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Abstract

Shape memory alloy (SMA) is a type of smart material which remembers its original

state. It is light weight and small, and known to provide high contraction force

with low noise. Its application has wide range from robotics to medical science.

One of its potential applications in space is a supporting system of membrane

structure that can be used as synthetic aperture radar (SAR) antenna to achieve

high flatness. It exhibits nonlinear phenomena called hysteresis when it’s electrically

heated. Hysteresis is a nonlinear phenomenon that refers to the dependence of a

physical system on the environment. Hysteresis in SMA causes a major difficulty

in control system design. Un-modeled or poorly modeled hysteresis introduces

inaccuracy in tracking and the performance of the system.

A experimental test bench is constructed for one set of SMA actuators that

resembles the membrane structure’s supporting system. Hysteresis is obtained by

running open loop test with the test bench. Dynamics model of the SMA wires

is developed using classical Preisach model and modified Maxwell model. Then
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the inverse model is implemented in feed-forward loop to compensate for nonlinear

hysteresis. Simple feedback controllers are added to correct the modeling errors.

Experimental results reveal that the error is significantly reduced when compar-

ing feedback controller with hybrid feedback and feed-forward controller.
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1 Introduction

Shape memory alloy (SMA) is a smart material that remembers its original

state. Its application has wide range from robotics to medical science. One of its

potential applications in space is a supporting system of membrane structure that

can be used as synthetic aperture radar (SAR) antenna to achieve high flatness. A

test bench for SMA actuators that resembles the membrane system is constructed.

Nonlinearity in SMA actuators can cause inaccuracy when tracking. Control system

design containing dynamics modeling of hysteretic behavior of SMA actuators is

developed. Dynamics model is developed by using classical Preisach model and

modified Maxwell Resistive Capacitor (MRC) to compensate nonlinearity in SMA

actuators. While classical Preisach model is a basic hysteresis model it requires

long computation time. Maxwell model is a subsystem that is developed from

the classical Preisach model. In the experiment, it is determined that modified

Maxwell model is faster and more effective. Simulations for both dynamics model

and its inverse model are conducted for verification. Inverse dynamics model is
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implemented in feedforward controller to predict input value ahead for desired

output value. Since dynamics model closely maps hysteresis of SMA actuators,

a simple feedback controller can be utilized to compensate modeling error. Simple

PI and PI−P 3 controllers are implemented. Experimental verification is performed

to compare feedback-feedforward controller to feedback controller itself.

1.1 Characteristics, History, and Development of SMA

A Shape memory alloy is a type of smart material which remembers its origi-

nal state. One of the commonly used SMA materials is Nickel-titanium, known as

Nitinol. Nitinol stands for Nickel Titanium Naval Ordnance Laboratory. As the

name suggests, it was discovered by a researcher, William J. Buehler, at the Naval

Ordnance Laboratory in 1962. Soon after its discovery, it found applications in U.S.

and British Navy to join titanium tubing using hydraulic couplings and moved its

way up to scientific and robotics applications. When it is compared to other ma-

terials, Nitinol prevails to have greater ductility, more recoverable motion, good

corrosion resistance, stable transformation temperatures, higher bio-compatibility,

and ability to be electrically heated [10]. On the other hand, there lies a great chal-

lenge in control due to a phenomenon known as shape memory effect (SME). SME

refers an ability to contract back to its original state when heated. In SMA, SME

is nonlinear and dependent on the temperature and stress. It occurs as a result of
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crystalline structure change due to temperature. Assume a SMA’s original state is

state “A” in Fig. 1.1. It has low temperature without applied force. Crystalline

structure has parallelogram shape at this point. When heat is applied, its state

transitions to “B”. At “B”, the length of the SMA shortens due to temperature in-

crease, and crystalline structure deforms to cubical form. It does not come back to

parallelogram shape like the original state even when heat is removed (state “C”).

It finally comes back to its original form when heat is removed and force is applied.

Nonlinear SME causes hysteresis in the system. Hysteresis refers to the dependence

Fig. 1.1 Micro and macro view of SMA phase transformation [1]

of a physical system on the environment. The term “hysteresis” is introduced by

James Alfred Ewing, a Scottish physicist in 19th century, as the persistent effects

the temporary exposure of ferric metals to magnetic fields [13]. The term can be
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found in various disciplines such as magnetics, electronics, and economics. When a

SMA actuator deforms and comes back to its normal state, it does not always follow

the same deformation process. Hysteresis loop is displayed when nonlinear defor-

mation process is plotted, as shown in Fig. 1.2. It introduces unwanted inaccuracies

when building a control system. Different behaviors of SMA in heating and cooling

processes cannot be tracked with typical linear controller. Thus, it requires special

techniques to achieve precision in control. Hysteresis loop can be divided into two

transformation phases, austenite (A) and martensite (M) phases. Austenite phase

begins from austenite start temperature, As, and finishes at austenite finish tem-

perature, Af , forming heating curve of the system. Martensite phase forms cooling

curve of the system from martensite start temperature, Ms, to martensite finish

temperature, Mf . This distinctive transformation causes hysteresis and introduces

nonlinearity in the system. Since SME is dependent on temperature, the environ-

Fig. 1.2 SMA Transformation [2]
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ment that the SMA system is in plays a crucial role. When the system is not in

vacuum, it introduces heat transfer through air convection, disturbing its perfor-

mance. Peng et al. [14] performed a test with a preliminary SMA test bench with

dead weight bias and linear variable differential transformer (LDVT) displacement

transducer. They compared actuators performance in vacuum and air. It was con-

cluded that the current required for control in vacuum is less than that in air. They

were able to achieve 95% energy saving. Furthermore, time delay in the process of

heat diffusion and phase transformation was shorter when the power was removed.

As a result, error was reduced by 43% in vacuum.

SMA is often used as an actuator. There are various way to arrange SMA ac-

tuators for different applications. By placing them in different manners, they allow

the system to have flexible forms of operation. Fig. 1.3 shows the different SMA

connection types: linear, spring, rotary, and bundle SMA actuators. Linear SMA

actuator is the most basic configuration. It is simple and easy to be integrated

with devices and structures. It also has faster response time than other configu-

rations [3]. Linear connection of SMA wries found their applications in membrane

wrinkle control [15], flexible beam control [16], and so on.

When SMA actuators are wired in spring form, it obtains properties of a spring

as well as its original properties. Lee et al. [17] provide four test analyses of a

spring actuator used for an active catheter. A SMA spring actuator is wound on a
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Fig. 1.3 (a) Linear SMA actuator (b) Spring SMA actuator (c) Rotary SMA ac-

tuator (d) Bundle SMA actuator [3]

mandrel and fabricated by the heat treatment. Their system was developed to be

used in medical robots with high accuracy. Also Ishii and Ting [18] presented SMA

actuated compliant bistable mechanisms with spring actuator that can preserve

advantages of SMA and eliminates disadvantageous characteristics.

Rotary actuator is normally formed with pulley system or SMA strip in coil

form [3]. It is tolerant to residual strains and suitable for meso or micro level

robotic system. Generally, micro fabrication treatment is applied to enhance the

bending of SMA actuator [3].

Performance of bundle actuators is dependent on wire diameter, number of

wires, bundle length, and number of parallel current path. It can hold more load
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than linear actuator, however, it requires more delicate control and voltage/current

to operate.

Despite their attractive properties, challenges remain in control to maximize

SMA’s potentials. The challenges associated with controlling SMAs include hys-

teresis modeling and compensations, heat transfer, slow cooling process and so on.

1.2 Applications and Motivation

Due to the features such as high contraction force and low noise, SMA actuators

found wide applications in various fields, from medical to robotics [19,20]. In space

industry, cost per weight and volume to launch into space is very high. Hence,

light weight and small actuators that can deliver high forces are always attractive

features for space missions. Peng [15] gives possible applications of SMA actuators

including the deployment system of membrane structure and rotating the glass

cover of the solar panel of Mars Pathfinder “Sojourner” to avoid dust deposit on

the panel during sandstorm on Mars. He also raises his concerns about difficulty

using SMA actuators. A SMA actuator has poor stability and controllability. It is

hard to achieve steady output even with the same input. It also has slow response

speed and is hard to map hysteresis accurately. Response time can be improved

by using thin SMA actuators. However, thin SMA actuators are more sensitive to

environment. Careful tests and analyses must be made to accurately understand
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its properties.

The Spacecraft Dynamics Control and Navigation Laboratory (SDCNLab) at

York University possesses a world-class membrane structure test facility for in-

vestigation of active shape/flatness control of space membrane structures, which

have potential applications in synthetic aperture radar (SAR) antenna, membrane

mirrors, and so on. Fig. 1.4 shows the membrane test facility at SDCNLab.

