GA (GA-NN) to enhance the classification
accuracy of the NN classifiers by choosing optimal features. They found that the prediction ability
was as accurate as in the case of using all available data features in the analysis. In a subsequent
work, Oreski and Oreski (2014) further improved the results by employing a hybrid GA instead
of GA. Their results suggested that they hence achieved a higher and less volatile accuracy with
on average fewer selected features through a reduction of the search space and an incremental
phase of the GA. Chi and Hsu (2012) employed GA in selecting relevant variables to combine a
bank’s internal behavioural scoring model with an external credit bureau scoring model and thus
creating a dual scoring model that subsequently outperformed the individual model in credit risk
prediction. A survey on the importance of employing the right fitness function in the GA for credit
assessment is provided in Kozeny (2015).

Trends in credit risk assessment concern the hybridisation of metaheuristics with other tech-
niques for feature selection. Wang et al. (2010) developed a feature selection based on rough set
and TS (FSRT). In comparison with non-preselecting models, the savings in computational time
and performance accuracy were significant. Similarly, Wang et al. (2012) used a rough set and
scatter search feature selection (RSFS) that is able to improve results in all three considered base
sets, i.e. neural network model, J48 decision tree and logistic regression (LR). Lastly, Danenas
and Garsva (2015) pursued the idea of optimising the classifiers of a linear support vector machine
(SVM) using PSO. While their results were comparable to the use of other classifiers (LR and
RBF networks), the proposed methodology, however, delivered less stable performance.

Bankruptcy Prediction

Closely related to credit risk evaluation is the prediction of bankruptcy of firms. Strictly defined,
bankruptcy occurs when debtors are unable to repay outstanding debts. While bankruptcy pre-
diction constitutes part of the credit risk evaluation process, it is vital for banks and companies
to constantly monitor their credit risk exposure. Because of the two-classes framework (firms
that go bankrupt and firms that do not), the basic optimisation framework is similar as suggested
for credit risk assessment. The difficulty and difference to credit risk assessment lies however in
the relatively longer aspired forecasting period and the difficulty in predicting the exact time of
bankruptcy.

Table B.5: Definitions of the classified and the misclassified samples for
bankruptcy prediction

Actual class
Bankrupt Not

bankrupt

Estimated class Bankrupt T1 F2
Not
bankrupt

F1 T2

Max OCA =
T1 + T2

T1 + F1 + T2 + F2
∗ 100. (B.22)

Especially in practical bankruptcy prediction, it is worth considering to differently value the
two classes of mistakes that occur. While falsely classifying a subject as bankruptcy candidate
(type II misclassification) merely leads to missed revenues, a false classification as healthy com-
pany (type I misclassification) usually leads to at least partial failure on a payment and thus has
greater consequences for profitability. This is thus an improvement to the methodology open for
further research.

Early research conducted by Back et al. (1996) highlighted the contribution of GA in pre-
dicting bankruptcy when hybridised with artificial neural networks (ANN). Shin and Lee (2002)
introduced the prediction of corporate bankruptcy using GA and historical financial data. Kim and
Han (2003) further employed GA to extract decision rules based on qualitative expert decisions
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and find their methodology to be superior compared to neural networks or inductive learning meth-
ods because the rules created by GA are more accurate and have larger coverage. An extensive
survey on the early research in this knowledge area can be found in Kumar and Ravi (2007) who
reviewed both statistical and computing methods. Their evaluation concluded that all statistical
methods are outperformed by the most popular neural network methodology, back propagation
neural networks. They further highlighted the prediction accuracy of SVM and pushed for further
research in the area of hybridising different soft computing approaches. More recently, Kirkos
(2015) presented the literature on artificial intelligence and machine learning techniques employed
in bankruptcy prediction.

Following the conclusions of Kumar and Ravi (2007) another research line attempts to opti-
mise SVM with metaheuristics. Min et al. (2006) improved the performance of SVM with regards
to optimising the feature subset and parameters simultaneously. They showed that selecting an
appropriate feature subject has implications for the kernel and that their integration improved
bankruptcy prediction accuracy. Chen (2011) highlighted that while intelligent techniques provide
higher prediction accuracy for smaller datasets and are adversely affected by increasing datasets,
statistical methods perform more accurately when the dataset is large. But the author also indicated
that a hybrid between PSO and SVM could yield a good balance between short- and long-term pre-
diction accuracy. This was consequently done by Lu et al. (2015) who combined switching PSO
(SPSO) and SVM. The SPSO was employed in searching the optimal parameter values of radial
basis function (RBF) kernel of the SVM and the authors showed that this hybridisation yielded su-
perior results to GA-SVM and PSO, respectively. These findings were supported by Chen (2011)
and Chen (2014a) who also employed PSO-SVM and showed high accuracy with a significantly
reduced number of parameters. Furthermore, Gaspar-Cunha et al. (2014) proposed an evolution-
ary multi-objective approach that simultaneously minimises the number of features and maximises
the accuracy of the classifier in SVM so that the algorithm is self-adaptive. The general advantage
of multi-objective optimisation lies in the attainment of a set of efficient solutions from which the
decision-maker can perform a trade-off based on personal preferences.

Recently, ensemble learning has been applied to the bankruptcy prediction problem (BPP).
Kim and Kang (2010) proposed hybridising an ensemble with neural networks and showed that
it improved prediction accuracy compared to regular neural networks. However, these attempts
often suffer from multicollinearity, or high correlation among the individual classifiers, and thus
Kim and Kang (2012) improved their methodology to include a GA-based coverage optimisation
to alleviate multicollinearity through classifier selection. More recently, Davalos et al. (2014) de-
veloped an accurate GA-based ensemble classifier model with heterogeneous instead of individual
classifiers that is comprehensible due to its if-then-structure. They showed that the fitness function
can be tailored to accommodate further constraints and showed the improved performance of their
approach.

However, the financial ratios employed in the main research lines are unavailable for a large
portion of companies. Small and medium-sized enterprises (SMEs) do not dispose of regular
audited financial data or market prices and public ratings due to publicly traded equity or debt
instruments and it is necessary to include available and relevant indicators for these individual
firms. Thus, with special regards to SMEs, Gordini (2014) compared the prediction accuracy of
GA, SVM, and LR. The author showed that the prediction of GA was superior, especially with
regard to type II misclassifications (assuming bankruptcy when this is not the case) and with regard
to prediction of bankruptcy for small firms. This is especially relevant because financial data
for small firms is often only incompletely available and thus impedes the bankruptcy analysis.
Furthermore, the reduction of type II misclassification improves business relationships between
SMEs and prevents reputational damage, which might lead to credit crunches, especially in small
firms.

Optimisation of Decision-Support Systems for Trading

As a result of the above optimisations in predicting markets and prices, the development and
optimisation of automated trading systems has become of prevalent importance and special interest
for broker investment banks and other institutional investors alike. As for forecasting, a large
portion of the literature addresses stock trading, while some researchers have concentrated on the
foreign exchange markets.
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Stock Market Trading Derigs and Nickel (2003) developed a decision support system (DSS)
for portfolio optimisation and index tracking that can be tailored to meet the constraints and port-
folio types of different institutional agents. They stressed the importance of hard (government-
imposed and compulsory) and soft (shaped by preferences of the investor) constraints. They im-
plemented a local search guided by SA in order to optimise the DSS with respect to floor and
ceiling constraints and transaction costs. These authors have shown for the application to passive
tracking of the DAX 30 that their developed system delivered solutions with minimal tracking
errors in acceptable computing time.

Focusing on real-time decisions, Chavarnakul and Enke (2009) proposed a trading system
for the stock market based on volume adjusted moving average (VAMA) that is hybridised with
neural networks to decrease the time of receiving trading signals (which is of major importance
for the adoption of a real-time trading framework), fuzzy logic to deal with uncertainty, and GA
techniques to optimise the trading signals to overall increase efficiency. Depending on the strength
and direction of a given signal, the system assumes a buy or sell position. If the signal is not
confident enough, a hold position is taken. The so established neuro-fuzzy based GA (NF-GA)
was shown to lead to fewer trades and thus reduced transaction costs, while profitability was
increased.

Gorgulho et al. (2011) also proposed a system to automatically manage a portfolio of assets
and highlighted the necessity of adapting the system to the state of the market to optimise per-
formance. They employed GA and technical analysis rules. The system adapts to the different
states of the market and always outperforms the random and at most instances the buy and hold
strategy. The system requires the user to input the available budget, the maximum of assets to be
included in the portfolio at any time, whether or not short selling is considered and the allowed
amount of transaction costs. Then, an initial portfolio is constructed, as it would be in the POP,
employing a GA. However, over the course of the investment, the system regularly updates the
proposal based on technical trading rules based on closing positions that are either prone to losses
or have achieved a profit and can be closed and refilling empty positions. Teixeira and De Oliveira
(2010) combined technical trading rules with nearest neighbour classification. Their analysis was
solely based on historical data of stock closing prices and volume, on the basis of which trading
rules were formed. Their proposed system outperforms a buy and hold strategy in most cases in
terms of profitability. Because however, the parameters in these functions have to be determined,
metaheuristics have been applied in the optimisation. The hybridisation of technical trading rules
and metaheuristics is seen as an especially promising research area. Brasileiro et al. (2013) further
refined the strategy by Teixeira and De Oliveira (2010) by searching for the best system parame-
ters (the parameter of the classifier and the values of the stop loss and stop gain) and number of
lags with an ABC algorithm and thus outperforming the previous trading system as well as the
buy and hold strategy in most instances. Nunez-Letamendia (2007) had already shown that GA
is robust and powerful when applied to optimising technical trading rules. Similarly, Lin et al.
(2011) applied a GA to improve trading rules for individual stocks, which are then combined with
echo state networks to provide suggestions for trading. Their results showed an outperformance
of the buy and hold strategy as well as significant profits even in bear market situations. In a more
recent work, Wang et al. (2014a) employed a time-variant PSO (TVPSO) to determine the optimal
parameter values of a complex trading system: performance-based reward strategy (PRS). PRS
combines moving average and trading range breakout trading rules, which are combined based on
weights that are determined by previous performance. Considering transaction costs and exclud-
ing short selling, the system was able to achieve high profits and the application of the TVPSO
significantly optimised the trading system.

As previously applied to bankruptcy prediction and credit risk assessment, hybridisations of
metaheuristics and ANN have also recently shown to provide accurate forecasts of stock market
prices. While both provide better results than a passive buy and hold strategy, harmony search
(HS) based models have been shown to outperform GA based models with regards to forecast-
ing errors (Göçken et al., 2016). Very recently, the hybridisation of data mining techniques with
metahueristics – e.g., firefly algorithms (FA), bat algorithms (BA), and PSO – has created clus-
tering metaheuristics able to predict patterns in the general movement of stock markets, such as
periods of lower and higher return (Prasanna and Ezhilmaran, 2015). These insights together with
automated trading systems could further enhance investment decisions.

Foreign Exchange Market Trading
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Foreign exchange market trading can either concern hedging foreign exchange risk or specu-
lation. Only the latter has the objective of making a profit by exploiting market inefficiencies and
is thus the central assumption in trading systems. Speculation in the foreign exchange markets
requires the application of real-time trading systems to an even greater extent than stock market
trading due to the nature of trading profits, which are realised at the time of trading. Myszkowski
and Bicz (2010) established a trading system based on decision trees that consider technical trad-
ing indicators. EA then generates trading strategies. While these were able to achieve a profit,
the system is still too fragile to be used in automated trading, but can serve as additional indi-
cator to investors. Mendes et al. (2012) proposed employing GA to optimising trading rules and
although their developed trading system performs well in terms of computational time because of
the small population size employed, it fails to perform well in terms of profitability when faced
with transaction costs. Zhang and Ren (2010) developed a high-frequency trading system based on
the optimisation of technical indicators through GA that was able to produce annualised profits.
In addition to intraday prediction, highlighting the importance of real-time, Evans et al. (2013)
implemented a trading system based on feed forward neural networks with back propagation ar-
chitecture, whose topology was optimised using GA. In comparison with Zhang and Ren (2010),
they were able to considerably improve annualised net profits.

6. Linkage Between Portfolio Optimisation and Risk Management
Despite the fact they have been addressed as two independent types of problems in most of the
scientific literature, this section highlights the relationship between portfolio selection and risk
management. In the first place, portfolio optimisation problems directly consider a risk measure
(such as portfolio variance, portfolio semivariance, value at risk, alpha and beta, among others)
and, therefore, they can also be seen as risk management problems. For example, the specification
of adequate risk measures that accurately depict return distributions is a well-established area of
research of on-going interest within academia and especially financial institutions. It is directly
concerned with one-dimensional risk measures of individual assets and multi-dimensional mea-
sure to account for interaction of asset portfolios (Rachev et al., 2010), unambiguously linking
risk management and portfolio optimisation.

In the second place, most risk management models related to optimisation problems can be
seen as rich variants of portfolio optimisation problems. For instance, stock market trading is
in the essence of the problems concerned with constructing an initial portfolio and updating it
over time to reflect current macro- and microeconomic developments. Likewise, while credit risk
and bankruptcy risk are only estimated in the overwhelming majority of the risk management
literature, it is the ultimate goal to build low-risk portfolios (e.g. loan or customer portfolios) by
including preferably those assets with a lower credit risk and excluding other assets expected to go
bankrupt. Using a multi-objective EA, Moreno-Paredes et al. (2013) explicitly acknowledge the
linkage between credit risk management and portfolio optimisation by treating the loan decision
among a set of customers as a credit portfolio optimisation problem (CPOP). More generally,
implicit in a portfolio optimisation problem is pooling assets with imperfectly correlated returns
that leads to a diversification of idiosyncratic sources of risk and a reduction in the overall risk of
portfolio investment.

Fig. B.5 depicts the relationship between risk management and portfolio optimisation prob-
lems reviewed in this paper. They have been divided according to whether single- or multi-
objective optimisation approaches have been taken in solving them. The extension of the ovals
representing risk management problems and portfolio optimisation problems respectively signi-
fies the extension of possible solving approaches beyond traditional optimisation techniques. The
intersecting set comprises the CPOP, as well as stock trading. The risk management problems of
bankruptcy and credit risk prediction are located directly on the border to portfolio optimisation,
as the predictions are generally employed in a following portfolio selection process. Foreign ex-
change trading, unlike stock trading, is considered a sole risk management problem. While stock
trading consists of the establishment and maintaining of a portfolio, speculative profits in foreign
exchange trading are generated through simultaneous buying and selling and not the establishment
of a portfolio.

Concerning the subproblems of portfolio optimisation, the ITP and EITP do not directly con-
sider risk measures. Unlike that, the POP is directly concerned with risk minimisation and thus
closely related to risk management problems.
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Figure B.5: A Unified Classification of Portfolio Optimisation and Risk Man-
agement

7. Emerging Trends in the Literature
From the previous discussion, one clear trend that we see in the literature is the transfer of method-
ological knowledge from portfolio optimisation to risk management optimisation problems. In
effect, since very efficient metaheuristics have been developed to solve single- and multi-objective
POPs, and since most optimisation problems in the risk management arena can be seen as en-
riched variants of POPs, it is reasonable to assume that these metaheuristics will constitute the
base for developing new solving approaches in the risk management field. Another trend is related
to the increasing complexity of the problems being addressed, which makes even more evident
the need for faster (or parallelizable) metaheuristic approaches. These ‘fast metaheuristics’ will
be needed as the models introduce further constraints to account for real-life circumstances, and
as the real-time factor that is required in most of the decision-making processes will become even
more relevant. Strongly related to this point, distributed and parallel computing techniques can be
employed to accelerate the ‘wall clock times’ necessary to obtain near-optimal solutions to large-
scale problems (Juan et al., 2013b). Furthermore, the fact that two or more objectives have to be
considered simultaneously to account for the complexity has shown to increase the employment
of multi-objective optimisation techniques.

Another clear trend that can be derived from the previous analysis of the literature is the pre-
dominance in the use of population-based metaheuristics over single-point metaheuristics. It is
our opinion that no family of metaheuristics are shown to be superior in performance (regarding
both quality of solutions as well as computing times) to another. At least, we have not found any
scientific evidence that supports that claim. Thus, a lot of research can be done yet regarding the
use of single-point metaheuristics (other than SA and TS) in solving both rich variants of portfolio
optimisation problems and risk management optimisation problems. Related to this, it is possible
to observe in the reviewed literature a clear trend to develop hybrid algorithms, which combine
different types of metaheuristics as well as metaheuristics with machine learning and statistical
techniques. While hybridisation can be an effective strategy to solve complex problems, it might
also add some degree of additional complexity to the solving algorithms. This, in turn, might
make them more difficult to be clearly understood, correctly implemented, and applied in practi-
cal scenarios. Adding complexity to algorithms –e.g., in the form of additional parameters that
require fine tuning– also makes it difficult to reproduce their experimental results by independent
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researchers. For those reasons, it is our opinion that only in cases in which significant improve-
ments in performance are obtained (both in solutions quality and computing times), is the hybridi-
sation of algorithms justified. As it has happened before in other application fields, we expect the
emergence of relatively easy-to-implement and understand metaheuristics (either single-solution
or population-based ones with a few number of parameters) that can be competitive and flexible
(i.e., adaptable to different variants of the problem without many effort).

With regards to data, recent research has shown a trend to employ different risk measures
to more accurately depict the characteristics of the underlying data. This is also a particularly
interesting research area as further stakeholders of financial optimisations (e.g. SMEs) do not
provide traditional optimisation inputs (financial data) and thus alternative measurements of risk
are promising. Further concerning measuring, while hybridisations of simulation and optimisation
have recently been developed and gained popularity in the application to stochastic combinatorial
optimisation problems in different application areas (Juan et al., 2015a), the above finance-related
problems have not yet been extensively addressed by simheuristics, even though financial data is
characterised by stochastic macro- as well as firm-level uncertainty. It can thus be expected that
this research line is promising, with respect to both, the design of new problems at the interface
of the two main research areas that have been treated separately in the literature but are fairly
interrelated and the application of simheuristics to established COPs that previously neglected
stochastic uncertainty on the one hand and the newly formulated COPs on the other.

8. Conclusions
In this paper we have reviewed the state-of-the-art regarding the use of metaheuristics in the fields
of portfolio optimisation problems and risk management problems. From this review, several
conclusions can be extracted: (i) the number of related publications has been increasing during
the last decade, especially in the case of portfolio optimisation problems; (ii) population-based
metaheuristics, and in particular GA and PSO, have been the predominant solving methodolo-
gies; (iii) regarding single-solution metaheuristics, TS and SA have been extensively applied too;
(iv) there is not a ‘single winner’ approach, meaning that different metaheuristic implementations
have provided results of comparable quality to different problems; (v) there is a clear trend in
promoting the development of hybrid algorithms, either by combining different metaheuristics or
by combining metaheuristics with machine/statistical learning techniques; (vi) most portfolio op-
timisation problems include some kind of risk management and, in the other direction, most risk
management problems considering optimisation issues can be modelled as enriched variants of
portfolio optimisation problems; and (vii) there is a lack of works considering stochastic versions
of the optimisation problems, i.e. random variables modelling inputs such as return rates, or risk
measurements, but also uncertainty in the objective function, or constraints.

From this analysis of the state-of-the-art, we foresee different open research lines that need to
be fully explored by researchers and practitioners, among others: (i) methodological knowledge
transfer between the more studied portfolio optimisation problem and risk management optimisa-
tion problems; (ii) development of easy-to-implement and fast metaheuristics (e.g., variable neigh-
bourhood search, iterated local search, etc.) that require few parameters and perform similar to
more complex ones; (iii) hybridisation of metaheuristics with machine/statistical learning methods
to account for dynamic behaviour in time-evolving systems; (iv) hybridisation of metaheuristics
with simulation (simheuristics) to account for uncertainty; and (v) use of distributed and parallel
computing paradigms to allow for ‘real-time’ solutions in complex decision-making processes.
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Abstract
Considering the increasing integration of international stock markets, diversification benefits of
stock portfolios have become limited. Commodity futures, however, present a possible source of
successful diversification due to their low correlation with stock markets. Thus, the introduction
of futures into a traditional stock portfolio can be modeled as a portfolio optimization problem
(POP). The goal of the POP is to minimize risk for an expected portfolio return by determining
the right proportions of included assets. As additional realistic constraints are considered, the
problem becomes NP-hard. Thus, metaheuristic algorithms are commonly employed for solving
large instances of rich POP versions. To the best of our knowledge, there is a significant gap
in the literature as the diversification benefits of stocks and futures portfolios have not yet been
evaluated using metaheuristics. This paper seeks to close this gap by introducing a matheuristic
algorithm which combines an iterated local search with quadratic optimization. This algorithm
is then employed to determine and compare stock-alone versus stock-and-futures portfolios. The
benefit of including futures is quantified, and it is shown that especially risk-averse investors can
achieve further diversification by employing our approach. Furthermore, we discuss the stability
of the portfolios in an ex-post analysis. The results show that risk-averse stock-and-futures port-
folios are more promising in achieving actual returns exceeding the minimum required return than
traditional stock-alone portfolios.

Keywords: Portfolio optimization, Commodity futures, Matheuristic, Metaheuristic, Iterated
Local Search.

1. Introduction
Financial decisions are directly linked to wealth creation through capital accumulation, sustain-
able economic development and thus an increase in welfare (Patrick, 1966). This thriving for im-
provement suggests a mentality of optimization in financial decision-making. Since Markowitz’
pioneering work on mean-variance optimization of portfolios (Markowitz, 1952), the research
community and investors alike have shown extensive interest in advancements in modern portfo-
lio theory, which is based on two constituting assumptions. The investor, being concerned with
both the risk and the return of his investment, diversifies by incorporating imperfectly correlated
assets into a portfolio. Originally, Markowitz describes the investor’s decision in the portfolio
optimization problem (POP) as a strategy of: (i) the selection of financial assets to be included
in the portfolio; and (ii) the determination of the respective weights of the included assets. These
two tasks are performed with the aim of minimizing the portfolio risk as expressed through the
weighted covariances of the constituent assets subject to a minimal expected return sought by the
investor, resulting in a quadratic objective function. While the problem can be solved in satis-
factory time for small problem instances employing exact methods, it becomes NP-hard when
realistic constraints are introduced (Beasley, 2013). Hence, an extensive adaptation of the orig-
inal Markowitz formulation has taken place and in practice, this means that metaheuristics are
required to solve large-size instances of realistic POPs in reasonably low computing times. Thus,
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the literature has been divided into two strands. On the one hand, researchers have simplified
the model to solve it using exact methods, while on the other hand, researchers have proposed
new methodologies to cope with the complexity. The former approach neglects the real-life in-
tricacies that the decision-making process confronts the investor with and the obtained solutions
are expected to be of little benefit in practice. Thus, further optimization techniques, including
heuristic and metaheuristic algorithms, have been implemented to address realistic and complex
combinatorial optimization problems (COPs) in general and the POP in particular. While the
former are problem-dependent and thus tailormade, the latter are general-purpose search method-
ologies that can be easily adapted to solve a range of COPs (Talbi, 2009). Metaheuristics have
therefore been increasingly applied as solving approaches for real-life formulations of the POP
that consider realistic constraints (Chang et al., 2000; Maringer and Kellerer, 2003; Cura, 2009;
Soleimani et al., 2009; Golmakani and Fazel, 2011; Woodside-Oriakhi et al., 2011). However,
while the application of metaheuristics has shown to be successful for stock portfolios, research
concerning portfolios composed of multiple types of individual financial assets is heavily limited.
Thus, the combination of real-life constraints and differing financial assets and the inherent trade-
off between satisfying constraints and achieving highest possible diversification benefits has not
been evaluated. This paper hence addresses this gap in the literature and employs a metaheuristics
algorithm, more formally, an adaptive matheuristics composed of an iterated local search meta-
heuristic and a quadratic solver, to address a rich version of the portfolio optimization problem,
considering an extensive set of realistic constraints and individual futures contracts in addition to
stocks.

Recently, stock markets have become more integrated, resulting in higher positive correlation
among individual stocks and thus diminishing successful diversification (You and Daigler, 2012).
Because most research on metaheuristics applied to POPs relies on pre-established benchmarks,
the outcomes of such a development on the quality of the established portfolios cannot be detected.
To remedy the negative implications of high positive correlations between individual stocks it
would be convenient to include a second asset class to exemplify possible diversification bene-
fits. While many securities qualify as portfolio hedge, in particular, we increase diversification by
considering individual commodity futures contracts because they have been found to have low cor-
relations with stocks (Jensen et al., 2002; Chong and Miffre, 2010). Their correlational properties
have been found to be caused among others by an opposite reaction of futures to macroeconomic
shocks (Silvennoinen and Thorp, 2013; Bansal et al., 2014). It has thus been shown that the
obtained portfolios including individual futures contracts significantly outperformed those com-
posed of only stocks (Geman and Kharoubi, 2008; You and Daigler, 2012; Bansal et al., 2014).
Accordingly, it is thus the aim of this paper and its first contribution to apply a metaheuristic
solving approach to a POP that considers not only individual stocks, but also individual commod-
ity futures. Secondly, our contribution is to quantify the benefit of doing so and thirdly to show
how further diversification can be achieved. Finally, we further evaluate whether the best-found
portfolios provide stability in terms of achieved short-term returns.

The paper is organized in the following way. Section 2 presents a review of the relevant litera-
ture on the application of metaheuristics to portfolio optimization, as well as on the diversification
benefits of futures. Section 3 provides a formal description of the problem, while the solving
methodology is presented in Section 4. In Section 5 the time series data is analysed and pro-
cessed. The computational experiments and the results thereof are laid out in Section 6. Finally,
Section 7 concludes and presents lines of interest for future research.

2. Literature Review
In this section, we review the two strands of literature that we aim to merge in this paper. In
particular, we review how previous research indicates in what ways commodity contracts can have
additional diversification benefits when included in portfolios of traditional financial assets and
then outline how portfolio optimization has been approached using metaheuristics.

Diversification Benefits of Commodity Futures

Diversification is best achieved through combining assets with low or even negative correlation
into an investment portfolio. Due to the increased correlation among individual stocks, diversifi-
cation possibilities of stock portfolios have become limited. Commodities in general and metals in
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particular on the contrary have shown to yield low correlation with stocks (Jaffe, 1989; Chua et al.,
1990; Hillier et al., 2006; Daskalaki and Skiadopoulos, 2011), especially because macroeconomic
shocks tend to impact stock and commodity prices in different directions (Silvennoinen and Thorp,
2013). Particularly concerning inflation, the reaction of commodities and stocks might differ fun-
damentally. Indeed, while unexpected inflation leads to an increase in the prices of commodities,
stocks have generally been found to be an inflation-protected asset class (Hardouvelis, 1987; Mc-
Queen and Roley, 1993) or, in case of fluctuation, have even yielded falling prices (Fama, 1981;
Amihud, 1996; Bansal et al., 2014). However, investment in physical commodities is character-
ized by high costs (storage) and additional uncertainty (perishable nature, seasonal cycles of the
goods) so that commodity futures are a natural alternative, providing the same diversification ben-
efits without the implied disadvantages to an investor. Bansal et al. (2014) calculate the efficient
frontier for an investment portfolio made up of indices of commodity futures and stocks and find
it to lie above that for a traditional stock and bond portfolio, i.e., they show that for their data set
any given return level a portfolio including commodity futures achieves a lower level of risk. This
diversification takes place independent of the state of the stock market: Crude oil futures contracts
were shown to lead to successful diversification in both upward and downward trending stock
markets (Geman and Kharoubi, 2008). Commodities emerge as a significant diversifier of both
equity returns and volatility (Brooks and Prokopczuk, 2013). Investment in commodities is also
demonstrated to significantly improve investor’s expected utility. In this regard, Garrett and Taylor
(2001) find that expected-utility-maximizing investors, depending on the degree of risk aversion,
should invest 30 to 68% of their wealth in commodities. Unlike in Geman and Kharoubi (2008),
this finding is event-dependent and period-specific. In contrast to the above mentioned studies
that were conducted from the standpoint of a US-based investor, Belousova and Dorfleitner (2012)
show that a euro investor can also accrue diversification benefits from commodity investments.
In particular, the authors emphasize that industrial metals, agricultural commodities and livestock
contribute to the reduction of investment risk, while precious metals and energy are associated
with both lower portfolio risk and higher return. Investments in commodities become especially
rewarding when the general financial climate becomes negative (Chow et al., 1999). In the quest
for hedging (a significant and negative response of metal returns to bond market returns irrespec-
tively of the bond market stance) and ‘save haven’ vehicles against losses in the sovereign bond
market, Agyei-Ampomah et al. (2014) highlight the superiority of industrial metals (aluminium,
copper, lead, nickel, tin and zinc) over precious metals (gold, silver, platinum and palladium).
Antonakakis and Kizys (2015) underline the information contents of gold, silver and platinum in
improving forecast accuracy of returns and volatilities of palladium, crude oil and the EUR/CHF
and GBP/USD exchange rates. Prominent among commodities is gold – commonly regarded as
a ‘safe haven’ asset – that provides wealth protection by hedging investments in the stock and
foreign exchange markets, even during extreme price movements during periods of turmoil (Puk-
thuanthong and Roll, 2011; Ciner et al., 2013; Reboredo, 2013). The above results have previously
been confirmed by You and Daigler (2012). However, they employ individual stocks and futures
contracts rather than stocks and commodity indices. This drastically increases the complexity of
the optimization problem. In order to cope with this, they resort to a portfolio optimization soft-
ware package, which is however limited to 120 observations. To circumvent this, a metaheuristic
algorithm is applied in this paper that is not only capable of dealing with an extensive number of
observations, but also with further constraints that are outlined in Section 3.

However, an extensive analysis on the diversification benefits of commodity futures by Cheung
and Miu (2010) raises concerns about the universal validity of the above findings, indicating that
individual assessments become necessary. Furthermore, the ex-post performance of stock and
commodity futures portfolios was found to be inferior to that of a portfolio made up of traditional
assets by Daskalaki and Skiadopoulos (2011), thus making this another important question in the
evaluation. It is thus also evaluated whether the applied methodology is able to identify stable
asset weights based on ex-post performance and if so, whether the performance of the portfolio
including commodity futures outperforms the traditional stock portfolio.

Metaheuristics and Portfolio optimization

Whereas the original Markowitz formulation of the mean-variance optimization can be solved em-
ploying traditional optimization methods including, among others, linear programming (Mansini
et al., 2014; Pae and Sabbaghi, 2014; Bruni et al., 2015), quadratic programming (Pachamanova



332 Appendix B. Journal papers under review in ISI JCR

and Fabozzi, 2010; Sawik, 2012a) and stochastic programming (Pınar, 2007), metaheuristics have
increasingly been used to solve richer variants of the original problem, including more realistic
constraints and larger numbers of assets. Concerning optimality, Cesarone et al. (2013) were able
to develop an exact increasing set algorithm that, for small instances, solves the POP with quantity
and cardinality constraints optimally and can be extended into a heuristic procedure to account for
larger instances. While metaheuristics do not guarantee finding a globally optimal solution, Gilli
and Schumann (2012) point out that the goal real-life portfolio optimization tasks is not to provide
an optimal solution, but one that fulfills the decision-maker’s objectives to a highly satisfactory
extent. There are notably several reasons for this development. Generally, traditional optimiza-
tion approaches are prone to provide sub-optimal solutions when the expected returns or variances
employed as inputs are characterized by estimation errors (Kolm et al., 2014). More importantly
for this analysis is, however, the fact that traditional methods have been found to provide weak
ex-post performance of portfolios (DeMiguel et al., 2009).

Metaheuristic methods for portfolio optimization have been designed to address the above
theoretical and practical limitations of classical approaches. The following authors have signif-
icantly contributed to advancements in this field. Chang et al. (2000) consider a basic version
without further constraints, introduce metaheuristics as a portfolio optimization solving method-
ology and highlight their potential use. The inclusion of constraints is brought forward by Derigs
and Nickel (2003) and Derigs and Nickel (2004) who among other approaches developed a two-
stage SA metaheuristic, in which they controlled for cardinality constraints and transaction costs
through turnover volume restrictions. A more comprehensive model including sector capitaliza-
tion constraints, minimum transaction lots and cardinality constraints is introduced by Soleimani
et al. (2009). Their work recognizes the limitations that investors in practice pose further demands
for their respective investments. While the traditional formulation of the model requires the as-
set weights to add up to one and prohibits short-selling, further constraints that have received
overwhelming attention in the literature are cardinality, quantity and pre-assignment constraints.
Cardinality constraints, first introduced by Schaerf (2002), ensure diversification and, as marginal
diversification benefits decrease (Maringer and Kellerer, 2003; Maringer, 2005; Pachamanova and
Fabozzi, 2010), limit managerial effort (Di Gaspero et al., 2011) and transaction costs in the form
of bank and broker fees (Baule, 2010) by introducing a minimum and maximum threshold for the
number of assets included in the portfolio. Quantity constraints confine the weights between a
lower and upper bound to limit one-sided exposure, while ruling out negligibly small investments
whose profits could be eroded by transaction costs. Lastly, pre-assignment constraints allow the
investor to choose some assets to be included in the portfolio ex-ante regardless of their risk-return
characteristics. An updated and detailed literature review on the application of metaheuristics to
portfolio optimization is provided by Kolm et al. (2014).

3. Formal Description of the Problem
In this section, the mean-variance portfolio optimization model is described. First, the model
parameters and the algorithm’s in- and outputs and then a mathematical model are presented.

There is a set of potential assets to choose from. On the one hand, there is a set of n stocks
S = s1, s2, ..., sn and on the other hand, we further include a set of m individual commodity futures
contracts F = f1, f2, ..., fm, resulting in a total number of potential assets A = a1, a2, ..., am+n equal
to m + n. For all assets, the expected return based on historical data of a specified time period
E[Ri] is calculated, so that ∀i ∈ {1, 2, ...,m + n}, ai is assigned a known expected return E[Ri]
based on historical data. It is to be noted that, unlike previous research, we allow for the inclusion
of such assets with negative expected returns for two reasons. The first is a technical one: As
real-life investors choose from a potential pool of assets whose returns are notably influenced
by the historical time horizon chosen for analysis, we prevent introducing a bias that the period
of analysis might introduce. Furthermore, as we show in Section 6, the introduction of futures
contracts with slightly negative returns can still cause the portfolio to outperform that composed
of only stocks. As a measure of riskiness of the portfolio, its variance is calculated. In order to do
so, risk indices between the individual pairs ai, a j are calculated: σi j = σ ji∀R∗. These individual
risk indices consist of the covariances between the returns of pair of assets.

