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ABSTRACT OF THESIS 

 
MODELING AND CONTROL OF 

MAGNETOSTRICTIVE ACTUATORS 

 
Most smart actuators exhibit rate-dependant hysteresis when the working 

frequency is higher than 5Hz. Although the Preisach model has been a very powerful tool 
to model the static hysteresis, it cannot be directly used to model the dynamic hysteresis. 
Some researchers have proposed various generalizations of the Preisach operator to 
model the rate-dependant hysteresis, however, most of them are application-dependant 
and only valid for low frequency range. In this thesis, a first-order dynamic relay operator 
is proposed. It is then used to build a novel dynamic Preisach model. It can be used to 
model general dynamic hysteresis and is valid for a large frequency range. Real 
experiment data of magnetostrictive actuator is used to test the proposed model. 
Experiments have shown that the proposed model can predict all the static major and 
minor loops very well and at the same time give an accurate prediction for the dynamic 
hysteresis loops.  

The controller design using the proposed model is also studied. An inversion 
algorithm is developed and a PID controller with inverse hysteresis compensation is 
proposed and tested through simulations. The results show that the PID controller with 
inverse compensation is good at regulating control; its tracking performance is really 
limited (average error is 10 micron), especially for high frequency signals. Hence, a 
simplified predictive control scheme is developed to improve the tracking performance. It 
is proved through experiments that the proposed predictive controller can reduce the 
average tracking error to 2 micron while preserve a good regulating performance.  

 
 

KEYWORDS: Dynamic hysteresis, Preisach, Magnetostriction, Smart Actuators, 
Modeling and Control 
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CHAPTER 1 
INTRODUCTION 

1.1 Backgrounds 
 

Smart materials, whose characteristics may alter due to the change of 

environments or exogenous inputs, are being more and more employed in measurement 

and control systems. Magnetostrictive materials, a type of the most widely used smart 

materials, are good at providing giant forces, strains and high energy densities, and thus 

are very promising in noise or vibration control, especially for heavy structures. They 

rely on the magnetostrictive effect, which is inherent to ferromagnetic materials such as 

nickel and Terfenol-D, to achieve high performance as actuators or sensors.  

        

Figure 1-1: Magnetostrictive Actuator and Test Apparatus 
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Figure 1-1 is the actuator under study in this project installed in the test apparatus 

used to obtain the experimental data cited in this work. When the input current is given, 

the coil generates a magnetic field along the central axis and causes an elongation 

(displacement) in the MSM rod.  The expanded MSM rod pushes the plunger and the 

target up to change the gap between the eddy current sensor and the target.  This 

movement causes a voltage change of the sensor and can be converted to displacement 

data.   
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Figure 1-2: Hysteresis Observed in Magnetostrictive Actuators 

 

By adjusting the input current, the actuator is able to provide forces as well as 

accurate displacements. However, the strong hysteresis behavior between the input 
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current and output displacement as shown in Fig 1-2 makes the actuator really difficult to 

control. This hysteresis is believed to be caused primarily by the hysteresis between the 

magnetic field H and magnetization M, which is inherent in ferromagnetic materials. In 

fact, magnetostrictive actuators exhibit significant hysteretic nonlinearities to a degree 

that other smart materials, such as electrostrictive and piezoelectric, do not. Hence, the 

strong hysteresis nonlinearity becomes the major obstacle to further applications of the 

magnetostrictive actuators.  

 

   

Inversion
Hysteretic

System

ŷ yu

 

Figure 1-3: Inverse Hysteresis Compensation 

 

A common and easy way to deal with actuator hysteresis is to use the inverse 

compensation [2, 10] as demonstrated in Fig. 1-3 where the inversion of a certain 

hysteretic model of interest is used to compute an appropriate input to the actuator. That 

is, to produce an expected output , the inverse model is used to calculate an input u  

and the calculated input u  is applied to the actuator. Of course, the produced output 

ŷ

y  

may not be exactly the same as . The accuracy of this method depends on the accuracy 

of the hystresis model and is sensitive to the noise. For this reason, various advanced 

control algorithms [37~42] are employed to improve the actuator performance. These 

methods use feedback information to adjust the actuator input in order to accommodate 

the model uncertainty and the noise disturbance.  

ŷ
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Although the advanced control algorithm can usually achieve a better 

performance than the inverse compensation, this performance is inevitably limited by the 

accuracy of the actuator model employed in the controller. Hence, a better actuator model 

is the key problem for the effective use of magnetostrictive actuators. 

Usually, the actuator model is constructed in two steps. First, a hysteretic model is 

used to model the hysteresis between the magnetic field H and magnetization M. Then 

another model (usually a linear dynamic model) is employed to capture various dynamics 

of rod in the actuator. In some applications, it is not necessary to know what really 

happens inside the actuator, so a direct input-output model is sufficient and more 

desirable, especially for control applications. For example, in [25] a Preisach-based 

dynamic hysteresis model is used to directly model the voltage-to-displacement dynamics 

in piezoceramic actuators. The model is very promising in controller design using 

piezoceramic actuators. No matter the actuator is treated as a whole or as several 

cascaded parts, the hysteresis model is the key part that usually determines the overall 

performance of the entire actuator model.  

 

1.2 Static Hysteresis Modeling 
 

Typically, hysteresis models are classified into physics-based models and 

phenomenon based models.  

The Jiles-Atherton model of ferromagnetic hysteresis [16] is one of the most well 

known physics-based hysteresis models. It is a quantitative model that is based on a 

macromagnetic formulation.  The model describes isotropic polycrystalline materials 
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with domain wall motion as the major magnetization process.  Five physical parameters 

are used to describe magnetization curves, which are: 

Ms    the spontaneous magnetization  

 k    pinning coefficient 

 α    interactions between domains 

 a    thermal aspect (domain wall density ) 

 c    reversible magnetization component 

A fitting procedure can then be easily proposed to enable the user to determine 

values for each of the parameters above.  These are related to measurable characteristics 

of the material, specifically the differential initial susceptibility, the coercivity, the slope 

at the coercive field and anhysteretic susceptibility.  

Since physics-based hysteresis models are usually derived rigorously from some 

basic physics assumptions, they seem more reasonable and convictive. However, most of 

them require substantial physics knowledge and are specific to particular system, so they 

are not as common as phenomenon-based models, especially in the area other than 

material science and physics, such as mathematics, mechanical and electrical engineering. 

In contrary, phenomenon-based models do not provide insight into the behavior of the 

material, therefore they cannot be used to obtain new physical insight.  However, they are 

application independent and can describe or predict the behavior of a consistent and well-

controlled material very well without requiring too much background in material science. 

Hence phenomenon-based hysteresis models are widely used in modeling and control of 

hysteretic systems. 
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  Figure 1-4: Non-ideal Relay Operator 

 

The classical Preisach model [1,2,6,8,9] is the most widely used phenomenon-

based model for hysteresis. It models hysteresis as the weighted sum of an infinite set of 

relays (Fig 1-4).  Each relay in the model can be uniquely represented by its ‘up’ and 

‘down’ switching thresholds α  and β . Given the weight function of the relays ),( βαµ ,   

the output of the model can be mathematically calculated by an integral of 

))(),((),( ttu ξγβαµ αβ  over the set E  of all the possible thresholds pairs 

, where }:),{( 2 αββα ≤∈= RE αβγ  is the relay operator, )(tξ  is the state of the relay 

(‘on’ or ‘off’). The detailed exposition of the Preisach model is given in next chapter.   

 Since the classical Preisach model is application-independent, does not require 

substantial physics background and is capable to predict the hysteresis behavior very well, 

it has become the focus of research for a long time and is regarded as the most popular 

tool in modeling various static hysteretic systems.  
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 The classical Preisach model is just the linear combination of the elementary 

nonlinearities—non-ideal relay, which is also called the kernel of the operator. To 

generalize this idea, the Krasnoselskii-Pokrovskii (KP) operator [36] allows the kernels to 

be any reasonable functions. This generalization finally separates the Preisach model 

from its physics meaning and ends up with a purely mathematical and phenomenlogical 

operator. This generalized Preisach model has been further studied and applied in [10,11], 

where kernels other than non-ideal relay operators are employed to achieve some 

mathematical properties. 

There are also other phenomenon-based models being used in the literature.  In [7, 

34], J. Takacs proposed a purely mathematical model of hysteresis that takes advantage 

of the fundamental similarities between the Langevin function (the specified T(x) 

function) and the sigmoid shape to operationally describe the hysteresis loops. It 

describes not only the regular hysteresis loops but also the biased and other minor loops 

like the ones produced by the interrupted and reversed magnetization process and the 

open loops created by a piecewise monotonic magnetizing field input of diminishing 

amplitude. Although it is also a phenomenon-based model as the classical Preisach model, 

it is purely operational and is not based on any physics principles.  

While this model often provides accurate model fits with a small number of required 

parameters, its capabilities for general applications involving symmetric and asymmetric 

minor loops appears limited [35]. 

One of the major advantages of the phenomenon-based model is its flexibility for 

practical applications, where controller design takes priority over physical accuracy. In 

some applications, the actuator can be assumed to work in some region where its 
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hysteresis is not that significant. Then some simplified hysteretic model could be used to 

ease the modeling and controller design process. This idea is frequently used during 

adaptive controller design, where fast inverse algorithm is performed online to update the 

model parameters. In [38, 39, 40], a piece-wise linear model is used to approximate the 

unknown simple hysteresis in the actuators and adaptive algorithms are developed 

correspondingly. Although this kind of model describes the hysteresis loops in a rough 

manner, it is good enough for many applications and can make the online adaptive 

controller design much easier.   

 

1.3 Dynamic Hysteresis Modeling 
 

The above physics-based and phenomenon-based models or their variations can 

predict the static hysteresis behavior very well. However, they are all rate-independent, 

thus can not be directly used to model the dynamic hysteresis. Since most applications of 

smart actuators are not static, effective dynamic hysteresis models are in great need. 

 The simplest and most straightforward way for dynamic hysteresis modeling is to 

assume the dynamic hysteresis loop for each frequency of interest as a static loop of a 

new hypothetical material which is free of dynamic losses. Then use the static hysteresis 

model to fit the loops to obtain a frequency-by-frequency dynamic loop description [this 

is not a complete sentence.]. This scheme is proposed and applied in [23]. Obviously, this 

kind of method requires the working frequencies be selected from several discrete values 

and known ahead of time, which is quite impractical and limits its applications. 
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 Another simple idea of dynamic modeling is to configure a model primarily based 

on close examination of the hysteresis curve, obtained from laboratory tests. For example, 

in [28], Menemenlis developed an operational model step-by-step based on the major and 

minor hysteresis loops observed in a transformer. In [32], Carpenter proposed a simple, 

ad hoc, method to broaden a static hysteresis loop and then configure this model that 

changes the amount of broadening with frequency as needed to agree with observations. 

These methods are appropriate in some applications. However, they are purely 

operational, which can not give too much inspiration and directions to other applications. 

 The above methods are all operational and ad hoc in nature. To formalize the idea, 

an application-independent method is needed to systematically describe the dynamic 

hysteresis behavior. Such examples can be found in [20, 21,22], where a neural network 

is trained to map the frequency and magnitude of a sinusoidal signal to the Fourier 

coefficients of the corresponding output. Then given any kind of input, its ‘actual 

frequency’ within a short time-window is estimated and its corresponding output can be 

obtained through the coefficients computed by the neural network. This method does not 

require the knowledge of the physical properties of the material and the geometrical 

effects of the nucleus (skin depth effect, nature of lamination, etc). However, it requires 

the pre-processing of the experimental input data by Fourier series and the reconstruction 

of the output data in the inverse way. 

In fact, the majority of the dynamic hysteresis models are built on a static 

hysteresis model. For example, the dynamic model of Jules [15] is based on his static 

hysteresis model [16], while Hodgdon’s dynamic model [17] is based on the static model 

of Coleman and Hodgdon [18], and the dynamic piece-wise linear circuit model of 
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Cincotti [26] is developed from its static counterpart [27].  All these dynamic hysteresis 

models inevitably depend on the performance of their corresponding static hysteresis 

models. For this reason the dynamic generalizations of the classical Preisach model are 

more attractive. There are many dynamic models [2, 12, 19, 24, 25] that are based on the 

classical Preisach model. To make the classical Preisach model rate-dependent, 

Mayergoyz [1,19] introduced the dependence of weight function on the speed of output 

variations; similarly, Mrad and Hu [25, 24] proposed a input-rates dependence of the 

weight function. Both methods suppose the weight function is the right place to add in 

dynamic behaviors. However, in [33] a linear dynamic model is added before the 

classical Preisach operator and the dynamics are assumed to only happen inside the linear 

dynamic part. This kind of cascade structure is referred as ‘external dynamic hysteresis 

model’ in [14]. This structure is modified in [2] and [9], where the classical Preisach 

operator is coupled to an ODE (ordinary differential equation), which can not be simply 

decomposed as a cascade of the Preisach operator with a linear system.  

 

1.4 Contributions 
 

All of the above modification of the classical Preisach model can fit dynamic 

hysteresis loops. However, their physical significance and motivation are really complex. 

