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Chapter 1

Introduction

Abstract - This chapter introduces the research objective of this thesis, which
focusses on high-precision mechatronic systems, especially on nano-motion sys-
tems with piezo actuators and/or encoder sensors. To improve the performance of
such systems, different performance limiting factors in nano-motion systems are
modeled and compensation methods are developed in the form of new actuator
driver software, encoder signal processing and control algorithms. Three repre-
sentative cases of nano-motion systems are selected of which the performance will
be improved using a performance-driven control procedure. Finally, the outline of
this thesis is given.

1.1 Nano-motion systems

Both industrial and commercial high-tech mechatronic systems improved signifi-
cantly during the past decades in terms of both speed and accuracy. It is expected
that this trend will continue in the future. For example, state-of-the-art wafer scan-
ners that currently produce 175 300 mm wafers per hour with features as small
as 32 nm are expected to increase their throughput (>300) with larger wafers
(450 mm) that contain even smaller features (<15 nm). Electron microscopes,
which are currently able of magnifications up to sub-Angström level, are expected
to increase their speed and accuracy of sample positioning and scanning. Com-
mercial printers, nowadays capable of 65 pages per minute at a resolution of 600 -
1800 dpi, are expected to increase their throughput (>120 ppm) with an increased
resolution (>5000 dpi).
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The demand for an increase in accuracy and throughput of high-tech mechatronic
systems enforces strict requirements on the motion-stages in these systems. The
class of motion systems that require a movement with velocities ranging from
nanometers per second to millimeters per second with (sub)nanometer resolution
are referred to as nano-motion systems. Typical motion profiles for nano-motion
systems encountered in industrial applications are constant velocity setpoints and
point-to-point movements.

Nano-motion systems can be roughly divided into systems with short- and long-
stroke drives. For both types, different actuators and sensors are available. In
this thesis, we focus on nano-motion systems that are driven by piezo actuators
and/or use encoder sensors. Piezo actuators are often used because of their at-
tractive properties such as high reproducibility, high stiffness, fast response and
good displacement resolution. For a detailed description on piezoelectricity, piezo
actuators and their properties see [140,169,200,201]. Optical incremental encoders
are often used since they provide a good resolution for a relatively low cost price.
The length of the encoder rulers is scalable, such that optical incremental encoders
can be used for both short- and long-stroke stages.

The increasing demands regarding speed and accuracy also hold for nano-motion
systems. This thesis assumes that the mechanical and electrical design of the
nano-motion system is fixed, which leaves the control design as the main degree of
freedom to further improve performance. More specifically, the design freedom to
be explored in this thesis is the actuator driver software, the sensor signal process-
ing and the control algorithms. So, this thesis aims at improving the performance
of nano-motion systems in terms of disturbance attenuation, accuracy and speed
by improving the control design.

In parallel to the technological innovations in industry, scientific research has been
performed to improve the performance of high-precision motion systems. Research
areas include among others the development of new actuators, actuator drivers,
mechanical designs, materials, sensor systems and control algorithms. The trans-
lation of state-of-the-art theoretical results to usable technology could open the
way to significantly improve the performance of nano-motion systems. The desired
performance is generally formulated on a system level, whereas the developed sci-
entific formalisms mostly act on a component level. This makes the translation of
theoretical results to usable technology non-trivial. Identification of the relevant
system boundaries, inputs and outputs on a system level allows the performance
limiting factor (PLF) to be identified and the appropriate scientific result to be
selected on a component level. For industry, keeping an overview of all devel-
oped methods is often difficult or even impossible. On the other hand, in science,
applications and their challenges are often not considered.
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In this thesis, we focus on the modeling and compensation of several selected per-
formance limiting factors (PLFs), which are believed to be commonly encountered
in piezo-driven nano-motion systems with encoders. The identification of the main
PLF itself is not explicitly considered. A set of PLFs is selected on the basis of ex-
perimentally obtained data from various nano-motion systems. In the next section,
the selected PLFs are described.

1.2 Performance limiting factors

In nano-motion systems with piezo actuators and/or encoder sensors the following
performance limiting factors (PLFs) are commonly encountered:

1. actuator driver software,
2. hysteresis,
3. stick-slip and contact dynamics,
4. repetitive disturbances,
5. coupling,
6. geometric nonlinearities,
7. quantization.

The above PLFs can be divided into sources that are related to the actuator driver,
the sensor system and/or the system dynamics. The modeling and compensation
techniques available in literature for the different PLFs will be discussed next.

1.2.1 Actuator driver software

Currently, piezo-driven nano-motion systems employ different types of piezo actu-
ators. For short-stroke scanners, piezo tube actuators [40] or piezo stack actuators
in different configurations [8,17,99,172] are commonly used. For applications that
require a larger traveling length often stepping piezo motors are applied. Exam-
ples of stepping piezo motors are inchworm actuators [167, 200], ultrasonic mo-
tors [9, 201] and elliptical piezo motors in which one or more actuators cooperate
to drive the nano-motion stage [12, 209]. The drive properties of piezo actuators
are largely influenced by the driver software design.

The drive optimization techniques in literature can be split into optimization tech-
niques that improve the properties for a given shape of the electric drive wave-
form to the piezo actuator [90, 101, 118] or techniques that optimize the shape
itself [61, 152]. Currently available industrial drivers for stepping piezo motors
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make use of basic driving waveforms, such as sinusoidal, triangular or trapezoidal
waveforms, which do not exploit additional knowledge of the system to be driven.

Combining developed modeling techniques of system dynamics, piezoelectricity
and several types of disturbances, e.g. friction, allows accurate models to be de-
rived of nano-motion systems, which in turn can be used to develop accurate
model-based actuator driver software that reduces this PLF in nano-motion sys-
tems.

1.2.2 Hysteresis

Piezo actuators are known to exhibit hysteresis. The application of linear control
techniques to piezo-driven nano-motion systems with voltage steering does not
fully compensate for the hysteresis. If the performance of a piezo-driven system
is limited by the presence of hysteresis, several approaches can be followed. For a
fixed hardware, a model-based feedforward or feedback controller can be employed.

Although hysteresis can be reduced by feedback control techniques [35, 130], al-
ways some amount of hysteresis remains since the feedback controller will have
a finite attenuation of disturbances. Feedforward compensation techniques can
be either data-based [105,112,220] or model-based using phenomenological opera-
tors [6,70,83,180], e.g., Maxwell slip, Preisach or Prandtl-Ishlinskii models, or using
differential equations [50, 182, 190], e.g., Duhem, Bouc-Wen or Coleman-Hodgdon
models.

In literature, a lot of research on hysteresis in various applications and on the mod-
eling of this hysteresis is performed. However, the hysteresis effects are influenced
by the design of the piezo actuator itself and by the way the actuator is incorpo-
rated in the nano-motion system. So, the reduction of the hysteresis PLF for every
specific nano-motion system asks for a customized approach for which dedicated
models have to be derived, e.g. by extending or altering existing hysteresis models
available in literature.

1.2.3 Stick-slip and contact dynamics

Stepping piezo actuators rely on friction to drive the nano-motion stages. Slip
between the actuator and the drive surface of the stage reduces the efficiency and
results in wear of the actuator. Furthermore, the contact between the actuator
and drive surface cannot be regarded as rigid. The contact dynamics influence the
driving performance of the stepping piezo actuators.
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To maximize efficiency and minimize actuator wear, stick-slip behavior and con-
tact dynamics should be taken into account in the driver software design. In
literature, several models have been proposed to model the stick-slip effects and
their transition regions at a nanometer scale [7,146] and also to model the contact
dynamics [16,145] between the actuator and the drive surface. However, the avail-
able models of stick-slip effects in literature are not commonly taken into account
in the actuator driver software design to reduce the effect of these PLFs.

1.2.4 Repetitive disturbances

Systems that perform repetitive tasks or have repetitive components are subject
to repetitive disturbances. For such systems, various techniques exist to improve
the performance, e.g., mapping the disturbance in a look-up table [20], iterative
learning control (ILC) [117,133,142] or repetitive control (RC) [34,77,81].

