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Resumen en Español

A lo largo de las últimas décadas, la ingeniería de precisión ha tenido un
papel importante como tecnología puntera donde la tendencia a la reducción
de tamaño de las herramientas industriales ha sido clave. Los procesos in-
dustriales comenzaron a demandar precisión en el rango de nanómetros a mi-
crómetros. Pese a que los actuadores convencionales no pueden reducirse
lo suficiente ni lograr tal exactitud, los actuadores piezoeléctricos son una tec-
nología innovadora en este campo y su rendimiento aún está en estudio en la
comunidad científica.

Los actuadores piezoeléctricos se usan comúnmente en micro y nanome-
catrónica para aplicaciones de posicionamiento debido a su alta resolución y
fuerza de actuación (pueden llegar a soportar fuerzas de hasta 100Newtons) en
comparación con su tamaño. Todas estas características también se pueden
combinar con una actuación rápida y rigidez, según los requisitos de la apli-
cación. Por lo tanto, con estas características, los actuadores piezoeléctricos
pueden ser utilizados en una amplia variedad de aplicaciones industriales.

Los efectos negativos, como la fluencia, vibraciones y la histéresis, se es-
tudian comúnmente para mejorar el rendimiento cuando se requiere una alta
precisión. Uno de los efectos que más reduce el rendimiento de los PEA es
la histéresis. Esto se produce especialmente cuando el actuador está en una
aplicación de guiado, por lo que la histéresis puede inducir errores que pueden
alcanzar un valor de hasta 22%. Este fenómeno no lineal se puede definir como
un efecto generado por la combinación de acciones mecánicas y eléctricas que
depende de estados previos. La histéresis se puede reducir principalmente
mediante dos estrategias: rediseño de materiales o algoritmos de control tipo
feedback. El rediseño de material comprende varias desventajas por lo que el
motivo principal de esta tesis está enfocado al diseño de algoritmos de control
para reducir la histéresis.

El objetivo principal de esta tesis es el desarrollo de estrategias de control
avanzadas que puedan mejorar la precisión de seguimiento de los actuadores
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piezoeléctricos comerciales. Aunque se utilizó un actuador piezoeléctrico com-
ercial, la idea es que estas estrategias puedan ser aplicadas en sistemas sim-
ilares con histéresis como principal fenómeno no-lineal. Además de que los
algoritmos deben generar una señal de control adecuada para proteger el hard-
ware, también deben cumplir con una complejidad de cálculo numérico limitada.
Las características comunes en cuanto a la comparativa de estrategias, están
basadas en:

• Desarrollo de estrategias de control avanzadas destinadas a reducir la
histéresis de actuadores piezoeléctricos comerciales. Los modelos de
control tienen entradas correspondientes a la señal de posición y error
obtenidos de la posición del actuator.

• Implementación y validación teórica y experimental de los algoritmos de
control. La implementación se realizó en un piezoelectrico comercial a
modo de evaluación aunque es posible escalar las estrategias a otros
actuadores similares que posean histeresis.

• Evaluación de la medición del error de seguimiento a través de métricas
de rendimiento. Las comparativas visuales pueden no ser suficientes y
la generación de medidas númericas puede representar una ventaja para
mostrar ventajas explicitas en una comparación entre dos esquemas.

• Diseño de cada controlador con señales de actuación que no aumenten el
desgaste del actuador y teniendo en cuenta la comparación de los requer-
imientos de cómputo. Otras caracteristicas importantes que se tuvieron
en cuanta estan relacionadas con un diseño de arquitectura sencilla para
la implementación, bajo consumo, precisión, estabilidad y robustez.

La comparativa con métodos clásicos e industriales, permitieron analizar las
ventajas de las estructuras planteadas. Es por ello que se utilizó un control PID
ya que tiene un diseño intuitivo y simple que permite que la señal de pocision-
amiento se mantenga próxima a la referencia. Los parámetros del controlador
se ajustan tras el análisis de dicha respuesta. Es por esto que este tipo de
control es el más utilizado porque es un control sencillo que proporciona unos
resultados aceptables. Sin embargo, en el caso de sistemas complejos con
dinámica fuertemente no lineal como la histeresis que es un efecto no-lineal
dependiente del tiempo. El funcionamiento del sistema mejoró, en gran me-
dida, utilizando técnicas de control avanzadas.
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La disminución de la histéresis y la disminución del error de seguimiento
se realizó en combinación entre esquemas feedback-feedforward. La compen-
sación feedforward tiene como objetivo mapear la no linealidad del disposi-
tivo para compensar la histeresis; en esta investigación se ha demostrado que
esta técnica es efectiva. Por otro lado, la reducción de errores, los cambios
dinámicos y los efectos desconocidos son propiedades que aunque el control
que feedforward no logra compensar, pueden abordarse con una estrategia
de retroalimentación (o feedback). Este último ofrece una solución que puede
aumentar la precisión del controlador, aunque su uso puede resultar en un mar-
gen de ganancia bajo que restringe el uso de controladores de alta ganancia.
En esta investigación se optó principalmente por una combinación de ambos
marcos (feedback-feedforward) para el análisis e implementación. Los contro-
ladores feedback-feedforward aumentaron la precisión del actuador a través de
las ventajas que ambas técnicas pueden proporcionar por separado. Las es-
trategías feedback-feedforward se pueden combinar de diferentes formas. En
este trabajo, la histéresis se compensó principalmente con redes neuronales
artificiales combinadas con controladores convencionales, de lógica difusa y
control de modo deslizante.

Las redes neuronales artificiales pretenden imitar la plasticidad neuronal
del cerebro humano para el aprendizaje de distintos conceptos. Se ha definido
una red neuronal como un sistema compuesto por muchos elementos de proce-
samiento (neuronas) que operan en paralelo, cuya función es determinada por
la estructura de la red, las conexiones y el procesamiento realizado por los el-
ementos computacionales o nodos. Las redes neuronales pueden aprender a
partir de conjuntos de datos de entrenamiento que se reflejan en la estructura
de la red en modo de un conjunto de funciones lineales cuyos parámetros son
obtenidos a partir de un proceso estadístico con los datos. Se ha demostrado
que las redes neuronales pueden ser usadas con efectividad y precisión para la
identificación y el control de sistemas con dinámicas complejas, especialmente
para plantas no lineales que varían en el tiempo y que resultan más difíciles de
regular con métodos convencionales. En la vida real la mayoría de los proce-
sos industriales pertenecen a esta categoría, de ahí la necesidad de métodos
inteligentes para controlar esos sistemas. El interés creciente en las redes neu-
ronales se debe a su gran versatilidad y al continuo avance en los algoritmos
de entrenamiento de redes y en el hardware, lo que ha sido posible gracias a
que cada vez es más fácil disponer de computadores extremadamente rápi-
dos, a un precio competitivo, para implementar estos algoritmos. La mayoría
de las aplicaciones desarrolladas hasta ahora lo han sido en áreas de cálculo
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intensivo. Dentro del control hay también áreas con esos requerimientos como
la identificación en tiempo real y el control de grandes estructuras flexibles, o
en robótica, donde el uso de las redes neuronales pueden conseguir mejores
resultados. El desarrollo hardware de redes neuronales puede llevar a una
nueva revolución en las aplicaciones del control, similar a la producida con la
aparición de los microprocesadores.

La lógica borrosa o fuzzy, introducida por Lofti A. Zadeh (1965), es una
forma matemática de representar la imprecisión inherente al lenguaje natural.
La teoría de conjuntos borrosos resulta muy útil en aquellas situaciones en
que los datos y sus relaciones no pueden escribirse en términos matemáticos
precisos. Los conjuntos borrosos son una generalización de la lógica clásica
y contienen objetos que pertenecen de forma imprecisa o gradual al conjunto.
El grado de pertenencia viene definido por una función de pertenencia, que
usualmente toma valores entre 0 y 1. La primera aplicación de la lógica borrosa
al control fue realizada por Mamdani, en 1974. Su aspecto novedoso está en
que pretende emular la estrategia de control que seguiría un experto humano en
el control manual de un proceso más que el controlador en sí, y en que utiliza
información descrita en términos lingüísticos. Es una de las aproximaciones
más populares hoy en día en la industria, especialmente en Japón y se ha ido
consolidando, aunque más lentamente en USA y Europa. Tanto la teoría como
las aplicaciones de la lógica borrosa siguen actualmente en desarrollo, y ha
sido implementada con éxito en numerosas aplicaciones prácticas (como en
este trabajo de investigación), si bien sigue siendo también en algunos casos
un tema de controversia en la comunidad científica.

El control de modo deslizante (o SMC, por sus siglas en inglés) es un en-
foque no lineal cuya principal ventaja es que proporciona una respuesta ráp-
ida, robustez, estabilidad en entornos indeterminados y requiere bajos recur-
sos computacionales. Esta técnica posee una ley de control que cambia la
dinámica de un sistema en base a una superficie deslizante que asegura la
convergencia. Sin embargo, un inconveniente de esta estrategia es que los
estados pueden tardar en alcanzar un estado de equilibrio. Otro inconveniente
del control deslizante es la generación de vibraciones (o chattering) causada
por la discontinuidad propia del esquema. El chattering se puede atenuar con el
uso de derivadas de la superficie deslizante que pueden ayudar a disminuir este
efecto. Está técnica se ha denominado como controlador de modo deslizante
de orden superior (o HOSMC, por sus siglas en inglés). Cuando se utilizan
derivadas, la convergencia de tiempo finito está garantizada al origen, mientras
que el SMC convencional solo cede a la estabilidad asintótica. Leonid Fridman
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definió una segunda generación de SMC, denominada bajo el nombre de algo-
ritmo de torsión (o TA, por sus siglas en inglés) en la que se emplean derivadas.
Sin embargo, el uso de derivadas puede inducir un alto nivel de ruido en un es-
quema feedback. En este escenario, el algoritmo de super-torsión (STA, por
sus siglas en inglés) intenta contrarrestar estos problemas utilizando términos
integrales y evitando utilizar derivadas de orden elevado. Además, otra es-
tructura no convencional que también se encontró es la ley de convergencia
prescrita, que es un algoritmo de segundo orden conocido por su tasa de con-
vergencia y capacidades de seguimiento.

Estas combinaciones han sido analizadas en la plataforma comercial selec-
cionada. Los resultados se difundieron a través de diversas publicaciones que
se resumen a continuación:

• Control PID con compensaciones avanzadas tipo feedforward: En este
estudio se estudio una estructura de control tipo PID con distintas estrate-
gias de compensación a través de una identificación inversa del sistema.
En este sentido, se utilizaron tanto una estrategia lineal simple como el
uso de una red neuronal pre-entrenada. Finalmente se generó un algo-
ritmo puramente neuronal que contempla un PID neuronal con una com-
pensación de red neuronal.

• Compensación con identificador Hammerstein-Wiener (HW) y lógica bor-
rosa como controlador: Se utilizó una compensación de HW, el cual es un
método de identificación cuya estructura contempla una combinación de
bloques lineales y no lineales donde los parámetros se pueden hallar por
estimación comparativa con datos experimentales. Por lo tanto, se dis-
eñó y se implementó un controlador realimentado con lógica borrosa tipo
1 compensado con HW. Se realizaron comparativas con un controlador
tipo PID donde se midió la performance a través de la medición del IAE,
raíz del error cuadrático medio (RMSE) y raíz del error cuadrático medio
relativo (RRMSE). Los resultados obtenidos fueron favorables para la es-
tructura propuesta tanto en la precisión como el comportamiento de la
señal de control.

• Desarrollo de un algoritmo deslizante tipo super-twisting basado en redes
neuronales: Los controladores surper-twisting pertenecen a los deslizantes
de orden superior y se desarrollaron para reducir el chattering generado
por los controladores deslizantes convencionales. La innovación de esta
investigación fue la propuesta de un controlador tipo deslizante de orden
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superior con una red neuronal entrenada con datos experimentales para
reemplazar el término equivalente de un controlador deslizante conven-
cional. Además, se demostró la estabilidad teórica mediante un desar-
rollo de Lyapunov así como la experimental donde se midió IAE, RMSE y
RRMSE. Los resultados mostraron una ventaja significativa para el con-
trolador propuesto al igual que una señal de control adecuada.

• Desarrollo de un algoritmo deslizante tipo cuasi-continúo basado en redes
neuronales: Continuando con la tendencia del controlador explicado an-
teriormente, esta vez se realizó una estrategia similar, pero utilizando un
controlador deslizante cuasi-continuo. Este mismo fue diseñado para re-
ducir el chattering de un deslizante convencional y mantener la robustez.
La red neuronal se entrenó de nuevo con datos experimentales para reem-
plazar el término equivalente de un controlador deslizante convencional.
La comparativa se realizó con un control PID en un esquema experimen-
tal y se obtuvo una mayor precisión, utilizando como indicadores el IAE y
el RMSE. Además, se midió el chattering demanera numérica y se obtuvo
un valor también favorable el algoritmo planteado.

• Control de lógica difusa tipo 1 y 2 con compensación neuronal: en función
a la investigación y experiencia previa, se optó por probar nuevas estrate-
gias aún más avanzadas. En este sentido, se utilizaron controles difusos
de tipo-1 y tipo-1 en combinación con una red neuronal pre-entrenada.
En la comparativa se utilizó un controlador industrial tal como un PID y
se analizó, en base a datos experimentales, las ventajas de las estrate-
gias con y sin compensación feedforward. Esto generó como conclusión
que los controladores difusos con compensación tienen una significativa
mejora frente a la reducción del error y señal de control. También se
concluyó que la estructura de lógica difusa tipo 2 en conjunto con la red
neuronal, generó los mejores resultados en este estudio.

• Controladores neuronales avanzados de modo deslizante: En esta inves-
tigación, se compararon varios enfoques de control, basados en la com-
binación de control de modo deslizante y redes neuronales. Esto per-
mitió hacer frente a las no linealidades, mejorar la precisión y robustez
del posicionamiento del actuador. En particular, se analizó la aplicación
de diversas técnicas de control de modo deslizante de distintos ordenes,
como twisting, super-twisting y prescribed convergence law, en combi-
nación con redes neuronales. Estas técnicas se validaron experimental-

7



mente y se verificó la reducción del error entre los algoritmos de super-
twisting y prescribed convergence law. Finalmente, se evaluó el consumo
de tiempo computacional para las estrategias de control presentadas.
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Abstract

Piezoelectric actuators are micro electro-mechanical devices frequently em-
ployed in applications where nano- microdisplacement is required, because of
their high-precision performance that comes also with large actuation forces.
However, the positioning is affected substantially by non-linear effects being
hysteresis the most relevant one. The objective of this study is to enhance
the tracking accuracy of a commercial piezoelectric stack actuator. Hence, the
proposal is based on control algorithms that could compensate the hysteresis.
Different combinations and variations of sliding mode control strategies, fuzzy
logic and proportional-integral-derivative with feedforward compensations (like
Hammerstein-Wiener and artificial neural networks) were studied. Additionally,
experimental results were performed in a test bench with different comparisons
of the proposed control approaches. The outcomes showed enhancements in
terms of error reduction, generated control signal and robustness, which were
analysed in depth with the contrasted techniques for each case.

9



To my family and friends.

10



Contents

Resumen en Español 1

Abstract 9

Dedication 10

Acknowledgments 17

Acronyms 18

Glossary 20

1 Introduction 23
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Piezoelectric Actuators 26
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 A historical overview: from pyroelectricy to piezoelectric actuators 27
2.3 Working principles of piezoelectrical actuators . . . . . . . . . . . 28
2.4 Types of piezoelectric actuators . . . . . . . . . . . . . . . . . . . 30
2.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Experimental setup 35
3.1 Commercial piezoelectric actuator . . . . . . . . . . . . . . . . . 36
3.2 Hysteresis of the commercial piezoelectric actuator . . . . . . . . 36
3.3 Reference design . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Peripheral devices . . . . . . . . . . . . . . . . . . . . . . . . . . 38

11



4 Advanced Control Strategies for PEAs 41
4.1 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 PID compared with Neural PID for feedback and feedforward

structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.3 Hysteresis fitting with NN . . . . . . . . . . . . . . . . . . 44
4.2.4 Control structures used . . . . . . . . . . . . . . . . . . . 46
4.2.5 Proportional-integral-derivative . . . . . . . . . . . . . . . 47
4.2.6 PID With Linear FF Compensation . . . . . . . . . . . . . 48
4.2.7 Neural proportional-integral-derivative controller . . . . . 49
4.2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Fuzzy logic combinedwith HammersteinWiener feedforward com-
pensation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.3 Hysteresis fitting with Hammerstein-Wiener . . . . . . . . 59
4.3.4 Type-1 Fuzzy Control . . . . . . . . . . . . . . . . . . . . 60
4.3.5 Fuzzy logic controller stability proof . . . . . . . . . . . . 63
4.3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Super-twisting approach based on artificial neural networks . . . 72
4.4.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4.3 Super Twisting algorithm based on artificial neural networks 75
4.4.4 Stability proof of the proposed algorithm . . . . . . . . . . 78
4.4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Cuasi-continuous sliding mode control based on artificial neural
networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.5.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . 91
4.5.3 Quasi-continuous sliding mode control . . . . . . . . . . . 93
4.5.4 Neural Network Compensation Design . . . . . . . . . . . 94
4.5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.6 Fuzzy Logic Controllers Type-1 and Type-2 combined with Artifi-
cial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 105

12



4.6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.6.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . 105
4.6.3 Time delay neural network . . . . . . . . . . . . . . . . . 108
4.6.4 Fuzzy logic controllers . . . . . . . . . . . . . . . . . . . . 109
4.6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.7 Sliding mode controllers combined with ANNs with evaluation of
time consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.7.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . 119
4.7.3 Conventional Sliding Mode Control . . . . . . . . . . . . . 122
4.7.4 Twisting algorithm . . . . . . . . . . . . . . . . . . . . . . 124
4.7.5 Super Twisting algorithm . . . . . . . . . . . . . . . . . . 125
4.7.6 Prescribed Convergence Law . . . . . . . . . . . . . . . . 125
4.7.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.7.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 129

5 Conclusions, Major Contributions and Future Guidelines 131
5.1 Conclusions and contributions . . . . . . . . . . . . . . . . . . . 131
5.2 Future guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Appendix A Published & Accepted Articles 138

References 168

13



Listing of figures

2.1 Schematic description of PEA working principle. . . . . . . . . . 28
2.2 Material perspective description of the hysteresis in PEAs. . . . 29
2.3 Creep effect for a constant reference following. . . . . . . . . . . 30
2.4 Curie temperature contrasted with the piezoelectric coefficient. . 31
2.5 Schematic description of an Stack PEA. . . . . . . . . . . . . . . 32
2.6 Schematic description of a bending PEA. . . . . . . . . . . . . . 32
2.7 Schematic description of an ring bender PEA. . . . . . . . . . . 33

3.1 Thorlabs PK4FYC2 piezoelectric actuator [46] . . . . . . . . . . . 37
3.2 Experimental hysteresis graph of a PEA. . . . . . . . . . . . . . . 38
3.3 Hardware and software flow of the PEA experimental rig. . . . . 40

4.1 TDNN Architecture in terms of delay inputs . . . . . . . . . . . . 45
4.2 MSE vs trained epochs . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Hysteresis fitting with ANN and the associated error . . . . . . . 47
4.4 Linear interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 PID on feedback and linear compensation on FF . . . . . . . . . 49
4.6 Single neuron PID . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.7 Comparison of guidance and error with a PID as a controller in

the close loop and feedforward compensations. . . . . . . . . . . 52
4.8 Comparison of error with a PID as a controller in the close loop

contrasted with a linear FF compensation . . . . . . . . . . . . . 53
4.9 Comparison of error with a PID as a controller in the close loop

contrasted with linear and ANN FF compensation . . . . . . . . . 54
4.10 Error comparison with a Neural FF compensation with a conven-

tional PID and a SNPID . . . . . . . . . . . . . . . . . . . . . . . 55
4.11 Control signal of a Neural FF compensation with a conventional

PID and a SNPID . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.12 Type 1 fuzzy logic control structure. . . . . . . . . . . . . . . . . 60

14



4.13 Definition of μ(x) vs the universe of discourse. . . . . . . . . . . . 61
4.14 Type 1 triangular overlapped membership functions . . . . . . . 61
4.15 Schematic description of FLC-T1 process . . . . . . . . . . . . . 62
4.16 Hysteresis graph description where (a) corresponds to the fitting

and (b) to the associated error. . . . . . . . . . . . . . . . . . . . 66
4.17 Comparison of error and control signal between PID and FLC.

(a): Error; (b): Control signal; (c) Control signal at the top peak ;
(d): Control signal near the lower peak; (e): Control signal after
the lower peak. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.18 Comparison of error and control signal between FLC and FLC
with HW. (a): Error; (b): Control signal; (c): Control signal near
the lower peak; (d): Control signal after the lower peak. . . . . . 69

4.19 Piezoelectric material polarization with an electric field where: (a)
is in a neutral state, (b) is with an applied field and (c) is after the
electric field action. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.20 Recurrent ANN architecture . . . . . . . . . . . . . . . . . . . . . 77
4.21 Performance of the LRNN where: (a): hysteresis fitting; (b): error

approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.22 Error comparison between the ST-ANN and the PID structures . 86
4.23 Control signals comparison of the ST-ANN and the PID . . . . . 87
4.24 Error comparison between the ST-ANN and the PID structures

for a sine wave tracking reference . . . . . . . . . . . . . . . . . 88
4.25 Control signal comparison between the ST-ANNand the PID struc-

tures for a sine wave tracking reference . . . . . . . . . . . . . . 89
4.26 ANN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.27 Ability of the ANN to fit to the PEA nonlinearity, where: (a) is the

hysteresis graph contrast and (b) the error of the fitting . . . . . . 96
4.28 Error generated in 2 cycles of a triangular reference. . . . . . . . 98
4.29 Control signal in 2 cycles of a triangular reference. . . . . . . . . 98
4.30 Error generated in 2 cycles of a sine wave reference. . . . . . . . 99
4.31 Control signal in 2 cycles of a sine wave reference. . . . . . . . . 100
4.32 Error generated in 2 cycles of a triangular reference with variable

amplitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.33 Control signal in 2 cycles of a triangular reference with variable

amplitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.34 Time delay neural network structure . . . . . . . . . . . . . . . . 109
4.35 Structure of a fuzzy logic controller type-2. . . . . . . . . . . . . . 110
4.36 FLC-T2 Membership functions . . . . . . . . . . . . . . . . . . . 110

15



4.37 ANN capability to fit with the PEA studied nonlinearity where: (a)
is the hysteresis graph and (b) is the fitting error . . . . . . . . . 112

4.38 Error acquired during the test of the feedback controllers. . . . . 114
4.39 Control signal acquired during the test of the feedback controllers.115
4.40 Error acquired during the test of the feedback-feedforward con-

trollers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.41 Control signal acquired during the test of the feedback-feedforward

controllers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.42 Tracking error comparison of the embedded controllers . . . . . 127
4.43 Control signal comparison of the embedded controllers . . . . . 128
4.44 Computational time comparison of the embedded controllers . . 129

16



Acknowledgments

First, I would like to say thanks to Dr. Oscar Barambones and Dr. Isidro Calvo
for their support during this research period. Words cannot describe my grati-
tude to they. Also, to the University of the Basque Country (UPV/EHU) for the
opportunity to develop this research.