The hysteron is believed to be the fundamental reason of the entire hysteresis. And the 

Preisach model is just the superposition of all these hysterons. This concept is what 

makes the Preisach model successful. So there is no reason to add the dynamic term into 

the weight function or to a separate dynamic system. A straightforward way is to make 
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the elementary hysteresis operator—hysteron rate-dependent. In this way the entire 

Preisach model will be inherently dynamic, and its structure, which is believed to 

effectively reflect the physical nature of hysteresis, is kept unchanged. 

Thus in this project, the idea of adding dynamic terms into the relay operator of 

the Preisach model is proposed and studied. A new Preisach-type dynamic hysteresis 

model is developed.  Identification methods of the new model are designed and analyzed. 

Experiments on a real magnetostrictive actuator are performed to test the proposed model. 

It is shown that the new dynamic hysteresis model is not only theoretically plausible, but 

also exceptionally good at modeling practical dynamic hysteretic systems. 

 

1.5 Outline of dissertation 
  

This dissertation is organized into six chapters. 

 Chapter 2 introduces the background knowledge that is necessary for 

understanding the rest of the dissertation. It starts with the explanation of the 

magnetostriction phenomenon. After that the definition of the general hysteresis 

phenomenon is provided. Last, the classical Preisach model, based on which the thesis is 

developed, is reviewed and discussed in great details. 

 Chapter 3 is about the proposed novel dynamic hysteresis model. The motivations, 

objectives of introducing the new model are discussed. The formal mathematical 

definition of the model is given. The properties and features of the new model is pointed 

out and shown in some preliminary simulations. Basic system identification theory is 
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reviewed. An identification algorithm based on the particular form of the new model is 

developed and discussed. 

 Chapter 4 talks about the procedure of modeling a real magnetostrictive actuator 

using the proposed dynamic hysteresis model. The experiment design and modeling 

process are both described. The modeling results are shown. The performance of the 

classical Preisach model using the same experiment data is also given for comparison.  

 Chapter 5 summarizes the whole dissertation. Conclusions are made. Future 

research work is suggested. 
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CHAPTER 2 
BACKGROUND 

2.1 Magnetostriction 
 

Magnetostriction is the changing of a material's physical dimensions in response 

to a change in applied magnetic field. All ferromagnetic materials exhibit some 

measurable magnetostriction, although some rare-earth intermetallics such as Terfenol-D 

exhibit up to several tenths of a percent elongation. The mechanism of magnetostriction 

at an atomic level is relatively complex subject matter but on a microscopic level may be 

explained by the domain wall theorem. A ferromagnetic material is theoretically believed 

to be composed of many small regions called “domains” (Fig 2.1). Each domain is 

spontaneously magnetized. However, the whole sample might not appear magnetic if the 

magnetization of each domain is aligned differently (M = 0). When an external magnetic 

field H is applied, the domain walls start moving and each magnetization vector rotates 

toward the applied field direction. These processes cause dimensional changes of the 

material called magnetostriction. Increasing the field causes an increase in 

magnetostriction until saturation is achieved. 

When a compressive force is applied to a magnetostrictive material, it “squeezes” 

the domains perpendicular to the elongation direction (Fig 2.2) [49]. When an external 

magnetic field H is applied, all of the domains rotate 90° to align with the field, which 

enables maximum elongation of the material. Therefore, compressive force is a key factor 

in magnetostrictor applications.  
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Figure 2-1: Domain Walls and Their Movements [49] 

 

        

Figure 2-2: Elongation Principle [49] 

 14



        

y

u

 

Figure 2-3: Typical Hysteresis Input-output Diagram 

 

2.2 General Hysteresis Phenomenon 
 

The word hysteresis comes from Greece and means etymologically ‘coming 

behind’. Hysteresis is a strongly nonlinear phenomenon that occurs in many industrial, 

physical and economic systems.         

The phenomenon of hysteresis has been with us for ages and has been attracting 

the attention of many researchers for a long time. The reason is that hysteresis is 

ubiquitous. People in different fields may talk about different hysteresis, for example, 

magnetic hysteresis, ferroelectric hysteresis, mechanical hysteresis, superconducting 

hysteresis, adsorption hysteresis, optical hysteresis, electron beam hysteresis, etc.                                

A typical hysteresis system has an input-output diagram as shown in Fig 2-3. The 

quantities ,u y , measured along the horizontal and the vertical axis respectively, can have 

different physical meanings, such as deformations versus force (plastic hysteresis) or 

external magnetic field versus magnetization (ferromagnetic hysteresis).  
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In the literature  ([1], [2]), hysteresis is described through a transducer that is 

characterized by an input u(t) and output y(t) as in Fig 2-4.  

 

               

T
u(t) y(t)

 

Figure 2-4: Hysteresis Transducer 

 

The transducer T is called a hysteresis transducer whose input-output relationship 

is a multibranch nonlinearity for which branch-to-branch transitions occur at input 

extremes. This statement is illustrated in Fig 2-5. From O to A the input u(t) is rising, and 

the output y(t) is also increasing; from A to B, input is decreasing, the output does not 

come back along AO, but makes a new branch from A to B. This kind of branching 

constitutes the essence of hysteresis and makes the hysteresis transducer a very 

complicated operator. 

We can easily see that T is not a function because for the same input value , 

different output values  can be observed (graphically some vertical lines may have 

multiple intersections with the input-output curve in Figure 2-3). In other words, an 

output , after a certain reference time , depends not only on the input , , 

but also on an internal/initial state  of the transducer T. In this sense the hysteresis 

transducer is a system with memory and the memory could be infinite. So a hysteretic 

system is a very complicated nonlinear system, whose behavior is really difficult to 

predict. 

)( 0tu

)( 0ty

)(ty 0t )(tu 0tt >

0x
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Figure 2-5: Hysteresis branching principle 

 

2.3. Classical Preisach Model 
 

The Presaich model is one of the most remarkable contributions to rate-

independent hysteresis modeling [1]. Although it cannot give much insight into the 

physical nature, in the knowledge of the hysteresis data it can produce similar behaviors 

to those of real hysteretic physical systems and give reasonable predictions, which are 

necessary for control applications.  
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2.3.1 Introduction 
The origin of the Preisach model can be traced back to the landmark paper of F. 

Preisach published in 1935. Preisach’s approach was purely intuitive. It was based on 

some plausible hypothesis concerning the physical mechanisms of magnetization, and 

thus was regarded as a physical model of hysteresis at the beginning. Because of its 

effectiveness and simplicity, the Preisach model has become the most popular tool in 

hysteresis modeling and considerable research has been done in this field.  The most 

decisive step in the direction of better understanding of the model was made in the 1970s 

by Russian mathematician M. Krasnoselskii who realized that the Preisach model 

contained a new general mathematical idea. Krasnoselskii separated this model from its 

physical meaning and represented it in a purely mathematical form which is similar to a 

spectral decomposition of operators. As a result, a new mathematical tool has evolved 

which can now be used for the mathematical description of hysteresis of different 

physical nature. The new methodology that Krasnoselskii proposed is generally the 

following: 

1.  Choosing elementary hysteresis nonlinearities, so called hysterons (such 

as nonideal relay, generalized play, Prandtl or Duhem models, etc).  

2.  Treating complex hysteresis nonlinearities as block-diagrams of hysterons.  

3. Establishing identification principles.  

Nowadays this approach to hysteresis is standard and it contains a wide variety of 

`branches', depending on the choice of hysterons in item 1 and/or the basic type of the 

block-diagrams in item 2. 
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2.3.2 Definition 

   

Figure 2-6: Nonideal Relay Hysteron 

Among hysterons, the most important are probably the nonideal relay 

nonlinearities (Fig 2-6), or, as they are also called, the thermostat nonlinearities. It is 

denoted by , where  is the input and ))(),(( ttu ξγ αβ )(tu 11)( −+= ortξ  is the state of the 

relay. 

 Its output can take one of two values -1 or 1, which means that at any moment 

the relay is either `switched off' or `switched on'. It is mathematically defined as: 

            (2-1)   
u(t) if

u(t) if
u(t) if

)(
1
1

))(),((    w(t)
αβ

α
β

ξγαβ
≤≤

>
<

⎪
⎩

⎪
⎨

⎧ −
==

−tw
ttu

where , and . 1or  1) w(t - −= ε
εε

−=
→>

t
00,

- lim  t

The simplest block-diagrams are essentially those of standard parallel connections 

of a number of hysterons, or their continuous analogue. This kind of connections of the 

nonideal relay hysterons is a realization of the Krasnoselskii’s concept, which leads to the 

so called Preisach operator. 
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      (a)     

   

         (b) 

Figure 2-7:  Parallel Relay Connection: (a) Connection. (b) Response 

It is believed that ferromagnets are composed of a large number of elementary 

magnets (domains), each of which behaves like a relay. Thus the overall response of a 

hysteresis system is just the weighted superposition of those relevant relays. To 

understand this idea, let’s consider the weighted parallel connection of three hysterons as 

shown in Fig 2-7 (a). The output of this system can be written as: 

                                    (2.2) ∑
=

⋅=
3

1
))((),()(

n
nnn tuty γβαµ

We can see its corresponding input-ouput diagram (Fig 2-7 (b)) is more like a real 

hysteretic loop than a single relay. If we add more relays with different thresholds, the 
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response loop will become smoother and easier to fit different kind of shapes by adjusting 

the weights ),( βαµ . 

Hence, to generalize this idea, the Preisach model sums the weighted response of 

an infinite set of relays αβγ  over all possible switching thresholds βα ≥ : 

   αβγβαµβα αβ ddtuty ∫∫ ≥= ))((),()(                      (2.3) 

Although the original Preisach model was a physical model, it is generalized by 

Equation (2.3) that has a purely mathematical nature [like the entire field of differential 

equations!]. This definition of the Preisach model reveals its mathematical and 

phenomenological nature, broaden the area of applicability of this model to the field 

other than magnetics. For this reason, the purely mathematical definition (2.3) is more 

attractive and has been widely used by many researchers working in various fields.   

 

2.3.3 Geometric Interpretation 
The mathematical investigation of the Preisach model is considerably facilitated 

by its geometric interpretation. This interpretation is based on the following simple fact. 

There is a one-to-one correspondence between the operator αβγ  and the real number 

pair ),( βα . So each relay αβγ  is uniquely determined by its thresholds ),( βα . In other 

words, each point in the half βα −  plane βα ≥  represents a relay. If we think the 

thresholds have a limited range 00 ααββ ≤≤≤ , then relevant relays constitutes a 

triangular T like in Fig 2-8. Its hypotenuse is a part of the line βα = , while the vertex of 

its right angle has the coordinates 0α  and 0β . This triangular T is called the limiting 

triangular. If we only consider the relays inside the triangular, then the weighting 
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measure ),( βαµ  is assumed to be finite inside T and zero outside T. This limiting 

triangular and the assumption will ease our discussion and will not limit the 

applicability of the Preisach model.  

 

       

),( 00 βα

T

αβγ
α

β

),( βα

 

Figure 2-8: Limiting Triangular in βα −  plane 

To start the discussion, we first assume that the input  at some instant of 

time  has the value which is less than 

)(tu

0t 0β . Then all the relays are turned off which 

means the outputs of all the relay operator αβγ  are -1. This corresponds to the state of 

“negative saturation”.  

Now we assume that the input is monotonically increasing until it reaches  at 

time . As the inputs are increased, all the relays with the ‘up’ switching value 

1u

1t α  less 

than the current input  are turned ‘on’, which means their outputs become equal to 

+1. Geometrically, it divides the limiting triangular into two sets:  consisting of 

)(tu

)(tS +
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points ),( βα  whose corresponding relays are in ‘on’ states, and  whose 

corresponding relays are still in ‘off’ states. The two sets are separated by the line 

)(tS −

)(tu=α , which moves upwards as the input is being increased. This upward motion is 

terminated when the input reaches the maximum value  (Fig 2-9 (a)).  1u

 

 

),( 00 βα
α

β
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)(tS −),( 21 uu

),( 00 βα
α

β

)(tS +

)(tS −),( 21 uu
),( 43 uu

),( 00 βα
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β

)(tS +

)(tS − 1u

),( 00 βα
α

β

)(tS +

)(tS −

3u

(a) (b)

(c) (d)  

Figure 2-9 Geometric Interpretation of the Preisach Model 
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Next, let’s assume that the input is monotonically decreasing until it reaches  

at time . As the input being decreased, all the relays with the ‘down’ switching value 

2u

2t

β  above the current input  are turned ‘off’, which means their outputs become 

equal to -1. Geometrically, it changes the previous subdivision of T into positive and 

negative sets as shown in Fig 2-9 (b). The interface  between  and  now 

has two links, the horizontal and vertical. The vertical link moves from right to left and 

its motion is specified by the equation 

)(tu

)(tL )(tS + )(tS −

)(tu=β . The leftward motion of the vertical link 

is terminated when the input reaches its minimum value (Fig 2-9 (b)). The vertex of 

the interface  at  has the coordinates , .  

2u

)(tL 2t 1u=α 2u=β

Now, we assume that input is increased again until it reaches  which is less 

than at time . Geometrically, this increase results in the formation of a new 

horizontal link of  which moves up. This upward motion is terminated when the 

maximum  is reached (Fig 2-9 (c)). 