From the potential assets a portfolio is to be constructed. A portfolio can be interpreted as
a vector of weights W = w1,w2, ...,wm+n, in which each wi represents the weight of the corre-
sponding asset in the portfolio, i.e., the portion of the investor’s budget invested into this asset; for
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non-included assets the weight is equal to zero, so that 0 ≤ wi ≤ 1. As is common in the literature,
it is further assumed that the full budget is to be invested, i.e.,

∑m+n
i=1 wi = 1.

The portfolio construction is then constrained by the following user-provided inputs.

• The expected return of the portfolio is bound to a minimum of R > 0.

• ∀i ∈ {1, 2, ...,m + n}, zi = 1 if wi > 0 and zi = 0 otherwise. The cardinality constraint limits
the total number of assets to be included in the portfolio

∑m+n
i= zi between a lower value kmin

and an upper value kmax. For the purpose of this study, the values are set to one and five,
respectively.

• The quantity constraints limit the potential weights for each individual potential asset ai

between a lower value εi and an upper value δi that are set to 0.01 and 1 to prevent too small
fractions of investment and thus increased managerial costs.

• Lastly, the investor can pre-select certain assets regardless of their risk-return characteristics
based on personal preferences: ∀i ∈ {1, 2, ...,m + n}, pi = 1 if ai is pre-assigned into the
portfolio and pi = 0 otherwise.

More formally, the aforementioned constraints are to be respected while the optimal portfolio
is chosen by determining the fractions of the assets so that the overall portfolio variance is mini-
mized. The portfolio variance is a function of the variances of the individual assets as well as of
the covariances of all pairs of returns on assets selected in the portfolio:

m+n∑
i=1

m+n∑
j=1

σi jwiw j, (B.1)

subject to:

m+n∑
i=1

riwi ≥ R∗, (B.2)

m+n∑
i=1

wi = 1, (B.3)

kmin ≤

m+n∑
i=1

zi ≤ kmax, (B.4)

0 ≤ εi ≤ δi ≤ 1,∀i ∈ {1, 2, ...,m + n}, (B.5)

zi ∈ 0, 1,∀i ∈ {1, 2, ...,m + n}, (B.6)

zi ≤ Mwi,∀i ∈ {1, 2, ...,m + n}, (B.7)

pi ≤ zi,∀i ∈ {1, 2, ...,m + n}. (B.8)

The last three equations concern the pre-assignment constraint. zi is defined as a binary vari-
able that depends on the parameter pi. If the asset is pre-selected (i.e., pi = 1), it must be included
in the solution (i.e., zi = 1) irrespective of its risk-return characteristics. Furthermore, M is a very
large positive value such that Mwi > 1 for all i if wi > 0.

4. Solving Methodology
We employ a solving matheuristic (Maniezzo et al., 2009) based on an iterated local search
metaheuristic first applied by Martin et al. (1992) and the open-source quadratic programming
solver ojAlgo (http://ojalgo.org), developed in Java, that, as a local search, determines the optimal
weights for a given solution of assets. Furthermore, as to not call the solver repetitively for a
given solution, a cache memory (implemented as a hash map data structure) is implemented that
stores optimal weights for a given combination of assets. Fig. B.1 presents a high-level flowchart
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of the approach. The algorithm was implemented as a Java application and all experiments were
performed on a standard personal computer equipped with Intel Core i5 CPU at 3.2 GHz, 4GB
RAM and Windows 8.

Figure B.1: Basic flowchart of the matheuristic

Initially, a first solution is generated by constructing a portfolio composed solely of the as-
set with the highest return, generally also resulting in considerable risk. If this solution does
not achieve the minimum return, the instance is infeasible. This initial dummy solution is then as-
signed as base solution and best-found solution so far. The while-loop introduces the main iterative
solution improvement procedure. It consists of three stages that successfully combine exploitation
and exploration of the search space: a perturbation stage, a quadratic programming local search
and an acceptance stage. The perturbation stage applies significant changes to the base solution
through a shaking procedure that creates a new solution. This procedure consists of randomly
erasing a number of non pre-selected assets in the solution and randomly introducing new assets
until reaching kmax. The number of assets erased (k) is determined by the order of the current
neighborhood. Each newS ol obtained trough the shaking procedure is provided to a solver to de-
termine the optimal weights allocated to a given set of assets. If this has previously been done, the
cached weights are called, if not the found optimal weights are cached correspondingly. Then, this
new solution undergoes a local search (LS) phase in order to find the local minimum within the
defined neighborhood structure. During the LS procedure, we randomly select the same k number
of assets, and for each of those selected assets we order the remaining discarded ones according
to their mutual risk characteristics with said asset. Then, randomly a non-preselected asset of the
portfolio is replaced by a previously discarded one employing a biased randomization technique,
which is relying on a geometric distribution with a parameter β that after pre-computational ex-
periments has been set to β = 0.3. If the so-created new solution outperforms the base solution in
terms of risk, it is accepted as new base solution. By the same token, this solution is then com-
pared with the so-far-best solution that is updated based on the same risk criterion. However, under
certain conditions (acceptance criterion) a worse solution might temporarily be accepted as base
solution in order to further enhance exploration and escape local minima in the search space. We
implemented a credit-based acceptance criterion that allows for degradation of the base solution
if the previous improvement in the level of risk is not exceeded in absolute values. Finally, the
best-found solution is returned. This provides the investment portfolio corresponding to a certain
threshold return that provides the lowest-found corresponding level of risk.
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Figure B.2: Solutions for minimum returns on the lower spectrum

5. Data Description
As our approach is concerned with the comparison of a stocks-alone and a stocks-and-futures
portfolio, we obtained individual daily historical closing price data for the Dow Jones 30 con-
stituents on the one hand and daily settlement prices for the 21 most actively traded commodity
futures prices in the United States as proposed by You and Daigler (2012) covering the period
from February 18, 2014 to April 1, 2016, resulting in 535 observations for each time series. The
sample period has been chosen due to the availability of the individual time series so that the data
sample does not yield missing values. Due to expiration of fixed-maturity futures contracts, the
continuous series are created by data providers by rolling over the futures contracts of different
maturities. Table B.1 presents the average daily returns and the corresponding standard deviations
for each of the included stocks and commodity futures contracts.

The average correlations within the two asset classes, as well the mean overall correlation, are
presented in Table B.2. More detailed correlation calculations are available from the authors on
request. Due to the askew distribution of correlations these have been calculated by transforming
the individual correlations into Fisher-Z-values, taking the arithmetic mean and then retransform-
ing. It becomes obvious that the correlation between the potential stocks is significantly higher
than that within the class of commodity future contracts. Furthermore, the mean correlation be-
tween stocks and futures is the lowest overall for the data sample. This reinforces the assumption
that a combined portfolio of stocks and futures can lead to superior diversification and a resulting
lowering of the associated expected risk for a given portfolio return.

6. Analysis of Results
In the following the results for two experiments are analyzed first with respect to risk analysis of
the ex-ante portfolios and then with respect to the ex-post performance, or stability, of the found
solutions. Ex-ante portfolios are those portfolios with constituent assets and weights determined
by the iterative local search based on the data gathered for the sample period. Ex-post portfolios
refer to the application of the ex-ante portfolio asset weights to the data following the sample
period at time t + 1. It thus refers to a hypothetical investment at time t into the best-found
portfolios that is then evaluated one month later at time t + 1.

Fig. B.2 and B.3 present two exemplary solutions. It is to be noted that assets 1 through 30
represent stocks and assets 31 through 51 represent commodity futures contracts. For low-level
minimum returns in Fig. B.2, the first stock portfolio contains portions of asset 7, 8, 9, 10, and 11
(all stocks), while the stocks and futures portfolio contains assets 11, 31, 39, 40, and 42 (one stock
and four futures contracts). For high-level minimum returns, the solutions are much more similar
with respect to the asset composition. The first exemplary stock solution in Fig. B.3 is composed
of assets 14, 20, 21, and 30 (all stocks), while the stocks and futures portfolio contains asset 39
instead of asset 21. The exemplary solutions showcase that the solutions for higher minimum
returns overlap further and are more similar in terms of selected assets constituents and weights
than for low levels of return. This illustrates the finding that the allocation of commodity futures
increases with increasing risk aversion of the investor, yielding that they represent a valuable
alternative as diversification means especially for lower-risk portfolios.
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Table B.1: Descriptive statistics

Assets Average Return Standard Deviation
Stocks 0.000307% 0.012996
Apple 0.076993% 0.015544
Microsoft 0.084877% 0.015512
Exxon Mobil Corporation -0.014890% 0.013191
Johnson & Johnson 0.035448% 0.009978
General Electric Company 0.047681% 0.012239
JPMorgan Chase & Co. 0.015270% 0.014037
The Procter & Gamble Company 0.013599% 0.009085
Verizon Communications Inc. 0.032659% 0.009721
Wal-Mart Stores Inc. -0.010853% 0.011372
Pfizer Inc. -0.004829% 0.011537
The Coca-Cola Company 0.038688% 0.009100
Chevron Corporation -0.021950% 0.015983
Visa Inc. 0.069322% 0.014216
The Home Depot, Inc. 0.110242% 0.012426
The Walt Disney Company 0.050015% 0.012805
Merck & Co. Inc. 0.002151% 0.012748
International Business Machines Corporation -0.026583% 0.012757
Intel Corporation 0.062516% 0.015464
Cisco Systems, Inc. 0.054523% 0.013921
UnitedHealth Group Incorporated 0.116388% 0.014094
McDonald’s Corp. 0.058294% 0.010550
3M Company 0.050225% 0.010810
NIKE, Inc. 0.103030% 0.014542
The Boeing Company 0.005434% 0.014169
United Technologies Corporation -0.017746% 0.011471
The Goldman Sachs Group, Inc. 0.005036% 0.013801
American Express Company -0.061105% 0.013448
E. I. du Pont de Nemours and Company 0.009985% 0.015360
Caterpillar Inc. -0.030999% 0.015346
The Travelers Companies, Inc. 0.067270% 0.009718
Commodity Futures -0.000496% 0.000338
Brentcrudeoil -0.120960% 0.025457
Copper -0.043944% 0.012876
Crudeoil -0.125399% 0.025594
Cocoa 0.017888% 0.012117
Coffee -0.055508% 0.023227
Corn -0.031191% 0.014505
Cotton#2 -0.058913% 0.013930
Feedercattle -0.032845% 0.010810
Gold -0.004478% 0.009594
Heatingoil -0.120557% 0.023106
KCWheat -0.079898% 0.016955
Leanhog -0.054406% 0.023260
Livecattle -0.035734% 0.011952
Naturalgas -0.116111% 0.022118
Orangejuice -0.003081% 0.020640
Silver -0.017541% 0.016391
Soybean -0.047312% 0.015006
Soybeanmeal -0.030699% 0.020249
Soybeanoil -0.042044% 0.013330
Sugar#11 0.015679% 0.022557
Wheat -0.054146% 0.017646

Table B.2: Average correlations between the asset classes

Within Stocks Within Futures Stocks and Futures Overall
0.4385 0.0765 0.0075 0.1756
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Figure B.3: Solutions for minimum returns on the higher spectrum

6.1 Risk Analysis

Table B.3 summarizes the results of the two experiments. It essentially compares the results ob-
tained for a particular minimum return. At first sight, the previously mentioned complexity of
the problem becomes obvious when the instance times are considered: They significantly increase
for the composite portfolios that are selected from an asset pool of 51 potential constituents as
opposed to the basic formulation that only considers a pool of 30 stocks. More importantly, the
associated risk as expressed by the weighted covariances of the constituent assets’ returns is pre-
sented. As expected, it continuously increases with increasing returns demanded by the investor.
The risks between two best-found solutions based on different asset pools are then compared. The
existence of a risk gap, or the difference in the risk objective function value for a same given min-
imum return between two solutions, is explained by the inclusion of individual futures contract
in the best-found portfolio compared to the stock-alone portfolios. It is to be noted that this was
always done at the expense of excluding at least one previously included stock and not through the
addition of new assets in the portfolio, indicating no rise in managerial effort or transaction costs
associated with including futures in a traditional stock portfolio. A positive risk gap indicates that
the risk was minimized with respect to the solution found for a stock-alone portfolio and thus suc-
cessfully diversified. This was the case for 94 out of the 99 return instances, while the remainder
showed a gap equal to zero. This and the average percentage gap of 26.84% strongly reinforce the
initial intuition that individual futures contracts increase diversification beyond that which can be
achieved through stock diversification alone.

Table B.3: Results for a selected subset of minimum returns

Stock-alone Portfolio Stock-and-Futures Portfolio Gap Gap [%]
Minimum Return Risk (1) Time [s] Risk (2) Time [s] (1) - (2) (1) - (2)
0.0000117564 0.0000531088 0.873 0.0000218480 10.202 0.0000312608 58.86180821%
0.0000822945 0.0000531088 0.042 0.0000230232 0.567 0.0000300856 56.64899226%
0.0001528327 0.0000531088 0.031 0.0000238688 3.141 0.0000292400 55.05678908%
0.0002233709 0.0000533257 0.183 0.0000265600 0.279 0.0000267657 50.19287135%
0.0002939091 0.0000533474 0.058 0.0000271226 12.655 0.0000262247 49.15853444%
0.0003644473 0.0000540647 0.014 0.0000311877 2.541 0.0000228770 42.31411623%
0.0004349855 0.0000546027 0.287 0.0000343818 16.648 0.0000202209 37.03278409%
0.0005055236 0.0000558261 0.225 0.0000375692 8.41 0.0000182569 32.70316214%
0.0005760618 0.0000573681 0.099 0.0000428111 19.99 0.0000145571 25.37472916%
0.0006466000 0.0000601832 1.1 0.0000473472 11.772 0.0000128360 21.32821120%
0.0007171382 0.0000642364 0.254 0.0000543535 17.792 0.0000098829 15.38520216%
0.0007876764 0.0000694180 0.4 0.0000619521 6.255 0.0000074659 10.75499150%
0.0008582145 0.0000766848 3.21 0.0000705611 16.555 0.0000061238 7.98554603%
0.0009287527 0.0000855374 0.091 0.0000812718 13.253 0.0000042656 4.98682448%
0.0009992909 0.0000965467 1.369 0.0000936730 5.567 0.0000028737 2.97648703%
0.0010698291 0.0001099596 1.089 0.0001090107 1.553 0.0000009488 0.86295330%
0.0011403673 0.0001373443 0.001 0.0001373443 0.001 0.0000000000 0.00000000%

The five instances, in which there was no difference between the asset constituents of the
portfolios, were the ones with the highest required minimum returns. Generally, the gap decreased
with increasing minimum returns. This relationship is further demonstrated in Fig. B.4,in which
the absolute risk gaps are depicted by the horizontal distance between the graphs corresponding to
stock-alone and stock-and-futures portfolios respectively.
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Figure B.4: Depiction of ex-ante minimum return and associated risk for the two
asset pools

The graphs provide two conclusions. On the one hand, there is a threshold return, beyond
which additional returns require a more significant increase in associated risk because this return
is generally only achieved by fewer assets, reducing diversification benefits. For this set of data,
it is found at 0.00114%. From this threshold on, the minimum required return could solely be
achieved by certain assets, thus reducing the pool of potential assets and leading to portfolios of
fewer included assets than the maximum number of five dictated by the cardinality constraint.
This leads to portfolios composed of only stocks and thus also to a zero gap between the two
portfolio types. On the other hand, it becomes obvious that the gap is much larger for low-return
portfolios, from which one can conclude that risk-averse investors profit to a larger extent from
futures diversification.

To better illustrate these conclusions Fig. B.5 presents three box plots of the percentage risk
gaps. The lower one presents the distribution of the risk gaps for the overall sample of optimal
portfolios. The circle represents the mean of 26.84%. The immense diversification potential is
provided not only by the high maximum value of 58.9%, but also the high values associated with
the different quantiles. We further divided the portfolios into low-return and high-return portfolios.
The upper two box plots quantify the difference in diversification benefits between low-return and
high-return requirements. It becomes obvious that diversification benefits are increased for risk-
adverse investors and thus portfolios on the lower required minimum return spectrum.

Figure B.5: Risk gaps between the best stocks portfolios and the best futures
portfolios
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We can thus conclude that, on the one hand, our algorithm is able to find portfolios that fulfill
the investor’s constraints in reasonable computing times of a few seconds and, on the other, the di-
versification benefits of individual futures contracts are immense. This has been shown by the risk
level gaps between an stocks-alone portfolio and one that included futures, which were significant
and never negative.

6.2 Ex-post Stability Analysis

Concerning the stability of the resulting portfolios, we have conducted an ex-post application of the
resulting portfolio weights. Two of these are exemplarily presented below; the first corresponds to
the lowest daily minimum return and the second corresponds to the highest minimum return level
at which the portfolios still differed. We conducted a one-month ahead analysis and compared
the resulting returns of the portfolio with the corresponding minimum return on a monthly basis.
The ex-post analysis consists of the hypothetical investment into the best-found solution at the
corresponding asset weights at the end of the sample period. Then, after a holding period of one
month, the returns on the investment are calculated based on the actual price movements of the
constituent assets.

Table B.4: Ex-post performance of two exemplary solutions

Solution 1 – Low Return Solution 2 – High Return
Required Daily Return 0.0000118% 0.0011051%
Actual Return Stocks Portfolio -0.0009301% 0.0002369%
Actual Return Stocks and Futures Portfolio 0.0051194% 0.0003352%

Table B.4 presents the metrics of the ex-post analysis for the first of two best-found portfolios
presented in Fig. B.2 and B.3 respectively. Solution 1 was found for an extremely risk-averse
investor, while solution 2 represents a risk-loving investor’s investment recommendation. The
daily minimum return was a user-defined input for the proposed matheuristic. The actual return
is presented below the minimum return for both the stocks and the combined stocks and futures
portfolio. Exemplified by the two solutions in Table B.4 the ex-post performance differs greatly
depending on the required minimum return and the asset pool.

Fig. B.6 presents the risk-return characteristics of all ex-post portfolios for the ex-post period.
At first sight, it can be constated that, solely taking into consideration the positive portion of the
return axis, the two curves resemble the shape of a Markowitz efficient frontier curve.It further
becomes obvious that stock-and-futures portfolios overall achieved positive average ex-post daily
returns, while a large portion of stock-alone portfolios presents the potential investor with negative
returns. Because these negative returns are the result of downside risk exposure of the accompany-
ing portfolios with high variance, it is intuitive that this part of the plot does not possess a positive
slope. Concluding, it becomes evident that adding futures to the portfolios significantly improved
the portfolio’s behavior with respect to traditional financial theory in that increased returns can be
achieved by assuming a more risk-exposed investment position. Moreover, the superiority of the
stock and futures portfolios in ex-post performance already established in Fig. B.5 is reinforced
when considering both investment dimensions, risk and returns. Fig. B.6 shows that the ex-post
portfolios of stocks and commodity futures can be a more effective vehicle of diversification than
the portfolios of stocks only. Indeed, the ex-post portfolio variance is smaller for the former than
for the latter, as shown by the minimum variance portfolio. Moreover, for a given value of the
portfolio variance, average returns are larger for the portfolio combining both stocks and com-
modity futures. Furthermore, including commodity futures caters not only to risk-averse but also
to risk-taking investors, since a broader range of values for both portfolio variance and return can
be obtained.

In the following, it is analyzed whether the remaining instability of the portfolio weights was
caused primarily by the risk or the return dimension of the portfolios.

Fig. B.7 depicts the return dimension and presents a contrast of the minimum required return
and the ex-post achieved one. If they are identical, the points should lie on the 45◦ line through the
origin. However, due to the generally volatile nature of financial returns, this is not the case. The
ex-post stock-alone portfolios significantly underperform the ex-ante portfolios and yield negative
average daily returns for low and medium risk portfolios. Furthermore, while the ex-ante portfolio
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Figure B.6: Frontiers of ex-ante optimal portfolios in ex-post analysis

weights provide stable portfolio returns in that the minimum return is outperformed by the stock-
and-futures portfolios for minimum returns on the lower spectrum of the analysis, the best-found
solutions do not provide the minimum returns for extraordinarily high returns. While the latter
result is a drawback to the investment, it is somewhat intuitive, as returns of such dimensions can
only be achieved by assuming a significant level of risk. Moreover, the differences in the asset
weights become almost negligible for minimum returns on the high end of the analysed spectrum
as graphically shown in Fig. B.4. More strikingly, however, are the results for low return levels
and thus risk-averse investors. Not only did the combined stock-and-futures portfolios generally
outperform the traditional stock portfolio in the ex-post analysis, but also were they generally the
only ones achieving an ex-post return of at least the originally required minimum return. This
therefore reinforces the importance of futures diversification not solely from a risk perspective,
but also from the perspective of stable short-term returns. However, the benefits of the portfolio
optimization appear to be limited to lower risk portfolios and thus risk-averse investors from a
return dimension perspective.

Figure B.7: Comparison of ex-ante minimum required returns and ex-post actual
returns
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Since the return dimension yields relatively stable performance for stock-and-futures portfo-
lios, while this is not the case for stock-alone portfolios, it can be constated that this is a significant
factor in distinguishing the different ex-post performances. Because, however, the ex-post com-
bined portfolios also underperformed their ex-ante counterparts, the risk dimension is analyzed
next. Overall, the non-stable risk variable of the portfolios seems to outweigh the volatility in
returns in causing ex-post portfolio instability. Fig. B.8 presents a comparison of ex-ante risk and
ex-post risk of the respective portfolios. If they were identical, the plotted points would lie on the
45◦ graph through the origin. As becomes obvious, low-levels of ex-ante risk are characterized
by relatively non-stable ex-post risk levels and high variability. Contrary to that, high ex-ante risk
level portfolios generally translate into lower-risk ex-post portfolios. It is to be noted further that
the variability of the risk of stock-and-futures portfolios is higher than that of the stock portfolios.
This variability then explains the level of ex-post instability of the combined portfolios.

Figure B.8: Comparison of ex-ante and ex-post portfolio risks

Concluding, it can be stated that the best-found portfolios from Section 6.1 provide investors
with stability in that the stock-and-futures portfolios outperform stock-alone portfolios in that they
provide lower risk for a given minimum return level. However, the risk and return characteristics
of the individual portfolios have shown to be instable over the observed period. While the return
dimension mainly causes the difference in performance between the ex-post stock-alone and stock-
and-futures portfolios, the risk dimension explains the remaining instability between the ex-ante
and ex-post performance of the combined portfolios.

7. Conclusions and Future Works
This work has addressed a rich and original variant of the portfolio optimization problem (POP),
in which both the individual constituents of the Dow 30 index as well as individual commodity
futures contracts are considered as potential portfolio constituents. A short review of the literature
has shown that the inclusion of futures is promising in reducing the risk level of a stock portfo-
lio. Likewise, we have provided examples that highlight the use of matheuristic approaches in
constructing promising portfolios. Then, a mathematical formulation for the rich POP has been
described. In order to solve it, a matheuristic combining an iterated local search framework and
a quadratic solver has been proposed. To the authors’ knowledge this type of methodology has
not previously been employed to analyze the diversification benefits of stock and futures portfo-
lios. The computational experiments that were performed led to the conclusion that the solutions
change in terms of expected risk when varying the pool of potential assets to include futures.
For investors, this result yields the conclusion that futures contracts provide successful investment
diversification. Particularly, risk-averse investors can drastically reduce their expected risk expo-
sure by diversifying into stock-and-futures portfolios. Likewise, these portfolios of risk-averse
investors yield more stable actual returns in the short term. The ex-post analysis has provided the
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following conclusions of particular interest for portfolio managers: There is a difference in per-
formance between the ex-post stock-alone and stock-and-futures portfolios mainly caused by the
return dimension. Further, the risk dimension explains the remaining instability between the ex-
ante and ex-post performance of the stock-and-futures combined portfolios. Thus,it is of interest
to develop applications that provide more stable portfolio weights.

Some further future research lines remain open: (i) to extend the computational experiments
so they include more instances and a deeper statistical analysis; (ii) to study the robustness of
the solutions in front of small variations of the inputs in a sensitivity analysis; (iii) to include
uncertainty in the optimization model to further account for the characteristics of financial markets
and solve it with a simheuristic algorithm (Juan et al., 2015a); and (iv) to analyze the impact of
the width of the sample period and associated bear and bull market activity periods.
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Abstract
This paper addresses a distributed scheduling problem with stochastic processing times where a
product composed of several intermediate products has to be assembled at a particular moment.
The intermediate products are processed in independent distributed manufacturing factories, and
each factory can be modelled as a permutation flowshop. In our case, the processing times of the
stages in the flowshops are random variables following a given probability distribution. The objec-
tive is to find robust job sequences for the factories. Three simheuristic algorithms are proposed,
which consider the minimization of a specific measure: the makespan, the expected makespan or
the makespan percentile. A set of computational experiments are carried out to illustrate this real-
istic and rich problem and the proposed methodology, and to compare their outputs under different
levels of stochasticity.

Keywords: distributed scheduling problem, stochastic scheduling problems, simheuristics,
metaheuristics, combinatorial optimization, horizontal cooperation.

1. Introduction
Nowadays, the manufacturing industry faces important challenges at the global level, including
fierce competitiveness, short product life cycles, increasing speed of product innovation, high
product variety and quality, and rising customer expectations, among others. Industries need to
find proper strategies to cope with these challenges and remain successful in the market, being
one of these strategies the use of distributed manufacturing systems (Moon et al., 2002), with con-
trasted benefits in terms of higher product quality, lower production costs and fewer management
risks (Wang, 1997; Chan et al., 2005; Kahn et al., 2013).

In distributed manufacturing systems there is an horizontal cooperation among entities when
they have strategic relationships and join their individual strengths to achieve a common goal, so
the complexity of manufacture is shared among different entities, resulting in conditions in which
risks and costs become acceptable and market opportunities can be captured, as quite often sin-
gle manufacturing centers are not able to produce products within reasonable costs and increase
product diversity because of rigid organizational structures, deterministic approaches to take de-
cisions, lack of technology and a competencies’ hierarchical allocation (Sluga et al., 1998; Wang
et al., 2006). As a result, nowadays single manufacturing centers are infrequent while distributed
manufacturing systems are quite usual (Moon et al., 2002; Naderi and Ruiz, 2010).

On the one side, constructing these collaborative manufacturing systems help industries to face
market global challenges in an efficient way. On the other side, the optimization of these systems
is more complicated. However, this optimization usually has a significant effect on production per-
formance. The production operations (including scheduling in each entity) of these systems are
organized in such a way that the needs of the entire system are covered and its objectives accom-
plished. The optimization of these systems has received a considerable attention from practitioners
and the research community in recent years.

A well-established problem in this context is the so-called Distributed Permutation Flowshop
Scheduling Problem (DPFSP) (Naderi and Ruiz, 2010). The DPFSP consists of a set of distributed
manufacturing factories with flowshop configurations. The responsibility of the factories is to
produce a product composed of various jobs. Each factory has to process a certain number of jobs,
and all of them should be completed at a given deadline or before. Typically, the DPFSP involves
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two decisions: assigning each job to be manufactured to a factory, and determining a job sequence
for each factory.

Furthermore, the classical DPFSP assumes a static environment and deterministic processing
times to simplify the problem. However, real-world manufacturing systems are dynamic and often
exposed to uncertainties and unforeseen events such as machine breakdown, changing due date,
operator unavailability, materials out of stock, order rush, etc (Rodammer and White, 1988).

Our paper addresses a problem related to the DPFSP. We assume that the components have
already assigned, and deal with job sequencing with each flowshop. Furthermore, the processing
times of the components in each one of the flowshops is a random variable. The objective is to
find a robust job sequence for each factory which starts to process at the latest possible time while
completes all jobs respected to the deadline. Since stochastic processing times are considered, we
will only be able to guarantee that jobs are finished by then with a given probability. This proba-
bility depend on the probability of each factory ending on time. Thus, if a minimum probability is
required, each PFSP can not be separately solved.

The problem under consideration can be also related to the Permutation Flowshop Scheduling
Problem with Stochastic Times (PFSPST). The literature on this problem is not extensive, espe-
cially when compared with the PFSP (Lin et al., 2015; Fernandez-Viagas and Framinan, 2015b;
Fernandez-Viagas and Framinan, 2015c; Hsu et al., 2015), this problem is becoming more pop-
ular (Baker and Altheimer, 2012; Kianfar et al., 2012; Juan et al., 2014a). Since the PFSP is an
NP-Hard problem when the number of machines are equal or higher than 3 (Garey et al., 1976), it
is clear that our problem is also NP-Hard. As a consequence, it is sensible to focus on designing
heuristic or metaheuristic approaches for obtaining good solutions in reasonable CPU times.

More specifically, we adopt an approach that relies on a simheuristic algorithm for solving the
PFSPs. Simheuristics are a class of efficient optimization algorithms that extend metaheuristics
in a natural and flexible way by integrating simulation (Juan et al., 2015a). While there are some
methodologies for solving the PFSPST, most present some shortcomings such as making hard
assumptions on probability distributions of processing times or being able to solve only small-
sized instances. In contrast, simheuristics constitute a simple approach able to cope with these
shortcomings.

The rest of the paper is organized as follows: the next section defines the problem. A literature
review is provided in Section 2. Section 3 describes our solving approach. Section 4 presents the
computational experiments carried out, whereas the results are in Section 5. Finally, Section 6
offers some conclusions.

2. Problem definition
In our problem, there is a set F of f distributed manufacturing factories (Figure B.1). The shop
configuration of each factory is a Permutation Flowshop Scheduling Problem (PFSP), which is a
particular case of the Flowshop Scheduling Problem (FSP) (Johnson, 1954). In the FSP, there is a
set M of m machines where each job of a set N of n jobs must be processed on each machine. Each
job starts to process from the first machine to the last one. Therefore, the number of operations per
job is equal to the number of machines. The jth operation of job i is processed on machine j, and
can start if the j − 1th operation on machine j − 1 has been completed and machine j is free. Pro-
cessing times are supposed to be known in advance and deterministic. Other classical assumptions
(Baker, 1974) are: (i) all operations and jobs are independent and available for processing at time
0; (ii) all machines are continuously available and there are no breakdowns; (iii) each machine
can process at most one job at a time; (iv) each job can be processed in only one machine at a
time; (v) once an operation of a given job on a given machine has started, it cannot be interrupted
(i.e., no preemption is allowed until the processing has been completed); (vi) setup and removal
times are sequence-independent and are included in the processing times or are negligible; and
(vii) in-process storage is considered infinite. In the FSP, there are (n!)m possible solutions since
the number of job permutations per machine is n!. There is a simpler version of this problem
called Permutation FSP (PFSP) which assumes that all machines have the same job permutation
and the job passing is not allowed. This problem has n! possible solutions.

In this manufacturing layout, a product consisting of various components (jobs) has to be
processed on the machines located at the factories. The processing time of each job i in each
machine j, Pi j, is considered a random variable following a non negative probability distribution,
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Figure B.1: A schematic diagram of the DPFSPST.

either theoretical or empirical. The product is considered finished when all its jobs have been
completed.

It is required that all components of the product are completed by a (deterministic) deadline
d̃ with a probability not lesser than p. Note that this common deadline represents a realistic
consideration when the jobs should be later assembled in a final stage either in the same company
or by a customer.

Consequently, it is intended that the processing operations for job i at factory k should ter-
minate by the deadline d̃. In a PFSP with a deadline, a specific job sequence has a makespan
associated and the starting time can be set at the deadline minus the makespan. In contrast, the
PFSPST is characterized by having potential different makespans under different conditions for a
given job sequence. Therefore, in our setting, at least one of the three following approaches could
be considered:

• To ignore the stochastic nature of the problem and replace the random variables by their rep-
resentation (typically their mean). In our case, these means solving a deterministic version
of the problem using the mean processing times of the jobs and minimize the makespan.
While ignoring the stochasticity may provide solutions of poor quality, it is not necessar-
ily the case (see e.g. Framinan and Perez-Gonzalez, 2015). This is due to the fact that a
deterministic optimization algorithm is faster and, as a consequence, may visit more solu-
tions during a limited amount of time. Thus, if the level of stochasticity is low, there is a
chance that solutions found are robust enough to have a good performance in a stochastic
environment. This approach is labelled as makespan (M) in the following.

• To minimise the expected makespan. This approach stresses the average behaviour of the
layout. However, if the starting time is set at the deadline minus the expected makespan,
there is no guarantee that all processing operations will be completed on time. This approach
is labelled as expected makespan (EM) in the following.

• To ensure that the final product will be finished on time with a probability p. This option
allows the decision-maker to include a restriction that set the probability of finishing on time
or, conversely, the risk of a delay. This approach is labelled as percentile makespan (PM) in
the following.

Since we assume that the factories are independent among them, p can be computed as: p =∏ f
k=1 pk, and by assuming an equal allocation of probabilities we have pk = f

√
p. Therefore,

the problem is equivalent to ensure that factory k will finish its jobs with a probability pk.
In order to do so, the pk-th makespan percentile can be computed for each factory k given
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a sample of makespans, and its starting time can be set to the deadline minus the makespan
percentile.

Figure B.2 shows the concepts of starting time, expected makespan and makespan percentile.
Clearly, the choice between the last two approaches depends on the risk-aversion of the decision-
maker. For example, if the decision-maker prefers to focus on the worst outputs (i.e., the largest
makespans), it is better to minimize the makespan percentile requiring a high probability. On
the other hand, if she/he prefers to analyse the average case, she/he should focus on minimizing
the expected makespan. In Section 4, we will present different variants of an algorithm for each
approach.

Figure B.2: Starting time, expected makespan and makespan percentile in the
DPFSPST.

3. Literature review
In this section, we review the papers most related to the problem under study. To the best of
our knowledge the problem has not been previously addressed. However, different streams of
the literature are related to our problem, namely PFSPST, Distributed Flowshop Scheduling and
Assembly Scheduling, the last ones assuming deterministic processing times. These are discussed
in the next subsections.

Permutation Flowshop Problem with Stochastic Processing Times

While the PFSP has been intensively studied during the last few decades, the PFSPST has received
less attention. Baker and Trietsch (2011) designed heuristics for addressing the 2-machine PF-
SPST, where the processing times are independent random variables following specific probabil-
ity distributions. Later, Baker and Altheimer (2012) presented a methodology for the m-machine
version. In addition, several variations of the PFSPST have been analyzed. For instance, Allaoui
et al. (2006) and Choi and Wang (2012) worked on the stochastic hybrid flow shop scheduling
problem, aiming to minimize the expected makespan. The same problem was tackled by Kianfar
et al. (2012) with the goal of minimizing the average tardiness of jobs. A novel approach is applied
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in Zhou and Cui (2008) for tackling the multi-objective stochastic PFSP, where both the flow time
and delay time of jobs are minimized.