Standard RC assumes repetitive disturbances with a constant period-time. How-
ever, the repetitive disturbances can also be repetitive with respect to another vari-
able than time, possibly resulting in repetitive disturbances with a non-constant
period-time. This is especially the case for piezo-driven nano-motion systems since
the piezo actuators act as position actuators and are often driven by harmonic
waveforms. Fluctuations in the harmonic waveforms directly influence the period-
time of the repetitive disturbances. In literature, methods have been described
to cope with repetitive disturbances with a varying period-time, such as a adap-
tive RC [27, 30, 199], RC with a coordinate transformation to a fully repetitive
domain [33,191] and higher order RC [157,185].

However, most existing methods do not employ knowledge of the period-varying
disturbance. If the nature of the variation can be modeled and taken into account
in the design of the learning controller, this PLF is expected to be compensated
more accurately.

1.2.5 Coupling

Nano-motion systems that contain several degrees-of-freedom (DOFs) and multiple
actuators and sensors are generally designed such that each actuator-sensor pair
ideally only influences only a single DOF. However, always a certain amount of
coupling between the different DOFs is present, especially at a nanometer scale.
The use of decentralized controllers will therefore often not leave enough room for
improvement to reduce the coupling PLF.
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In the control design of multi-DOF nano-motion systems, such as atomic force
microscopes (AFMs), the coupling between the different DOFs is often assumed
to be negligible small [149] and separate single-input single-output (SISO) con-
trollers are used for the different axes. Multiple-input multiple-output (MIMO)
controllers are not commonly used, although they could improve the performance
of AFMs [26]. Combining existing techniques in literature on the modeling, anal-
ysis and control synthesis of MIMO systems allows for a systematic assessment of
the coupling between the different axes and a control synthesis that guarantees
both stability and performance of the controlled MIMO nano-motion system.

1.2.6 Geometric nonlinearities

Geometric nonlinearities in systems can be introduced by the actuator choice,
the actuator driver (software), or the mechanical design of the stages. This can
result in operating point dependent system dynamics, e.g., a position-dependent
actuator or system gain. The inclusion of the geometric nonlinearities in the control
synthesis model is expected to guarantee stability and improve the performance of
nano-motion systems with geometric nonlinearities.

The nature of the geometric nonlinearities can be analyzed using the existing
methods in literature on system identification in combination with linearization
techniques. Using the identified characteristics of the geometric nonlinearities,
an appropriate control synthesis method can be selected, e.g., H∞ control, gain
scheduling or linear-parameter-varying (LPV) control.

1.2.7 Quantization

The use of optical incremental encoders for the position measurements in nano-
motion systems introduces quantization errors in the measurements, which limit
the accuracy of the position measurements. A cost-effective way to reduce the
effect of quantization is to add signal processing algorithms to the encoder sensor.
Existing signal processing techniques of encoder measurements can be divided into
postfiltering techniques [88, 115, 202], observer based techniques [14, 100, 196], or
indirect measurement techniques [15,23,106].

Recent technological advances allow capturing and storage of the time and posi-
tion information of encoder transitions in hardware, which is referred to as encoder
time-stamping. Integration of encoder time-stamping with signal analysis tech-
niques and modeling of the encoder errors is expected to facilitate compensation
of the quantization errors.
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4. Validate the
performance
improvement.

1. Identify the
main performance

limiting factor
(PLF).

2. Model the effect
of the PLF on the

performance
variable.

3. Synthesise a
model-based

compensation for
the PLF.

system level

component level

Figure 1.1: Flowchart of the adopted procedure of selecting, modeling and com-
pensating the performance limiting factors (PLFs) in nano-motion systems.

1.3 Thesis goals

The goal of this thesis is to systematically explore the opportunities to improve
the performance of nano-motion systems with piezo actuators and/or encoder sen-
sors by developing new actuator driver software, sensor signal processing and/or
control algorithms. The mechanical and electrical hardware design is considered
to be fixed. The hypothesis is that the performance of many existing nano-motion
systems can be improved by incorporating model-based technology from recent
theoretical results. Therefore, this thesis aims to bridge the gap between science
and technology in translating developed theoretical methods to usable technology.

To systematically improve the performance of nano-motion systems, we adopt the
procedure as depicted in Fig. 1.1. Firstly, the performance of the nano-motion
system is evaluated from a system point-of-view. The component that limits the
performance is identified from the measured performance. This component is re-
ferred to as the performance limiting factor (PLF). Secondly, the influence of the
identified PLF on the performance is modeled. Thirdly, a model-based compensa-
tion method for the PLF is derived and implemented in the nano-motion system.
Finally, the obtained performance improvement is evaluated. Iterative application
of this procedure enables different PLFs to be compensated successively.

The procedure of Fig. 1.1 starts on a system level in the first step, zooms in to the
component level for the modeling and compensation in steps two and three and
returns to system level for the performance evaluation in step four. In order to
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obtain an overall performance improvement, identification of the correct PLF is
crucial. Obviously, the identification is strongly problem-dependent, hence, pro-
viding a general identification procedure is difficult. Generally, engineering knowl-
edge and/or experience with the system under consideration is required in this
step. During the design phase of high-precision motion systems, error budgeting
and decomposition techniques [86,144] from systems engineering are already widely
used and give a structured analysis procedure for determining relevant PLFs. For a
given electro-mechanical design and a realized hardware setup, a careful time and
frequency domain analysis of the tracking error will be performed as a starting
point to identify the main PLF [87,186].

In this thesis, we focus on the second, third and fourth step in the procedure of
Fig. 1.1, i.e., the identification step is not explicitly considered. For the compensa-
tion of a specific PLF, existing state-of-the-art control theory is mostly not directly
applicable. The synthesis of a suitable compensation method can require an ad-
justment, extension, or combination of one or multiple methods or new methods
to be developed in order to compensate the PLF and improve the performance of
the nano-motion system.

To meet the thesis goal, the following objectives are formulated:

1. Nano-motion piezo actuation
Investigate the different types of piezo actuators for driving nano-motion
systems with short and long strokes. Derive appropriate models that can
be used for design optimization and/or control design purposes.

2. Piezo driver software design
Develop actuator driver software to drive a long-stroke nano-motion system
with a stepping piezo motor employing multiple actuators.

3. Control of nano-motion systems
Develop appropriate feedback and feedforward control algorithms for short-
and long-stroke piezo-driven nano-motion systems.

4. Signal processing for incremental encoders
Investigate the available techniques in literature and develop an appropriate
signal processing technique to suppress the quantization errors and imper-
fections in incremental encoders.

5. Experimental implementation
Implement the derived actuator driver software, sensor signal processing
and control algorithms and validate the obtained performance improvement
of the nano-motion system under study.
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To show the applicability of the adopted procedure to improve the performance of
nano-motion systems and meet the research objectives, three representative cases
of nano-motion systems with piezo encoders and/or encoder sensors are selected,
which will be described in the next section. So, instead of selecting an application
to which a specific method can be applied, several applications representing a class
of systems are selected as the starting point of this research.

1.4 Case descriptions

Three representative cases of nano-motion systems with piezo actuators and/or
encoder sensors are selected, which include two piezo-driven nano-motion stages,
one with a short stroke and one with a long stroke, and an encoder system. The
long-stroke nano-motion system is a 1-DOF stage driven by an elliptical walk-
ing piezo motor employing four bimorph piezo legs together with an incremental
encoder to measure the position. The short-stroke nano-motion system is a metro-
logical atomic force microscope (AFM) with a 3-DOF stage driven by piezo stack
actuators through a flexure mechanism. The AFM uses a laser interferometer to
measure the position of the stage in all three DOFs. For the objective concerning
the incremental encoders, the long-stroke piezo-driven stage is not used since the
encoder signal also contains effects caused by system dynamics and/or the actua-
tor driver. In order to isolate the encoder sensor, a third case is selected consisting
of a rotating mass with encoders directly coupled to the motor and mass.

The three cases will be explained in more detail in the remainder of this section. For
each case the encountered PLFs and the performance specifications are indicated.

1.4.1 Walking piezo actuator

The first case is a long-stroke nano-motion system consisting of 1-DOF stage driven
by a walking piezo actuator. The walking piezo motor, shown in Fig. 1.2(a), con-
tains four bimorph piezoelectric drive legs, which are driven by electric waveforms
via the connector. Each leg is covered with an aluminum oxide drive pad. The
walking piezo motor is fitted to the stage with a dedicated motor suspension. The
drive pads are pressed against the drive surface of the stage using preload springs.
The position of the stage is measured using an optical incremental encoder.

