1,430 research outputs found

    Dynamic Modeling and Control System Design for Shape Memory Alloy Actuators

    Get PDF
    Shape memory alloy (SMA) is a type of smart material which remembers its original state. It is light weight and small, and known to provide high contraction force with low noise. Its application has wide range from robotics to medical science. One of its potential applications in space is a supporting system of membrane structure that can be used as synthetic aperture radar (SAR) antenna to achieve high flatness. It exhibits nonlinear phenomena called hysteresis when it's electrically heated. Hysteresis is a nonlinear phenomenon that refers to the dependence of a physical system on the environment. Hysteresis in SMA causes a major difficulty in control system design. Un-modeled or poorly modeled hysteresis introduces inaccuracy in tracking and the performance of the system. Experimental test bench is constructed for one set of SMA actuators that resembles the membrane structure's supporting system. Hysteresis is obtained by running open loop test with the test bench. Dynamic model of the SMA wires is developed using classical Preisach model and modified Maxwell model. Then the inverse model is implemented in feed-forward loop to compensate for nonlinear hysteresis. Simple feedback controllers are added to correct the modeling errors. Experimental results reveal that the error is significantly reduced when comparing feedback controller with hybrid feedback and feed-forward controller

    Sliding Mode-Based Robust Control for Piezoelectric Actuators with Inverse Dynamics Estimation

    Get PDF
    This paper presents an improved control approach to be used for piezoelectric actuators. The proposed approach is based on sliding mode control with estimation perturbation (SMCPE) techniques. Also, a proportional-integral-derivative (PID)-type sliding surface is proposed for position tracking. The proposed approach has been studied and implemented in a commercial actuator. A model for the system is introduced, which includes the Bouc-Wen (BW) model to represent the hysteresis, and it is identified by means of the System Identification Toolbox in Matlab/Simulink. Experimental data show that the proposed controller has a better performance when compared to a proportional-integral (PI) controller or a conventional SMCPE in motion tracking. Furthermore, a sub-micrometer accuracy tracking can be obtained while compensating for the hysteresis effect.This research was partially funded by the Basque Government through the project ETORTEK KK-2017/00033, and by the UPV/EHU through the projects PPGA18/04 and UFI 11/07

    Performance-driven control of nano-motion systems

    Get PDF
    The performance of high-precision mechatronic systems is subject to ever increasing demands regarding speed and accuracy. To meet these demands, new actuator drivers, sensor signal processing and control algorithms have to be derived. The state-of-the-art scientific developments in these research directions can significantly improve the performance of high-precision systems. However, translation of the scientific developments to usable technology is often non-trivial. To improve the performance of high-precision systems and to bridge the gap between science and technology, a performance-driven control approach has been developed. First, the main performance limiting factor (PLF) is identified. Then, a model-based compensation method is developed for the identified PLF. Experimental validation shows the performance improvement and reveals the next PLF to which the same procedure is applied. The compensation method can relate to the actuator driver, the sensor system or the control algorithm. In this thesis, the focus is on nano-motion systems that are driven by piezo actuators and/or use encoder sensors. Nano-motion systems are defined as the class of systems that require velocities ranging from nanometers per second to millimeters per second with a (sub)nanometer resolution. The main PLFs of such systems are the actuator driver, hysteresis, stick-slip effects, repetitive disturbances, coupling between degrees-of-freedom (DOFs), geometric nonlinearities and quantization errors. The developed approach is applied to three illustrative experimental cases that exhibit the above mentioned PLFs. The cases include a nano-motion stage driven by a walking piezo actuator, a metrological AFM and an encoder system. The contributions of this thesis relate to modeling, actuation driver development, control synthesis and encoder sensor signal processing. In particular, dynamic models are derived of the bimorph piezo legs of the walking piezo actuator and of the nano-motion stage with the walking piezo actuator containing the switching actuation principle, stick-slip effects and contact dynamics. Subsequently, a model-based optimization is performed to obtain optimal drive waveforms for a constant stage velocity. Both the walking piezo actuator and the AFM case exhibit repetitive disturbances with a non-constant period-time, for which dedicated repetitive control methods are developed. Furthermore, control algorithms have been developed to cope with the present coupling between and hysteresis in the different axes of the AFM. Finally, sensor signal processing algorithms have been developed to cope with the quantization effects and encoder imperfections in optical incremental encoders. The application of the performance-driven control approach to the different cases shows that the different identified PLFs can be successfully modeled and compensated for. The experiments show that the performance-driven control approach can largely improve the performance of nano-motion systems with piezo actuators and/or encoder sensors