An interesting line is related to uncertainty. Basically, there are two categories: proactive (or
robust) scheduling and reactive scheduling. For works falling in the first category, Roy (2010) pro-
pose constructing an original predictive schedule. The basic aim is to find schedules that do not
require new schedules (or significant changes) when confronting disruptions. These works may
consider probability distributions or sets of scenarios. Al Kattan and Maragoud (2008), Ghezail
et al. (2010) and Liu et al. (2011) addressed the PFSP with uncertainty implementing proactive
scheduling strategies. On the other hand, reactive scheduling consists in revising and re-optimizing
schedules when unexpected events take place. A classical option is to obtain a predictive schedul-
ing and then try to repair it according to the actual state of the system. A comprehensive review
on rescheduling under disruptions is provided by Katragjini et al. (2013).

Some authors employ exact methods for addressing the PFSPST. A disadvantage of many of
these methods is that they only work with a specific set of probability distributions and relatively
small instances. Moreover, it may be difficult to adapt them for handling dependencies among
processing times. Simulation techniques enable researchers to deal with these situations in a nat-
ural way. An interesting example is the work of Baker and Altheimer (2012), which proposed a
hybrid approach combining heuristics and simulation. The authors tested three heuristic methods:
two relying on the CDS heuristic (Campbell et al., 1970) and one on the NEH heuristic (Nawaz
et al., 1983).

Distributed Flowshop Scheduling Problem

This problem has several similarities with the problem under study: there are f identical permuta-
tion flowshops where n jobs have to be processed. However, in this problem the jobs have not been
assigned to each flowshop, so this assignment becomes part of the decision problem. Nowadays
this problem is known as the Distributed Flowshop Scheduling Problem (DFSP) since Naderi and
Ruiz (2010) resumed the topic for a distributed environment and makespan minimization. Never-
theless, this decision scheduling problem was first studied by David et al. (1996) based on a glass
industry considering non-delay flowshops and batch production mode. Note that each factory is
treated as line in this paper, but the mathematical scheduling problem inside is the same. Since
then, it has been also studied under different names in the literature: Parallel Flowline (see e.g.
Vairaktarakis and Elhafsi, 2000) and Parallel Flowshops (see e.g. Cao and Chen, 2003). Be-
fore Naderi and Ruiz (2010), the particular two-machine-flowshop layout in each factory or line
has been solved using approximate algorithms by Zhang and Van De Velde (2012) and Al-Salem
(2004). This particular problem turns to be a pure assignment problem due to the Johnson’s rule
(Johnson, 1954). For a general configuration of m machines, Naderi and Ruiz (2010) have pro-
posed and compared several mixed integer linear programming models and constructive heuristics
to solve the problem. Regarding iterated optimisation algorithm, the problem has received an in-
creasing attention for makespan minimization in the literature in the last years. Gao and Chen
(2011) have proposed a Genetic Algorithm using local search phases based on interchange and in-
sertion of jobs. A Tabu Search algorithm is proposed by Gao et al. (2013). An Iterated Greedy (IG)
algorithm without local search phases are presented by Lin et al. (2013). A Scatter Search algo-
rithm with a reference set made up of solutions and restarts mechanisms is proposed by Naderi and
Ruiz (2014). Fernandez-Viagas and Framinan (2015a) presented an IG algorithm with bounded
local search phases employing properties of the problem to reduce the space of solutions. Re-
cently, Ribas et al. (2017) have proposed several constructive heuristics and two simple iterated
algorithms (IG algorithm and ILS) with Variable Neighbourhood Searches for the DFSP but with
zero-buffer flowshops (blocking constraint).

A particular case of the DFSP refers to the so-called Distributed Assembly Flowshop Schedul-
ing Problem, which combines the DFSP with assembly scheduling. In this problem, a distributed
flowshop composed of f identical flowshops is followed by a single assembly operation. n jobs
consisting each one of f components have to be assembled after each component has been manu-
factured in one of the flowshops. This decision problem includes job assignment plus the schedul-
ing of jobs in the assembly line. The main references for this problem are Hatami et al. (2015) and
Hatami et al. (2013). In the first reference, the authors consider the objective of makespan min-
imization, while in the second sequence-dependent setup times are assumed. In both cases, the
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problem is addressed using approximate algorithms and, as in the assembly scheduling problems,
we are not aware of references dealing with stochastic processing times.

Assembly Scheduling

This problem is also denoted n-stage Assembly or Assembly Flowshop Scheduling. In this problem,
m tandem lines are arranged prior to a single assembly station which is fed by the tandem lines.
Using this layout, n different products (jobs) have to be manufactured, each one consisting of
m components manufactured in the tandem lines. The processing time of each component in
each line is different. Some authors distinguish among the fixed case (i.e. each component can be
processed only in a given tandem line), and the unfixed case (i.e. each component can be processed
in different factories).

For these problems, different objectives are sought, such as makespan minimization (Sung
and Juhn, 2009), total flowtime (Al-Anzi and Allahverdi, 2013; Sung and Kim, 2008), due date
fulfilment (Al-Anzi and Allahverdi, 2007), or the combination of several indicators (Seidgar et al.,
2014).

Most references refer to the 2-stage case (production followed by assembly), so they assume
that each tandem line consists of a single machine. The underlying hypothesis is that there is a sin-
gle processing time for each component before the assembly process. For this problem, different
exact and approximate methods have been proposed, and some variants of the original problem
have been tackled by Sung and Juhn (2009), where two types of components –manufactured and
imported– are considered, and byLiao et al. (2015), where assembly batches are assumed.

Several other variants of the problem for three stages have been addressed in the literature (see
e.g. Koulamas and Kyparisis, 2001 and Komaki et al., 2017), but in none of the different versions
of the problem the processing times have been assumed to be stochastic.

4. Proposed approach
To address the different approaches presented in Section 3, we present three algorithms: the ILSM

algorithm considers the deterministic version of the problem, while the SIM-ILSEM and the SIM-
ILSMP algorithms minimize the expected makespan and the percentile makespan, respectively. For
each solution returned by an algorithm, the (deterministic) makespan, the expected makespan and
the makespan percentile are computed. The aim of working with different algorithms is to study
and compare their behaviour. While simulation techniques are used in the SIM-ILSEM and the
SIM-ILSMP algorithms, the ILSM algorithm, which works with average processing times, skips
that part. From here, we use SIM-ILS algorithm to refer to the basic structure of the SIM-ILSEM

and the SIM-ILSMP algorithms.
Currently, there is a lack of methodologies for solving stochastic combinatorial optimization

problems such as the one under consideration, and most of the existing ones present drawbacks.
Simheuristics represent a powerful alternative, which integrates simulation into metaheuristic-
driven frameworks. One drawback that most methodologies face is related to the size of the
instances. They are not able to solve large-size instances in reasonable amounts of times, whereas
simheuristics are scalable. In fact, simheuristics are able to obtain good solutions very fast because
simulation (which may be time-consuming) is only used to assess a subset of the solutions visited.
Another drawback is related to the probability distributions of the processing times. Simheuristics
do not make any assumption, but some methodologies can only work with specific probability
distributions (Juan et al., 2014a). As a consequence, simheuristics have been used in a wide range
of fields such as routing, scheduling, manufacturing, and healthcare, among others (Juan et al.,
2014a; Gonzalez et al., 2016; De Armas et al., 2016b, among others).

We propose a SIM-ILS algorithm combining the Iterated Local Search (ILS) metaheuristic
with Monte Carlo simulation (MCS). The ILS is a simple methodology that generates a sequence
of solutions applying iteratively local search to perturb the current search point by using repeated
random trials in the space of local optima (Lourenço et al., 2010). As the literature shows, the
ILS is a successful framework to solve the PFSP. The IG metaheuristic, which has an ILS-based
framework, was first applied to the PFSP considering makespan minimization by Ruiz and Stützle
(2007). Its good performance and simple implementation have boosted its application to other
scheduling problems (Pan and Ruiz, 2014; Hatami et al., 2015, among others). In our approach,
the metaheuristic searches for promising solutions while MCS techniques are employed to assess
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their performance. The promising solutions are returned by the metaheuristic when solving a
(deterministic) PFSP instance, which is created from the original PFSPST instance by replacing
the random variables Pi j by constant values pi j using the means, i.e., pi j = E[Pi j]. Note that a
solution for the PFSP is also feasible for the PFSPST. Simulation is applied to a given solution
to compute the expected makespan or makespan percentile. This methodology assumes that there
is a strong correlation between solutions for the PFSP and the PFSPST but not perfect. In other
words, the best solution for the PFSP does not have to be the same that the best for the PFSPST,
but good solutions for one problem will tend to have a good performance in both.

Our algorithm works with a list of best stochastic solutions found and the best deterministic so-
lution found. The best deterministic one is the job sequence with the smallest makespan referring
to the PFSP instance. Depending on the objective considered, the best stochastic solutions found
are the job sequences with the smallest expected makespans or makespan percentiles, referring to
the PFSPST instance. The algorithm starts solving the PFSP. The obtained result is set as the best
deterministic solution and the best stochastic solution. During the algorithm execution, the best
stochastic solutions are saved in a list with length l. This list is sorted iteratively in increasing
order of the considered objective function. Thus, the solution at the first position is considered as
the best stochastic solution. The steps of our algorithm are detailed in Figure B.3 and explained
below.

Figure B.3: Flowchart of the SIM-ILS algorithm proposed.

Generation of the initial solution

A biased-randomized version of the classical NEH heuristic (Nawaz et al., 1983) described in Juan
et al. (2014a) is proposed to generate initial solutions. While the use of random solutions is not
unusual, most authors recommend to avoid them (Ruiz and Stützle, 2007; Naderi and Ruiz, 2010;
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Vallada and Ruiz, 2010). This randomized version is able to provide different initial solutions
when is repeatedly executed using different seeds for the random number generator.

The NEH heuristic is an iterative algorithm with two stages. First, an initial order is generated
by sorting the jobs by total completion time on all machines in non-increasing order. In the second
stage, jobs are iteratively inserted into a partial sequence according to the order. Jobs are inserted
at the position of the partial sequence that results in the minimum makespan. Since all steps
are deterministic, there is only one possible solution. In the biased-randomized version, a skewed
distribution probability is employed to assign a probability of being selected to each job. Following
the logic behind the classical heuristic, the jobs with higher completion times are assigned a higher
probability. The discrete version of the decreasing triangular distribution is used. For more details,
the reader is referred to Juan et al. (2014a).

Solution improvement

An iterative improvement procedure using shift-to-left as first-improvement type pivoting rule is
applied in different parts of our algorithm to improve solutions. This procedure has been proposed
in several works (Ruiz and Stützle, 2007; Juan et al., 2014a). Each iteration of the procedure
consists of three steps. In the first, a position s is randomly selected, without repetition, from the
current job sequence. The selected positions are saved in a selection list. In the second step, the
job placed in the position s is removed from the sequence and the shift-to-left movement is applied,
i.e., the insertion of the job in each possible position at the left side of s is tested (see Figure B.4).
The makespan of each option is calculated through the accelerations of Taillard (Taillard, 1990).
Finally, the job is inserted in the position resulting in the sequence with the smallest makespan.
The iteration of these steps are continued until all positions have been selected or a better solution
is achieved. If there is an improvement, the algorithm is restarted with an empty selection list.

Figure B.4: shift-to-left movement.

Simulation

The assessment of a solution using MCS techniques follows these steps: a) a number of itera-
tions numsim is considered to repeat the simulation process, b) a job processing time is generated
for each random variable according to the probability distribution associated, and the makespan
is computed, c) this process is repeated numsim times, d) a performance measure such as the
expected makespan, E[Cmax], or the makespan percentile for a probability pro, P[Cmax]pro, is
computed. While, the assessment of solutions during the search is done quickly (i.e., numsim is
relatively small), a long simulation (numsim relatively big) is used at the end to provide accurate
estimates related to the best deterministic and best stochastic solutions.

Iterated local search

A series of steps are performed iteratively during the search. Initially, a perturbation operator is
applied to change the region of the current solution space and then, the new solution is improved
using the local search explained in the previous subsection. The simple and efficient enhanced-
swap operator proposed by Juan et al. (2014f) is used to perturb the solution. It takes three steps:
(1) two different positions are selected randomly from the current job sequence; (2) the jobs at
these positions are interchanged; and (3) the shift-to-left movement is applied for both jobs.

In the second step, the algorithm decides whether the new solution is accepted. If it has a
smaller makespan than the current base solution, then the latter is replaced by the new. In this
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case, the best deterministic solution is accordingly updated (i.e., replaced by the new solution
if this has a smaller makespan). Additionally, a short simulation is applied to check whether
the best stochastic solution list has also to be updated considering the objective function value.
Finally, if the new solution does not provide a smaller makespan than the current base solution, an
acceptance criterion is applied (see next subsection). These steps are repeated until the stopping
criterion based on the elapsed CPU time is reached.

Acceptance criteria

Our algorithm assigns an acceptance probability to the new solutions that are worse than the cur-
rent base solution. This criterion prevents the algorithm from getting stuck in a local optima. It is
used for the first time by Hatami et al. (2015) and is based on the probabilistic acceptance criterion
of the Simulated Annealing, which has been extensively used (Ruiz and Stützle, 2008; Wang et al.,
2015; Yu and Lin, 2015, among others).

Given a new solution πn with a worse makespan than the current base solution πC , the accep-
tance criterion decides if it is accepted or not. Let CMax(πc) and CMax(πn) denote the makespans
of each solution. The acceptance of πn depends on the probabilistic mechanism shown in Equa-
tion B.1, where random is a random number uniformly distributed between 0 and 1, and temp is a
parameter (Osman and Potts, 1989).

random ≤ e−
CMax (πn )−CMax (πc )

temp . (B.1)

This mechanism is simplified in two aspects by Hatami et al. (2015). First, the parameter is
removed since the results in Ruiz and Stützle (2007) and Ruiz and Stützle (2008) prove that its
effects are not statistically significant. Second, the difference of makespans (which can be the
same for instances with distinct quality) is replaced by the relative percentage difference (RPD):
RPD =

C(πn)−C(πc )

C(πc )
× 100. Thus, this acceptance criteria (Equation B.2) is simpler and avoids the

need of parameter fine-tuning.

random ≤ e−RPD. (B.2)

5. Computational experiments
The algorithms described in the previous section have been implemented as Java applications
and tested on 27 instances. A standard personal computer, Intel QuadCore i5 CPU at 3.2 GHz
and 4 GB RAM with Windows 7, has been used to execute all tests. This section provides the
description of the instances, the tests carried out, and the numerical results. The analysis of the
results is presented in the next section.

Set of instances and test

Since no benchmark instances exist for the problem analyzed, a new set is constructed based
on Taillard instances (Taillard, 1993). Table B.1 gathers the following characteristics for each
instance: name, total number of the jobs (total n), number of machines (m) and number of factories
( f ). For a given factory, each instance contains a processing time pi j for job i at machine j, which
describes a random variable Pi j following a Log-normal distribution with mean pi j and variance
σ2

i j set to c · pi j. In real-life applications, empirical distributions based on historical data could be
used. Instances are available from the authors upon request.

Table B.1: Instance description.

Total n
20 50 100

f / m 5 10 20 5 10 20 5 10 20
2 Ins. 1 Ins. 4 Ins. 7 Ins. 10 Ins. 13 Ins. 16 Ins. 19 Ins. 22 Ins. 25
3 Ins. 2 Ins. 5 Ins. 8 Ins. 11 Ins. 14 Ins. 17 Ins. 20 Ins. 23 Ins. 26
4 Ins. 3 Ins. 6 Ins. 9 Ins. 12 Ins. 15 Ins. 18 Ins. 21 Ins. 24 Ins. 27
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Three different levels of processing time variability c (small, medium and high) are consid-
ered and set to 0.25, 1 and 1.5, respectively. Three different values of 80%, 90% and 95% are
considered for the general probability p (used only for the SIM-ILSMP algorithm). The maximum
computational time for solving the PFSPST of each factory is limited to 0.05 ·n ·m, which seems a
reasonable amount for real-life applications. Ten seeds are randomly generated and only the best
result is stored. Regarding the number of iterations for assessing solutions, 600 and 1000 runs are
employed during the algorithm and at the end, respectively. Note that the selection of these values
are mainly driven by the computing time available. Thus, if more time is available, then these
values can be incremented in order to obtain better and more accurate results.

Results

Results are displayed in Tables B.2-B.4, where each table represents a specific level of process-
ing time variability: low, medium and high. Due to space limitations and the fact that results
show similar trends for all three values of general probability, only those related to 90% are
shown. The composition of the tables is as follows. The first column identifies the instance.
The next five summarize the results of the ILSM algorithm, which considers makespan mini-
mization. For each instance, they show the following information regarding the best solution
found: Cmax(1), E[Cmax](2), P[Cmax]pro(3), gap between the first two measures, computed as:
(E[Cmax](2) − Cmax(1))/Cmax(1) · 100, and gap between the second and the third ones. While
the first gap represents the ‘extra’ processing time, on average, for applying a solution assuming
deterministic processing times, the second focuses on percentiles, showing the additional pro-
cessing time required to finish the product with a probability of 90% (note that this time could
be negative). The next four columns provide the following results of the SIM-ILSEM algorithm,
which minimizes the expected makespan: E[Cmax](4), P[Cmax]pro(5), gap between the expected
makespan of the best solutions found by the ILSM and the SIM-ILSEM algorithms, and the gap
of percentiles among the same solutions. The third gap, which is expected to be null or nega-
tive, shows the benefit of using a simheuristic approach (i.e., taking into account the variability of
the processing times) in terms of expected makespan. The fourth gap quantifies the difference of
percentiles. Similarly, the next four columns refer to the best solution found by the SIM-ILSMP

algorithm, which minimizes the makespan percentile. In particular, they contain: E[Cmax](6),
P[Cmax]pro(7), and gaps of expected makespans and percentiles between the best solutions found
by the SIM-ILSEM and SIM-ILSMP algorithms. These gaps allow us to quantify the processing
time difference based on whether we minimize one measure or the other. Finally, the last column
shows the mean computational time of the three solutions obtained. In addition, a row is added at
the end of each table to gather the mean gaps and computational time among instances.

Boxplots in Figure B.5 show the distributions of gaps of E[Cmax] and P[Cmax]pro regarding
the best values considering the three algorithms and a probability of 90%. While we expect that
the approach minimizing a given measure present a null value for the corresponding gap, this
figure reveals the difference between choosing one approach or the other, allowing us to analyse
the variability associated to these gaps. Focusing on the instance 14, FigureB.6 represents the
30 solutions found (resulting of 3 algorithms and 10 seeds). Each column is a measure, and
colors and line formats are used to distinguish algorithms. As the previous figure, this analysis
provides insights about a “potential" trade-off between the measures. Additionally, this figure
gives information about the effect of using multiple seeds.

Figure B.7 represents the relationship between probability required, variability level of the
processing times and P[Cmax]pro for the instance 14 using the SIM-ILSMP. Finally, Figure B.8
shows the effects of different instance characteristics on P[Cmax]pro considering a medium level
of variability and a probability of 90%. First, an analysis of variance was carried out to identify
which factors and pairwise interactions had a statistically significant effect on the results. For
each of these elements (single factors or pair of them), a figure is drawn which shows the mean
value associated to each level of the factor or combination of levels for pair of factors. Given
the randomness in the generation of instances, we expect that all factors have significant positive
effects.
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6. Analysis of results
Tables B.2-B.4 provide detailed information on the performance of our algorithms. The following
comments refer to the results of the ILSM algorithm. Mean gaps between Cmax and E[Cmax] for
small, medium and high levels of variability are 1.02%, 2.78%, and 3.74%, respectively. These
values between E[Cmax] and P[Cmax]pro are 1.99%, 3.88%, and 4.73%. These values quantify the
extra processing time required, on average, when variability is not considered, and the process-
ing time needed to satisfy the deadline with a probability of 90%. For example, in the scenario
of low variability, the processing time will be on average 1.02% higher than that assumed, and
the processing time needed to finish with the specific probability will be 1.99% higher than the
E[Cmax]. Both gaps increase as the variability is incremented. Comparing the results of the ILSM

and the SIM-ILSEM algorithms, the mean gaps of E[Cmax] (−0.24%, −0.46% and −0.58%) and
P[S Cmax]pro (−0.15%, −0.36% and −0.46%) quantify the benefits of using a simheuristic algo-
rithm. Regarding the results of the SIM-ILSEM and SIM-ILSMP algorithms, the mean gaps of
E[Cmax] (0.06%, 0.10% and 0.09%) and P[Cmax]pro (−0.08%, −0.14% and −0.20%) at different
level of variability, evidence the benefits of using one or the other approach. Thus, the main
findings are: (i) ignoring the variability in processing times may have an important effect on the
performance measures (even in scenarios with a low level of variability); (ii) the solutions found
by the SIM-ILSEM and the SIM-ILSMP algorithms are relatively similar in terms of these measures
but not equal; and (iii) the gaps tend to increase with the variability, i.e., minimizing the expected
makespan is almost equivalent to consider the makespan percentile when the variability is low,
but the difference increases as the variability is incremented. As a consequence, a decision-maker
have to assess whether he prefers to minimize the expected makespan (i.e., processing finished
at the deadline, on average) or the percentile (i.e., be sure that the processing will be finished at
the deadline or before with a given probability), which may be seen as a more conservative or
risk-aversion approach.

Figure B.5 compares performance measures among the algorithms proposed. The distributions
of the gaps are relatively symmetric, with few outliers on right tails. It is easy to see that the biggest
gaps are related to the ILSM algorithm, while the gaps referring to P[S Cmax]pro values are higher.
Similarly, Figure B.6 shows that there is a stronger correlation between the simheuristic-based
algorithms in the sense that the profiles are similar. It is interesting to analyse the differences
among the solutions obtained with multiple seeds. For instance, while solutions of the ILSM

algorithm have the same or a similar Cmax, these solutions may differ significantly in the other
measures (i.e., there are solutions more robust than others). For the instance studied, the ranges of
the last two measures are higher than that of the first.

Figure B.5: Boxplots of gaps between Cmax, E[Cmax] and P[Cmax]pro among al-
gorithms considering all instances, medium level of variability and p = 90%.

Figure B.7 represents a valuable tool for a decision-maker. It analyses the relationship between
the probability required to process a product at the deadline or before and the processing time
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Figure B.6: Parallel coordinates plot showing different measures for solutions
found with the different algorithms for instance 14, considering a medium level

of variability and 10 seeds.

needed. As the probability tends to 1 (i.e., no risk) the processing time tends to infinite. Instead
of having a single solution, the decision-maker may choose the best option (given risk-aversion,
company policies/situation, etc.) among many. As expected, for a given p value, P[Cmax]pro

increases as the variability is incremented.

Figure B.7: P[S Cmax]pro as function of general probability and variability level
for instance 14 considering the SIM-ILSMP algorithm.

Figure B.8 reveals that factors total n, m, f , and the interaction between f and m have statis-
tically significant and positive effects (when considering the others elements) on P[Cmax]pro. The
ranges related to total n and m are the highest. While the effects of f and total n seem lineal, the
effect of m draws a convex function. Focusing on the interaction, it can be concluded that the effect
of f is positive for any value of m, but P[Cmax]pro increases as m is incremented.

7. Conclusions
The manufacturing industry is becoming increasingly complex and competitive. Companies need
powerful optimization algorithms to design proper strategies that make them efficient in order to
remain in the market. Although there is an extensive literature on classical scheduling problems,
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Figure B.8: Effect of different instance characteristics on P[Cmax]pro considering
the SIM-ILSMP algorithm.

there is a lack of works on richer and more realistic problems. In this context, our work studies
a novel problem called Distributed Permutation Flowshop Scheduling Problem with Stochastic
processing Times. It consists in the manufacturing of a product that requires several jobs that
are performed in independent factories. The sub-problem of each factory can be modelled as a
Permutation Flowshop Scheduling Problem with Stochastic processing Times. All factories are
expected to finish at a given deadline or before. This problem describes several real-life applica-
tions where a company acquires intermediate products from others and assembles them to obtain
a final product with a higher added value.

Three algorithms are proposed to deal with this problem which aim to minimize a different
objective function: the makespan (ignoring the stochasticity), the expected makespan and the
makespan percentile given a probability p. This percentile is the value below which a given pro-
portion p of makespans fall when simulating scenarios, and can be interpreted as follow: if the
starting time in a factory is set to the deadline minus this percentile, the processing of the product
will be finished before or at the deadline with a probability p. While all algorithms rely on the
Iterated Local Search metaheuristic, the second and the third ones are simheuristic algorithms,
i.e., integrate Monte Carlo simulation techniques in order to deal with the stochasticity. Note that
the second algorithm is intended to provide good results on average whereas the third one aims to
guarantee that the manufacturing will be finished before or at the deadline with a given probabil-
ity. A set of computational experiments allow us to compare the algorithms in terms of makespan,
expected makespan and makespan percentile, and quantify these differences. It is proven that:
(i) gaps among algorithms for each measure increase as the level of stochasticity is incremented;
(ii) while there is a strong correlation between simheuristic algorithms (in the sense that solutions
having the best performance in terms of expected makespan are also of good quality regarding
makespan percentile, and the other way around), it is weaker between the first algorithm and any
of the others; (iii) in some cases the differences between the second and the third algorithm may
be significant, so a priority must be set by the decision-maker; (iv) the fact that the algorithms are
so fast enable the running of the third one considering different probabilities, which provides a
deeper insight of the relationship between probability (related to the risk-aversion, i.e., how sure
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decision-maker wants to be about finishing at a given deadline or before) and makespan percentile
(i.e., how much time he needs to start before the deadline); (v) the effect of using different seeds is
significant; and (vi) the makespan percentile linearly depends on the number of factories, jobs and
machines, and the interaction between number of factories and machines.
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Abstract
This research develops an original algorithm for rich portfolio optimization (ARPO), considering
more realistic constraints than those usually analysed in the literature. Using a matheuristic frame-
work that combines an iterated local search metaheuristic with quadratic programming, ARPO
efficiently deals with complex variants of the mean-variance portfolio optimization problem, in-
cluding the well-known cardinality and quantity constraints. ARPO proceeds in two steps. First,
a feasible initial solution is constructed by allocating portfolio weights according to the individual
return rate. Secondly, an iterated local search framework, which makes use of quadratic program-
ming, gradually improves the initial solution throughout an iterative combination of a perturbation
stage and a local search stage. According to the experimental results obtained, ARPO is very com-
petitive when compared against existing state-of-the-art approaches, both in terms of the quality
of the best solution generated as well as in terms of the computational times required to obtain it.
Furthermore, we also show that our algorithm can be used to solve variants of the portfolio opti-
mization problem, in which inputs (individual asset returns, variances and covariances) feature a
random component. Notably, the results are similar to the benchmark constrained efficient fron-
tier with deterministic inputs, if variances and covariances of individual asset returns comprise a
random component. Finally, a sensitivity analysis has been carried out to test the stability of our
algorithm against small variations in the input data.

Keywords: constrained portfolio optimization, metaheuristics, efficiency indices, financial
assets, iterated local search, biased randomization.

1. Introduction
Since Markowitz (Markowitz, 1952), mean-variance optimization has become the workhorse
model for portfolio selection. As discussed in Kolm et al. (2014), Markowitz’ s theory of portfolio
selection has had a major impact on academic research and on the industry of financial services2.
An important assumption underlying this model is that investors are concerned about both the ex-
pected returns from their investment and the risk from that investment, where risk is defined as the
variance of future returns. By optimally allocating appropriate weights to imperfectly correlated
risky assets, investors can reduce the variance of future portfolio returns and thus diversify their
investment.

Because of the non-negativity constraint on the level of investment in each asset, a closed
analytical solution is generally not feasible (Maringer, 2005), and optimization methods need to
be used to determine optimal portfolio weights. Since the mean-variance portfolio formulation,
an enormous amount of papers have been published extending or modifying the basic model in
three directions (Sawik, 2013a). The first path goes to simplification of the amount or the type
of input data (Bertsimas and Pachamanova, 2008). The second path focuses on the introduction
of an alternative measure of risk (Angelelli et al., 2007). The third path involves incorporation
of the additional criteria and constraints (Perez et al., 2007). Traditional optimization methods
include, among others, linear programming (Sharpe, 1967; Sharpe, 1971; Speranza, 1993; Sawik,

2Other recent studies on the theory of portfolio selection include Levy and Ritov (2011) and Leippold et al. (2011),
among many others. Mean-variance portfolio optimization has also provided practical solutions to defined contribution
pension schemes (Vigna, 2014), hedging mechanisms (Fujii and Takahashi, 2014), as well as to long-term fixed-income
investments (Zumbach, 2013)
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2012b; Mansini et al., 2014; Pae and Sabbaghi, 2014; Bruni et al., 2015),quadratic program-
ming (Wolfe, 1959; Pachamanova and Fabozzi, 2010; Sawik, 2012a) and stochastic programming
(Pınar, 2007). However, traditional optimization methods (notably, linear and quadratic program-
ming) are plagued by a number of caveats. A notable characteristic of these methods is that they
work only for problems that rely upon strict theoretical rules, albeit with a limited practical appeal
(Kolm et al., 2014). Unfortunately, the complexity of the mean-variance model for portfolio op-
timization increases dramatically upon adding additional constraints that are needed to provide a
rich representation of the investor’s portfolio choice, which reduces the efficiency of exact methods
in other than small-size instances. More recently, metaheuristic approaches have been proposed in
the literature as a way to surpass these limitations (Maringer, 2005; Ólafsson, 2006; Jourdan et al.,
2009; Blum et al., 2011; Boussaïd et al., 2013).

Accordingly, this paper focuses on a single-period version of the so-called constrained mean-
variance portfolio optimization problem. We will assume in this work that all assets are risky assets
(stocks). However, the solving approach introduced here could be also used for similar optimiza-
tion problems regarding commodities, futures, options and swaps. Moreover, as in Tobin (1958)
and Tobin (1965), our approach can be extended to include risk-free assets. The decision problem
involves minimizing the portfolio variance for a given required rate of return. Portfolio weights
add up to one and are constrained to take on non-negative values only. The latter assumption rules
out short sales and thus places a constraint on excessive risk taking of investors. Under the above
assumptions, the unconstrained efficient frontier (UEF) can be determined that gives, for each
user-specified expected return, the minimum associated risk of investment. However, more realis-
tic portfolio selection problems may involve additional constraints. First, justified on the grounds
of the investor’s preference and/or taste, the pre-assignments force some specific assets to be in-
cluded in the portfolio. Second, the quantity constraint keeps the quantity of each selected asset
within user-specified floor and ceiling values. The ceiling rules out excessive exposure to a specific
asset. The floor is introduced in order to rule out the possibility of tiny (and therefore dispropor-
tionately costly) fractions of assets to be included in the portfolio. Third, the cardinality constraint,
which imposes a floor and a ceiling on the number of assets included in the portfolio, accounts for
the fact that diversification benefits decrease when the portfolio features a huge number of assets.
When the above additional constraints are incorporated in the portfolio optimization problem, the
constrained efficient frontier (CEF) can be obtained. In the presence of these rich constraints,
the problem becomes NP-hard (Bienstock, 1996) and, thus, exact optimization methods quickly
lose their efficiency as the number of considered assets grows. The cardinality constraint also
implies that the mean-variance frontier can become discontinuous for certain values of expected
return (Chang et al., 2000). In summary, as pointed out by Jobst et al. (2001), the cardinality and
quantity constraints make large-size instances of the problem to be computationally intractable
using traditional optimization approaches. Because our research involves the CEF, we devise a
matheuristic algorithm for rich portfolio optimization (ARPO) that is based on the combination
of an iterated local search (ILS) metaheuristic (Lourenço et al., 2010), quadratic programming,
and biased randomization strategies (Juan et al., 2010; Juan et al., 2011b). The contribution of
this study is fourfold. First, we show that using a carefully devised matheuristic solver can sig-
nificantly reduce the minimum running time necessary to obtain near-optimal solutions. Indeed,
as it will be discussed later, the computing-time performance of ARPO is significantly better than
those of the solvers proposed by Schaerf (2002), Moral-Escudero et al. (2006), and Di Gaspero
et al. (2011). Second, in terms of the minimum average percentage loss, the CEF determined
by ARPO is approximately as close (or even closer in most cases) to the unconstrained efficient
frontier as in the aforementioned studies. Third, the adoption of an initial solution that is based on
a well-chosen criterion makes our solver more flexible when solving tight instances. The rate of
return on an individual asset is used as a main criterion to construct the initial solution. It is worth
noting that this criterion provides the best possible solution in terms of guarantying feasibility of
the required portfolio return –i.e., if this initial solution is not feasible, then the problem has no
feasible solution. By contrast, in most of the existing approaches, an initial solution is randomly
drawn and, hence, the feasibility of these initial solutions cannot be guaranteed. Fourth and fore-
most, our paper relaxes the widely held assumption that inputs (individual asset returns, variances
and covariances) are accurately measured and deterministic. In this regard, we show that ARPO
can be used to solve portfolio optimization problems, in which a number of scenarios comprising
uncertain returns, variances and covariances are studied and compared with the CEF-ARPO with
accurate inputs. As expected, the CEF-ARPO with uncertain individual asset returns manifests
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in a higher portfolio variance value for a given required rate of return. By contrast, no added
uncertainty to individual asset returns translates into no material change to the CEF-ARPO with
accurate inputs when variances and covariances between individual asset returns are subjected to
a random disturbance. Finally, We further carry out a stability analysis – that involves small vari-
ations in cardinality and quantity constraints – shows no material deviations from the benchmark
CEF in terms of the portfolio variance and computational time.

The remainder of this article is organized as follows. Section 2 provides a review of the liter-
ature related to the theme, also discussing the limitations of traditional methods and the need for
new approaches based on metaheuristics. Section 3 gives a formal description of the optimization
problem being considered, while Section 4 provides an overview of the ARPO algorithm, includ-
ing its pseudo-code for quick implementation. Section 5 introduces the numerical experiments
performed to test the algorithm performance, while the results are discussed in Section 6. Finally,
Section 7 highlights the main contributions of this work and outlines plans for future research.