Membrane is fabric like material. It needs to stay flat in order to be accurate and

effective. However, when it is deployed in space, membrane is subject to wrinkling

due to thermal and mechanical disturbances [15]. Having wrinkles affect perfor-

mance negatively by introducing surface inaccuracy in membrane reflectors and/or

nonuniform surface heating in solar sails. The general guideline suggests that the

membrane maintains 1/10 to 1/20 of operation wavelength. Sets of SMA actuators

are supporting membrane along the boundaries. It is optimal not to have sensors or

actuators on the structure because they can interfere with microwave components

and reduce the performance [4]. Uniformly placed 20 sets of SMA actuators hold

membrane, provide boundary tensions to relieve wrinkles. High accuracy control of

individual SMA is needed to achieve high flatness. The objectives of the research

are to model the dynamics of SMA with nonlinearity accurately and design effective

controller for tension control.
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(a) Membrane structure

(b) Overall membrane system
(c) 20 SMA actuators are used to support mem-

brane structure

Fig. 1.4 Membrane experimental system at SDCNLab [4]
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1.3 Experimental Setup

Despite the simplicity and effectiveness of the linear SMA actuator, refer to

Fig. 1.3 (a), its nonlinearity prevents a precision control. A test bench with one

set of SMA actuators is built for experiments. It was designed in a way that it

resembles SMA structure in the membrane system in SDCNLab. The test bench

consists of a set of SMA actuators (one set of SMA actuators is composed with two

SMA actuators connected in parallel form), two support beams for SMA actuators

(one for each end), a strain gauge, circuit board, National Instruments SCB-68

DAQ box, Ectron Corporation 563H board, and a computer for real time control.

Fig. 1.5 shows the test bench. A flexible beam is connected by SMA actuators with

a fixed beam. The fixed beam is secured on the platform with adjustable screw such

that a desired pre-tension force can be adjusted. On the inner side of the flexible

beam, a strain gauge is mounted and connected to Ectron board so when shortening

of actuators’ length triggers the beam bends and strain gauge reads tension force.

The computer utilizes MATLAB and xPC target for real-time control. It reads

strain gauge output from Ectron board and sends commands through NI card to

apply current to SMA actuators. Current supply is connected to one end of SMA

actuator and to circuit board which is connected to NI card and the other SMA

actuator.
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(a) Membrane SMA actuator connection [21] (b) Test bench built at SDCNLab

Fig. 1.5 SMA actuator connections

In this research, the material of the actuator is Nitinol (NiTi) which is the same

as the SMA material used in the membrane system. This is because the objective

of the research is to provide SMA control for the existing membrane structure.

Properties of the SMA actuator is listed in Table 1.1.

Table 1.1 Properties of SMA actuators

Property Value

Material Nitinol (NiTi)
Diameter 0.2 mm
Length 66 mm
Resistance 29 Ω/m
Maximum Input Current 660 mA

The existing system relies on digital PWM signal as system input. However, it

does not provide one-to-one relationship between input and output since it is simple

on and off signal. In order to establish an accurate dynamics model, it is desired

to provide analog signal as system input of the SMA test bench. A simple voltage
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to current converter is built to generate the desired current from the input voltage

in order to implement analog system. In Fig. 1.6, RL represents the resistance of

the SMA actuators. The applied current to SMA actuators are determined by the

value of R1 as

IL =
Vin
R1

(1.1)

Fig. 1.6 Voltage to current converter

The overall system diagram is illustrated in Fig. 1.7, where V stands for voltage

and I represents current.

It should be noted that the experimental system does not contain active cool-

ing system. SMA actuators have slow cooling time, therefore, cooling of a SMA

actuator is generally done by heat removal techniques in forms of heat sink, wa-
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Fig. 1.7 Overall system process diagram

ter immersion, and forced convection. However, the membrane structure does not

require fast cooling. Cooling of the experimental system will be done naturally

by removing electrical current. Heating of the actuators are more important than

cooling because heating causes greater tension in wire to stretch the membrane.

1.4 Contributions of this thesis

This thesis emphasizes on providing effective position control for SMA actuators.

It is achieved with two main parts: dynamics modeling and control system design.

The hysteresis in SMA is compensated for, by the dynamics model in feedforward

control and feedback controller corrects the error. In this work, two dynamics

models and two control methods will be studied.

In Chapter 2, the detailed models of physical process in a SMA actuator are

introduced. It offers theoretical and mathematical procedures behind the suggested

models. Heat transfer dynamics and hysteresis models are introduced. A transfer

function is derived from time constant to compensate for the positive phase shift.
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In Section 2.2, the hysteresis loop is identified and Preisach and Maxwell models

are developed accordingly. The hysteresis of SMA is studied extensively by many

researchers. However, many of them utilizes controllable power supply so stable

one to one relation could be achieved between the output and the power input.

The original system utilizes pulse width modulation (PWM) as the system input

therefore it is hard to obtain stable and consistent hysteresis loop. For this re-

search, voltage to current converter is implemented to replace the digital system

input by an analog. The classical Preisach model and modified Maxwell model are

studied and compared for modeling the hysteresis. The classical Preisach model is

one of the most popular hysteresis models used for SMA. The Maxwell model is an-

other conventional hysteresis model that is considered as sub-model of the classical

Preisach model. The modifications are made to Maxwell model to accommodate

irregularity in hysteresis loop. Furthermore, in Section 2.3, techniques used to iden-

tify parameters from the experimental data for the classical Preisach model and the

modified Maxwell model are explored. The parameter identification method, as well

as the identified results are given. Simulation data from both hysteresis models are

provided, analyzed, and compared.

In Section 3.2.2, the inverse model of the modified Maxwell model is developed.

The inverse model can be used in a feedforward control loop and compensate for the

nonlinear hysteresis effect in a SMA actuator. Verification results are presented.
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In Chapter 3, the development of control system of SMA actuators is discussed.

Background information is provided from literature review. Section 3.1 introduces

control methods suggested by researchers. It includes linear and nonlinear systems

with different control techniques. In Section 3.2, feedforward controller coupled

with a simple feedback controller is suggested for this research. Feedforward term

compensates the hysteresis effect in SMA actuators and feedback controller corrects

the modeling error. The controller is tested with the test bench and the results are

compared.

Chapter 4 concludes this thesis and states future work to be done.
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2 Dynamics Modeling of SMA

2.1 Background

There are various physical properties and dynamic processes involved in a SMA

actuator system. Depending on its application and how the system is setup, heat

transfer, phase transformation between temperature and stress, strain, and electri-

cal resistance exist in the system. This chapter focuses on modeling of two dynamic

processes, heat transfer and phase transformation of a shape memory alloy. The

heat transfer occurs between input current and temperature, while the phase trans-

formation involves hysterectic behavior of SMA actuators.

2.1.1 Heat Transfer

SMA actuators are activated mostly by heat transfer. Heat energy is obtained

by electric current and easily affected by environment through natural convection.

Heat transfer characteristics are important and needs to be analyzed to achieve

accurate tracking. The relationship between temperature and potential difference
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of SMA wire is governed by the following lumped parameter convective heat transfer

equation [22].

ρc
πd20L0

4

dT

dt
= vi− πd0L0h(T − T0) (2.1)

where d0 is the cross-sectional diameter of the undeformed wire (m), L0 is unde-

formed SMA wire length (m), T0 is the ambient temperature (K), ρ is the mass

density of the wire (kg/m), c is the specific heat of the wire (J/K), vi is electric

power (W), and h is the convective heat transfer coefficient of the wire (W/m2K).

Specific heat is a function of temperature, however, it is treated as constant value

for simplification purpose. This simplification does not introduce error in the sys-

tem because environmental disturbance is greater than the error caused by the

simplification. This equation is useful when temperature is not measured directly

from the SMA actuators. It offers mathematical estimation of temperature based

on the input value.

Compared to heating, cooling is more sensitive to environment. Cooling can be

achieved by natural air convection to remove heat from the system. Even though

heat removal is the simplest method, there is no control over the cooling process

since it is done naturally. If an application requires fast cooling, various cooling

techniques can be applied. The commonly used cooling mechanisms include heat

sink, water immersion, and forced convection. Researchers understood that re-

sponse can be improved by having controlled cooling environment. Experiments
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with mobile heat sink as cooling system of SMA actuators performed by Russel

and Gorbet [23] show great improvement in speed and range of dynamic motion

over the system without mobile heat sink. Lewis et al. [24] analyzed the behaviors

of SMA actuator to study its functionalities under controlled convection. They

acknowledged that the system’s response time is affected by the influenced heating

and cooling time. Factors that affect heating and cooling time include temperature,

environment, convection of the environment, and the surface to volume ratio of the

SMA wires. It ultimately creates nonlinearity in the system.