    Design and control of components-based integrated servo pneumatic drives

    Get PDF
    On-off traditional pneumatic drives are most widely used in industry offering low-cost, simple but flexible mechanical operation and relatively high power to weight ratio. For a period of decade from mid 1980's to 1990's, some initiatives were made to develop servo pneumatic drives for most sophisticated applications, employing purpose-designed control valves for pneumatic drives and low friction cylinders. However, it is found that the high cost and complex installation have discouraged the manufacturer from applying servo pneumatic drives to industrial usage, making them less favourable in comparison to their electric counterpart. This research aims to develop low-cost servo pneumatic drives which are capable of point-to-point positioning tasks, suitable for applications requiring intermediate performance characteristics. In achieving this objective, a strategy that involves the use of traditional on-off valve, simple control algorithm and distributed field-bus control networks has been adopted, namely, the design and control of Components-based Integrated Pneumatic Drives (CIPDs). Firstly, a new pneumatic actuator servo motion control strategy has been developed. With the new motion control strategy, the processes of positioning a payload can be achieved by opening the control valve only once. Hence, lowspeed on-off pneumatic control valves can be employed in keeping the cost low, a key attraction for employing pneumatic drives. The new servo motion control strategy also provides a way of controlling the load motion speed mechanically. Meanwhile, a new PD-based three-state closed-loop control algorithm also has been developed for the new control scheme. This control algorithm provides a way of adapting traditional PID (Proportional Integral Derivative) control theories for regulating pneumatic drives. Moreover, a deceleration control strategy has been developed so that both high-speed and accurate positioning control can be realised with low cost pneumatic drives. Secondly, the effects of system parameters on the transient response are studied. In assisting the analysis, a second order model is developed to encapsulate the velocity response characteristics of pneumatic drives to a step input signal. Stability analyses for both open loop and closed-loop control have also been carried out for the CIPDs with the newly developed motion control strategy. Thirdly, a distributed control strategy employing Lon Works has been devised and implemented, offering desirable attributes, high re-configurability, low cost and easy in installation and maintenance, etc to keep with the traditional strength for using pneumatic drives. By applying this technology, the CIPDs become standard components in "real" and "virtual" design environments. A remote service strategy for CIPDs using TCP/IP communication protocol has also been developed. Subsequently a range of experimental verifications has been carried out in the research. The experimental study of high-speed motion control indicates that the deceleration control strategy developed in the research can be an effective method in improving the behaviour of high speed CIPDs. The verification of open loop system behaviour of CIPDs shows that the model derived is largely indicative of the likely behaviour for the system considered, and the steady state velocity can be estimated using the Velocity Gain Kv. The evaluation made on a pneumatically driven pick-and-place machine has also confirmed that the system setup, including wiring, tuning, and system reconfiguration can be achieved in relative ease. This pilot study reveals the potential for employing CIPDs in building highly flexible cost effective manufacturing machines. It can thus be concluded that this research has developed successfully a new dimension and knowledge in both theoretical and practical terms in building low-cost servo pneumatic drives, which are capable of point-to-point positioning through employing traditional on-off pneumatic valves and actuators and through their integration with distributed control technology (LonWorks) by adopting a component-based design paradigm

    Advanced Control of Piezoelectric Actuators.

    Get PDF
    168 p.A lo largo de las últimas décadas, la ingeniería de precisión ha tenido un papel importante como tecnología puntera donde la tendencia a la reducción de tamaño de las herramientas industriales ha sido clave. Los procesos industriales comenzaron a demandar precisión en el rango de nanómetros a micrómetros. Pese a que los actuadores convencionales no pueden reducirse lo suficiente ni lograr tal exactitud, los actuadores piezoeléctricos son una tecnología innovadora en este campo y su rendimiento aún está en estudio en la comunidad científica. Los actuadores piezoeléctricos se usan comúnmente en micro y nanomecatrónica para aplicaciones de posicionamiento debido a su alta resolución y fuerza de actuación (pueden llegar a soportar fuerzas de hasta 100 Newtons) en comparación con su tamaño. Todas estas características también se pueden combinar con una actuación rápida y rigidez, según los requisitos de la aplicación. Por lo tanto, con estas características, los actuadores piezoeléctricos pueden ser utilizados en una amplia variedad de aplicaciones industriales. Los efectos negativos, como la fluencia, vibraciones y la histéresis, se estudian comúnmente para mejorar el rendimiento cuando se requiere una alta precisión. Uno de los efectos que más reduce el rendimiento de los PEA es la histéresis. Esto se produce especialmente cuando el actuador está en una aplicación de guiado, por lo que la histéresis puede inducir errores que pueden alcanzar un valor de hasta 22%. Este fenómeno no lineal se puede definir como un efecto generado por la combinación de acciones mecánicas y eléctricas que depende de estados previos. La histéresis se puede reducir principalmente mediante dos estrategias: rediseño de materiales o algoritmos de control tipo feedback. El rediseño de material comprende varias desventajas por lo que el motivo principal de esta tesis está enfocado al diseño de algoritmos de control para reducir la histéresis. El objetivo principal de esta tesis es el desarrollo de estrategias de control avanzadas que puedan mejorar la precisión de seguimiento de los actuadores piezoeléctricos comerciale