2. Need for new metaheuristic-based approaches
An updated literature review on the portfolio optimization problem can be found in Kolm et al.
(2014). For this reason, our review focuses on analyzing the limitations of traditional approaches
and discussing about the need of new algorithms that consider richer constraints and large-scale
instances.

Traditional optimization methods feature a number of theoretical and practical limitations. A
notable characteristic of these methods is that they work only for problems that typically rely
upon strict deterministic rules. First, they can produce wrong solutions when the portfolio selec-
tion problem under consideration has one or more local maxima in addition to a global maximum
(Maringer, 2005). Second, the optimal solution may be disguised by the presence of estimation
errors in expected returns and variances that are used as inputs (Michaud, 1989; Kolm et al.,
2014). Third, the optimal solution is notoriously unstable, as small changes in inputs can cause
large changes in the optimal portfolio weights (Kallberg and Ziemba, 1984). Fourth, in terms
of out-of-sample performance, traditional optimization methods are sometimes no better that the
naïve portfolio, wherein all assets are allocated the same weight (DeMiguel et al., 2009). Along
similar lines, Jorion (1985) argues that traditional optimization models can generate accurate in-
sample forecasts, but their out-of-sample performance is generally weak. Fifth, a more realistic
portfolio selection problem is typically confined to a subset of assets, which are selected by im-
posing additional constraints. A number of restrictions are specified in an investment management
agreement between a client and a portfolio manager (Kolm et al., 2014). The client may impose
a limit on the number of assets in the portfolio (cardinality constraints) (Maringer and Kellerer,
2003). Further, the client may also ask the manager to invest or not to invest in certain industries
or companies. Therefore, the so-called pre-assignment constraints may be used that pre-assign
certain industries or assets in the portfolio. The client may further impose a discretionary limit
on exposure to certain industries or assets that aims at keeping the quantity of each asset within
a given range (quantity constraints). Another battery of constraints is dictated by the presence of
transaction costs (Kolm et al., 2014; Mansini et al., 2014). If one or more of these constraints are
introduced in portfolio optimization, indeterminacies in the efficient portfolio frontier may arise
further limiting the usefulness of traditional optimization methods.

In addition to the above theoretical limitations, traditional optimization methods have received
a weak support in practice. Whilst diversification is a dominant portfolio selection strategy that
contributes to lowering the risk of portfolio investment, in practice investors invest in fewer assets
due to a variety of reasons. First, the administration of large portfolios can be cumbersome (Di
Gaspero et al., 2011) or involve transaction costs in the form of bank and broker fees (Baule,
2010). Second, there is evidence that investors’ desire to diversify is limited (Blume and Friend,
1975; Guiso et al., 1996; Jansen and Dijk, 2002). Third, Maringer (2005) and Pachamanova and
Fabozzi (2010) argue that diversification can be achieved by investing in a small, yet well-chosen
sub-set of assets. Similarly, Evans and Archer (1968) assert that, in most practical situations,
investing in a portfolio comprising between 10 and 20 individual stocks can reasonably reduce
the risk of investment. By the same token, Sharpe (1967) suggests including between 15 and 20
assets to diversify away most diversifiable risk. Lloyd et al. (1981) find that that, quite often,
the optimal diversification should not use more than 27 assets in real-life investment. Moreover,
a smaller number of assets imply less number of parameters to be estimated by using sample
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information and, therefore, less room for estimation error (DeMiguel et al., 2009). Michaud (1989)
provides a detailed account of advantages and disadvantages of traditional optimization methods.
Specifically, he argues that these methods do not appeal to practitioners, since they do not make
investment sense and do not have investment value. Such financial irrelevance is exacerbated by
the fact that traditional optimization methods tend to over-weight assets with large returns and
small variances and under-weight assets with small returns and large variances (Nawrocki, 2000).
However, Kolm et al. (2014) maintain that the presence of theoretical and practical limitations does
not invalidate Markowitz’s theory of portfolio selection. Rather, traditional optimization methods
need to be modified and new methods need to be developed, so that the existing gap between
theory and practice can be bridged.

In order to address some of the theoretical and practical limitations of more classical
approaches, metaheuristic methods to portfolio optimization have emerged in the literature
(Maringer, 2005; Ólafsson, 2006; Jourdan et al., 2009; Blum et al., 2011; Boussaïd et al.,
2013). Metaheuristics emerged from simple heuristics that were proposed to address some of
the weaknesses inherited by traditional optimization methods. A heuristic is a common-sense and
experience-based solution search method. Sharpe (1967) proposes a simple heuristic based on the
beta as a risk measure to solve the portfolio selection problem. Elton et al. (1976) builds upon the
expected return-variance ratio to develop a heuristic that determines an optimal portfolio location
on the efficient frontier. More specifically, they construct a decision rule that determines whether
the asset will enter the portfolio and calculates its weight in the portfolio. A simplification to
the decision rule in Elton et al. (1976) is made by Nawrocki (1983). In particular, he derives a
heuristic that is based on the expected return-semi-variance ratio that assumes the average corre-
lation between securities to be zero. The use of the semi-variance as a measure of risk owes to the
notion that investors are more concerned about downside risk than upside risk. Nawrocki (1983)
demonstrates that the return-risk heuristic that uses the downside risk measure provides better in-
vestment performance than traditional optimization methods for long-term investments, albeit not
for short-term ones. A comparison between the return-risk heuristic and two traditional optimiza-
tion methods is performed by Nawrocki (2000). He finds that the return-risk heuristic produces
the highest return along with the highest standard deviation and the lowest semi-deviation among
the three portfolios. However, heuristics always return a local optimum, which may or may not be
global optimum. The use of these simple return-risk heuristics for the constrained portfolio opti-
mization problem has been discontinued in the last two decades. In fact, an increasing number of
studies have tended to focus on metaheuristics. Metaheuristic search methods are less restrictive
than traditional optimization methods and thus can be tailored to solve a particular optimization
problem that features a number of constraints. Metaheuristics have been employed in several
studies on portfolio optimization, such as Chang et al. (2000), Schaerf (2002), Crama and Schyns
(2003), Derigs and Nickel (2003), Armañanzas and Lozano (2005), Moral-Escudero et al. (2006),
Fernández and Gómez (2007), and Di Gaspero et al. (2011) to name just few. However, most of
these studies feature the use of random initialization to the portfolio selection problem or simply
downplay their strategies of portfolio initialization. Di Gaspero et al. (2011) are maybe an excep-
tion to this rule. In addition to the randomly generated initial solution, these authors propose two
simple heuristics. First, they construct the portfolio that produces the maximum possible return,
independently of the risk. Second, they use the final solution of the previously computed point on
the efficient frontier. The amount of processor time it takes for the local search algorithm to reach
the optimal solution on the efficient frontier may be shorter if a sensible simple heuristic is used to
construct an initial solution.

3. Problem definition
In this section, the constrained mean-variance portfolio optimization problem is described. Section
3.1 provides an overview of the parameters, variables and constraints used in the problem. Section
3.2 contains the mathematical model, which is based on the one provided in Di Gaspero et al.
(2011). For a comprehensive overview of the formulations of the portfolio selection problem, see
Di Tollo and Roli (2008). Finally, Section 3.3 summarizes the algorithm’s inputs and outputs.
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3.1 Problem parameters, variables, and constraints

A set of n assets is given by the market, A = {a1, a2, . . . , an}, where: (a) ∀i ∈ {1, 2, . . . , n}, ai has a
known expected return, ri ≥ 0; (b) ∀i, j ∈ {1, 2, . . . , n}, the pair (ai, a j) has a known expected risk
index, σi j = σ ji ≥ 0; (c) a user-provided value, R > 0, represents the minimum expected return
from the investment (expected return constraint); (d) a portfolio is a vector X = (x1, x2, . . . , xn)
such that each xi represents the fraction of the total wealth invested in asset ai, i.e., 0 ≤ xi ≤ 1
and

∑n
i=1 xi = 1; (e) ∀i ∈ {1, 2, . . . , n}, zi = 1 if xi > 0 (i.e., ai in portfolio) and zi = 0 otherwise;

(f) the number of assets in the portfolio,
∑n

i=1 zi, is bounded by user-defined values, kmin and kmax

(cardinality constraints); (g) the user can pre-select certain assets to be included in the portfolio,
i.e.: ∀i ∈ {1, 2, . . . , n}, pi = 1 if ai is pre-assigned (i.e., xi > 0) and pi = 0 otherwise (pre-
assignment constraints); and (h) for each asset ai, its associated quantity in the portfolio, xi, is
bounded by user-defined values, εi and δi (quantity constraints). The typical objective of this
problem is to select the optimal combination of fractions of each asset, xi, so that the overall
variance (risk) is minimized while satisfying all the aforementioned constraints.

3.2 The mathematical model

The mathematical model comprises an objective function and a set of constraints:

min f (x) =

n∑
i=1

n∑
j=1

σi jxix j (B.1)

subject to:

n∑
i=1

rixi ≥ R (B.2)

n∑
i=1

xi = 1 (B.3)

0 ≤ xi ≤ 1,∀i ∈ {1, 2, . . . , n} (B.4)

kmin ≤

n∑
i=1

zi ≤ kmax (B.5)

εizi ≤ xi ≤ δizi,∀i ∈ {1, 2, ..., n} (B.6)

0 ≤ εi ≤ δi ≤ 1,∀i ∈ {1, 2, ..., n} (B.7)

pi ≤ zi,∀i ∈ {1, 2, ..., n} (B.8)

zi ≤ Mxi,∀i ∈ {1, 2, ..., n} (B.9)

zi ∈ {0, 1},∀i ∈ {1, 2, ..., n} (B.10)

Equation (1) describes the investor’s objective function. The investor’s objective is to mini-
mize the portfolio variance. Equations (1) – (4) outline the basic (“unconstrained") optimization
problem and determine the UEF. Specifically, Equation (2) provides the lower bound for the in-
vestor’s required return. Equation (3) ensures that portfolio weights add up to unity. The purpose
of Equation (4) is to regulate leveraged positions. This equation is justified on the grounds of the
existing short selling regulations in a wide range of countries (Jain et al., 2013). A number of
realistic situations often require additional constraints that can be summarized by means of Equa-
tions (5) – (10). By solving the constrained optimization problem given by Equations (1) – (10)
the so-called constrained efficient frontier (CEF) is obtained. Equation (5) formulates cardinality
constraints. Equation (6) defines quantity constraints. The quantity of each asset ai is confined
to a given range. A minimum quantity of wealth invested in asset ai is given by εi. A maximum
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quantity of wealth invested in asset ai is given by δi. Both parameters εi and δi range from 0 to
1 (Equation (7)). Note that Equation (4) is redundant when Equations (6) and (7) are considered.
Equations (8) and (9) imply that certain assets are pre-assigned in the portfolio. In particular, given
a vector of n binary decision variables Z (Equation (10)) (where zi takes on value 1 if included in
the portfolio and 0 otherwise), and a binary vector P of pre-assignments (in which pi takes on
value 1 if pre-assigned and 0 otherwise), whenever asset ai is pre-assigned, it has to be included
in the portfolio (Equation (8)). In Equation (9), M is a large positive value such that Mxi ≥ 1
for all xi ≥ 0. Thus, if the quantity in the portfolio of asset ai, xi, is equal to 0, it means that
this asset is not included in the portfolio (i.e., zi = 0). Only a few papers have considered the use
of pre-assignment constraints. An example is Di Gaspero et al. (2011), who found that the CEF
obtained by pre-assigning a high-yield asset strictly dominates the CEF obtained by pre-assigning
a low-yield asset. In general, they find an inverse relation between the average percentage loss
(with regard to the UEF) and the return value. However, they do not report computing times for
the CEF with pre-assignment constraints, which makes impossible to complete a fair comparison
with their results.

3.3 Algorithm inputs and outputs

According to the problem description, the output of the algorithm will be an assets-investment
plan (solution), X = (x1, x2, . . . , xn), satisfying all the aforementioned constraints and with the
lowest possible risk, f (X). Similarly, the inputs of the algorithm are the following ones: (a) for
each asset ai ∈ A, the following values: ri, εi, and δi; (b) the matrix of co-variances: {σi j/i ≤ j};
(c) the user-defined minimum expected return: R > 0; and (d) the boundaries on the number of
assets to include: kmin and kmax. In order to perform a fair comparison with some previous works
and existing benchmarks (Chang et al., 2000; Schaerf, 2002; Armañanzas and Lozano, 2005;
Moral-Escudero et al., 2006; Fernández and Gómez, 2007), in this paper we will not consider
pre-selected assets. However, due to its flexibility, the ARPO algorithm could be adapted without
too much effort to deal with this constraint too.

4. The ARPO metaheuristic
The ARPO matheuristic combines three main components: (a) an ILS framework (Lourenço et
al., 2010); (b) the use of a biased randomization process (Juan et al., 2010; Juan et al., 2011b)
that guides the generation of new ‘promising’ solutions (perturbation stage); and (c) the use of a
quadratic programming solver that, given a current portfolio, optimizes the levels of investment of
each asset (local search). ILS is a conceptually simple yet powerful metaheuristic that has proven
to be very efficient in solving complex combinatorial optimization problems. The underlying idea
behind ILS is to narrow the search for candidate local optimal solutions returned by some embed-
ded algorithm, typically a local search heuristic. Burke et al. (2010) show that ILS obtains the best
average performance among a set of selected metaheuristic approaches in three classical combi-
natorial optimization problems: bin packing, permutation flow shop, and personnel scheduling.
The authors also emphasize two main factors for its success: (i) an excellent balance between ex-
ploration and exploitation by “systematically combining a perturbation followed by local search";
and (ii) its relative simplicity and the reduced number of parameters required, factors that facilitate
its quick implementation in practical applications.

Pseudo-code 1 shows the main procedure of the ARPO algorithm. Apart from the inputs
defining the instance, also the maximum computing time allowed, maxTime, and an additional
parameter, beta, are passed to the procedure –the use of this additional parameter will be discussed
later.

The ARPO procedure starts by generating a ‘dummy’ initial solution (line 01). This initial
solution is constructed by including the assets with the highest return levels so that it provides the
highest possible expected return while satisfying all the remaining constraints. This way, if the
expected return provided by this solution does not reach the minimum return threshold imposed
by the investor, then the problem will be infeasible since no other solution will do it (lines 02-
04). Notice, however, that it is also likely to obtain a high risk associated with this initial solution
–hence the name dummy.

At this point, a quick local search (lines 06-07) is applied to this initial solution in order to
improve it without losing its feasibility. This local search uses quadratic programming in order to
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Algorithm 1 Main procedure of the ARPO algorithm (ILS framework).

procedure ARPO(inputs, minReturn, maxTime, beta)
1: initSol← genInitSol(inputs) . generate sol with highest possible return rate
2: if {getReturn(initSol) < minReturn} then
3: return unfeasible . unfeasible problem
4: end if
5: genFriendshipLists(inputs) . generate a sorted list of “friends" for each asset
6: baseSol← QPOptimize(initSol, minReturn) . optimize levels for each asset in portf.
7: baseSol← cleanSol(baseSol) . delete from portf. assets with level = 0
8: bestSol← baseSol . initialize bestSol
9: elapsedTime← 0

10: credit← 0 . used in the acceptance criterion
11: while {elapsedTime < maxTime} do . iterated local search
12: newSol← perturbateSol(baseSol, inputs, beta) . destruction-construction stages
13: if {getMaxReturnAsset(newSol) < minReturn} then . fix solution if unfeasible
14: newSol← repairSol(newSol, inputs)
15: end if
16: if {newSol is in cache} then . already optimized levels
17: newSol← loadFromCache(newSol) . use optimized levels saved in cache
18: else . apply a local search based on quadratic programming optimization
19: newSol← QPOptimize(newSol, minReturn) . optimize levels f.e. asset in portf.
20: newSol← cleanSol(newSol) . delete from portf. assets with level = 0
21: saveInCache(newSol)
22: end if
23: delta← getRisk(newSol) - getRisk(baseSol) . newSol improves baseSol
24: if {delta < 0} then
25: credit← -delta
26: baseSol← newSol
27: if {getRisk(newSol) < getRisk(bestSol)} then . newSol improves bestSol
28: bestSol← newSol
29: end if
30: else{delta > 0 and delta ≤ credit} . acceptance criterion
31: credit← 0
32: baseSol← newSol
33: end if
34: update elapsedTime
35: end while
36: return bestSol

end procedure

optimize the investment level assigned to each asset in the current portfolio (solution). The im-
proved solution will be considered both as the current ‘base’ solution and the ‘best-so-far’ solution
(line 08). Now, the ARPO procedure resumes by starting an iterative improvement process (lines
11-35). As in most ILS frameworks, this process comprises three stages: (a) the perturbation stage
(lines 12-15), which applies strong changes to the current base solution in order to increase explo-
ration of the space of solutions; (b) the local search stage (lines 16-22), which tries to perform a
quick improvement of the current base solution by applying some operators –in our case, it is based
on the combined use of quadratic programming and a cache memory; and (c) the acceptation stage
(lines 23-33), which in our case makes use of a credit-based system in order to allow accepting,
under certain restrictive conditions, a new base solution even when it offers a slightly higher risk
than the current base solution –this ‘degradation’ of the base solution is allowed in order to reduce
the probabilities of getting trapped in a local minimum during the searching process.

As regards as the perturbation stage (Pseudo-code 2), this follows a destruction - reconstruc-
tion process. First, this process takes as an input the current base solution. Second, the current
base solution is partially destroyed according to some random criterion –in our case, a randomly
selected number of assets are deleted from the portfolio– (lines 01-09). Third, the destroyed solu-
tion is re-constructed (completed) by adding new assets to the portfolio (lines 10-19).
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Algorithm 2 Perturbation procedure to generate new ‘promising’ solutions.

procedure perturbateSol(baseSol, inputs, beta)
1: newSol← copySol(baseSol)

. 1. Remove a random number of randomly selected assets (destruction stage)
2: nAssetsInSol← getNAssetsInSol(newSol)
3: if {nAssetsInSol > 1} then
4: nAssetsToRemove← genRandomNumber(1, nAssetsInSol - 1)
5: for {i = 1 to nAssetsToRemove} do
6: asset← selectRandomAsset(newSol)
7: newSol← removeAsset(asset, newSol)
8: end for
9: end if

. 2. Randomly select one asset in current portf. to add several of its “friends"
10: asset← getRandomAsset(newSol)

. 3. Use biased rand. to add friendly assets until reaching kMax (re-construction stage)
11: while {size(newSol) < getKMax(inputs)} do
12: listOfFriendlyAssets← getFriendlyList(asset) . Sorted list of friendly assets
13: do . Randomly select a position using a Geometric(beta) prob. distribution
14: position← biasedRandom(size(listOfFriendlyAssets), beta)
15: newAsset← getAsset(listOfFriendlyAssets, position)
16: while {newAsset in newSol} . Repeat until newAsset not in current portf.
17: newSol← addAsset(newAsset, newSol)
18: asset← newAsset
19: end while
20: return newSol

end procedure

During this re-construction process, the selection of each new asset added to the portfolio is
done following a ‘friendship’ criterion, i.e.: although the selection of the new asset is random, this
new asset will be most likely selected among those assets that are highly compatible –i.e., showing
a low covariance value– with the last asset added to the portfolio. This special behavior is attained
throughout the use of a biased randomization selection process (line 14), which makes use of a
geometric distribution of parameter beta (0 < beta < 1). More details on biased randomization
processes can be found in Juan et al. (2010) and Juan et al. (2011b).

Finally, there might be times in which the newly generated solution does not fulfil the minimum
return requirement. In those cases, a ‘repair’ stage is used to swap a randomly selected asset in the
current portfolio (lines 01 – 04) by a high-return asset not currently in the portfolio (lines 05 – 10)
(Pseudo-code 3).

Algorithm 3 Repair procedure to make newly generated solutions feasible.

procedure perturbateSol(baseSol, inputs, beta) procedure repairSolution(sol, inputs)
1: unusedAssets← getAssetsNotInSol(sol, inputs) . Consider assets not in portf.
2: unusedAssets← shuffle(unusedAssets) . Random sorting of the unused assets list
3: assetA← getRandomAsset(sol) . Select a random assetA in current portf.
4: sol← deleteAsset(assetA, sol) . Delete assetA from current portf.
5: for {each asset assetB in unusedAssets} do . Search unused assetB with high return
6: if {getReturn(assetB) ≥ minReturn} then
7: sol← addAsset(assetB, sol) . Add assetB to current port.
8: return sol
9: end if

10: end for
11: end procedure
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5. Numerical experiments
The ARPO algorithm has been implemented as a Java application. Being an interpreted language,
Java-based programs do not execute as fast as other compiled programs, such as those developed
in C or C++. Nevertheless, Java permits a rapid, platform-independent, development of object-
oriented prototypes that can be used to test the potential of an algorithm. Also, using Java allowed
to integrate our code with ojAlgo (http://ojalgo.org), an open-source quadratic programming
solver developed in Java. A standard personal computer, Intel Core i5 CPU at 3.2 GHz and 4 GB
RAM with Linux Ubuntu, was used to perform all tests.

In this research, we experiment with two sets of stock market data already used in previ-
ous studies. The first set of data was retrieved from the repository ORlib, and it can be down-
loaded from the following website: http://people.brunel.ac.uk/~mastjjb/jeb/orlib/
portinfo.html. These instances were proposed by Chang et al. (2000) and were studied by
Schaerf (2002), Armañanzas and Lozano (2005), Moral-Escudero et al. (2006), Fernández and
Gómez (2007), and Di Gaspero et al. (2011). The data set comprises constituents of five stock
market indices, Hang Seng (Hong Kong), DAX 100 (Germany), FTSE 100 (United Kingdom),
S&P 100 (United States) and NIKKEI 225 (Japan). These indices were extracted from DataS-
tream and are measured at weekly frequency spanning the period from March 1992 to September
1997.

Following Di Gaspero et al. (2011) we divided the portfolio frontier into 100 equidistant points
on the vertical axis that represents the user-defined rate of expected portfolio return. Although the
algorithm has been designed for the constrained case, it is initially tested on the unconstrained
mean-variance optimization problem. The test results show that our solver is able to return so-
lutions that are overlapping with the unconstrained efficient frontier (UEF) published at the OR
Library, which contributes to validate the effectiveness of our approach.

Next, we execute the algorithm on a constrained mean-variance frontier (the algorithm is exe-
cuted 30 times and both the best and average results are recorded). The maximum time of execu-
tion for each instance is 20 seconds. The benchmark constraints are those imposed by the previous
authors. Essentially, the constraints involve the following conditions: εi = 0.01, δi = 1, kmin = 1,
kmax = 10, ∀i ∈ {1, 2, . . . , n}. As in the aforementioned studies, pre-assignment constraints are
not considered in these experiments, i.e., pi = 0, ∀i ∈ {1, 2, . . . , n}. Notice that, despite other
authors claim that their approaches can solve the constrained problem with all the aforementioned
constraints, this fact is not clearly showed neither in the description of their methods nor in the
benchmarks they solve, since the parameter values they use in their benchmarks do not seem to
impose a real challenge for their algorithms in terms of tight constraints.

6. Discussion of results
CEF-ARPO with certain inputs

Table B.1 shows the values of average percentage loss (APL) and associated computational times.
Notice that, in terms of the minimum APL, our ARPO algorithm outperforms on Instances 2 –
5 the hybrid solvers proposed by Di Gaspero et al. (2011), which comprise combinations of first
descent and steepest descent with quadratic programming (FD+QP and SD+QP, respectively).
With regard to the first instance, our APL is greater, but this result may emanate from rounding
errors. In terms of computational time, ARPO shows a superior performance relative to that of
the solver’s SD+QP and is comparable or better than the solver’s FP+QP performance. We next
contrast our results with the results reported by Schaerf (2002) and Moral-Escudero et al. (2006).
Although the minimum APL provided by ARPO is slightly superior to the hybrid solver combining
a genetic algorithm (GA) and quadratic programming (QP) in Moral-Escudero et al. (2006), on
the remaining instances the minimum APL accomplished by ARPO is lower. Furthermore, our
computational times are considerably lower than those reported by the tabu search (TS) in Schaerf
(2002), and by GA+QP in Moral-Escudero et al. (2006).

The UEF (as provided in the ORlib) and CEF (as provided by ARPO) for the five stock market
indices are compared in Panels A – E of Figure B.1.

Panel A of Figure B.1 depicts the CEF for the Hang Seng (Hong Kong) stock market. A visual
inspection suggests that for the Hang Seng stock index the CEF is hardly distinguishable from the
UEF. However, as the rate of expected return increases, along with increasing risk of investment,
the CEF tends to diverge relatively less from the UEF. In particular, at the higher end of the CEF

http://ojalgo.org
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html
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Panel A – Hang Seng Stock Market (Hong
Kong)

Panel B – DAX 100 Stock Market
(Germany)

Panel C – FTSE 100 Stock Market (UK) Panel D – S&P 100 Stock Market (US)

Panel E – NIKKEI Stock Market (Japan)

Figure B.1: UEF and CEF-ARPO
Notes: Figure B.1 illustrates the UEF and the CEF-ARPO for the five instances (Panel A – Hang

Seng, Panel B – DAX 100, Panel C – FTSE 100, Panel D – S&P 100 and Panel E – NIKKEI
225). The UEF is represented with a black solid line, whereas the CEF-ARPO is represented with
a dash red line. Portfolio variance is depicted on the horizontal axis, whereas the required rate of
return is depicted on the vertical axis. The minimum average percentage loss is 0.00399% for the
Hang Seng portfolio, 2.45403% for the DAX 100 portfolio, 1.88340% for the FTSE100 portfolio,

4.65095% for the S&P 100 portfolio and 0.20189% for the NIKKEI 225 portfolio.
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Table B.2: Hang Seng Stock Market (Hong Kong).

Curve Position Required Return UEF-Variance ARPO-Variance APL Time (s)
20 0.002861137 0.0006424068 0.0006424114 0.0007160572 4.212
40 0.002941981 0.0006428092 0.0006429074 0.0152766949 2.74
60 0.003022827 0.0006434196 0.0006437456 0.0506667811 1.978
80 0.003103671 0.0006442382 0.0006443922 0.0239042019 3.759
100 0.003184516 0.0006452648 0.0006454721 0.0321263456 1.226
120 0.003265361 0.0006464996 0.0006467783 0.0431090754 1.917
140 0.003346206 0.0006479424 0.0006483109 0.0568723393 2.012
160 0.003427051 0.0006495933 0.0006499731 0.0584673518 2.686
180 0.003507896 0.0006514524 0.0006516646 0.0325733699 1.491
200 0.003588740 0.0006535208 0.0006536148 0.0143836279 4.464

1820 0.010137479 0.0035773525 0.0035773526 0.0000027954 0.004
1840 0.010218315 0.0036907539 0.0036907539 0.0000000000 0.009
1860 0.010299151 0.0038090873 0.0038090873 0.0000000000 0.001
1880 0.010379986 0.0039323522 0.0039323522 0.0000000000 0.009
1900 0.010460822 0.0040605480 0.0040605480 0.0000000000 0.001
1920 0.010541657 0.0041936758 0.0041936758 0.0000000000 0.003
1940 0.010622493 0.0043317350 0.0043317350 0.0000000000 0.010
1960 0.010703329 0.0044747255 0.0044747255 0.0000000000 0.001
1980 0.010784164 0.0046226475 0.0046226476 0.0000021633 0.003
2000 0.010865000 0.0047755010 0.0047755010 0.0000000000 0

Notes: Table B.2 summarizes the UEF and the CEF-ARPO for the Hang Seng portfolio for 10 initial
points and 10 last values of returns. In column 2, values of the required rate of return are provided. In
column 3, values of the UEF solution (portfolio variance) are provided. In column 4, values of the CEF-
ARPO solution (portfolio variance) are provided. In column 5, values of the minimum average percentage
loss are reported. In column 6, computational times are reported.

Table B.3: DAX 100 Stock Market (Germany).

Curve Position Required Return UEF-Variance ARPO-Variance APL Time (s)
20 0.002175078 0.0001368925 0.0001481318 0.0821031101 1.5320
40 0.002252039 0.0001370119 0.0001483250 0.0825702001 0.2180
60 0.002329001 0.0001372175 0.0001484472 0.0818386868 0.3910
80 0.002405963 0.0001375210 0.0001485474 0.0801797544 0.8330
100 0.002482925 0.0001379123 0.0001486181 0.0776275938 1.8510
120 0.002559887 0.0001383842 0.0001487104 0.0746197904 0.8630
140 0.002636849 0.0001389376 0.0001490367 0.0726880269 0.5330
160 0.00271381 0.0001395866 0.0001495985 0.0717253662 0.5620
180 0.002790771 0.0001403353 0.0001503958 0.0716890191 0.9450
200 0.002867732 0.0001411837 0.0001514287 0.0725650341 1.2600

1820 0.009101412 0.0008965075 0.0008965075 0.0000000000 0.0000
1840 0.009178374 0.0009614987 0.0009614987 0.0000000000 0.0000
1860 0.009255336 0.0010349696 0.0010351065 0.0001322744 0.0000
1880 0.009332288 0.0011354764 0.0011354764 0.0000000000 0.0000
1900 0.009409241 0.0012881113 0.0012881113 0.0000000000 0.0000
1920 0.009486192 0.0014930083 0.0014930083 0.0000000000 0.0000
1940 0.009563145 0.0017501725 0.0017501725 0.0000000000 0.0000
1960 0.009640096 0.0020595971 0.0020595971 0.0000000000 0.0000
1980 0.009717049 0.0024212903 0.0024212904 0.0000000413 0.0000
2000 0.009794000 0.0028352430 0.0028352430 0.0000000000 0.0000

Notes: Table B.3 summarizes the UEF and the CEF-ARPO for the DAX 100 portfolio for 10 initial points
and 10 last values of returns. In column 2, values of the required rate of return are provided. In column
3, values of the UEF solution (portfolio variance) are provided. In column 4, values of the CEF-ARPO
solution (portfolio variance) are provided. In column 5, values of the minimum average percentage loss
are reported. In column 6, computational times are reported.
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Table B.4: FTSE 100 Stock Market (United Kingdom).

Curve Position Required Return UEF-Variance ARPO-Variance APL Time (s)
20 0.002420865 0.0001985238 0.0002060320 0.037820 24.1290
40 0.002479328 0.0001986154 0.0002061982 0.038178 4.7360
60 0.002537792 0.0001987642 0.0002065801 0.039322 21.8640
80 0.002596256 0.0001989714 0.0002066068 0.038374 16.4550
100 0.00265472 0.0001992442 0.0002068282 0.038064 25.5930
120 0.002713184 0.0001995842 0.0002073013 0.038666 13.9090
140 0.002771647 0.0001999959 0.0002080261 0.040152 26.5100
160 0.002830111 0.0002004890 0.0002084997 0.039956 18.1160
180 0.002888575 0.0002010665 0.0002089129 0.039024 15.0670
200 0.002947039 0.0002017309 0.0002095566 0.038793 17.4660

1820 0.007682888 0.0010170776 0.0010170776 0.000000 1.3320
1840 0.007741359 0.0010578347 0.0010581058 0.000256 0.5650
1860 0.00779983 0.0011002537 0.0011003206 0.000061 11.5260
1880 0.007858284 0.0011455465 0.0011455466 0.000000 13.3580
1900 0.007916738 0.0011954685 0.0011954685 0.000000 3.9120
1920 0.007975191 0.0012500871 0.0012500871 0.000000 28.7840
1940 0.008033645 0.0013094021 0.0013094021 0.000000 27.6720
1960 0.008092098 0.0013734126 0.0013734126 0.000000 26.4330
1980 0.008150551 0.0014421206 0.0014423115 0.000132 19.7400
2000 0.008209000 0.0015166351 0.0015166351 0.000000 0.0000

Notes: Table B.4 summarizes the UEF and the CEF-ARPO for the FTSE 100 portfolio for 10 initial
points and 10 last values of returns. In column 2, values of the required rate of return are provided.
In column 3, values of the UEF solution (portfolio variance) are provided. In column 4, values of the
CEF-ARPO solution (portfolio variance) are provided. In column 5, values of the minimum average
percentage loss are reported. In column 6, computational times are reported.

Table B.5: S&P 100 Stock Market (United States).

Curve Position Required Return UEF-Variance ARPO-Variance APL Time (s)
20 0.002005874 0.0001214699 0.000134226 0.105014 19.1900
40 0.002078497 0.0001216461 0.000134619 0.106648 26.0990
60 0.002151121 0.0001219398 0.000135389 0.110297 20.5970
80 0.002223742 0.0001223689 0.000136242 0.113373 17.2350
100 0.002296365 0.0001229290 0.000137073 0.115057 22.1810
120 0.002368987 0.0001236105 0.000138075 0.117013 23.3780
140 0.00244161 0.0001244126 0.000139442 0.120799 22.3860
160 0.002514232 0.0001253355 0.000140429 0.120421 19.7720
180 0.002586853 0.0001263852 0.000141311 0.118098 26.2040
200 0.002659475 0.0001275649 0.000142711 0.118735 16.2610

1820 0.008541599 0.0012695539 0.001269554 0.000000 0.6500
1840 0.008614195 0.0013438638 0.001343864 0.000000 0.3990
1860 0.008686789 0.0014260901 0.00142609 0.000000 2.2590
1880 0.008759385 0.0015162347 0.001516235 0.000000 0.1940
1900 0.008831981 0.0016142967 0.001614297 0.000000 14.5950
1920 0.008904579 0.0017205530 0.001720553 0.000000 0.1340
1940 0.008977215 0.0018772540 0.001877254 0.000000 19.9680
1960 0.009049852 0.0021147413 0.002114741 0.000000 22.3300
1980 0.009122459 0.0024387539 0.002438754 0.000000 0.0070
2000 0.009195000 0.0029387241 0.002938724 0.000000 0.0000

Notes: Table B.5 summarizes the UEF and the CEF-ARPO for the S&P 100 portfolio for 10 initial
points and 10 last values of returns. In column 2, values of the required rate of return are provided.
In column 3, values of the UEF solution (portfolio variance) are provided. In column 4, values of the
CEF-ARPO solution (portfolio variance) are provided. In column 5, values of the minimum average
percentage loss are reported. In column 6, computational times are reported.
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Table B.6: NIKKEI Stock Market (Japan).