2.1.2 Hysteresis Models

Hysteresis is one of the most important characteristics of SMA for control

purpose. A dynamics model of the SMA actuator is crucial for tracking. Var-

ious hysteresis modeling techniques have been investigated by many researchers

[5, 6, 8, 25, 26]. There are two main approaches for hysteresis modeling. One ap-

proach relies on adapting the mathematical model to experimental data rather than

deriving mathematical relationship from physical properties. Deriving mathemat-

ical model for the system requires complete understanding of the system and it

can be very complex. The first method is often preferred for simplicity and high

accuracy. Hysteresis models investigated in this section employs the approach that

adapts the model to the experimental data. They have properties such as rate-
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independence and memory effect. The term, rate-independence, implies that the

input-output relationship is invariant with respect to the frequency or change rate

of the input signal. Memory effect means that the output at a given time instant

depends not only on the input value at that moment, but also on the historical

input.

Classical Preisach Model

Ferenc Preisach first introduced Preisach model in 1935 to describe the hystere-

sis in ferromagnetic materials. It was further developed mathemetically by Kras-

nosepskii and other Russian mathematician groups [27]. Now it is one of the most

popular hysteresis models due to its proven ability to accurately model a class of

hysteresis. It describes physical phenomena with nonlinear hysteresis behavior [28]

and reveals properties of hysteresis loop. It is an operator based hysteresis model

that also serves as the basis for some other hysteresis models.

Preisach model describes hysteresis as a linear combination of weight function

and relays. Each relay hysteron consists of an operator that switches between

two values: α and β. α and β correspond to “up” and “down” switching values

as illustrated in Fig. 2.1. The purely mathematical description of the Preisach

model can be considered as an operator that integrates infinite weighted elementary
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Fig. 2.1 Relay hysterons [5]

hysteresis operators γα,β over two dimensional region. It is expressed as

y(t) =

∫∫
α≥β

µ(α, β)γα,β[u(t)]dαdβ (2.2)

where γα,β denotes the Preisach plane switching operator and µ(α, β) is a weight

function of α and β. Fig. 2.1 shows the finite dimensional approximation, which

will be explained in more detail in Section 2.2.2.

Preisach plane offers geometric interpretation of relay hysterons. It covers tri-

angular area when α ≥ β. α, β pairs from all relay hysteron are mapped and

evaluated based on the input value. The coordinates outside of the Preisach plane

are considered to be 0. Preisach model switches plane and adjusts output value

between 0 and 1 as input value changes as follows,

γα,β =


0, if ut ≤ β
1, if ut ≥ α
r, if β < ut < α

(2.3)

where ut is the input value at current time t, r is 1 if ut−1 is greater than α, and is
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0 if ut−1 is less than β. Fig. 2.2 illustrates active Preisach plane switching. In this

(a) Slope of an input example u(t)

(b) Preisach plane with actibated (S+) and not activated (S-) switching operators

(c) Resulting hysteresis curve

Fig. 2.2 Preisach plane switching [6]

figure, e represents input value, S+ is the area corresponding to switch-on status,

S− denotes switch-off status. Lastly, Fig. 2.2 (c) shows input-output hysteresis plot.

When input value starts from e1 and increases to e2, S
+ area increases along α axis

because more γα,β components are switched on. Phase II in this figure displays

decreasing input value. As input value decreases, S− area increases because γα,β
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components are switched off along β. This cycle repeats as input value changes.

As a system runs, boundary line between S+ and S− becomes staircase line with

horizontal lines correspond to local maxima of α and vertical lines correspond to

local minima of β.

Weight function is a factor that determines the shape of hysteresis curve. Many

weight functions have been utilized for different applications [5, 25, 29–31]. Some

popular choices include the first order reversal curves (FORC), Gaussian density

function, Lorentzian function, and derivative arc tangent (DAT) weight function.

FORC is introduced as a hysteresis data analysis tool [32]. It is in high demand

for applications that require high accuracy because it is a proven method with great

sensitivity and multitude of data that it can provide. However, it is not widely used

due to its complexity. In data analysis and calculations, careful understanding of the

procedures and results is required [31]. FORC originated in the classical Preisach

model identification technique and therefore is often described as a slightly distorted

Preisach distribution [31]. FORC is collected by changing the sample data field.

FORC diagram starts from positively saturating field. Then, a sample is decreased

to a reversal field, denoted by Ha. Lastly, it is increased again to Hb and returns

to the positive saturation. FORC distribution is given as follows [32]:

ρ(Ha, Hb) = −∂M(Ha, Hb)

∂Ha∂Hb

(2.4)

where M(Ha, Hb) is measured magnetization. FORC diagram forms an experimen-
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tal curves confined inside the major hysteresis loop (MHL) as shown in Fig. 2.3.

Gaussian density function and Lorentzian function are analytical functions that

(a) Single FORC curve

(b) Series of FORC curves

Fig. 2.3 FORC diagram [7]

express continuous weight function. They share the same parameters: A, h, σ1,

and σ2, where A is normalization factor, and h, σ1, and σ2 are the characteristic

parameters of the distribution [30]

µ(α, β)Gaussian = A exp

(
−1

2

[(
β − α− 2h

2h
σ1

)2

+

(
β + α

2h
σ2

)2
])

(2.5)

µ(α, β)Lorentzian = A
1

1 +
(
α+h
h
σ1
)2 1

1 +
(
β−h
h
σ2
)2 (2.6)
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DAT weight function is developed based on the fact that the general shape of

the outer hysteresis loop is arc tangent-like [30]. It is similar to Gaussian and

Lorentzian, however, it has one additional term η

µDAT (α, β) =
A

1 + {[(α + β)σ1]2 + [(α− β − h)σ2]2}η
(2.7)

where η is introduced to allow the function to have more flexibility in shaping the

corners of the hysteresis loop.

Prandtl-Ishlinskii Model

Prandtl-Ishlinskii (PI) model is also an operator based hysteresis model like

Preisach model. It is desirable for its simplicity, ease of implementation and ac-

curacy [33]. PI model employs a superposition of elementary “play” or “stop”

operators that are continuous elementary operators [34]. Like Preisach model, it

utilizes the sum of multiple operators.

Mathematical expressions of play operator Fr and stop operator Er are defined

in the literature [35]

Fr[v](0) = fr(v(0), 0) = w(0)
Fr[v](t) = fr(v(t), Fr[v](ti)); ti < t < tt+1 and 0 ≤ i ≤ N − 1
Er[v](0) = er(v(0))
Er[v](t) = er(v(t)− v(ti) + Er[v](ti)); for ti < t < tt+1 and 0 ≤ i ≤ N − 1

(2.8)

where fr(v, w) = max(v − r, min(v + r, w)), and er(v) = min(r, max(−r, v)). Play

and stop operators are continuous and rate independent operators that decide the
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slope of the hysteresis curve. They are a function of input v and the threshold

r [34]. Play and stop operators are illustrated in Fig. 2.4

(a) Play operator (b) Stop operator

Fig. 2.4 Prandtl-Ishlinskii operators

Duhem Model

The Duhem model is a differential equation based hysteresis model that utilizes

the fact that output has different characteristics for varying input. The Duhem

model has been used to identify hysteresis in various smart materials and it has been

proven that it can cover a large class of rate independency. It is capable of providing

a finite-dimensional differential hysteresis model [36]. Differential equation of the

Duhem model is

dω

dt
= α

∣∣∣∣dvdt
∣∣∣∣ [f(v)− ω] +

dv

dt
g(v) (2.9)
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where α is a constant greater than 0, v is input, ω is output, and f(v) and g(v)

are continuous functions. f(v) is a piecewise smooth, monotone increasing, odd

function with limited finite derivative f ′(v)

f(v) = −f(−v), lim
v→∞

f ′(v) <∞ (2.10)

g(v) is a piecewise continuous even function with finite limit

g(v) = g(−v), lim
v→∞

g(v) = lim
v→∞

f ′(v) (2.11)

Like the Preisach model, the Duhem model is rate independent and has local

memory. It also has inverse model that can be used for hysteresis compensation.

By choosing appropriate f(v) and g(v) values, hysteresis can be established. This

formulation can be easily modified to confine input-output relationship to a loop-

like set.