Secondly, I would like to say thanks to my family and friends who support me
during these years. Their accompaniment was very important for me. Also to
my new friends that I met in Vitoria who had give me a huge encouragement at
any time.

Last but not least, I would like to say thanks to my friend Dr. Mohamed Derbeli
for his support, ideas shared and hard-work capabilities. He has been an im-
portant partner in this research and a great team player from whom I had the
pleasure to work with.

17



Acronyms

AFM: Atomic force microscope
ANN: Artificial Neural Network
BB: Black-box
BW: Bouc-Wen
EKM: Enhanced Karnik-Mendel
FF: Feed-forward
FLC: Fuzzy logic control
FLC-T1: Fuzzy logic control type-1
FLC-T2: Fuzzy logic control type-2
FOU: Footprint of Uncertainty
HOSMC: High order sliding mode control
HW: Hammerstein-Wiener
IAE: Integral of the absolute error
IASC: Iterative algorithm with stop condition
ISMC: Integral Sliding mode control
LCP: Lower converging point
LM: Levenberg-Marquardt
LQG: Linear quadratic gaussian
LRNN: Layer-recurrent neural network
LTP: Lower target point
LTR: Loop transfer recovery
MEMS: Micro electro-mechanical system
MLP: Multilayer perceptron
MSE: Medium-squared error
NARX: Non-linear Auto-Regressive Network
NLMPC: Non-linear model predictive control
PCL: Prescribed convergence law
PEA: Piezoelectric actuator
PI: Prandtl-Ishlinskii

18



PID: Proportional-integral-derivative
PSO: Particle Swarm Optimisation
PZT: Lead Zirconate
QCSMC: Cuasi-continous sliding mode control
QCSMC-ANN: Neural cuasi-continous sliding mode control
RMSE: Root-mean-squared error
RRMSE: Relative root-mean-squared-error
RTI: Real-Time Interface
SMC: Sliding mode control
SNPID: Single-neuron proportional-integral-derivative
STA: Super-twisting algorithm
ST-ANN: Neural super-twisting algorithm
TA: Twisting algorithm
TDNN: Time Delayed Neural Network
UTP: Upper target point

19



Glossary

Pi: Electric displacement vector
i: i-th index notation
j: j-th index notation
k: k-th index notation
σjk: Stress tensor
dijk: Matter tensor
d33: Piezoelectric Coefficient
Tc: Curie Temperature [ºC]
α: Displacement Slope[μ/V]
δ: Vertical offset [μ]
ei: Error of the i-th sample
ri: Reference value of the i-th sample
N: Total amount of samples
ΔT:Sampling time [s]
Wi: Weight of the i-th neuron at the hidden layer
bi: Bias of the i-th neuron at the hidden layer
Wj: Weight of the j-th neuron at the hidden layer
bj: Bias of the j-th neuron at the hidden layer
Kp: Proportional gain
Ki: Integral gain
Kd: Derivative gain
Xi: Error decomposition for neural controller where i = 1…3
ηi: Learning rate for every Xi
K: Neural Proportional-integral-derivative gain
q−1: Time shift operator
nb: Degree of transfer function numerator of a Hammerstein-Wiener block
nf: Degree of transfer function denominator of a Hammerstein-Wiener block
nd: Degree of transfer function delay of a Hammerstein-Wiener block
ymeasured: Measured output data for FitPercent calculation

20



ymodel: Measured output data from model for FitPercent calculation
ymeasured: Mean measured output data for FitPercent calculation
KE: Error gain of a fuzzy logic controller
KED: Derivative of error gain of fuzzy logic controller
Ko: Output gain of fuzzy logic controller
PB:Positive big
PM: Positive medium
PS: Positive small
Z: Zero
NS: Negative small
NM: Negative medium
NB: Negative big
μa: Input membership function distribution of a fuzzy logic controller
ΔU: Change in the control signal generated
μd: Output membership function distribution of a fuzzy logic controller
V: Lyapunov Function
E: Normalized error
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1
Introduction

1.1 Motivation

Throughout the last decades, precision engineering have had an important role
as a cutting-edge technology where the downsizing trend of industrial tools be-
gan to be required [1]. Industrial processes began to demand accuracy is in
the range of few nanometers to micrometers. Despite that conventional actu-
ators may not be able to be reduced or achieve such exactitude, piezoelectric
actuators (PEAs) are still a new technology and their performance is still under
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scrutiny in the research community.
Piezoelectric actuators are commonly used in micro and nano-mechatronics

(also known as micro electro-mechanical systems or MEMS) for positioning ap-
plications due to their high resolution and strength (above 100 Newtons) in com-
parison to their size. All these features can also be combined with a fast actua-
tion and stiffness, depending on the application requirements. Therefore, with
these features, PEAs can grant a wide variety of industrial applications.

Negative effects such as as creep, vibration dynamics and hysteresis, are
commonly studied to enhance the performance when high accuracy is required.
Nevertheless, one of the most studied effects that reduces the performance on
PEAs is hysteresis. Specially when tracking is the role of the PEA, this phe-
nomenon can induce errors which can reach a value of 22% [2]. According to
Bashash et al. [3], hysteresis can be defined as input/output effect combined
of mechanical and electrical actions that depends on the memory or previous
states. Hence, this implies that future outputs may be predicted based on the
formerly record. Hysteresis can be reduced mainly by means of two strategies:
material re-design or closed loop control algorithms [4]. Due to several down-
sides which will be explained in further sections, the latter option is a suitable
choice which will be the major motivation of this thesis.

1.2 Objectives

The main objective of this thesis is the development of advanced control strate-
gies which could improve the tracking accuracy of commercial piezoelectric ac-
tuators. Although that a commercial PEA was selected for the experiments, all
the control strategies developed are aimed to be used in similar actuators with
hysteresis. These control proposals had to accomplish not only a suitable con-
trol signal but also had to be reliable for the workbench hardware so that the
numerical calculation complexity could be limited. Therefore, in each layout,
the common and remarkable points were taken into account as:

• Development of advanced control strategies aimed to reduce the hystere-
sis of commercial piezoelectric actuator.

• Theoretical and experimental implementation and validation of the control
algorithms.
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• Evaluation of tracking measurement through performance metrics.

• Design of each controller with reliable control signals and comparison of
the computing requirements.

1.3 Structure

This thesis is arranged in a comprehensive way to guide the readers to im-
plement different control algorithms at PEAs. Several control approaches are
proposed and the results of the experiments are discussed. A total of 6 sub-
chapters were developed to show the outcomes gathered during the period of
research.

Chapter 2 introduces the PEAs from historical facts since the discovery of
the piezo-electricity and important events that derived in nowadays configura-
tions. Then, a brief explanation about the working principle is detailed with a
link to the hysteresis phenomena. Well-known and up-to-date applications are
also reviewed to show how important this devices are for industries and the re-
search community. At the end, an explanation about the PEA model used in
this research is explained.

Chapter 3 explains the hardware that was used for the experiments. Since
this thesis focuses mainly in a PEA, an in-depth analysis of the commercial PEA
is provided within a study of the acquired hysteresis. Also, an explanation of the
reference design is specified. Additionally, the peripheral used hardware is also
described with its details.

Chapter 4 provides a summary of the control structures used in the research.
Further details about the compensation strategies were also explained, such as
artificial neural networks and Hammerstein-Wiener for instance. The obtained
results from the testing in real time were explained in-depth in case that re-
searchers would like to replicate the analysed strategies. At the end of each
research, a conclusion was supplied to highlight the main outcomes gathered
from each.

Finally, Chapter 5 concludes with a summary of themost important outcomes
gathered along the research period. Moreover, future lines or gaps for research
are present based on the analysis provided.
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Everything is theoretically impossible, until it is

done.

R. Heinlein

2
Piezoelectric Actuators

2.1 Introduction

This chapter provides an introduction to the basics of piezoelectric actuators.
A brief history of the piezoelectric actuators since the discovery of the effect is
introduced. Also, the working principle is explained and the hysteresis concern
is developed. Because it is one of major topics of this thesis,alternative options
to reduce phenomenon are explained. Since piezoelectric actuators are avail-
able in different geometries, the types of actuators available in the market are
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described.

2.2 A historical overview: from pyroelectricy to piezoelectric actuators

Piezoelectricity was discovered by Jaques and Pierre Curie in 1880 where they
found that if a pressure was applied to asymmetric crystals (they examined tour-
maline, zinc blende, boracite, topaz, calamine and quartz), then a electrical
polarization was produced and a mirrored effect with a negative voltage was
measured [5]. In this case, the crystal symmetry property is related to the third
dimensional relation between stress and electric excitation such that:

Pi = dijkσjk (2.1)

Where Pi is the electric displacement vector, dijk is the piezoelectric mat-
ter tensor and σjk is the stress tensor [6]. Certainly, Equation 2.1 is an exten-
sion of the Hooke’s law to piezoelectric materials; these are considered as a
non-centrosymmetric material as it lacks of an inversion center in dijk, which is
considered as a fundamental property [7].

At that time, they defined this effect as pyroelectricity (conjunction of with
the greek word pyro that means fire) since they also measured a temperature
change in the poles. Nevertheless, piezoelectricity (where piezo means pres-
sure in greek) is mostly related to the generated voltage from a strain in the
material. Likewise, piezoelectricity can be produced with a voltage applied to
these crystals which will outcome a displacement.

In the following 20 years since the discovery, the foundations of theoretical
and experimental investigations were carried but with unpractical applications
for the industry. However, during the first world war, piezoelectricity took its
first important role as it began to be employed as a sensor by the french forces
to detect german submarines: the physicist Paul Langevin (former student of
Pierre Curie) developed a sonar which uses reflected sound waves to generate
a voltage [8]. Further important applications had been developed during the
1940’s when the Austrian neurologists Karl and Friederich Dussik used ultra-
sound waves to detect brain tumors based on piezoelectric sensors [9].

On the other side, PEAs have a relatively young history. These devices
use the inverse phenomenon to produce a mechanical displacement from an
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electrical excitation which allows micro- and nanopositioning being adequate
at high precision operations. It was not until the beginning of 1980 when re-
search team of the Tokio Institute of Technology in cooperation with Penn Uni-
versity, produced an high-precision deformable mirror for light focus based on
a PEA [10]. Almost 10 years later, the Cymbal transducer was patented by
Newnham et al. [11]; this consisted of a piezoelectric disk ensemble between
metal caps (similar to ring benders which will be explained in the following para-
graphs). The usage of these actuators allowed an explosion of applications in
the market in fields of photography, automotive, printing and computing [12].

2.3 Working principles of piezoelectrical actuators

A piezoelectric material works as an actuator when a voltage that is applied is
transformed in mechanical displacement [13]. A schematic description is pro-
vided in Figure 2.1. Not only a precise displacement can be generated but also
it can handle high static or dynamic forces [14]. Additional capabilities are re-
lated to vibrations control as they are able to handle high frequencies due to
their quick switching [15]. Nevertheless, the hysteresis is a major downside of
these actuators when they are required in high precision applications.

Figure 2.1: Schematic description of PEA working principle.

From a material level perspective, Anastasia Muliana provides an explana-
tion about the hysteresis generated in piezoelectric actuators on her study [16]:
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the polarization alignment of the crystals has an electro-mechanical coupling
which implies that when an electric field is applied, these are straighten and the
material extends its dimension (material polarization). Once that the electric
excitation is released, a residual polarization leaves the crystals in a polar posi-
tion that is different to the one from the beginning [17]. A graphical explanation
of this, is provided in Figure 2.2 where (a) shows a piezoelectric material with-
out electrical excitation. Then, (b) is when an electric field is applied and the
poles are aligned; finally, (c) is when the field is released and the poles have
the residual polarization.

Figure 2.2: Material perspective description of the hysteresis in PEAs.

The first option is perhaps themost complex one sincemany limitations need
to be taken into account. An example of this is the piezoelectric coefficient (also
known as d33), which determines the degree of induced strain at a particular
electrical field; furthermore, it is one of the main parameters that describes a
PEA performance [18]. Thus, a piezoelectric material will show less hysteresis
but at the expense of decreasing d33 since the material should be harder as
Figure 2.3 shows.

Despite that the usage of soft piezoelectric materials increases the piezo-
electric coefficient, also it has a temperature dependant effect which implies
that the design of a piezoelectric material requires a complex design in several
areas. Figure 2.4 shows the effect of piezoelectric coefficient against the Curie
temperature (Tc which value decreases exponentially within d33) [18]. Tc is a
temperature that is usually 10ºC below the Curie point, which represents the
temperature in which the piezoelectric material properties start to be lost [19].
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Figure 2.3: Creep effect for a constant reference following.

2.4 Types of piezoelectric actuators

Nowadays, the main types of PEAs that are being used in industry are stack,
bending and ring bending. These can be combined in different modes and me-
chanical structures for different purposes. Based on the explanation of [20], the
classification can be made as follows:

• Stack (Figure 2.5): These are produced through a stack of piezoelec-
tric disks that are electronically linked. This arrangement allows a linear
motion when a voltage is applied because the thickness of the layers in-
creases. In comparison to other options, the assets are related to support
a high longitudinal mechanical load. Nevertheless, high impact forces can
induce a device break due to its high stiffness. Common applications of
these are active vibration control [15], high precision machine tools [21]
and optical microsurgery [22].

• Bending (Figure 2.6): Also known as multi-layer actuators, in this case
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Figure 2.4: Curie temperature contrasted with the piezoelectric coefficient.

the movement is generated by an electric excitation that generates an in-
ternal piezoelectric motion which deforms the actuator as a deflection [23].
The advantages are associated with a simple structure, a low production
cost and the mechanical quality tends to be high; a main downside is the
poor resistance at high impact forces. These devices can be frequently
find in manipulation and imaging of atomic force microscopes (AFM) [24],
energy harvesting [25], micro-gripers [13], etc.

• Ring Bender(Figure 2.7): In this case, the actuator is a rounded disk
composed of thin layers of piezoelectric material that are placed in a side.
A bending motion is produced due to a deformation of the piezoelectric
ring that is attached to the laterals of the ring [26]. Also, since there is a
hole in the center of the device, it introduces flexibility at pressure mode
operations in high precision valves [27], micro-robotics [28], energy har-
vesting [29], etc.
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Figure 2.5: Schematic description of an Stack PEA.

Figure 2.6: Schematic description of a bending PEA.

2.5 Applications

Even-though that the previous mentioned PEAs geometrical configuration can
concede different types of applications, the following uses deserve to be high-
lighted as main technologies that are under research currently.

• Atomic force microscopy: An AFM is a device that helps to investigate
the mechanical interaction of cells with their environment [30]. This me-
chanical system combined with the usage of a laser beam and its reflec-
tion, allows the development of high resolution images of surfaces.

• Energy Harvesting: The discovery of piezoelectricity allowed the gener-
ation of voltage and therefore a current trend related to clean energies is
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Figure 2.7: Schematic description of an ring bender PEA.

based on this principle. Energy generation from piezoelectrics is related
to applying forces and obtain a voltage over time [31]. Cantilever configu-
rations are used for these applications due to their efficiency in vibrational
sources such as bridges, human motion or vehicle vibration [32].

• Piezoelectric motor: These devices are made from an arrangement of
PEAs which induce capabilities as high power-to-weight ratio in a compact
size, high precision and fast response time without any backlash [33]. The
shape change of the material allows a linear motion that is transformed in
rotational [34]. These are widely used in autofocus and optical stabiliza-
tion operation at cameras [35].

• Machine tools: Due to the high-precision features of PEAs, machine
tools can improve their precision which allows to be a trend topic in re-
search and industry of manufacturers [36]. The application had been
tested in diamondmachining [37], vibration assisted polishingmachines [38]
and ultrasonic processes [39].

• Micro-grippers: The downsizing characteristics of PEAs induced theminia-
turization of common tools for micro-manipulation. In this case, the in-
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troduction of PEA improves the power, force and precision of grippers
in comparison to alternative solutions such as electromagnetic, thermal,
shape memory alloy [40].

• Micro-drones: In 2013, researchers from Harvard University developed
a paperclip size microdrone which used a PEA to move the wings, called
RoboBee [41]. Later in 2019, they developed one of the lightest wireless
flying machine (based on bees) with a weight of 259mg, which was fed
through a small photo-voltaic array attached to the device [42].

• Spinal Injection devices: Spinal cord injection is a complex task where
high positioning accuracy is required in tasks such as open surgery or
magnetic resonance imaging. Meinhold et al. [43] provided a research
where they used a linear piezoelectric motor for a high accuracy position
mechanism which helped to improve the procedure of this complex injec-
tion.

• Drug delivery system: A drug delivery system helps patients with a med-
ical specific schedule. PEAs helped the downsizing of micropumps which
are commonly used in these procedures [44]. Current technologies of
PEAs also have to be considered due to bio-compatibility in terms of ma-
terials.

Nevertheless, piezoelectric actuators have several downsides which tend to
degrade their performance when precise tracking needs to be improved. The
major non-linearities identified at PEAs are creep, vibration dynamics and hys-
teresis. Regarding the latter mentioned, it is known that it can lead to an error
of 20%, which is a significant value when precision is required. Despite that
it is recommended to use conventional proportional-integral controllers to im-
prove the tracking, along this thesis, we developed different combinations of ad-
vanced control strategies. The performance of the proposed control approaches
was compared with PID (proportional-derivative-integral) controllers in terms of
tracking accuracy. Also, this aim has been considered with the control signal
developed so that the robustness and actuator life-time can be increased.
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It doesn’t matter how beautiful your theory is,

it doesn’t matter how you smart you are. If it

doesn’t agree with experiment, it’s wrong.

R. Feynmann

3
Experimental setup

This chapter describes the hardware architecture used. The proposed control
approaches tried to mitigate the hysteresis effect, the main issue to be reduced
and thus, it was measured during experiments. An in-depth analysis for the hys-
teresis curve is summarized at the most important spots to be considered at the
control design stage. Because the PEA operated with high voltage values, the
manufacturer provided peripheral devices which helped to conduct experiments
with signals that are more suitable for acquisition devices.
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3.1 Commercial piezoelectric actuator

The research made in this thesis has been carried with a commercial PEA to
generate the experiments with the analysed solutions. As the main actuator, we
used a Thorlabs PK4FYC2 which is a stack actuator manufactured with piezo-
electric chips made of lead zirconate (PZT) layers that are glued with epoxy and
glass beads. The maximum displacement is 38.5μm at 150V. Since the dis-
placement is micrometric and precision is required, the manufacturer included
four strain gauges that are configured in a Wheatstone bridge so that the mea-
surement could be obtained from resistance variation, which provided a better
resolution [45]. According to the manufacturer, the maximum error due to hys-
teresis phenomenon is 15%, which can be reduced through the usage of a PID
(this will be explained in the further sections)..

Values Units
Nominal Displacement 38.5 μm
Actuator Dimensions 7.3 x 7.3.36 mm
Force at maximum displacement 400 N
Blocking force 1000 N
Resonant frequency 34 kHz
Curie Temperature 230 ◦C

Table 3.1: PK4FYC2 Specifications from the manufacturer

3.2 Hysteresis of the commercial piezoelectric actuator

The mechanics of the hysteresis curve of the selected PEA is shown in Fig-
ure 3.2 which was produced by using 2 triangle cycles as input voltage. The
sequence starts at the initial point called lower target point (LTP) where the PEA
undertakes its operation. Thus, a first ascending curve (a) climbs until the upper
target point (UTP), which is the point where the actuator reaches the maximum
displacement. An important feature prior to continue with the description is that
in case of a new experiment and unless that the PEA is re-calibrated to start
from a null displacement, (a) will only appear once.

Thereafter, the fall is through an asymmetric path along the first descending
curve b until the lower converging point (LCP). This last-mentioned particular
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Figure 3.1: Thorlabs PK4FYC2 piezoelectric actuator [46]

point tends to be a convergence mark for all the following cycles except the
first one. Subsequently, the second operative cycle rises through the second
ascending curve (c) till reaches UTP, which is another convergence point. The
final driving for the two cycles input voltage ends at along d which is equivalent
with curve (b).

3.3 Reference design

Typically, triangular and sine waves are used at PEA actuators [47, 48]. Cer-
tainly, the sine represents a soft signal which generates an ellipse kind hystere-
sis graph where the alternative option provides a sharp form due to the slope
changes at the maximum driving voltage. In this research, both signals were
used for reference following although the hysteresis was envisioned through a
triangle wave. The latter mentioned includes high-frequency harmonics, strik-
ing slope changes and it is well used in industry like for atomic force micro-
scopes [49]. Therefore, the tracking control performance needs to be robust
enough. Several amplitudes were selected but taking into account the upper
voltage in order to avoid over-voltage issues and actuator life-span reduction;
the period were also different but above 1s.

Because the PEA was operated between 0-150V, this voltage range had to
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Figure 3.2: Experimental hysteresis graph of a PEA.

be transformed into a displacement reference. A proportional relation is defi-
cient since the LTP is merely for the first cycle, thus a linear transformation can
be traced between LCP and UTP with a the linear Equation (3.1) where the
slope α is among the two converging points and δ corresponds to the vertical
offset at the LCP.

Displacement[μm] = α · Voltage[V] + δ (3.1)

3.4 Peripheral devices

The 0-150V was generated by a single channel driver cube Thorlabs KPZ101
recommended for the PEA selected, which is flexible for a broad range of ac-
tuators. This device allows a convenient way of operation based on open loop
mode without the necessity of using a peripheral computer. Additionally, it is
also capable to work in close loop with an external signal of 0-10VCC up to a
maximum allowed bandwidth of 1kHz.