Curve Position Required Return UEF-Variance ARPO-Variance APL Time (s)
20 0.0001078963 0.0003046821 0.0003048207 0.000455 0.0340
40 0.0001469218 0.0003048095 0.0003049299 0.000395 0.0820
60 0.0001859471 0.0003050116 0.0003051331 0.000398 0.0850
80 0.0002249721 0.0003052881 0.0003054303 0.000466 0.0660

100 0.0002639974 0.0003056390 0.0003058216 0.000597 0.1000
120 0.0003030223 0.0003060641 0.0003063069 0.000793 0.1930
140 0.0003420475 0.0003065635 0.0003068863 0.001053 0.1930
160 0.0003810730 0.0003071384 0.0003075597 0.001372 0.0540
180 0.0004200985 0.0003077930 0.0003083271 0.001735 0.1150
200 0.0004591229 0.0003085244 0.0003091886 0.002153 0.0400

1820 0.0036202364 0.0007178707 0.0007178707 0.000000 0.0320
1840 0.0036592244 0.0007585282 0.0007585282 0.000000 0.0210
1860 0.0036982126 0.0008065920 0.0008065920 0.000000 0.0520
1880 0.0037372032 0.0008621079 0.0008621079 0.000000 60.6030
1900 0.0037762020 0.0009261274 0.0009261274 0.000000 0.0050
1920 0.0038152008 0.0009990847 0.0009990847 0.000000 0.0050
1940 0.0038541986 0.0010809831 0.0010809831 0.000000 85.8630
1960 0.0038931362 0.0011966840 0.0011966841 0.000000 0.0010
1980 0.0039320680 0.0013855561 0.0013855562 0.000000 0.0010
2000 0.0039710000 0.0016485224 0.0016485224 0.000000 0.0000

Notes: Table B.6 summarizes the UEF and the CEF-ARPO for the NIKKEI 225 portfolio for 10
initial points and 10 last values of returns. In column 2, values of the required rate of return are
provided. In column 3, values of the UEF solution (portfolio variance) are provided. In column
4, values of the CEF-ARPO solution (portfolio variance) are provided. In column 5, values of the
minimum average percentage loss are reported. In column 6, computational times are reported.

that features rewarding but risky portfolios, the expected rate of return can be attained with fewer
assets.

Panel B of Figure B.1 depicts the CEF for the DAX 100 (Germany) stock market. Visual
inspection indicates that for the DAX 100 stock index the CEF diverges from the UEF at the lower
end of expected return, more specifically, for R < 0.006. As the rate of expected return increases,
the CEF becomes indistinguishable from the UEF. Notably, portfolios with an expected return at
the lower end of the CEF tend to be riskier (i.e., with higher portfolio variance) than portfolios on
the UEF.

Panel C of Figure B.1 depicts the CEF for the FTSE 100 (United Kingdom) stock market.
It indicates that for the FTSE 100 stock index –similarly to the DAX 100 stock index– the CEF
departs from the UEF at the lower end of expected return. As the rate of expected return increases,
the CEF converges to the UEF. Noteworthy, portfolios featuring an expected return at the lower
end of the CEF tend to be riskier (i.e., with higher portfolio variance) than portfolios on the UEF.
At the higher end of the CEF that features rewarding but risky portfolios, the expected rate of
return can be achieved with fewer assets.

Panel D of Figure B.1 depicts the CEF for the S&P 500 (United States) stock market. It
indicates that for the S&P 500 stock index –as with the DAX 100 and FTSE 100 stock indices–
the CEF departs from the UEF at the lower end of expected return. As the rate of expected return
increases, the CEF becomes visually indistinguishable from the UEF. Portfolio investments with
an expected return at the lower end of the CEF involve relatively more risk than portfolios with
the same expected return located on the UEF.

Finally, Panel E of Figure B.1 depicts the CEF for the NIKKEI (United States) stock market.
It indicates that for the NIKKEI stock index, the relation between the CEF and the UEF follows
a pattern similar to the Hang Seng stock index. Specifically, although the CEF departs from the
UEF at the lower end of expected return, the difference is visually very small. As the rate of
expected return increases, the CEF gradually approaches the UEF. At the higher end of the CEF
that includes portfolios with high expected return and high risk, the APL approaches to zero.

To evaluate differences between the UEF and the CEF-ARPO, we also provide the portfolio
weights for Instance 3 (FTSE 100), where the required rate of return is 0.0041572635, which is an
approximately central value within the overall of returns. This instance was executed twice with
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Figure B.2: Portfolio Weights
Notes: The horizontal axis indexes assets, whereas the vertical axis measures the weight of an
asset.

the same seed, where the maximum time of execution was 20 seconds. The UEF considered all
assets with weights ranging from 0 to 1 inclusively. The CEF was constrained to the minimum of 1
and the maximum of 10 assets, with portfolio weights ranging from 0.01 to 1. The minimum values
of the portfolio variance were 2.3872556507357437E-4 (the UEF) and 2.5098945345432527E-4
(CEF-ARPO). The percentage loss is 5.137%. The UEF selected 26 assets (the remaining assets
were allocated zero weight), whereas the CEF portfolio selected 10 assets, the upper bound of the
cardinality constraint. The 10 assets are the subset of assets selected in the UEF portfolio, where
assets indexed with 61, 36 and 52 carry the largest weight in the CEF portfolio.

CEF-ARPO with uncertain inputs

Key to our research is a widely held assumption –in line with most of the existing literature –that
the returns vector and the variance and covariance matrix are well-know and deterministic; i.e.,
they are known with certainty. Whilst this assumption is analytically and computationally conve-
nient, its practical appeal may be limited. In order to account for this practical restraint, and to
test if our algorithm is robust to small changes in the returns vector and the variance-covariance
matrix, we use the data set of Hang Seng stock market to perform computational experiments that
involve some degree of uncertainty in the first and second moments. We consider three different
scenarios. In Scenario 1 (S1), a random disturbance term distributed with a normal distribution
with mean 0 and standard deviation 0.00015 is added to each return of the original instance. Un-
der this scenario, an original return of 0.00350406 (which is the mean return of the instance) now
takes on values within the interval of 0.00350406±2·0.00015=(0.00320406,0.00380406) with the
probability of 95.45%, which can be deemed a realistic interval. In Scenario 2 (S2), a random dis-
turbance term distributed with a normal distribution with mean 0 and standard deviation 0.000025
is added to each element of the covariance matrix. Under this scenario, the original covariance of
0.00113094 now takes on values within the interval of (0.00108094,0.00118094) with the prob-
ability of 95.45%. In Scenario 3 (S3), Scenarios 1 and 2 are jointly simulated. The results are
compared against Scenario 0 (S0), which depicts the CEF–ARPO with kmin = 1, kmax = 10, and
portfolio weights confined between 0.01 and 1.

Table B.7 reports the portfolio variance and the APL loss relative to S0 of the three scenarios,
for 10 initial and 10 last portfolio returns on the CEF-ARPO. The average APLs for the three
scenarios are 3.324%, -0.109% and 3.274%, respectively (See also Table B.10, where the average
APL, average computational times and the number of infeasible rates of return are summarized).
Thus our algorithm delivers a reasonable-quality solution also in an environment that allows for
inaccurate inputs. However, these results should be interpreted with caution. Importantly, it should
be recognized that S1 – S3 amount to different optimization problems. A relative larger APL for
S1 may imply that it is more costly – in terms of the portfolio variance – to attain a given portfolio
return when individual asset returns are randomized than when they are not. The induced random
variation in individual asset returns effectively boosts the corresponding elements of the variance
and covariance matrix. This leads to a larger overall portfolio variance for a given portfolio return.
As a result, portfolios on the higher end of the efficient frontier become more costly and even
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infeasible (See also Table 10). In S2, where individual variances and covariances are randomized,
the resulting CEF-ARPO remains very similar to the CEF-ARPO, as manifested by the average
APL. Indeed, in contrast to S1, adding a normally distributed random disturbance term to vari-
ances and covariances between individual assets does not appear to alter the optimal solution. For
portfolio on the lower end of the efficient frontier, the APL takes on low positive values; how-
ever, for more rewarding and riskier portfolios with feasible returns, the solution is better than for
the CEF-ARPO, suggesting further diversification opportunities for investors in high-yield portfo-
lios. Finally, S3 shows combined effects of S1 and S2. Next, we carry out a stability analysis of
the ARPO algorithm to ratify our main findings. The stability analysis consists of six scenarios
(numbered successively) as follows, which are evaluated against S0.

• Scenario 4 (S4): the minimum number of assets in the portfolio is increased from 1 to 2.

• Scenario 5 (S5): the maximum number of assets in the portfolio is decreased from 10 to 9.

• Scenario 6 (S6): Scenarios S4 and S5 are jointly considered.

• Scenario 7 (S7): the minimum quantity for all assets is increased from 0.01 to 0.015.

• Scenario 8 (S8): the maximum quantity for all assets is decreased from 1 to 0.995

• Scenario 9 (S9): Scenarios S7 and S8 are jointly considered.

Observe that in Scenarios S4 – S9 the vector of asset returns and the variance and covariance
matrix are calculated from historical data and, in contrast to Scenarios S1 – S3, do not involve
any random inputs. Table 9 presents the calculated CEF-ARPO variances and APLs for Scenarios
S4 – S6. The calculations show that increasing the lower bound of the cardinality constraint does
not have any effect on APLs or computational times. The APL is always 0 irrespectively of the
CEF-ARPO position, including the higher end of the CEF. Similarly, decreasing the number of
assets from 10 to 9 under S5 poses no significant challenge to portfolio diversification, since the
resulting APLs – mainly at the lower end of the CEF – are very low. Scenario S6 that combines
the two preceding scenarios shows some insignificant departures from S0, essentially due to the
lower maximum number of assets that can be included in a portfolio.

Finally, Scenarios S7 – S9 show that small variations in the minimum and maximum quantities
are followed by similarly unimportant changes in the CEF. Indeed, an increase in the minimum
weight attributed to each asset leads to the average APL of 0.013% (S7 and S9) relative to the
optimal solution under S0 (See also Table B.10). However, a decrease in the maximum weight does
not appear to alter the optimal solution. All in all, additional computational experiments indicate
that the ARPO algorithm shows a reasonable level of stability when dealing with constrained
portfolio optimization problems.

7. Conclusions and future work
In this paper we propose the ARPO algorithm to solve the constrained mean-variance optimization
problem. The specific constraints we use include the cardinality and quantity constraints. The
ensuing complexity of the problem rules out closed-form solutions and conventional optimization
methods. Specifically, the cardinality and quantity constraints render the problem computationally
expensive to solve large-scale instances. Therefore, the use of metaheuristics –that handle such
problems more flexibly and efficiently– is needed. The ARPO algorithm first generates an initial
feasible solution. Then, this solution is iteratively improved using an iterated local search process
which combines quadratic programming with a cache of previously computed solutions. The
quality of the best-found solution is evaluated using the average percentage loss relative to the
unconstrained efficient frontier.

According to the computational experiments, our solver outperforms –in terms of average
percentage loss– most of the recent state-of-art approaches used in the literature, which tend to be
more complex and difficult to implement in practical applications. In addition, the running time
for our solver is notably shorter than the solvers used in other recent studies.

In future research, tighter cardinality and quantity constraints should be considered, as well
as the pre-assignment constraint. Mean-variance portfolio optimization provides a natural labora-
tory for testing the performance of ARPO. While this algorithm is tested on the five benchmark
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Table B.10: Different scenarios based on Instance 1 (Hang Seng).

Scenario Average APL Non feasible portfolios Time (s)
Scenario 1 3.324% 3 0.173
Scenario 2 -0.109% 0 0.141
Scenario 3 3.274% 3 0.196
Scenario 4 0.000% 0 1.460
Scenario 5 0.042% 0 0.177
Scenario 6 0.042% 0 0.540
Scenario 7 0.013% 0 0.256
Scenario 8 0.000% 0 0.192
Scenario 9 0.013% 0 0.070

Notes: Table 10 shows the average APL (column 2), the number of
non feasible portfolios (column 3), and the average computational
times (column 4) obtained for 9 different scenarios on Instance 1
(Hang Seng).

indices, an unexhausted list application could potentially include other periods, different coun-
tries, regions, sectors and asset classes. Moreover, the practical appeal of ARPO is not limited to
portfolio optimization, but rather could be extended to other optimization problem comprising, for
instance, asset and liability management of companies. Likewise, it can be conveniently applied
to construct a portfolio of international investments and to study whether ARPO can alleviate the
widely documented “home bias" phenomenon.

Investment portfolio formulation with variance as a risk measure is just one option. It is pos-
sible to extend presented research using multi-criteria investing portfolio models (Sawik, 2012b;
Sawik, 2012a) with the use of value-at-risk (VaR) and conditional value-at-risk (CVaR) or multi-
objective supply portfolio models (Sawik, 2011; Sawik, 2013b) with VaR and CVaR or with dif-
ferently formulated risk measures (Heckmann et al., 2015). In all these cases a novel contribution
to this issue would consist in a comparison between exact methods and ARPO-like metaheuristics.

One important shortcoming in the literature of mean-variance portfolio optimization is that the
models typically rely upon expected returns and variance data, instead of considering the return
as a real random variable. A novel contribution to this issue would consist of adding stochastic
elements to the problem formulation, so that it includes random effects.
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Abstract
Urban freight transport is becoming increasingly complex due to an increase in the number of
journeys, and the associated volume and frequency. In addition, stakeholders’ preferences and city
logistics dynamics affect the freight flow and the distribution process efficiency in downtown. In
general, transport activities have a significant negative impact on the environment and population
welfare, which motivates decision-makers to study the transport efficiency from a sustainability
perspective. This work proposes a metaheuristic-based approach for tackling the multi-depot ve-
hicle routing problem with the goal of minimizing the distribution costs considering sustainability,
i.e., economic, environmental and social impacts. A set of computational experiments are carried
out to illustrate the problem, prove the need of an approximate approach, test it, show suitable
visualization techniques and analyze how the objective values change under different scenarios.
Keywords: sustainability, transport, routing, multi-depot vehicle routing problem, metaheuristics.

1. Introduction
According to Eurostat (2015), emissions of greenhouses gases, air pollutants and noise from trans-
port affect the climate, environment and human health. Given the importance of these facts, the
EU sustainable development strategy defines sustainable transport as one of its seven key chal-
lenges. In this context, the increasing social concern is compelling companies to change purely
commercial objectives in order to consider sustainability. This new vision seeks to compensate
the negative impacts of transport activities without neglecting economic profits. Despite the fact
that the literature on transport is extensive, there is a lack of works on urban transport taking into
account social and environmental issues.

A relevant characteristic in urban freight transport is the existence of patterns recognized as
off-peak hours and peak hours. The latter cover intervals of time in which a large number of com-
mercial activities are carried out, including starting and ending work shifts. In fact, many compa-
nies and shopkeepers establish similar time windows, which results in short operation times. As
a consequence, goods and individual transport is concentrated in specific peak hours, generating
traffic congestion (Muñuzuri et al., 2010). Numerous indicators to characterize urban transport
have been proposed during the recent years. For example, the access probability for a specific area
is used for route scheduling: if it is low, companies are forced to increase the number of vehicles
on roads to complete planned deliveries (Hunt and Stefan, 2007). Another indicator is the mean
speed, which reflects the traffic status. It is also important to consider information regarding speed
variations, which generate economic and environmental impacts due to high fuel consumption,
long operation times and pollution. Moreover, high variations are associated to a high accidentally
risk for both pedestrian and vehicles (Wang et al., 2016). In the same line, Xie et al. (2013) affirm
that the probability of traffic accidents is influenced by the number and the frequency of traffic
signs, which affect speed variations and the mean speed.

Shippers need to design distribution routes to pick-up and/or deliver goods to customers. Fre-
quently, urban zones are crowded and congested following the aforementioned patterns (peak-
hours and off-peak hours), which severely affects distribution plans. These characteristics hinder
constant and smooth freight flows due to the speed variations and idle times and, in turn, by the re-
duced accessibility to specific zones (Chen et al., 2013). An urban distribution network integrates
production plants usually located in city outskirt, distribution points that geographically are inter-
mediate points, and shopkeepers’ facilities located at downtown or urban zones. Consequently,
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Figure B.1: Negative impacts’ influence (based on McKinnon et al., 2015).

distribution processes imply crossing a city from production plants to customer facilities. Besides,
current market trends such as e-commerce have made that freight distribution processes involve
also residential zones, thus changing logistics networks. The expansion of e-commerce obliges
producers to consider not only the transport of high amounts to commercial establishments, but
also the pick-up and/or delivery of small packages to end customers (Ruan et al., 2012). On the
one side, this type of trade reduces the traffic congestion because some customers may replace
shopping centers by internet shopping. On the other side, e-commerce is a market with a high
uncertainty, generating a disaggregated and scattered demand which may increase the negative
impacts of urban transport (Teo et al., 2012). Thus, advanced optimization techniques are required
to design routes in these increasingly challenging scenarios.

Boosted by social pressures, sustainability pillars are starting to be considered decision cri-
teria in distribution processes. While economic impacts can be measured through increases in
operational costs, social and environmental assessments tend to be subjective. Usually, these as-
sessments have an economic perspective in order to provide a dimension of the impacts, and to take
them into account in the decision-making (Ranaiefar and Amelia, 2011). Figure B.1 shows how
economic, environmental and social impacts are interrelated. Thus, it is important to consider all
dimensions. Prevention and mitigation costs generated by negative impacts should appear in finan-
cial reports. Prevention costs are due to the economic regulations associated to natural resources
consumption or pollutant emissions, and are imposed by governments to avoid or minimize so-
cial and environmental consequences. Regarding mitigation costs, they are related to penalties
for generating more emissions than the allowable (Santos et al., 2010). In addition, companies
incur in prevention or mitigation costs by implementing sustainable strategies such as developing
alternative materials and more sustainable production processes (Scheuer, 2005).

This work focuses on the distribution process in urban zones considering multiple capacitated
depots. We propose an approach to solve the multi-depot vehicle routing problem (MDVRP) min-
imizing the distribution costs, which depend on multiple sustainability indicators/criteria. These
indicators are: traveling time and distance, carbon emissions, and risk of accidents (i.e., social im-
pact). Note that these indicators may conflict; for instance, minimizing traveling time and distance
may not lead to the same solution in a scenario with congestion. Figure B.2 illustrates the complex-
ity of achieving a balance between the economic, social and environmental impacts. Nodes’ size
reveals the demand (i.e., the bigger the circle, the higher the demand). While minimizing carbon
emissions and risk of accidents depends on the traveling distance, they are also affected by the load
of the vehicles, which is totally ignored when optimizing traveling distance. Being an extension
of the classical vehicle routing problem (VRP), the MDVRP is also NP-hard. As a consequence,
an algorithm based on heuristics or metaheuristics (Talbi, 2009) is required to obtain high-quality
solutions in a reasonable computing time. The solving approach we propose relies on the variable
neighborhood search (VNS) metaheuristic (Gendreau and Potvin, 2010), and the construction of
solutions is based on the biased randomization version (Juan et al., 2011a) of the classical Clarke
and Wright’s savings (CWS) heuristic (Clarke and Wright, 1964). A mixed-integer mathematical
formulation is presented to define the problem and get optimal solutions for some instances. This
experiment evidences the need of a metaheuristic-based approach to solve instances with a realistic
size. More computational experiments are performed adapting benchmark MDVRP instances to
gain insights into the problem and the relationship between the sustainable indicators. In order to
efficiently represent the solutions found using multiple criteria and provide decision-makers with
a tool to compare them, we propose the design of radar plots differentiating relevant regions. An
example with different solutions is shown in Figure B.3. Each axis represents an indicator and
ranges from the minimum value found to the maximum one. The small pentagon linking all the
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Figure B.2: Representation of MDVRP (with a single depot) solutions consider-
ing different criteria.

minimum values describes the behavior of the “ideal”, and probably inexistent, solution, which
achieves the minimum value for each indicator. Assuming that the solutions found are optimal,
the area inside the pentagon represents a solution subspace that cannot be reached. The desirable
region is defined as the union of the subspaces associated to the solutions. Solutions falling outside
the figure may be discarded since they are dominated by at least one solution (i.e., there is at least
one solution with the same or better values for all indicators). Similarly, the intersections of at
least two solution subspaces form the sustainability region, which contains the best solutions, i.e.,
solutions that achieve a suitable balance considering a number of indicators. To the best of our
knowledge, this is the first work addressing a rich VRP (RVRP) with sustainability indicators.

The rest of the paper is structured as follows: next section provides a literature review. Section
3 offers a detailed description of the problem analyzed, including a mathematical formulation.
Section 4 proposes a solving approach based on a metaheuristic. The computational experiments
are explained in Section 5, while Section 6 discusses the results. Finally, Section 7 gathers the
conclusions and identifies lines for future research.

2. Literature review
The increasing social concern for the environment and a sustainable growth in general requires
the transformation of cities. In this context, the classical VRP may be enriched to include charac-
teristics that allow the reduction of environmental and social impacts in urban zones concerning
transport activities. During the last decade, this problem has been complimented by a large number
of variants including: the green VRP (GVRP) and the pollution VRP (PVRP). While the former
is focused on the environmental impact caused by the fuel or energy consumption of transport,
the latter takes into account the pollution and different emissions generated. Thus, both problems
analyze the emissions and fuel/energy consumption levels, which depend on traffic congestion,
speed, acceleration, type of road, type of vehicle, and load, among other internal and external fac-
tors of the operation (Bektaş and Laporte, 2011; Koç et al., 2014). A large number of models are
considered RVRPs, which encompass special characteristics from city logistics and smart cities,



390 Appendix B. Journal papers under review in ISI JCR

Figure B.3: Representation of different solutions and regions.

for instance, the integration of information tools and communication (ITC) in transport opera-
tions. The reader interested in a comprehensive review on realistic and rich variants of the VRP is
referred to Caceres et al. (2014).

Regarding environmental impacts, the distance and vehicle weight play a crucial role in the
fuel/energy consumption and carbon emissions, thereby Ubeda et al. (2011) aimed at reducing
transport costs and emissions, considering the distance and some variations in the vehicle max-
imum capacity. It is concluded that enhancing load factors (which may be achieved by using
heterogeneous fleets) is an efficient way to get significant savings and environmental benefits.
The authors also discuss negative externalities of transport such as noise, air pollution, conges-
tion, accident rate, energy consumption and land use, among others. There are studies tackling
the negative impacts from three different perspectives: negative externalities, emissions released
and fuel consumption. Faulin et al. (2011), Liu et al. (2014), and Zhang et al. (2015) considered
environmental indicators for the capacitated VRP; they affirm that the load variation defines fuel
consumption and emissions caused by transport. Besides, the load variation influences the distri-
bution processes profitability. In this line, Kuo (2010), Demir et al. (2014), and Xiao and Konak
(2015) developed methodologies for the green heterogeneous VRP (green HVRP), considering
traffic congestion, road gradient, speed variations and distance traveled as variables that influence
fuel consumption and as elements that characterize the urban transport dynamics (Jabbarpour et
al., 2015). More recently, Niknamfar and Niaki (2016) study the MDVRP with time windows
to optimize the customers-depots allocation and the vehicles selection aiming to minimize the
environmental impacts. They demonstrated that an optimal allocation and coordination between
stakeholders not only reduce the negative impacts but also enhance the total profit. Juan et al.
(2014e) considered a supply chain with multiple suppliers for minimizing the empty trips and the
travel distance in each route. They concluded that it is possible to reduce the CO2 emission to 23%
when the distribution process is carried out in collaboration with multiple suppliers. Wang et al.
(2014b) demonstrated that considering environmental criteria allows a saving up to 10% of the
operation costs. The authors developed an algorithm to integrate the economic and environmental
goals based on the MDVRP with backhauls. Demir et al. (2014) considered the MDVRP with
freight pick-up and delivery to ensure that any customer demand can be met from any depot and
thus reducing the operation cost.

Some studies have focused on the analysis of environmental impacts caused by transport activ-
ities in urban zones, however there is no characterization for getting a rough estimation of the real
impact of these activities. For instance, about 60% of transport activities take place in urban re-
gions at where around 80% population is concentrated, making people the main harmed (European
Commission, 2015). Social impact refers to health problems and other factors such as quietness,
air quality, urban esthetic, accessibility and urban safety. Penalties, taxes or willingness to pay
as a means to reduce the social impacts constitute the costs associated. It is estimated that about
0.4%, 0.2%, 1.5% and 2% of the gross domestic product is related to air pollution problems, noise,
accidents and traffic congestion, respectively (Caceres et al., 2014). Therefore, the sustainability
concept has started to take part in the decision-making process but there is a lack of structured
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Figure B.4: Example of the potential lack of strong correlation between distance
and traveling time.

tools that allow the integration of the three dimensions and support decision-makers (Chen et al.,
2013).

There are only a few works on sustainability criteria. Chibeles-Martins et al. (2016) pose
ecological criteria to determine an optimal structure of distribution networks. They solved a bi-
objective problem focused on determining the suitable locations, capacities and attributes in facto-
ries, warehouses and a distribution center. The solution method is based on the simulating anneal-
ing metaheuristic and Pareto optimality is considered to get a balancing between economic and
ecological concerns. In the same sense, Zhang et al. (2016) implement evolutionary algorithms
to determine the optimal design of supply chains considering two possible scenarios: first, the
transport is outsourced and second the transport is leased. It is a multi-objective problem aimed at
minimizing CO2 emissions, fine dust and costs. The authors implement the non-dominated sorting
genetic algorithm-II (NSGA-II) and the strength Pareto evolutionary algorithm2 (SEAP2) to com-
pare their performance, both methods take into account Pareto optimality through a scalarization
method computed by a weighted sum. Later, Kadziński et al. (2017) define a sustainable objec-
tive to design an optimal distribution structure considering a supply chain with multi-distribution
channels. Objectives are maximizing customer coverage, and minimizing cost and environmental
impacts. Notice that social objectives do not respond to problems highlighted by the society, be-
sides these approaches belong to strategic levels without considering the synergy among tactical
levels, operative levels and stakeholders’ particular objectives.

3. Description of the problem
This paper studies a supply chain with multiple suppliers and customers, formulated as a MDVRP,
in which the distribution process is carried out by a homogeneous fleet of capacitated vehicles.
The problem consists on defining distribution routes considering the sustainability concept as op-
timality criteria. The three-axis of sustainability (measured as economic, environmental and social
impacts) are represented by traveling distances and times, carbon emissions and risk of accidents.
Several studies have addressed the economic impacts as a variable mainly influenced by traveling
distances; therefore most existing models seek to minimize them. However, doing this does not
guarantee the minimum impact because many elements such as congestion, speed limits, traffic
signs and vehicles crashes make longer the time of the distribution routes (Wang et al., 2016).
In fact, the shortest paths in urban zones tend to have more traffic signs since these are the most
frequented and, as a result, main streets may be the slowest paths (see an illustration in Figure
B.4). Accordingly, we also consider traveling times to represent these urban attributes.

Formally, the MDVRP can be defined as a graph G=(N,A), where N = {Nd,Nc} is a set of
nodes, Nd and Nc representing the subsets of depots and customers respectively, and A = {(i, j) :
i, j ∈ N, i , j} is the set of arcs connecting all nodes in N. Each depot i (∀ i ∈ Nd) has a capacity
si, and each customer j (∀ j ∈ Nc) has a demand r j(r j ≥ 0). The vehicle fleet K is composed of
k identical vehicles (K = {1, ..., k}), and Q and D denote the capacity and the maximum distance
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associated to each vehicle. Each arc (i, j) ∈ A has associated a traveling distance (di j), traveling
time (ti j), fuel consumption ( fi j), and carbon emissions.

The binary variable xi jk is employed to represent the routes: xi jk = 1 if the arc (i, j) is traversed
by vehicle k and xi jk = 0 otherwise. The auxiliary variable U jk is used for sub-tour elimination in
route k. The binary variable zi j indicates whether customer j is allocated to depot i (zi j = 1) or not
(zi j = 0). In addition, flow variables yi jk represent the load in the vehicle associated to the route k
servicing customer j after visiting customer i.

Extension to consider sustainability indicators

The problem tackled considers the three-axis of sustainability.

• Economic dimension: It is composed by the classical measures total traveling times and
distances, which are monetized based on the driver wage (DW), vehicle fixed cost (FC) and
oil price (C f ). The cost of the total traveling times and distances per route are computed as
follows: ∑

(i, j)∈N

(DW + FC) · ti j · xi jk (B.1)

∑
(i, j)∈N

C f · fi j · xi jk (B.2)

• Environmental dimension: CO2 emissions estimates assume that the internal combustion
process of vehicles burns the carbon of the fuel and it is released as carbon dioxide. Thus,
emissions are assumed to depend on fuel consumption. Equation B.3 computes the cost of
environmental impacts, considering a factor for carbon emissions (Ce).∑

(i, j)∈N

Ce · fi j · xi jk (B.3)

• Social dimension: Accidents are an externality caused by speed variations on roads, among
other factors. These variations represent the state and stability of the roads, and are asso-
ciated to an accident risk for pedestrian and vehicles (Wang et al., 2016). Equation B.4
represents the social cost, and depends on a given coefficient (ai j), vehicle loading and trav-
eling distance: ∑

(i, j)∈N

ai j · di j · yi jk · xi jk (B.4)

The fuel consumption is estimated as suggested in Kuo (2010) and Zhang et al. (2015) (Equa-
tion B.5). lphi j represents the fuel consumption per unit of time and p is a factor that penalize for
each additional load (M). This value is determined by the average miles per fuel liter (kpli j) and
velocity (vi j) (Equation B.6). Without loss of generality, we will assume that p is equal to 0. Thus,
fi jk can be represented by fi j.

fi jk = lphi j ·
di j

vi j
·

(
1 + p ·

yi jk

M

)
∀ (i, j) ∈ N, k ∈ K (B.5)

lphi j =
vi j

kpli j
∀ (i, j) ∈ N (B.6)

All in all, the objective is defined as a multi-criteria function considering the total traveling
time, total traveling distance, environmental cost, and social cost.∑

k∈K

∑
(i, j)∈N

((DW + FC) · ti j + C f · fi j + Ce · fi j + ai j · di j · yi jk) · xi jk (B.7)

Based on Mirabi et al. (2010) and Caceres et al. (2014), the constraints are as follows:∑
i∈N

∑
k∈K

xi jk = 1 ∀ j ∈ Nc (B.8)∑
i∈N

∑
j∈Nc

r j · xi jk ≤ Q ∀ k ∈ K (B.9)
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∑
(i, j)∈N

di j · xi jk ≤ D ∀ k ∈ K (B.10)

Ulk − U jk + |N | · xl jk ≤ |N | − 1 ∀ l, j ∈ Nc, k ∈ K (B.11)∑
j∈N

(xi jk − x jik) = 0 ∀ i ∈ Nc, k ∈ K (B.12)∑
j∈Nc

∑
k∈K

xi jk ≤ 1 ∀ i ∈ Nc (B.13)∑
j∈Nc

xi jk ≤ 1 ∀ i ∈ Nd, k ∈ K (B.14)∑
i∈Nc

xi jk ≤ 1 ∀ j ∈ Nd, k ∈ K (B.15)∑
j∈Nc

xi jk =
∑
j∈Nc

x jik ∀ i ∈ Nd, k ∈ K (B.16)

− zi j +
∑
u∈N

(xiuk + xu jk) ≤ 1 ∀ i ∈ Nd, j ∈ Nc, k ∈ K (B.17)∑
i∈N

yi jk −
∑
i∈N

y jik = r j ·
∑
i∈N

xi jk ∀ j ∈ Nc, k ∈ K (B.18)

0 ≤ r j · xi jk ≤ yi jk ≤ (Q − ri) · xi jk ∀ (i, j) ∈ N, i , j, k ∈ K (B.19)
xi jk = 0 ∀ (i, j) ∈ Nd, k ∈ K (B.20)
xi jk ∈ {0, 1} ∀ i ∈ Nd, j ∈ Nc, k ∈ K (B.21)
zi j ∈ {0, 1} ∀ i ∈ Nd, j ∈ Nc (B.22)
Ulk ≥ 0 ∀ l ∈ Nc, k ∈ K (B.23)

Equation B.8 assigns each customer to exactly one route. Equation B.9 limits the total demand
that may be served by a vehicle. Equation B.10 defines the maximum distance per vehicle. Equa-
tion B.11 eliminates sub-tours. The flow conservation is introduced by Equation B.12. Equation
B.13, B.14 and B.15 ensure that each route is completed once while Equation B.16 imposes that
each route starts and ends at the same depot. Equation B.17 specifies that a customer can be as-
signed to a depot only if there is a route from that depot going through that customer. Equation
B.18 states that the load in the vehicle arriving at customer j minus the demand of that customer
equals the load in the vehicle leaving it after the service. Equation B.19 sets lower and upper
bounds, which ensure that the load in the vehicle k leaving customer i is equal or greater than the
demand of its next visit and the total demand serviced by the vehicle does not exceed its capacity,
respectively. Equation B.20 avoids the creation of routes among depots. Finally, Equations B.21,
B.22 and B.23 define variable domains.

4. Solving approach
The methodology proposed is based on the VNS metaheuristic. Besides being a popular meta-
heuristic in combinatorial as well as global optimization, it has been used in a wide range of
research fields such as vehicle routing, scheduling, telecommunications, biology, and artificial in-
telligence. In essence, the metaheuristic proposes systematic changes of neighborhood to find a
local minimum by intensifying the search, and to escape from the associated valley by diversify-
ing. It relies on three facts: i) a local minimum with respect to one neighborhood structure is not
necessarily so for another; ii) a global minimum is a local minimum with respect to all possible
neighborhood structures; and iii) for many problems, local minima with respect to one or several
neighborhoods are relatively close to each other. It was first proposed by Hansen and Mladen-
ović (2014) and an extensive review may be found in Moreno-Vega and Melián (2008). Real-life
applications requiring to make decisions tend to involve more than one criterion, besides a set of
constraints that limits the solution space. In practice, these criteria may be conflicting. Here, all
impacts are monetized relying on estimates proposed in the literature.