A schematic representation of the working principle of the piezo motor is shown
in Fig. 1.2(b). Each bimorph piezo leg contains two electrically separated piezo
stacks. The legs elongate if equal voltages are applied to the two stacks in a
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22 mm

10 mm

10 mm connector

housing

rubber

drive pad
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z
x
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(a) The walking piezo motor [155].

x
y
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u1 u2 u3 u4

A B C D

(b) Working principle.

Figure 1.2: The walking piezo actuator and its working principle.

leg. Applying different voltages causes the legs to bend. By choice of the supply
voltages ui (V), i ∈ {1, 2, 3, 4}, the tips of the drive legs can be positioned in a
working region in the (x, y)-plane. The four piezo legs drive the nano-motion stage
in pairs of two by performing an alternating walking movement.

The linear drive nano-motion stage should be able to perform two types of set-
points. Firstly, the stage should be able to track constant velocity setpoints with
velocities ranging from nanometers per second to millimeters per second. Sec-
ondly, point-to-point movements should be possible over a distance ranging from
nanometers to the complete stroke of the stage. The desired accuracy of both
types of movements is within nanometers up to micrometers for all setpoints.

The PLFs in the nano-motion stage driven by the walking piezo actuator are the
non-optimal cooperation of the different legs in the actuator, the stick-slip effects
between the drive legs and the stage, the repetitive disturbances introduced by
the periodic walking movement and the changing system dynamics, which are
dependent on the varying contribution of the legs in the drive direction over one
drive cycle, prescribed by the electric drive waveforms to the piezo legs.

1.4.2 Atomic force microscope

The second case is a metrological atomic force microscope (AFM), which contains
a 3-DOF stage driven by piezo stack actuators through a flexure mechanism. The
metrological AFM, shown in Fig. 1.3(a), is used to calibrate transfer standards for
commercial AFMs. The height of the samples is measured at (sub)nanometer reso-
lution by scanning the surface of the sample using a cantilever with an atomically
sharp tip. The metrological AFM consists of a Topometrix AFM head containing
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Figure 1.3: The metrological AFM and a schematic representation of the working
principle.

the cantilever, a 3-DOF piezo-driven stage and a laser interferometer to measure
the stage position in all DOFs.

A schematic representation of the AFM is shown in Fig. 1.3(b). To position the
sample, feedback control is applied using the inputs to all piezo stack actuators
and the outputs of the laser measurements in the scanning x- and y-directions and
of the photo-detector of the AFM head in z-direction.

For imaging purposes, the x- and y-directions perform a scanning movement over
the sample where one axis is chosen to be the fast scanning axes, which tracks
triangular setpoints, and the other axes moves the stage from line to line. The
z-direction is controlled to a constant deflection of the cantilever, which reduces
Abbe errors and makes it possible to measure the sample topography directly using
the laser interferometer in z-direction. To obtain an accurate sample image and
avoid postprocessing of the obtained image, a maximum tracking errors of one
nanometer is desired for all axes.

The encountered PLFs in the metrological AFM with the short-stroke piezo-driven
3-DOF stage are the hysteresis in the piezo stack actuators, the dynamic coupling
between the different axes of the stage and the repetitive disturbances introduced
by the scanning movement of and the transfer samples under the AFM.
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Figure 1.4: The encoder system and the working principle of an optical incremental
encoder.

1.4.3 Encoder system

The third case is an encoder system, shown in Fig. 1.4(a). The encoder system
consists of a rotating mass that is connected to a DC motor. On the motor
an encoder is mounted with a resolution of 100 slits per revolution, to which
the developed encoder signal processing algorithms are applied. The results are
compared to a high-resolution encoder with 5000 slits per revolution as a reference,
which is mounted onto the other side of the rotating mass.

A schematic representation of the working principle of an optical incremental en-
coder is shown in Fig. 1.4(b). The typical stair-cased position measurement of the
encoder is obtained by counting the up and down changes of the pulse signals of
the quadrature light detector, denoted by A and B. The setup of Fig. 1.4(a) is
combined with encoder time-stamping, which captures encoder events, consisting
of the position transitions and their time instants, at a high-resolution clock and
stores them in a hardware register in the data-acquisition device.

The typical setpoints for nano-motion systems are also applied to the encoder
setup, i.e., constant velocity setpoints and point-to-point movements. Constant
velocity setpoints are the most easy setpoint for signal processing algorithms due to
the equidistant spacing of encoder events in both position and time. Therefore, also
sinusoidal setpoints are used since they have a continuous variation in the velocity,
thus also in the event rate of the encoder. The desired accuracy of the encoder
signal processing algorithms is to make the output of the low resolution encoder
as accurate as the measured position of the high-resolution reference encoder.
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The PLFs in the encoder system are the quantization of the position measurement
and the repetitive disturbances caused by the position dependent imperfections in
the rotary encoder.

1.5 Outline

The main content of the thesis is split into three parts according to the three cases.
The part is indicated by a small picture next to the page number, where indicates
the long-stroke piezo-driven nano-motion stage, indicates the metrological AFM
with the short-stroke 3-DOF piezo stage and indicates the encoder system.

The different encountered PLFs in nano-motion systems are addressed in differ-
ent chapters for the various cases. The PLFs related to the actuator choice are
the driver design and hysteresis effects. The system induced PLFs are stick-slip
effects in the actuation, repetitive disturbances, coupling effects between axes and
geometric nonlinearities. Finally, the quantization PLF is related to the encoder
sensors.

In this thesis, we will propose new actuator driver software for the long-stroke
nano-motion stage with the walking piezo actuator to compensate for the driver
design and stick-slip PLFs. Feedback and feedforward control algorithms will be
introduced to compensate for the geometric nonlinearities in the long-stroke nano-
motion stage, for the repetitive disturbances in both the long-stroke nano-motion
stage and the metrological AFM and for the hysteresis and coupling effects in the
metrological AFM. Finally, the quantization effects and repetitive disturbances
in the encoder setup will be compensated by introducing a new encoder signal
processing method. Table 1.1 gives an overview of which PLFs will be addressed
in the different chapters for the different cases. The outline of the different parts
in this thesis is as follows.

In Chapter 2, the feedback control structure of the walking piezo actuator and
the drive principle will be discussed. Also, a new drive principle with asymmetric
waveforms will be proposed to improve the tracking performance of the nano-
motion stage. A dynamic model of the walking piezo actuator will be presented
in Chapter 3. The model can be used for design optimization of different motors
with different properties and for a dynamic analysis to determine the maximum
allowable walking frequency. A model of the stage and piezo motor containing the
switching behavior between the drive legs, stick-slip effects and contact dynamics
between the piezo legs and the stage will be derived in Chapter 4. With this
model, new waveforms will be developed resulting in optimal drive properties at
constant velocity of the stage. The repetitive disturbances introduced by the
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Table 1.1: Overview of the selected performance limiting factors (PLFs) for the
various experimental cases. Parts II and III consider piezo-driven nano-motion
stages with a long and short stroke, respectively. Encoder sensors are contained
in parts II and IV, but are studied in detail in part IV.

PART II: PART III: PART IV:
Piezo actuator AFM Encoder

PLF (see Fig. 1.2) (see Fig. 1.3) (see Fig. 1.4)
Driver design Chapters 2, 3, 4
Hysteresis Chapter 6
Stick-slip Chapter 4
Repetitive Chapter 5 Chapter 7 Chapter 9
Coupling Chapters 6, 7
Geometric Chapters 2, 3
nonlinearities
Quantization Chapters 8, 9

walking movement of the piezo motor will be compensated using a delay-varying
repetitive control scheme in Chapter 5.

The coupling and hysteresis effects of the piezo stack actuators in the metrological
AFM will be analyzed in Chapter 6. An adjusted Coleman-Hodgdon model will be
developed to compensate for the asymmetric hysteresis in the metrological AFM.
To reduce the coupling effects between the different axes and to compensate for
the repetitive disturbances introduces by the scanning movement and the sample
topography, MIMO and repetitive controllers will be developed and applied to the
metrological AFM in Chapter 7.