Since the measurement is based on a Wheatstone bridge, the elongation is
a resistance change which can be difficult to read due to the minor values, thus
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the manufacturer recommended to use the pre-amplifier AMP002. This device
is operated to extend the small differences on a 0-2VCC signal that is fed into
a cube reader Thorlabs KSG101. This instrument provides the PEA extension
in an embedded LED viewer and an output signal between 0-10VCC.

As previously mentioned, the driving and measurement signals were in the
range of 0-10VCC; thus, a dSPACE DS1104 board was used for acquisition
and control. This hardware also has the ability to operate in Real-Time Interface
(RTI), which is a framework link between dSPACE hardware and MATLAB. This
helps to reduce the compilation time for driving algorithms. This board was
connected through a PCI bus in a Dell Precision Workstation T3500 with an
Intel 64 2.4GHz microprocessor and 18Gb of available memory.

The control architectures were designed in Simulink, by Mathworks, and im-
plemented through dSPACE RTI. The schemes were developed with flexibility
for real-time which allowed gain tuning and performance metric calculation. The
visualized data in real time was acquired and recorded in ControlDesk. The in-
formation gathered was processed and visualized in Matlab by Mathworks. The
sampling time for all the experiments was established at 1kHz since it suits the
relation between data acquisition and hardware physical limitation. A schematic
description of the flow between the hardware and the software is shown in Fig-
ure 3.3.
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Figure 3.3: Hardware and software flow of the PEA experimental rig.
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The important thing is to never stop questioning.

A. Einstein

4
Advanced Control Strategies for

PEAs

This chapter presents and compares diverse advanced control strategies as
applied to PEA actuators. These strategies have been implemented over a
commercial PEA, a Thorlabs PK4FYC2. The choice of controllers was based
on fast compensation of error and its reduction as well. Additionally, the control
signal was analysed to avoid hardware damage. Performance metrics related
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to accuracy such as integral of the absolute error, root-mean-squared error and
relative root-mean-squared error were calculated in each case to establish a
final comparison of each implemented algorithm in terms of error reduction.

4.1 Performance Metrics

In this research, the control architectures were implemented in experiments to
verify and compare their performance. The tuning of the control parameters
was executed through Integral of the Absolute Error (IAE) reduction which has
the expression present in Equation 4.1 with the intention of reducing the error
to zero. The parameter N is an observation data length time for the calculation,
where in this case it was chosen to be equivalent to the period of the triangle
signal used.

Although the IAE indicates the guidance performance, which is one of the
essential goals of this research, other metrics were used so as to reflect the
improvements as authors from [49] did in their work: the root-mean-square error
(RMSE) and the relative root-mean-square-error (RRMSE). The last two terms
of Equation 4.1 are the numerical definitions where ei and ri are the error and
the reference in the i-th sample, respectively. Additionally, the generated control
signal was also inspected in order to avoid actuator damaging.

IAE =
N∑
i=1

|ei|Δt

RMSE =

√
1
N

N∑
i=1

(ei)2

RRMSE =

√
N∑
i=1

(ei)2/
N∑
i=1

(ri)x100

(4.1)
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4.2 PID compared with Neural PID for feedback and feedforward structures.

4.2.1 Contributions

The main contributions of this section are:

• An analysis of different feed-forward (FF) blocks such as linear and neural
for a combination with feedback structures.

• Contrasts of FF with conventional PIDs in order to evaluate each perfor-
mance.

• The inclusion of a novel combination based on a neural PID with the best
obtained FF to check the demeanour with advance structures.

• Experimental data which has been analysed in terms of previous men-
tioned metrics.

4.2.2 State of the art

Hysteresis origins in PEAs are complex since can be related to material prop-
erties and electric field combined with mechanical strain [4] which can induce
a severe open-loop position error (up to 22% of travel range) [2]. Even though
the hysteresis is an effect that cannot be excluded, a control strategy should be
designed and implemented so that the position error can be diminished and the
PEA can be used in a high precision application. State observers or FF control
combined with feedback approach is often used to achieve the best precision
in tracking [50]. Usually, compensation is provided with an inverse hystere-
sis model where the most common ones are Prandtl-Ishlinskii (PI) [51, 52] or
Bouc-Wen (BW) [53, 54]; however, these models have certain limitations like
complexity to be inverse. For example, since the PI is a combination of several
parameters, hence it cannot be analytically inverted so there are approxima-
tions like direct identification or iterative algorithms based methods [55]. Other
models such as BW are efficient although the performance lowers when the
device has enough non-linear asymmetry [56].

Despite the complexity or the low performance of the inverse model com-
pensation, another approach is artificial neural networks (ANN) as system iden-
tification which is widely used for clustering, recognition, pattern classification,
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optimization and prediction [57–59]. In this case, a FF ANN type works with
one or more hidden layers which are linked between the input and output and
internally, these nodes are fully connected by weights. A common approach of
ANN BB identification is with non-linear auto-regressive networks (NARX) [60].
In this research, an alternative NARX framework was used for prediction, which
is a time-delayed neural network (TDNN) where the inputs are added as speci-
fied delays for prediction [61, 62]. Even though this approach might reduce the
ANN performance but still, the architecture complexity can be simpler and the
self-learning ability is sufficiently powerful. Nonetheless, the accuracy of the
prediction also depends on the amount and quality of data, which was obtained
from the real device for this research.

On the other hand, a fully connected control architecture needs to have a
feedback controller to reduce errors during the guidance. As a first approach,
a PID without FF was tested and as the system had a strong non-linearity,
the performance needed to be improved. Cutting-edge research from recent
years in terms of new PID techniques for PEAs have provided a growth in the
guidance efficiency such as the single-neuron proportional-integral-derivative
(SNPID) [49, 63]. This framework acts with a single neuron system which uses
Hebbs self-learning law to update its weights. The combination provided satis-
factory results in comparison with the PID controller.

4.2.3 Hysteresis fitting with NN

The PEA non-linearity hysteresis can be considered as a mapping problem
since there can be two values for input, thus ANNs have many advantages
such as self-learning and simplicity, which is suitable to learn one hysteresis
curve. The ANN architecture used to fit the hysteresis loop was TDNN which is
a variance of a NARX but where the input weights have tap delays associated.
Hence, the output prediction y(t) depends on past values of the input and is
combined with a non-linear function f. In this case, the number of delays cho-
sen was 5, due to the default configuration of Matlab Deep Learning Toolbox.

y(t) = f(u(t− 1), ..., u(t− 5)) (4.2)

The function f is approximated to a combination of a hidden and an out-
put layer where each has its weights and activation functions. Regarding the
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training information, a triangle wave with the previously mentioned features
was used to obtain information for 10 seconds such as the displacement. In
terms of the training algorithm, due to the fast back-propagation the Levenberg-
Marquardt (LM) was chosen. This updates the weights and bias in terms of a
back-propagation and optimization where themainmetric is themedium squared
error (MSE). Boussaada et al. [60] provided a deep analysis of different training
algorithms where it was found that LM supplied efficient results. Since the FF
compensation was expected in terms of voltage, an inverse model was needed;
then, the input voltage used to obtained the hysteresis was the ANN target and
the displacement as the input.

Figure 4.1: TDNN Architecture in terms of delay inputs

Figure 4.1 displays the architecture of the TDNN where the weights and bias
are different of in each layer in terms of the subscripts i and j respectively. The
hidden layer uses a Tansig activation function whereas the output operates with
a Purelin. Based on a trial and error, the amounts of neurons was determined
on a range which was tested were from 5 to 30 and the optimal one was found
to be 22 in which the MSE was 0.004031. The convergence development was
found to be optimal since the following curves showed up that model over-fitting
is not an issue as Figure 4.2.

Figure 4.3 is a comparison with piezoelectric hysteresis loop and the ANN
fitting with the error on the right-hand side. Even-though that the MSE was suf-
ficiently small, the error in the comparison is around 0,5μm which is acceptable,
but even more interesting the ANN could manage the asymmetrical shape that
belongs to the device. The error compensation was expected to be done by the
feedback controllers which were implemented.
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Figure 4.2: MSE vs trained epochs

4.2.4 Control structures used

At the beginning of the experiments, simple and classical algorithms were tested
but increasingly complex algorithms were analyzed in order to improve the per-
formance of the controllers. As all solutions were based on real tests, the con-
trollers were tuned in real-time to achieve the best performance. As previously
mentioned, there were 4 structures which were evaluated:

• PID without FF compensation

• PID with Linear FF compensation

• PID with ANN FF compensation

• SNPID with ANN FF compensation

The comparison was done with the first three systems which included the
same PID tuning values (Kp, Ki and Kd). In every structure, it was considered
that the hysteresis loop curve was not the initial trajectory, as previously shown,
the initial rise is completely different from the following ones. The best result
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Figure 4.3: Hysteresis fitting with ANN and the associated error

of these three architectures was contrasted with the fourth one, which is an
ANN FF compensation with SNPID since the performance was expected to be
superior to others.

4.2.5 Proportional-integral-derivative

Although a PID is a classic controller, it is still a competitive approach nowa-
days [64]. The expression is divided in three parts: a proportional, an inte-
gral and a derivative; each term corresponds respectively to speed response,
steady-state error reduction and dynamics improvement [65]. Although there
are several techniques for tuning such as Ziegler-Nichols as a conventional op-
tion, the method of min{IAE} was unified for both control strategies. The struc-
ture defined by Equation (4.3) is defined by e(k) is the error, Δt is the sampling
time and the gains Kp, Ki and Kd correspond to the proportional, integral and
derivative term, respectively. These were tuned based on IAE reduction in real
time.

u(k) = Kpe(k) + Ki

k∑
i=1

e(i)Δt+
Kd[e(k)− e(k− 1)]

Δt
(4.3)
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4.2.6 PID With Linear FF Compensation

The second approach proposed was a linear compensation with the previous
PID (same constants). Surely, in this case, the linear FF block assumes that the
PEA behaves linearly as well. Consequently, this was reflected as Figure 4.4
displays where the maximum and minimum displacement were used to gener-
ate a straight line that could resemble the linearity. In this circumstance, the
feedback controller was expected to produce more compensation due to the
hypothesis previously mentioned as the errors increased.

Figure 4.4: Linear interpolation

Since the hysteresis has a different shape during the first cycle in which
the PEA starts at zero displacement and the following periods tend to a con-
vergence where the initial displacement is not zero anymore due to the device
properties and therefore, the curves are in a path to a common shape. Dur-
ing this research, a linear compensation was taken into account and hence,
a straight line was interpolated between the initial offset and maximum value
since the PEA was not expected to work only during the first cycle.
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Figure 4.5: PID on feedback and linear compensation on FF

4.2.7 Neural proportional-integral-derivative controller

A major disadvantage of PID controllers are the constants which must be mod-
ified to compensate the system nonlinearities. The avoidance of manual tuning
was found to be possible with a self-adaptive PID [49]. The error input to the
controller was discomposed into three variables (X1 , X2 and X3) in a similar way
to a conventional PID but there will be three associated weights (W1 , W2 and
W3) which are adjusted by normalization and a learning rate. Therefore, the
Hebb supervised learning rule is used to self-tune the weights and the whole
controller behaves like a ”single neuron”; this is a non-linear process unit which
is helped by the mentioned rule to adapt for a control process.

The error that went through decomposition or also called ”transducer”, com-
plied with Equation (4.4), which is an expression that is related to a conventional
PID controller as well. The three new variables were fed into the single neuron
with the learning where the algorithm corresponds with the Equations (4.5). Af-
terwards, the output of the SNPID is the Δue which is finally added with the
delayed signal like in Figure 4.6.

Xi =


X1 = Δe(k)
X2 = e(k)
X3 = Δe(k)− Δe(k− 1)

(4.4)

Based on [49], the weight that is more important due to environment is mainly
akin with X1 and X2 and then, a simplification of the previously presented equa-
tion can be achieved where the main control structure is related to a weight
update with the following normalization for calculation cut down and final con-
trol law.
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wi(k) = wi(k− 1) + ηi

[
e(k) + Δe(k)

]
u(k− 1) e(k)

w′
i(k) =

wi(k)∑3
i=1 |wi(k)|

u(k) = u(k− 1) + K
∑3

i=1 w′
i(k) xi(k)

(4.5)

Figure 4.6: Single neuron PID

Results

The experiments were conducted over the hardware described in Chapter 3,
where the four architectures were tested. The first try was with a conventional
PID (no FF compensation); the following comparisons were merged to show
up the performance improvement as the complexity increases. Finally, the last
contrast is made with two most sophisticated ones since the guidance, error
and control signal are more suitable to compare.

The PID gains were obtained in real-time during the first three experiments,
where the values are displayed in the following Table 4.1. Furthermore, Kp and
Ki were increased respectively to limits where the input voltage was not critical
for the device. On the other hand, the SNPID constants such as K was switched
in real-time as well on the same way whereas the learning rates η1, η2 and η3
were assumed as less than 0.5 as the references suggested [49], in this manner
was set to 0.4.

The first experiment was the close feedback loop with a PID as a controller.
Figure 4.7 displays the guidance embedded with the error where it can be seen
that the peaks of the signal had reduced the control performance since there
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Table 4.1: PID parameter value

Constant Value
Kp 10.6
Ki 1000
Kd 0

Table 4.2: SNPID constants value

Constant Value
K 8.5
η1 0.4
η2 0.4
η3 0.4

was a sign change in the behaviour. In the following sections, this feature will
be analysed in depth. The IAE had a value of 0.578 during the period that is
shown and it will be compared with the following results.

The second experiment was contrasted with the previous showed result but
now with a linear FF compensation. The new architecture increased the per-
formance since the error was worthy reduced as the Figure 4.7 shows due to
the FF addition. For this reason, the guidance efficiency had increased sub-
stantially although the values are still unreliable for a precision device. The IAE
values had significantly decreased to 0.1659, which is 3.48 times less due to
the improved framework.

Certainly, the addition of a sophisticated FF compensation such as an ANN
was expected to improve the performance and this was reflected in Figures 4.9
where the tracking had improved adequately. The error is fairly reduced com-
pared to the previously presented architectures and for this reason, it will be
analysed in-depth during the following subsection with the most advance frame-
work. As it was also expected, the IAEwas reduced to 0.0683 with this approach
and this results on a 2.42 times less than the previous framework.

Finally, the last architecture tested was the SNPID. Since the results be-
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Figure 4.7: Comparison of guidance and error with a PID as a controller in the close loop and
feedforward compensations.

haved similarly, an in-depth analysis regarding to error and control signal was
performed. Figure 4.10 reveals the error progression along with two triangle
reference as previously shown. The performance had undoubtedly increased
since themean error value tends to be very near to zero in both cases. However,
the perception of the SNPID had increased essentially the efficiency around
peaks (where the top values are in 1 and 3 seconds whereas the lower one is in
2 seconds). The FF with ANN compensation merged with the PID on feedback
shows that after the lower peaks, the error increased its amplitude extensively
and takes several fractions of a second to reduce it. Nevertheless, the frame-
work with a SNPID corrects these effects with a small perception which resem-
bles in a brief error increment which has less amplitude than the contrasted
method; another advantage that can be appreciated is the fast error correction
since the PID architecture had a slow demeanour to correct the error, the SNPID
had the ability to avoid this situation.

On the other hand, Figure 4.11 shows the control signal which is the sum
of the feedback controller and the FF compensation. It can be seen that both
signals are almost equal although there were not any drastic changes or sig-
nificant saturation which could reduce the lifespan of the actuator or make the
system unstable.

As the analysis showed, this control structure had the best performance and
this was reflected in the IAE. In this state, the value was 0.0499 which means
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Figure 4.8: Comparison of error with a PID as a controller in the close loop contrasted with a linear
FF compensation

that it has been reduced 1.36 times in contrast with the previous structures. The
Table 4.3 compares all the IAE values that were exposed.

Table 4.3: IAEs comparison

Controller IAE
PID 0.578

PID + Linear FF 0.1659
PID + Neural FF 0.0683

SNPID + Neural FF 0.0499

4.2.8 Conclusions

This research has made a deep analysis of to compensate the hysteresis effect.
This analysis started with elementary approaches until advanced feedback con-
trol algorithms. Also in the feed-forward, there was the inclusion of advanced
compensators. All of these structures were experimentally tested with real de-
vices. Furthermore, the controllers were tuned under a rapid control prototyping
type since most of the parameters were set in real-time to achieve the best per-
formance for a genuine operation.
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Figure 4.9: Comparison of error with a PID as a controller in the close loop contrasted with linear
and ANN FF compensation

The analysis began with the device inspection in terms of frequency and
different amplitudes where parameters were chosen to persist with the control
design and especially, the ANN design. The FF neural compensation was first
contrasted with real data in terms of the hysteresis. The result was accept-
able since the interpolation had a small error which could be sufficient for the
following compensation. The crucial improvement was the fitting along with the
asymmetrical shape of the non-linearity since it was found in the references that
this is a problematic feature to model with analytical techniques.

The first control architecture used was a simple one with a PID on the feed-
back where the results were as expected due to the high non-linearity presence
of the device. The errors obtained were not acceptable since the position guid-
ance was the main achievement to be improved. The following contrast was
against a linear-compensation and certainly, it was found that even an inaccu-
rate compensation could improve the performance since the IAE had a value of
which was 3.48 times less than the first basic control architecture. Although the
performance was improved, the value was still not sufficient because the linear
interpolation was between two points of the hysteresis curve and this might not
be the best solution, due to the asymmetric effect explained.

The last two approaches, which are the most complex ones, provided better
outcomes than the previous ones. The addition of an ANN compensation surely
was expected to provide better results since the fitting efficiency was higher due
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Figure 4.10: Error comparison with a Neural FF compensation with a conventional PID and a
SNPID

to the flexibility of the ANNs. As a result, the IAE decreased reasonably in com-
parison with the linear compensation and it resembled on the performance as it
was showed (2.42 times less than the previous). Since this approach was found
to be the best one until that point it was chosen for a final comparison with a
SNPID which was already known for its high performance. The FF compensa-
tion with SNPID improved the process where the conventional PID had a weak
response like after a peak. It was found that the SNPID neglects and corrects
the errors during these violent slope changes. The IAE for the last framework
result in dramatic decrease since the value was 1.36 times less than the third
approach; for this reason, this method is considered to be the best of the ones
that were tested.

Since the last two methods were found to have a satisfactory response, the
control signal was studied. It was found that the control signals for both schemes
were acceptable since there were no significant or fast action which can compro-
mise the hardware due to input signal generated. For this reason, it is expected
that both approaches can have a valuable (and probably much better) perfor-
mance for a smoother curve like a sine wave since a triangular was chosen for
its high complexity representation and requirement.
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Figure 4.11: Control signal of a Neural FF compensation with a conventional PID and a SNPID

4.3 Fuzzy logic combined with Hammerstein Wiener feedforward compensa-
tion.

4.3.1 Contributions

Main contributions and novelties of this section are:

• An analysis of a system identification tool known as Hammerstein-Wiener
(HW) to be used as a FF block.

• A novel strategy of fuzzy logic control (FLC) combined with HW that pro-
vided good trajectory tracking.

• A practical stability proof of the FLC used.

• A contrast of the FLC proposed with a PID controller in order to check the
feedback behaviour.

• To show the enhancement of the HW combined with FLC, this was con-
trasted with the FLC as a feedback controller alone.

• All controllers were embedded in a experimental platform and evaluated
in terms of accuracy and generated control signal.
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4.3.2 State of the art

The hysteresis not only has been studied in electromagnetic materials [66] but
also in PEAs positioning due to adverse causes in the accuracy and margins
of stability [67]; usually, the error inaccuracy can be up to 22% in an open-loop
configuration [2]. The microscopic origin and theory of hysteresis in PEAs are
complex, although an explanation in [68] shows that this feature is associated
to the irreversible restoration of the unit cells when the electric field is reduced;
on the other hand, [4] encompass the theory with the movement of the domain
walls. Certainly, for these reasons, the hysteresis not only depends on the
presently applied input but also in the previous input schedule [69]. Despite
the natural origin of hysteresis, which elimination is inconceivable, it can be di-
minished using a suitable control strategy to achieve an ultra-precision in the
guidance.

The decline of hysteresis can be done via an advanced control strategy. FF
compensation aims to map the non-linearity of the device to compensate for
the phenomena; it has been demonstrated that when the PEA is unloaded, FF
is effective [70]. However, the error reduction, dynamic changes and unknown
effects are properties in which FF fails to compensate but where a feedback
strategy can deal with. The latter mentioned offers a solution that can increase
the precision, although the close-loop can result in a low gain margin which
narrows the usage of high-gain controllers [71].

Despite the drawbacks of the mentioned strategies, a combination of both
frameworks can be a suitable option to analyse. Feedforward-feedback con-
trollers can increase the control accuracy of PEAs through the advantages that
both techniques can provide separately [72]; furthermore, this strategy can pro-
duce multiple structure combinations. In [73], the hysteresis was compensated
with a linear and ANN combined with a conventional PID and a neural type; re-
sults shown that the combination of ANN with the neural PID has been the most
precise one since the IAE was reduced to 0.049. Authors of [74], described the
FF compensation by a PI hysteresis model merged with sliding mode control
(SMC) as feedback; results unveiled an error less than 1%. Another solution
was presented by [47], where a polynomial based approach mapped the hys-
teresis curve for FF and combined with a PID control; results have shown a
precision increment although the deviation was significant as well. Another ad-
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vance strategy was used in [75], where the authors employed a mathematical
based model such as Dhal merged with μ∞ which provided an error of 0.51%.
However, these structures have certain drawbacks as computational require-
ments in the case of ANNs training, time-consumption to achieve a suitable
model when a FF was used or complexity implementation as the preceding ex-
plained example.

FLC is a structure that mimics human knowledge or action based on lin-
guistic rules which are tuned according to the designer [76–78]; these type of
controllers have been used in applications for maximum power point tracking
such as fuel cells and photo-voltaic systems [79, 80], electrical drivers [81], etc.
The author of [82] indicated that FLC based on PID grants a high accuracy for
PEAs guidance but also it can provide other advantages over alternative control
structures. The authors of [83] compared an H∞, which is a robust controller
already used in PEAs [84], with a FLC for a tracking problem; results displayed
a superior performance in terms of the steady-state error and overshoot. On
the other hand, SMC is another well-used framework for PEAs [85]; however,
researchers from [86] encourage the usage of FLC over SMC due to its practi-
cality and no chattering effect.

In this research, a type-1 FLC (FLC-T1) based on PID was used; according
to [87], this kind of structure tends to perform better than a conventional PID
since it handles uncertainties related to the controller input and output, opera-
tional changes and disturbances through rules and the fuzzifier. In combination
with the FLC and to improve the uncertainty, analytic methods could have been
used although certain disadvantages were taken into account. BW is an effi-
cient hysteresis model which could be merged as FF, however, its performance
decreases when the non-linearity shows asymmetry [88]. Another option is PI
model which is widely used; however, its inversion is complex ,and it could in-
crease the error compensation [89].