Our approach is summarized in Pseudo-code 1 and described next. The inputs are the problem
instance to solve and the number of neighborhoods considered (K). It is usual in the literature to
set K to two or three, and to design nested neighborhoods. First, an initial solution is generated
and stored in initSol and baseSol. Then, the cost of all the impacts associated are computed.
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bestSol will store the best solution found so far. At the beginning, it is a copy of baseSol. An
outer loop is started, which will end when a given stopping criterion is met. It sets the current
neighborhood to the first one. Inside, another loop builds and assesses new solutions. Within this
loop, the base solution is initially shaken, generating a solution from the k-th neighborhood of
baseSol. The resulting solution is stored in newSol and the corresponding total cost is computed
(Pseudo-code 2). The variable rpd measures the relative percentage difference between the total
cost of newSol and baseSol. If there is an improvement (i.e., rpd < 0), a local search is applied
to newSol, the resulting solution is copied into baseSol, and the current neighborhood is set to
the first. In addition, bestSol is updated if it applies. This constitutes a descendent phase aimed
to find a local minimum. Otherwise, newSol is accepted and the current neighborhood is set to
the first with a probability of exp(−rpd). This acceptance criterion aims to avoid entrapment at
local optimum and was first proposed in Hatami et al. (2015). It is based on the criterion of the
simulated annealing metaheuristic but is simpler and has no parameters. In case of not accepting
newSol, the next neighborhood is analyzed (i.e., k is set to k + 1). The inner loop is executed until
the last neighborhood is explored (i.e., k = K). Finally, bestSol is returned.

Algorithm 1 Approach for the MDVRP considering externalities.
1: procedure MDVRP WITH SUSTAINABILITY INDICATORS (inputs, impactsParameters)
2: initS ol← genInitS ol (inputs) # generate solution based on the BR-CWS heuristic
3: baseS ol← clone (initS ol)
4: computeTotalCost(baseS ol, impactsParameters)
5: bestS ol← clone (baseS ol)
6: while (stopping criterion is not met) do
7: k ← 1
8: while (k ≤ K) do
9: newS ol← shake(baseS ol, k) # destruction-construction stages

10: computeTotalCost(newS ol, impactsParameters)
11: rpd← (getTotalCost(newS ol) - getTotalCost(baseS ol))/getTotalCost(baseS ol)· 100
12: if (rpd < 0) then # newSol improves baseSol
13: newS ol← localSearch(newS ol)
14: baseS ol← newS ol
15: k ← 1
16: if (getTotalCost(newS ol) - getTotalCost(bestS ol) < 0) then
17: bestS ol← newS ol
18: end if
19: else
20: u← generateU()
21: if (u < exp(−rpd)) then #acceptance criterion
22: baseS ol← newS ol
23: k ← 1
24: else
25: k ← k + 1
26: end if
27: end if
28: end while
29: end while
30: bestS ol← localSearch(bestS ol)
31: return bestS ol
32: end procedure

The generation of solutions for the MDVRP has two sequential and interrelated stages: a)
the assignment of customers to depots, and b) the design of distribution routes for each depot.
Both stages employ biased randomization techniques. These techniques allow the randomization
of deterministic and iterative heuristics in order to obtain a relatively high number of promising
solutions. For instance, the choice of one element or step from a list would be done by assign-
ing, to each one, a probability according to a measure of preference instead of choosing the best
considering only the next step. These techniques rely on the fact that the best step in the short
term is not necessarily the best in the long term. The first stage of the generation of MDVRP
solutions relies on a measure called “marginal savings” (Juan et al., 2015c) (Figure B.5a), which
is computed for each pair depot-customer as follows: the distance between each depot and the
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Algorithm 2 Function to monetize the impacts of a given solution.
1: procedure COMPUTE TOTAL COST(MDVRPS ol, impactsParameters)
2: distance← 0
3: time← 0
4: emissions← 0
5: social← 0
6: for each (cvrpSol in MDVRPSol) do
7: distance← distance + getDistance(cvrpS ol)
8: time← time + getTime(cvrpS ol)
9: for each (edge in cvrpSol) do

10: emissions← emissions + getDistance(edge)/getKPL(edge)
11: social← social + getDistance(edge) · getLoad(edge, cvrpS ol)
12: end for
13: end for
14: distanceCost ← distance· getDistUnitCost(impactsParameters)
15: timeCost ← time· getTimeUnitCost(impactsParameters)
16: emissionsCost ← emissions· getEmissionsUnitCost(impactsParameters)
17: socialCost ← social· getSocialUnitCost(impactsParameters)
18: totalCost ← distanceCost + timeCost + emissionsCost + socialCost
19: return totalCost
20: end procedure

(a) Marginal savings used in the assignation
stage.

(b) Rich savings employed in the BR-CWS
heuristic.

Figure B.5: Representation of savings.

customer is obtained, and the difference of assigning the customer to the specific depot instead of
the closest depot among the others is computed. A priority list of customers is created for each
depot and sorted according to the marginal savings. Thus, high marginal savings are prioritized,
since assigning the corresponding customer to another depot (which would be farther) could lead
to a poor-quality solution. These lists are randomized assigning probabilities according to a Geo-
metric distribution (see Figure B.6). Three different policies are iteratively applied to choose the
depot to select the next customer to be assigned: i) all depots choose the first node in their list at
a time, following consecutive turns (known as round robin criteria); ii) randomly; iii) the depot
which the highest remaining capacity is selected. Thus, using biased randomization and different
policies promotes the generation of different assignation-maps. The second stage is based on the
randomized version of the CWS saving’s heuristic (Juan et al., 2011a), which also depends on a
Geometric distribution applied to the savings to iteratively choose one merge among all possible.
However, the classical distance-based savings are replaced by “rich savings” including all costs
(Figure B.5b).

The performance of each solution is computed ad the sum of the costs associated to the im-
pacts considered: economic, environmental and social. The shaking procedure randomly selects
a percentage pk of customers to be assigned to a different depot. Afterwards, the procedure to
construct solutions is applied to repair the solution. This movement is introduced to diversify the
search. This search is guided by the base solution, since the shaking procedure applied at each
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Figure B.6: Illustration of biased randomization techniques.

iteration works with that solution. It is set to the initial solution at the beginning and replaced by
the new solution if the acceptance criterion is met. The stopping criterion is based on the number
of iterations. Two local searches are used: the first is applied to solutions improving the current
base solution and is based on the classical 2-opt operator defined for the CVRP (Lin, 1965), while
the second is a routing extensive improving search described in Juan et al. (2011a), and applied
only to the best solution found at the end. More details for specific procedures can be found in the
references provided in this section.

5. Computational experiments
The algorithm proposed has been implemented in JAVA and run on a personal computer with 8
GB of RAM and an Intel Core i7 of 1.8 GHz. In order to test it, illustrate its use and the analysis
of results that may be carried out, we employ 4 MDVRP benchmark instances (p10, p11, p12 and
p13) called here instance 1, 2, 3 and 4, respectively. They have been extensively used (see Vidal
et al., 2012; Escobar et al., 2014).

Each instance has been adapted as follows. Vehicles’ efficiency parameters are based on a type
of light duty vehicle used for freight distribution in urban zones. We have used the cost coefficients
of Zhang et al. (2015) for CO2 emissions (Ce = 0.1 USD/L). Regarding the traveling time cost,
it is defined by Koç et al. (2014) as the sum of a vehicle fixed cost (FC) and driver wage (DW),
which are set to FC = 1.4 USD/h and DW = 6.3 USD/h, respectively. The traveling distance cost
is based on the price of fuel (C f = 1.1 USD/L) and the average miles per fuel liter (kpli j = 5.56
km/L ∀ (i, j) ∈ N). Delucchi and McCubbin (2010) propose an the interval [1 · 10−4, 1.3 · 10−3]
USD per kg-km for the coefficient ai j to estimate the social cost. Without loss of generality, times
are generated from distances using this formula ti j = α · di j + εi j, where α is a constant based on
an estimated speed (α−1 = 35 km/h) and εi j represents external factors that define the correlation
between traveling time and distance. It is set to follow a truncated Normal distribution with a lower
bound and mean equal to 0 and a standard deviation equal to 3.5, 2, and 0.5. These deviations are
set in order to get a correlation around 0.5, 0.7 and 0.9, which may represent a high, medium and
low congested zone, respectively. Thus, three scenarios are generated per instance. For example,
for di j=10 km, ti j would fall in the following intervals considering the different standard deviations
and a probability of 95%: (0.59, 1.69), (0.64, 5.06), and (0.69, 8.42). The resulting instances are
available from the authors upon request.

Each instance has been solved 10 times (employing a different seed for the random number
generator) and only the best solutions are reported. 300,000 iterations are considered. The pa-
rameter fine-tuning is performed by using design of experiments and testing reasonable ranges.
The parameters for the Geometric distributions related to the allocation and the routing process
are randomly chosen in the intervals (0.5, 0.8) and (0.1, 0.2), respectively. The degree of shaking,
which defines the neighborhoods, is set to 10%, 30% and 50% (for the first, second and third
neighborhood, respectively).

The experimentation process consists on analyzing how the solution space changes according
to the optimization criterion and how it influences the other indicators. Thus, five options are con-
sidered: optimization criterion is based on minimizing each component of the objective function
or the sum of them. In a real-life application, the choice will depend on the particular interests of
the decision-maker.
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Validation

In order to validate our algorithm, the model described in Section 3 has been implemented in
the GAMS language (Version 23.5.2), and the CPLEX solver (Version 12.2.0.0) has been used to
obtain solutions. Three instances are created with 22, 30 and 40 nodes, respectively. They are
derived from the instance p12, ensuring a feasible solution.

Table B.1 identifies the instance and the scenario, and contains information regarding the num-
ber of vehicles (V), customers (C), depots (D), and vehicles’ capacity (Q). The next three columns
refer to the solution found by CPLEX with the aim of minimizing the total cost. They represent
this cost, the run time (limited to 36000 seconds, for each instance) and an upper bound for the
gap between the solution found and the optimal (if the latter has not been found). The following
two columns denote the total cost and the run time of our approach (OA), while the last column is
the gap of the total cost between both approaches.

According to these results, the difference of computing times is significant, while the gaps
provided by GAMS quickly increases with the number of nodes considered. It is important to
note that the solver requires the number of vehicles that will depart from each depot, while the
metaheuristic-based approach does not.

Table B.1: Comparison in terms of total cost between the CPLEX solver and the proposed metaheuristic.

Instance Scenario (V, C, D) Q CPLEX OA Gap (%)

Total
Cost

Run time
(s)

Gap (%) Total
Cost

Run time
(s)

P1
High

(3, 20, 2) 60
305.13 3.44 0

Medium 466.36 5.20 0
Low 54.78 2.22 0

P2
High

(2, 28, 2) 60
630.71 9800 18.87

Medium 831.95 9800 13.97
Low 908.41 9800 13.29

P3
High

(2, 38, 2) 60
* 14314

Medium 1044.11 36000 21.74
Low 1103.66 36000 11.38

* Out of memory

Moreover, our approach is compared against that described in Juan et al. (2015c), which only
aims to minimize the total traveling distance. Table B.2 identifies the instance, describes their
main characteristics and provides the distances of the aforementioned paper and of our approach,
considering five seeds. The average computing times are 322 and Y, respectively. The mean gap
among instances is -1.45%, which shows that the performance of both approaches is comparable.

Table B.2: Comparison in terms of distance between Juan et al. (2015c) and the
proposed metaheuristic.

Instances (V, C, D) Q JUAN15 OA Gap (%)

p10 (8, 249, 4) 500 3646.67 3725.00 -2.10%
p11 (6, 249, 5) 500 3547.09 3604.6492 -1.60%
p12 (5, 80, 2) 60 1318.95 1331.54 -0.95
p13 (5, 80, 2) 60 1318.95 1334.4 -1.16

6. Discussion of results
This section analyzes the solutions found considering all the indicators or each one of them as
optimization criterion. This comparison aims to determine a solution subspace representing an
equilibrium between the economic, environmental, and social dimensions.

Table B.3 shows the total cost of the best solutions found according to the objective pursued
for each instance and scenario. As described before, the total cost is computed as the sum of the
costs associated to traveling distance, traveling time and CO2 emissions, and the social cost. As
expected, the best solution in terms of total cost is the solution that seeks to minimize the total cost.
In instance 1 and 2, the solution minimizing the traveling time matches the solution minimizing
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the total cost, which means that these objectives converge to the same solution. Similarly, the same
solution ensures the minimum traveling distance cost and emissions cost (this is due to the way
in which the emissions are estimated). Obviously, the total cost is higher in the zones where the
traveling time and the traveling distance have a low correlation (i.e., in congested zones, based on
the description of the scenarios). The solution with the minimum social cost is the most expensive,
because the other costs are significantly increased.

Table B.3: Total cost by scenario, instance and optimization criterion.

Scenarios

Low Medium High

Instance Objective Total Cost Total Cost Total Cost Run Time (s)

Instance 1
Total Cost 7597.4 5669.1 3763.3 1665.8
Distance 8601.8 6054.1 3763.3 1572.9
Time 7597.4 5770.8 3867.3 1688.3
CO2 Emissions 8601.8 6054.1 3763.3 1572.9
Social cost 8686.3 6393.7 3977.7 1485.0

Instance2
Total Cost 7625.8 5979.4 3645.0 1368.4
Distance 9087.9 6392.3 3645.0 1625.2
Time 7625.8 6060.9 3741.2 1603.2
CO2 Emissions 9087.9 6392.3 3645.0 1625.2
Social cost 9096.5 6651.7 3898.9 1130.3

Instance 3
Total Cost 2475.6 1913.3 1197.9 200.2
Distance 2949.0 1944.5 1199.6 190.8
Time 2475.6 1949.0 1197.9 198.5
CO2 Emissions 2949.0 1944.5 1199.6 190.8
Social cost 2979.8 1999.8 1241.6 186.0

Instance 4
Total Cost 2757.8 1904.3 1217.0 185.9
Distance 2871.1 1913.3 1217.0 187.3
Time 2813.3 1927.9 1222.7 189.3
CO2 Emissions 2871.1 1913.3 1217.0 183.9
Social cost 3144.2 2103.1 1385.6 182.8

Regarding the social cost, it is important to determine the customer sequence and the direction
of the route. Figure B.7 illustrates and quantifies their effect on the total cost of a given route.
Accordingly, high-quality solutions visits first the customers with higher demands, minimizing
the amount of freight transported over long stretch of roads. On the other hand, the scenario
influences the total cost. Table B.3 suggests that the gap between solutions with minimum total
cost and minimum social cost is higher in congested zones. This happens because minimizing the
social cost involves reducing the traveling distance, which leads to optimize also the traveling time
if there is a high correlation between time and distance.

Figure B.7: Effect of the customer sequence and the direction for a given route.
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Figures B.8 and B.9 provide information regarding the behavior of solutions for each scenario.
The first represents the average weight of each cost component per scenario considering the four
instances. It can be observed that traveling time represents the main cost and its magnitude is the
most sensitive to the scenario. Figure B.9 shows the ranges of total cost and its components per
scenario for instance 1. In this case, the time cost increases at a higher rate than the distance cost,
which causes differences among scenarios.

(a) Low Scenario (b) Medium Scenario (c) High Scenario

Figure B.8: Average weight of each component in the total cost by scenario
considering all instances.

Figure B.9: Total cost and its component per scenario for instance 1.

Table B.4 shows the cost of each indicator when the main objective is to minimize the total cost
for all instances and scenarios. The gaps reflect the difference between the solution with minimum
total cost and the best solution for each indicator. For example, the solution with the minimum
total cost for instance 1 in the low scenario has a social cost 9.49% higher than the best solution
found when the objective is to minimize the social cost. This table demonstrates that the solution
with the minimum total cost does not tend to be the best when applying another optimization
criterion.

Figure B.10 displays radar plots for instances 1 and 4, and the scenarios low and high using
the best solutions found for each indicator and the total cost. These plots identify the desirable and
sustainability regions. The desirable region may be used to define an upper bound (or maximum
allowable cost for each measure) and a lower bound (i.e., the white regular pentagon), which
represents the ideal solution. There is no guarantee that a feasible solution exists that falls in
the sustainability region. However, if one is found, it can be argued that that solution achieves a
suitable balance between at least two measures. In our case, the sustainability region is a narrower
area for the scenario with less nodes and a high correlation between traveling time and distance.

7. Conclusions and future research
The increasing concern for the environment and the population welfare leads policy-makers to
promote a sustainable growth. In this context, urban transportation plays an essential role because
of the relevance of its negative impacts. Despite the extensive literature on routing problems and a
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Table B.4: Comparison among solutions for each instance and scenario.

Objective: Minimizing Total cost

Scenario Instance Traveling distance Traveling time CO2 emissions Social cost

(V, C, D) Cost Gap (%) Cost Gap (%) Cost Gap (%) Cost Gap (%)

Low
1 (8,249,4) 1386.35 -12.88% 5136.15 0.00% 672.10 -12.88% 402.78 -20.37%
2 (6,249,5) 1376.06 -14.96% 5192.52 0.00% 667.11 -14.96% 390.11 -21.38%
3 (5,80,2) 560.84 -23.09% 1624.93 0.00% 271.89 -23.09% 17.90 -31.55%
4 (5,80,2) 460.19 -5.66% 2059.82 -1.16% 223.10 -5.66% 14.69 -28.31%

Average 945.86 -14.15% 3503.36 -0.29% 458.55 -14.15% 206.37 -25.40%

Medium
1 (8,249,4) 1328.31 -9.07% 3325.69 -2.38% 643.96 -9.07% 371.14 -13.58%
2 (6,249,5) 1312.04 -10.81% 3671.20 -2.96% 636.08 -10.81% 360.05 -14.82%
3 (5,80,2) 434.16 -0.65% 1254.84 -12.01% 210.48 -0.65% 13.78 -11.05%
4 (5,80,2) 442.88 -1.97% 1232.64 -0.26% 214.71 -1.97% 14.09 -25.23%

Average 879.35 -5.63% 2371.09 -4.40% 426.31 -5.63% 189.77 -16.17%

High
1 (8,249,4) 1204.67 0.00% 1626.95 -4.72% 584.02 0.00% 347.65 -7.74%
2 (6,249,5) 1177.17 -0.59% 1563.70 -3.79% 570.69 -0.59% 333.45 -8.03%
3 (5,80,2) 435.35 -0.92% 538.16 0.00% 211.06 -0.92% 13.33 -8.06%
4 (5,80,2) 434.16 0.00% 558.53 -0.48% 210.48 0.00% 13.78 -23.54%

Average 812.84 -0.38% 1071.84 -2.25% 394.06 -0.38% 177.05 -11.84%

(a) Instance 1: Low Scenario (b) Instance 1: High Scenario

(c) Instance 4: Low Scenario (d) Instance 4: High Scenario

Figure B.10: Solution spaces for decision-making.

recent trend to include environmental issues, there is a lack of works combining the three axis of
sustainability and studying their relations.

This work aims to reduce the existing gap by presenting a new definition of the multi-depot
vehicle routing problem employing sustainability indicators. Adopting this perspective can be
seen as a market strategy. Estimates from the literature are considered to quantify and monetize
the economic, environmental and social impacts. While the first are based on traveling distances
and times, the second and the third rely on carbon emissions and risk of accidents, respectively.
We develop a solving approach based on the variable neighborhood search metaheuristic, which
integrates a biased randomization version of the classical Clarke and Wright’s savings heuristic.
This methodology is able to report high-quality solutions in small amounts of time and enables
decision-makers to assess solutions under particular interests regarding the impacts considered. A
set of computational experiments are carried out in order to test our algorithm and illustrate its
use, and present visualization techniques that may help the decision-makers to better understand a
few promising options and their implications.
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Several lines of future research stem from this work. First, the introduction of sustainability
indicators in richer vehicle routing problems can be explored, for instance, considering electric
vehicles, which incorporates more restrictions, and/or a heterogeneous fleet of vehicles. Simi-
larly, uncertainty of real-life applications could be taken into account by modeling involved inputs
such as traveling times or demands as stochastic variables. Another interesting line would be to
implement our methodology for a case study.
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Abstract
Technological progress in recent decades has enabled people to learn in different ways. Universi-
ties now have more educational models to choose from, i.e., b-learning and e-learning. Despite the
increasing opportunities for students and instructors, online learning also brings challenges due to
the absence of direct human contact. Online environments allow the generation of large amounts
of data related to learning/teaching processes, which offers the possibility of extracting valuable
information that may be employed to improve students’ performance. In this paper, we aim to
review the similarities and differences between Educational Data Mining and Learning Analyt-
ics, two relatively new and increasingly popular fields of research concerned with the collection,
analysis, and interpretation of educational data. Their origins, goals, differences, similarities, time
evolution, and challenges are addressed, as are their relationship with Big Data and MOOCs.

Keywords: Online Learning, Educational Data Mining, Learning Analytics, Big Data.

1. Introduction
In the traditional educational model, instructors have the principal role in the learning process.
Students are assumed to have basic knowledge and skills, while instructors are expected to share
their knowledge and experience. Learning is tested by means of proctored exams and homework.
Before the Internet era, there were several types of distance-education models based on TV pro-
grammes, manuals or recorded audios/videos. Typically, instructors were available to solve doubts
by phone or mail. Although they allowed learning from home and presented a flexible timetable,
the lack of interactivity hindered the learning process.

The Internet has dramatically changed the system, since most institutions have become in-
terested in providing online courses. Besides the fact that they do not require large investments,
these courses are not restricted to a specific geographical location or timetable, which increases
the number of potential students. As a result, universities dedicated only to online education have
emerged and traditional universities have expanded their offer with b-learning (hybrid classroom
and online learning) and e-learning (pure online learning) courses.

As Daradoumis et al. (2010b) state, e-learning has many more positive aspects: (a) it favours
interactive communication among students, and between students and instructors; (b) it promotes
continuous evaluation based on tests, and individual and collaborative activities; (c) it contributes
to the development of technical skills; and (d) it helps to reduce the gap between theory and
practice (e.g., Marquès et al., 2013). The role of the instructor is to design, organize and support
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learning experiences. While in the traditional model all students listen to the same lectures and
complete the same homework in the same sequence and at the same pace (Bienkowski et al.,
2012), this model promotes a more personalized learning process, in which the student has an
active role. However, e-learning courses also present higher dropout rates due to the fact that
distance education may create a sense of isolation in students, which can feel disconnected from
the other students, the instructors and the university (Juan et al., 2009b).

E-learning courses may be provided through Learning Management Systems (LMS) such as
Moodle, Sakai and ILIAS, or Learning Platforms such as Knewton and DreamBox. A charac-
teristic of these courses is the vast amount of data that can be collected. In addition to student’s
background and performance data, each action carried out (reading files, participating in forums,
sending messages, or visiting recommended links, for example) leaves a digital fingerprint.

There are two fields of research devoted to analyzing this data: Educational Data Mining
(EDM) and Learning Analytics (LA). Their overwhelming popularity is almost certainly due to
several factors: (a) there is interest in employing a data-driven approach to make better decisions,
as it is usual in business intelligence or analytics (Daradoumis et al., 2010a); (b) there are pow-
erful statistical, machine-learning and data-mining methods and techniques to search for patterns
in data and construct predictive models or decision rules that can be easily adapted to educational
data; (c) generating data is relatively easy, and current computer capacity allows its storage and
processing; (d) because of the financial crisis and fierce competition, universities are under pres-
sure to reduce costs and increase income by exploiting the growing educational demands from
developing countries, reducing dropout rates and improving course quality.

The main goal of both EDM and LA is to extract information from educational data to support
education-related decision making. Information may be oriented towards several stakeholders
(Daradoumis et al., 2010b). Instructors may get more objective feedback to evaluate both the
structure of their courses and the effectiveness of the learning process. Monitoring the students’
learning process may help to rapidly spot those having difficulties in following the course, and
units that generate more confusion. It can be a complex and time-consuming task without the
appropriate tools (Juan et al., 2009a). Students may receive recommendations about resources
according to their performance, goals and motivations, may graphically analyze the outputs of their
learning process, compare them with those of the rest of the class, and observe the performance
and contributions related to collaborative activities. Managers may use information to design a
better allocation of human and material resources to improve the overall quality of their academic
offer. Finally, researchers may test and adapt their theories based on educational data.

Some initial similarities and differences between EDM and LA will be discussed in this paper.
From a general perspective, it can be argued that EDM focuses more on techniques and method-
ologies, while LA deals more with applications. However, as we will see, these differences seem
to be less and less noticeable as both fields evolve over time. In addition, the most significant
barriers to EDM and LA applications in educational environments and a few hot research topics
will be mentioned. Accordingly, the contributions of this work are: (a) to analyze the origins and
particularities of these fields of research; (b) to provide an overview of the associated literature; (c)
to examine how both knowledge areas have evolved in recent years and to discuss their possible
convergence; and (d) to present some of the challenges and new trends, including those related
with Big Data and MOOCs.

The rest of this paper is organized as follows: Section 2 and 3 offer an introduction to EDM
and LA, respectively; Section 4 reviews some common methods, and Section 5 points out the main
similarities and differences between these concepts; Section 6 identifies the principal issues that
still need to be addressed and explores the latest lines of research; finally, general conclusions are
drawn in Section 7.

2. Educational Data Mining
EDM develops and adapts statistical, machine-learning and data-mining methods to study ed-
ucational data generated basically by students and instructors. Their application may help to
analyze student learning processes considering their interaction with the environment (Baker
and Altheimer, 2012). Initially, some workshops were held at conferences on Artificial In-
telligence in Education and Intelligent Tutoring Systems. The first International Conference
on EDM (Baker et al., 2008) was held in 2008 in Montreal. It has been held every year
since then. The most popular societies are the International Educational Data Mining Society



C.1. Educational data mining and learning analytics 407

(http://www.educationaldatamining.org/) created in 2011, and the IEEE Task Force of
Educational Data Mining (http://datamining.it.uts.edu.au/edd/) formed in 2012. The
related literature is extensive and varied. A commonly cited report is presented in Bienkowski et
al. (2012), who introduce EDM and LA and also their bases, implementation challenges and appli-
cation areas. Special consideration is given to Adaptive Learning Systems, which adapt learning
experiences based on model predictions. As far as we are concerned, there are three books that de-
tail applications and methods: Romero and Ventura (2006), Romero et al. (2010), and Peña-Ayala
(2013). Romero and Ventura (2010) present a survey with more than 300 references.

Applications of EDM methods comprise several steps (Figure C.1). Initially, a design is
planned, i.e., the main aim of the study and the required data are identified. Afterwards, the
data is extracted from the appropriate educational environment. Frequently, data will need to be
pre-processed, since it may come from several sources or have different formats and levels of hier-
archy. Models or patterns are obtained from applying EDM methods, which have to be interpreted.
If the conclusions suggest applying changes to the teaching/learning process or are not conclusive
(because the problem has not been adequately addressed, the raw data are small or not suitable,
or the selected methods are not powerful enough), the analysis is performed again after modifying
the teaching/learning process or the study design.

Figure C.1: Overview of how EDM methods are applied.

There are increasing numbers of EDM applications. According to Baker and Altheimer (2012),
they can be grouped into the following four categories:

1. Student modelling: student data (including knowledge, motivations, etc.) and EDM tech-
niques may be used to design a customized learning process by modelling differences be-
tween students.

2. Modelling of the knowledge structure of the domain: methods combining psychometric
modelling frameworks with space-searching algorithms are created for discovering data-
based domain models.

3. Pedagogical support: efficient educational support may be identified.

4. Scientific research: applications may help to develop and test educational scientific theories
and to formulate new hypotheses.

Specific applications are described in Romero and Ventura (2013): predicting student
performance, scientific inquiry, providing feedback for supporting instructors, personaliz-
ing/recommending to students, creating alerts for stakeholders (in real time in the event of un-
desirable student behaviours), student modelling (developing and tuning cognitive models of
students, which represent their skills and declarative knowledge), domain modelling, student
grouping/profiling, constructing courseware, planning and scheduling (related to courses, student
scheduling, resource allocation, etc.), and parameter estimation.

A huge variety of tools have been designed and implemented to deploy EDM methods. How-
ever, most of these tools include a limited subset of the existing methods, are not publicly available
or have been tested only in case studies. García et al. (2011) provide a list of them and point out
that they are usually too complex for instructors without a background in data mining. Besides
being easy to interpret and use, tools should be fast, especially in monitoring learning processes,
where risk of dropouts and group internal conflicts may be better addressed if instructors are
alerted before they occur (Juan et al., 2009a).

http://www.educationaldatamining.org/
http://datamining.it.uts.edu.au/edd/
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While most LMSs incorporate their own tools to automatically generate customizable statis-
tics reports of course development, these are often quite basic. For instance, Moodle (https:
//moodle.org/) allows several types of report to be generated: (a) logs for selected activities,
students, items and periods of time; (b) live logs, which include recent activity; (c) activity reports,
presenting the numbers of views of each activity in a course; (d) course participation, analyzing
the actions of selected students for a given period and activity; and (e) data on activity comple-
tion. Blackboard (http://es.blackboard.com/sites/international/globalmaster/)
also offers several types of report, e.g., (a) user activity overview, which displays overall system
and course activity for all students; (b) user statistics, consisting of the average number of stu-
dents and other users per month and per day; (c) user activity in forums; and (d) user activity in
groups. Another interesting tool that can be easily employed is Google Analytics (Figure C.2).
It can provide information about the number of visits, pages visited, the average duration of each
visit, demographics, etc. Regarding monitoring student activity and performance, Lera-López et
al. (2009) review the tools provided by Sakai, WebCT/Blackboard and Moodle.

Figure C.2: Example of a Google Analytics report.

3. Learning Analytics
According to the call of the First International Conference on Learning Analytics and Knowledge
(LAK) (https://tekri.athabascau.ca/analytics/), LA can be defined as the measure-
ment, collection, analysis and reporting of data about learners and their contexts, for the purposes
of understanding and optimising learning and the environments in which it occurs. The first Inter-
national Conference on LAK (Long et al., 2011) was held in 2011, also in Canada. It has been held
annually since then. The most active professional society was founded in the same year: the So-
ciety for Learning Analytics Research (SoLAR) (http://www.solaresearch.org). The book
by Larusson and White (2014) is one of the main LA contributions to the literature. It includes
the latest theories, findings, strategies, tools and case studies, and focuses on the following uses:
(a) how to enhance student and faculty performance; (b) how to improve student understanding of
course material; (c) how to assess and attend to the needs of struggling learners; (d) how to im-
prove accuracy in grading; (e) how to allow instructors to assess and develop their own strengths;
and (f) how to encourage more efficient use of resources at the institutional level.

The basic steps to test a learning/teaching process-related hypothesis are the same as those
explained for EDM: an iterative process in which data is extracted from an educational environ-
ment and pre-processed before applying computational / quantitative methods in order to support
stakeholders (instructors, course managers, etc.) when making decisions.

https://moodle.org/
https://moodle.org/
http://es.blackboard.com/sites/international/globalmaster/
https://tekri.athabascau.ca/analytics/
http://www.solaresearch.org
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4. Common methods in EDM and LA
Most methods applicable to educational data are employed in both EDM and LA. The most popular
are related to prediction, clustering and relationship mining. However, there are many more that
cover a wide range of applications. The methods, their descriptions and a few examples are shown
in Table C.1.

Table C.1: Common EDM-LA methods. Source: adapted from Romero and
Ventura (2013).

Method Goal/description Key applications Example
Prediction To infer a target variable from some com-

bination of other variables. Classification,
regression and density estimation are types
of prediction methods.

Predicting student perfor-
mance and detecting stu-
dent behaviours.

Yadav and
Pal (2012)

Clustering To identify groups of similar observations. Grouping similar materi-
als or students based on
their learning and interac-
tion patterns.

Antonenko
et al.
(2012)

Relationship
mining

To study relationships among variables and
to encode rules. Association rule mining,
sequential pattern mining, correlation min-
ing and causal data mining are the main
types.

Identifying relationships in
learner behaviour patterns
and diagnosing student dif-
ficulties.

Kinnebrew
and Biswas
(2012)

Distillation
of data
for human
judgment

To represent data in intelligible ways us-
ing summarization, visualization and inter-
active interfaces.

Helping instructors to visu-
alize and analyze the ongo-
ing activities of the students
and the use of information.

Baker et al.
(2006)

Discovery
with mod-
els

To employ a previously validated model of
a phenomenon as a component in another
analysis.

Identification of relation-
ships among student be-
haviours and characteristics
or contextual variables. In-
tegration of psychometric
modelling frameworks into
machine-learning models.

Jeong and
Biswas
(2008)

Outlier de-
tection

To point out significantly different individ-
uals.

Detection of students with
difficulties or irregular
learning processes.

Ueno
(2004)

Social net-
work analy-
sis

To analyze the social relationships between
entities in networked information.

Interpretation of the struc-
ture and relations in col-
laborative activities and in-
teractions with communica-
tion tools.

Palazuelos
et al.
(2013)

Process
mining

To obtain knowledge of the process from
event logs.

Reflecting student be-
haviour in terms of its
examination traces, con-
sisting of a sequence of
course, grade and times-
tamp.

Trc̆ka et al.
(2010)

Text min-
ing

To extract high-quality information from
text.

Analysing the contents of
forums, chats, web pages
and documents.

Tane et al.
(2004)

Knowledge
tracing

To estimate student mastery of skills, em-
ploying both a cognitive model that maps a
problem-solving item to the skills required,
and logs of students’ correct and incorrect
answers as evidence of their knowledge on
a particular skill.

Monitoring student knowl-
edge over time.

Lee and
Brunskill
(2012)

Nonnegative
matrix fac-
torization

To define a matrix M of positive numbers
with student test outcome data that may be
decomposed into two matrices: Q, which
represents a matrix of items, and S, which
represents student mastery of skills.

Assessment of student
skills.

Desmarais
(2012)
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Baker and Trietsch (2009) study the proportion of works employing each group of methods
during the period from 1995 to 2005 (using data extracted from Romero and Ventura (2007)) and
from 2008 to 2009 (using data from Baker et al. (2008), and Barnes et al. (2009)). Papers from
the first period mainly involved relationship mining methods (43%) or prediction methods (28%).
Human judgment or exploratory data analysis (17%) and clustering (15%) were also popular.
In contrast, relationship mining in the next period slipped to 5th place (9%), while prediction
methods reached 1st place (42%, papers from 2008 only). The proportion using human judgment
and clustering methods did not change considerably (12% and 15%, respectively). Discovery with
models gained representation (19%), since no paper from the first period used this method. Also
worthy of note is the importance of item response theory, Bayesian nets and Markov decision
processes (28%).

5. Similarities and differences between EDM and LA
The overlap between both fields of research is certainly considerable. Even so, some differences
are highlighted in the literature. EDM and LA have the same goal: improving education quality
by analysing huge amounts of data to extract useful information for stakeholders. Representa-
tive companies in other sectors, such as industry, finance or healthcare, have already introduced
statistical, machine-learning and data-mining techniques to achieve better performance through
decisions based on historical data. The popularity of these fields of research has been growing
since the early 2010s (Figure C.3), although EDM research started a few years beforehand. It is
expected that these fields will continue to expand (Johnson et al., 2012), due to the potential bene-
fits (for students, instructors, administrators, researchers and society in general) and the relevance
of current research based on Big Data.