To overcome the quantization errors in the encoder system, an online time-stamping
based algorithm is developed to estimate the position, velocity and acceleration
signals, which will be presented in Chapter 8. A method to determine the optimal
settings for this algorithm and a compensation method for the repetitive distur-
bances introduced by the encoder imperfections will be described in Chapter 9.

Finally, in Chapter 10 the main conclusions of this research will be summarized
and recommendations for future research will be given.

All chapters in this thesis are based on separately published papers, they can all
be read independently. For the same reason, some sections of different chapters
are overlapping.
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Chapter 2

Drive principle and feedback
control

Abstract - Piezoelectric actuators are commonly used for micro-positioning sys-
tems at nanometer resolution. Increasing demands regarding the speed and ac-
curacy are invoking the need for new actuators and new drive principles. A non-
resonant walking piezoelectric actuator is used to drive a stage with one degree-of-
freedom through four piezoelectric drive legs. In order to improve the positioning
accuracy of the stage, a new drive principle and control strategy for the walking
piezo motor are proposed in this chapter. The proposed drive principle results
in overlapping tip trajectories of the drive legs, resulting in a continuous and
smooth drive movement. Gain scheduling feedback in combination with feedfor-
ward control further improves the performance of the stage. With the developed
drive principle and control strategy, the piezo motor is able to drive the stage
at constant velocities between 100 nm/s and 1 µm/s with a tracking error below
the encoder resolution of 5 nm. Constant velocities up to 2 mm/s are performed
with tracking errors below 400 nm. Point-to-point movements between 5 nm and
the complete stroke of the stage are performed with a final static error below the
encoder resolution.

This chapter is based on: R. J. E. Merry, N. de Kleijn, M. J. G. van de Molengraft, and
M. Steinbuch. Using a walking piezo actuator to drive and control a high precision stage.
IEEE/ASME Transactions on Mechatronics, 14(1):21–31, February 2009.
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2.1 Introduction

Piezoelectric elements are able to perform very small reproducible deformations.
This makes them very attractive for use in micro positioning systems such as ultra-
precision machine tools, miniature robots, microscopes, converters, and nano-
motion stages. The ever increasing demands on micro positioning systems re-
garding speed and accuracy also invoke the need for faster and more accurate
positioning systems.

Our interest in this chapter is to drive a nano-motion stage using a walking piezo
actuator. The main challenge was to allow the stage to be driven in a wide range of
velocities from mm/s to nm/s with an accuracy of sub-micrometer to nanometer,
respectively. In addition, the velocity of the stage must be continuously adjustable.

In literature, piezo-driven nano-motion stages with large traveling lengths are ac-
tuated using piezo motors with two different working principles. The first type, the
hybrid transducer motors or inchworm motors, use separate clamping and drive
actuators to perform the motion [167, 178, 200, 222]. With this type of actuator,
it is difficult to obtain a continuous and smooth motion due to the sequential al-
ternation between three independent actuators. The second type, which we refer
to as elliptical motors, excites the piezoelectric material such that the tip of the
material performs an elliptical movement. Such actuators can be driven at fre-
quencies above 20 kHz and are called ultrasonic motors [9,55,201]. The ultrasonic
motors can reach velocities up to 100 mm/s. However, at low velocities stick-slip
occurs. This makes the ultrasonic motors unsuitable for tracking low velocities.
Alternatively, the elliptical motors can be driven at frequencies below the ultra-
sonic range (sub-ultrasonic frequencies). These motors exhibit significantly less
stick-slip [209].

In order to avoid stick-slip, in this research we choose to use a special kind of
elliptical motors, referred to as distributed micro-motion systems (DMMS) [12], in
which multiple microactuators cooperate to perform a task. DMMS piezo systems
can be used to construct actuators with multiple piezoelectric legs.

The DMMS actuator used in [209] employs multiple piezoelectric legs, driven at
a fixed frequency of around 40 Hz: as a result of which it is very difficult to
continuously adjust the drive velocity, which is desirable in nano-motion stages.
A walking DMMS actuator with a few hundred legs is used in [161]. The elliptical
motion of each rigid leg is obtained through phasing of three bimorph piezoelectric
beams. The mechanical design results in a large spatial separation of the different
legs, making the actuator unsuitable for use in nano-motion stages. A rotating
DMMS robot with three piezoelectric elements, based on the inchworm principle, is
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described in [65]. The three piezos are driven by rectangular waveforms and their
sequence is determined by on/off-type control signals. Sawtooth driving pulses
are used in [93] to obtain a movement of three piezo legs for micro-positioning
purposes. Movement is obtained by slow bending and quick stretching of the piezo
legs. The used drive principle is not useful for very low velocities (nm/s) and has
an inherent slip between the legs and drive surface.

However, the above mentioned piezoelectric motors of both working principles are
not capable of continuously adjusting the drive frequency and driving the stages
at a wide range of velocities with the desired accuracy.

In order to improve the performance of high-precision nano-motion stages, we
employ a piezo motor with a different working principle. The piezo motor will be
used to drive a stage with two different movements; constant velocity profiles (also
referred to as jogging mode) and point-to-point movements. These movements are
common in many motion applications. To steer the four piezo legs and to enable
the motor to be used in a feedback control configuration, an appropriate driver for
the walking piezo motor is proposed. Furthermore, a control method is proposed
to account for varying system dynamics that arise when altering the step size of the
piezo motor during point-to-point movements. The performance limiting factors
(PLFs) that are considered in this chapter are the non-smooth operation with the
available actuator driver software and the varying system dynamics.

The employed piezo motor is a DMMS actuator driven at sub-ultrasonic frequen-
cies. The piezo motor, called the Piezo LEGS motor, was developed by Piezomotor
Uppsala AB [155]. The piezo motor uses four piezoelectric drive legs to perform
a walking movement. The legs employ a bimorph working principle, i.e., they are
composed of two electrically separated piezo stacks that are excited independently
by different waveforms. The drive velocity of the piezo motor can be continuously
adjusted.

Different waveforms and control methods are used to drive bimorph DMMS piezo-
electric actuators. A comparison of triangular, rectangular and sinusoidal wave-
forms for an inchworm actuator is performed in [101], in which the sinusoidal and
triangular waveforms perform best. Feedback control of piezo driven systems can
be performed in different ways. In [66], an ultrasonic multilayered piezoelectric el-
ement is controlled using a measurement of the induced charge at the piezo. Since
measurements of the electrodes at both ends of all piezo stacks are required, this
method is not applicable to the walking piezo motor considered in this research.
For non-walking actuators, the voltage to the piezo actuator can be controlled
directly [40, 82]. However, to obtain the alternating walking movement of the dif-
ferent piezo legs, periodic waveforms must be used. In [42], the step frequency for
a micro-robot containing bimorph legs is controlled using self-learning techniques.
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A four legged multi-DOF piezoelectric resonant actuator is controlled in [59] using
the amplitude of sinusoidal waveforms. The resonant working principle restricts
the waveform design to sinusoidal shapes.

The movement of the piezo legs is by design restricted to a rhombic area. For
smooth operation, electric driving waveforms should be selected such that the tra-
jectory of the legs has a continuous derivative in the (x, y)-plane [92]. In this
chapter, harmonic waveforms have been used to drive the four piezo legs with
elliptical tip trajectories. The harmonic waveforms have a limited frequency con-
tent to avoid excitation of high frequent dynamics and to enable the motor to
be used in a feedback control strategy by controlling the angular velocity of the
legs through the frequency of the waveforms. Control of the amplitude and phase
makes it possible to continuously adjust the step size of the piezo legs.

To improve the actuator driver software, we present alternative waveforms to drive
the four legs of the piezo motor, resulting in overlapping tip trajectories and a
reduced tracking error of the nano-motion stage. Furthermore, a control algorithm
is described in which the frequency of the waveforms is controlled by position
feedback. The control algorithm includes feedforward control and gain scheduling
to adjust the step size through the amplitude and phase of the waveforms. The
experimental results show the applicability of the proposed control algorithm and
procedure for use in nano-motion applications.