Maxwell Model

Maxwell resistive capacitor (MRC) or Maxwell slip model is a variance of

Preisach model [37]. Basic MRC operator originated from an elementary stop hys-

teron [38]. MRC, formulated by James C. Maxwell, consists of series of elasto-slide

elements. Each elasto-slide elements have different stiffness and damping [39]. It

is a friction model that distinguishes two regimes: slip and stick. In stick regime,

absolute displacement is less than breakaway displacement. As an element in-
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creases/decreases its displacement, it reaches breakaway displacement and enters

slip regime. It is illustrated in Fig. 2.5.

(a) Single Maxwell slip element (b) Maxwell slip elements in series

Fig. 2.5 Maxwell slip element [8]

Goldfarb and Calanovic [8] proposed a generalized MRC as a lumped-parameter

causal representation of rate-independent hysteresis. In their paper, they describe

single Maxwell slip element behavior as

Fi =

{
ki(x− xbi), if |ki(x− xbi)| < fi
fisgn(ẋ) and xbi = x− fi

ki
sgn(ẋ), else

(2.12)

where x is the input displacement, Fi is the output force, ki is the spring stiffness, fi

is the breakaway force, and xbi is the block position for the i-th elasto-slide element.
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When in series, the final output force, F , is

F =
n∑
i=1

Fi (2.13)

The discrete version of Eq. (2.13) is [39]

δi(t+ 1) =

{
sgn[x(t+ 1)− x(t) + δi] · |x(t+ 1)− x(t) + δi(t)|, stick
sgn[δi(t)] ·∆i, slip

(2.14)

where δi denotes the current spring deformation and ∆i denotes the maximum

spring deformation. When a force is applied, the distribution is unknown. An

iteration is used to calculate the distribution. It is assumed that each element

has certain amount of force. Once one stiffness is identified, distributed force is

proportional to each other (only when the system is not saturated).

2.2 Hysteresis Modeling

Hysteresis in SMA causes a major difficulty in control system design. Imple-

menting precise hysteresis model in feedforward loop allows controller to compen-

sate for the nonlinear hysteresis. Unmodeled or poorly modeled hysteresis intro-

duces inaccuracy in tracking system performance [40]. In this section, Preisach and

Maxwell models are developed for hysteresis compensation. These two models are

selected for the following reasons. Preisach model is one common hysteresis model

for SMA actuators. Its ability to closely identify complex hysteresis attracted many

researchers. Maxwell model is also a popular hysteresis model, which consists of
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multiple Maxwell slip elements so that it is easy to obtain accurate tracking. In

SMA, hysteresis exists in phase transformation between temperature and stress.

Hysteresis models are used to map the temperature-stress relationship.

2.2.1 Problem Statement

The existing SMA system on membrane structure relies on digital (PWM) signal

as system input. While PWM signal is an effective and proven tool to reduce

the energy consumption and deliver good performance for feedback controller, it

does not provide one-to-one relationship between the input and output. PWM is

essentially on and off signal. Thus specific input voltage cannot be estimated which

makes it hard to generate consistent output. As it is illustrated in Fig. 2.6, the

generated output signal is noisy and the response time to applied input current is

very slow. It creates time delay from C to Bending in Fig. 1.7. Moreover, when

sinusoidal wave input is entered to generate hysteresis loop of the SMA actuators,

the obtained hysteresis loops for same input value are inconsistent. Tested system

input is

u = 3sin(tωπ − 0.5π) + 3 (2.15)

where ω is 1/15 Hz. For the input, sine wave is shifted by 0.5π so the wave starts

at its minimum value. Even when the output values are averaged, the shape of

hysteresis loop is not consistent in terms of the shape and the slope of curves.
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These properties pose great challenge for the accurate dynamics modeling.
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(b) Hysteresis loop obtained from sine wave response

Fig. 2.6 Responses of SMA actuators to PWM input

In order to observe the hysteretic behavior more precisely, system input is

changed from digital to analog signal. It allows the user to enter voltage as in-

put to generate specific current to drive the SMA actuators. Voltage to current
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converter (Fig. 1.6) introduced in Section 1.3 is used. The conversion is expressed

as

I =
V

R
(2.16)

where I is current, V is voltage, and resistance R has value of 11 Ω. Resistance of

11 Ω is specifically selected because maximum supply voltage generated by Ectron

board is ±10 V. The resistance R allows to generate current from 0 to 660 mA,

the maximum current that can be applied to a SMA actuator, with limited voltage

range of the system. The the maximum voltage is limited to be 7 V. Step and

sinusoidal responses are re-evaluated with analog system input and displayed in

Fig. 2.7. The response is more stable and less noisy compared to Fig. 2.6 (a). Also

the hysteresis loop is more defined than the digital input system.

In addition, heating and cooling response test reveals fastest heating and cooling

time. Maximum and minimum voltages are applied for this study. From Fig. 2.8, it

can be approximated that the maximum heating takes 3 seconds and the complete

cooling from the maximum tension takes 10 seconds. Heating is faster than the

cooling because heating is actively controlled with the power supply and cooling

depends on natural air convection only.
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Fig. 2.7 Responses of SMA actuators to analog input

2.2.2 Classical Preisach Model

Preisach model is one of the most commonly used model to simulate the hys-

teresis of SMA. It assumes that the system consists of a parallel summation of a

continuum of weighted hysteresis operators. Each relay hysteron has input and
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Fig. 2.8 Heating and cooling time of SMA actuator

output that form a loop corresponding to switch-on (up), and to switch-off (down).

As input value changes, Preisach model switches plane and adjusts output value be-

tween 0 and 1. Then the output values are multiplied by the corresponding weight

µ(α, β). The Preisach model is expressed as

y(t) =

∫∫
α≥β

µ(α, β)γα,β[u(t)]dαdβ (2.17)

where γα,β denotes Preisach plane switching operator.

Identification of the plane switching operator and the weight function has to be

made to fit specific cases. In this section, Preisach model implementation method

is explored along with the simulation results.
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Discretization of the Preisach Plane

Preisach plane is triangular shape area on α and β graph where α ¿ β. α and

β imply switch on and off threshold of a relay. On the Preisach plane, range of α

and β is defined by the minimum and maximum input range as:

P (α, β) = {range : uminimum ≤ β ≤ α ≤ umaximum} (2.18)

In practice, Preisach plane has to be discretized in order to divide the plane

into finite number of elements. In discretized Preisach operator, more accurate

data can be obtained by using bigger array of data for α and β. However, it

can cause slowness of system. Discretization level L determines the number of

discretized Preisach plane cells and natural location of α and β. Preisach plane is

divided uniformly into L rows and columns obtaining K cells where K is [9]

K =
L(L+ 1)

2
(2.19)

Then α and β values at i-th location are [9];

αi = βi = umin + (i− 1)

(
umax − umin

L

)
(2.20)

As L increases, the accuracy of the model increases. However, this will slow the

system down since high L value creates more elements to be analyzed.

For discretized Preisach model, the output is expressed as

y(n) =
L∑
i=1

i∑
j=1

γij(n)µij (2.21)
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Fig. 2.9 Discretization of Preisach plane (L=4)

where i and j denotes the location of α and β, and γ denotes the Preisach operator

(1 or 0).

Preisach Operator

Discretized Preisach plane cells alternative their values between 1 and 0 depend-

ing on their input value. As discussed in Section 2.1.2, Preisach operator can be

expressed as

γα,β =


0, if u ≤ β
1, if u ≥ α
r, if β < u < α

(2.22)

where r is 1 if ut−1 is greater than α, and 0 if ut−1 is less than β. As input u

increases, Preisach plane boundary parallel to β axis increases (see Fig. 2.10(a):

P+ area is increasing along with the boundary u1, parallel to β axis) and as u

decreases, plane boundary parallel to α axis decreases (see Fig. 2.10(b): P+ area is
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decreasing along with the boundary u2, parallel to α axis). These plane boundaries

are called memory curves.

Fig. 2.10 Memory curve on Preisach plane [9]

Preisach Weight Function

As defined in Eq. (2.17), Preisach model is the integral of weight function and

Preisach operator over Preisach plane. It suggests one to one relationship between

weight function and Preisach operator and that weight function must be mapped on

predetermined discretized Preisach plane. It is important to select a weight function

and its parameters since it defines shape and size of the hysteresis. Derivative-Arc-

Tangent (DAT) offers a simple and easy method to form the density function.

Parameters in DAT are easy to find in hysteresis loop by simple measurements.