Figure C.3: Evolution of EDM and LA references in Google Scholar (May,
2015).

According to Siemens and Baker (2012), it is possible to identify five key distinctions between
EDM and LA. These are:

• Discovery: in EDM, researchers are interested in automated discovery, and leveraging hu-
man judgment is a tool for that; in LA it is quite the opposite, leveraging human judgement
is the aim.

• Reduction and holism: EDM reduces systems to components and explores them and their
relationships, while LA wants to understand whole systems.
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• Origins: EDM is rooted in educational software and student modelling; in contrast, LA
origins are related to the semantic web, “intelligent curriculum", outcome prediction and
systemic interventions.

• Adaption and personalization: EDM performs automated adaptation, whereas LA informs
and empowers instructors and students.

• Techniques and methods: EDM employs more techniques and methods of classification,
clustering, Bayesian modelling, relationship mining, discovery with models, and visualiza-
tion; while LA focuses on social network analysis, sentiment analysis, influence analysis,
discourse analysis, learner success prediction, concept analysis and sense-making models.

According to the above authors, these differences represent broad trends in each community
and, as a consequence, they do not define the corresponding scopes. A similar idea is expressed
in Baker and Inventado (2014), where it is stated that “the overlap and differences between the
communities is largely organic, developing from the interests and values of specific researchers
rather than reflecting a deeper philosophical split".

Bienkowski et al. (2012) consider that LA covers more disciplines than EDM does. In addition
to computer science, statistics, psychology and the learning sciences, LA is related to information
science and sociology. Therefore, even if the border between both fields is fuzzy and their dif-
ferences are partly based on their origins and trends, they are still significant for these authors.
Moreover, as upheld in Siemens and Baker (2012), the co-existence of both research communities
leads to a more diverse and relevant contribution to society. Consequently, communication and
competition between both should be encouraged.

6. Challenges and new trends
In spite of the high expectations and the relatively extensive literature on EDM and LA, they
are relatively new fields of research and, as a result, several issues still need to be addressed. In
addition, technological progress is driving us to the era of Big Data, which represents an important
paradigm shift and offers multiple opportunities.

An important barrier to the implementation of EDM and LA methodologies is the lack of
knowledge (Wolf et al., 2014), both theoretical and practical, among a significant proportion of
instructors and managers with regard to employing the required tools, correctly understand the
outputs, drawing the appropriate conclusions or deciding which actions to take. In order to mitigate
this problem, it is important to increase acceptance and develop a data-driven culture in educational
environments (Romero and Ventura, 2013). Researchers are already helping in this transition by
disseminating their results, collaborating with a high number of instructors and/or students to
assess their proposals (e.g., García et al. (2011)) and detailing their experiments (data, methods,
etc.). As shown in this article, there are numerous tools to facilitate data analysis, but many have
been implemented in small experiments. We will only be able to obtain more satisfactory and
generic results by analyzing more students, courses and institutions.

Another significant barrier, discussed in Greller and Drachsler (2012), is related to ethics and
personal privacy. Ethics must be taken into account in all stages, from data gathering to the inter-
pretation of outputs and decision making, for instance, by avoiding statements that could lead to
discriminatory treatments when working with gender, social status, race, home country, religious
beliefs, ideology or disability. Similarly, issues related to the ownership of student data, which
differ from country to country, need to be considered.

Numerous applications of EDM and LA methodologies in online environments deal with
the use of Big Data in educational environments. Big Data refers to data with sizes beyond
the ability of common software tools to capture, store, manage and process in a reasonable
amount of time (Snijders et al., 2012). The main differences between Big Data and Analyt-
ics are volume, speed and variety (McAfee et al., 2012). In the past, obtaining, storing and
processing data was an expensive and time-consuming procedure. Consequently, most studies
attempted to draw conclusions from a sample of individuals that could be generalized to a pop-
ulation. However, current technology enables researchers to work with much more individuals
and variables, obtaining richer information and insights. It leads to faster and more robust re-
sults, which should translate into more efficient decisions. The combination of Big Data and
LA constitutes a promising field for governments (e.g., Johnson et al. (2013)) and universities
(http://openthoughts-analytics.blogs.uoc.edu/) to explore.

http://openthoughts-analytics.blogs.uoc.edu/


412 Appendix C. Selected journal papers indexed in Elsevier-Scopus

Also, Massive Open Online Courses (MOOCs), typically managed by recognized instructors
from prestigious universities, represent a new and prominent research topic. Besides being a mar-
keting strategy for universities, they enable students from around the world to take modern and
diverse courses for free, which helps to reduce the educational-opportunity divide associated with
economic inequalities. According to Siemens (2013), the term “MOOC" is employed to refer to
two different concepts: connectivist MOOCs (cMOOCs), which are based on a connectivist ped-
agogical model that uses freely available online resources, and edX MOOCs (xMOOCs), which
replicate online the traditional model in which instructors share their knowledge and experience,
and grade student assignments. The popularity of xMOOCs has been growing since 2012, when
several large universities started to offer them. Coursera, edX, or Class2Go are some well-known
platforms. These courses are usually characterized by a large number of enrolled students, which
generates a scalability challenge (Kay et al., 2013), very high dropout rates and very different pat-
terns of participation (Clow, 2013). Nevertheless, several authors agree that even if a high dropout
rate raises concerns about a course, it is needed to take into account two elements: (a) the first
exploratory phase, where students assess the content, structure and resources, and may decide not
to continue; and (b) the diverse objectives, learning styles or schedules of students. Therefore,
non-completion cannot be directly interpreted as a failure or problem. The maximum potential of
EDM and LA in MOOCs stems from two facts: the diversity of students and the extremely high
student-instructor rate. Participants may have different origins, backgrounds, maturity, experi-
ence, education levels, language skills, objectives, needs and learning styles, among others. This,
in turn, suggests the relevance of personalizing courses. However, given the student-instructor
rates, this is impossible without automated systems. Despite the fact that research on this topic
is just emerging and that current MOOC platforms provide limited data storage, a few interesting
works on adaptive MOOCs (aMOOCs) already exist. For example, Daradoumis et al. (2013) pro-
pose the use of software agents to improve and personalize management, delivery and evaluation.
Agents could help to redesign MOOCs for future cohorts by gathering information on usage pat-
terns, navigation, problematic content areas, tool usage, student profiling, etc. Regarding content,
learning/prediction algorithms could be applied by agents to dynamically adjust course content
to suit each participant’s profile. Furthermore, agents could be also employed to improve auto-
mated testing by adjusting assignment questions according to the participant’s educational level.
Sonwalkar (2013) describes the development of the first aMOOC platform, which is implemented
using Amazon Web Services’ cloud architecture. A case study of a course of molecular dynamics
is analyzed. It considers different learning strategies based on five pedagogies (apprentice, inci-
dental, inductive, deductive and discovery). The adapted learning path of each student is set at
the beginning with a diagnostics quiz. As Clark (2013) critically notes, many MOOCs may be
described as a set of linear sequential videos, quizzes and assessments reviewed automatically or
by peers, while big companies like Google or Amazon employ algorithmic approaches to tailor
searches, ads and recommend purchases. Therefore, aMOOCs are expected to become the focus
of much more research attention over the coming years.

7. Conclusions
Educational Data Mining (EDM) and Learning Analytics (LA) are both relatively new and promis-
ing fields of research that aim to improve educational experiences by helping stakeholders (instruc-
tors, students, administrators and researchers) to make better decisions using data. Their growth
has been boosted by increasing computer capacity to store and analyze huge amounts of data and
the availability of statistical, machine-learning and data-mining methods and techniques.

Online environments are a highly important area of application. On the one hand, they contin-
uously generate data from a number of events such as reading files or participating in forums, with
different formats and levels of hierarchy. At the same time, online courses have higher dropout
rates than traditional courses. EDM and LA are mainly employed to monitor students and groups
(allowing the identification of students that are likely to dropout or fail, or that are not contributing
enough in collaborative activities), suggest changes in course structure and tailor learning expe-
riences (recommending material according to motivations and skills, for instance). There is a
wide variety of methods and techniques adapted from other disciplines or specially designed to
analyze educational data. Numerous similarities exist between both fields of research, such as
goals, methodologies and techniques. However, there are several differences, attributable mostly
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to their origins and trends. The co-existence of their respective scientific communities leads to
competition with positive effects on society.

Despite the high expectations and the amount of works on EDM and LA, their application in
educational environments still comes up against some important barriers, such as the lack of a
data-driven culture and of fast, comprehensive and easy-to-use and understand tools that could be
integrated in the most popular LMSs.

In the era of Big Data, the combination of the current capacity to capture, store, manage
and process data in a reasonable amount of time, and data from online learning environments
represents an opportunity for researchers into EDM and LA to better explore student learning
processes and efficient ways to improve them. An important application is in MOOCs, where
data from thousands of students can be employed to redesign courses for future students, relying
on navigation and tool usage for example. A much more challenging approach consists in the
development of adaptive MOOCs, in which the courses are automatically personalized according
to student profiles (needs, objectives, background, country, learning style, etc.) and performance.
This is a relatively new research topic that is currently getting much attention from both researchers
and companies.
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Abstract
Rich Vehicle Routing Problems (RVRPs) refer to complex and realistic extensions of the classi-
cal Vehicle Routing Problem. They constitute a hot topic in logistics due to their high number
of relevant applications. This work focuses on a RVRP with the following characteristics: (a)
heterogeneous fleet of vehicles, (b) site-dependency, i.e., not all types of vehicle can reach all
customers, (c) asymmetric costs, and (d) stochastic demands. We formally define the problem and
describe real-life applications. Our main contribution is a simheuristic-based methodology includ-
ing a Successive Approximations Method for solving it. A computational experiment is carried
out to illustrate the proposed methodology. Moreover, the suitability of considering a simheuristic
approach is analyzed.

Keywords: Simheuristics, Successive Approximations Method, Heterogeneous VRP, Site-
dependent VRP, Metaheuristics, Stochastic Optimization Problems.

1. Introduction
In our globalized and dynamic economy, transport constitutes the backbone of complex and large
supply chains that require the fast, economical and reliable flow of goods. In most countries, road
transport is the most used system. In addition to contribute to Gross Domestic Product and em-
ployment, the correct functioning of this sector is essential for other sectors, having an important
effect on company competitiveness. While the activity of this sector is growing due to the increase
of good demands (as a consequence of the increase of population and purchasing power), in-
frastructures are limited. Moreover, road transport causes congestion, accidents, noise, pollution,
environmental impacts, and dependency on imported fossil fuels. Therefore, the development of
efficient optimization methods is required.

The delivery of goods has always been a challenging problem for the Operations Research
community. The popular Vehicle Routing Problem (VRP) (where routes are built to visit a set of
customers with uncapacitated vehicles, minimizing distance-based costs) is the most basic exam-
ple. This problem has been extended in many directions to introduce realistic characteristics. A
classification and review on these rich problems can be found in Caceres et al. (2014).

We study the Heterogeneous Site-dependent Asymmetric VRP with Stochastic Demands
(HSAVRP-SD). Its main goal is to minimize the costs associated to the distribution of goods
in such a way that all demands are satisfied. It considers a number of vehicles that may have
different loading capacities (i.e., a heterogeneous fleet). This diversity usually comes from two
facts: different customers and locations may require different types of vehicle (e.g., due to narrow
roads, available parking spaces, and vehicle weight restrictions), and the vehicle acquisitions may
be made in different times and places. Related to this characteristic, the HSAVRP-SD describes a
scenario where some customers cannot be accessed with all types of vehicle, which is known as
site-dependency. Regarding the cost matrix, we relax the classical assumption about its symmetry,
since there can be cost differences associated to the direction of a route (for instance, differences
between driving uphill or downhill in mountainous regions). Finally, we account for uncertainty in
demands by modeling them as random variables following specific probability distributions (either
empirical or theoretical ones).

The HSAVRP-SD has several real-life applications. A typical example is the fuel oil distribu-
tion which can be associated to petrol station replenishment or to the delivery of domestic heating
oil. Generally, in these cases, the exact demand required by a customer is not known until the
time of the delivery, and cost between nodes (based on energy consumption) is asymmetric due
to the presence of important road grades. A review of the petrol station replenishment problem
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is presented in Cornillier et al. (2012). The optimization of domestic heating oil distribution has
been less studied, even though the high dependence on heating oil of some isolated regions. Once
again, it could be of particular interest in mountainous regions where in absence of a gas pipeline,
domestic oil is frequently the predominant fuel for heating.

Being the analyzed problem a NP-hard and Stochastic Combinatorial Optimization Problem
(SCOP) (Bianchi et al., 2009), we propose a simheuristic-based methodology for addressing it.
Simheuristics (Juan et al., 2015a) is a relatively new approach for solving SCOPs in a natural way
by combining metaheuristics and simulation techniques. While the former search for promising
solutions, the latter assess their performance in a stochastic environment. We apply an Iterated
Local Search (ILS) metaheuristic (Lourenço et al., 2010), which employs the Successive Approx-
imations Method (SAM) (Juan et al., 2014c) for creating solutions, and Monte Carlo Simulation
(MCS) techniques. The main contributions of this paper are: (1) a simple yet powerful methodol-
ogy for solving the HSAVRP-SD; and (2) a computational experiment carried out to illustrate the
methodology and assess the need of a simheuristic approach.

2. Literature Review
Heterogeneous Site-dependent Asymmetric VRPs

Nag et al. (1988) is the first work to analyze site-dependencies, which propose simple heuristics.
Other authors (Chao and Liou, 2005; Cordeau and Laporte, 2001; Pisinger and Ropke, 2007) also
address this characteristic by applying metaheuristics. Regarding asymmetric costs, Herrero et
al. (2014) present a hybrid algorithm including biased randomization techniques and several local
searches for solving the Asymmetric and Heterogeneous VRP. In Yusuf (2014) the authors suggest
a three-phase heuristic for the Multi-depot Heterogeneous, Site-dependent and Asymmetric VRP.
The characteristic of heterogeneity has been much more studied than the others; Hoff et al. (2010)
provide a comprehensive review.

Stochastic VRPs (SVRPs)

Despite the fact that SVRPs have not been so extensively studied as the deterministic counterparts,
there are some interesting works related to this article. For instance, Tillman (1969) is considered
the first work. It expands the CWS heuristic (Clarke and Wright, 1964) to address the Multi-
Depot Vehicle Routing Problem with Stochastic Demands, which follow Poisson distributions.
The concept of route failure (i.e., when the demand of the customer being visited by a given
vehicle exceeds its remaining capacity) is proposed in Dror and Trudeau (1986).

A review of the main works on SVRPs (Gendreau et al., 1996) classifies them according to the
stochasticity source (customers, demands and/or times). Yang et al. (2000) propose anticipating
potential route failures by incorporating preventive breaks in the design of routes. Bianchi et al.
(2006) compare the performance of a few metaheuristics (Simulated Annealing, Tabu Search,
ILS, Ant Colony Optimization and Evolutionary Algorithm) for solving the VRP with Stochastic
Demands (VRP-SD). It is also worthwhile mentioning the work of Bianchi et al. (2009), which
provides a comprehensive survey on metaheuristics for SCOPs.

Many works have tackled SVRPs using simheuristics. The VRP-SD is addressed in Juan et al.
(2011b), which introduces the use of safety stocks. It consists of reducing the vehicle capacities,
multiplying them by a number between 0 and 1, only for designing the routes. Thus, the remaining
capacity is kept as a reserve in case real demands are higher than expected. An improved version
is presented in Juan et al. (2013b), where the benefits of parallel and distributed computing are
studied.

3. Definition of the Problem
The HSAVRP-SD is defined over a complete graph G = (N, A), where N = {0, 1, . . . , n} is a set of
nodes representing the depot (node 0) and the n customers (nodes 1 to n). Each node i ∈ N has
associated a demand Di, which is a random variable following a given probability distribution. The
actual demand of a specific customer is only known when a vehicle visits her/him. It is assumed
that the depot has no demand. The set A = {(i, j) : i, j ∈ N, i , j} contains the arcs connecting
each pair of nodes. Moreover, there is a set F = {1, ...,m} referring to the types of vehicle. For
each type o ∈ F, there are po available vehicles, the parameter Qo represents the maximum load
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that a vehicle can carry, and Uo (Uo ⊆ N \ 0) denotes the set of customers that can be served. Each
arc has associated a cost co

i j that depends on the the type of vehicle. The cost of a route is the sum
of the costs of its arcs and a fixed cost for using a vehicle ( fo).

The goal is to design routes that satisfy all demands and minimize the total costs while satisfy-
ing the constraints previously introduced and the following ones: (a) each vehicle starts and ends
its route at the depot; and (b) each customer is visited by just one vehicle.

4. Our Methodology
The methodology we propose is a simheuristic procedure combining the ILS metaheuristic and
MCS techniques. Simheuristics efficiently solve SCOPs in a natural way by extending compet-
itive metaheuristics for the deterministic problem (usually much more studied) with simulation
techniques. The ILS metaheuristic is highly popular for addressing a wide range of problems in
routing, scheduling, finance, etc. It is relatively easy to understand and to implement because of
its modularity. MCS enables the assessment of solutions in a stochastic environment by following
these steps: (1) simulate a set of scenarios (where each scenario is created by generating a value
for each random variable); and (2) compute the mean value of a performance measure. For build-
ing solutions, the SAM procedure is used. The description of our methodology is explained below
and summarized in Figure C.1 and Algorithm 1.

Algorithm 1 The SAM procedure

1: procedure buildSolution(customers, vehicles)
2: globalS ol← empty
3: nonS ervedCust ← customers
4: while nonS ervedCust , empty do
5: vehType← selectType(vehicles)
6: compatCust ← getCompatibleCust(nonS ervedCust, vehType)
7: sol← solveHoS AVRP(compatCust, vehType)
8: routes← getRoutes(sol)
9: numVehO f TypeK ← numberO f Vehicle(vehType)

10: if numberO f Routes > numVehO f TypeK
11: routes← S electRoutes(numVehO f TypeK,Random)
12: end if
13: globalS ol← addRouteToS ol(routes, globalS ol)
14: vehicles← deleteUsedVehicles(vehicles)
15: nonS ervedCust ← extractCustomers(nonS ervedCust, globalS ol)
16: end while
17: return globalS ol
18: end procedure

The inputs are the HSAVRP-SD instance, where each demand is modeled as a random vari-
able following a specific probability distribution, and a set K of values used to determine safety
stocks. Their use leads to lower costs due to route failures (which are the costs of going from the
customer being served to the depot to refill and come back to complete the delivery). However, it
may also increase the number of routes needed, increasing the deterministic costs (those obtained
considering that demand variances are 0). Consequently, it is required to test different values and
compare expected total costs.

The algorithm starts by selecting the first value k ∈ K and transforming the original instance
into a deterministic one replacing stochastic demands by their means. Additionally, the capacities
are reset to: Qo = (1−k)Qo (∀o ∈ F). The next step consists in building an initial solution (initSol)
for the new instance and estimating the associated total costs using MCS techniques with a short
number of scenarios. Afterwards, a base solution (baseSol) is constructed by cloning initSol, and a
list of solutions (bestSols) is created, which will store the best stochastic solutions (i.e., those with
the lowest expected total cost). Initially, the list includes (initSol). Then, a new solution (newSol) is
obtained by perturbing baseSol, which involves removing a random number of routes and repairing
it. If the former has lower total costs (i.e., costs in the deterministic environment), it replaces
baseSol, the total costs in the stochastic environment are estimated with a short MCS, and bestSols
is updated. On the other hand, if (newSol) is not better than (baseSol), an acceptance criterion is
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Figure C.1: Flowchart of our methodology.

checked to decide whether the base solution is replaced. We use a Demon-like acceptance criterion
(Talbi, 2009), which allows the base solution to be deteriorated if no consecutive deteriorations
take place and the degradation does not exceed the value of the last improvement. By doing this,
the algorithm avoids getting stuck in a local optima. This procedure is repeated to visit different
solutions until a stopping criteria is met. At this point, the algorithm is re-initialized with another
value of K. When all values have been tested, the total costs of bestSols are accurately estimated
using MCS with a larger number of scenarios. Finally, the list is returned.

Regarding the building of solutions, the SAM procedure is implemented. It can be described
as follows. The procedure receives one list of customers and one of available vehicles. First,
an empty global solution is created, and the list of customers is copied into a list of non-served
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customers. While this list is not empty, the next steps are taken. A vehicle type not used yet is
selected and those customers not compatible with the selected vehicle are removed from the list.
Then the problem is transformed into an Homogeneous SAVRP (HoSAVRP) with no limitation
on the number of vehicles that is solved with a state-of-the-art algorithm.

If the solution provided reports more routes than the number of available vehicles of the current
type, some routes are discarded. This partial solution is included in the global solution. The last
instructions inside the while loop update the list of available vehicles and the list of non-served
customers. This process ends when all customers are assigned to a route. Finally, the global
solution is returned.

The procedure for repairing solutions is exactly the same but receiving as inputs only those
customers that remain to be included in a route and copying the perturbed solution into the global
one when this is created.

Each HoSAVRP solution is constructed using the SR-GCWS-CS algorithm described in Juan
et al. (2011a). It is based on the CWS heuristic and incorporates biased randomization techniques
and cache and splitting techniques, which contribute to reduce computational times. We have
adapted this algorithm in order to consider asymmetric costs. For this, the easy procedure of
computing savings as the mean of the two savings associated to each pair of nodes (Gruler et al.,
2015b) has been applied.

5. Computational Experiments
In order to test the simheuristic approach presented in the previous section, we have generalized
a (randomly chosen) set of 4 classical CVRP instances. The original data can be downloaded
from Branch and Cut. The same location of the nodes and demand is used. To include all the
characteristics of the rich VRP, the instances have been modified in the following aspects.

Given that a cost perspective is taken as objective function, a fixed cost for using vehicle, fo,
and a variable cost, vo, that multiplies the distance have been established. Therefore, the cost of
arc (i, j) ∈ A, co

i j = vodi j, where di j is the Euclidean distance. In order to account for asymmetric
costs, the cost of an edge (i, j) is incremented by 10% if the y-coordinate of the destination node j
is greater than the y-coordinate of the origin node j.

An heterogeneous fleet has been proposed, with three type of vehicles. Large vehicles have a
capacity equal to the one used in the benchmark, and medium and small vehicles have a reduced
capacity of 75% and 50% respectively. All vehicles can serve all customers except for customers
belonging to a randomly selected sub-area in which we assume that large vehicles cannot access.

Without loss of generality we have chosen the demand of a particular customer, Di, to follow
a logNormal distribution, with expected value as the demand of the benchmark instance (di) and
variance proportional to the expected value (κdi). The results presented next are obtained with
κ = 0.1.

All the assumptions were made considering realistic situations. The resulting instances can be
provided to the interested reader.

Several measures will be computed for each solution. When a solution is evaluated with de-
terministic demands, the cost (Zdet) and the distance (dist) are shown. When a solution is assessed
with stochastic demands, route failures may happen which increase the cost. Therefore, the ex-
pected cost (Z stoch) and the percentage of expected route failures (r f ail) is displayed. Given that
our strategy for searching alternative solutions with better performance in the stochastic world is
to define safety stocks, this value is also included.

Test cases were run on a laptop with 4 cores at 2.6GHz. Experiments were run over 5 random
seeds for 60 seconds except for instance A-n80-k10 which run for 300 seconds. The name of the
instances indicate the number of nodes (after the letter n). Short MCS were run for 100 scenarios,
and long simulations consisted of a sample of 10000.

Table C.1 compares the solution of the original CVRP instance with the current version
HSAVRP with deterministic demands. When the SAM method is employed to solve the CVRP,
Our Best Solution (OBS) shows to be competitive compared with the optimal (OPT) solution re-
ported in the literature, with an average gap of 0.52%. With the solution of the HSAVRP we also
report the composition of the fleet for each solution. We can observe that a mix fleet is used,
motivated by the fact that some vehicles cannot access some customers. The performance of the
deterministic solution is tested in the operational level with stochastic demands in Table C.2.
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A particular solution is tested under stochastic demands using MCS techniques, the same rou-
tine that we used in the simheuristic with a large sample. In Table C.2 we can observe how the
expected cost of the deterministic solution increases on average a 4% and experiences a high per-
centage of route failures. This is mainly due to the fact that some routes has a filling rate of 99%,
and small variations of the demand induce route failures. On the other hand, stochastic solutions
show a filling rate more balanced among the routes, and the route failures decrease dramatically.
Figure C.2 illustrates such situation for test case P-n40-k5. The expected cost of the stochastic
solution outperforms that of the deterministic solution with an average of 4.28%, and results in
lower variability of the costs (given the low percentage of route failures).

●

( 75 %) ( 97 %)

( 89 %)
( 94 %)

( 99 %)
( 70 %)

Large ( 75 %)
Medium ( 97 %)

Medium ( 89 %)
Large ( 94 %)

Large ( 99 %)
Small ( 70 %)

 Routes for  DET sol  with deterministic objective =  2318.25

●

( 84 %)

( 95 %) ( 89 %)

( 89 %)
( 97 %)

( 70 %)

Large ( 84 %)
Large ( 95 %)

Medium ( 89 %)
Large ( 89 %)

Medium ( 97 %)
Small ( 70 %)

 Routes for  STOCH_1  with deterministic objective =  2318.32

Figure C.2: Delivery routes for instance Pn40k5 - deterministic and stochastic
solution

6. Conclusions
Road transport is increasingly relevant in our globalized economies, contributing to Gross Do-
mestic Product and employment. On the other hand, it may lead to congestion, pollution, etc. In
this work, we have focused on the Heterogeneous Site-dependent Asymmetric Vehicle Routing
Problem with Stochastic Demands, which constitutes a complex and realistic problem. A solving
methodology based on the simheuristic approach has been described. It employs a Successive
Approximations Method. Results show that our methodology is able to solve the problem, and
quantify the benefit of using simheuristics in stochastic environments.
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Abstract
This paper introduces SmartMonkey, a novel web-browser approach for solving NP-hard combi-
natorial optimization problems in “real time" (usually a few seconds). Our approach makes use of
randomized algorithms that are run in parallel on a set of independent machines available on the
Internet. These machines do not need to be configured, and no client application needs to be in-
stalled on them. Instead, just by opening a web page in a web browser, the computational resources
of the machine become available for the algorithms to be executed. Being a configuration-free ap-
proach, it offers a great advantage to end users, since they are relieved from the usually complex
and time-consuming configuration tasks that characterize other distributed-computing approaches.
Computational tests have been carried out using different algorithms for solving NP-hard combi-
natorial optimization problems in transportation and production scheduling. The results show that
our approach allows obtaining near-optimal solutions in real time, which can be specially interest-
ing for supporting decision-making processes, especially those in small and medium enterprises,
in a wide range of application fields including logistics, transportation, smart cities, and manufac-
turing.

Keywords: Logistics & Transportation, Production, Combinatorial Optimization, Parallel and
Distributed Computing, Randomized Algorithms, Metaheuristics.

1. Introduction
Internet plays an essential role in our society, permitting us not only to communicate and ob-
tain information in ‘real-time’ but, as it will be discussed in this paper, also to solve complex
decision-making problems in ‘real-time’. This is achieved by the use of Distributed and Paral-
lel Computing Systems (DPCS), which allow the aggregation of multiple autonomous computing
resources interacting to achieve a common goal (Coulouris et al., 2005). Under this general con-
cept, there are a number of different paradigms. Grid Computing (Foster and Kesselman, 2003)
appeared at the beginning of the 1990s decade, aiming to combine dispersed computational re-
sources. It was initially used in scientific and research fields. Another relevant paradigm sharing
the same goal is Cloud Computing (Armbrust et al., 2009). It emerged at the beginning of this
century, focusing on a provider-client model in which users do not belong to any particular orga-
nization, only pay for the resources they use and can consume them at any time, without having
to forecast their computing needs in a mid-large term. This paradigm eases Small and Medium
Enterprises (SMEs) the acquisition of computer resources, since they do not longer need up-front
investments or over-provisioning to face peak loads. More recent paradigms are Volunteer Com-
puting (Sarmenta, 2001) and Desktop Grids (Cérin and Fedak, 2012). Both attempt to gather
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surplus or idle computing resources. While the first focuses on end-users that voluntarily make
available their resources for a third entity or project, the second utilizes resources from a given
organization network. A successful project in the Volunteer Computing paradigm is SETI@home
(http://setiathome.berkeley.edu) of BOINC ((Anderson, 2004)). However, it is usually a
complex task to gather a considerable number of volunteers. Besides the savings, a particular in-
teresting feature of Desktop Grids is that SMEs avoid sending private data to an external provider,
and become more environmentally friendly.

The main contribution of this work is the description and testing of an efficient, flexible, and
browser-based framework to facilitate access to computational resources (Berry, 2009) and, ulti-
mately, solve Combinatorial Optimization Problems (COPs) in ‘real time’ (a few seconds). This
framework allows the employment of new versions of web browsers (such as Google Chrome,
Firefox, and Internet Explorer) as nodes in a cluster. The only required step is to visit a web-
site. The embedded JavaScript code into this website enables the communication with the job
dispatcher service. It may be considered a more scalable paradigm than traditional grid comput-
ing, since the connection of people is boosted by the fact that no third party software installation
is required. Due to the relevance of COPs for SMEs and the amount of academic works propos-
ing the implementation of DPCS for addressing them (Talbi, 2006; Talbi, 2009), we illustrate the
working and the potential benefits of our approach by solving two classic NP-hard COPs in the
fields of transportation (vehicle routing) and production (scheduling).

The rest of the paper is organized as follows: Section 2 provides an overview of Distributed
and Parallel Computing Systems. Afterwards, Section 3 discusses the potential of DPCS-based
approaches in solving real-life SMEs problems. The description of our browser-based platform is
included in Section 4. The web-based approach developed to tackle COPs is explained in Section
5. Section 6 contains the numerical experiments carried out to analyse the efficiency of our ap-
proach, while Section 7 discusses the results of these experiments. Finally, Section 8 summarizes
the main findings of this work.

2. Distributed and Parallel Computing Systems
Desktop computers have become affordable machines that most people use every day for both
work and leisure. Despite their current capacity, numerous institutions and individuals require
more computational resources to execute intensive problem-solving processes. In these cases,
Distributed and Parallel Computing Systems constitute a useful approach. Multi-processors and/or
multi-computers paradigms may be employed. A multi-processors schema refers to a set of phys-
ical processing units sharing a machine (mono-core CPU, multi-core CPU, or a combination of
both). In this schema, a task represents a logical concept including instructions to be executed by
an algorithm or application, while a process can be defined as a running instance of a computer
program. A process might consist in different threads implementing one or more tasks. Tasks,
threads or processes share a global memory system, on which their communications rely. On
the other hand, a multi-computer schema presents a set of physical machines linked via net-work
connections. These machines can be coupled geographically (in a supercomputing environment,
for example) or in a more distributed environment (as in Cloud Computing). The main parallel
paradigm is message passing, in which tasks and processes of different machines interchange data
packets by sending and receiving messages to communicate.

Nowadays, there is no need for a user of designing and building a new computing infras-
tructure, since there are organizations which satisfy scalable computational demands at a rea-
sonable price. Grids are mainly required in high-performance-computing scientific projects.
Foster and Kesselman (2003) and Buyya and Venugopal (2005) provide an overview of this
paradigm analysing several projects. In contrast, Cloud platforms constitute a solution for
enterprises to obtain additional resources (public clouds), or to manage the resources owned
(private cloud). Some examples of platforms providing these services are Amazon’s Elastic
Compute Cloud (http://aws.amazon.com/ec2) and Microsoft’s Azure Services Platform
(www.microsoft.com/windowsazure). Volunteer Computing models are mostly used for sci-
entific and academic projects. Highly popular implementations are BOINC (Anderson, 2004),
Condor (Litzkow et al., 1988) and Entropia (Chien et al., 2003). Examples of communities created
to aggregate computational resources are Seti@HOME (http://setiathome.berkeley.edu)
and Distributed.net (http://www.distributed.net). Finally, Desktop computing is employed
by private organizations (Nadiminti and Buyya, 2005).

http://setiathome.berkeley.edu
http://aws.amazon.com/ec2
www.microsoft.com/windowsazure
http://setiathome.berkeley.edu
http://www.distributed.net
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3. Relevance of DPCS for SMEs
SMEs are responsible for a significant part of the wealth generated in all developed economies. Of-
ten, they do neither possess advanced technical knowledge nor modern computational resources.
However, a number of them could benefit from having more resources, for example to speed up
intensive-computation processes or to obtain a higher performance. In order to access them, DPCS
offer two alternatives: (a) to pay for using resources from an external provider (a cloud platform,
for instance), which can be presented as virtual machines; and (b) to employ underutilized com-
puter resources owned by the SME. This idea of aggregating idle or unused resources characterizes
also Volunteer Computing Systems. The main difference between both paradigms is that while the
latter is usually associated to dynamic (any user can freely enter and leave) and heterogeneous
environments, an SME knows the characteristics and the availability of its machines. Obviously,
their scalability is also more limited.

The alternative of using SME’s underutilized resources presents several advantages. Firstly,
SMEs do not have to send private information to servers of an external enterprise. Secondly, it is a
cheaper solution since the SME does already have the resources. Finally, the energy consumption
is reduced by seizing these resources, which could be still consuming otherwise (Cabrera, 2014).
In this same direction, it can be argued that the environmental footprint of this alternative may be
lower than that of a large digital warehouse, because the heat concentration is lower. These Desk-
top Grids Systems may be formed by personal computers with more computing capabilities than
the required (standard computers in which employees mainly use word processors and spread-
sheets, for instance) or that are not used during some specific days (weekends, holidays, etc.) or
hours (night, midday, etc.). Moreover, resources from several SMEs may be gathered (Juan et al.,
2013b) to build a larger computing system (Figure D.1). They can rely on a directory-of-resources
service that keeps updated information of available computing resources. Once a user requires
executing a process, he sends a query to this directory to select the resources and organize the
tasks to perform. Once these tasks have been completed, the result is sent back to the user.

Figure D.1: Aggregating resources from one or several SMEs.