3u

1u 3t

)(tL

3u

Next, we assume that the input is decreased again until it reaches  which is 

larger than . Geometrically, this input variation results in the formation of a new 

vertical link which moves from right to left. This motion is terminated as the input 

reaches its minimum value . As a result, a new vertex of  is formed which has 

the coordinates 

4u

2u

4u )(tL

3u=α ,  (Fig 2-9(d)). 4u=β

Continue this process, the states of all the relays can be recorded on the βα −  

plane. The states plus the weights of the relays can uniquely determine the output of the 

Preisach operator, and thus the geometric interpretation can give us a clear idea of how 

the Preisach model works.  
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It needs to be mentioned that, in Fig 2-9 (c), if , then the interface  

will finally have just one horizontal link specified by the equation 

13 uu > )(tL

3u=α . The previous 

horizontal link  and vertical link  will be erased. Similarly, in Fig 2-9 (d), if 

, the interface  will just like Fig 2-9 (b) with only one vertex which has the 

coordinates , . This feature of the Preisach model is called wiping-out 

property which is formally defined as following: 

1u=α 2u=β

24 uu < )(tL

1u=α 4u=β

 

Proposition 2-1: Wiping-out Property 

 Each local input maximum wipes out the vertices of  whose )(tL α -coordinates 

are below this maximum, and each local minimum wipes out the vertices whose β -

coordinates are above this minimum. 

  

In summary, the following rules can be used to geometrically interpret the 

Preisach operator: 

1. At any instant of time, the triangular T is subdivided into two sets:  

consisting of points 

)(tS +

),( βα  whose corresponding relays are in ‘on’ states, and 

 whose corresponding relays are in ‘off’ states. )(tS −

2. The interface  between  and  is a staircase line whose 

vertices have 

)(tL )(tS + )(tS −

α  and β  coordinates coinciding respective with local maxima 

and minima of input at previous instants of time 

3. The final link of  is attached to the line )(tL βα =  and it moves when the input 

is changed. 
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4. This link is a horizontal one and it moves up as the input is increased. 

5. The final link is a vertical one and it moves from right to left as the input is 

decreased. 

6. (Wiping-out Property) Each local input maximum wipes out the vertices of 

 whose )(tL α -coordinates are below this maximum, and each local 

minimum wipes out the vertices whose β -coordinates are above this 

minimum. 

 

According to the above conclusion, at any instant of time the integral in (2.3) can 

be subdivided into two integrals, over  and , respectively: )(tS + )(tS −

 βαγβαµβαγβαµ αβαβ ddtuddtuty
tStS

∫∫∫∫
−+

−=
)()(

))((),())((),()(    (2.4) 

Since      

,1))(( +=tuαβγ                 (2.5) )(S  ),( if t+∈βα

and 

   ,1))(( −=tuαβγ                 (2.6) )(S  ),( if t−∈βα

from (2.4) we have: 

  βαβαµβαβαµ ddddty
tStS

∫∫∫∫
−+

−=
)()(

),(),()(                          (2.7) 

 

From this expression, it follows that an instantaneous value of output depends on 

a particular subdivision  of the limiting triangular T and the weighting function )(tL

),( βαµ . Since  can be calculated according to the system input, )(tL ),( βαµ  become the 
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only parameter needs to be identified before using the Preisach model. In fact, the 

identification of the Preisach model just means the identification of the weighting 

function ),( βαµ . 

2.3.4 Discrete Preisach Model         

     

      
α

β

 

Figure 2-10: Discretization of βα −  Plane 

 

Given the weight function ),( βαu , the continuous Preisach operator can be 

numerically implemented by using the formula (2.7). Although this approach is 

straightforward, it requires numerical evaluation of double integrals which is a time-

consuming procedure and may impede the use of the Preisach model in practical 

applications. In most real world applications, it is sufficient to just consider a finite 

number of relays within the limiting triangular. To this end, the triangle T is subdivided 
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evenly into several square meshes (Fig 2-10) and we suppose each cell represent one 

relay iγ  whose threshold pair ),( ii βα   is located at the center (black dot in Fig 2-10) of 

the cell. In the sequel, the weight function ),( βαu  is no longer continuous, it becomes the 

set of discrete weights . In this way, the integral becomes a summation and the output 

of the Preisach model can be approximated by: 

iw

∑
=

+=
N

i
ii ttuwwty

1
0 ))(),(()( ξγ                                 (2.8) 

where  is introduced here to account for the relays outside the limiting triangular.  0w

 So the discrete Preisach model is just a superposition of N non-ideal relays. It is 

easier to understand and has a simpler format compared with its continuous counterpart, 

so we will use the discrete Preisach model in this dissertation and whenever we mention 

the Preisach model we actually mean the discrete version. 
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CHAPTER 3 
 A NOVEL DYNAMIC PREISACH MODEL 

WITH DYNAMIC RELAY 
 

3.1 First-order Dynamic Relay (FDR) 
 

As reviewed before, the Preisach model is mathematically defined as the sum of 

the weighted response of an infinite set of non-ideal relays αβγ  over all possible 

switching thresholds βα ≥ :                                            

                           αβξγβαµβα αβ ddttuty ∫∫ ≥= ))(),((),()(                                  (3.1) 

where β  and α correspond to the lower and upper switching thresholds of the relay and  

)(tξ  represents the state, ‘on’ or ‘off’, of the relay at time . t

Thus for the Preisach model, the non-ideal relay is the fundamental element that 

constitutes the overall hysteresis nonlinearity.  Due to the rate-independent nature of the 

non-ideal relay, the Preisach model is inherently a static operator that cannot describe the 

dynamic hysteresis behavior.  Hence, if we want to extend the classic Preisach model 

(CPM) to a dynamic operator and at the same time preserve its effectiveness for static 

hysteresis modeling, a straightforward way is to add some dynamic behavior into its 

building block—non-ideal relay.    
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Figure 3-1 First-order Dynamic Relay 

(a) Time response of FDR; 
(b) Input-output diagram of FDR for the same input as in (a) 
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As it is known that a non-ideal relay ))(),(()( ttuty ξγαβ=  will switch its output 

value instantaneously as the input crosses the thresholds. However, in the real world 

nothing can be changed instantaneously.  We believe that the relay changes its output 

gradually from -1 (or 1) to 1 (or -1) and this transient process is too fast to be observed 

under low frequency input. However, when the input varies very fast, i.e. the time 

between switching on the relay and switching off the relay is comparable to time of the 

transient process, the effect of the transient response becomes significant.  In this sense, 

the traditional non-ideal relay is just a low frequency approximation of the dynamic relay 

with the above assumed transient transition process; and the classical Preisach model is 

also a low frequency approximate of the dynamic Preisach model with the above 

dynamic relay.  

Different transient response will give us different dynamic relay and thus different 

dynamic Preisach model. The most natural transient response is the exponential response, 

which is just the response of the first order dynamic system. Thus we propose that a 

dynamic relay has a dynamic response like a first-order dynamic system as shown in Fig 

3-1 (a). The time response of a typical first order dynamic system is governed by the time 

constant (τ ). And we allow the time constants of ascending ( 1τ ) and descending ( 2τ ) to 

be different. Thus the dynamic relay )),(),(()( tttuty ξγαβ=  (we add in a new parameter t 

to the relay operator to make it time dependent) is mathematically defined as: 

 

1(t) if
1)( if

    
}/)(exp{))(1(1

}/)(exp{)1)((1
)(

110

220

=
−=

⎩
⎨
⎧
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τ t

tty
tty

ty        (3.2) 
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where )(tξ is the state of the relay and  

                   ,                        (3.3) 
αβ

α
β

ξ
ξ

<<
>
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⎪
⎩
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⎧ −
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− (t) if
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1
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t

                                (3.4) )}),()(:max({0
−≠<= xxtxt ξξ

and      

),0,min( 01 ttt −=∆  and  ),0,min( 02 ttt −=∆                 (3.5) 

 

Based on the above definition, the output of the first-order dynamic relay could be 

any value between -1 and +1. Switching ‘on’ (or ‘off’) the dynamic relay does not 

indicate its output is +1 (or -1); instead this only means that the output begins to increase 

(or decrease) to +1 (or -1) from its present value ( ). Particularly, the first line of 

equation (3.2) tells us that when the relay is switched ‘off”, its output  may not 

necessarily be -1. It is determined by the time length for which the relay has been 

switched ‘off’ ( ) and the distance between the initial value  and -1 

(i.e. ). This means that for the same initial distance ( ), the 

longer time the relay has been switched ‘off’, the closer to -1 the output is; on the other 

hand, for the same time length (

)( 0ty

)(ty

2t∆ )( 0ty

1)()1()( 00 +=−− tyty 1)( 0 +ty

2t∆ ), the smaller the initial distance ( ) is, the 

closer to -1 the output is. The second line of equation (3.2) can be understood in a similar 

way.  

1)( 0 +ty
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3.2 Dynamic Preisach Model with FDR 
 

Similar to the Classical Preisach model, we use the First-order dynamic relay to 

build up our new dynamic Preisach model. Because the FDR has a first order response 

and the overall output of the Preisach model is just the weighted sum of all the individual 

dynamic relays, the Dynamic Preisach model is inherently rate-dependent and can be 

defined as: 

αβξγβαµβα αβ ddtttuty ∫∫ ≥= )),(),((),()(                       (3.6-a) 

where )),(),(()( tttuty ξγαβ=  is the first-order dynamic relay defined by equations from  

(3.2) to (3.5). Similar to the classical Preisach model, by discretizing the βα −  plane as 

shown in Fig 2-10, a discrete version of the (3.6-a) can be obtained: 

        (3.6-b) ∑
=

+=
N

i
ii tttuwwty

1
0 )),(),(()( ξγ

For this new definition it is obvious that when the working frequency is very low, 

we can assume that the relay has reached its steady state before the input changes, and 

this model then reduces to the classical Preisach model. 

 

3.3 Discussion 
 

There are many ways to make the Preisach model rate-dependent. To this end, 

some people add the dynamic terms into the weight function (or discrete weights) [1, 24, 

25], other people suggest cascading a Preisach operator with a linear dynamic system to 

model the dynamic hysteresis [14, 33]. All these methods can produce a dynamic 
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Preisach model, however, they are not as successful in modeling dynamic hysteresis as 

classical Preisach model did in modeling static hysteresis. The reason for this is that they 

are not developed based on the essence of the Preisach model.  

Although the Preisach model has been generalized to a purely mathematical and 

phenomenon based model, the reason of its success is its agreement with the physical 

nature of the hysteresis. According to the Weiss theory, ferromagnets are composed of a 

large number of elementary magnets (domains), each of which behaves like a relay. So 

the Preisach model is just an easy and general way that can effectively described the 

physical nature of the hysteresis phenomenon. For this reason, any extension or 

modification of the Preisach model should not forget its physical basis. 

The hysteron is believed to be the fundamental reason of the entire hysteresis. 

And the Preisach model is just the superposition of all these hysterons. As we discussed 

before, this concept is what makes the Preisach model successful. Keep this in mind, you 

may easily find that there is no reason to add the dynamic term into the weight function 

or to a separate dynamic system. A straightforward way is to make the elementary 

hysteresis operator—hysteron rate-dependent. In this way the entire Preisach model will 

be inherently dynamic, and its structure, which is believed to effectively reflect the 

physical nature of hysteresis, is kept unchanged. 

The first-order dynamic process is very common in nature, and makes perfect 

sense here to describe the transition of the dynamic relay from the ‘off’ (or ‘on’) state to 

‘on’ (or ‘off’) state. So the dynamic Preisach model consisting of the first order dynamic 

relay is a reasonable generalization of the classic Preisach model, and has been proved to 

be a better dynamic hysteresis model through our research.  
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3.4 Model verification  
3.4.1 Interpretation of dynamic hysteresis using the new model 

To start our discussion, let’s first take a look at the hysteretic loops of the 

magnetostrictive actuator under different working frequencies.  

From Fig 3-2, we can see that in the first five subplots, the higher the frequency, 

the less the output increases for a given increase in input, and the wider the hysteretic 

loop becomes. For frequencies higher than 200Hz the system even become a non-

minimal phase system, defined as follows in light of our new model. When the input 

increases, the same input increment needs a shorter time to generate if the frequency is 

higher. This means that for the dynamic transition of any system with a given time 

constant, the output will be farther away from its steady-state. Similarly, the relevant 

(dynamic) relays will be farther away from their maxima and a smaller output increment 

results. When the input begins to decrease, some relays’ outputs may still increasing 

towards their maxima, thus part of the output decrement will be counteracted by this type 

of inertia effect and a more smoothly decreasing curve is observed. When the frequency 

is so high that the input begins to decrease while most relays are just starting to rise, then 

the decrement may be even smaller than the increment, which will give us a non-minimal 

phase response. Hence, our new idea appears suitable to capture the dynamic hysteresis 

behavior. 
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3.4.2 Simulation Results 

 Based on the above discussion, we expect that our new model can effectively 

capture the dynamic hysteresis behaviors and have the same trend as the real actuator 

when the working frequency is increasing. Now, let’s examine the effectiveness of our 

model through simulation.  