Even though it is similar to Gaussian and Lorrentzian function, sharing four same

parameters (refer to Section 2.1.2), having one more extra term, η, allows more

flexibility. Additional η term defines the corners of the hysteresis loop. DAT weight
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function is defined as

µDAT (α, β) =
A

1 + {[(α + β)σ1]2 + [(α− β − h)σ2]2}η
(2.23)

where A is a normalization factor, and h and σ are the characteristic parameters

of distribution [29]. Fig. 2.11 shows the plotted weight function where color bar

represents the µ value. Those parameters can be defined by observing the hysteresis

loop.
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2.2.3 Maxwell Resistive Capacitor

Maxwell resistive capacitor (MRC or Maxwell model) has been used to map the

nonlinearity between displacement and force in piezoelectric actuators (PEA) [8,41].

Even though it is not widely used for hysteresis mapping of SMA actuator, Maxwell

model is a good modeling tool since hysteresis loops of SMA actuator and PEA have

the similar shape. One major difference is that the location of where hysteresis

forms. SMA has hysteresis between temperature and force, while the hysteresis

of PEA is between displacement and force. Therefore, input is treated as the

displacement of Maxwell elements to allow the model to map the hysteresis of

SMA actuator.

Maxwell Slip Element

Maxwell model is a parallel connection of Maxwell slip elements. A Maxwell slip

element, also referred to elasto slide element, is imaginary component composed of

a massless block attached to a spring. When a block is moved back and forth,

hysteresis occurs. When a block is moved forward, force increases. However, once

the breakaway force of a spring is reached, force cannot increase anymore but dis-

placement can still increase. Same applies to a block moving in negative direction.

Displacement-force behavior of a Maxwell slip element is illustrated in Fig. 2.5 (a).
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Modified Maxwell Slip Element

Hysteresis of SMA actuators has asymmetric shape and irregular curves. In

order to accurately accommodate these complexity, two major modifications are

made. Breakaway force has two different boundaries, maximum and minimum,

and unconventional springs with two stiffnesses are used. Both changes cannot

be explained by physical spring-mass system. Conventional Maxwell model has

breakaway force boundaries ±fb depending on the direction of spring motion. It is

expressed as

fb = −k∆ (2.24)

where fb is breakaway force, k is spring constant and ∆ is the maximum deforma-

tion of spring. This allows symmetric upper and lower boundaries. By allowing

to have different absolute values of the maximum breakaway force, fmax, and the

minimum breakaway force, fmin, boundaries accommodate the asymmetric shape

of hysteresis. Different boundary forces mean different elements are activated for

the same magnitude change in positive and negative direction. It allows the model

to have different elements acting for different directions therefore asymmetric hys-

teresis loop can be formed. For this research, Maxwell elements are divided into

two groups. One group is activated only when the direction of the applied force is

positive and the other group acts when the direction of the force is negative. Also,
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each spring is assumed to have two spring stiffnesses: one for increasing curve,

kinc, and the other for decreasing curve, kdec. If boundaries are symmetric, slope

would be constant therefore it is important to have asymmetric boundaries for each

element to model the hysteresis of irregular shape . Some elements have negative

spring stiffness. This offers more flexible slope change to adapt to hysteresis loop

better. Initial rising curve is disregarded since it is affected by internal state. It

is unstable and not meaningful to model. After the modification, force equation

becomes

Fi =


kiinc

(x− xbi), if 0 < (x− xbi)
kidec(x− xbi), if (x− xbi) < 0
fimax , if fimax ≤ kiinc

(x− xbi)
fimin

, if kidec(x− xbi) ≤ fimin

(2.25)

The mathematical description for coding purpose is,

δi(t+ 1) =


kiinc

[x(t+ 1)− x(t)] + δi, positive stick
kidec [x(t+ 1)− x(t)] + δi, negative stick
δimax(t), positive slip
δ
min

(t), negative slip

(2.26)

These modifications allow the model to have different slopes for increasing and

decreasing curves. Therefore the model is flexible and easy to adjust for un-smooth

curve. Fig. 2.12 shows the hysteresis of a single Maxwell element. After modifica-

tions, increasing and decreasing curves no longer have the same slope.
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Fig. 2.12 Maxwell slip element

2.3 Parameter Identification

2.3.1 Data Collection

In order to verify the model parameters, experimental data is collected from

the test facility introduced in Section. 1.3 to compare with the simulated data.

The input is fed through the open loop system. Data collection is conducted with
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repeating full sinusoidal wave and decaying sinusoidal wave to examine the entire

spectrum of input range with increasing and decreasing values. Two sets of sinu-

soidal wave that were used as input signal are displayed in Figs. 2.13 (a) and 2.14

(a). The full sinusoidal input wave is

u = 3sin(tωπ − 0.5π) + 3 (2.27)

Desired input voltage range is 0 to 6 V. Since wave has amplitude 3 which is shifted

upward by 3. Also sine wave is phase shifted by 0.5π so that the wave starts from

0. Multiple sets of data are collected from the same input and averaged for analysis

purpose in order to reduce the noise. Open loop test results are illustrated in

Figs. 2.13 (b) and 2.14 (b).

The hysteresis loop obtained from the open loop experiments is frequency depen-

dent. When decaying sinusoidal wave tests are run with five different frequencies,

its frequency dependency is illustrated in Fig. 2.15 as shapes of the hysteresis loop

are clearly different.

2.3.2 Initial Parameter Calculation

Normally, parameters in the hysteresis models represent physical characteristics

of the hysteresis loop. For example, sharpness of the hysteresis loop and saturation

point are some of them. In order to successfully estimate initial parameters, it is

crucial to study properties of hysteresis loop. Initial parameter identification is
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Fig. 2.13 Experimental data of a SMA actuator

considered as a rough estimate before optimization. The initial parameters have to

be re-adjusted because they are obtained from analyzing the major hysteresis loop

only, which has limited range of data. For this research, the initial parameters are

obtained by measuring the specific points and slopes of the hysteresis curve and its
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Fig. 2.14 Test results of decaying sinusoidal input

initial rising curve. Parameter identification methods for Classical Preisach model

and Maxwell model are introduced in this section.
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(b) Hysteresis loop at 1/15 Hz
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(c) Hysteresis loop at 1/20 Hz
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(d) Hysteresis loop at 1/25 Hz
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(e) Hysteresis loop at 1/50 Hz

Fig. 2.15 Frequency dependency (hysteresis at different frequencies)
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Preisach Parameter Identification

Preisach model is proposed to identify the hysteresis in ferromagnetic material.

Therefore, the names of parameters and terms have magnetism references. The

weight function determines the shape of the hysteresis therefore some characteristic

points on the measured curve are utilized. They are plotted in Fig. 2.16.
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Fig. 2.16 Hysteresis loop characteristic points

Ms is called saturation magnetization which is the maximum magnetization

value. Coercivity is when magnetization value drops to half point after saturation,

and a point on the hysteresis curve where the applied input is half of its amplitude

is called remanence.

The shape of hysteresis loop is determined by the weight function. Selected

weight function, DAT, requires five parameters to be identified: h, σ1, σ2, A, and
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η. All parameters are described in Section 2.1.2. Parameters of DAT can be easily

determined by measuring the hysteresis loop.

µDAT (α, β) =
A

1 + {[(α + β)σ1]2 + [(α− β − h)σ2]2}η
(2.28)

The parameter h is the coercivity. The parameters σ1 and σ2 determine the

slope of the hysteresis loop at the coercivity by:

σ =
√
σ2
1 + σ2

2 (2.29)

Also the ratio σ1 and σ2 determines the height of minor loops vis-a-vis the major

loop. The parameter A can be simply calculated from

A =
1

4πσ1σ2
(2.30)

Lastly, η is roughly estimated by plugging in a number and adjusting from

comparing the results with the experimental data.

Maxwell Parameter Identification

Goldfarb and Calanovic [8] offer steps to obtain necessary parameters for MRC.

Their method is closely followed and the same notations are used in this section.

Two parameters, spring stiffness and breakaway force, need to be identified to

complete Maxwell model. In order to calculate the stiffness, piecewise linear fit of

the initial rising curve of the hysteresis is obtained. Number of segments from a
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rising curve fit determines the number of Maxwell slip elements. If n segments are

obtained, n Maxwell slip elements are required. Before conducting mathematical

process, it should be noted that the SMA system does not have distinctive initial

rising curve. Thus, an imaginary initial curve is made up to estimate the initial

parameters.
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Fig. 2.17 Initial rising curve

Once the initial curve is approximated, it is fitted by evaluating piecewise poly-

nomial. As demonstrated in Fig. 2.17, the modified curve follows the initial rising

curve closely in piecewise form. The step of obtaining piecewise initial curve is

important because the piecewise initial curve allows easy measurements of slopes

on the initial curve. Each point on the piecewise curve is uniformly distributed

along the input axis. Slope of a rising curve can be expressed with the following
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spring stiffness

sj =
n∑
i=j

ki (2.31)

where s represents the slope, ki is the spring stiffness of the i-th Maxwell element.