4. Description of the SmartMonkey Platform
SmartMonkey aims at facilitating the aggregation of a high number of computational resources –
without any additional cost for the company– by seizing underutilized or idle resources. It is based
on software already installed in most computers, web browsers. Using a modern version of some
of the commonest (Google Chrome, Firefox, or Internet Explorer), it may integrate a computer
into the computing network. The only action required is to visit a website with an embedded
JavaScript code that enables the communication in real-time with a job dispatcher service. Each
one of the jobs includes a piece of data and the computing task to perform. Additional steps such
as downloading, installing, or setting up additional software are not required, which makes this
option a very attractive one for most SMEs. Because the ease to add new resources, this approach
can be considered highly scalable. As other Desktop Computing Systems, it has the advantage
that does not require sending private data to an external enterprise or third party. Therefore, the
described platform constitutes a flexible, simple, and scalable approach with multiple applications
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in SMEs, which reduces the cost of acquiring additional computational capabilities. Figure D.2
shows the major difference between the BOINC framework and our web-based framework in terms
of engagement. While our framework is just one step away to start processing, BOINC networks
need a more complicated sequence of steps. Therefore, our configuration-free approach can turn
out to be much more appealing to SMEs because its ease of use and fast scalability.

The platform architecture is the typical of a master-slave cluster. The system has been designed
to free the master from computationally expensive tasks. For the experiments described later
in this paper, a single master has been sufficient to handle all the workload. In a production
environment, the system could easily scale to thousands of slaves or even further when considering
other architectures like a multi-master environment, etc. In our case, the master was placed on a
dedicated server located on a cloud provider (Softlayer). The slaves were located over 2 different
locations: The UOC’s Lab and the Incubio’s offices. The execution process goes as follows. First,
the end-user submits the task to be executed to the master. This task consists mainly in a set of
Map and Reduce functions written in JavaScript, as well as their input dataset. The master is
responsible of creating a list of jobs. Each job is composed of a chunk from the dataset and the
source of code that has to be executed over each piece of data. The master delivers and ensures that
jobs are evenly distributed. After each job is completed, the master receives the results and stores
them in a file or a database depending on the execution flow given by the user. The master keeps
track of the jobs that have been assigned and processed. Different measures handle unfinished jobs,
errors or exceptions that could appear unexpectedly by either rescheduling the jobs or stopping the
execution and reporting the error.

Some of the main benefits of this paradigm are cross-platform support and cluster scalability.
Adding a slave to the system is as easy as adding a JavaScript snippet to any website and opening
it with a modern browser. The loaded code is the responsible to communicate with the master and
ask for new jobs to execute. As the code of each job is provided by the master, the code of the slave
is in charge of receiving a new job, executing it, and then sending the results back to the master.
This process is entirely written on JavaScript code, avoiding specificities of that language from
specific browsers in such a way that it can run on a heterogeneous pool of different web browsers
(such as Internet Explorer, Google Chrome and Firefox) as well as on different operating systems.
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Figure D.2: Comparison between BOINC and SmartMonkey engagement pro-
cess.

5. The Multi-agent Solving Approach
In sectors such as logistics and transportation, telecommunication, healthcare, finance, and produc-
tion, a huge number of real-life decision-making processes can be modeled as COPs. Frequently,
managers are required to take crucial decisions in real time. Designing routes to quickly provide
medical assistance after a natural disaster, rescheduling flights because of some delays caused by
unexpected circumstances, or reducing the risk of some savings in the stock market being affected
by unpredicted events are a few examples. Despite the fact that exact methods exist for addressing
COPs, they usually require a high amount of time to solve real-sized problem instances. As a con-
sequence, approximate methods are widely implemented. Most of them are probabilistic, which
means that their solution depends on the seed used for a pseudo-random number generator. It has
been proved that the execution time that an algorithm needs to report high-quality solutions can
be reduced depending on this seed (Juan et al., 2014d).

According to Talbi (2006) and Talbi (2009), DPCS are commonly employed to solve COPs.
The typical approach in the related literature applies a master-slave scheme, in which a master
or coordinator processor sends tasks to a set of slave processors in order to execute an intensive-
computing process. Each slave is responsible for solving the same problem instance considering
a different scenario, each one formed by a set of parameters and/or a seed. Once a slave has
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completed its task, it sends the solution to the master that stores it. In the simplest version, there is
no communication between slaves. Following this approach, we aim to execute multiple instances
of the algorithm at the same time, each with a different seed. As shown in Figure D.3, each of
these instances can be considered a cloned agent that is searching the solution space.

Figure D.3: A multi-agent approach for solving COPs.

6. Computational Experiments
In order to illustrate the benefits of the presented approach, two relevant NP-hard COPs have been
addressed: the Capacitated Vehicle Routing Problem (CVRP) and the Permutation Flow-shop
Sequencing Problem (PFSP). For each problem, an efficient algorithm has been employed. The
CVRP (Figure D.4) is a classical routing problem in which a fleet of capacitated vehicles must visit
a number of customers and satisfy their demands. The routes start and finish at a specific depot,
where all goods are initially held. Moving between nodes (customers or depot) has associated a
distance-based cost. Typically, the aim is to minimize the total cost of the designed routes. Despite
this simple description, the CVRP is a NP-hard problem with an extraordinary number of real-life
applications in the transportation field.
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Figure D.4: A CVRP instance with customers being served from a central depot.

The randomized version of the popular Clarke and Wright savings (CWS) heuristic (Clarke
and Wright, 1964), described in Juan et al. (2014d), has been chosen to solve the CVRP. Initially,
this heuristic computes a dummy solution in which there is a route for each customer. Afterwards,
a list of all edges connecting two customers is created. It is sorted according to the savings that
would be obtained if the dummy solution was modified to include an edge by merging the corre-
sponding routes. This is an iterative process that considers all edges and carries out merges only
if no constraint is violated. The randomized version of the heuristic introduces variability in the
sort process, erasing the greedy behavior of the classic version. Particularly, it assigns a given
probability to each edge to be selected in first place, which is coherent with the savings (i.e., edges
with a highest saving will have associated a higher probability). Then, the list and the probabilities
are updated, and the process is repeated until all edges have been studied. The Kelly instances are
used to test our approach (Golden et al., 2008).

The PFSP (Figure D.5) is a well-known scheduling problem. An instance is characterized by
a number of independent jobs that have to be processed on a set of independent machines. Each
machine can execute at most one job at a time, and all jobs must be processed in the same order in
each machine. The aim is to minimize the maximum completion time, so called makespan.

Figure D.5: A PFSP instance with 3 machines and 3 jobs.

The ILS-ESP algorithm (Juan et al., 2014a) has been employed to address the PFSP. It relies
on the Iterated Local Search (ILS) metaheuristic (Lourenço et al., 2010). In this algorithm, a
biased-randomized version of the NEH heuristic (Nawaz et al., 1983) is used to construct an initial
solution. The original version computes the total processing time required for each job and creates
a solution by iteratively selecting the remaining job with the highest value. The new version is a
non-deterministic heuristic capable of generating a set of high-quality solutions without losing the
logic behind the original version. Once the initial solution is created, a classical local search is
applied which attempts to find a better solution in its neighborhood. The resulting solution, called
baseSol, is stored. Then, a set of instructions are repeated until a stopping condition (number of
iterations or limit of time, for instance) is met. The baseSol is perturbed and a local search is
applied to the new solution (newSol). This solution is stored if it is better than the best solution
found so far (bestSol). Moreover, the baseSol is set to the newSol if this solution is better or passes
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a Demon-like acceptance criterion (Talbi, 2009). Finally, the best solution found is returned. We
have tested our approach on the 120 Taillard’s benchmark instances (Taillard, 1993). They are
grouped in 12 sets of 10, which are characterized by the following pairs of numbers of jobs and
machines: 20x5, 20x10, 20x20, 50x5, 50x10, 50x20, 100x5, 100x10, 100x20, 200x10, 200x20,
and 500x20. The instance resolution has been performed considering a specific combination of
the parameters ‘limit of time’ (1, 5, 10, 15, 20, and 30 seconds) and ‘number of agents’ running in
parallel (1, 4, 8, 16, 32, and 64).

All the experiments have been carried out using 64 slaves and 1 master. The master specifica-
tions are 3.5GHz Intel Xeon-IvyBridge with 8GB of RAM. The slaves are a heterogeneous set of
desktop computers not having more than 8GB of RAM and up to 8 cores each. The machines were
connected to the parallel computing environment using one of the following browsers: Microsoft
Internet Explorer, Google Chrome or Mozilla Firefox, all of them with JavaScript enabled. The
slaves were connected over a usual shared internet connection. For this reason, latencies or high
speed connections were considered negligible.

7. Analysis of Results
Figure D.6 shows the results obtained after running the algorithm for solving the Kelly instances
during 20 seconds of clock time per instance. Considering all instances, the first boxplot shows
the gaps between the best known solution (BKS) and the solution generated by the CWS heuristic.
The remaining boxplots show the gaps between the BKS and different executions of our algorithm,
each one using a different number of agents running in parallel. The number of agents tested were:
64, 128, and 256. It should be noticed that, for the 20 seconds considered, the distributed approach
allows to reduce the gap down to almost 5% even for a reasonably low number of agents (i.e., 64).
Note we were using a simple biased-randomized version of the CWS heuristic, this gap could be
reduced even further by employing a more powerful algorithm such as the SR-GCWS-CS (Juan
et al., 2010). Therefore, the approach can provide reasonably good solutions in just a few seconds
without any algorithm fine-tuning or software installation / configuration effort.

Figure D.6: Results for the CVRP using the Kelly instances.

Regarding the PFSP instances, Table D.1 summarizes the results of our computational exper-
iments using a maximum time of 5 seconds. Each row refers to a different set of instances. Each
column shows the gap between the BKS and our solution for different numbers of agents (1, 4,
8, 16, 32, and 64). Notice that the gaps shrink as the number of agents working in parallel is
increased.

Figure D.7 summarizes similar results for different values of the maximum clock time. It can
be observed that, as time increases or as the number of agents increases, the average gap (for the
entire set of benchmark instances) decreases. A detailed case is illustrated in Figure D.8, which
displays the scatterplot of costs versus limit of time and number of agents for a given instance.
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Table D.1: Results for the PFSP considering the Taillard instances. Gaps for
different number of agents and a maximum time of 5 seconds.

Taillard set BKS - 1A BKS - 4A BKS - 8A BKS -16A BKS -32A BKS - 64A
20x5 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
20x10 0.08% 0.08% 0.04% 0.00% 0.00% 0.00%
20x20 0.06% 0.02% 0.01% 0.00% 0.00% 0.00%
50x5 0.01% 0.01% 0.01% 0.01% 0.00% 0.00%
50x10 0.84% 0.74% 0.72% 0.65% 0.61% 0.54%
50x20 3.21% 2.85% 2.76% 2.68% 2.65% 2.58%
100x5 0.05% 0.02% 0.00% 0.00% 0.00% 0.00%

100x10 0.53% 0.33% 0.25% 0.22% 0.21% 0.18%
100x20 3.14% 2.67% 2.66% 2.63% 2.56% 2.46%
200x10 0.40% 0.26% 0.24% 0.23% 0.20% 0.14%
200x20 2.36% 2.20% 2.17% 2.15% 2.06% 2.00%
500x20 1.88% 1.53% 1.42% 1.32% 1.32% 1.26%

Averages 1.05% 0.89% 0.86% 0.82% 0.80% 0.76%

Figure D.7: Average gaps for different numbers of agents and limits of time.
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Figure D.8: Objective solutions for different numbers of agents and limits of
time.

8. Conclusions
This paper has discussed the benefits of Distributed and Parallel Computing Systems (DPCS) for
Small and Medium Enterprises (SMEs), which often lack advanced technical skills and modern
equipment. In a globalized and dynamic environment, SMEs may become more competitive by
obtaining a higher number of computational resources. DPCS offer two possible solutions: the
first is to acquire them from an external provider (e.g., a public cloud), and the second consists in
seizing the underutilized resources, which is the same aim that characterizes Volunteer Computing
but focusing on owned resources. The most relevant advantages are related to data-privacy, costs,
and environmental footprint.

We have presented SmartMonkey, a browser-based platform for Distributed Computing. It
constitutes a flexible, cheap and simple approach, since it relies on available resources, do not
require download/install software, and can be initialized just by accessing a website from a web
browser. A JavaScript code embedded in the website allows the communication between the
networked resources. Note that this technology is easily scalable due to its simplicity and the
possibilities it offers for aggregating new resources.

The potential of DPCS in Mathematical Optimization has already been highlighted in the re-
lated literature. Numerous SMEs frequently face complex Combinatorial Optimization Problems
(COPs) that require a real-time solution (e.g., flight rescheduling or online routing). Since ex-
act methods are usually incapable of addressing real-sized problem instances in short computing
times, approximate methods are widely used. In particular, randomized algorithms may provide a
number of high-quality solutions by being repeatedly executed with a different seed. This property
suggests an easy way to parallelize the resolution of a problem instance in which each aggregated
machine solves the problem instance with a given seed and only the best found solution is returned.

The applicability of the described platform is tested on two classic COPs in the fields of trans-
portation and production. The proposed approach relies on the master-slave architecture and ana-
lyzes how solutions vary with time and as the number of available agents is also modified. For the
instances analyzed, our approach is able to provide high-quality solutions in real-time.
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Abstract
In this paper, we focus on a scenario in which a company or a set of companies conforming a
supply network must deliver a complex product (service) composed of several components (tasks)
to be processed on a set of parallel flow-shops with a common deadline. Each flow-shop repre-
sents the manufacturing of an independent component of the product, or the set of activities of the
service. We assume that the processing times are random variables following a given probability
distribution. In this scenario, the product (service) is required to be finished by the deadline with
a user-specified probability, and the decision-maker must decide about the starting times of each
component/task while minimizing one of the following alternative goals: (a) the maximum com-
pletion time; or (b) the accumulated deviations with respect to the deadline. A simheuristic-based
methodology is proposed for solving this problem, and a series of computational experiments are
performed.

1. Introduction
The complexity of manufacturing has become increasingly higher due to the rise of supply chains
where different companies co-operate to manufacture a product for a final customer in a distributed
manner. These supply networks naturally appear as companies, in their fierce global competition,
try to identify their core competences and outsource/purchase those activities/services in which
they do not excel. As a result, these products (or services, as these words will be used interchange-
ably throughout the paper) can be decomposed into a set of independent components/tasks –each
one to be manufactured in a different facility– with a common due date or deadline (Figure D.1).
In this paper, we assume that each of these components/tasks has to be processed in a factory,
which can be modeled as a permutation flow-shop problem with random or stochastic processing
times (PFSPST).

Figure D.1: A product requiring 3 independent flow-shops with a common dead-
line.

In each factory k of a set F (with k ∈ {1, ..., f }), a set Jk of n jobs has to be processed by a set
M of m machines, being Ti jk (abbreviated to Ti j when it does not lead to confusion) the random
variable representing the time it takes for job i of factory k to be processed by machine j (Figure
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D.2). The PFSPST goal is to find a sequence (permutation) of jobs that optimizes a given criterion
(taking into account that all jobs are processed by all machines in the order defined by the selected
permutation). The most employed criterion in the scientific literature is the minimization of the
expected maximum completion time or expected makespan, i.e., the average time it requires to
process all the jobs throughout all the machines for the selected permutation.

Figure D.2: Example of a PFSP with 3 jobs and 3 machines.

Additionally, the global product is required to be finished by the deadline with a user-specified
probability, p0 (from now on, we will assume that the global product is finished if, and only if,
all its components/tasks are finished). In this context, the decision-maker must decide about the
starting times of each component, while minimizing one of the following alternative goals: (a)
the maximum completion time of all components (machine-booking goal), i.e., the sum of all
expected makespans and buffers in the product; or (b) the accumulated deviations with respect to
the deadline (synchronization goal).

Our approach for solving this stochastic combinatorial optimization problem is based on the
use of a simheuristic algorithm combining simulation (Monte Carlo in this case) with a meta-
heuristic framework. Some of the main benefits of our approach are the following ones: (i) it does
not make any assumption on the size of the instances, i.e., being based on a metaheuristic frame-
work it can solve large-scale instances in reasonable computing times; and (ii) it does not make
any assumption either on the probability distributions employed to model the random processing
times, i.e., being based on simulation there is no need to assume normality of processing times
–any probability distribution can be used instead.

The rest of the paper is organized as follows: Section 2 provides a review of related work.
Section 3 describes the main ideas behind our simulation-optimization approach. Some numerical
experiments are carried out in Section 4, and analyzed in Section 5. Finally, we conclude this
paper by summarizing its main findings and discussing future work in Section 6.

2. Related work
Different streams of the literature are related to the problem under consideration, namely assembly
scheduling, distributed flow-shop scheduling, and permutation flow-shop scheduling with stochas-
tic processing times. These are discussed in the next subsections.

Assembly scheduling

This problem is also denoted n-stage assembly or assembly flow-shop scheduling. In this problem,
m tandem lines are arranged prior to a single assembly station which is fed by the tandem lines.
Using this layout, n different products (jobs) have to be manufactured, each one consisting of
m components manufactured in the tandem lines. The processing time of each component in
each line is different. Some authors distinguish among the fixed case (i.e., each component can
be processed only in a given tandem line), and the unfixed case (i.e., each component can be
processed in different factories).

For these problems, different objectives are sought, such as makespan minimization (Sung
and Juhn, 2009), total flow-time (Al-Anzi and Allahverdi, 2013; Sung and Kim, 2008), due date
fulfillment (Al-Anzi and Allahverdi, 2007), or the combination of several indicators (Seidgar et
al., 2014).

Most references refer to the 2-stage case (production followed by assembly), so they assume
that each tandem line consists of a single machine. The underlying hypothesis is that there is a sin-
gle processing time for each component before the assembly process. For this problem, different
exact and approximate methods have been proposed, and some variants of the original problem
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have been tackled by Sung and Juhn (2009), where two types of components –manufactured and
imported– are considered, and by Liao et al. (2015), where assembly batches are assumed.

Several other variants of the problem for three stages have been addressed in the literature
(see e.g. Koulamas and Kyparisis (2001)), but in none of the different versions of the problem the
processing times have been assumed to be stochastic.

Distributed Flow-shop Scheduling Problem (DFSP)

This problem has several similarities with the one presented in this communication: there are m
identical permutation flow-shops where n jobs have to be processed. However, in the DFSP the
jobs have not been assigned to each flow-shop, so this assignment becomes part of the decision
problem. Furthermore, the DFSP has not been addressed with objectives related with due dates. In
fact, the only objective addressed so far refers to makespan minimization (Naderi and Ruiz, 2010),
for which the best available heuristic is due to Fernandez-Viagas and Framinan (2015a).

A particular case of the DFSP refers to the so-called Distributed Assembly Flow-shop Schedul-
ing Problem, which combines the DFSP with assembly scheduling. In this problem, a distributed
flow-shop composed of k identical flow-shops is followed by a single assembly operation. n jobs
consisting each one of k components have to be assembled after each component has been manu-
factured in one of the flow-shops. This decision problem includes job assignment plus the schedul-
ing of jobs in the assembly line. The main references for this problem are Hatami et al. (2015)
and Hatami et al. (2013). In the first reference, the authors consider the objective of makespan
minimisation, while in the second sequence-dependent setup times are assumed. In both cases, the
problem is addressed using approximate algorithms, and, as in the assembly scheduling problems,
we are not aware of references dealing with stochastic processing times.

Permutation Flow-shop Problem with Stochastic Processing Times

While the PFSP has been intensively studied during the last few decades, the PFSPST has received
less attention. Baker and Trietsch (2011) designed heuristics for addressing the 2-machine PF-
SPST, where the processing times are independent random variables following specific probabil-
ity distributions. Later, Baker and Altheimer (2012) presented a methodology for the m-machine
version. In addition, several variations of the PFSPST have been analyzed. For instance, Allaoui
et al. (2006) and Choi and Wang (2012) worked on the stochastic hybrid flow-shop scheduling
problem, aiming to minimize the expected makespan. The same problem was tackled by Kianfar
et al. (2012) with the goal of minimizing the average tardiness of jobs. A novel approach is applied
in Zhou and Cui (2008) for tackling the multi-objective stochastic PFSP, where both the flow-time
and delay time of jobs are minimized.

An interesting line is related to uncertainty. Basically, there are two categories: proactive (or
robust) scheduling and reactive scheduling. Works falling in the first category ( Roy, 2010) propose
constructing an original predictive schedule. The basic aim is to find schedules that do not require
new schedules (or significant changes) when confronting disruptions. These works may consider
probability distributions or sets of scenarios. Al Kattan and Maragoud (2008), Ghezail et al. (2010)
and Liu et al. (2011) addressed the PFSP with uncertainty implementing proactive scheduling
strategies. On the other hand, reactive scheduling consists in revising and re-optimizing schedules
when unexpected events take place. A classical option is to obtain a predictive scheduling and then
try to repair it according to the actual state of the system. A comprehensive review on rescheduling
under disruptions is provided by Katragjini et al. (2013).

Some authors employ exact methods for addressing the PFSPST. A disadvantage of many of
these methods is that they only work with a specific set of probability distributions and relatively
small instances. Moreover, it may be difficult to adapt them for handling dependencies among
processing times. Simulation techniques enable researchers to deal with these situations in a nat-
ural way. An interesting example is the work of Baker and Altheimer (2012), which proposed a
hybrid approach combining heuristics and simulation. The authors tested three heuristic methods:
two relying on the CDS heuristic (Campbell et al., 1970) and one on the NEH heuristic (Nawaz
et al., 1983).
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3. Proposed Methodology
Our methodology is based on a simheuristic approach (Juan et al., 2015a), which relies on the Iter-
ated Local Search (ILS) metaheuristic (Lourenço et al., 2010) and Monte Carlo simulation (MCS)
techniques. This metaheuristic has been successfully applied to a wide range of combinatorial op-
timization problems and is highly popular among researchers. Due to its modularity, it is relatively
easy to implement. On the other hand, MCS techniques enable the assessment of solutions in a
dynamic environment by taking the following steps: (1) simulate a number of scenarios, where
each one is created by generating one value per random variable; (2) apply a specific solution in
each scenario and compute a measure of performance; and (3) calculate the average performance.

The methodology is summarized in Algorithm 1 and described next. The inputs are the set
F, the deadline (d0), the probability p0, and the processing time of each trio of job, machine,
and component (Ti jk∀i ∈ J, j ∈ M and k ∈ F), which is assumed to follow a specific probability
distribution (either theoretical or empirical). Initially, the number of components (nComponents)
is obtained. Then, a set of instructions are performed for each component:

1. calculate the associated probability (p0k) in order to reach p0. p0k is computed as
p1/nComponents

0 (note we assume that the components are independent);

2. solve the corresponding PFSPST (i.e., get the ‘best’ permutation);

3. employ MCS techniques to get a sample of makespans (of size r) for the solution obtained
and use it to build an empirical cumulative distribution function;

4. identify the makespan below which p0k percent of the observations may be found (i.e., the
p0k percentile); and

5. set the starting time as d0 minus the p0k percentile and store it.

Once all starting times are computed, the procedure returns them. In this work we define ‘best’
permutation (bestS ol) as the one minimizing the expected makespan.

Algorithm 1
1: procedure DistributedFlowshopScheduling(F, d0, p0,Ti jk)

d0: product deadline (common due date for all components)
p0: user-specified probability that the product finishes on or before d0
Ti jk: random processing time of job i in machine j for component k

2: nComponents← getNumberComponents(F)
3: for each component k in F do
4: p0k ← calcProbabilityComponent(p0, k, nComponents)
5: bestS ol(k)← solvePFSPST(k,Ti jk)

. use a simulation-optimization algorithm
6: distFunction(k)← calcDistFuntion(bestS ol(k))

. use observations from simulation
7: percentile(p0k)← calcPercentil(distFunction(k), p0k)
8: startingT ime(k)← d0 − percentil(p0k)
9: startingT imes← add(startingT ime(k))

10: end for
11: return startingT imes
12: end procedure

Regarding steps 3 and 4, we will provide more details. There is a sample of makespans
x1, x2, ..., xr, which are observations of independent and identically distributed real random vari-
ables with a common cumulative distribution function F(t), which is unknown. The empirical
cumulative distribution function is defined as:

F̂r(t) =
number of elements in the sample ≤ t

r
=

1
r

r∑
i=1

1xi≤t (D.1)

By the strong law of large numbers, the estimator F̂r(t) converges to F(t) as almost surely, for
every value of t. As a consequence, the estimator F̂r(t) is consistent. Thus, we can obtain the
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value t ensuring that the component k will have a makespan of t or lower with a probability of p0k

by computing: t = F̂−1
r (p0k).

In order to solve each of the PFSPST (i.e., step 4), we present a simheuristic methodology sim-
ilar to the one described in Juan et al. (2014a). It relies on two components: an ILS metaheuristic
that searches promising solutions, and MCS techniques for assessing them. Figure D.3 shows the
basic scheme. The first steps are to transform the original problem instance into a PFSP instance
replacing random variables by their means, and apply the aforementioned NEH heuristic for find-
ing a solution (baseS ol). Then, MCS techniques are used to compute the expected makespan for
that solution considering the stochastic environment described by the original instance. A new
solution (bestS ol) is created to store the best solution found, which is a copy of baseS ol at this
stage. Afterwards, the loop is started, which will execute instructions during maxTime seconds.
The first step is building a new solution (newS ol) by perturbing baseS ol, which implies select-
ing randomly two jobs and interchanging their positions. A local search based on the classical
shift-to-left movement is applied to each job in a random order. The next step checks whether the
makespan of newS ol is lower than or equal to that of baseS ol. If this is not satisfied, the solution
is discarded and another iteration starts. Otherwise, the expected makespan (obtained using MCS
techniques) of newS ol is computed. A variable delta contains the difference between the expected
makespan of newS ol and baseS ol. If delta is negative or 0 (i.e., there is an improvement) newS ol
replaces baseS ol and the variable credit (which is initially 0) is reset to −delta. Additionally,
bestS ol is updated if its expected makespan is higher than the one of baseS ol. If delta is positive
but equal to or lower than credit (i.e., it is only ‘slightly’ worse), baseS ol is updated and credit is
reset to 0. This acceptance criterion that chooses whether baseS ol is updated is known as Demon-
like process (Talbi, 2009) and is employed to help avoiding local minima during the execution
of the algorithm. Finally, bestS ol is returned. It is important to note the difference between the
methodology described in Juan et al. (2014a) and ours: while the former is deterministic-driven
(i.e., the replacement of the base solution depends on the makespan of the transformed instance),
the latter is stochastic-driven (i.e., stochastic makespans are employed). This modification pro-
vides better solutions without requiring more computational time.
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Figure D.3: Flowchart of the proposed methodology for the PFSPST.

4. Computational experiments
The methodology presented has been implemented as a Java application. A standard personal
computer, Intel Core i5 CPU at 3.2 GHz and 4 GB RAM with Windows 7 has been employed.
We have experimented with 4 instances with the parameters f ∈ {2, 4} and m ∈ {5, 10}, and with
20 jobs assigned to each line k ∈ F. The processing times on each machine are taken from
the PFSP instances introduced in Taillard (1993). Table D.1 describes the composition of the
new instances and their main characteristics (d0, m, and f ) in the third, fourth and fifth columns,
respectively. Second column indicates the instance of Taillard (1993) from which the processing
times are considered. The common due date has been generated by doing d0 = h · C, following
a similar procedure to the ones described by Della Croce et al. (2000) and Biskup and Feldmann
(2001), where h is a parameter to indicate how loose/tight the common due date is and C is the
makespan of the line, i.e., the highest makespan among all the factories. Note that the makespan
of each line is the best known solution of the corresponding Taillard instance which is recorded
in http://mistic.heig-vd.ch/. To avoid unfeasible instances, we generate loose common
due dates according to a uniform distribution [1.2, 1.6] for the parameter h. All experiments have
been run 5 times with different seeds and only the best values are stored. The computational
time allowed for each instance is the sum of the time assigned to each production line, which is
0.03 · m · n seconds (as suggested in Juan et al. (2014a)). For introducing the stochasticity of
processing times, each one is defined as an independent random variable following a logNormal

http://mistic.heig-vd.ch/
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Algorithm 2
procedure solvePFSPST(k,maxTime)
k: subproject with a specific stochastic flow-shop associated, which is characterized by a
random processing time Ti jk for each job i and machine j
maxTime: maximum time for the loop inside the ILS

2: ti j ← E[Ti jk]
baseS ol← calcDetMakespan(ti j) . use the NEH heuristic

4: baseS ol← calcStochMakespan(baseS ol) . use simulation
bestS ol← baseS ol

6: while time ≤ maxTime do
newS ol← perturb(baseS ol)

8: newS ol← localSearch(newS ol)
if detMakespan(newS ol) ≤ detMakespan(baseS ol) then . newS ol is promising

10: newS ol← calcStochMakespan(newS ol) . use simulation
delta← stochMakespan(newS ol) - stochMakespan(baseS ol)

12: if delta ≤ 0 then . newS ol improves baseS ol
baseS ol← newS ol

14: credit ← −delta
if stochMakespan(newS ol) ≤ stochMakespan(bestS ol) then . newS ol

improves bestS ol
16: bestS ol← newS ol

end if
18: else if delta ≤ credit then . acceptance criterion

baseS ol← newS ol
20: credit ← 0

end if
22: end if

end while
24: return bestS ol

end procedure
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distribution with a mean (µ) set to the processing time of the original instance and a standard
deviation (σ) obtained from the coefficient of variation (c = σ/µ). Three values of c are tested: 0.1,
0.5, and 1 (proposed in Framinan and Perez-Gonzalez (2015)), which represent a low, medium,
and high level of stochasticity, respectively. Regarding the user-given probabilities, three levels
are established: 0.8, 0.9, and 0.95.

First, we compare the performance of our algorithm following a stochastic approach (the de-
scribed in the previous section) with a deterministic one, which assumes zero variability. Table
D.2 displays the booking times (i.e., the sum of all expected makespans and buffers, or percentiles)
for the first instance considering each one of the 9 scenarios defined by the probabilities and the
levels of stochasticity. The mean gaps between the booking times of both approaches for each
level of stochasticity (from low to high) are: −0.12%, −1.13%, and −1.77%, respectively. Simi-
larly, for each level of probability (from low to high), the mean gaps are: −0.89%, −0.99%, and
−1.16%, respectively. Secondly, we analyze the booking times and buffers for the same 9 scenar-
ios studying all instances. Solutions are provided in Table D.3. Figure D.4 shows this information
in boxplots. Finally, the relation between booking times and level of stochasticity is studied for
a high number of probability values. The patterns identified for the first instance are presented in
Figure D.5.

Table D.1: Description of the instances.

Inst. Taillard’s instances d0 m f
ins1 ta001 ( f = 1), ta002 ( f = 2) 1841 5 2
ins2 ta003 ( f = 1), ta004 ( f = 2), ta005 ( f = 3), ta006 ( f = 4) 1620 5 4
ins3 ta011 ( f = 1), ta012 ( f = 2) 2409 10 2
ins4 ta013 ( f = 1), ta014 ( f = 2), ta015 ( f = 3), ta016 ( f = 4) 2372 10 4

Table D.2: Booking times for “ins1” following the stochastic and the determin-
istic approach.

Stochastic approach Deterministic approach
Stoch. Low Medium High Low Medium High Average

Prob.
0.8 2671.96 2845.83 3086.30 2674.66 2876.29 3133.19 2881.37
0.9 2688.03 2944.64 3327.98 2691.21 2977.94 3386.28 3002.68

0.95 2701.60 3034.82 3571.91 2705.70 3072.52 3648.68 3122.54
Average 2687.19 2941.76 3328.73 2690.52 2975.58 3389.38

Table D.3: Table of results.

Level of stochasticity
Low Medium High

Booking time Buffer Booking time Buffer Booking time Buffer
0.8 2671.96 24.95 2845.83 104.23 3086.30 204.88

ins1 0.9 2688.03 41.02 2944.64 203.04 3327.98 446.55
0.95 2701.60 54.59 3034.82 293.22 3571.91 690.49
0.8 4867.96 38.18 5287.05 215.53 5821.46 445.30

ins2 0.9 4896.62 66.85 5515.96 444.43 6346.50 970.34
0.95 4923.97 94.20 5736.55 665.02 6879.40 1503.25
0.8 3270.41 13.66 3478.39 98.77 3786.69 221.03

ins3 0.9 3282.55 25.80 3579.86 200.24 4041.78 476.12
0.95 3293.67 36.91 3680.14 300.53 4308.61 742.95
0.8 5748.58 29.41 6069.68 163.80 6544.70 358.62

ins4 0.9 5774.13 54.96 6251.65 345.78 7012.24 826.16
0.95 5797.32 78.15 6427.30 521.42 7485.07 1298.99
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Figure D.4: Boxplots of booking times and buffers for several scenarios.

FigureD.5: Relation between probability, booking time and level of stochasticity
for “ins1”.

5. Analysis of results
It is important to start with the comparison between the stochastic and the deterministic approach,
in order to check whether introducing simulation in the solving methodology for the PFSPST is
useful. The results (Table D.2) indicate that the improvement in terms of booking times is highly
significant, with gaps increasing with the levels of stochasticity and probability.

Focusing on the effect of these variables (stochasticity and probability) on booking times, it can
be observed (Table D.3 and Figure D.5) that the booking times increase with both the stochasticity
and the probability. While the differences among levels of stochasticity are relatively small for
low probabilities (below 0.8), they rapidly increase for higher values. As expected, when users re-
quire a high probability, the booking time increases exponentially for all the levels of stochasticity
considered.

According to the graphical results in Figure D.4, which refer to all instances, both variables
have a positive effect on the booking time, being the level of variability more relevant. Regarding
the buffers required, they are much more volatile. For a low level of stochasticity, it is very small
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but rapidly increases as the level grows. The effect of the probability is a bit smaller but also
positive and growing.

6. Conclusions and further research
In this paper we have discussed how simulation can be combined with metaheuristics in order to
deal with stochastic multi-factory scheduling problems. In particular, we have studied a scheduling
problem composed of parallel and independent components/tasks with a common due date, the
processing of each of these components being modeled as a permutation flow-shop problem with
stochastic processing times. In this context, a natural question arises: how to set starting times of
each component in such a way that the total machine-occupancy time is minimized while ensuring
a user-given probability of finishing all components in due time. The computational experiments
carried out in this paper show how starting times vary according to factors such as the variance
level in the random processing times or the user-required probability threshold for the product
to finish on time. Other similar questions can be formulated, e.g., how to set starting times of
each component in order to minimize total deviations from the common due date while respecting
the aforementioned constraint, etc. These are open research lines that must require from similar
approaches to the one introduced here.
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