This chapter is organized as follows. First, the working principle of the piezo
motor will be explained in Section 2.2. In Section 2.3, the design of the motor
suspension, the modeling, and the identification of the walking piezo motor will
be discussed. The developed waveforms and control strategy will be described
in Section 2.4. The results of the experiments will be presented in Section 2.5.
Finally, conclusions will be drawn in Section 2.6.

2.2 The piezo motor

The piezo motor, shown in Fig. 2.1, has four piezoelectric drive legs. The drive legs
are driven by electric waveforms via the connector. The top of each leg is covered
with an aluminum oxide drive pad. The drive legs make contact with the drive
surface through the drive pads. The legs are cast in rubber to add damping to the
movement. The dimensions of the piezo motor of Fig. 2.1 are 22×10×10 mm. Its
weight equals 15 g.

The piezoelectric legs consist of two electrically separated piezo stacks. The piezo
stacks elongate when they are electrically charged. A schematic representation of
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the piezo motor.

the side view and the working principle of the piezo motor are shown in Fig. 2.2.
The legs elongate in y-direction when an equal voltage is applied to the two stacks
of one leg. Applying different voltages on the two stacks of one leg causes the
leg to bend. By choice of the supply voltages, the tip of the drive leg can be put
in a working region in the (x, y)-plane (see Fig. 2.2) spanned by the waveforms
ui(t) (V), i ∈ {1, 2, 3, 4} with min(ui) = 0 V and max(ui) = 46 V.

As can be seen in Fig. 2.2, the drive legs always work together in pairs. The
first pair of legs p1, consisting of legs A and D, is driven by the input waveforms
u1(t) (V) and u2(t) (V). The second pair p2, consisting of legs B and C, is driven
by u3(t) (V) and u4(t) (V). The waveforms ui(t) (V), i ∈ {1, 2, 3, 4} can be chosen
such that the elongation of the pairs or legs in y-direction implies that at all times
only one pair of legs is in contact with the drive surface and such that the pairs of
legs perform a movement in x-direction to drive a stage. The position of the tip
of the legs in x- (m) and y-direction (m) can be described as

xp1(t) = cx (u1(t)− u2(t)) ,
xp2(t) = cx (u3(t)− u4(t)) ,
yp1(t) = cy (u1(t) + u2(t)) ,
yp2(t) = cy (u3(t) + u4(t)) ,

(2.1)

where cx (m/V) and cy (m/V) are the constant bending and extension coefficients,
respectively [92]. The tip trajectories become elliptical when sinusoidal waveforms
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are used as
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,

u4(t) =
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sin(α(t) + 3π/2 + φ(t)) +
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2
,

(2.2)

where A (V) is the amplitude, α (rad) is the angle, and φ(t) (rad) is an additional
phase shift. The phase difference of π rad between u1(t) and u3(t) and between
u2(t) and u4(t), i.e., between the waveforms of the pair p1 and the waveforms of the
pair p2, results in a phase shift of π rad between the movements of the two pairs
of legs. The phase shift results in an alternation of the driving pair of legs such
that only one pair is in contact with the drive surface at all times except for the
transition point. To obtain an equal leg movement for both pairs, the additional
phase shift φ(t) (rad) is chosen equal for both pairs of legs.

The angular velocity Ω(t) = dα(t)/dt (rad/s) of (2.2) determines the number of
elliptical trajectories per second. In addition, it only slightly influences the shape
of the elliptical trajectory. The shape of the ellipsoid is determined mainly by the
amplitude A and the phase φ. The amplitude A determines the size of the ellipse
and the phase φ determines the orientation of the ellipse, as shown in Fig. 2.3.

The piezo motor used for the research of this chapter has a maximum input voltage
of 46 V [92]. With an amplitude A of 46 V and phase difference of π/2 rad between
the input waveforms of one pair, the maximum step size equals 4 µm. By adjusting
A and φ, the step size can be varied between 100 nm and 4 µm.
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2.3 System description and modeling

The piezo motor is used to drive a one degree-of-freedom (DOF) stage. The piezo
motor is mounted onto the 1-DOF stage. Proper alignment between the motor and
drive surface is necessary to obtain optimal efficiency of the motor, i.e., to minimize
wear and slip of the drive legs. A motor suspension was designed that mounts the
motor to the stage. The motor suspension prescribes all DOFs between the motor
and the drive surface and allows for some degree of alignment. The suspension
design will be discussed in Section 2.3.1.

In Section 2.3.2, a derived model of the system, consisting of the stage and the
motor, will be presented. The model is based on first principles. The model
parameters will be identified using experimental data.

2.3.1 Suspension design

The drive pads of the piezo motor should form proper line contacts with the drive
surface of the stage. Therefore, the different DOFs as indicated in Fig. 2.4 should
be prescribed by the suspension.

The motor suspension must prescribe the x- and z-DOFs to position the motor
with respect to the drive surface of the stage. The translational DOF in y-direction
and the rotational DOFs in τ - and θ-directions must be adjustable to create line
contacts between the motor and the drive surface without introducing stress, which
would cause deformation in the suspension or motor. Misalignment in τ -direction
would cause wear of the drive pads. A deviation in θ-direction would induce some
of the drive legs to lose contact with the drive surface. In y-direction a preload
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Figure 2.5: Design of the motor suspension.

is applied to create stiff line contacts. Finally the ϕ-direction must be adjustable
to enable alignment between the motor and the drive surface. Misalignment in
ϕ-direction would cause slip because the driving force in x-direction would also
have a component in the z-direction.

The motor suspension design is shown in Fig. 2.5. The leaf spring constrains the
x-, z- and ϕ-directions. Adjustment in ϕ-direction is made possible by an elastic
hinge. Adjustment screws enable alignment of the motor by prescribing a rotation
in ϕ-direction. Compression springs provide the preload in y-direction and press
the legs against the drive surface of the stage, which prescribes the position in the
y-, τ - and θ-directions. Alignment in τ -direction is obtained by the line contact
of the legs through the preload springs and by the flexibility of the leaf spring
in τ -direction. Table 2.1 gives an overview how the different DOFs are fixed or
prescribed by the different parts in the motor suspension.

Table 2.1: Fixation and prescription of the different DOFs by the suspension for
the walking piezo motor.

DOF Fixed by Prescribed through
x leaf spring -
y - line contacts between legs and stage
z leaf spring -
τ - line contacts between legs and stage
ϕ leaf spring adjustment screws ϕ
θ - line contacts between legs and stage
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The motor suspension positions the drive legs of the walking piezo motor with
respect to the drive surface of the 1-DOF stage. Since the drive legs of the piezo
motor perform a walking movement, the motor suspension does not affect the
stroke of the motor, which is unlimited by the working principle.

The preload in y-direction of the compression springs causes the drive legs of the
piezo motor to be pressed against the drive surface. Therefore, at all times at least
one pair of drive legs is in contact with the drive surface. The amount of preload
determines the friction between the drive pads and the drive surface and thus the
holding force Fh (N) of the motor as

Fh = γFp,

where Fp (N) is the preload force of the compression springs and γ (-) the friction
coefficient. Since the friction force is independent on the contact area, the driving
force is not determined by the number of legs that touch the drive surface.

2.3.2 System identification

The experimental setup of Fig. 2.6 consists of the motor suspension, the piezo mo-
tor, and a 1-DOF stage. The position of the stage is measured using a Heidenhain
LIF 481 optical incremental linear encoder with a resolution of 5 nm [78]. The gen-
eration of the waveforms to the piezo motor and the position measurement of the
encoder are performed using a TUeDACs AQI data-acquisition device [204], APEX
PB51 amplifiers [10], and a computer. Environmental vibrations are isolated from
the system by an air suspension.

A schematic model of the setup is shown in Fig. 2.7. The position of the pair of
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piezo legs, prescribed by (2.1) and (2.2), is denoted by xp (m). When the legs are
in the straight upright position, the position xp = 0. The position of the stage is
denoted by xs (m). The spring incorporates the combined stiffness of the piezo
legs and the motor suspension. The rubber casting, which surrounds the legs of
the piezo motor (see Fig. 2.1), is modeled by a damper.