It can be rearranged in a matrix form as

s = Ak (2.32)

where s is n× 1 vector of the segment slopes, A is a n× n upper triangular matrix

of ones, and k is a n×1 vector of Maxwell model spring stiffness. Finally, to obtain

the spring stiffness, it is rewritten as

k = A−1s (2.33)

On a displacement vs. force graph, the location of segments is

xj =
fj
kj

(2.34)

where fj is the breakaway force of the j-th Maxwell element. With all the infor-

mation obtained from the previous steps, the breakaway force can be evaluated

as

f = Kx (2.35)

where f is a n × 1 vector of the breakaway forces, K is a n × n diagonal matrix

of the spring stiffnesses, and x is a n× 1 vector of the segment locations. The last

breakaway force, located at f(n, 1), has to be considerably larger than the rest of

the breakaway forces to avoid the saturation.
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2.3.3 Parameter Optimization

Initial parameters of both Preisach and Maxwell models need to be optimized

for accurate modeling. New sets of data with varying amplitude input are utilized

for optimization. Parameters are optimized by using least square method of output

discrepancy.

min
√∑

(yex − ym)2 (2.36)

where yex is the output obtained from experiments and ym is the model output.

Optimization of the parameters are performed by MATLAB function: ‘fmincon’.

Its optimization process is as follows:

(a) Specify the desired input and output

(b) Provide initial parameters to be optimized, lower and upper boundaries, and

error tolerance

(c) The program runs iterations

(d) As the program runs, it compares values experiment data and simulation data

and calculates least square error

(e) The program adjusts parameter within lower and upper boundaries to reduce

error
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(f) The program runs until error cannot be reduced by set tolerance and provides

optimized parameters

The process is also explained in a flow chart in Fig. 2.18, where u represent

input, v is output, para is parameter to be optimized, lb and ub are the lower

and upper bound, MaxIter is the maximum number of iteration, TolFun is a

parameter for the error tolerance and vm is the model output.

Fig. 2.18 Optimization flowchart

2.4 Model Verification

Two hysteresis models are verified in two steps: a) preliminary and b) simulation

tests. The preliminary test is a simple single amplitude test that focuses on the
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model’s ability to adapt to the general shape of hysteresis loops. The simulation test

is the second step to take after the preliminary test. It is performed to determine

how well the model adjusts to the different amplitudes. Both, the Preisach and the

Maxwell, model outputs are compared with the experimental data and each other.

2.4.1 Preliminary Results

Preliminary results from both Preisach and Maxwell models are obtained from

the single amplitude single frequency sinusoidal wave of the potential difference

input. Same data set used for the initial parameter identification is utilized.

Classcial Preisach Model

The discretized weight function displayed in Fig. 2.11 has asymmetric surface

and Preisach operator has memory effect. It suggests that while Preisach model

can follow the asymmetric shape of the hysteresis loop, it cannot track the irregular

changing slope of a hysteresis curve. The result is as expected since the weight

function is the deciding factor of hysteresis shape and size. Preliminary test results

are displayed in Fig. 2.19.
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Fig. 2.19 Hysteresis analysis by classical Preisach model

Maxwell Model

Maxwell model has multiple elements working individually. Each element pro-

vides different output for the same input, making it easier to adjust to different

slopes with increasing and decreasing curves for hysteresis loop. Fig. 2.20 shows

model output has changing slope on both increasing and decreasing curves due
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to the modifications. Since the saturated hysteresis loop is symmetric shape with

smooth curve, Maxwell slip elements have the same increasing and decreasing spring

stiffness.
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Fig. 2.20 Hysteresis analysis by Maxwell model
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2.4.2 Simulation Results

Preliminary results reveal that the Maxwell model produced better fit of hys-

teresis loop than that of the classical Preisach model. The Maxwell model is more

flexible and has faster process time than the Preisach model as well. In order to

confirm that the model can accommodate various amplitudes and frequencies, sim-

ulations with decaying sinusoidal wave with different frequencies are performed.

Tested frequencies are ω = 1/10, 1/15, 1/20, 1/25, 1/50 Hz.

Parameters are optimized for ω = 1/15 Hz therefore as frequency changed,

accuracy was affected. It should be noted that the parameter can be optimized for

different frequencies depending on the application. While both models follow the

general trend of data, Maxwell model does not only model the different amplitudes

and frequencies better but also performs faster than the Preisach model.

2.5 Conclusions

While both Preisach and Maxwell models are suitable for modeling hysteresis

loop, Maxwell model clearly shows its strength in modeling asymmetric unconven-

tional hysteresis curve. Maxwell also has faster execution time. It is expected

because of the amount of data processing involved in the Preisach model such as

evaluation of Preisach plane switching, and calculation with weighting function each
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(a) Modeled output (N) at ω = 1/10 Hz
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(b) Modeled output (N) at ω = 1/15 Hz
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(c) Modeled output (N) at ω = 1/20 Hz
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(d) Modeled output (N) at ω = 1/25 Hz
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(e) Modeled output (N) at ω = 1/50 Hz

Fig. 2.21 Simulation results of the Preisach model
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(a) Modeled output (N) at ω = 1/10 Hz

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

Time (s)

 

 Input (V)
Experimental Output (N)
Modeled Output (N)

(b) Modeled output (N) at ω = 1/15 Hz
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(c) Modeled output (N) at ω = 1/20 Hz
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(d) Modeled output (N) at ω = 1/25 Hz
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Fig. 2.22 Simulation results of the Maxwell model
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time when input changes. Even with higher discretization level of Preisach model,

Maxwell model has better performance.
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3 Control System Design

3.1 Background

Various linear and nonlinear controllers are introduced in this section. There

has been great effort contributed by researchers to the control of the nonlinear

SMA actuator system. Different types of control systems are designed to adapt to

or compensate for the nonlinearity.

3.1.1 Linear Controllers

Linear controllers are usually coupled with an extra component to compensate

for hysteresis since linear controller itself cannot compensate for the nonlinearity

in SMA. Common controllers include simple PID feedback controller paired with

the dynamics model of the system in the feedforward loop, PW modulated PID

controller, and PID-P3 controller. Hysteresis modeling predicts the desired input

and output values, PWM has an advantage of energy saving while maintaining

positioning accuracy, and PID-P3 is similar to PID controller with one extra term
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which makes its implementation simple.

Hysteresis compensation model based controllers

Hysteresis model based linear controller has been researched by many researchers

[26,28,42,43]. Hysteresis models compensate for hysteresis behavior in smart mate-

rials and reduce the tracking error. Majima et al. [42] suggest a control system which

is a combination of PID feedback loop and a feedforward loop. Feedforward loop

obtains the desired input and output values from the modified classical Preisach

model. Another advantage of having a feedforward loop with hysteresis model is

once the model is established, there is no need for complicated control system. A

simple feedback controller such as PID controller can be used to correct the mod-

eling error since the nonlinearity has already been taken care of by the model. Ge

and Jouaneh [28] also performed a simulation with the generalized Preisach model

in the feedforward loop coupled with a PID controller for piezoceramic actuators.

PID-P3

Shameli et al. [44] proposed a novel PID-P3 controller to compensate for the hys-

teresis and perform a piecewise position control. The suggested PID-P3 controller

is [44],

u(t) = Kpe(t) +KI

∫ t

0

e(τ)dτ +KDė(t) +KT [e(t)]3 (3.1)
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It has one more term than a typical PID controller, KT [e(t)]3, which contains

a cubic term of the position tracking error. This term has considerable effects

on reducing the settling time and overshoot of the system. For large error, the

controller provides great control effort and for small error, the cubic term almost

vanishes and the controller works as a standard PID controller.

Control with PWM

PWM control is a choice for energy sensitive application. Ma et al. [45] sug-

gest to use PWM as system input to reduce the energy consumption by the SMA

actuators. Simulation results were compared with those using PD controller to

demonstrate its energy efficiency. PWM is selected over other modulators because

it is robust to disturbances and easy to implement using microprocessors. Accurate

PWM control design is crucial in order to identify the input time and displacement

relationship.

3.1.2 Nonlinear Controller

Due to the nonlinearity that exists in SMA, nonlinear controller would be the

natural choice. Unlike linear controllers with hysteresis compensation, nonlinear

controller offers a direct solution. Its ability to eliminate or reduce the nonlinear

effects of the hysteresis allows to improve the performance of the system.
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Sliding Mode Control

SMC is usually used when there are uncertainties in nonlinear dynamic systems

[10]. Elahinia et al. [46] adopted a sliding mode controller (SMC) to calculate

the desired stress of the SMA wire with a single degree of freedom. Simulations

reveals that its performance is more suitable than a PID controller for vibration

control and dealing with uncertainties and noises. Lee and Ahn [47] utilized a

hyperbolic tangential sliding mode control (SMC) and time delay estimation (TDE).