Black-box (BB) models are a block based approach that provide a mapping
between the input and the output but without taking into account the physical
relations of the system [90]. HW is an advance BB which shape consists of a
linear representation followed and preceded by non-linear blocks. This identifi-
cation tool is widely used in non-linear systems such as chemical reactors [48],
voltage distortion of batteries [91] and motion precision of electro-mechanical
systems [39].
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4.3.3 Hysteresis fitting with Hammerstein-Wiener

Hysteresis is highly non-linear not only because there are two different values
for a voltage but also an asymmetry is present which can be difficult to represent
with an analytical method. Hence, a mapping strategy should be designed to
trim the phenomena because there can be two values of voltage for a single
reference point. According to [92], Hammerstein blocks are used when the
input behaves with significant non-linearity; thus, the input u(t) is transformed by
a non-linear function f which is then multiplied by a linear transfer function B/F.
Conversely, the Wiener block uses a non-linear function h which arguments are
the input signal multiplied by the linear transfer function and results in an output
y(t). The conjunction between both theories (Hammerstein-Wiener) results in a
three-block step which maps systems with strong non-linearities in the inputs as
in the outputs. The fringes of HW which correspond to the non-linear functions
f and h can be approximated with different methods such as piece-wise linear
functions, sigmoid, dead-band, wavelet and polynomial. A summary of these
theories is mathematically expressed in Equation 4.6.

Equation 4.7 is the linear subsystem B/F where nb, nf and nd denote, re-
spectively, the degree of B, F and the associated delay. This transfer function
is expressed in the time shift operator q−1, which represents q−1u(t) = u(t − T)
where u(t) is the system input and T is the sample time. The coefficients which
correspond with the three functions can be obtained by using real the data of
the PEA. 

Hammerstein block ⇒ y(t) = f
(
u(t)
)
x(q−1)

Wiener block ⇒ y(t) = h
(
x(q−1)

)
HW ⇒ y(t) = h

(
f
(
u(t)
)
x(q−1)

) (4.6)

x(q−1) = q−nd B
F
= q−nd

∑nb
i=1 biq−i+1

1+
∑nf

j=1 bjq−j
(4.7)

The MATLAB System Identification Toolbox was used to estimate the pa-
rameters of HW block; the software approximates the input and output nonlin-
earities by using a loss function as a first metric to reduce the error between the
model output and response measured. The iteration algorithm was set into au-
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tomatic choice so that the software can search the adequate one. The second
metric that was taken into account was the Fit Percent which is related to ”how
good the model fits the experimental data” and it varies from -∞ to 100 which
represents, respectively, the lowest and highest fitting accuracy. This metric is
expressed as Equation 4.8 shows, where ymeasured is the measured output data,
ymeasured is its mean and ymodel is the predicted response of the model.

FitPercent = 100
(
1− ||ymeasured − ymodel||

||ymeasured − ymeasured||

)
(4.8)

4.3.4 Type-1 Fuzzy Control

As it was experimentally observed, if the error value is positive and large with a
positive increase, then a big control effort needs to be applied considering that
its magnitude should shrink as the error is reaching the zero so that overshoots
can be avoided. It was considered that with negative values the situation is
symmetric.

An improved procedure from the last presented architecture is a type-1,
which is a non-linear controller that operates better than a conventional PID,
especially for severe nonlinearities [87]. The input to the controller consists of
the error and its derivative which are multiplied by the factors Ke and Kd; this re-
sults in the variables E and Ė, which represent error and its change normalized
in the range of [-1 1]. The constant Ko is intended to increase the output of the
FLC based on an incremental control action. Figure 4.12 shows an structure of
controller configuration within the fundamental steps of fuzzy type-1 sets which
are fuzzification, inference engine and defuzzification.

Figure 4.12: Type 1 fuzzy logic control structure.

In regards to the fuzzification, this is the step in which crisp inputs are trans-
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formed into linguistic terms by means of membership functions. In this design,
a type-1 set was used as input variables; these are defined as a set function
on an universe X (that in this case goes in [-1, 1] of the definition of E and
Ė) through defined membership functions as μA(x). In this case, the member-
ship functions are correspondent on the overlapped triangular configuration of
Figure 4.14. In this research, the membership functions for the inputs were uni-
formly discretized in terms of negative big (NB), negative small (NS), zero (Z),
positive small (PS),and positive big (PB); these values were defined in limits of
-1, -0.66, -0.33, 0, 0.33, 0.66 and 1, respectively.

A = {(x, μA(x)|x ∈ X} (4.9)

Figure 4.13: Definition of μ(x) vs the universe of discourse.

Figure 4.14: Type 1 triangular overlapped membership functions

The inference is exposedmathematically through Equation 4.10 where k and
l are the number of membership functions that E and Ė have and were defined
in the fuzzification. The discretization is defined as PM,PS, Z, etc. but now with
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further terms like negativemedium (NM) and positivemedium (PM). In this case,
the linguistic terms were linked by an AND rule that are expressed in Table 4.4;
thus, the outcome of this relation to map into the output membership function
is by a MIN relation. Mathematically, this is expressed by input fuzzified values
μ(Ek) and μ(Ėl) in which the min(μ(Ek), μ(Ėk)) = μd is the membership value for
the output membership function.

Rm : If E = B1k and ΔE = B2l ⇒ ΔU = Gm (4.10)

ΔU, which is the output of the fuzzy block, is related by the corresponding
crisp output set. These were defined as singletons which are constant values
discretized between -1 and 1. Therefore, the value of ΔU is expressed by the
following Equation where Si is the value of the defined singleton that is related
to μd. An schematic description of the previous process is shown in Figure 4.15.

ΔU =

∑
μd(Si)Si∑
μd(Si)

(4.11)

Figure 4.15: Schematic description of FLC-T1 process

This controller was tested under two frameworks: first as a feedback struc-
ture and secondly, the HW was added as an FF. The gains had to be different
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E \ Ė NB NS Z PS PB
NB NB NM NM NS Z
NS NM NM NS Z Z
Z NM NS Z PS PM
PS Z Z PS PM PM
PB Z PS PM PM PB

Table 4.4: FLC linguistic rules.

in both cases since, with the same values, the comparison would have had a
significant gap in terms of error. The feedback control with FLC has the role of
suppressing errors, alteration of the PEA dynamics and reducing the effects of
unknown uncertainties. On the other hand, the same structure but with an HW
model as a FF was used as it pretends to compensate the non-linear effects.

4.3.5 Fuzzy logic controller stability proof

Although the scope of the current article is to provide experimental results for
PEA tracking performance, a semi-formal stability proof is presented based on
the Lyapunov theory of stability [93]: If a dynamical system is asymptotically
stable, then, there exists a positive definite Lyapunov function V: Rn → R so
that V(x) > 0, V(∞) = ∞, V(0) = 0 & V̇(x) < 0, ∀x ̸= 0, . Therefore, if the
normalized error is defined as E = Xref−X, then, a Lyapunov function is defined
as Equation (4.12).

V =
1
2
E2 (4.12)

V̇ = EĖ (4.13)

Thus, if the derivative (Equation (4.13)) of the Lyapunov function is negative,
it implies that the system is asymptotically stable and it converges to a null error.
Considering when the control signal ΔU is positive, then ΔX is positive and ΔE
is negative which implies that Ė < 0. On the same way, when ΔU is negative,
ΔX is negative which yields to a positive ΔE and hence, Ė > 0. Therefore, for
the dynamic equation of the system it can be concluded that:

• Case 1: If E is PS or PB and ΔE is PB, PS or Z | E is PB and Δ E is NS |
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E is Z and ΔE is PB or PS ⇒ U = PS, PM or PB.

During this situation, the increment of ΔU drives to Ė < 0 with a positive E
and hence, the error converges to the null value because V̇ < 0

• Case 2: If E is PS and ΔE is NB | E is NS and ΔE is PB ⇒ U = Z .

In this condition, the signal ΔU is null and it means that the feedback control
signal does not change so that the V̇ < 0, although the trend stills tends the
error to a null value due to the sign of ΔE.

• Case 3: If E is NB or NS and ΔE is NS, NB or Z | E is NB and ΔE is PS |
E is Z and ΔE is NB or NS ⇒ U = NS, NM or NB.

Reciprocally to case 1, when E < 0 and Ė < 0, which is switched to a positive
value since ΔU decreases; thus, this yields the error to converge to a zero value.

For the rest of the linguistic rules, which are the cases of the diagonal of
Table4.4, the Lyapunov stability is verified since at each moment, V̇ < 0 and the
error tends to decrease due to the demeanour of E and Ė.

4.3.6 Results

Hammerstein-Wiener training results

The different options of approximators for the non-linear blocks were tested to
find the best solution in terms of the fit percentage. The results provided a fit
percentage that are resumed in Table 4.5. Therefore, the piece-wise had the
best fit-percentage, which works as follows: within the chosen inputs and out-
puts, there are breakpoints associated (xi, yi) such that i = 1...n so yi = R(xi)
where n is the number of breakpoints (input or output), R is the piece-wise func-
tion that is approximated through the breakpoints where xi and yi are obtained
by the algorithm previously explained.

Hysteresis fitting results

A first step before the control evaluation in feedback with FF structure is to test
the mapping performance to achieve the tracking persistence. The HW was
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Table 4.5: Fit percentage of nonlinear approximators tested for HW compensation

Nonlinear approximator Fitting percentage [%]
Piecewise 99.58
Sigmoid 93.33
Deadzone 91.02
Wavelet 96

Polynomial 99.57

tested in a hysteresis graph to analyse the fitting of the model although the
previous fit percent obtained was suitable. Since the input was expected to be
the main reference so that the voltage was the output to be fed into the control
system, the comparison was done in terms of the voltage error.

Figure 4.16(a) displays the fitting comparison of the HW model with the real
data; Figure 4.16(b) is an associated error graph which displays the develop-
ment of the fitting along one arbitrary cycle. The comparison shows an accept-
able behaviour since HWcouldmanage to fit the hysteresis graph from the lower
converging point up to the upper converging point as well as the asymmetry
feature that this PEA has. Moreover, the error graph augments the previously
described manner where it can be seen that the magnitude fluctuates between
-1 and 1 V; a harsh demeanour occurs at 1 second, which is the moment where
the input changes its slope to decrease and thus, this was an expected unfolding
due to the complex alteration.

Tracking control results

The first was a PID as feedback without FF compensation, the second FLC in
feedback and finally, FLC combined with HW-FF. The comparisons were per-
formed in two groups by comparing feedback controllers separately to inspect
the performance and emphasize the best feature of each; from this contrast, the
best one was analyzed against the complex structure, the FLC with HW-FF.

As previously seen, all the controllers had gains to be tuned which were
obtained by reduction of the IAE so to pursue the maximum performance. Re-
garding the FLC, since the input to the rules block is between [-1 1], this was
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Figure 4.16: Hysteresis graph description where (a) corresponds to the fitting and (b) to the
associated error.

PID FLC close loop FLC + HW-FF
Gains Values Gains Values Gains Values
Kp 10 Ke 16.2 Ke 4.2
Ki 1000 Kd 0.008 Kd 0.006
Kd 0.001 Kb 0.8 Kb 0.8

Table 4.6: Obtained gains for each control structure during experiments

monitored as well so that the controller behaviour could be suitable. Further-
more, it was taken into account the limits of the PEA input voltage by imple-
menting saturations to prevent critical situations for the device.

The gains obtained for the control structure are summarized in the Table 4.6.
These were gathered during the experiments through the minimization of the
IAE.

PID vs. FLC

The first contrast was made with a simple PID controller against the FLC. Fig-
ure 4.17(a) is the error comparison where it can be seen that the PID has a
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maximum value that varies between 0.1 and 0.2 μm during the rising and de-
scending. However, the relevant feature appears during the peaks where the
top ones are at 1 and 3 seconds and this yields to a severe behaviour where
the error flips its sign into the same absolute value, which is expected due to the
slope change. Throughout the lower peak, at 2 seconds, the amplitude of the
error was reduced with a smaller value compared to the top one. On the other
hand, the FLC behaves similarly although the error magnitude was reduced
dramatically since its value is below 0.2μm. Additionally, the sign change fea-
ture previously explained is still present but the error was lowered in magnitude
during these moments.

As regards the control signal which is shown in Figure 4.17(b), both archi-
tectures seemed to behave similarly but at the top peak the FLC increased the
performance since the signal is smooth compared to the conventional PID as
Figure 4.17(c) shows. In a deep analysis near the lower peak in Figure 4.17(d),
it can be seen that in the descending, the FLC provided a better signal with
less noise. Along the analyzed area, the FLC reached 0.42V whereas the PID
resulted in 0.88V. This means that the FLC supplied a control actuation which
has the half of the one provided by the PID. On the other hand, Figure 4.17(e)
is a reflection of the analyzed situation but after the lower peak where the vari-
ation is higher since the PID generate 0.67V and the FLC 0.18V, which means
a difference of around 3.7 times lower for the FLC.

FLC vs. FLC with HW-FF

The previous comparison indicated that the FLC performed better than the PID
controller and thus, it was compared with the complex structure with FF since
it was expected to increase the performance due to the compensation. Fig-
ure 4.18(a) shows the error of the two contrasted structures where the combi-
nation of FLC with FF improved the accuracy; although there is a discrepancy
during the top peaks, the enhanced framework reduces the error variation and
diminishes the issue at highest levels.

Therefore, the peaks can be analysed in-depth since the FLC controller still
has a change of error sign every one second as previously was evaluated; the
FLC-HW could shrink this difference at the cost of increasing the error amplitude
at around 0.1 μm. However, another critical factor is the speed in which the
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Figure 4.17: Comparison of error and control signal between PID and FLC. (a): Error; (b): Control
signal; (c) Control signal at the top peak ; (d): Control signal near the lower peak; (e): Control
signal after the lower peak.

controller could reduce the error: The FLC has a slow response to reduce the
error after a top peak which has a length of about 0.5 seconds. In opposition,
the FLC-HW could counteract with a small perception.

Concerning the control actuation as the Figure 4.18(b) exposes, the man-
ner is similar to the previous case where both behaved similarly. Figure 4.18(c)
discloses the mild demeanour described since the signal is acceptable for the
complex structure at the top peak. Moreover, the control signal during the lower
peak resembles in a similar effort in the FF compensated structure in contrast
with the FLC in the feedback alone. For instance, Figure 4.18(d) shows a com-
parison where the FLC-HW has an amplitude variation of 0.16V and the FLC
developed 0.58V, this means that the difference is 3.6 times less. Furthermore,
this nature is present during the rising at Figure 4.18(e) since the difference is
3 times less for the FLC-HW which implies that the control signal had improved
in comparison with the FLC and the PID.
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Figure 4.18: Comparison of error and control signal between FLC and FLC with HW. (a): Error;
(b): Control signal; (c): Control signal near the lower peak; (d): Control signal after the lower peak.

IAE, RMSE and RRMSE results

The performance evaluation of all displayed structures was based on the IAE
values obtained in each experiment which were calculated on a period of 4 sec-
onds for two triangle cycles. Also, another metrics such as RMSE and RRMSE
were calculated to compare the performance in depth. All the values obtained
are expressed in the Table 4.7 according to the progress of complexity of each
architecture.

Regarding the IAE, the PID, FLC and its combination with HW-FF provided,
respectively, values of 0.578, 0.111 and 0.048. Undoubtedly, the progression
of the complexity of every structure improved the results which are not only
reflected in the error and control figures previously presented but also in the
IAE. The difference in value for FLC is 5.2 times less than the PID one, although
the discrepancy was still enhanced with the FLC combined with HW where the
discrepancy was 2.3 times less compared with the FLC alone.

On the other hand, the RMSE and RRMSE had the same disposition as it
was expected. The FLC compared with the PID, showed a considerable dif-
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ference since the FLC decremented the RMSE to 0.033μm; the RRMSE was
reduced to 0.74 %. Finally, the complex feedback with FF structure had a higher
performance since the RMSE was trimmed to 0.017 and the RRMSE decreased
0.36% respect to the FLC alone.

Structure IAE RMSE [μm] RRMSE [%]
PID 0.578 0.153 3.42
FLC 0.111 0.033 0.74

FLC + HW-FF 0.017 0.018 0.38

Table 4.7: Results obtained of the IAE, RMSE and RRMSE.

4.3.7 Conclusions

The hysteresis of PEAs represents a problem that can produce a performance
reduction when these devices are employed for positioning. In this section, an
analysis of structures was attempted to diminish the error with an acceptable
control signal so to increase the effectiveness in tracking. All the results were
part of experimental tests with a commercial PEA with its respective driver and
measurement device.

First, an HW block was used to map the hysteresis where it was found that
a piece-wise function reflected the non-linearities with acceptable precision and
the errors presented could be compensated by adding a feedback controller.
Subsequently, the structures proposed to be tested were: PID, FLC and its
combination with HW-FF. The first structure was contrasted with the FLC, where
the latter presented an enhancement in regards to the error reduction even at
complex situations as peaks of the triangle reference; in terms of the IAE, the
improvement resulted in a decline of 5.2 times. The control signal was accept-
able since it mirrored a shrink in the noise, during the delicate situation as in top
and lower peak, which is favourable for the PEA life-span.

The use of the FLC with HW-FF not only showed that the error was trimmed
to lower values but also it was compensated during slope changes where previ-
ous frameworks suffered difficulties to overcome these variations. As an overall
metric, the IAE dwindled 2.3 times less in comparison with the uncompensated
feedback. The control signal raised a significant improvement as the noise was
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even lower than in the previously tested structure. Performance growth was
also viewed in during the peaks where no saturation or rough changes were
observed, which could damage the hardware.
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4.4 Super-twisting approach based on artificial neural networks

4.4.1 Contributions

• A novel strategy of a high-order sliding mode control combined with an
ANN was designed.

• A stability proof based on Lyapunov’s theory was showed in to prove the
high performance of the proposal.

• The contrast was against a PID which constants were obtained with the
minimization of the IAE.

• Experimental results reported that the novel structure is stable as it was
proved theoretically, and the experiments provided a significant error re-
duction in contrast with the PID.

4.4.2 State of the art

The hysteresis is reflected as non-linearity where the present input depends on
the past values and usually is also defined as an effect that appears as a combi-
nation of mechanical strain and electric field [94, 95]. Figure 4.19 is a figurative
description at a material level when an electric field is applied through a piezo-
electric material. In a neutral state without any electric action, the poles are in
a arbitrary direction but when it gets exited, the poles begin to be aligned with
the field and an elongation is produced which is associated with the ferroelectric
effect [96]. When the electric field decreases its value, the poles intention is to
be back to their initial direction but with a certain difference compared to the
one when the electric field started to increase its value and this produces the
hysteresis [68].

According to [4], there are two paths for hysteresis reduction: in terms of the
raw matter, the piezoelectric material can be conceived up to an atomic level,
which represents a complex task; at a practical level, a control strategy can be
designed to drive the position to the desired one by controlling the voltage input
signal.

As a first approach, linear controllers can be a suitable option to control the
trajectory. In the early 1980s, authors of [97] suggested to implement linear
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Figure 4.19: Piezoelectric material polarization with an electric field where: (a) is in a neutral state,
(b) is with an applied field and (c) is after the electric field action.

strategies to diminish hysteresis from PEAs. Although PID is a classic and sim-
ple integration tool for most applications, widely attractive works had been done
along the recent years [98–100]. Other PID variants had shown the inclusion of
feedback linearization [101], grey relational [102], semiautomatic tuning [103],
fractional PID [104] or gain-scheduling in a fuzzy-PID structure [105]. Besides
other authors had employed linear quadratic regulators for similar actuator in
terms of structural control [106]. However, the hysteresis is a strong non-linear
effect where common structures need to have an advanced design so as to di-
minish [107]. Moreover, with critical uncertainties like modelling and external
loads, these linear approaches are limited in a certain bandwidth [108].

The significant presence of nonlinearities in PEAs aims to implement con-
trollers which can deal with these features. Feedback linearization with uncer-
tainties control has been employed recently with the addition of a BW model for
hysteresis where the researchers achieved good accuracy although the BW is
limited for asymmetric hysteresis response [40, 88]. An advanced approach has
equally been used with model predictive control based on an adaptive algorithm
that was tested in a real system that provided an error of around 1%, which is
acceptable although tests were performed with low amplitude signals [109]. Ro-
bust controllers had also been investigated with adequate results; authors from
[68] implemented a robust control with its stability analysis of a scheme based
on inverse models that produced decent outcomes as an error around 0.5 μm.
Also other robust techniques as SMC had captured the interest due to its ca-
pability to reject the uncertainties [79, 110]. Several approaches of first order
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SMC had been designed and used for PEAs even though that the chattering is
an important drawback [85, 111, 112].

In the recent years, many methods have been designed to overcome the
chattering phenomenon [113–116]. Thus, the authors of [113, 114] implemented
the boundary layer technique which changes the discontinuous term of SMC by
a smooth approximation when the states are about to reach the limits of a de-
fined bound; however, the main drawback of this method is the decline of anti-
disturbance capabilities [117]. In [115], a multi-surfaces SMC for approximation
of unknown perturbations was proposed; despite the novelty of the framework,
only simulation results were presented, and the algorithm has a broad number
of gains for tuning. Integral Sliding Mode Control (ISMC) represents another
employed structure for static-error reduction as it was developed in [116]; never-
theless, when a saturation function is used, the practicality is reduced because
the boundaries are complex to obtain and the control accuracy is diminished
[118].

Another advanced method for chattering reduction is High Order Sliding
Mode Control (HOSMC) which was introduced by [119], which intention is to
influence the high order derivatives of the system for the chattering alleviation.
This technique is well known for its usage in MPPT control [120, 121], active
vehicle suspension [122] but it is also employed for high performance guidance
in aircrafts [123] as in PEAs [124, 125]. Super twisting algorithm (STA) belongs
to the group of HOSMC and it is well known for its robustness and chattering
decrease due to the inclusion of an integral term [121]. Although the imple-
mentation of STA is simple, as any other SMC controller, it has a discontinuous
and a continuous term; traditionally, for the design of the latter mentioned, the
model knowledge is required to construct the control law [126]. However, the
hysteresis models have certain drawbacks which can produce difficulties for
implementations and design [73].