To get a better understanding of the new dynamic Preisach model, let’s first 

consider the hysteretic system consisting of just one ‘First-order dynamic relay’. The 

inputs in this experiment are just some sinusoidal waves with frequencies from 10 Hz to 

300 Hz (same as the frequencies in Fig 3-3). The weight of this single relay is set 

arbitrarily because the main purpose here is to observe the shapes of the hysteresis loops 

under different frequencies rather than caring about the exact output values. The time 

constants 1τ  and 2τ  are selected in a trial and error manner to make the hysteresis loops 

in the simulation mimic the real hysteresis loops in Fig 3-3. Finally, the loops in Fig 3-4 

are generated with the following parameters: 

        Time constant:  (sec)001.021 ==ττ ,   

Weight: 100 w = ,  

Output bias: 1000 =w  

Input:                πf*t)(w*w 2sin0 u(t) += , Hz...,, f 300,150,100,50,2010=  
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Figure 3-2: Hysteretic Loops of Magnetostrictive Actuators under Different Frequencies 
[2] 
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Figure 3-3: Response of single FDR under different frequencies 
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  The way we set the input has no special meaning, although we use the same 

values for the bias and the magnitude as in the relay. Setting the input in this way will 

make the output easy to observe.  

One thing that needs to be mentioned is that transient responses exist for the 

dynamic relay. So when you repeat the same sinusoidal wave, you can see several 

different loops. In Fig 3-4, only the steady-state hysteretic loops are recorded.  

From Fig 3-4 we can see that a single ‘dynamic relay’ can also generate 

complicated hysteresis loops under different frequencies. Because just one FDR is 

involved in this simulation, the response curves are not that smooth, especially for the 

low frequencies. However, it is sufficient to prove that our dynamic relay has the same 

trend in changing the shapes as the real hysteretic system does (Fig 3-3). We can imagine 

that if the more dynamic relays are added to the dynamic Preisach model, the dynamic 

hysteresis loops it generates will become smoother. By manipulating the weights of each 

relay, the dynamic loops can mimic any desired complicated shapes.  

 

 39



3.5 Identification Methods 

We assume the two additional parameters—time constants ( 1τ , 2τ ) are 

independent of the weights of the first order relays. This assumption allows us to identify 

the weights and the time constants separately. Before talking about the identification 

details of the weights and time constants, let’s first review some basic concepts of the 

system identification. 

  

3.5.1 System Identification 

To better express the identification methods, system identification theory is first 

introduced. Structure selection in the identification theory is skipped here because the 

model structure (dynamic Preisach model) has already been proposed. Some general and 

basic principles that guide the parameter identification methods are first reviewed. 

 

I Principles behind parameter identification methods 

As a general introduction of the principles of the parameter estimation, no 

particular form of the model is assumed. A general model structure )(θΓ  that can 

represent any model is employed during the explanation. ( dRD ⊂∈ Γθ  is the parameter 

vector with dimension d  and ΓD  is the domain of the θ  which is a subset of ). The 

only restriction here is that the model is assumed to be discrete with respect to time, 

because this is the way a computer works. 

dR

A model )(θΓ , in fact, represents a way of predicting future outputs. The 

prediction can be expressed by:  

 40



           (3.7) );,()/(ˆ 1 θθ −Γ= kZkky

where  is the discrete time instant, k Γ  represents a model,  )/(ˆ θky  represents the 

model’s output under the particular parameter θ  at time , and k iZ  represents all the 

experimental data from the instant of the time 1 up to the instant of time i . Suppose we 

have a total of N experimental data pairs, then  

          (3.8) )](),(),....,2(),2(),1(),1([ NuNyuyuyZ N =

The problem of the parameter identification is to decide upon how to use the 

information contained in NZ  to select a proper value  of the parameter vector. Formally 

speaking, we have to determine a mapping from the data 

θ̂

NZ  to the set : ΓD

                 (3.9) Γ∈→ DZ N θ̂

Such a mapping is a parameter estimation method. 

 In order to find a good estimation method, we need a test by which the different 

models’ ability to describe the observed data can be evaluated.  It is believed [4] that the 

essence of a model is its prediction aspect, and we shall also judge its performance in this 

respect. Thus let the prediction error at time k  of a certain model  be given 

by: 

);,( 1 θ−Γ kZk

    )/(ˆ)(),( θθε kykyk −=     (3.10) 

When the data set NZ  is known, these errors can be computed for Nk ,...,2,1= . 

 A good model, we say, is one that is good at predicting, that is, one that produces 

small prediction errors when applied to the observed data. Thus a guiding principle [4] 

for parameter estimation is: 
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 Based on nZ  we can compute the prediction error ),( θε n  using (3.11). Select  

so that the prediction errors , 

θ̂

)ˆ,( θε n Nn ,...,2,1= , become as small as possible   

 The prediction error sequence ),( θε k , Nk ,...,2,1=  can be seen as a vector in NR . 

The size of this vector can be measured using any norm in NR . This leaves a substantial 

number of choices. We shall restrict the freedom somewhat by only considering the 

following way of evaluating “how large” the prediction-error sequence is: Let the 

prediction-error sequence be filtered through a stable linear filter : )(qL

    ),()(),( θεθε kqLkF =      (3.11) 

Then use the following norm: 

    ∑=
N

k
F

N kl
N

ZV )),((1),( θεθ                (3.12) 

where  is a scalar-valued function. )(⋅l

The function   is, for a given ),( NZV θ NZ , a well-defined scalar-valued function 

of the model parameter. It is a natural measure of the validity of the model . 

The estimate  is then defined by minimization of (3.12): 

);,( 1 θ−Γ kZk

θ̂

         (3.13) ),(min arg)(ˆˆ
D

NN ZVZ θθθ
θ Γ∈

==

 This way of estimating θ  contains many well-known and much used procedures. 

We shall use the general term prediction-error identification methods (PEM) for the 

family of approaches that corresponds to (3.13). Particular methods, with specified 

“name” attached to themselves, are obtained as special cases of (3.13) depending on the 

choice of , the choice of prefilter )(⋅l )(⋅L , the choice of model structure, and, in some 

cases, the choice of method by which the minimization is realized. 
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II  Linear regressions and the lest squares method 

Let’s talk about a most important case of PEM (3.13)—Least squares method. 

Here we assume the model has a linear regression structure which describes the input-

output relationship as a linear difference equation: 

)()()2()1(                

)()2()1()(

21

21

kenkubkubkub

nkyakyakyaky

bn

an

b

a

+−++−+−=

−++−+−+

L

L
    (3.14) 

where  is the output of the model at time ,  is the input of the model at time k , 

 is the noise getting into the model at time k , and  is 

the  parameter vector for this model. Because the output  is linear with respect to 

)(ky k )(ku

)(ke T
nn ba

bbbaaa ][ 2121 LL=θ

)(ky θ  

and depends not only on the previous input but also the previous output, the model is 

referred as linear regression. 

If we define )(kϕ  as: 

)]()2()1()()2()1([)( ba nkukukunkykykyk −−−−−−−−−= LLϕ     (3.15) 

the output prediction  based on the model structure and the previous data can be 

written as: 

)(ˆ ky

           (3.16) )()()(ˆ kekky T +⋅= θϕ

 With the above equation, the prediction error becomes: 

         (3.17) θϕ ⋅−= )()(ˆ)( kkyke T

and the criterion function resulting from (3.11) and (3.12), with 1)( =qL  and 2
2
1)( εε =l , 

is: 

   ∑ ⋅−=
N

k

TN kky
N

ZV 2])()(ˆ[
2
11),( θϕθ     (3.18) 
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This is the least-squares criterion for the linear regression (3.14). The unique 

feature of this criterion, developed from the linear parametrization and the quadratic error 

norm, is that it is a quadratic function ofθ . Therefore, it can be minimized analytically.  

 Let , and ),max( ba nnm = ba nnd +=  is the dimension of the parameter vector. 

Suppose we have  data pairs,  mN +

                 )](),(),....,2(),2(),1(),1([ mNumNyuyuyZ N ++=

denote Φ  as: 

            (3.19) 
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where the subscript j  of )(ijϕ  represents the  element of vector thj )(iϕ . 

 With the above notation, the solution  that minimize the cost function (3.18) is 

given by: 

θ̂

                    (3.20) YTT ΦΦΦ= −1)(θ̂

where )]()3()2()1([ NmymymymyY ++++= L . 

 The least square method gives the optimal estimation of the parameters with 

respect to the assumed model structure and the experimental data. It is an extremely 

important method in system identification. 

 

III  Parameter estimation by numerical search 

For a certain structure of the model  such as linear regression, (3.12) 

can be minimized by analytical methods. However, there are no mathematical solutions 

);,( 1 θ−Γ kZk
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of the minimization for a general model structure. So for most nonlinear models, the 

solution of (3.13) has to be found by iterative, numerical techniques.   

 Methods for numerical minimization of a function )(θV  update the estimate of the 

minimizing point iteratively. This is usually done according to: 

         (3.21) )()()1( ˆˆ iii f⋅+=+ αθθ

where  is a search direction based on information about )(if )(θV  acquired at previous 

iterations, and α  is a positive constant determined so that an appropriate decrease in the 

value of  )(θV  is obtained. Depending on the ways we compute , numerical 

minimization methods can be divided into three groups: 

)(if

 1.    is based on the function values )(if )(θV  only. 

 2.   is based on the function values as well as the gradient  )(if

 3.  )(  is based on the function values, gradient, and Hessian (the second 

derivative matrix) 

if

 The typical member of group 3 corresponds to Newton algorithms, where the 

correction in (3.21) is chosen in the “Newton” direction: 

            (3.22) )ˆ()]ˆ([ )(1)()( iii VVf θθ ′′′−= −

 The most important subclass of group 2 consists of quasi-Newton methods, which 

somehow form an estimate of the Hessian and then use (3.22). Algorithms of group 1 

either form gradient estimates by difference approximations and proceed as quasi-

Newton methods or have other specific search patterns. 
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 The above discussion is about the general principles of the numerical parameter 

estimation. Now, let’s look at an example that has the special case of scalar output and 

quadratic criterion: 

   ∑=
N

k

N k
N

ZV ),(
2
11),( 2 θεθ     (3.23) 

 This problem is known as “the nonlinear least-squares problem” in numerical 

analysis. The criterion (3.23) has the gradient: 

    ∑−=′
N

k

N kk
N

ZV ),(),(1),( θεθψθ      (3.24) 

where ),( θψ k  is the  gradient matrix of  pd × ),( θε k  ( yp dim= )  with respect to θ . A 

general family of search routines is then given by: 

                (3.25) ),ˆ(][ˆˆ )(1)()()()1( Niiiii ZVR θµθθ ′−= −+

where  denotes the  iterate.  is a )(ˆ iθ thi )(iR dd ×  matrix that modifies the search 

direction, and the step size  is chosen so that: )(iµ

        (3.26) ),ˆ(),ˆ( )()1( NiNi ZVZV θθ <+

 The simplest choice of  is to take it as the identity matrix,  )(iR

     IR i =)(                  (3.27) 

which makes (3.25) the gradient or steepest-decent method. This method is fairly 

inefficient close to the minimum. Newton methods typically perform much better there. 

For (3.23), the Hessian is: 

  ),(),(1),(),(1),(
11

θεθψθψθψθ kk
N

kk
N

ZV
N

k

TN

k

N ⋅′−⋅=′′ ∑
=

∑
=

    (3.28) 

where ),( θψ k′  is the  Hessian of dd × ),( θε k . 
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 Choosing: 

         (3.29) ),ˆ( )()( Nii ZVR θ′′=

makes (3.25) a Newton method. 

  

3.5.2 Weights Identification 

The proposed dynamic hysteresis model is just a weighted response of a large 

number of first order dynamic relays. Thus the first step of the identification of the 

proposed model is to determine the weights of these dynamic relays. It has been 

mentioned that the only difference between the proposed model and the classical Preisach 

model is that we change the non-ideal relay to a first-order dynamic relay. When the 

working frequency is very low (such as 1 Hz), the output of the dynamic relay is almost 

the same as the static relay. Thus in this case we can approximate the proposed model by 

the classical Preisach model.  In other words, using the low frequency data, if we can 

identify a set of the weights for the classical Preisach model, these weights can also be 

used to approximate the weights of the dynamic relay in the proposed model. Based on 

this idea, we can use the same identification method as the one used for the classical 

Preisach model to identify the weights in our proposed model. The only requirement here 

is that the data used in the identification should be almost static. 

Several identification method of classical Preisach model has been proposed. For 

the discretized CPM model, since the output, given the input data, is just a linear 

combination of the weights of the relays, the least square method talked in section 3.5.1 is 

a powerful tool to identify the weights.  
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The discrete Preisach model is defined as following: 

∑
=
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M

i
iii ttuwwty

1
0 ))(),(()( ξγ           (3.30) 

  Given a set of experiment data pairs , ))(),(( nynu Nn ,...,2,1= , the following 

equations can be obtained: 

        (3.31) 
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the state of each relay )(niξ  can be uniquely determined through the input history 

 at any constant of time n , as can the output of each relay operator )(),...,2(),1( nuuu

))(),(( nnu ii ξγ  (either +1 or -1). Hence the only unknowns in the above equation (3.31) 

are the weights, , which can be easily identified through a least squares 

method.   