The equation of motion for the model of Fig. 2.7 is

Mẍs(t) = k(xp(t)− xs(t)) + b(ẋp(t)− ẋs(t)). (2.3)

Substitution of (2.1) in (2.3) gives

Mẍs(t) =





k[cx(u1(t)− u2(t))− xs(t)] + b[cx(u̇1(t)− u̇2(t))− ẋs(t)],
if yp1(t) ≥ yp2(t),

k[cx(u3(t)− u4(t))− xs(t)] + b[cx(u̇3(t)− u̇4(t))− ẋs(t)],
if yp1(t) < yp2(t).

The heights of the pair of drive legs (yp1 and yp2) determine which pair of legs
drives the stage.

The angular velocity Ω(t) of the sinusoidal waveforms ui(t), i ∈ {1, 2, 3, 4} (see
(2.2)) determines the number of steps per second and is proportional to the speed
of the stage. The velocity and thus the position of the stage are prescribed by
controlling the angular velocity through the desired drive frequency fα(t) (Hz) of
the waveforms. The angle α(t) of the waveforms (2.2) is therefore chosen as

α(t) = 2π
∫ t

0

fα(τ)dτ.

From (2.3) follows that the transfer function from the position of the legs xp to
the position of the stage xs equals

Xs(s)
Xp(s)

=
bs+ k

Ms2 + bs+ k
. (2.4)
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Since the drive frequency of the waveforms is proportional to the velocity of the
stage, the position of the drive legs is modeled as

xp(t) =
c

2π
α(t) = c

∫ t

0

fα(τ)dτ, (2.5)

where c is the motor constant, representing the gain factor from the angle α to
the position of the drive legs xp. Using the Laplace transform, (2.5) becomes

Xp(s) = c
1
s
Fα(s). (2.6)

Combining (2.4) and (2.6) results in the model P̃ (s)

P̃ (s) =
Xs(s)
Fα(s)

=
bcs+ kc

Ms3 + bs2 + ks
. (2.7)

It is assumed that the pairs of legs are identical and that at all times only one pair
of legs is in contact with the stage. The nonlinearities introduced by the switch
are assumed to be negligible.

The measured frequency response function (FRF) of the plant P (jω) from the
drive frequency fα(t) to the position of the stage xs(t) is represented in Fig. 2.9 by
the solid line. The FRF was measured while the stage tracked a constant velocity
profile. The control scheme for the FRF measurement is shown in Fig. 2.8, where
the reference signal r(t) equals a constant velocity profile and w(t) is a white noise
signal. The controller C(jω) is a stabilizing PI controller, tuned using time domain
measurements of the output xs(t) and the error e(t) [63]. From the time domain
data of the noise w, control input u = fα +w, and the output xs, the FRFs of the
sensitivity function

S(jω) =
1

1 + P (jω)C(jω)

and the process sensitivity function

SP (jω) =
P (jω)

1 + P (jω)C(jω)
= P (jω)S(jω)
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Figure 2.9: Measured FRF (solid), FRF of the model (dashed), and measured
FRF with decreased amplitude A and phase φ (dash-dotted).

can be determined using the indirect closed-loop identification method and Welch’s
averaged periodogram method [116, 207]. The FRF of the system P can now be
obtained by

P (jω) =
SP (jω)
S(jω)

.

The measured FRF of Fig. 2.9 shows a decay of 20 dB/dec at frequencies below
the resonance peak located at 575 Hz. The eigenfrequency leading to the reso-
nance peak is caused by the combined stiffness k of the piezo legs and the motor
suspension together with the mass M of the stage.

For the model, the mass of the system is measured as M = 0.255 kg. Using
the resonance frequency of the measured FRF fres = 575 Hz, the stiffness k =
4π2Mf2

res = 3.3 · 106 N/m. The damping b is determined by fitting an exponential
envelope

g(t) = e
− b

2
t

to the response of the system on a step-shaped input [63]. The identified damping
of the model b = 160 Ns/m. Finally, the motor constant c is determined using
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the amplitude of the measured FRF at low frequencies together with the transfer
function of the model as

|P (jω)|f=10 Hz = −138 dB =
kc

k2πf
(2.8)

From (2.8) follows c = 7.91·10−6. The FRF of the model P (jω) with the identified
parameters is shown in Fig. 2.9 by the dashed line.

2.4 Control design

To obtain a smoother drive motion of the walking piezo actuator, new waveforms
are designed, which will be presented in Section 2.4.1. The system of Fig. 2.6 is
feedback controlled by prescribing the desired frequency fα(t) of the waveforms
and by measuring the position of the stage xs(t), which will be described in Sec-
tion 2.4.2. Feedforward control of the amplitude A and phase φ of the waveforms
ui(t), i ∈ {1, 2, 3, 4} and gain scheduling were added, as will be explained in
Section 2.4.3.

2.4.1 Waveforms

The resulting leg trajectories for the sinusoidal waveforms of (2.2) are shown in
Fig. 2.10(a). The instant in time where the first pair of legs loses contact with the
drive surface and the second pair takes over is called the transfer point. For the
sinusoidal waveforms, the transfer point occurs when the legs have a zero velocity
in the drive direction x. For constant velocity setpoints, i.e., in jogging mode,
the take-over between the driving pair of legs occurs at zero velocity in the drive
direction x, which leads to a large tracking error and thus to a high control effort.

In order to create a transfer point with a non-zero stage velocity in x-direction, the
waveforms were altered such that the elliptical trajectories become overlapping, see
Fig. 2.10(b). The elliptical trajectories were changed into overlapping trajectories
by performing the non-contact part in a shorter time interval. This makes the
waveforms asymmetric, as shown in the bottom axes of Fig. 2.10(b).

Let the period-time of the original sinusoidal waveforms be denoted by To (s).
Define the amount of relative overlap between the trajectories of the drive legs as
q, where 0 < q < 1. The factor q determines the length of the contact part.
The choice for the amount of overlap q is a compromise between the reduction
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Figure 2.10: Leg movement, stage motion and waveforms for the original sinusoidal
waveforms and the new asymmetric waveforms.

of the tracking error and the reduction of the maximum motor velocity. For the
trajectories to have an overlap q, the asymmetric waveforms are composed of a
positive sinusoidal part with a time span equal to (1 − q)To (s) and a negative
sinusoidal part with a time span of qTo (s). The total period-time Tn (s) of the
asymmetric waveforms becomes

Tn = (1− q)To + qTo = To.

The period-time of the asymmetric waveforms is chosen equal to the period-time
of the original symmetric waveforms. Due to the shift in the zero crossing of the
waveforms in one period, the transfer point now occurs at a non-zero velocity in
x-direction. However, the contact part is also shorter, as can be seen by the length
of the solid line in the sequential leg trajectories in the top axes of Fig. 2.10. The
shorter contact part results in a decrease of the stage velocity for the asymmetric
waveforms, as can be seen in the second axes of Fig. 2.10. However, with the over-
lapping tip trajectories, the stage performs a smoother movement, thus reducing
the tracking error and the control effort.

For the asymmetric waveforms used in the experiments of this chapter, the contact
part was chosen to be 2/3 of the period, i.e., q = 1/3. The overlap resulted in a
velocity reduction of approximately 15% compared to the original waveforms. The
velocity reduction results in an increase in walking frequency in order to achieve
an equal stage velocity as with the sinusoidal waveforms. For the velocity range of
interest in this application the increase in walking frequency does not result in slip
of the drive legs and therefore not in additional actuator wear. A further increase
of the desired velocity could result in slip and actuator wear.
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To construct the asymmetric waveforms, first the original sinusoidal waveforms of
(2.2) are normalized to frequency f̄α = 1 Hz, with amplitude Ā = 46 V and
phase φ̄ = 0 rad as shown in Fig. 2.11 by the dash-dotted line. The asymmetric
waveforms can now be constructed with q = 1/3 as

uasym(t) =





Ā

2
sin
(

2π
3
4
t

)
+
Ā

2
, t ∈ [0, (1− q)],

Ā

2
sin
(

2π
3
2
t+ π

)
+
Ā

2
, t ∈ 〈(1− q), 1] .