There are two different approaches for hysteresis modelling: mathematical
and physics based [127]. The first kind contemplates the most used ones like
Preisach, PI and Krasnosel’skii-Pokrovkii models [128–130], which are based
on hysteron operators. This function has the capability to depend on current
and past inputs so as to reflect the hysteresis effect [131]. Although these
frameworks can be adopted as observers with reasonable accuracy, the in-
verse calculation for feed-forward control can result intricate [132]. Despite its
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complexity, recent cutting edge uni-axial phenomenological models have been
developed which are rate and material independent and they only require a his-
tory variable [133, 134]. The physics based ones are known as the DomainWall
and the Jiles-Atherton model; these are acknowledged for their description of
hysteresis present in magnetic materials and might be unsuitable since they are
material dependant models [127].

Despite that an SMC drawback is the model-based approach it was de-
scribed due to the inaccuracies that these yields, this research was based on a
neural super-twisting algorithm (ST-ANN) since the usage of ANNs can reduce
these effects [73, 73]. A shallow introduction about the background of research
done by the scientific community in ANNs for non-linear mapping is presented
in the following sections. A PID was used for results comparison as it has been
commonly utilized for these correlations in literature [135–137].

4.4.3 Super Twisting algorithm based on artificial neural networks

The main aim of this research is to provide a suited control law for the PEA, so
it could track the required references with fast correction and error reduction.
STAs are known for their performance and robustness in guidance accuracy
as well as chattering attenuation in comparison with first order SMCs as it was
analysed in the state of the art section. The control law is established as Equa-
tion 4.14, Equation 4.15 and Equation 4.16 show, where usw is a continuous
and discontinuous composition whose intention is to compensate uncertainties
and dynamics that uann is unable to reduce. The surface S was assumed as
Equation 4.17 where the error is x − xref such that x is the measured PEA dis-
placement and xref is the reference. Regarding the uncertainties and external
disturbances, during the experiments several features were observed such as
temperature [73, 138] which affected the strain-gauge measurement, sensor
noise and other dynamics unconcerned. The constants K1 and K2 are design
parameters which were tuned by IAE reduction in real time and taking into ac-
count the boundaries of the stability proof of Section 4.4.4.

usw = u1 + u2 (4.14)

u1 = −K1 · |S|
1
2 · sign(S) (4.15)
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u̇2 = −K2 · sign(S) (4.16)

S = ė+ λe (4.17)

Neural network compensation detailed

As previously mentioned, most of the PEA models have difficulties to map the
dynamics of the systems even due to asymmetric effects or complex model
implementation which can result in a high computational requirement. Hence,
due to these drawbacks, the linearity and hysteresis dynamics are compensated
by an ANN contemplated in a voltage term as uann.

An ANN consists of an algorithmic configuration that has a minimum of
three mathematical connected layers known as input, hidden and output [139].
This biological concept is adopted from the brain neurons which can recog-
nize, learn and change based on previous actions (also called neuroplasticity)
[140]. Thus, these properties based on the mathematical formulation can lead
the ability to perform approximations of non-linear dynamic systems [141, 142].
Recently, these types of system identification technique was implemented like
TDNN which have shown good results in fitting performance [61, 143].

In this research, the architecture used for dynamic mapping was a Layer Re-
current Neural Network (LRNN) which is a shallow type with a recurrent inner
connection and correlated with a tap delay ; this feature allows the usage of pre-
vious states and present inputs to produce outputs within hidden states [144].
These ANNs kinds were proved to be efficient for modeling and mapping hys-
teresis phenomenon [145]. In the following analysis tests were performed em-
ploying the Deep Learning Toolbox of Matlab 2020a (which was compatible
with the version used of dSPACE), thus the implementation allows only shal-
low ANNs for code generation in Simulink [146].

The LRNN structure (shown in Figure 4.20) consist of three nodes as con-
ventional ANN but with an outstanding feature of the hidden layer where a re-
current connection is used with the other layers and acts as a feed-forward over
the block. The mechanics of this layer are as follows: at each time-step, the ref-
erence is processed at the input through an associated weight W1, the output
of the hidden layer r(t) recurs by a specified delay n and a weight Wi; finally,
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Figure 4.20: Recurrent ANN architecture

a bias vector bi is added to the operation. The whole sum goes through an
activation function that defines the behaviour of the weight associated to the
neuron [147]. In this case, the activation function is tansig which has limits be-
tween -1 and 1 and achieves the output r(t). The mathematical expression is in
the Equation 4.18 and Equation 4.19.

r(t) = tansig[W1
(
x(t)
)
+ bi + w(r(t− n))] (4.18)

tansig(x) =
2

1+ e−2x − 1 (4.19)

The operation coming from the hidden layer is then passed as an input in
the output layer which has a simple development. The variable r(t) is weighted
by Wj and a bias bj is added to be the input of a linear transfer function or also
known as purelin (defined in Equation 4.21). The output of the entire ANN drives
uann as mathematically is shown in the Equation 4.20.

uann = purelin[Wj(r(t)) + bj] (4.20)

purelin(x) = x (4.21)

The previous operations have associated weights which were obtained through
training algorithms that are calculated based on input and output data from the
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real device. It was found as an advice to use LM algorithm as it frequently
provides adequately results [148]; however, the obtained data had noise, and
the ANN could yield to a low mapping performance. The authors of [149] sug-
gested using the bayesian regularization, which is an appropriate training algo-
rithm since it also endorses over-fitting prevention. An iteration in the training
consists in the Equation 4.22, where the vectorWb contains the current weights
and bias, gk is the current gradient and α is the learning rate. Further details in
depth of the bayesian regularization are developed in [150].

Wbk+1 = Wbk − αgk (4.22)

The performance of the training algorithmwasmeasured by themean squared
error (MSE) which is defined by Equation 4.23 where Ti is the target output and
Ui is the ANN prediction.In the following sections, the LRNN accuracy is proven
according to input/output information related to the triangle reference signal due
to its complexity compared to a sine wave.

MSE =
1
N

N∑
i=1

(Ti − Ui)
2 (4.23)

4.4.4 Stability proof of the proposed algorithm

Previous to a formal demonstration, the PEA is assumed as a second order
mechanical system as defined in Equation 4.24.

mẍ+ bẋ+ kx+ dfh(x) = du+ P (4.24)

The expression is defined with m, b, k, x, d, u, h and P which are the mass,
damping constant, stiffness constant, position, piezoelectric coefficient, input
voltage, hysteresis and overall perturbations (uncertainties, unmodelled dynam-
ics, etc.), respectively. The term fh(x) represents the hysteresis which depends
on the position x. On the other hand, the piezoelectric coefficient d is defined
as the product between the stiffness and the utmost displacement divided by
the maximum driving voltage.

The mechanical values such as m, b, k were obtained with the same data
employed for the ANN. The software used was the Parameter Estimator Tool-
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box from Simulink based on a Nonlinear least squared with the algorithm Trust-
Region-Reflective. The summarize is enlisted in table Table 4.8.

Values Units
Mass (m) 0.431 Kg
Damping (b) 1340 N · s/m
Stiffness (k) 81263 N/m

Table 4.8: Mechanical properties for the PEA

Considering a control signal defined as in the following Equation 4.25.

u = uann + usw (4.25)

Such that: 
uann = ulinear + fann(x)

usw = −K1|S|
1
2 sign(S)− K2

∫
sign(S)dt

(4.26)

In previous sections, the uann was obtained from ANN approximation; more-
over, the objective of this term is to compensate the linearity and the hysteresis
through a voltage. Additionally, the usw was previously defined as the STA cor-
rection in Equation 4.14 and the intention is to reduce the errors, perturbations
and unknown dynamics. This description is summarized in Equation 4.26.

The ulinear can be defined as a linear mechanical system without perturba-
tions or hysteresis as in the Equation 4.27. Therefore, by replacing the latter
into Equation 4.26, it can be obtained the Equation 4.28.

ulinear =
1
d

(
mẍref + bẋref + kxref

)
(4.27)

uann =
1
d

(
mẍref + bẋref + kxref

)
+ fann(x) (4.28)

With the substitution of Equation 4.28 and the second part of Equation 4.26,
a control signal can be achieved as it was defined in Equation 4.25. Thus,
when u is gathered, it can be replaced in Equation 4.24 to obtain the following
Equation 4.29.
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mẍ+ bẋ+ kx+ dfh(x) = mẍref + bẋref + kxref + dfann(x) + dusw + P (4.29)

This expression can be simplified because the error was defined as e =

x − xref. Since the ANN will never provide a perfect fitting, then we define that
fann(x) − fh(x) = εann as an associated error of approximation. Hence, the pre-
ceding expression is redefined as Equation 4.30.

më+ bė+ ke = dεann + P+ dusw (4.30)

Subsequently, the equation can be solved to obtain the second derivative of
the error as in Equation 4.31.

ë = − b
m
ė− k

m
e+

d
m
εann +

P
m

+
d
m
usw (4.31)

Therefore, if the surface defined in Equation 4.17 is derived, the Equa-
tion 4.32 is obtained. Thus, the second derivative from Equation 4.31 can be
replaced to reach the Equation 4.33.

Ṡ = ë+ λė (4.32)

Ṡ = − b
m
ė− k

m
e+

d
m
εann +

P
m

+
d
m
usw + λė =

d
m
usw + ρ (4.33)

Where:
ρ = − b

m
ė− k

m
e+

d
m
εann +

P
m

+ λė (4.34)

In this expression, it is perceived that the intention of the STA is to reduce
the errors and its derivatives as well as the perturbations and approximation
differences that the ANN could not accomplish. A further development of the
expression from Equation 4.33 can yield to the following re-arrangement.

Ṡ =
d
m
(
u1 + u2

)
+ ρ = −θ1|S|

1
2 sign(S) + u2 + ρ

u̇2 = −θ2sign(S)

(4.35)
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Where 
θ1 =

K1d
m

θ2 =
K2d
m

(4.36)

A vector transformation can be assumed based on [137, 151–153], with its
following derivative in Equation 4.37 and Equation 4.38.

β =
[
β1 β2

]
=
[
|S| 12 sign(S) u2

]T
(4.37)

β̇ =
1
|β1|

[ 1
2(−θ1β1 + β2 + ρ) −θ2β1

]T (4.38)

The time derivative from Equation 4.38 can be also be expressed in the
following Equation 4.39.

β̇ =
1
|β1|

(Aβ + σ) (4.39)

Where:

A =

[
− 1

2θ1
1
2

−θ2 0

]
and σ =

[ 1
2 ρ
0

]
According to the author of [154], a ”practical” approach for the management

of ρ can be defined as Equation 4.40. It should be noted that this fact does not
limit the applicability of this control scheme as in a real system as the term ρ
will have a superior bound. The mechanism for this statement is through the
multiplication of a constant γ ∈ R+.

|ρ| ≤ γ|s|
1
2 (4.40)

Hence, the Lyapunov stability proof establishes that a dynamical system
is asymptotically stable if there exists a definite Lyapunov function V(S), such
that V: Rn → R so that V(β) > 0, V(∞) = ∞, V(0) = 0 & V̇(β) < 0, ∀β ̸=
0 [93, 155, 156]. Thus, the Lyapunov function chosen is Equation 4.41; the
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correspondent time derivative is defined in Equation 4.42.

V(ζ) = ζTDζ (4.41)

D =
1
2

[
4θ2 + θ21 −θ1
−θ1 2

]
V̇(β) =

1
|β1|

βT
(
ATD+DA

)
β +

2
|β1|

βTDσ (4.42)

As previously explained, for this demonstration, the term ρ is bounded; there-
fore, we define the constrained statement from Equation 4.43.

ρ = γ|s|
1
2 sign(s) = γβ1 (4.43)

The replacement of the bounded condition of Equation 4.43 within the right
hand-side term of Equation 4.42, results in the Equation 4.44.

V̇(β) = − 1
|β1|

β̇
T
Qβ (4.44)

Where the Q matrix is defined in the follow Equation 4.45.

Q =
k1
2

θ21 + 2θ2 − γ(θ1 + 4
θ2
θ1
) −θ1

−(θ1 − γ) 1

 (4.45)

Thus, the stability is conditioned by the gains k1 and k2 since it implies that
the matrix Q should be positive definite. To accomplish this statement, the con-
ditions of Equation 4.46 should be taken into account for the gain tuning at
experiments. 

θ1 < γ

θ2 >
1
4
θ21 (γ − θ1)
θ1 − 2γ

(4.46)
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4.4.5 Results

LRRN Training Results

The training of the ANN was undertaken with data recorded from the triangle
input signal which has an amplitude of 145V and 4s of a period. As data for train-
ing, as a compensator, the model had to be inverted which means that the input
to the LRNN was the displacement whereas the voltage represents the output.
A record of 40s of data was handled and divided in 70/15/15 proportions as for
training, evaluation and testing; further details are specified in Table 4.9. In re-
gards to the hardware used for iteration, a Dell Precision 3640 was employed
and configured with parallel calculation activated in 7 cores.

Values
Data points 40.000
Training/ Validation/ Test Sets 70/15/15
Iterations 5300
Performance Metric MSE
Training Algorithm Bayesian regularization
Training time[hs] 6

Table 4.9: ANN specifications

The results revealed an acceptable mapping contrasted with the real data
of the PEA as it is shown in Figure 4.21. During the first rise between 0 and 2s,
the error had a sudden fluctuation up to 0.5s and a following variation with noise
around the zero voltage up to less than 2s. At this time value, the change of
slope was expected to be sharp although the correction was performed in less
than 0.05s with 0.3V of error. During the rise, before 2.7s, the signal showed a
leveled average again around 0V. However, after 2.5s the error began to plunge
with intensity up to 3.5s with noise until -0.3V. Later, a sudden reply soared up
to -0.1V with a following fluctuation and an expected shifting that is mirrored at
0s again due to the slope change.

Despite that the error tends to fluctuate, the response is acceptable. A
RMSE of 0.11V was obtained which is tolerable for a signal amplitude of 145V.
In addition, even if the achieved output has noise, it is also a replication of the
sensor noise which was expected as well. The inclusion of a control is able
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to reduce these unexpected features, can manage to diminish the error and
increase the accuracy.

Figure 4.21: Performance of the LRNN where: (a): hysteresis fitting; (b): error approximation.

Tracking control results

The control structures presented were embedded in the dSPACE hardware,
where the first one was the PID and the second one was the ST-ANN. The data
acquired was produced within the two mentioned references for each controller
which outcome in two different comparisons. The performance metric for the
controllers tuning in real time was the IAE which had to be reduced so as to
obtain outstanding results. Moreover, to secure the equipment, each structure
had security blocks like saturations (0-150VCC of input voltage) and antiwind-up
for the integral action terms.

Regarding the gains obtained, these were obtained in real-time by the re-
duction performance of IAE by taking into account the conditions provided by
the stability proof. Table 4.10 summarizes the values of the achieved gains.

Triangle reference comparisons

The first comparison was allowed with the main trajectory that was used for
the ANN training and also because it was a complex reference to be followed.
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PID ST-ANN
Gains Values Gains Values
Kp 10 λ 20
Ki 1000 K1 1.4
Kd 0.001 K2 118

Table 4.10: Obtained gains of PID and ST-ANN

Figure 4.22 is the error along 8s (2 cycles) of a period and 145V of amplitude.
Despite that the PID generates an error between 0.05 and 0.15 μm, this value
decreases the performance in a guidance requirement. From the beginning,
the first rise between 0 and 2s, the PID had reduced its accuracy due to a gap
from zero error which slightly increases its value until the first slope change into
negative at 2s. Nonetheless, the ST-ANN shows a stabilized error signal with a
mean near the zero and with a variation less than 0.05 μm mostly through the
first 2s of analysis.

The following point of interest is at 2s where the trajectory changes promptly
its slope. The shifting behaviour of the PID at the upper converging point pro-
duces a sudden error correction which lasts a few fractions of a second. The er-
ror reverses its sign and value from 0.1 to near -0.15 μmwhich implies a change
of 0.25 μm. In spite of the perceptible slope change that the PID control tried
to compensate as fast as it could, the ST-ANN acts with a subtle demeanour
as it can be seen in the zoom window where a slight overrun is performed and
corrected promptly. This difference showed that the PID overshoots 2.3 more
than the ST-ANN.

Between 2 and 4s, the descending occurs and the PID has mirrored manner
as previous with during the rise but with less variation. However, the ST-ANN
is still in a same performance as previously where the level is around the zero
value and with slight error increments between 3 and 4s. At the lower converg-
ing point (at 4s), the slope changed back to positive where the PID alternates
with lower amplitude in the error switch from -0.05 to near 0.07 μm; the ST-ANN
displays imperceptible changes during this moment as it can be seen in the fol-
lowing zoom window. Thereafter, the situation is repeated due to the second
triangle cycle achieved each 4s.

During the described error compensation of both architectures, a control

85



Figure 4.22: Error comparison between the ST-ANN and the PID structures

signal was generated for the PEA and recorded to be displayed in Figure 4.23.
Any saturation or sudden changes were exposed which could damage the PEA
driver or even reach the instability. Although the complex control framework
incorporates a discontinuous term, the generated control signal is acceptable
since chattering was unnoticed.

Sine reference comparisons

The triangular trajectories showed a tracking performance suitable and it was
expected an increment on the effectiveness for a soft reference with the same
features (like amplitude and period) as a sine wave. However, in the Figure 4.24
it can be seen that the PID still has difficulties to follow a soft signal although it
could respond with a mild correction compared to previous results. On the other
hand, the ST-ANN could manage the error even related to the sharp previous
tested signal as the magnitude was around the same values. As the similarity
in amplitude (between -0.15 and 0.1 μm between 1 and 3s), the shifting of the
slope operates in a similar mien.

Since the current reference signal was soft, it was predicted that the control
signal was going to behave the same, in this case, provided that a suitable
control was designed. The comparison in Figure 4.25 shows a smooth manner
in both architectures with any aggravations that could complicate the life-span

86



Figure 4.23: Control signals comparison of the ST-ANN and the PID

of the PEA.

Performance metrics comparison

Along this research, the prime objective was to pursuit an error reduction in the
mentioned trajectories so as to increase the accuracy. Consequently, the IAE
was reduced by tuning of the corresponding gains and thus, the metrics in terms
of the error were calculated along a period of the reference signals already used.
Table 4.11 shows the results of the IAE, RMSE and RRMSE contrasted in both
controllers and signals.

Reference IAE RMSE [μm] RRMSE [%]
ST PID Difference ST-ANN PID Difference ST PID Difference

Triangle 0.0653 0.28 4.2x 0.0203 0.0756 3.7x 0.45 1.69 3.75x
Sine wave 0.0625 0.28 4.4x 0.0195 0.0795 4x 0.44 1.80 4.09x

Table 4.11: Comparison of the different metrics

The IAE revealed an expected improvement for the ST-ANN where the PID
showed 0.28 in both references but the ST-ANN increased the precision with the
sine wave by twice (from 0.065 in the triangle up to 0.0625 with the sine wave).
This dissimilarity is reflected in both cases where the ST-ANN enhanced 4.2
and 4.4 times in difference.

87



Figure 4.24: Error comparison between the ST-ANN and the PID structures for a sine wave tracking
reference

Regarding the RMSE, the reflection is similar with the same magnitude of
variation. The ST-ANN yield a RMSE of 0.0203 μm with a triangle trajectory
whereas the PID downgraded the performance to 0.0756 μm which implies a
difference of 3.7 times. The sine wave was expected to show a similar and even
greater disparity which is expressed 4 times higher for the PID.

Finally, the RRMSE endures the previous trend where the ST-ANN over-
came the comparisons. The situation was likewise with the triangular reference:
the PID showed a value of 1.69% whereas the ST-ANN diminished up to 0.45%
and it resembles in 3.75 times of difference. Again, the circumstance is similar
in the sine wave trajectory where the magnitudes are alike and the difference is
higher as expected.

4.4.6 Conclusions

Along the current research, it was proved that PEA actuators can gather high
accuracy in terms of micro-displacement in a way required for special applica-
tions, like it was reviewed in the state of the art. Hysteresis is one of the key
obstacles, a suitable and advanced control should be designed to accomplish
the target of reducing the nonlinearity.

In this study, a commercial PEA from Thorlabs with its peripheral hardware
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Figure 4.25: Control signal comparison between the ST-ANN and the PID structures for a sine
wave tracking reference

was used to test each control structure designed in a dSPACE board. At first,
it was shown that the hysteresis provided by the manufacturer can reach up
to 15%. A triangular reference of 145VCC of amplitude with a period of 4s
was used as the main signal, although a sine wave with the same features
was tested for robustness check. It was found that HOSMC controllers are a
satisfactory option since the chattering is fairly reduced compared to first order
SMC and also due to their robustness. An ANN was used to avoid the issues
that the model-based SMC represent and thus, an LRNN trained with bayesian
regularization was developed with real data from the PEA.

A Lyapunov stability proof was presented to reveal the theoretical perfor-
mance of the ST-ANN. It was uncovered that the controller supplies a stable re-
sponse provided that the STA accomplishes with conditions based on its gains.
The following steps were the experiments based on the implementation of the
control architectures; the gains of each framework were tuned based onminIAE.
The stability was also checked and experiments showed instability responses.
Regarding the complex reference that the triangle represented, the ST-ANN dis-
played a remarkable performance in comparison to the PID since the latter had
variations specially in the slope changes whereas the advance structure dis-
played a slight noisy fluctuation (which can be associated to the sensor) around
the zero value. The error generated in the sine wave as a reference exhibited
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similarities with the ST-ANN whereas the PID could not reduce the error even
if the signal was soft. In terms of the control signals, both controllers showed
acceptable behaviours even in the triangle as in the sine wave where no satura-
tions or severe changes were appreciated. In general terms, the two controllers
revealed soft and adequate signals.

At last, a comparison of metrics was performed where it was shown the
advantage of the ST-ANN numerically. Regarding to the IAE, both controllers
had almost the same difference but the ST-ANN exposed a higher performance
which was between 4.2 and 4.4 times superior to the PID. The other metric
compared was the RMSE which resemble a greater discrepancy in the trian-
gle reference, the ST-ANN was 3.7 times higher and in the softer signal it was
increased to 4. Finally, the RRMSE behaves similarly since the RMSE magni-
tudes had closed values.
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4.5 Cuasi-continuous sliding mode control based on artificial neural networks

4.5.1 Contributions

• Aiming to enhance the tracking precision of a PEA, a novel strategy of a
quasi-continuous sliding mode control combined with an ANN.

• The contrast was against a PID tuned in real-time experiments through
the minimization of IAE.

• Experimental results reported that the novel structure is stable as it was
proved theoretically, and the experiments provided a significant error re-
duction in contrast with the PID.