Miwi ,...,0, =

 Let’s define: 
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then based on the least squares method (3.20), the optimal weights 

  according to experimental data ,  are: T
Mwwwww ][ 210 L= ))(),(( nynu Nn ,...,2,1=

            (3.34) Yw TT ΦΦΦ= −1)(
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3.5.3 Time constants Identification 

Our identification of the time constants is based on the following assumptions: 

1. All the first-order dynamic relays that constitute the dynamic Preisach 

model share the same time constants ),( 21 ττ  

2. The time constants ),( 21 ττ  are rate-independent. However, they may 

depend on the temperature or the external force. At the current stage of 

our project, since we fix the temperature and the external force, we 

assume that the time constants are just two positive real numbers. 

3. The weights Miwi ,...,0, =  are rate-independent and the time constants 

are independent of the weights. Since the time constants have no effect 

for the static (or very low frequency) data, the weights can be first 

identified through the static data using the least square methods. Then 

the weights are presumed to be known and fixed during the 

identification of the time constants. The weights may also vary with the 

temperature or external force. Again, we neglect this effect because the 

temperature and force are currently fixed. 

 

The first assumption tells us there are in total two dynamic parameters need to be 

identified. The third assumption allows us to identify the weights and the time constants 

separately. We call the third assumption the Separation Law which is the foundation of 

the identification of the time constants. 

 With the weights known and fixed, the time constants are nonlinear parameters in 

the proposed model ((3.2) to (3.5)). So if we choose a criterion function resulting from 
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(3.11) and (3.12), with  and 1)( =qL 2
2
1)( εε =l , the minimization problem in (3.13) can 

not be solved analytically. Thus the parameters of time constants ),( 21 ττ  should be found 

numerically. Based on the numerical parameter estimation introduced in section 3.5.1, the 

following procedure is developed for the identification of time constants. 

1. Gather the experimental data pairs  )](),(),...,2(),2(),1(),1([ NuNyuyuyZ N =

2. For the current parameters , using the formula (3.6), compute 

our model’s predictions   based on the data 

],[ 21
)( ττθ =i

)(ˆ),...,2(ˆ),1(ˆ Nyyy NZ  and the 

weights  that have been identified through static data. Miwi ,...,0, =

3. Compute the error function : ),( NZV θ

∑ −=
N

k

N kyky
N

ZV 2))/(ˆ)((1),( θθ                (3.16) 

4. If the value of  is small enough stop, otherwise continue to 5. ),( NZV θ

5. Compute the search direction  according to (3.28) and (3.29), update 

the parameter  based on (3.25) and then go back to step 2. 

)(iR

)1( +iθ
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CHAPTER 4 
MODELING EXPERIMENT RESULTS 

4.1 System Setup 

  
Figure 4-1 Experiment System setup (Cross-section view) 

                                

           
Figure 4-2: Experiment System Setup (Angle view) 
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All the experiments used in our modeling are performed by Energen Inc company. 

The test setup is shown in the above two drawings. The sensor target is connected to a 

solid plunger piece which sits on the top of the MSM rod  A loading force is applied by 

the top screw and the force range can be read from the load cell.  When the input current 

is given, the coil generates a magnetic field along the central axis and causes an 

elongation (displacement) in the MSM.  The expanded MSM pushes the plunger and the 

target up to change the gap between the eddy current sensor and the target.  This 

movement causes a voltage change of the sensor and can be converted to the 

displacement data.  The entire testing fixture is clamped on an isolation table which is 

mounted on a solid wall to avoid ground noise. Finally, the experiments are performed 

under the conditions as shown in Table 4-1 

 

Temperature: Room temperature (~ 20°C) 

MSM material: KelvinAll®

Driving coil:  Copper coil (~ 170 Oe /Amp) 

Pre-load force: 100 lbs 

Pre-load spring: Belleville washer spring (k ~ 17000 lb/in) 

Displacement sensor:  Capacitance sensor (1V = 50µm) 

Power amplifier:  Techron LVC 5050  

 
Table 4-1: The experiment Conditions 

 

 52



4.2 Experiments Description 

As we desribed in Chapter 3, the whole identification process can be divided into 

two uncorrelated process: weights identification and time constants identification. For 

this reason, two sets of experiments are performed.  

 

4.2.1 Low Frequency Experiments 

  

Figure 4-3: Uneven Discretization scheme    

The first set of experiments is designed for the weights identification. As 

discussed in Chapter 3, our dynamic Preisach model is almost the same as the classical 

Priesach model, except that we use the First-order dynamic relay instead of traditional 

nonideal relay. When the working frequency is very low, the first-order dynamic relay 

reduces to the traditional nonideal relay. In addition we assume that the meaning of the 
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weights in our dynamic Preisach model is the same as those  in the classical Preisach 

model. Thus using the low frequency data (1 Hz) we can identify the weights for our 

dynamic model through the same identification method as the classical Preisach model. 

    The first step of the design of the identification experiment is to decide what the 

input range is and how to discretize it. In our particular actuator system, the input current 

could be from 0 A to 14 A. So the input range is set to be  and the 

following discrete level is finally selected: 

14] 0,[_ =rangeu

  
14]  13.5  13  12.5  12  11.5  11  10.5  10  9.5   9  8.5       

 8  7.5  7  6.5  6  5.5  5  4.5  4  3.5   3  2  5.1[=u

There are in total 25 discrete levels and they divide the limiting triangle into 

 cells. Since these selected values are not evenly spaced within the 

input range, the cells are thus not equally sized (Fig 4-3). However, this makes no 

difference in essence with the equal discretization, where we also suppose each cell just 

represents one relay located at the center of the cell. 

32525/2*25)(1 =+

To identify all the weights without ambiguity, the input must be able to single out 

the effect of each relay (cell). Based on the geometric interpretation in Chapter 2, the 

following input can meet the above requirement: 

Proposition 4-1: 

 If the input range of the Preisach model is discretized by , then 

the discrete input sequence  

Lm,...,m ,m,m 210

            (4.1) 
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      where )}(min and  :{
...2,1

j
Lj

ii mxmxRxxc −=−∈=
=

 

can single out the effect of each individual relay, i.e the experimenalt data generated by 

this set of inputs can be used to identify the weights of the relays without ambiguity. 

The definition of  tells us that  could be any set of real numbers that are 

closer to  than to any other 

ic ic

im ijm j ≠, . Since the limiting triangle is divided into a mesh 

by , the definition of  can guarantee that each  can just turn on (or 

off) one line (or column) of mesh points (relays) in the discrete limiting Triangle in Fig 2-

10.  Then the combination of the input sequences in (4.1) will make sure the least square 

matrix   is nonsingular. 

Lm,...,m ,m,m 210 ic ic

1)( −ΦΦT

Based on the above proposition, the inputs of the low frequency experiments are 

chosen to be L different sinusoidal waves with magnitudes , and for 

each magnitude  the sampling rate should be high enough such that we can obtain a 

sequence of samples , where  is as defined in proposition 4-1. 

Lm,...,m ,m,m 210

im

1,2121 ,...,,,...,, cccccc ii − ic

 

4.1.2 High Frequency Experiments 

After the weights identification, we also need to design experiments to identify 

the dynamic terms—time constants. The effect of the dynamic terms can be observed 

only through the dynamic data. As discussed in Chapter 3, the identification of the time 

constants can be done by numerical methods, which search for the best estimation of the 

time constants that minimize the total errors between the real experiment data and the 
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prediction. Hence the only thing we need here is to generate a good set of dynamic data 

for the numerical estimation. 

 

Theoretically, two data pairs are sufficient to identify the two time constants. 

However, noise that is a part of real experimental data must be compensated for by a 

large enough data set. In addition, since the noise level for the sensor is the same for 

different inputs, the bigger the input amplitude is the smaller the noise ratio. So in the 

high frequency experiments, we only employ the sinusoidal waves with the largest 

amplitude of 14A. Although theoretically we suppose the time constants are rate-

independent, practically they may have a weak dependence on frequency. So instead of 

using one set of frequency data, we select different frequencies ranging from 1 Hz to 100 

Hz for the identification of time constants. Finally, the following inputs are used to 

generate experiment data for time constants identification: 

7)2sin(7)( +⋅= tftu π         (4.2) 

where   .,100Hz10Hz,..... 5Hz, 1Hz,=f

 

4.2 Weights identification 

4.2.1 Preprocess the data 

 
The data used for the weights identifications are obtained through the experiments 

described in section 4.1.1. Due to the limitation of the sensors used in the experiments, 

the data are noisy. The noise is typically about 1 micron and may go up to 2 microns. So 
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for small magnitude sinusoidal inputs (such as 1.5A), the noise level may be as high as 

20%. Thus we need to smooth the data before the identification. The smoothing method 

employed here is just a simple averaging filter. The results are shown in Fig 4-4. 

 
Figure 4-4: Smoothing the experiment data 

          (Input Magnitude=1.5A; the same method is used for other magnitudes). 

4.2.2 Data selection for the identification 

Our identification is based on the smoothed data (Section 4.2.1). However, we 

didn’t use all the smoothed data. There are several periods of data available for each input 

magnitude. We average them to get only one period for each magnitude. 
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The one-period data for each magnitude is still more than sufficient. Thus we 

sample the one-period data of each magnitude according to discrete level it passes. If the 

sampling points are too close to the thresholds, then the noise will easily change the 

status (‘on’ or ‘off’) of the relays which will make our identification algorithm unstable. 

Hence we need to select the experiment data samples whose inputs are far away from 

adjacent thresholds. So the best sampling points of the one-period data for magnitude  

(as shown in Fig 4-3) are the ones generated by the inputs , ,…, , ,…, , . 

In this way, the smaller the magnitude the fewer samples we can use. After sampling, we 

cascade the samples from all of the selected magnitudes and use them in the identification 

process. The data used for identification is illustrated in Fig 4-5. 

im

1m 2m im 1−im 2m 1m

 

4.2.3 Identification 

 Given the identification data, the least square method discussed in Chapter 3 is 

employed to identify the weights.  The identified weights are shown in Fig 4-6, and the 

model performance with the identified weights is shown in Fig 4-7. 

 From Fig 4-7 we can see that the identified Preisach model can fit the static data 

exceptionally well. One may argue it is not as persuasive as it appears because the model 

performance is verified with the same data used for the identification. For this reason, we 

also generate a set of test data that are not used during the identification process to test 

our model. The test data are one-period of sinusoidal waves with different magnitudes 

that are randomly selected from the real experiment data. The prediction results with 

respect to the test data are shown in Fig 4-8 and Fig 4-9. 
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Figure 4-5: Sampled data for identification 
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Figure 4-6: Identified weights 
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Figure 4-7: Model Performance for 1Hz identification data 
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Figure 4-8: Model Performance for the test data (Output). 

(X-axis: Samples; Y-axis: Strokes (um)) 
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Figure 4-9: Model Performance for the test data (Input-Output Diagram)  

(X-axis: Input current (A); Y-axis: Strokes (um)) 
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Figure 4-10: Classical Preisach Model Performance for Dynamic Hysteresis data 

(X-axis: Samples; Y-axis: Strokes (um))  
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Figure 4-11: Classical Preisach Model Performance for Dynamic Hysteresis data 

(X-axis: Input current (A); Y-axis: Strokes (um)) 
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4.3 Time Constants Identification 

  Without the dynamic terms, our model is just the classical Preisach model. 

Although it can model the static hysteresis data very well, its performance of modeling 

the dynamic hysteresis data is very poor (Fig 4-10 and Fig 4-11). From Fig 4-10 and Fig 

4-11 we can see that the higher the frequency the worse the classical Preisach model 

performs. So for many dynamic applications of magnetostrictive actuators, the classical 

Preisach model is inappropriate, which is the main reason for proposing our dynamic 

Preisach model.  

 The time constants are the only parameters in our dynamic Preisach model that 

the classical Preisach model do not have. To identify them, the following procedure is 

taken: 

1 First, we smooth the data to remove the noise. 

2 Second, for each frequency we delete the incomplete cycles in the 

smoothed data. 

3 Next, the data from different frequencies are connected together. 

4 Last, the Newton algorithm as described in 3.5.3 is employed to identify 

the time constants. 

. For our particular magnetostrictive actuator, the time constants ( 1τ , 2τ ) are 

identified to be: 

]0006478.0,0008764.0[],[ 21 =ττ . 
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Figure 4-12: Dynamic Modeling Results for the identification data 

                    (Output plot) 
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Figure 4-13: Dynamic Modeling result for identification data 

             (Input-Output Diagram) 
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Figure 4-14: Dynamic Modeling Results for test data 

                   (Output plots) 
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Figure 4-15: Dynamic Modeling Results for test data 

(Input-Output Diagram) 
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Based on the experimental results shown in figures 4-12 to 4-15, the following 

conclusions can be made: 

1. When the frequency is low, the proposed dynamic model performs almost the 

same as the classical Preisach model. 