The normalized asymmetric waveforms are shown in Fig. 2.11 by the grey solid
line. For implementation issues, a fourth order Fourier series model [4] is fitted as

ũasym(t) =
A

Ā
a0 +

A

Ā

4∑

k=1

{ak cos[kα(t) + kφ(t)] + bk sin[kα(t) + kφ(t)]} , (2.9)

where a0 = 28.80, a1 = −10.78, b1 = 18.73, a2 = 2.387, b2 = 4.097, a3 = 1.985,
b3 = −0.007792, a4 = 0.2298 and b4 = −0.3901. Note that the amplitude of the
fitted waveforms is divided by Ā, which scales the waveforms back and makes it
possible to use and vary the original amplitude A again. The fitted asymmetric
waveform is shown in Fig. 2.11 by the dashed line. The fitted fourth order Fourier
series model ũasym resembles the original asymmetric waveform uasym very well.
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2.4.2 Feedback control

On the basis of the FRF of the system (see Fig. 2.9), we designed a standard pro-
portional and integral (PI) controller (2.10) employing loopshaping techniques [63]

C(s) = 1 · 107 s+ 2π
s

. (2.10)

Using the controller (2.10), the controlled system has a bandwidth fBW, defined
as |P (fBW)C(fBW)| = 0 dB, of approximately fBW = 10 Hz, a phase margin
of 75◦ and a gain margin of 30 dB. A block diagram of the feedback controlled
system is shown in Fig. 2.12. The asymmetric waveforms (2.9) of Section 2.4.1
are contained in the block with inputs α, φ and A. The outputs of the block with
the asymmetric waveforms are ui(t) (V), i ∈ {1, 2, 3, 4}. The block diagram of
Fig. 2.12 also contains the feedforward control and gain scheduling, which are the
subject of the next section.

The purpose of the controller design is not to maximize the achievable cross-over
frequency, although an increase would be possible based on the FRF of Fig. 2.9.
To illustrate the performance improvement by the asymmetric waveforms and the
feedforward control with gain scheduling of the next section combined with the
limited measurement resolution of 5 nm, the bandwidth is limited to 10 Hz in this
chapter.

2.4.3 Feedforward control with gain scheduling

For point-to-point movements, it is important that no static error remains and that
the system is at a standstill at the end of the movement. Two specifications are
important. Both the overshoot Mp and the settling time ts have to be minimized.
The overshoot Mp (nm) is defined as the amount by which the position exceeds
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its steady-state output on its initial rise for a point-to-point movement. The
settling time ts (s) is defined as the time the stage takes to position within encoder
resolution after the movement.

The stage position showed a large overshoot for point-to-point movements per-
formed with the maximum step size of 4 µm, i.e., with A = 46 V and with a phase
difference of π/2 rad between the waveforms of the layers of one pair of legs, i.e.,
φ(t) = 0 rad in (2.2).

To reduce the overshoot, the step size of the piezo legs is altered based on the
momentary setpoint velocity ṙ(t) (m/s) of the stage during the point-to-point
movement. The step size of the piezo motor can be adjusted by means of feedfor-
ward control by changing the amplitude A(t) and phase φ(t) of the waveforms as
described in Section 2.2 (see also Fig. 2.3). The feedforward adjustments of the
amplitude A(t) and phase difference ∆φ(t) for the waveforms are chosen as

A(t) =
Amax

vmax
|ṙ(t)|+Amin, (2.11)

∆φ(t) =
φmax

vmax
|ṙ(t)|+ φmin, (2.12)

where vmax = maxt(|ṙ(t)|) is the maximum reference velocity, Amin = 23 V is
the minimum amplitude and Amax = 46 V is the maximum amplitude. The feed-
forward adjustment of the amplitude is bounded as A ∈ [Amin, Amax]. In (2.12),
φmin = π/20 rad denotes the minimum phase difference and φmax = π/2 rad
is the maximum phase difference to obtain the largest step size. The feedfor-
ward adjustment of the phase is bounded as ∆φ ∈ [φmin, φmax]. ∆φ denotes the
phase difference between the different input waveforms to each leg, i.e., the phase
φ = ∆φ− π/2 (rad) for the sinusoidal waveforms of (2.2).

Changes in A and φ affect the step size of the motor and with this the stage
velocity. Both variables adjust the step size independently, i.e., a change in φ
does not affect the amplitude A and vice versa (see also Fig. 2.3). Compared to
the FRF measured with Amax and φmax (solid line in Fig. 2.9), a change in A
and/or φ results in a decrease in magnitude in the FRF, as shown in Fig. 2.9 by
the dotted line. The feedforward adjustments can only decrease the amplitude A
and phase φ with respect to their nominal values Amax and φmax. From (2.7),
it follows that with a constant drive frequency fα and a decreasing step size xp,
the FRF P (jω) also decreases. To obtain an equal bandwidth, the gain change
has to be compensated for. Therefore, the gain of the controller (2.10) is made
dependent on the operating point. The feedback controller (2.10) is multiplied by
a gain scheduling term K(A,∆φ), where

K(A,∆φ) = KA(A)Kφ(∆φ). (2.13)
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The functions KA(A) and Kφ(∆φ) are obtained experimentally by determining
the gain variation of the FRF in various operating conditions, i.e., for varying
values of A and φ with respect to the FRF measured with Amax and φmax (solid
line in Fig. 2.9). The values of A and φ are varied separately, while the other
variable remains at the maximum value (Amax or φmax). For the various operating
points, the appropriate controller gains are determined, through which a fit is made
in order to continuously adjust the controller gain dependent on the operating
point [109,162].

The introduction of the gain scheduling renders the controller time-varying. Notice
that this time variation only occurs during the acceleration phase of the system
since the gain scheduling parameter K(A,∆φ) is constant for constant velocity.
The feedforward terms adjust the system gain through the sinusoidal waveforms,
the gain scheduling term of the controller is in fact used to compensate for this.

2.5 Results

The designed asymmetric waveforms and the control strategy of Section 2.4 were
tested by means of simulations and experiments. First, the gain scheduling terms
KA and Kφ were determined. Furthermore, tracking experiments were performed
using both constant velocity reference signals and point-to-point movements.

The experimental configuration shown in Fig. 2.13 consists of the mechanical setup
(Fig. 2.6), four amplifiers, a TUeDACs AQI data-acquisition device [204], and a
computer. The AQI is used to measure the encoder output through a 32 bit
quadrature counter. Furthermore, it is equipped with DAC outputs, which are
used to generate the waveforms (2.2) to drive the setup via the amplifiers. The
computer reads the encoder measurements of the AQI at a fixed sampling rate of
4 kHz. For this purpose, Xenomai Linux is used to communicate with the AQI in
real-time. The computer is used to process the measured position and to calculate
the required control signal to the system in order to track the reference signal.

2.5.1 Gain scheduling

The experimentally obtained gain differences of the FRFs for different values of
A and φ with respect to the gain of the FRF with the nominal values Amax and
φmax are shown in Fig. 2.14 together with the fitted functions for KA(A) and
Kφ(∆φ). The functions KA(A) and Kφ(∆φ) are determined by fitting a first
order power series [4] on a logarithmic scale by means of least squares fit through
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the experimental results. The fitted functions equal

KA(A) = 10

∣∣∣a1A
b1 − c1

∣∣∣
20 ,

Kφ(∆φ) = 10

∣∣∣a2φ
b2 − c2

∣∣∣
20 ,

where a1 = −185.6, b1 = −0.05866, c1 = −184.9, a2 = −152.0, b2 = −0.05364,
and c2 = −148.7. The step size of the piezo legs is independently changed by A
and φ, therefore the complete gain scheduling term K(A,∆φ) can be constructed
by multiplying KA and Kφ (see (2.13)). The fitted function KA increases slightly
for A > 43 V. Since the gain scheduling is mainly required for low reference
velocities, i.e., at the end of the point-to-point movement, which corresponds to
small amplitudes A (see (2.11)), this mismatch for amplitudes A > 43 V does not
lead to a performance degradation.

2.5.2 Tracking constant velocities

The constant velocity experiments are performed at the maximum step size (Amax

and φmax), i.e., without gain scheduling. In Fig. 2.15, the results for a track-
ing experiment with a constant velocity of 100 nm/s are shown. The tracking
performance is the same both with the non-overlapping and the overlapping tip
trajectories. The steps in the measured position are equal to the encoder resolution
of 5 nm. The tracking error is maximally 3 nm, which is within the encoder resolu-
tion. At very low velocities, where the tracking error with the non-overlapping tip
trajectories is already below encoder resolution, the overlapping tip trajectories
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Figure 2.14: Measured (×) and fitted (solid) gain scheduling functions KA(A) and
Kφ(∆φ).

obviously do not improve the performance. The errors become larger than the
encoder resolution for larger velocities. For a tracking experiment with a constant
velocity of 1 mm/s, the tracking error with non-overlapping tip trajectories equals
0.85 µm and with overlapping tip trajectories 0.35 µm, as can be seen in Fig. 2.16.
With the overlapping tip trajectories, the tracking error is approximately 2.4 times
smaller than with the non-overlapping trajectories.