4.5.2 State of the art

Regardless the benefits of PEAs, which are extensive for several uses, down-
sides have a significant importance in the performance of these appliances.
One of the main and most studied one is the hysteresis which is a ferroelectric
phenomenon related to the material poles which have arbitrary orientations that
align when a voltage is applied but the release of this action yields to a different
direction [4, 157]. Thus, for this reason, it is also known as a memory effect as
it depends on previous history [128]. In practice, the accuracy can be reduced
up to 22% of the nominal displacement as a consequence of this anomaly [2];
another important consequence of this phenomenon is also the instability [158].
Nevertheless, since hysteresis is a natural property, available solutions com-
prise a material re-design or the implementation of a control algorithm [4].

PID had been widely used in practice as first option. Authors of [159] de-
veloped a PID for position which was verified in simulations and later in ex-
periments where the results shown a tracking error reduction of 5%. A main
disadvantage of PIDs is the gain scheduling which can vary for different sce-
narios and or situations; thus, several ways had been suggested to tune these.
For instance, authors of [160] proposed the usage of particle swarm optimisa-
tion (PSO) in simulation with a suitable PEA model. Obtained gains were used
in an experimental platform with a commercial PEA where the results showed
an improvement in the position accuracy. However, online tuning algorithms for
experimental rigs can require a significant amount of computational resources
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and certainly, there are other non-linear controllers which manage the compen-
sation with better performance.

SMC is a non-linear strategy with a discontinuity that drives the system in a
sliding surface [161]. A main advantage allowed is the robustness against un-
certainties and external disturbances. The classic SMC has been implemented
in PEAs for force control by authors of [162], where they found suitable out-
comes with sine signals as references. A similar approach was carried in the
research of Chouza et al. [114] where SMC based with a PID surface was im-
plemented in a commercial PEA where they tested different reference signals
such as ramp, constants and sine wave. In spite of the improvements of error
reduction in the ramp and constant references, the sine wave showed an error
of around 5%. However, in the analysed background it was shown that the main
disadvantage of SMC is the chattering that is generated by the discontinuous
property. This is an unwanted effect because not only it increases the energy
loss but also the wear in the actuator [163].

Certainly, the chattering can only be reduced and not eliminated because
the discontinuity (produced by a sign function) is a main feature of SMC. Thus,
in the recent years, many proposals have been published to trim this effect. For
instance, authors of [113] changed the discontinuity by a hyperbolic function and
in comparison with conventional approaches, the enhancement was acknowl-
edged in the results. Another advance strategy is the usage of HOSMC where
high order derivatives are used in the sliding surface and as a result, the chatter-
ing is relieve [164, 165]. An example of implementation has been carried by the
authors of [166] where they used a HOSMC as an observer for error compensa-
tion in a PEA test rig. Results showed significant improvements in comparison
with other conventional types of SMC strategies in simulation and experiments.
Regardless the enhancement of HOSMC over conventional SMC, the design
of sliding controllers establishes that the control law is split into a switching and
an equivalent term that are aimed to maintain and compensate the sliding mo-
tion [167]. The equivalent is commonly achieved through a mathematical model
that describes the system, and this would imply the use of a proper hysteresis
description.

Hysteresis models for PEAs are mainly classified in two main categories
known as physical and phenomenological [82]. The first mentioned group is
a description of the ferromagnetic effect that produces the non-linearity, al-
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though thematerial dependency and complex numerical solutions are the down-
sides of these theories [127, 168]. In regards to the phenomenological, the
sub-classification is related to the ones based on differential equations (Dun-
hem [169], Backslash [170] and BW [171]), operator models (Preisach [128],
PI [172] and Krasnoselskii-Pokrovskii [130]) and polynomial models [47]. Nev-
ertheless, the disadvantages of these approaches are linked with complicated
solutions to gather the inverse model, incapability to deal with asymmetric hys-
teresis, rate dependency and complex implementation [127].

Based on the research about the background that we made, we designed a
HOSMC controller known as QC-Continuous (QCSMC) which provided suitable
results in terms of chattering reduction in previous works [120]. Due to the draw-
backs that we enumerated about hysteresis models, we decided to achieve the
equivalent term of the sliding controller through means of an ANN and named
as neural QCSMC (or QCSMC-ANN). This is possible since we could conduct
experiments to acquire data for the ANN training.

4.5.3 Quasi-continuous sliding mode control

QC-SMC belongs to the HOSMC, known for the robustness and performance
in tracking precision; moreover, the chattering reduction is another advantage
of this controller over other structures [173]. The control law that we settled
as Equation (4.47) comprises the terms uann and usw which, respectively, aim to
compensate the non-linearities (like the hysteresis) and counteract uncertain-
ties or perturbations The definition of usw is defined in Equation (4.48) which is
dependant on a sliding surface expressed by Equation (4.49) and where param-
eters λ and γ are positive defined by the designer. The term uann is dependant
on the ANN compensation and further details are given in the following section.

u = uann + usw (4.47)

usw = −γ
ṡ+ |s|1/2sign(ṡ)
|ṡ|+ |s|1/2

(4.48)

s = e+ λ
∫ t

0
edt (4.49)
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Figure 4.26: ANN

4.5.4 Neural Network Compensation Design

Implementation of conventional SMC methods where the equivalent term has
to be through a mathematical model can yield to a insufficient compensation
or even increase the computational cost. Nevertheless, in the last years ANNs
have been a suitable solution for system identification where the only drawback
resides for the time that the training algorithm requires to develop a truthful
output. Hence, we used a TDNN due to the efficiency related to training time
versus accuracy obtained.

In formerly investigations, we tested TDNN structures to reduce hysteresis
which showed proper results in combination with conventional controllers [73].
As the name states, a TDNN is an extension of a classic multilayer perceptron
(MLP) that works with time signals. The inclusion of time delays n allows the
neurons to get further information about the time history of the input; this implies
that the ANN will fit to a time set pattern [174]. Mathematically, this is expressed
with Equation (4.50) where f is a non-linear function that relates the input/output
of the ANN.

uann = f
(
x(t), x(t− 1), x(t− 2), ..., x(t− n)

)
(4.50)

A further expansion of the function f is as the following Equations (4.51),
(4.52), (4.53) and (4.54): the retarded reference inputs r(t − n) are weighted
with parameters Wi and bias bi; later, this operation yields into the activation
function called tansig. The output q(t), which is the outcome of the described
operation, is employed as an input into the output layer. In this case, the pro-
cedure is similar as previously but where the activation is done with a linear
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transfer function called purelin. Subsequently, the output of this layer provides
the compensation voltage uann.

q(t) = tansig

(
n∑

p=0

Wi · r(t− n) + bi

)
(4.51)

tansig(x) =
2

1+ e−2x − 1. (4.52)

uann = purelin[Wjq(t) + bj], (4.53)

purelin(x) = x. (4.54)

The calculation of the weights and bias, related to the previous explained
relations, are achieved with training algorithms. In this case, we used LM which
represents a method that guarantees the fitting of the ANN to the experimental
data through an adaptive behaviour [175]. This mechanism is generated by
the location finding of the minimum of a cost function is declared as the sum of
square errors and the real measurements within an iterative updating.

4.5.5 Results

ANN Analysis Results

We recorded experimental data from the PEA where the input was a triangular
signal of 145V with 4 seconds of period. Also, the displacement was acquired
through the strain gauge reader in a 40 seconds of experiments with a sampling
time of 1 kHz. From this data, we used the displacement as an input and the
applied voltage as an output because the aim is to achieve an inverse model.

After several tests to achieve the best MSE, we configured the ANN in 22
neurons with 5 input delays. In regards to the data, it was split into 70%, 15%
and 15%, respectively, for training, evaluation and testing. Finally, the perfor-
mance was measured with the mean squared error (MSE) in the validation set
were the value obtained was 0.017 in 12.000 iterations made in 4 minutes.

95



Figure 4.27: Ability of the ANN to fit to the PEA nonlinearity, where: (a) is the hysteresis graph
contrast and (b) the error of the fitting .

Figure 4.27 shows the performance of the ANN to fit with the PEA hystere-
sis in a 4 seconds cycle. Although that Figure 4.27(a) adapts with a decent
effectiveness, Figure 4.27(b) exhibits the error where several features can be
highlighted. Between 1.5 and 2.5 the error tends to increase with significant
peaks; nevertheless, at 2 seconds the deviation increases considerably due to
the slope change as it is a complex transition to be projected by the ANN. Still,
the calculated RMSE for this case provided 0.041V in comparison to experi-
mental data which was acceptable.

Reference Tracking Results

The control structures were designed in Simulink which was later embedded in
dSPACE platform. Despite that the main reference used was a triangle wave,
we also used a sine signal (with same period and amplitude) and a variable am-
plitude triangular signal. The aim of this was to test the flexibility of the proposed
structures against different references.

In regards to the parameters of each controller, these were reached through
the minimization of the IAE in the experiments. The PID constants Kp, Ki and Kd

gathered are, respectively, 1000, 10 and 10−4. The QCSMC-ANN parameters γ
and λ acquired are 60 and 8, respectively.
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Triangular Tracking Results

The first contract was performed with a triangular wave due to its complexity
to be followed. Figure 4.28 presents the error obtained with the QCSMC-ANN
and PID in triangular cycles where several points can be highlighted. The PID
controller had a variable performance since between 0 and 1 seconds, the error
declined; however, in the following second, the error began to rise up until 2
seconds. Despite that in this period the QCSMC-ANN provided a high amplitude
in the first second, in the following it was diminished.

Certainly, at 2 seconds, the first critical point appeared since it is where the
slope of the triangular reference changes its sign. The PID changed suddenly
from 0.1μm to near -0.12μm; although the controller performed an abrupt cor-
rection, the QCSMC-ANN generated a similar action but with a faster improve-
ment in time. This is reflected after 2 seconds where the PID had a transitory
development without reaching the null value of the error. Nevertheless, the
QCSMC-ANN carried with the same demeanour as previously right after the
slope change.

The fourth second of this analysis exhibits another crucial point to focus as
it is the following slope change at the lower converging point. The PID unveiled
a similar situation as previously at 2 seconds but with lower amplitude and a
subsequently transitory response. On the other hand, even if the QCSMC-ANN
featured a peak that has a value above -0.2μm, the later reaction shows a similar
trend as previously described where the controller aims to a mean near the null
value. After 4 seconds, since the signal is repeated, the detailed features are
mirrored.

Aside from the error development, the control signal is an important feature
to analyse as it contributes to the performance of the proposed structures. Fig-
ure 4.29 is a contrast of the control signal generated along the analysed error
of both frameworks. As main characteristics to take into account at this point,
saturations or sudden changes needed to be focus as these can damage the
PEA driver cube. Henceforth, it can be perceived that both controllers had a
suitable demeanour and any downsides were presented in the experiments.
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Figure 4.28: Error generated in 2 cycles of a triangular reference.

Figure 4.29: Control signal in 2 cycles of a triangular reference.
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Sinusoidal Tracking Results

In pursuance of a suitable performance test which can show the docility of the
proposed design against similar references, we inspected the development with
a sine wave form with the same chosen amplitude and periods as previously.
Figure 4.30 shows the error that the PID and the QCSMC-ANN produced in the
mentioned reference signal. The PID had a inferior performance in relation to
previous test since after 1 second, the amplitude increased with peaks up to
0.15μm. Despite that the slope transition is softer in 2 seconds, the error kept
increasing afterwards which resulted in a variation of around 0.3μm. However,
the QCSMC-ANN behaved even better than previously since the error was com-
pensated almost equally along the test with an amplitude below 0.05μm which
oscillates around the null value.

Finally, the control signal that is presented in Figure 4.31 unveils a better
performance than former analysis due to the softness of the signal. It can be
seen that any harm changes were developed in the analysed time which can
lead to a damage of the involved hardware.

Figure 4.30: Error generated in 2 cycles of a sine wave reference.
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Figure 4.31: Control signal in 2 cycles of a sine wave reference.

Triangular Tracking Results with Variable Amplitude

Another experiment performed is triangular reference signal with variable am-
plitudes which were settled randomly in 25V and 121V. Figure 4.32 shows the
repercussion of the error for the considered reference. During the first 4 sec-
onds where the amplitude was 25V, both controllers had a similar demeanour.
The PID shows a perceptible shift at the upper target point in 2 seconds; how-
ever, the QCSMC-ANN provided a constant development along this range with
the same deviation as the PID. On the other hand, the major difference can be
noticeable during 121V where the PID behaves similarly to previous analysed
triangular signal where fast corrections occurs during the slope changes of the
reference signal. This effect produced a brief increment of the error amplitude
in the analysed controllers but the QCSMC-ANN managed to carry this without
any transients, a feature produced by the PID.

As previously, another important feature is the control signal which is shown
in Figure 4.33. It can be seen that any saturations or sudden corrections that
can deteriorate the hardware were developed in the performed experiments.
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Figure 4.32: Error generated in 2 cycles of a triangular reference with variable amplitude.

Nevertheless, effects about chattering are analysed in further details in the fol-
lowing section.
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Figure 4.33: Control signal in 2 cycles of a triangular reference with variable amplitude.

Metrics Results

Certainly, for extra precise performancemeasurement and comparison, we used
three tools which aided us to gather more conclusions. As previously explained,
the IAE was used to tune the parameters until this value becomes minimum.
The RMSE provides the accuracy in terms of the error and because we imple-
mented an SMC based controller (known for the chattering generated in the
control signal), we calculated this value based on previous explained method.

In regards to the IAE, the QCSMC-ANN indicated a superior performance
in the triangular reference which lead to a 53.07% of difference in comparison
with the PID. Nevertheless, in the sine wave test it is shown that this value
was augmented as the QCSMC-ANN reached 81.5% more. Additionally, the
variable amplitude signal carried with the same trend as the difference achieved
was 33.6% favorable for the proposed algorithm. The RMSE showed a similar
manner since the QCSMC-ANN kept with the advantage over the PID in both
signals granted 46.5%, 79.7% and 38.5% of difference with the triangular, sine
and variable amplitude waves, respectively. Lastly, the measured chattering
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indicates dominance of the QCSMC-ANN over the PID and even it emblazons
through values the suitable performance of the control signal; according to the
values of 35.6%, 81.8% and 22% of difference in both signals, it is clear that the
QCSMC-ANN had less chattering than the PID controller.

Reference IAE RMSE [μm] Chatt(u) in 4s
QCSMC-ANN PID Diff [%] QCSMC-ANN PID Diff [%] QCSMC-ANN PID Diff [%]

Triangle 0.1314 0.28 53.07 0.0404 0.0756 46.5 412.75 640.97 35.6
Sine wave 0.0518 0.28 81.5 0.0161 0.0795 79.7 108.8 600.8 81.8
Var. Amp. 0.2067 0.33 33.6 0.0318 0.0519 38.5 514.88 659.4 22

Table 4.12: Comparison of the different metrics

4.5.6 Conclusions

Throughout this research, we developed a control strategy with the aim of in-
crease the accuracy of a commercial PEA. After an analysis of the previous in-
vestigations from other authors and based on the study that we made, we found
that the hysteresis was the main non-linear phenomenon to be counteracted.

First, we made an analysis of the properties of a commercial PEA PK4FYC2
from Thorlabs. According to the manufacturer, the maximum error is 15% which
is a considerable value for applications where high precision is required. As the
main reference, we used a triangular wave because it is a complex signal to be
tracked due to the high frequency harmonics and sudden slope changes.

Secondly, we proposed a robust sliding controller due to the advantages
studied in the related works from the introduction. Thus, we chose to use a
QCSMC which belongs to the HOSMC so that the chattering is reduced in com-
parison to classic SMCs. Commonly, sliding controllers have two terms where
one of them is achieved through a mathematical model but instead, a distinctive
feature of our controller is the use an ANN. We contrasted the proposed design
with a conventional PID in terms of several metrics such as IAE (that was also
used to tune the gains of each framework in experiments), MSE and chattering.

In regards to the results, at first, we analysed the performance of the ANN
which provided a suitable RMSE and fitting to the hysteresis. Later, we im-
plemented the QCSMC-ANN and the PID in a dSPACE platform for a real-time
experiment. The results showed that the QCSMC-ANN generated a lower track-
ing error which oscillated around the null value. The PID displayed a slow com-
pensation and even with a disparity that had a variation with higher amplitude
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that reached the 0.1μm. Nevertheless, both schemes showed suitable control
signals in the analysed graphs. Additionally, because we wanted to test the
flexibility of both structures against reference changes, we used a sine wave
and a triangular reference with variable amplitude. In this case, the first case
exhibited a demeanour that was similar in the error and control signal because
the reference was softer than the previous one. In regards to the variable ampli-
tude signal, the QCSMC-ANN still provided a superior performance which was
verified in graphical and numerical analysis.

Finally, we calculated the mentioned metrics which showed concrete values
of performance from the comparisons made. Thus, in terms of the IAE and
RMSE, the QCSMC-ANN had a important distinction favorable for the QC-SMC
in the proposed reference signals. The calculated chattering also showed a
significant difference where the QC-SMC carried with the leading trend.
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4.6 Fuzzy Logic Controllers Type-1 and Type-2 combined with Artificial Neural
Networks

4.6.1 Contributions

• This work proposes two control algorithms, based on fuzzy logic and neu-
ral network compensation, aimed at reducing the error and improving the
actuation signal of piezoelectric actuators.

• The proposed control schemes were tested experimentally in a commer-
cial piezoelectric actuator. They were implemented with a dSPACE 1104
device, which was used for signal generation and acquisition purposes.

• The performance of the proposed control schemes was compared against
a well tuned PID controller.

• Experimental results show the advantages of the proposed controllers,
since they are capable of reducing the error to significant magnitude or-
ders.

4.6.2 State of the art

As previously seen, hysteresis reduction can be handled from two diverse per-
spectives: tracking control design or material re-engineering [4]. In regards to
the latter mentioned option, according to Park and Shrout, [18] there is a prop-
erty related to the performance called piezoelectric coefficient (also known as
d33) which determines the degree of induced strain at a particular electrical field.
Thus, a piezoelectric material will display a lower hysteresis but at the expense
of decreasing d33, which implies that the material will have less stiffness. There-
fore, in this case, we pursed the design of a control strategy.

From the perspective of classic control theory, linear controllers can be a
suitable first option for a PEA. PID scheme has been implemented several times
and it is still being employed for comparisons. An interesting study was pro-
duced by authors of [176], where they generated a simulated environment with
a BW hysteresis model for the PEA and a PID, tuned by optimisation, was ap-
plied. The achieved control parameters were then used in an experimental rig
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where the outcomes showed a maximum error percentage of around 5%. An-
other attractive study was presented by Kaci et al. [177], where they developed
a strategy of a PID tuned through a linear quadratic regulator for a resonant plate
actuated by a PEA. Despite that the aim was unrelated to tracking, authors at-
tained suitable results in terms of vibration control. On the other hand, a similar
approach to vibrations rejection with PEAs was carried by Tang et al. [178],
where they used Youla parameterization with a PEA to reduce fluctuations of a
telescope and results showed an enhanced performance of the system. Nev-
ertheless, hysteresis is a strong nonlinear and undesired effect which limits the
operating range with a linear controller [107]. Furthermore, uncertainties like
modelling or external loads are commonly present so that linear strategies are
limited in this sense due to the actuation bandwidth [108].

Among the diversity of non-linear strategies, sliding mode controllers ones
are one of the most frequently used during the last decades due to their ro-
bustness [179]. Different combinations were proposed from various authors for
several applications where a PEA had an important role. For example, authors
of [180] proposed a conventional SMC for tracking control of a micro-gripper.
Despite that the control signal was neglected in the analysis, they obtained er-
rors of around 6%. Another example was developed and implemented by Ling
et al. [181], where they used a SMC combined with ANN; tests were carried
with soft curve references in which acceptable errors were accomplished. Dif-
ferently, an approach akin to robust control was developed by Dong & Tan [68],
where they established a composed structure of bounded sub-models; experi-
mental results showed acceptable positioning errors. Other alternatives to SMC
were analysed by Zhang et al. [40] where they implemented a robust control
compensator based on feedback linearization. Outcomes were gathered from
simulation and experiments, where they reached a satisfactory accuracy. Nev-
ertheless, most of the robust strategies mentioned have a major downside in
practice related to the chattering; this phenomenon is produced by neglected
fast dynamics and with finite sampling rate digital controllers [182].

On the other hand, FLC is an easy understanding type of structure be-
cause it is expressed through linguistic rules that can be tuned according to
the knowledge of a particular system [183]. Actually, Sabarianand et al. [82]
established that advantages of FLC for PEAs are related to its capability to deal
with non-linearities, uncertainties and innacuracy. Also, according to Sobrinho
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& Junior [184], fuzzy sets have better performance in contrast to conventional
techniques in embedded systems. For instance, authors of [185] used a fuzzy
logic approach for an atomic force microscope (known to have a bending type
PEA) and thus, accuracy is an important objective in this case. The simulation
outcomes revealed high accuracy and fast corrections. In terms of force control,
Kang et al. [186] implemented a FLC in a commercial PEA where they aimed
to reduce the hysteresis and they could achieve a fast convergence a suitable
force tracking accuracy. Another interesting study was carried out by authors
of [187], where they produced a simulated environment for a nanopositioning
platform controlled by a PEA through an integral resonant controller based on
FLC; results showed improvements up to 1μm in contrast with a conventional
technique.

Fuzzy sets that can be described based on classical theoretical techniques
are also known as type-1 (previously named as FLC-T1) [188]. Nevertheless,
there are at least four sources of uncertainties associated to the disadvantages
of T1: (1) uncertain linguistic rules, (2) disagreement of expertise, (3) noise
associated to activation and (4) measurement data [189]. Hence, this implies
that membership functions are not exact as with FLC-T1 because they can be
blurred due to these uncertainties [190]. These issues derived the type-2 (FLC-
T2) sets which are capable to handle uncertainties and adapt better when defini-
tions are dubious [191]. As a consequence of these augumented capability mir-
ror uncertaities, FLC-T2 is known to have more robustness than FLC-T1 [192].
Also, it has been showed that FLC-T2 is able to perform better than FLC-T1
systems in control related applications [193–196]. In this research, we imple-
mented FLC-T1 and FLC-T2 control structures.

Nevertheless, based on the background research prior to the development
of this study, we found that uncompensated feedback controllers have certain
issues in PEA tracking control. These are related to the usage limitation of
high gain controllers due to low gain margins of feedback controllers and sta-
bility performance [82]. Still, a combination of feedback-feedforward structures
is recommended since it fuses the individual advantages of each framework
to gather a high-performance controller [50]. A feedforward compensation is
commonly based on an inverse system model, which implies that model uncer-
tainties can be reduced provided that the feedback controller is well designed
in combination with a suitable hysteresis model, as in this case. For this rea-
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son, in this investigation, we proposed two novel combinations of feedback-
feedforward structures.