2. As the working frequency increases, the hysteresis loops observed inside the 

magnetostrictive actuators become broader. The proposed dynamic model can 

effectively capture this trend, while the classical Preisach model can not. 

3. As shown in the Fig 4-14 and Fig 4-15, the proposed model can also predict 

exceptionally well the hysteresis loops that are not included in the training 

process. This proves the rationality and validity of the proposed model. 

We also expect that the proposed dynamic hysteresis model can be used to model 

the hysteresis loops under frequencies higher than 100 Hz. However, for the frequencies 

higher than 100Hz, the experimental setup used to test the model [Fig 4-1] experiences 

resonance, causing a spurious frequency response in the data.  Since the proposed model 

can not consider this additional frequency response, this apparatus must be improved 

before it can be used for further verification of the proposed model. 

 

4.4 Sensitivity of Time Constants 

The time constants are the parameters that distinguish the proposed Preisach 

model from the classical Preisach model. To study the rationality and validity of these 

newly introduced parameters, additional experiments are performed. In these experiments, 

the identified time constants are slightly changed around the identified values, 
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( ]ˆ,ˆ[*2] 1.3 1.1 1 0.9 0.7 0.5 0.3[],[ 2121 ττττ =  are explored, where 21 ˆ,ˆ ττ  are identified time 

constants) and the model’s output corresponding to these variations under 90 Hz input are 

obtained (Fig 4-16) and compared with the real experiment data (Fig 4-17). From Fig 4-

16 we can clearly see that the model achieves its best performance at the identified time 

constants and a small variation around these identified values will cause a small decrease 

in the performance (The same conclusion can be made for frequencies other than 90 Hz). 

This not only shows the effectiveness of the proposed identification method, but also tells 

us that the model performance is continuous with respect to time constants, which makes 

the proposed model robust to small noise of disturbance. 
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Figure 4-16: Model Performance under Different Time Constants Variations 
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Figure 4-17: Hysteresis Loops under Different Time Constant Variations 
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CHAPTER 5 
CONTROL OF HYSTERETIC SYSTEMS  

5.1 Objectives and Preparation 
 

Objectives: 

In this chapter, we will discuss the control of hysteretic systems with the proposed 

dynamic Preisach model representation. The easiest way to control a hysteretic system is 

to use an inverse control. In [2] and [43], Tan used the discrete Preisach operator to 

model the rate-independent hysteresis of magnetostrictive actuators. The regulation and 

tracking problems were solved by inverting the Preisach model. Although an acceptable 

performance was obtained by using the sophisticated Preisach model, the open loop 

nature of this kind of inverse control limits its accuracy. Hence, various feedback control 

schemes have been proposed, and most of them use a hysteretic compensator to reduce or 

remove the hysteresis behavior and then design a linear controller supposing no 

hysteresis remains. In a recent study, a pseudo-compensator, which used another Preisach 

operator to fit the data gathered from the original Preisach model, with input and output 

swapped, was utilized to compensate for magnetostrictive actuator hysteresis [37]. A PID 

controller was then designed based only on the linear part of the dynamics. In another 

study [5], Cruz-Hernandez and Hayward used a phaser to compensate the rate-

independent hysteresis. The method is effective and easy to implement. As an uncertain 

system, the hysteretic system may have a better performance with robust controllers [41, 

42], which can accommodate model uncertainties. However, the design methods typically 
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require bounding of the model uncertainties and the inversion errors, which can only be 

obtained as rough estimates, resulting in conservative controls. As another approach, 

adaptive control can also be used to improve robustness [38,39,40]. Unfortunately, most 

of the proposed methods use simplified hysteresis models (such as the piecewise linear 

model or even just the relay model) to calculate the corresponding inverse models on-line 

and develop the parameter update laws.  

General drawbacks of current hysteresis control schemes are: (1) Most of them 

are based on a rate-independent hysteresis model [37, 38, 39, 40], while most 

applications need to consider dynamic hysteresis behavior. (2) Only the major hysteresis 

loop is considered [37, 38 , 39, 40], which is not sufficient for magnetostrictive actuators 

because they demonstrate strong hysteresis behavior. (3) Most hysteresis control is based 

on inverse compensation ([43], [45]). Due to its open loop nature, it suffers from steady 

state errors and cannot handle noise and disturbances.  (4) A common close-loop scheme 

of a hysteresis control system is to append an inversion hysteretic operator to a linear 

feedback controller (robust controller [41] or PID controller [37]). It can guarantee zero 

steady-state error, but has poor tracking performance, especially for higher frequencies. 

So the problems here are twofold. Firstly, an accurate dynamic model is needed to 

handle the strong hysteresis in magnetostrictive actuators. The proposed dynamic 

Preisach model in this dissertation can accurately predict the major and minor hysteresis 

loops over a large frequency range, and thus is a good choice for the model. Secondly, a 

feedback control scheme that is good at both regulating and tracking should be developed. 

Even if all the static hysteresis can be cancelled out by the inverse operator, the lag effect 

of dynamic hysteretic system will make the tracking error significant. Thus a traditional 
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linear controller must be designed or tuned to be very aggressive in order to obtain a good 

tracking performance. However, this will result in worse regulating performance. This 

tradeoff is the topic to be explored in this chapter. A well designed controller that is good 

at both tracking and regulating is developed and tested through simulation.  

  

Preparation 

Due to the equipment limitations discussed previously, the control experiments 

can not be performed on the real actuator system. Thus the controller can only be tested 

through simulation.  During the simulation, a model that represents the real actuator is 

needed. The model for this purpose should not only demonstrate the dynamic hysteresis 

behavior, but also be continuous with respect to the input (otherwise, the model may not 

generate certain reference values).  However, only the discrete version of the proposed 

dynamic Preisach model is implemented in this dissertation. Although it can be modified 

to be continuous, it is more appropriate to use another dynamic hysteresis model as the 

real actuator in the simulation and start to model and design a controller for this “virtual 

actuator” as if its behavior were unknown. Since a model structure, which is different 

from the one we proposed, is employed as the actuator, the simulation results will be 

more convincing.  

For the above consideration, the following procedure is performed before the 

control simulation: 

1. A dynamic hysteresis model (referred as Model A) in [2] is 

implemented and used as the virtual actuator during our simulation. Its 

model details are supposed to be unknown to us. We can only observe 
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its behavior through input output data. This model has dynamic 

hysteresis behavior as shown in Figure 5-1.  

2. The same identification experiments as in chapter 4 are performed on 

this virtual actuator (Model A) to obtain of a dynamic Preisach model 

(referred to as Model B).  The static and dynamic identification results 

are shown in Figure 5-2 and Figure 5-3, respectively. (These 

identification results can again prove the capability of the proposed 

dynamic Preisach model in capturing dynamic hysteresis behavior). 

3. The controller is designed totally based on the identified dynamic 

Preisach model (Model B) and is tested through Model A. 

5.2 Inverse Control 
 

Most effective control schemes for hysteretic systems will employ, in some way, 

the inversion of the hysteresis model, thus let’s first talk about the inversion algorithm of 

the proposed dynamic Preisach model (Model B). 

As discussed in Chapter 3, the output of the proposed model is a superposition of 

the responses of all the first-order dynamic relays. It is inherently a nonlinear dynamic 

system. The output is thus not uniquely determined by the current input; it also depends 

on time and the state of the system (state of the first-order relay). Thus the term 

‘inversion’ here dose not have the same meaning as in the static one-to-one mapping 

function. If we express the proposed dynamic Preisach model as an operator that is 

defined as: 

)(⋅Γ

   )),(),(( tttuy ξΓ=      (5.1) 
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Figure 5-1: Dynamic hysteresis loops of Virtual Actuator (Model A)  
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Figure 5-2: Static Modeling Results for Virtual Actuator (Identification Data) 

     

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

80

Samples

S
tro

ke
 (m

ic
ro

n)

Model Output
Actuator Output

 
Figure 5-3: Dynamic Modeling Results for Virtual Actuator (Identification Data) 

(Frequencies for each cycle(left to right):1Hz, 20Hz, 40Hz,…,200Hz) 
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Figure 5-4: Dynamic Modeling Results for Virtual Actuator (Test Data) 

         (Input-Output Diagrams) 
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Figure 5-5: Dynamic Modeling Results for Virtual Actuator (Test Data) 

           (Output) 
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The inversion of the operator is defined as follows: 

Definition 5.1 

At time , for a given output value ,  the inverse mapping  of the dynamic 

operator is defined as: 

0t
*y *u

)(⋅Γ

          (5.2) |})(|lim{minarg *

*

* ytyu
t

uDu
−=

∞→
∈

where ),),(),(()( tttuty ξΓ=  and  for all . *)( utu = 0tt >

Based on this definition, if  is the inverse value of output , we apply the 

input  at time  and do not change it, the output will finally reach  (if is in the 

range of the operator ) or is the closest value (in the range of the model) to . 

*u *y

*u 0t
*y *y

)(⋅Γ *y

With the above idea in mind, it is not difficult to develop a numerical algorithm 

to solve the inversion for a given output . The following is the description of such an 

algorithm: 

*y

Algorithm 5.1 
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Note: The above algorithm requires the output of the model to be continuous 

with respect to the input. However, as mentioned before, only the discrete dynamic 

Preisach model has been used through this dissertation. Thus some modification needs 

to be made on Algorithm 5.1 to make it work for a discontinuous model. Suppose the 

input range of the model is discretized into L levels by , algorithm 5.2 can 

be used for the discrete version of the proposed model. 

Lmmm ,...,, 21

 Algorithm 5.2 

                                    

downdownup mmmyyyyu

y

+−−−=

=
=

=
=>

=
=

=
=

=
+=

>
=
=

=

)(*)12/()1(

munder output  statesteady 2
mby output  statesteady y1

end
jdown          else      
iup    , *yy If      
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t);u,(state,Output  y                 
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mu        
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1down

Lup

*

up

down

i

Since the discrete model can only provide several discrete output values, for an 

specified output , the best we can know based on the model is that the input should 

be between  and . However, if we apply  or  to the real system, the 

*y

upm downm upm downm
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actual output will be much different from . Hence, the last three steps in algorithm 

5.2 are to interpolate between  and  to reduce the inversion error. 

*y

upm downm

 

Figure 5-6: Settling Time Estimation of Virtual Actuator (Model A) 

The variable ‘order’ in the algorithm is to determine after how many sampling 

steps the system reaches steady state. Its value depends on the sampling time T  and the 

settling time . The sampling time  is defined as the time required for the response 

curve to reach and stay within 2% of the final value. For the virtual actuator (Model A), 

 is estimated to be 0.005 second through experiment (Figure 5-6). 

st st

st

The inversion algorithm itself can be used as a controller. Given a reference 

value, it can compute the appropriate input that can drive the output to follow the 

reference. Due to its open-loop nature, this kind of control usually has steady state error. 
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But for some applications, a small error is allowed. The setup of such an inversion 

hysteresis control system and its performance on displacement control are shown in 

Figure 5-7 and Figure 5-8. 

 

          

Inverse
Controller
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refy yu

 

Figure 5-7: Inverse Control System 

 
 

 
Figure 5-8: Displacement Control with Inverse Controller Only 
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5.3 PID Control with Inverse Hysteresis Compensation  

  Figure 5-8 shows that the inverse controller cannot avoid steady state error. This 

may be unacceptable for some applications. To solve this problem, feedback 

information must be employed. The simplest feedback control scheme that can 

guarantee zero steady state error is the PID controller. By adjusting its parameters , 

, and , a good-performance, stable system can be obtained.  However, a PID 

controller is linear in nature, thus if it is used to control a highly nonlinear dynamic 

system such as the hysteresis system, the parameters must be tuned to be very 

conservative in order to maintain system stability. Although zero steady state error can 

also be guaranteed, the system response will be very slow. To improve its performance, 

an inverse hysteresis operator is appended after the PID controller to cancel out the 

hysteresis nonlinearity as shown in Figure 5-9. 

pK

iK dK

 

    

PID
Hysteresis
Inversion

Actuator-

 

Figure 5-9: PID+Inversion Control Scheme 

 

 In practice, the model could not be an exact description of the actuator, and the 

inverse operator will also produce some error. Hence the hysteresis nonlinearity cannot 

be totally cancelled out. However, usually the model and its inversion are accurate 

enough to give a good reduction of the hysteresis nonlinearity. Thus the inverse 

 85



hysteresis operator added to the system can significantly ease the design of the PID 

controller and improve the system performance.  

The “differential” term is the most problematic part of the PID controller.  It 

may amplify the noise and cause high frequency oscillation. Hence, during our design 

the differential term is set to be zero and the PID controller becomes a PI controller. 