The hyperbolic tangential sliding surface specifies the nonlinear error dynamics and

yields an accurate and chattering-free control while the TDE provides simplicity

and robustness to the controller in spite of the hysteresis effect of the SMA.

Fig. 3.1 Sliding mode control system [10]

Fuzzy Logic Control

Fuzzy logic controller (FLC) is one of the many algorithms used for nonlin-

ear systems. It employs a relatively simple mechanism that constructs nonlinear
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controllers via the use of heuristic information [11]. Many researchers have used

this method for the hysteretic behavior of the control of shape memory alloy. Ahn

and Nguyen [11] suggested a self-tuning Fuzzy PID controller. It adjusts P, I, and

D gains using Fuzzy interface. Fuzzy interface examines its feedback value and

determines the PID gains based on evaluation.

Fig. 3.2 Self tuning fuzzy PID controller [11]

Segmented Discrete State Control

Selden et al. [12] implemented a new approach of dividing the smart material into

segments and control them separately. Segmented discrete state control analyzes

the SMA wire which is divided into segments and applies individual control effort

to each segment as a group of finite state machines. Each segment has two states,

hot or cold, and the total displacement is proportional to the number/length of

‘hot’ elements. It is almost like digital signal control with two main concepts of
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segmentation and binary control. The controller provides robust and stable result,

however, heating and cooling time of each segments is long and energy consumption

is large.

Fig. 3.3 Segmented SMA elements [12]

3.2 Controller Design

In nonlinear system, feedback controller is simply not enough. There are sev-

eral methods to improve the performance of the controller. Addition of feedforward

controller is a simple and effective way to significantly improve the controller. Feed-

forward controller provides the knowledge of the system through dynamics modeling

independent of the system feedback. It allows the system to receive stable input

regardless. It prevents the system from having fluctuation and relieves the control

effort of feedback controller since it only has to correct the modeling error and

disturbance.

An accurate feedforward controller generally requires accurate dynamics mod-

eling that may cost good amount of time and resources. However, it has benefits

that outweigh the disadvantages. It is easy to implement and provides consistent
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control quality with high speed. It usually has lower energy consumption than other

controllers that leads to low operating costs. In addition, when the dynamics model

is accurate, it only requires simple feedback controller for correcting error to signif-

icantly improve the performance without jeopardizing the stability. It is typically

used with feedback controller to correct unmeasured/unmodeled disturbances.

The control system used in this research is illustrated in Fig. 3.4 (a). It is

a combination of two controllers and it has been used with proven performance.

Dynamics model of the SMA actuator (Fig. 3.4 (b)) is inversed and implemented

in an open loop feed-forward controller for hysteresis compensation. The role of

the inverse model is to predict input value u(t) for user entered desired output

tension; yd(t) is provided. The inverse model reduces the hysteresis effect and

linearizes the system. It is discussed in more detail in Section 3.3. Since Maxwell

model closely maps the hysteresis of SMA actuators, a simple feedback controller,

such as PI controller, can be utilized to correct the modeling error and improve

control accuracy. Also, PI-P3 controller is designed and used to demonstrate the

improvement with feedforward controller and the effect of P3 term.

PI-P3 : u(t) = Kpe(t) +KI

∫ t
0
e(τ)dτ +KT [e(t)]3

PI : u(t) = Kpe(t) +KI

∫ t
0
e(τ)dτ

Controller gains are obtained by trial and error with several configuration sets.

Some restrictions are made to controllers. From the step response test in Fig. 2.7,

input value of 1 V does not have impact on the system and if the current exceeds
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(a) Feedforward combined with PI controller in closed loop

(b) Dynamic compensator and Maxwell model

Fig. 3.4 Control system design

660 mA (Table. 1.1), the SMA wires burn out. Range of the applicable voltage is

determined to be 1 - 7 V, therefore, the system output is limited to stay within the

range. Also feedforward controller is turned off when measured tension is greater

than the desired tension. This is because the feedforward controller puts control

effort regardless of the system state. Sometimes it introduces excessive system

input. In order to prevent unnecessary overshoot, feedforward controller is activated

to contribute only when the system needs more effort.
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Fig. 3.5 Sinusoidal response of SMA (td is time delay)

3.2.1 Dynamic Compensator

SMA actuators have slow response speed and cause a positive phase shift, where

the output leads the input. It takes approximately 3 seconds to fully reach the

maximum tension (Fig. 2.8) and sinusoidal wave test reveals 2 seconds time delay

between the input and output signal. This delay is constant through out the sinu-

soidal response tests. In order to compensate for this, a first order lead compensator

is designed using the time constant, τ of the SMA system

C(s) =
s+ 1

τs+ 1
(3.2)

τ is estimated to be 5 and optimized to be 4.28 for this research.
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3.2.2 Hysteresis Compensation Based on Inverse Maxwell Model

Hysteresis models can be used in a feedforward control loop and compensate for

the nonlinear hysteresis effect in a SMA actuator. Depending on the system setup,

an user can select the original and/or inverse model to determine the dynamics.

Between two selected hysteresis modeling methods, previous section has proved that

the Maxwell model is more effective. Therefore only the inverse Maxwell model is

developed.

Formulation of the Inverse Maxwell Model

Inverse model can be developed by tracing the Maxwell model algorithm back.

As mentioned in Section 2.1.2, force distribution is proportional to spring stiffness

value, only when the element(s) is not saturated. It is assumed that the initial

displacement x0 and the initial force F0 is 0. When the inverse model takes in its

first set of data, current force and previous force, CurF and LasF in Fig. 3.6, it

analyses the change in magnitude and direction of force. This step is performed

to choose which spring stiffness can be utilized. There are two sets of spring stiff-

ness for increasing and decreasing input force, denoted as IncSS and DecSS. The

model determines the saturated elements by comparing the maximum Umax and

the minimum Umax boundary forces. After the unsaturated elements are identified,
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the program distributes increased/decreased force, ∆F to remaining unsaturated

elements. Then, the program checks if there are additional saturated elements.

If no more element is saturated, it produces displacement as output (all unsatu-

rated elements have the same displacement). If not, it runs another iteration to

redistribute the force.

Fig. 3.6 Flowchart of inverse model algorithm

There is one condition that has to be satisfied in order to have successful inverse
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model. The sum of the parameters must not change its direction (positive to

negative or negative to positive) during the iteration. The fundamental function in

Maxwell model indicates that the force of individual element is

Fi =
ki∑
k
xi (3.3)

where F is the force, k is the spring constant, x is the displacement, and i represent

the i-th element. It has to be noted, while iteration, direction of x elements do not

change. If the
∑
k direction changes, it forces x elements to change direction and

ultimately causes singularity. When it occurs, the inverse model fails to process

and all the calculation becomes incorrect after the singularity point.

The flowchart in Fig. 3.6 starts off by reading the maximum and minimum

boundaries, the spring stiffnesses, and the initial force and displacement of each

Maxwell element. Then it calculates if CurF is greater or less than LasF to

determine the direction of the system. When the current force is greater, the

increased force is distributed among the Maxwell elements. If one or more Maxwell

elements are positively saturated, it redistributes the remaining forces among the

unsaturated elements and this cycle continues until the increased force is fully

distributed. Same process is applied for the negative ∆F with negative saturation

level.
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Verification

Naturally, it is desired to have the inverse model that can trace model output

back to its system input. Fig. 3.7 shows that the inverse model output matches

with the input of the Maxwell model when Maxwell model output is used as the

inverse model input. Then the inverse model is combined with the Maxwell model

to linearize the hysteresis.

3.3 Experimental Results

Experimental verifications are performed to compare several different controllers

including feedback-feedforward controller to feedback controller itself and PI to PI-

P3 in order to demonstrate the effects of inverse Maxwell model on the control

system and extra P3 term. Five different frequency tests are performed along with

the step response test for feedforward, feedback, and feedback and feedforward

combined controller. Frequencies of 1/10, 1/15, 1/20, 1/25, and 1/50 Hz are used

for five peak-to-peak sinusoidal waves.

u(t) = 3sin(tωπ − π/2) + 3 (3.4)
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Fig. 3.7 Inverse Maxwell model verification

3.3.1 Feedforward Controller

First, the experiments of feedforward controller are conducted. It is apparent,

even by eyes, that the hysteresis effect is reduced when the results, displayed in

Fig. 3.9, are compared with open loop experiment data in Fig. 2.15. As the model
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(b) 1/15 Hz
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(c) 1/20 Hz
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(d) 1/25 Hz

Fig. 3.8 Hysteresis with different sinusoidal wave input and feedforward controller

is optimized for 1/15 Hz, the best performance is achieved at 1/15 Hz. The per-

formance quality drops significantly as frequency decreases. Fig. 3.9 shows the

hysteresis is reduced the most at ω = 1/15 Hz. If the application calls for slow

frequency, parameters of the model can be readjusted. The hysteresis is frequency

dependent so it is hard to have one solid model to cover the entire frequency range.