Hysteresis models are divided in 2 groups: mathematical and physics based
ones. In regards to the latter mentioned, it is used for ferromagnetic hysteresis
description due the complex solutions and material dependency [127, 168]. On
the other hand, mathematical models are divided into operator-based (such as
PI, Preisach and Kranosel’skii-Pokrovkii [197]) and differential equations-based
(like BW, Duhem and Backslash [82]). Despite that these models have certain
extensions to deal with asymmetric hysteresis, they introduce two major dis-
advantages: (1) complex numerical solutions which require multi-steps or (2)
Runge-Kutta solvers at each time-step and (3) a higher number of parameters
(due to the asymmetry, for example) expands the difficulty to achieve a suitable
equivalent model [134]. Among the analysed options for feedforward compen-
sation and based on our prior research from previous sections, we found that
ANN are characterised by higher precision and easy implementation over men-
tioned mathematical models [127]. Therefore, we conclude that ANN are a
suitable option to be implemented in this study.

Therefore, this work analyses the applicability of two feedback-feedforward
control structures based on FLC-T1 and FLC-T2 strategies, combined with a
TDNN to control a commercial PEA. At first, the performance of both FLCs was
compared with a conventional PID, commonly used for these correlations [198].
Later, since we had enhanced results, we analysed the two proposed advanced
structures. This is an innovative proposal for the tracking control of a PEA since
as we reviewed, a FLC-T1 and FLC-T2 combined with a TDNN .

4.6.3 Time delay neural network

A TDNN resides its structure on three nodes based on an ordinary feed-forward
ANN as Figure 4.34 shows. The dynamics of the input vector X(t) are gathered
through n delayed signals and is then linearly transformed with the weight matrix
Wk with the bias vector bk. Later, it is fed into an activation function such as
a tangsig. The output layer is supplied with the vector r(t) and again linearly
changed with the weight matrixWj and a bias bj and finally, used as an input in
purelin activation function.
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r(t) = tansig

[
n∑

l=0

Wj
(
x(t− n)

)
+ bk

)]
(4.55)

Figure 4.34: Time delay neural network structure

Weights and biases can be defined through a training process gathered
from experimental data. In this case, we used MATLAB Deep Learning Toolbox
with Bayesian regularization as it is suggested for data with further noise [149].
Usually, in ANN training, a main cost function used for convergence is the
mean-squared error through experimental data which is shown in Equation 4.56,
where P is the number of observations, Ti is the target data and Ui is the ANN
output (both at the i-th sample).

EMSE =
1
P

P∑
i=1

(Ti − Ui)
2 (4.56)

However, if a training is mainly performed using this cost function, it would re-
semble in an over-fitting. This happens when the ANN fits with the training data
but not with the test portion and thus, this would provide an unsuitable overall
performance. Thence, bayesian regularization penalizes the Equation 4.56 with
a different cost functions where the objective is to penalize large weights and
aims to generalization. Further technical details can be found in the research
made by the authors of [199–201].

4.6.4 Fuzzy logic controllers

Formerly, details of fuzzy logic type-1 sets were described in Section 4.3.4.
However, these type sets lack of capabilities to handle uncertainties, therefore
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Zadeh defined the type-2 sets [202]; this concept was later augmented by Mi-
zomoto and Tanaka [203]. This expansion allows efficacy on a fuzzy set in
which uncertainties are difficult to measure or determine. Based on Castillo et
al. [204], a fuzzy set of type-2 is usually denoted by Ã but differently to type-1,
there is an upper and lowermembership function μ

Ã
(x) and μÃ(x). This is defined

in Equation 4.57. These limits are associated with a type-2 feature known as
footprint of uncertainty (FOU), that is defined in Equation 4.58. In other words,
the FOU expresses uncertainty in the definition of type-2 sets membership func-
tions [205–207]; thus, this is an advantage over type-1 sets which require exact
values in their membership function definition. For our case, the FOU is graph-
ically expressed in Figure 4.36.

Figure 4.35: Structure of a fuzzy logic controller type-2.

Ã =
{(

(x, u), 1
)∣∣∣∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]

}
(4.57)

FOU(Ã) =
{
(x, u)

∣∣∣x ∈ X and u ∈
[
μ
Ã
(x), μÃ(x)

]}
(4.58)

Figure 4.36: FLC-T2 Membership functions
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The mechanism of fuzzification of fuzzy sets type-2 is analogue to type-1,
although the linguistic form of the inference is defined based on the uncertain-
ties linked to the main feature. Therefore, the rules are expressed in the form
of Equation 4.59. Since the FLC-T2 has a range of uncertainties, the defuzzi-
fication process has an extension known as the type-reduction, which implies
the calculation of a centroid. In this case, we used the Karnik-Mendel which is
a common used method in fuzzy sets type-2 where the goal is to seek for cru-
cial points that combine the upper and lower membership function limits [208];
further features about this tool can be found in the study of the authors [209]. A
schematic resume of the described technique is shown in Figure 4.35.

Rm : If E = B̃1k and Ė = B̃2l ⇒ ΔU = G̃m (4.59)

4.6.5 Results

Neural network verification

We trained the ANN with recorded data from experiments were we settled a tri-
angular signal input of 140V with a period of 4s and 1kHz of sampling frequency.
Nevertheless, during the ANN configuration, this was reversed to produce the
inversemodel so that the output is a compensation voltage. The 70% of the total
acquired data was used for training, 15% for evaluation and the rest was used
in testing. As we previously explained, we used a bayesian regularization for
training and implemented through MATLAB in a Dell Precision3640 configured
with 7 cores. The training lasted for 16.5 hours with 3927 iterations.

The outcomes are presented in the Figure 4.37 where a 4s cycle is con-
trasted with a hysteresis fitting with its approximation error. The first rise that
is performed between 0 and 2s, where the error has fluctuations which are be-
tween ±0.2V. In the first slope change (at 2s), a sharp and expected change
appears where the error value switches from 0.25V to -0.25V. Along the voltage
descent (last 2s), the error has a negative value in most of the range although
it did not exceed -0.2V. Also, for this case, we calculated the RMSE which is
equal to 0.0964V and it provides a reasonable accuracy that can be enhanced
with feedback controllers.
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Figure 4.37: ANN capability to fit with the PEA studied nonlinearity where: (a) is the hysteresis
graph and (b) is the fitting error

PID FLC-T1 FLC-T2
Gains Values Gains Values Gains Values
Kp 10 Ke 12 Ke 21
Ki 1000 Kd 0.0006 Kd 0.0002
Kd 0.001 Kb 0.58 Kb 0.14

Table 4.13: Obtained gains for the PID, FLC-T1 and FLC-T2

Experimental comparison of feedback controllers

Feedback control structures such as PID, FLC-T1 and FLC-T2 were imple-
mented in the dSPACE 1104 platform. We recorded the error and the control
signal which were overlapped for a suitable contrasted comparison. We tuned
the control parameters in real time through the IAE minimization. Additionally,
we took into account the limits of the actuator, so we included saturations an
limits to avoid damaging the hardware. The achieved gains are summarized
in Table 4.13. The FOU was established as 10% and further details of this are
explained in following section.

The first experiment outcomes are provided in Figure 4.38 to analyse the er-
ror. In this case, we will show 2 cycles (or 8s) in order to interpret the full range
behaviour. Therefore, in the first rise (before 2s), the three controllers show a
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similar behaviour at different amplitudes. For instance, both FLC types have a
lower value than the PID but the curvature trend tends to be similar. Neverthe-
less, this increases differently after the first second in both FLC controllers and
even the FLC-T2 tends to have a better performance that the others since the
amplitude lowers its value.

One of the first critical point is at 2s which is were the displacement reaches
the UTP and the slope changes its sign. At this moment, the error of the three
controllers also changed its sign suddenly due to the sharp variation. Whereas
the PID acts with a lower compensation, both FLC have a faster correction in
contrast. Also, the FLC-T2 and FLC-T1 performed similarly in the zoomed win-
dow in terms of amplitude and time response.

After the first slope change, the reference descents where the error tends
to show a reciprocated situation, like in the rise. However, the PID corrected
with a higher amplitude difference in comparison to both types of FLC, which
again have a similar demeanour. The PID has a curved correction which lasts
1.5s until it can reach levels of the FLC, that is near 3.5s. Moreover, the PID
error compensation has higher amplitude values in contrast to the FLC-T1 and
FLC-T2 due to the peaks that can be shown near 2.7s and 3.2s.

Finally at the LCP, the circumstance was fairly different to the one from 2s
since the controllers behaved more similar. Nonetheless, the PID still reacted
worse in terms of amplitude but the correction in time seemed to be faster, spe-
cially after 4s where the settling time was faster than before (at 2s). Additionally,
the FLC-T2 tended to act better than FLC-T1 after the change; the amplitude
was slight lower where certain peaks averaged the null value.

A further precision analysis was carried with the performance metrics that
we calculated in Table 4.14. We referred all the values to the PID controller
as it showed the lowest effectiveness. The IAE achieved by the PID exhibited
0.5242, which was enhanced by the FLC-T1 with 63.52% and even further by
the FLC-T2 with 68.08% of difference. Additionally, this discrepancy it is also
shown in the RMSEwith a modest 4% extra for the FLC-T2. Finally, the RRMSE
displays that the both FLC types had near 3 times higher accuracy than the PID.

In regards to the control signal, Figure 4.39 displays the generated signal of
each control framework implemented in a feedback mode. As a first appreci-
ation, it can be seen that there is a lack of saturations which can damage the
actuator. Nevertheless, there are certain oscillations which deserve an in-depth
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Figure 4.38: Error acquired during the test of the feedback controllers.

Controller IAE RMSE RRMSE
Value Diff.[%] Value[μm] Diff.[%] Value[%]

PID 0.5242 - 0.0706 - 0.33
FLC-T1 0.1912 63.52 0.0278 60.62 0.13
FLC-T2 0.1673 68.08 0.0252 64.32 0.12

Table 4.14: Metrics comparison for feedback controllers

analysis: in most of the zoomed windows, we can see quick variations which
belong to the PID controller specially in the range of the LCP (around 4s) and
in the descent (near 6.7s). This is an important feature to highlight since it not
only can lead to an actuator wear but also to extra energy consumption. Nev-
ertheless, FLC-T1 and FLC-T2 behaved similarly in the last mentioned points
of interests but with a slight better performance for the FLC-T2 in the rising as
it can be seen near 0.5s at the uprising.

Experimental comparison of feedback controllers with neural compensation

After the analysis of feedback structures, we implemented and acquired the out-
comes of the advanced proposed controllers. In this case, in order to enhance
the proposed algorithms, we made a sweep FOU values in which we could ob-
serve a candidate percentage depending on the minimal IAE achieved. This is
resumed in Table 4.15 were the values of IAE were calculated in 40s of experi-
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Figure 4.39: Control signal acquired during the test of the feedback controllers.

ment. It can be seen that 10% unveiled the minimum IAE, which we chose for
the experiments.

FOU Percentage [%] IAE Value
5 0.3852
10 0.3850
15 0.3863
20 0.3901
30 0.3896
50 0.3922

Table 4.15: Variation of FOU percentage and the IAE achieved in each case

At the first slope sign shift at 2s, both controllers behaved similarly although
the FLC-T1-ANN, seems to have a slightly faster correction. Oppositely, when
the slope switches from negative to positive at 4s, the situation has a modest
change where the FLC-T2-ANN compensates the error. On the other sides, it
can be seen that the FLC-T2-ANN has a suitable performance due to the error
amplitude which lower than the alternative option.

In regards to the metrics, Table 4.16 displays the metrics calculated for
the advanced controllers. Although the magnitudes are similar, FLC-T1-ANN
showed the lower values in overall and thus it was used as a reference for the
percentage calculation. The FLC-T2-ANN achieved better outcomes since the
difference is 21.32% and 21.34% for the IAE and the RMSE, respectively. On
the other hand, the RRMSE shows a meager difference, which is favourable for
the FLC-T2-ANN.
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Figure 4.40: Error acquired during the test of the feedback-feedforward controllers.

Controller IAE RMSE RRMSE
Value Diff.[%] Value[μm] Diff.[%] Value[%]

FLC-T1-ANN 0.1039 - 0.0164 - 0.078
FLC-T2-ANN 0.0807 22.32 0.0129 21.34 0.061

Table 4.16: Metrics comparison for feedback-feedforward controllers

Finally, the control signal of these proposed architectures is shown in Fig-
ure 4.41. In the previous study, saturations or sharp changes are unseen but
certain points deserve to be highlighted. During the rise in the first 2s, both con-
trollers have a similar demeanour which can also be seen during the first change
at the UTP. Also, a similar situation is seeing during the descent that is pointed
near 6.7s. Nevertheless, at the LTP, the FLC-T2-ANN shows a disadvantage
because its signal contains further variations in contrast to the alternative.

4.6.6 Conclusions

In this study we analysed the applicability of different feedback-feedforward con-
trol structures based on fuzzy logic control strategies, known as FLC-T1 and
FLC-T2. We reviewed that the advantage of using FLC-T2 over FLC-T1 is the
resolution of the uncertainties by means of the membership functions. These
controllers were connected to a trained TDNN in a feedback-feedforward struc-
ture which was expected to increase the accuracy of FLC-T1 and FLC-T2 in a
feedback configuration. Therefore, the strategies were: (1)PID, (2)FLC-T1, (3)
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Figure 4.41: Control signal acquired during the test of the feedback-feedforward controllers.

FLC-T2, (4) FLC-T1-ANN and (5) FLC-T2-ANN.
The five control schemes were embedded in an experimental test rig which

involved a real PEA. The experimental setup included: a commercial PEA and
its peripheral hardware (both provided by Thorlabs) and a dSPACE 1104 plat-
form, which was used for signal generation and acquisition purposes. A triangu-
lar signal was chosen as reference, since this is a complex curve to be followed
due to the sharp changes and harmonics.

Experiments were carried out with FLC-T1, FLC-T2 and PID control schemes.
The latter is a was chosen because is a common approach used for tracking
control operations of PEAs. Thus, results showed the superiority of the FLC
controllers against PID algorithm in the accuracy and control signal. Actually,
the fuzzy schemes displayed an improvement over the PID of around 60% at
tracking operations.

Finally, FLC-T1 and FLC-T2were combined in a feedback-feedforward struc-
ture with the TDNN. Experimental results exhibit an evident accuracy enhance-
ment which was reflected in the magnitude order of the error. Nevertheless,
FLC-T2-ANN unveils the best performance due to its capability to cope with
the uncertainties. This was observed in the graph and numerical error analysis
which coexisted with a suitable control signal.

The presented analysis, based on FLC-T2 and FLC-T1 joined with ANN, pro-
vided several benefits over conventional algorithms like PID or their feedback
structure without the neural compensation. These control schemes achieved
considerable improvements in terms of accuracy, paving the way to high preci-
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sion applications. In addition, suitable control signals were generated aimed at
reducing the efforts at the PEAs.
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4.7 Sliding mode controllers combined with ANNs with evaluation of time con-
sumption

4.7.1 Contributions

• Based on our previous works, sliding mode controllers based on ANN
compensation as the replacement of the equivalent term, can induce sev-
eral advantages due to its easiness of implementation. The strategies
used are conventional sliding mode control, twisting-algorithm, STA and
prescribed convergence law with an ANN as an equivalent model to reach
the sliding surface.

• An application analysis of the described techniques for a commercial PEA
which has been linked to dSPACE for the implementation of the control
algorithms.

• Additionally, an analysis of the time consumption of each algorithm (switch-
ing term) which is useful when a designer requires an idea about the hard-
ware to be choose when commercial applications are needed.

4.7.2 State of the art

At macroscopic level, hysteresis is a meaningful effect to be reduced since it
induces instabilities and inaccuracies in PEAs [210]. From the point of view
of material engineering, the hysteresis can be diminished when a redesign in
the structure is performed. This implies that materials need to be harder but
at the cost of reducing the Curie temperature, value at which the piezoelectric
properties are weak [211]. According to Dragan Damjanovic, hysteresis can
also be decreased through an active control system provided that the physical
properties of the PEA are well understood [4].

Linear schemes can be an early approach to design a compensation for the
hysteresis in PEAs. Mainly, PID controllers had been used widely for innova-
tion and comparison of advance proposals. Han et al. analysed a complex
fast steering mirror system that was driven by PEAs where they embedded a
PID due to its simplicity [212]. Experiments showed that the rotational preci-
sion achieved was in the required design range. On the other hand, another
method reviewed has been linear quadratic gaussian (LQG) controller which
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has been implemented by authors of [213]. In this research, they studied an
active vibration isolation control which is a common application of PEAs due
to their fast response. The design was combined with a loop transfer recovery
(LTR) in order to retrieve properties like robustness with phase and gain mar-
gins [214]. Results showed enhanced features related to vibrations with the
proposed structure. However, hysteresis is a strong nonlinear effect and linear
techniques can have problems in dealing with modeling uncertainty and external
effects which may converge to poor performance and stability [108, 215, 216].

Nonlinear control strategies are able to enhance the performance of a sys-
tem especially when a design is embedded [217]. In this sense, FLC is an
intuitive and simple method which main advantage is the unnecessary model
requirement for its design since it has been developed through rules originated
from an expert knowledge about a particular system [218]. An implementation
of FLC in PEAs has been done by authors of [219] in a precision manipulation
mechanism. In their study, they used an adaptive FLC method which was em-
bedded in a control platform. Results showed improvements of 40% in contrast
to conventional techniques. Despite that this study showed significant enhance-
ments, the contrasts had been carried against a PID. Another similar study was
produced by Luo et al. where they developed an active vibration control with
FLC with suitable results in difference to an uncontrolled system [220]. On the
other hand, nonlinear model predictive control (NLMPC) is another example to
review; this approach is based on a nonlinear mathematical model that predicts
the future states for an optimisation of the control law to be applied [221]. Au-
thors of [222] designed a NLMPC based on an ANN for a PEA. This research
presented the experimental validation of the proposed controller where results
of tracking accuracy showed significant improvements in contrast to a simple
PID. Nevertheless, disadvantages of previous mentioned strategies are related
to the high computational workload: NLMPC has an optimisation process that
requires high computational resources whereas FLC has the same issue when
rules are increased [223].

SMC is a robust algorithm frequently used in nonlinear systems where dis-
turbances and uncertainties are meaningful [224]; this is also combined with
low computational workload due to its simple calculation [225]. Liang et al. im-
plemented a discrete SMC for a micro-gripper mechanism actuated by a piezo-
electric actuator [226]. The objective was to control position and force, which
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are both affected by the PEA hysteresis. The researchers were able to achieve
errors of 0.2μm during steady reference following while an accurate force con-
trol was also accomplished. Authors of [227] embedded an SMC for a medical
device aiming to improve the accuracy. Although they studied the system un-
der unknown disturbances and uncertainties, they were able to accomplish a
suitable accuracy in terms of the error, the hysteresis was omitted in the study.
One of the drawbacks of SMC is the chattering generation which is caused by
neglected dynamics and in implementations where the sampling rate is finite,
thus it cannot be ignored [182, 228].

Chattering in SMC can be attenuated with different options such as the us-
age of boundary layer technique [114], replacement of the signum function by
sigmoid [229] or asymptotic SMC [230]. Also, the usage of surface derivatives
may help to decrease this effect which has been named as HOSMC by Levan-
tovskii [158]. When derivatives are used in the sliding surface, the finite time
convergence is guaranteed to the origin while conventional SMC only yields
to asymptotic stability [231]. In this sense, Fridman et al. defined that twist-
ing algorithm (TA) is the second generation of SMCs (while conventional SMC
belongs to the first one) [232]. Nevertheless, when derivatives are employed,
these can induce high noise in a feedback loop [233]. Another tool that could
counteract these issues is STA (that also belongs to HOSMC), which has an
integral term and avoid the usage of high order derivatives [234]. An unconven-
tional structure that was also found is prescribed convergence law (PCL), that is
a second order algorithm known for its convergence rate and tracking capabili-
ties [235]. Implementation of the mentioned algorithms on PEAs were found in
the work of Xu et al. from [236], where they made a simulation and experiments
in which results were shown for tracking with suitable outcomes. Nevertheless,
they used a hysteresis mathematical model based on an uncertainty. Despite
that conventional designs of SMCs approaches require the usage of a math-
ematical description to reach the sliding surface, hysteresis models still have
deficiencies for implementation [73].

Classical approaches for hysteresis description are classified in mathemat-
ical and physical theories [127]. In this background review, the mathematical
models will be surveyed since physical ones like Jill Atherton and domain wall
are mainly employed for magnetism description [237]. Ferenc Preisach pro-
posed his theory in 1935 that has been initially used for magnetism and is per-
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haps one of themost used in research due to its simplicity [238]. The base of this
theory is the ”hysteron operator” or also called ”relays”, which sum of several
terms can lead to a suitable hysteresis curve [239]. It has also been employed
for PEAs as Li et al. performed in their work [240]. Another well known model is
PI which is based on a linear combination of hysteron operators [241]. PI model
has been also used in the past in works like [242], where they achieved suitable
error ranges in the tracking accuracy. Major downsides of hysteron theories is
the computational requirement when a high fidelity inverse model is required
for control of PEAs [132]. Despite that strategies like vectorial approach can
improve the memory consumption, these are still complex tools to implement
in real time systems [243]. A model which can tackle these disadvantages due
to its easy solution for implementation even its inversion is BW [244]. This has
been showed by Yang et al. as a nonlinear equation which can be extended
even for asymmetrical hysteresis, a common property of PEAs [245]. However,
still this approach main issue is the parameter identification which can vary for
each operative condition [246].

4.7.3 Conventional Sliding Mode Control

The first step in the design of an SMC is the choice of a suitable surface. In this
sense, the guideline was followed through the criterion of authors from [247]
that is expressed in Equation 4.60. The latter has the terms r and λ that are,
respectively, the relative degree of the system and a positive constant.

S =
(
d
dt

+ λ
)r−1

e (4.60)

Based on previous works [248], the relative degree from the system is 2.
Therefore, the chosen sliding surface is as Equation 4.61 shows.