For a computer control system, the PI controller should be implemented through 

programming. The output of the PI controller in our system is programmed based on the 

following iterative formula: 

)1()()()1(

)()()(
0

−−++−=

+= ∑
=

keKkeKKku

ieKkeKku

pip

k

i
ip             (5.3) 

Our job now is to obtain an appropriate set of    that can make the system 

perform as well as possible. There are many ways to calculate the parameters of the PID 

controller. However, they are all application dependent. Thus we adopt the trial-and-

error method to practically tune the PI parameters for our hysteresis control system. A 

good control performance can be obtained through the following PI parameters and 

sampling time: 

pK iK

        0001.0,058.0,78.0 === TKK ip   

 The designed PID controller with inverse hysteresis compensation is first tested 

through a displacement control experiment. The result is shown in Figure 5-10. It can be 

clearly seen that the PID controller with inverse compensation can produce zero steady 

state error as well as a fast response. 
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Figure 5-10: Displacement Control Results with PID+inverse Controller 

 

To make the simulation more realistic, random noise (between -1 to +1 micron) 

is added to the system to simulate the effect of measurement noise. The new system 

setup is illustrated in Figure 5-11 and its regulating and tracking performance is shown 

in Figures 5-12 to 5-14. 
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Figure 5-11: PID+Inverse Control with Noisy Measurement 
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Figure 5-12: Displacement Control with PID+Inverse Controller and Noisy Measurement 
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Figure 5-13: 1 Hz Tracking Result with PID+Inverse Controller and Noisy Measurement 

     (The signals have been resampled for display purposes) 
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Figure 5-14: Tracking Results with PID+Inverse Controller (50Hz) 

 
As shown in Figure 5-12, even with the measurement noise, the PID controller 

with inverse compensation can also produce accurate displacements. However, its 

tracking capability is limited, especially for high frequencies. The reason for this is that 

the controller is always trying to make the output follow the present reference, and the 

reference keeps changing. Hence the controlled output will always lag behind the 

reference, which will cause a big tracking error. To solve this problem, the controller 

should be able to take future reference into account when making the control decision.  

Thus, we need a prediction-based controller. 
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5.4 Predictive Control 

5.4.1 Nonlinear Predictive Control [46,47,48] 
 

A well-known class of nonlinear controllers that directly uses the nonlinear model 

is model predictive controllers (MPC) [47]. Linear MPC is a discrete time controller that 

calculates the present control, at each sampling time, by predicting over a horizon p the 

process response to changes in control. The change in control that is within specified 

constraints and that gives the most desirable process response is then implemented.  

Nonlinear MPC is similar and is constructed as solving an on-line finite horizon 

open-loop optimal control problem subject to system dynamics and constraints involving 

states and controls. Based on measurements obtained at time t, the controller predicts the 

future dynamic behavior of the system over a prediction horizon and determines (over 

a control horizon  ) the input such that a predetermined open-loop performance 

objective functional is optimized. 

pT

pc TT ≤

Due to disturbances and model-plant mismatch, the true system behavior is 

different from the predicted behavior. In order to incorporate some feedback mechanism, 

the open-loop manipulated input function obtained will be implemented only until the 

next measurement becomes available. If there were no disturbances and no model-plant 

mismatch, and if the optimization problem could be solved for infinite horizons, then one 

could apply the input function found at time t = 0 to the system for all times . 

However, this is not possible in general.  

0≥t

The time difference between the recalculation/measurements can vary, however 

often it is assumed to be fixed, i.e. the measurement will take place every δ sampling 
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time-units. Using the new measurement at time t + δ  , the whole procedure – prediction 

and optimization – is repeated to find a new input function with the control and 

prediction horizons moving forward. 

Consider the stabilization problem for a class of systems described by the 

following nonlinear set of differential equations. 

0)0()),(),(()( xxuxfx == ttt&                       (5.4) 

Subject to input and state constraints of the form: 
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Assumption 1:  is compact, pU ℜ⊂ nX ℜ⊆ is connected and UX ×∈)0,0( . 

Assumption 2:  The vector field f: nm ℜ→ℜ×ℜ is continuous and satisfies f(0,0) = 0. 

In addition, it is locally Lipschitz continuous in x. 

Assumption 3: The system (Equation 2-18) has an unique continuous solution for any 

initial condition in the region of interest and any piecewise continuous and right 

continuous input function [ ] UTp →⋅ ,0:)(u . 

Usually, the finite horizon open-loop optimal control problem described above is 

mathematically formulated as follows: (internal controller variables are denoted by a 

bar) 
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where Tp and Tc are the prediction and control horizon, respectively, with Tc ≤ Tp and 

internal controller variables are denoted by a bar. 

The function F, called stage cost in the following, specifies the desired control 

performance that can arise, for example, from economical and ecological considerations.   

The standard quadratic form is the simplest and most often used: 

),()(()(),( ) s
T

ss
T

s RQF uuuuxxxxux −−+−−=                       (5.10) 

where and denote given setpoints: Q and R denote positive definite, symmetric 

weighting matrices. 

sx su

The closed-loop control is defined by the optimal solution of Equation 2-20 at the 

sampling instants:  

[ ].,),),(;(*:)(* , δτττ tTTtx cp ∈= uu          (5.11) 

The optimal value of the NMPC open-loop optimal control problem as a function 

of the state will be denoted in the following as value function: 

).));(;(*,();( ,, cpcp TTtJTTV xuxx ⋅=       (5.12) 
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The value function plays an important role in the proof of the stability of various 

NMPC schemes, as it serves as a Lyapunov function candidate. 

 The disadvantages of nonlinear MPC are primarily due to the finite horizon 

optimal control problem being non-convex. Non-convexity introduces the questions of 

how long will the optimization take, whether it will terminate, and is a suboptimal 

solution acceptable. The finite horizon optimal control problem associated with nonlinear 

MPC is not guaranteed to be convex and it is difficult to obtain the global optimal 

solution. Therefore, because of the non-convexity, NMPC formulations need to be 

derived that guarantee solution feasibility, robustness, and performance despite the 

solution being sub-optimal. Moreover, for further development of NMPC algorithms, 

faster optimization solvers need to exploit the inherent structure of the process. For it is 

possible that in solving the finite horizon optimal control problem one can exploit the 

specific system dynamics, e.g. Lipschitz continuous, static nonlinearity, input-affine, 

bilinear, hybrid, piecewise affine, non-holonomic or homogeneous.  

 

5.4.2 Proposed Predictive Control 
  

Most applications of magnetostrictive actuators require the actuators be controlled 

in real-time. Traditional predictive control involves complicated optimization. This 

optimization could be finished in real-time for some simple models; however, it may cost 

much longer time for our Preisach-type actuator model.  Due to this reason, a specially 

designed predictive controller is proposed that considers both tracking performance and 

implementation issues. 
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If the prediction horizon is p discrete steps, predictive control is essentially to 

minimize a predefined cost function by adjusting the control variables of the following p 

steps. Usually p is bigger than 1 and the optimization over several variables is rather 

time-consuming. Thus in the proposed method, we suppose all the control variables of 

the following p steps are equal to each other, and then the optimization become single 

variable which could be solved in real-time. The corresponding predictive control scheme 

can be expressed as the following: 

 

Given the actuator model: 

   )),(),((1 kkkuyk ξΓ=+      (5.13) 

and the cost function:  

|)()(| pkypkyJ refk +−+=                      (5.14) 

the control action  at time  k  is: ku

    ),(minarg
1,...,1,

k
pkukuku

k Ju
−++

=      (5.15) 

             under the constraint:   ],[... maxmin11 uuuuu pkkk ∈=== −−−  

If p is set to be the settling time over the sampling time (ts/Ts), the predictive 

control defined by equations (5.13) to (5.15) can be called as “step response predictive” 

control. Because the control action is supposed to not be changed, and is selected such 

that the corresponding steady state output is equal or close to the reference.  

Although it appears quite unacquainted, the above optimization problem is 

essentially the same as the dynamic inversion problem described in Section 5.2. Thus it 

can be solved using algorithm 5.1 or algorithm 5.2. What makes the predictive different 
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from the inverse control scheme is that: (1) it calculates the control action based on the 

future reference instead of the current reference; (2) it can be easily incorporated with 

feedback mechanism as described subsequently. 

 

Incorporate feedback information 

From (5.13), we have: 
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So 
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Given a and known it is will not be changed, all the )(ku kii >=),(ξ  can be 

calculated, as can )1),1(),(( −+−+Γ pkpkku ξ , thus the left side of (5.17) is totally 

determined by . Hence,  can be numerically solved by trial-and-error (similar to 

algorithm 5.1 or 5.2) such that 

)(ku )(ku

)()( pkypky ref +=+ . Since at current time , the actual 

system output  is available. Replace in (5.17) with this feedback information 

 can thus make the predictive control system a close loop system.  

k
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(5.18) tells us that the control action  is always different from  unless 

, which means the system will not have steady state error. 

)(ku )1( −ku

)()( kypky fb=+

 The above closed loop predictive control scheme has been tested through both 

regulation and tracking simulations (Figure 5-15 and Figure 5-16).  It can be seen that the 

proposed predictive controller not only has a good regulation performance, but also 

reduces the tracking error to 2 micron (on average), which is almost 20% of the average 

tracking error of the PID+inverse controller. 
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Figure 5-15: Displacement Control with Predictive Controller  
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Figure 5-16: Tracking Control with Predictive Controller 

 
Although the predictive controller improves the tracking performance a lot, the 

error (3 micron) is still significant for some applications. This is because the “Virtual 

Actuator” used in our simulation has a very slow time response. If we want such a low 

speed system to accurately follow a fast changing signal, the simplified predictive 

controller may be inadequate. In this case, a standard predictive control which 

minimizes the errors of all the future p steps without constant  constraints is more )(ku
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appropriate. However, since the model is complicated and nonlinear, online 

optimization is a major problem and will be studied in our future research.   
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CHAPTER 6 
CONCLUSIONS 

  

This project aims at developing an effective model of magnetostrictive actuators 

for high frequency applications. A novel dynamic relay operator, referred to as a First-

order dynamic relay (FDR), has been proposed as the elementary hysteron (kernel) of the 

modified Preisach model. The resulting model has thus become a rate-dependent model 

that can be used to model the dynamic magnetostrictive actuators. The newly proposed 

model has almost the same structure as the classical Preisach model except that it has two 

additional parameters to describe the dynamic behavior of its kernel (dynamic relay). The 

two additional parameters are assumed to be rate-independent and do not relate to the 

weight function of the Preisach model. This assumption allows us to separately identify 

the weight function (discrete weights) and the additional dynamic parameters. A least 

squares method has been used to identify the weights of the first-order dynamic relays. A 

numerical optimization algorithm has been developed to identify the additional dynamic 

parameters based on the experiment data. Experiment results have shown that the 

proposed dynamic model preserves the strength of the classical Preisach model in static 

hysteresis modeling and can effectively captures the dynamic hysteresis behavior in the 

magnetostrictive actuators. Although the testing experiments are performed based on a 

magnetostrictive actuator, the proposed model is believed to be a general way to model 

the dynamic hysteresis in any kind of smart actuators or hysteretic systems. In addition, 

the controller design using the proposed model has also been discussed. An inversion 

algorithm has been developed and a PID controller with inverse hysteresis compensation 
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has been proposed and tested through simulations. The results have shown that the PID 

controller with inverse compensation is good at regulating control; its tracking 

performance is really limited, especially for high frequency signals. Hence, a simplified 

predictive control scheme has been proposed to improve the tracking performance. It has 

been proved through experiments that the proposed predictive control can reduce the 

average tracking error to 2 micron while preserve a good regulating performance.  

Future research will be focused on further verification of our model for higher 

frequency data (higher than 100 Hz) and further improvement of the tracking 

performance for high frequency signals. 
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Appendix:  

I Program manual 
Step 1: Data preparation 

The raw 1 Hz experiment data should be stored in plain txt files under ‘1hz’ 

directory. Each text file should just contain the data generated by one amplitude of sine 

waves, with the magnitude as its file name. For example, you should store the data 

generated by ‘1.5*sin(t) and 2*sin(t) as ‘1.5A.txt’ and ‘2A.txt’, respectively. There are 

four columns in each text file, they represent ‘power (v) stroke(v) Current (A)  

stroke(micron)’, respectively. 

The high frequency data (only the ones lower than 100Hz are used by now) have 

the same format as the 1Hz data. However, they are named by their frequencies, such as 

‘30hz.txt’ and stored under ‘hf100’ directory. 

After making two new directories ‘1hzsmooth’ and ‘hf100smooth’, we can run 

‘smoothdata.m’ and ‘smoothhfdata.m’ to reduce the noise of the experiment data. Make 

sure the ‘current’ vector in the ‘smoothdata.m’ contains all the amplitudes of the 

experiment data under ‘1hz’ directory and the ‘frequency’ vector in ‘smoothhfdata.m’ 

contains all the frequencies under the ‘hf100’ directory. The smoothed data are stored 

under the two new directories (‘1hzsmooth’ and ‘hf100smooth’) and will be used by the 

sampling programs. 

Make a new directory ‘iden_hf100’, and then run 

‘sampledataforhighfrequency.m’ and ‘newsampledata.m’. The 1hz sampled data for 

weights identification are stored in ‘iden_data.mat’, while the high frequency data used 

for the identification of ( 1τ , 2τ ) are stored frequency-wisely under the ‘iden_hf100’ 
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directory. The sampled data rather than the raw data are actually used in the identification 

programs. 