As it can be observed in Fig. 3.8, it can only cover small frequency range. However,
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the model still follows the general trend.
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(a) 1/10 Hz hysteresis loops

1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

Desired Tension (N)

M
ea

su
re

d 
T

en
si

on
 (

N
)

(b) 1/15 Hz hysteresis loops
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(c) 1/20 Hz hysteresis loops
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(d) 1/25 Hz hysteresis loops

Fig. 3.9 Hysteresis with different sinusoidal wave input and feedforward controller

3.3.2 Feedback Controller vs. Feedforward-Feedback Controller

This section presents sinusoidal wave test and step response test results. The

difference is more visible when the frequency is high. As frequency decreases, the
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performance of the feedback controller has visibly increased (refer to Fig. 3.9). It

is observed that the hysteresis loop gets thinner as frequency decreases (refer to

Fig. 2.15). It allows the feedback controller to improve its accuracy without any

improvements or modifications. The test results are displayed in Figs. 3.10-3.13.

The improvement is most visible at ω = 1/10 Hz (Fig. 3.10). The response time is

faster and the combined controller follows the desired value more closely than the

feedback controller alone. Even at ω = 1/50 Hz in Fig. 3.12 where it is hard to

observe the difference, settling time is still visibly faster.

The impact on reducing the hysteresis effect of the feedforward controller is also

evident in step response test, as shown in Fig. 3.13. The overshoot for both heating

and cooling is reduced, settling time is improved, and the system oscillates less

when it reached the desired value.

3.4 Conclusions

Hysteresis modeling and its effectiveness in control system have been presented

in this paper. The Maxwell model is selected to map the hysteresis loop of the

SMA actuator. Maxwell model is a simple and effective method to identify the

hysteresis in SMA actuators and has faster computation speed than the classical

Preisach model. Hysteresis curves in SMA actuators in the experimental setup

are asymmetric and nonlinear. Modifications made in elasto-slide elements offer
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Fig. 3.10 Test results of 1/10 Hz sinusoidal wave

flexibility in modeling to provide accommodations for irregularity.

Inverse Maxwell model is developed and implemented in feedforward controller

to compensate for nonlinearity and linearize the system. A controller that com-

bines feedforward controller and feedback controller is proposed. Feedforward term
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Fig. 3.11 Test results of 1/20 Hz sinusoidal wave

compensates for the hysteresis and feedback controller corrects the modeling error

caused by the inverse Maxwell model. Experimental results show the improvement

in tracking and hysteresis is suppressed effectively. Experimental output and model

77



0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

Time (s)

T
en

si
on

 (
N

)

 

 Reference
PI
FF+PI

(a) Comparison between PI and feedforward+PI controllers

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

Time (s)

T
en

si
on

 (
N

)

 

 
Reference

PI−P3

FF+PI−P3

(b) Comparison between PI-P3 and feedforward+PI-P3

controllers

Fig. 3.12 Test results of 1/50 Hz sinusoidal wave

output are compared and sums of root mean square errors are obtained.

ERMS =

√∑n
i=1(yexpi − ymodeli)2

n
(3.5)

where ERMS is root mean square error, yexp is experimental output, and ymodel is

model output. Analysis of sums of root mean square errors listed in Table. 3.1
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Fig. 3.13 Test results of step response

suggest that the performance has improved by 67-74% when feedforward term is

added for all frequencies. SMA actuators have slow response time. The performance

improves as the frequency decreases. Even though it is hard to see visible difference

between PI and PI-P3, the RMS error clearly shows that the PI-P3 performs better

for all the tested frequencies and step response test. Test errors are displayed in
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Figs. 3.14-3.16

Table 3.1 Root mean square error (ERMS) with different controllers
Frequency (Hz)

Controller type 1/10 1/15 1/20 1/25 1/50 Step
FF 4.67×10−3 2.60×10−3 2.89×10−3 3.14×10−3 3.10×10−3 3.63×10−3

PI 4.49×10−3 1.53×10−3 7.95×10−4 5.08×10−4 1.77×10−4 3.17×10−3

Feedforward + PI 2.99×10−3 3.24×10−4 2.02×10−4 1.35×10−4 6.08×10−5 3.02×10−3

PI-P3 4.38×10−3 1.46×10−3 7.14×10−4 4.63×10−4 1.51×10−4 3.14×10−3

Feedforward + PI-P3 1.41×10−3 1.69×10−4 1.84×10−4 7.67×10−5 3.86×10−5 2.96×10−3

It is interesting to observe that, even though the accuracy of the feedforward

controller decreases as the frequency increases, the result reveals that the best

control effort is achieved when the frequency is 1/50 Hz. It is due to the nature

of the SMA actuator that it has slow response time. Even though feedforward

controller does not put much controller effort, feedback controller has enough time

to adjust itself since the desired change is more gradual than other frequencies.

80



0 10 20 30 40 50
−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

E
rr

or
 (

N
)

 

 

PI
FF+PI

(a) Error at 1/10 Hz

0 20 40 60 80 100

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time (s)

E
rr

or
 (

N
)

 

 

PI
FF+PI

(b) Error at 1/20 Hz

0 50 100 150 200 250
−0.5

0

0.5

Time (s)

E
rr

or
 (

N
)

 

 

PI
FF+PI

(c) Error at 1/50 Hz

Fig. 3.14 Error comparison of PI and feedforward+PI controllers
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Fig. 3.15 Error comparison of PI-P3 and feedforward+PI-P3 controllers
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Fig. 3.16 Error comparison of step response tests
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4 Conclusions and Future Work

The main objective of this research is to develop an effective control system for

SMA actuators that can be used in membrane system. Accurate tension control

of SMA actuators allows the membrane system to maintain its flatness. It is ac-

complished by feedforward control with inverse dynamics model to compensate for

hysteresis effect with a simple feedback controller.

The dynamics modeling offers a simple and effective solution for hysteresis com-

pensation. Traditional and modified models, mainly classical Preisach model and

modified Maxwell model, are studied based on dynamic effects of SMA actuators.

Unconventional mass-spring system is suggested for flexible shape and curve fitting

ability. Modified Maxwell model produced more accurate hysteresis curve, when

it was compared with the experimental data, and had shorter computation time

than that of the classical Preisach model. Since feedforward controller compensates

for hysteresis, simple feedback controller can be used to correct the modeling er-

ror. Inverse modified Maxwell model is developed and implemented in feedforward
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controller to compensate for the hysteresis and linearize the system. Feedforward

term compensates for the hysteresis and feedback controller corrects modeling error

caused by the inverse Maxwell model. Experimental results show that the improve-

ments in tracking are achieved and hysteresis has been effectively suppressed when

a feedforward term is added to the feedback controller. Also, adding an extra term

to PI controller, namely PI-P3 controller, has improved the accuracy further.

Future work involves further expanding the knowledge and technique of the

SMA position control system design and implementing the developed system to

membrane system.

Feedforward-feedback controller can be researched more in depth with vari-

ous hysteresis modeling methods. Few options that can be studied further are to

implement rate-dependent hysteresis models, and to establish the mathematical re-

lationship between system input and output based on physical properties of SMA

actuator, an alternative approach introduced in Section 2.1.2. Rate-dependent

hysteresis model would be able to provide wider frequency coverage than rate-

independent model. In addition, in this research, only one controller is explored.

For the future research, it would be beneficial to explore broader control method

such as adaptive and nonlinear controller.

The suggested controller works well with only one set of SMA actuators. There

are few concerns and complications involved in broadening the scope of the research.
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Challenges associated with the control implementation to membrane structure are

• Need to build more voltage to current converters for each set of SMA actuators

or a group of SMA sets depending on the flatness control system design.

• Individual set of SMA actuators needs to be modeled for precision control.

They all should be similar in theory however it is uncertain what effects non-

modeled sets might cause.

• The membrane system is expected to operate in space. Model parameters

need to be re-identified and adjusted in vacuum (and tested in the same

environment).

• Cooling of the system relies on natural air convection. Active cooling system

might be needed.
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