S = ė+ λe (4.61)

The control law of the proposed controllers is established by a neural com-
pensation to reach the sliding surface rather than an equivalent term that comes
from amathematical model, as it was explained in the introduction of thismanuscript.
Thus, the expression of the control signal for the conventional SMC uc is defined
in Equation 4.62, where uannc is the neural compensation (that will be explained
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in further sections) and uswc is the switching term that provides robustness to
the system. As in this case, the conventional SMC is being highlighted, the ex-
pression of Uswc is defined in Equation 4.63. The choice of K should be positive
but taking into account that as bigger as it gets, the higher the oscillations are
generated [249].

uc = uann + uswc (4.62)

uswc = −Kc · sign(S) (4.63)

Based on former explanation, a formal stability proof has been performed
using the system and the SMC algorithm. As previously mentioned, the system
has a second order properties which implies that mathematically it can be de-
scribed as Equation 4.64 [114]. The expression is described by m, b, k, x, d,
u, h and P that are, respectively, mass, damping constant, stiffness, position,
piezoelectric coefficient, input voltage, hysteresis and general perturbations or
unmodeled dynamics.

mẍ+ bẋ+ kx+ dfh(x) = duc + P (4.64)

Therefore, the compensation term of the neural network can be considered
as superposition named in Equation 4.65. of a linear term (without perturbations
or hysteresis, detailed in Equation 4.66) named as ulinear and another which con-
templates the nonlinearities that is defined as gann.

uann = ulinear + gann(x) (4.65)

ulinear =
1
d

(
mẍref + bẋref + kxref

)
(4.66)

Hence, if the error is defined as the reference minus the measured displace-
ment, a system based on this variable is gathered in Equation 4.67. Also, it is
considered that the ANN has an uncertainty in the fitting capabilities, for which
reason it is defined an approximation error gann(x)− fh(x) = εann.

më+ bė+ ke = dεann + P+ dusw (4.67)
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In order to study the stability, the candidate Lyapunov function (based on
the sliding surface S) proposed in Equation 4.68 is a quadratic which derived
produces Equation 4.69.

V =
1
2
S2 (4.68)

V̇ = S · Ṡ (4.69)

Previous defined surface in Equation 4.60 can be derivated and combined
with the error second derivative fromEquation 4.67. Therefore, through replace-
ment, the first derivative of the Lyapunov function results in Equation 4.70.

Ṡ = − b
m
ė− k

m
e+

d
m
εann +

P
m

+
d
m
usw + λė =

d
m
usw + ρ (4.70)

Where:
ρ = − b

m
ė− k

m
e+

d
m
εann +

P
m

+ λė (4.71)

For a practical purpose, the term ρ needs to tend to a constant value since
the error is expected to be small in time and the perturbations with the neural
network approximation will be finite and constants in overall. Therefore, it can
be established an upper and lower bound based on the absolute value of a
constant G such that ρ ≤ |G| [154]. Thence, with this assumption, Equation 4.72
is generated with the condition of stability according to Lyapunov’s theorem.

V̇ = S ·
(
|G| − Kcsign(S)

)
= S|G| − Kc|S| < 0 (4.72)

Hence, previous expression can be achieved provided that K1 > |G| which
will allow the second negative term to govern the stability condition of Lyapunov.

4.7.4 Twisting algorithm

Similarly to previous presented technique, the surface will be the same but the
control switching term is different as Equation 4.73 shows where the condition
of the gains is that both are positive and k3 > k4 [250].

uTA = −k3sign(S)− k4sign(Ṡ) (4.73)
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In this case, a stability proof is fair complex since conventional Lyapunov
functions are not suitable for the analysed system. Additionally, alternative
proposals might result in a non-asymptotic stability (even using Lasalle’s theo-
rem). Thus, the Lyapunov candidate function for this algorithm is meant to be
Equation 4.74 which development can be found in the work of Santiesteban et
al. [251].

V = αS2 + γ|S|3/2sign(S)Ṡ+ α|S|Ṡ2 + 1
4
Ṡ4 (4.74)

4.7.5 Super Twisting algorithm

STA has been designed to reduce the chattering that TA produced as a first gen-
eration algorithm. Thus, the expression in this case corresponds with the one
fromEquation 4.75 that helps to provide a continuous control signal [252]. In this
formula, the necessary conditions are that the constants K4 and K5 should be
positive design parameters which will be gathered through minimization of the
IAE [253]. Additional details about the Lyapunov demonstration can be found
in previous Section 4.4.4.

usw = K1|S|1/2sign(S)− K2

∫
sign(S)dt (4.75)

4.7.6 Prescribed Convergence Law

PCL is a second order SMC that ensures that the surface and its derivatives
(full dynamical collapse) will be null along the time and therefore, that the errors
will converge to zero [254, 255]. The minimum conditions that guarantee this
statement is when K5 and β are positive numbers whereas more related stability
conditions can be found in the works from [119, 256].

uPCL = −KPCLsign
(
Ṡ+ g(S)

)
(4.76)

g(S) = β|S|1/2sign(S) (4.77)
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4.7.7 Results

All four described strategies had been embedded in dSPACE platform which
provided information that was processed for graphical and numerical analysis.
The used ANN is the one described in Section 4.6.3. Following figures present
the collected information achieved during the tracking of a triangular signal with
an amplitude of 140V and a period of 4s. All controllers showed different per-
formance and control signal, which are both analysed as follows. Figure 4.42
demonstrates the acquired error during 8s, which is 2 triangular wave cycles.
Graphically, main spots to be analysed are the slope changes (2s, 4s and 6s)
and a general conclusion can be achieved through numerical tools to grant a
better verdict.

Figure 4.42(a) displays the error in the first slope switch from rising to de-
creasing voltage in a short time range. It can be seen that all the controllers
behave similarly in the change since an overshoot is generated. In this sense,
the strategy that provided the higher overshoot has been TA(0.17V) whereas
the lowest one was STA (0.12V), which also gave the best settling time (near
0.018s). It can also be seen that after 2s, TA showed more variation in the
amplitude than the conventional SMC, expected to be the algorithm with more
chattering.

At the lower converging point in 4s (showed in Figure 4.42(b)), the perfor-
mance of the controllers is rather different though the TA still has enough varia-
tion. The PCL algorithm seems to provide the highest undershoot because the
amplitude was around 0.25V in contrast to the 0.08V from STA, that specified
the lowest value. The settling time has also achieved the best value with STA,
which has been of around 0.016s.

Despite that it was expected a similar behaviour at 6s, SMC and TA behaved
differently. Figure 4.42(c) sights a higher error value in generated amplitude of
SMC with a slower settling time in comparison to the other controllers. Addi-
tionally, it also shows higher chattering along the time than TA until 6.03s which
is when the situation changes and TA generates even more.

Numerical results were achieved based on the data gathered fromFigure 4.42,
which are mirrored in Table 4.17 by tools explained in Section 4.1. The values
of IAE and RMSE had been referenced to the SMC which showed the highest
in both metrics. TA exhibited a similar value in both metrics with a difference
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Figure 4.42: Tracking error comparison of the embedded controllers

below 10%. Nevertheless, STA boosted the difference as it reached almost
50% of dissimilarity with SMC. Thus, PCL algorithm prevails over the rest of
options as it showed significant enhancement of above 55% in IAE and RMSE.
The RRMSE expressed the same trend since the difference between SMC and
PCL was progressive, were the latter has more than the half of improvement.

Controller IAE RMSE RRMSE
Value Diff.[%] Value[μm] Diff.[%] Value[%]

SMC 0.2456 - 0.0387 - 0.18
TA 0.2272 7.5 0.0355 8.35 0.16
STA 0.12 48.63 0.0199 48.56 0.09
PCL 0.1013 57.94 0.0177 54.29 0.08

Table 4.17: Metrics comparison for the tested controllers

Figure 4.43 represents the acquired control signal which was produced by
the algorithms along the error compensation that has been previously analysed.
Despite that saturations that can damage the actuator were unseen during ex-
periments, several zoomed windows were pictured to provided a better analysis
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in each part. For instance, Figure 4.43(a) shows an expected scenario during
the beginning where the TA generated a considerable variable signal in contrast
to the other algorithms. Actually, it can be seen that PCL was able to provide a
softer response indeed; these phenomena can be seen either in Figure 4.43(e).
Later in Figure 4.43(c), previous trend is still the same as the TA provided more
chattering than other options. It is also possible to see that all the controllers
made a necessary sharp switch due to the slope change but PCL had the lowest
amplitude change. Nevertheless, in Figure 4.43(c), the switch was softer with
slight overshoots in all the frameworks.

Figure 4.43: Control signal comparison of the embedded controllers

Lastly, Figure 4.44 provides the required computational time with its mean
and standard deviation for each control strategy. This data is an important fea-
ture because it provides an idea for a designer about the choice required of
a hardware control board. At first, it can be seen that the SMC requires the
lowest time (which mean is 1.07μs) due to its simplicity. TA uses a derivative
term which makes sense that the value increment is 1.42μs, which is 32% of in-
crease in comparison to SMC. However, TA provided a lower standard deviation
in comparison. On the other hand, STA shows an almost similar computational
time like TA since its value is 1.53μm, which is 42% more than SMC. Finally,

128



PCL gave the highest value which has been almost 2μs with the highest stan-
dard deviation in comparison with all the other algorithms. This implies that PCL
has 86% higher time consumption than conventional SMC.

Figure 4.44: Computational time comparison of the embedded controllers

4.7.8 Conclusions

In this research, four sliding controllers with a neural combination for tracking
reference following were analysed and embedded in a PEA. Traditional methods
like conventional SMC and TA were contrasted with advanced ones as STA or
PCL; the outcomes were correlated to define the best performance of each in a
complex reference to be followed like a triangular wave.

An experimental rig was developed with a commercial PEA with periph-
eral devices from Thorlabs that has been hooked with a dSPACE. The PEA
PK4FYC2 properties related to the hysteresis were acquired experimentally and
analysed in details where interesting features were emphasized. Major gath-
ered conclusions were different obtained curves between the first cycle and the
following ones (provided that there is more than one period experiment), which
is linked to the creep effect of PEAs.

As formerly mentioned, four SMC controllers were chosen but with a differ-
ent approach from classic method to gather a control law. Commonly, math-
ematical models are used to achieve a term that could guide the system to
a sliding surface but due to the disadvantages named in the introduction (like
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computational requirements or parameter identification), an ANN replaced this
approach. Hence, a TDNN was trained with gathered experimental data which
performancewas contrasted against the PEA hysteresis in terms of fitting, which
allowed a suitable performance to be used in a control structure.

The implementation of the sliding controllers showed different behaviours
which were evaluated at first within the graphic results of error and control signal
generated. In this stage, the slope sign changes were analysed where the STA
developed the best response due to the lowest under-/overshoot and settling
time. Therefore, the STA combined with an ANN is established as the most
robust tested algorithm as it was observed graphically.

Additionally, numerical metrics were calculated to discover an overall be-
haviour of the proposed schemes. The calculation of the IAE, RMSE andRRMSE
showed that PCL achieved a better performance over the rest of the algorithms
since it showed generous enhancement of tracking performance due to the
low value gathered. Behind the PCL, STA also provided a suitable demeanour
which implies that not only has delivered the most robust development but also
it generated one of the best numerical results.

Another important metric gathered has been the consumed time of each al-
gorithm. This is also an important value to be known as it provides a notion of
the computational requirements that each structure requires and therefore, the
choice of a control board hardware for industrial purposes. The simplest con-
ventional SMC gave the lowest time consumed, and PCL provided the highest
one in terms of average and standard deviation (due to the high order features).
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For the truth of the conclusions of physical sci-

ence, observation is the supreme Court of Ap-

peal.

A. Eddington

5
Conclusions, Major Contributions and

Future Guidelines

5.1 Conclusions and contributions

Along this thesis, themain purpose was to develop advanced control techniques
which could manage to enhance a piezoelectric tracking performance based on
the reduction of the hysteresis. Major outcomes are resumed as follows.
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In chapter 1, an overview of piezoelectric actuators was unveiled. It was
seen the development of these devices since the piezoelectric effect discov-
ered by Curie Brothers in 1880 until the current applications. Also, from the
material perspective, it was studied the working principle which is related to the
polarization alignment of grains and what it causes the hysteresis. The latter,
it is known to degrade the performance of PEAs during tracking and its origins
known to be induced by residual polarization of crystals. It was studied that the
hysteresis can be reduced provided that the material is redesigned but also, a
control strategy can cope with it. Additionally, the applications of PEAs were
studied from a shape classification which most known ones are stack, bend-
ing and ring bender. Most common applications of PEAs are in the fields of
atomic force microscopes, energy harvesting, piezoelectric motors for micro-
movements, machine tools, micro-grippers, micro-drones, injection devices and
drug delivery systems.

Chapter 2 presented the set-up designed for carrying out the experimental
validation of the proposed control algorithms. A commercial PEA by Thorlabs,
namely PK4FYC2 model, was included in the set-up. According to the manu-
facturer, the hysteresis of this device could yield up to 15% of error reference
tracking. The vendor reccomends using PID controllers to reduce the error in
tracking applications. Hence, for this reason, a conventional PID was used in
most of the experiments for comparison purposes. Also, an in-depth description
of an hysteresis curve (obtained experimentally from the PEA) was analysed in
two cycles of a triangular reference. In most of the experiments that had been
developed in this thesis, the triangular reference was used not only because it is
a complex signal to be followed due to its fast slope changes but also because
this signal is represented with high frequency harmonics. Through the end of
this chapter, other peripheral devices were described which helped with the im-
plementation of control law designs. A dSPACE 1104 connected to a working
computer through Simulink from MATLAB were one of the main tools for control
design. However, the dSPACE platform manages input-output signals of 0-10V
and the PEA is feed with 0-150V and the displacement is measured by a strain
gauge that gives small voltage values. Therefore, an physical input block from
Thorlabs (model KPZ101) was employed and it transforms a control signal from
dSPACE of 0-10V into a 0-150V. For the measurements, another Thorlabs out-
put block (model KSG101) with a pre-amplifier (AMP002) were used for voltage
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transform at 0-10V to be the input reading of the dSPACE.
Chapter 3 is where the main contributions of this thesis had been developed.

The main goal of this research is to reduce the uncertainty of a piezoelectric
actuator when it has a complex reference that is also affected by the hystere-
sis. Feedback control algorithms were analysed and evaluated to enhance the
precision of PEA for industrial applications. In this sense, the performance of
a control design not only need to be measured in terms of control signal but
mainly, the metrics should take into account the evolution of the error signal.
For this reason, in most of the proposals, the integral of the absolute error, root-
mean-squared-error and relative-root-mean-squared-error were calculated with
the obtained data. These could give a numerical perspective of the performance
achieved in each situation. Additionally, because theminimization of the integral
of the absolute error is commonly used as optimisation tool, this was developed
for online tuning of all the proposed designs.

In the first proposed design, different strategies based on a PID with feedfor-
ward combinations were analysed. In regards to the latter, a linear compensator
was used with a conventional PID. It was found that the error and the control
signals were enhancedwith feedback-feedforward structures instead of conven-
tional feedback controllers like PIDs. For an advanced perspective, a shallow
neural network was trained with real data from the piezoelectric actuator that
simulates the inverse model for a feedforward compensation. Because of the
increment of available computational capacity, some tools like ANN are being
used to generate a black-box system which has a combination of inside linear
relations which factors (commonly known as weights and bias) can be obtained
by training the ANN with real data. Also, it was found through the literature
review that single neuron PIDs could cope better than a classic PID. Hence,
the final comparison was performed in a feedback-feedforward structure which
was an ANN-PID and ANN-SNPID. In terms of error, the value of IAE was sig-
nificantly reduced when the ANN-SNPID was used and the control signal had a
soft demeanour without any significant signals that could affect the actuator life-
span. Hence, the main contribution of this first research was the development
of advanced strategies in which the feedforward-feedback strategies were high-
lighted over conventional feedback ones. In this sense, the usage of an ANN
showed that not only in enhances the tracking performance combined with a
PID but also with a SNPID in terms of IAE.
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The second research explored other alternative feedfoward strategies. Ham-
merstein Wiener blocks are common structures for system identification which
main advantage is the fast convergence. It comprises input-outout nonlinear
blocks with a middle linear connection. Like with ANNs, these have factors
which need to be tuned in contrast with real data from a given system. On the
other hand, a fuzzy logic control was used as it could be used a feedback con-
troller. Main principle of FLC is that it can be tuned from a human expert knowl-
edge of the system. A type-1 set was configured through normalized gains
that could handle the error with its derivative to provide the increment of the
control signal. A practical stability proof based on Lyapunov’s theory was also
used in the proposed fuzzy controller. The comparisons were mainly two: (1)
PID against the FLC in feedback structures and (2) FLC in combination with
Hammerstein-Wiener for a feedback-feedforward arrangement. It was found
that the fuzzy controller could handle better the error reduction than a PID con-
troller as well as the control signal. Additionally, a higher improvement was
unveiled with the combination of FLC and Hammerstain-Wiener’s feedforward
combination. This delivered a significant enhancement not only in the error
response and control signal but also in metrics like IAE, RMSE and RRMSE.
Therefore, the main contribution of this research was the development of a
feedforward-feedback strategy in which a Hammerstain-Wiener block was in-
volved with an FLC to improve the PEA tracking performance. This was proved
in terms of stability features through an analysis and experiments with graphical
analysis and numerical metrics.

The third research was aimed to an alternative usage of sliding mode con-
trol, more specifically by means of super-twisting algorithm. Sliding controllers
have two terms in which one is called ”equivalent” that drives the system into an
stable path and another known as ”switching”, which maintains this state in a ro-
bust way. The equivalent term is usually obtained from a physical-mathematical
description. However, the available options for hysteresis model compensation
have certain issues. Therefore, an ANN was used as an alternative. Super-
twisting algorithm is an sliding structure that helps to reduce the chattering (the
main downside of sliding mode controllers). Hence, these two strategies were
combined in a feedback-feedforward structure to analyse the enhancement pro-
vided the tracking capabilities of a PEA. Also in this case, the stability was anal-
ysed by means of Lyapunov’s theory. The experimental outcomes showed sig-
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nificant enhancements to be highlighted not only with triangular refence waves
but also with sine ones in order to show the flexibility of the design. Also, a
numerical metric was calculated and it was concluded that the proposed combi-
nation of super-twisting algorithm with ANN was able to improve the tracking of
the PEA. This approach achieved to improve the performance in tracking oper-
ations of the PEA. In addition, the stability was demonstrated both analytically
and experimentally.

The fourth control scheme was similar to previous one but with certain un-
related features. In this sense, a cuasi-continuous sliding mode control was
used. This belongs to the high order sliding mode controllers group, which in-
tention is to reduce the generated chattering. Since the classic design principle
is as previously described, where the control law comprises an equivalent and
a switching term, the equivalent was again used with a neural network trained
with real data. In this research, the experimental outcomes were contrasted
against a conventional PID. The experiments were carried out using different
references like triangular, sine and variable amplitude triangular waves. In all
the cases, the combination of cuasi-continuous with an ANNwas able to achieve
a much higher performance result not only in tracking behaviour but also in the
measured error, which was reduced. Henceforth, the major contribution of this
research was the proposed cuasi-continuous control combined with an ANN in
a feedback-feedforward structure.

The fifth proposed controller has been an scheme based on fuzzy logic in
combination with ANNs. Previously, it was found the suitable capabilities of
FLC to handle errors when it was embedded as a controller and specially with
its combination in a feedforward-feedback structure. Nevertheless, an ANNwas
used in this case rather than a Hammerstein-Wiener block. Also, in the previous
case, a fuzzy logic type-1 block was used which is known to be defined with rel-
ative precise linguistic/numerical rules. However, for cases in which inexact or
imprecise information is used or when the expert has certain doubts regarding
the definition, type-2 sets are defined. The particularity of these sets is the capa-
bility to generate membership functions with certain fuzziness. Eventhough the
calculation can be more complex than type-1 sets, it can also allow an overall
enhancement in terms of control capabilities. This was shown in the experi-
ments in which feedback-feedforward structures were embedded with configu-
rations of FLC-T1-ANN and FLC-T2-ANN. The outcomes showed meaningful
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improvements in terms of error reduction as well as generated control signals.
To summarized, the main contribution of this proposal was the contrasts of two
advanced feedforward-feedback structures based on fuzzy logic (like type-1 and
type-2) with an ANN from which it was found that FLC-T2 with ANN is able to
enhance the tracking performance of a PEA.

Finally, the last research comprised a an applicability review for PEAs track-
ing improvement of sliding mode controllers. In this case, conventional SMC,
twisting, super-twisting and prescribed convergence law were analysed. As
previously, the structures were combined with an ANN that was already trained
with 140V of amplitude and 4s of period. Hence, a particular distinction of these
tests was the capability to achieve the computational time that each switch-
ing law took. This is an important feature because it can provide capabilities
for hardware engineers who need to implement different control schemes over
hardware platforms that provide limited processing capabilities. Though that the
error and control signals developed a better performance for STA in the graph-
ical analysis, the numerical metrics analysis showed a better performance for
the PCL. In regards to the computational time, it was observed that PCL re-
quired more time to develop a control signal and it was followed by the STA.
Therefore, major contributions of this research was not only the test of several
sliding mode control structures combined with ANNs but also the calculation
time that took each approach which can be useful for a hardware designer.

5.2 Future guidelines

During the research and reviewed background, came up several research lines
that were left for future development.

• In regards to PID controllers, it was tested a neural PID with Hebb’s learn-
ing rules. Nevertheless, these learning rules are not absolute and other
ones could be used such as delta for instance.

• In this research, only shallow neural networks were used. This was mainly
as a consequence of dSPACE limitation which only allowed implementing
this kind of neural networks. Hence, deep learning structures such as
long-short-term-memory neural networks could be a suitable tool for im-
proving the system identification.
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• Although an in-depth investigation of the application of fuzzy logic to PEAs
was provided, including type-1 and type-2 approaches, are other branches
which could open new paradigms. For instance, though that Karnik-Mendel
was used as a type-reduction algorithm, there are still other strategies to
be tested. In particular, enhanced Karnik-Mendel (EKM) or iterative algo-
rithm with stop condition (IASC); these are known for its low computational
requirements.

• On the field of sliding mode controllers, it would be an interesting idea to
test other approaches which could be embedded with ANNs such adaptive
structures which could be through the usage of fuzzy logic. This would
make an smart controller which computational time could be calculated in
order to check its efficiency.

• Though that the hysteresis was analysed in-depth in this thesis, PEAs
also present other non-linear effects that may influence their behaviour.
In particular, the creep effect, which is less significant and appears in sud-
den actions. It may be worth analysing the reduction of this phenomenon
through the employment of the techniques analysed along this whole re-
search.
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