Step 2: Training the model 

After generating the sampled data, we can start the identification by running 

‘iden_xls.m’ and then ‘iden_dynamic.m’. The identified weights are store in 

‘xls_weights.mat’ and the resulting ( 1τ , 2τ ) are stored in ‘tc.mat’. 
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II Codes 
 
preparedataforexcel.m 
%prepare data for excel data 

clear all; 

global weight weight0 ref I_range  D_range T tao delay f u_range output data magnitudes level 

index mag 

global current iden_current frequency findex 

current=[0 1.5 2 2.3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14]; 

%first should be 0,  

load 'mag.mat'; 

iden_current= sort(mag); 

frequency=[1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100]; 

findex=length(current); %magnitude index for high frequency data current(findex)=14A; 

                            %it is useful when process the data 

index=length(current); %index determines which magnitude is the maximum magnitude for the 

modeling 

level=length(iden_current)-1; %levels determines how many intervals does the entire range have. 

T=0.0001; 

f=100; 

delay=0.0004; 

tao=0.0001; 

I_range=[0 current(index)]; 

u_range=I_range; 

interval=abs(I_range(1)-I_range(2))/level; 

tt=1; 

for i=1:level 

    for j=1:i 

        ref(tt,1)=iden_current(j)+(iden_current(j+1)-iden_current(j))/2; 

        ref(tt,2)=iden_current(i)+(iden_current(i+1)-iden_current(i))/2; 

        tt=tt+1;         

    end 

end 
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******************************************************************************

************ 

smoothdata.m 
 

%smooth the new data 

current=[0 1.5 2 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14]; 

mag(1)=0; 

for i=2:length(current) 

    i 

    clear data; 

    clear cur; 

    clear dis; 

    ss=['1hz\' num2str(current(i)) 'A.txt']; 

    [tmp1 tmp2 cur dis]=textread(ss); 

     for j=1:20 

         cur=smooth(cur); 

         dis=smooth(dis); 

     end 

    data(:,1)=smooth(cur); 

    data(:,2)=smooth(dis); 

    mag(i)=max(data(:,1));     

    %ss=sprintf('1hzsmooth\\%.1f.mat',current(i)); 

    ss=['1hzsmooth\' num2str(mag(i)) '.mat']; 

    save(ss,'data'); 

end 

save 'mag.mat' mag; 

 

******************************************************************************

************ 

smoothhfdata.m 
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frequency=[1 10 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 

600]; 

for i=1:length(frequency) 

    n=frequency(i) 

    clear data; 

    ss=['hf100\' num2str(n) 'Hz.txt']; 

    [tmp1 tmp2 cur dis]=textread(ss); 

    data(:,1)=smooth(cur); 

    data(:,2)=smooth(dis);   

    ss=['hf100smooth\' num2str(n) '.mat']; 

    save(ss,'data'); 

end 

 

******************************************************************************

************ 

newsamplingdata.m 
%sample the data 

global I_range level current iden_current 

pp=1;    %for realdata 

st=1;    %for tmpdata 

clear data; 

clear realdata; 

clear tmpdata; 

pp=1; 

for index=length(iden_current):-1:2   

    per=1; 

    ss=['1hzsmooth\' num2str(iden_current(index)) '.mat']; 

    load(ss,'data'); 

  len=size(data,1); 

i=1; 

 

while(data(i,1)<=0.8*iden_current(index)) 

    i=i+1;     

end 
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while(data(i,1)>0.2*iden_current(index)) 

    i=i+1; 

end 

 

while(mean(data(i-2:i+2,1)>mean(data(i:i+4,1)))) 

    i=i+1; 

end 

start=i; 

last=start; 

while(per>0)     

    while(data(last,1)<=0.8*current(index)) 

        last=last+1; 

    end 

    while(data(last,1)>0.3*current(index)) 

        last=last+1; 

    end 

    while(mean(data(last-2:last+2,1)>mean(data(last:last+4,1)))) 

        last=last+1; 

    end 

    per=per-1; 

end 

    tmpdata(pp:pp+last-start,:)=data(start:last,:); 

    pp=pp+last-start+1;     

    plot(tmpdata(:,1),'*'); 

    clear data;    

end  %end for i 

plot(tmpdata(:,1),'*'); 

iden_data=tmpdata(1:3:size(tmpdata,1),:); 

save 'iden_data.mat' iden_data ; 

 

******************************************************************************

************ 

sampledataforhighfrequency.m 
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global I_range level current iden_current findex frequency 

pp=1;    %for realdata 

st=1;    %for tmpdata 

clear data; 

clear realdata; 

clear tmpdata; 

for fi=1:length(frequency)    

 per=1; 

 pp=1; 

 ss=['hf100smooth\' num2str(frequency(fi)) '.mat']; 

 load(ss,'data'); 

 len=size(data,1); 

 i=1; 

while(data(i,1)<=5) 

    i=i+1;     

end 

while(data(i,1)>2) 

    i=i+1; 

end 

while(data(i,1)>data(i+2,1)) 

    i=i+1; 

end 

start=i+1; 

last=start; 

while(per>0)     

    while(data(last,1)<=10) 

        last=last+1; 

    end 

    while(data(last,1)>9) 

        last=last+1; 

    end 

    while(data(last,1)>data(last+2,1)) 

        last=last+1; 

    end 

 107



    per=per-1; 

end 

last=last; 

iden_hfdata=data(start:last,:); 

plot(iden_hfdata(:,1)); 

ss=['iden_hf100\' num2str(frequency(fi)) '.mat']; 

save(ss,'iden_hfdata'); 

end  %end for i 

 

******************************************************************************

************ 

output.m 
function y=Output(x,weights) 

global level 

num=level*(level+1)/2; 

y=weights(1)+x'*weights(2:num+1); 

 

******************************************************************************

************ 

nextstate.m 
function sys=NextState(x,u) 

global ref level; 

num=level*(level+1)/2; 

sys=x; 

for i=1:num 

    if(u>=ref(i,2)) 

        sys(i)=1; 

    elseif(u<=ref(i,1)) 

        sys(i)=-1; 

    else 

        sys(i)=x(i); 

    end 

end 
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******************************************************************************

************ 

FindOneCycle.m 
 

function y=FindOneCycle(data) 

len=size(data,1); 

i=1; 

stop=0; 

while(stop<3) 

    i=i+1;   

    if(data(i,1)>0.5) 

        stop=stop+1; 

    end     

end 

stop=0; 

while(stop<3) 

    i=i+1;   

    if(data(i,1)<=0.5) 

        stop=stop+1; 

    end  

end 

start=i; 

 

while(data(i,1)<0.5) 

    i=i+1;      

end 

 

while(data(i,1)>=0.5) 

    i=i+1; 

end 

stop=i; 

 

y=data(start:stop,:); 
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******************************************************************************

************ 

objfun_weights.m 
 

function y=objfun_weights(w,x) 

 

global ref order level np nap output 

num=level*(level+1)/2; 

state=-1*ones(num,1);    %each state is related to the corresponding ref 

for i=1:length(x) 

    state=NextState(state,x(i)); 

    y(i,1)=Output(state,w); 

end    

 

function sys=NextState(x,u) 

global ref level; 

num=level*(level+1)/2; 

sys=x; 

for i=1:num 

    if(u>=ref(i,2)) 

        sys(i)=1; 

    elseif(u<=ref(i,1)) 

        sys(i)=-1; 

    else 

        sys(i)=x(i); 

    end 

end 

 

function y=Output(x,weights) 

global level 

num=level*(level+1)/2; 

y=weights(1)+x'*weights(2:num+1); 
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******************************************************************************

************ 

objfun_dynamics.m 
function y=objfun_dynamic(w,x) 

global frequency tao delay seg simin simout T ti initial 

pp=1; 

tao=w(1:2); 

%delay=[0 0]; 

for fi=1:length(frequency) 

    if(frequency(fi)<=10) 

        T=1/300; 

        initial(1:2)=w(3:4)*T; 

    else         

        T=1/(frequency(fi)*30); 

        initial(1:2)=w(3:4)*T; 

    end 

     y(pp:pp+seg(fi)-1,1)=obj_Preisach(w,x(pp:pp+seg(fi)-1)); 

     pp=pp+seg(fi); 

 end 

******************************************************************************

************ 

obj_Preisach.m 
 

function y=obj_Presaich(tc,x) 

global T tao delay level initial 

 

num=level*(level+1)/2; 

state=-1*ones(3*num,1); 

%delay=[0 0];%tc(3:4); 

tao=tc(1:2); 

 

for i=1:length(x) 

    t=i*T; 
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    state=Update(t,state,x(i)); 

    y(i,1)=Output(t,state,x(i)); 

end 

 

function sys=Update(t,x,u) 

global ref interval delay tao level T initial 

num=level*(level+1)/2; 

sys=x; 

for i=1:num 

    base=3*(i-1); 

    if(x(base+1)==1)  % this relay is 'on' 

        if(u<ref(i,1)) 

            sys(base+2)=t; 

            sys(base+1)=-1; 

            tmp=((t+initial(1))-x(base+2)-delay(1)); 

            if(tmp<0) 

                tmp=0; 

            end 

            if(tao(1)<10^-6) 

                ratio=0; 

            else 

                ratio=exp(-(tmp)/tao(1)); 

            end 

            sys(base+3)=1-(1-x(base+3))*ratio; 

            end 

        continue; 

    else                 %this relay is'off' 

        if(u>=ref(i,2)) 

           sys(base+2)=t; 

           sys(base+1)=1; 

           if(x(base+2)==-1)  %first time 

               sys(base+3)=-1; 

           else 

%               sys(base+3)=-1; 
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                tmp=((t+initial(2))-x(base+2)-delay(2)); 

                if(tmp<0) 

                    tmp=0; 

                end 

                if(tao(2)<10^-6) 

                    ratio=0;                     

                else 

                    ratio=exp(-(tmp)/tao(2)); 

                end 

                sys(base+3)=-1+(x(base+3)+1)*ratio;               

           end 

       end 

    end 

end 

 

function sys=Output(t,x,u) 

global weights level delay tao T initial 

sys=weights(1); 

num=level*(level+1)/2; 

for i=1:num 

    base=3*(i-1); 

    if(x(base+2)==-1)   %for the first time 

        sys=sys+(-1)*weights(i+1); 

        continue; 

    end 

    if(x(base+1)==1)  %is on 

       tmp=((t+initial(1))-x(base+2)-delay(1)); 

            if(tmp<0) 

                tmp=0; 

            end 

        if(tao(1)<10^-6) 

            ratio=0; 

        else 

            ratio=exp(-(tmp)/tao(1)); 
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        end 

        response=1-(1-x(base+3))*ratio;                 

    else   %is off 

       tmp=((t+initial(2))-x(base+2)-delay(2)); 

          if(tmp<0) 

             tmp=0; 

          end 

          if(tao(2)<10^-6) 

              ratio=0; 

          else 

              ratio=exp(-(tmp)/tao(2));               

          end 

               

       response=-1+(x(base+3)+1)*ratio; 

    end 

    sys=sys+response*weights(i+1);  

end   

sys=sys; 

 

******************************************************************************

************ 

iden_xls.m 
 

%identification weights 

global iden_current 

%generating the matrix for LSM 

load 'iden_data.mat'; 

level=length(iden_current)-1; 

num=level*(level+1)/2+1; 

x0=zeros(num,1)+abs(rand(num,1)); 

lb=zeros(num,1); 

options = optimset('Display','iter','MaxFunEvals',10^10,'MaxIter',70,'TolFun',10^-50,'TolX',0); 

x = lsqcurvefit(@objfun_weights,x0,iden_data(:,1),iden_data(:,2),lb,[],options); 

weights=x; 
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save 'xls_weights.mat' weights; 

num=level*(level+1)/2+1; 

load 'xls_weights.mat'; 

x=weights; 

clear data; 

clear y; 

load '1hzsmooth\12.mat' data; 

state=-1*ones(num-1,1); 

for i=1:size(data,1) 

    state=NextState(state,data(i,1)); 

    y(i,1)=Output(state,x); 

end  

xx=1:size(data,1); 

plot(data(:,1),data(:,2),'r',data(:,1),y); 

figure(2); 

plot(xx,data(:,2),xx,y,'r-.'); 

legend('experiment data','model output');     

 

******************************************************************************

************ 

iden_dynamics.m     
%identify Tc and Td 

clc 

clear all; 

run preparedataforexcel; 

global weights seg simin simout ti initial frequency 

load 'xls_weights.mat' weights; 

pp=1; 

for fi=1:length(frequency) 

    ss=['iden_hf100\' num2str(frequency(fi)) '.mat']; 

    load(ss); 

    len=size(iden_hfdata,1); 

    alldata(pp:pp+len-1,:)=iden_hfdata; 

    pp=pp+len; 
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    seg(fi)=len;     

end 

lb=zeros(2,1); 

up=1*ones(2,1); 

x0(1,1)=0.0014; 

x0(2,1)=0.0008; 

options = optimset('Display','iter','MaxFunEvals',10^10,'MaxIter',50,'TolFun',10^-50,'TolX',0); 

x = lsqcurvefit(@objfun_dynamic,x0,alldata(:,1),alldata(:,2),lb,up,options); 

tc=x; 

save 'tc.mat' tcd;   
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