    Experimental investigation on semi-active control of base isolation system using magnetorheological dampers for concrete frame structure

    Get PDF
    The traditional passive base isolation is the most widely used method in the engineering practice for structural control, however, it has the shortcoming that the optimal control frequency band is significantly limited and narrow. For the seismic isolation system designed specifically for large earthquakes, the structural acceleration response may be enlarged under small earthquakes. If the design requirements under small earthquakes are satisfied, the deformation in the isolation layer may become too large to be accepted. Occasionally, it may be destroyed under large earthquakes. In the isolation control system combined with rubber bearing and magnetorheological (MR) damper, the MR damper can provide instantaneous variable damping force to effectively control the structural response at different input magnitudes. In this paper, the control effect of semi-active control and quasi-passive control for the isolation control system is verified by the shaking table test. In regard to semi-active control, the linear quadratic regulator (LQR) classical linear optimal control algorithm by continuous control and switch control strategies are used to control the structural vibration response. Numerical simulation analysis and shaking table test results indicate that isolation control system can effectively overcome the shortcoming due to narrow optimum control band of the passive isolation system, and thus to provide optimal control for different seismic excitations in a wider frequency range. It shows that, even under super large earthquakes, the structure still exhibits the ability to maintain overall stability performance

    MODELING AND CONTROL OF MAGNETOSTRICTIVE ACTUATORS

    Get PDF
    Most smart actuators exhibit rate-dependant hysteresis when the working frequency is higher than 5Hz. Although the Preisach model has been a very powerful tool to model the static hysteresis, it cannot be directly used to model the dynamic hysteresis. Some researchers have proposed various generalizations of the Preisach operator to model the rate-dependant hysteresis, however, most of them are application-dependant and only valid for low frequency range. In this thesis, a first-order dynamic relay operator is proposed. It is then used to build a novel dynamic Preisach model. It can be used to model general dynamic hysteresis and is valid for a large frequency range. Real experiment data of magnetostrictive actuator is used to test the proposed model. Experiments have shown that the proposed model can predict all the static major and minor loops very well and at the same time give an accurate prediction for the dynamic hysteresis loops. The controller design using the proposed model is also studied. An inversion algorithm is developed and a PID controller with inverse hysteresis compensation is proposed and tested through simulations. The results show that the PID controller with inverse compensation is good at regulating control; its tracking performance is really limited (average error is 10 micron), especially for high frequency signals. Hence, a simplified predictive control scheme is developed to improve the tracking performance. It is proved through experiments that the proposed predictive controller can reduce the average tracking error to 2 micron while preserve a good regulating performance

    Disturbance observer-based fault-tolerant control for robotic systems with guaranteed prescribed performance

    Get PDF
    The actuator failure compensation control problem of robotic systems possessing dynamic uncertainties has been investigated in this paper. Control design against partial loss of effectiveness (PLOE) and total loss of effectiveness (TLOE) of the actuator are considered and described, respectively, and a disturbance observer (DO) using neural networks is constructed to attenuate the influence of the unknown disturbance. Regarding the prescribed error bounds as time-varying constraints, the control design method based on barrier Lyapunov function (BLF) is used to strictly guarantee both the steady-state performance and the transient performance. A simulation study on a two-link planar manipulator verifies the effectiveness of the proposed controllers in dealing with the prescribed performance, the system uncertainties, and the unknown actuator failure simultaneously. Implementation on a Baxter robot gives an experimental verification of our controller
    corecore