The maximum absolute tracking errors emax = maxt (|e(t)|), where | · | represents
the absolute value operator, of the experiments with different reference velocities
are shown in Table 2.2, both with non-overlapping and overlapping tip trajecto-
ries. For velocities < 100 nm/s, the errors are within encoder resolution regardless
of the tip trajectories. For constant velocities up to 1 µm/s, the overlapping
tip trajectories reduce the tracking error within the encoder resolution of 5 nm
compared to the non-overlapping tip trajectories, resulting in an performance im-
provement of 92%. For larger reference velocities, the tracking errors obtained
with the asymmetric waveforms exceed the encoder resolution. The overlapping
tip trajectories reduce the tracking error between 50% and 68%, depending on the
reference velocity.

2.5.3 Point-to-point movements

The results of a point-to-point movement over a distance of 0.1 mm with and
without feedforward control and gain scheduling, as described in Section 2.4.3,
are shown in Fig. 2.17. Both strategies result in a static error of ±5 nm. The
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use of the maximum step size (original control strategy) yields a large overshoot
Mp = 4350 nm and settling time ts = 0.9 s, defined as the time needed to settle
within encoder resolution (5 nm), as depicted in Fig. 2.17 by the dashed line.
With feedforward control and gain scheduling, the elliptical trajectories and thus
the step size of the legs were adjusted depending on the reference velocity according
to Fig. 2.3. The overshoot Mp and settling time ts reduced to Mp = 190 nm and
ts = 0.6 s with the feedforward control and gain scheduling, as can be seen in
Fig. 2.17 by the solid line.

In Table 2.3, the overshoot and settling time for point-to-point movements of differ-
ent sizes are shown. When no transitions of the legs occur, i.e., for point-to-point
movements below the maximum step size of the motor (4 µm), the feedforward
and the gain scheduling have no effect. This is because in these cases no steps
are made by the motor and there is no difference between the two control strate-
gies. For larger point-to-point movements, the overshoot Mp and settling time ts
are smaller with feedforward control and gain scheduling than without. The re-
duction in overshoot is approximately 96%. The settling times for point-to-point
movements of 10 µm and 0.1 mm are reduced by 67% and 33%, respectively.
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Table 2.2: Maximum absolute tracking errors of non-overlapping and overlapping
tip trajectories for different constant velocities.

emax (nm)
velocity (m/s) non-overlapping overlapping reduction (%)

1e-7 < 5 < 5
1e-6 ± 60 < 5 92%
1e-5 ± 150 ± 50 67%
1e-4 ± 400 ± 200 50%
1e-3 ± 850 ± 350 59%
2e-3 ± 1250 ± 400 68%

Table 2.3: Overshoot Mp and settling times ts for point-to-point movements of
different sizes with and without the use of feedforward and gain scheduling.

No FF With FF
Step (m) Mp (nm) ts (s) Mp (nm) ts (s)

1e-7 <5 0.1 <5 0.1
1e-6 50 0.4 50 0.4
1e-5 405 0.6 13 0.2
1e-4 4350 0.9 190 0.6

2.6 Conclusions

The aim of this work was to improve the positioning accuracy of a 1-DOF nano-
motion stage using a walking piezo motor. For this purpose, we proposed new
waveforms to drive the legs of the piezo motor. Furthermore, a control strategy was
developed employing feedback control, feedforward control, and gain scheduling.
The experimental results show the improvement of the tracking behavior of the
nano-motion stage.

The proposed waveforms for driving the piezoelectric legs of the walking piezo
actuator result in overlapping tip trajectories, i.e., a transition point between the
driving legs at non-zero velocity of the stage. A much smoother motion of the
stage with a lower control effort and tracking error are obtained with the proposed
overlapping tip trajectories. However, the overlapping tip trajectories reduce the
attainable motor velocity. The optimal choice for the amount of overlap is a trade-
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Figure 2.17: Reference (dotted), and measured positions with the original (dashed)
and advanced (solid) control strategies for a point-to-point movement over 0.1 mm.

off between the velocity reduction and the reduction of the tracking error of the
stage. The overlap in the tip trajectories reduces the tracking error between 50%
and 92%, depending on the reference velocity.

For point-to-point movements, the overshoot and settling time can be reduced con-
siderably when the end position is approached with smaller steps. The step size
of the legs is adjusted depending on the momentary reference velocity by means
of feedforward control of the amplitude and phase of the waveforms in combina-
tion with gain scheduling. With the feedforward control and gain scheduling, the
overshoot is reduced by 96% and the settling time by up to 67%.

The stage with the walking piezo actuator and the proposed control strategy is
capable of tracking velocities between 100 nm/s and 1 µm/s at the encoder reso-
lution of 5 nm. Also, point-to-point movements between 5 nm and the complete
stroke of the stage are possible with a static error below encoder resolution.

We expect the walking piezo motor to be able to track arbitrary trajectories and
with velocities higher than 2 mm/s. However, for higher speeds the drive frequency
will get close to the systems resonance frequency, which will be the subject of
further study.

Future work will also include the extension of the model with the piezoelectric
effects and the formal robust stability analysis of the system with gain scheduling.
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Chapter 3

Modeling of a walking piezo
actuator

Abstract - Piezoelectric actuators are often used in positioning devices that re-
quire (sub)nano-meter resolution. In this chapter, we develop an electro-mechanical
dynamic model of a walking piezo actuator. The derived model structure can be
used for the dynamic modeling of bimorph piezo motors in general. Furthermore,
the physical nature enables the model to be used in design optimizations to derive
new motors with different properties and for a dynamic analysis to investigate
the maximum allowable driving frequency in relation to the dynamic effects of
the motor. The walking piezo actuator contains four legs, each with two elec-
trically separated piezo stacks. The legs are modeled as a connection of coupled
mass-spring-damper systems. Using a Lagrange approach, the nonlinear system
dynamics are derived. The variation in the system dynamics is assessed using lin-
earization around different equilibrium positions. Also a static linearized approxi-
mation is derived, which describes the static relation between the supply voltages
and the tip trajectories of the legs. The dynamic analysis shows that the motor
can be modeled sufficiently accurate using a connection of six lumped mass-spring-
damper systems. The variation in system dynamics appears to be most significant
in the movement perpendicular to the leg orientation. Experiments show that the
static linearized model accurately describes the tip trajectories of the legs for both
sinusoidal and asymmetric waveforms.

This chapter is based on: R. J. E. Merry, M. J. G. van de Molengraft, and M. Steinbuch.
Modeling of a walking piezo actuator. Submitted, 2009.
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3.1 Introduction

Piezoelectric actuators are able to perform very small reproducible deformations
and have attractive properties such as high stiffness, fast response, lack of backlash,
extremely low speeds, high accuracy and inherent breaking when the power is
removed [201]. This makes them very attractive for use in nano-positioning devices.
A disadvantage of the piezoelectric actuators is their nonlinear behavior, including
creep and hysteresis.

In this chapter, we consider the dynamic modeling of a linear walking piezoelectric
actuator, shown in Fig. 3.1. The actuator has four piezoelectric legs, each of which
uses a bimorph working principle through two electrically separated piezo stacks.
For this motor, bimorph refers to the two separate stacks rather than to bimorph
piezoelectric film actuators with two piezo elements. The dynamic model is used
to analyze the geometric nonlinearities in the walking piezo actuator, which are
the performance limiting factor (PLFs) in the obtained driving accuracy of the
actuator.

22 mm

10 mm

10 mm

connector

housing
rubber

drive pad
ym

zm

xm
aluminum
oxide

Figure 3.1: The walking piezo motor [155].

The presented model structure can be used to model piezo actuators that employ
multiple piezo stacks, in particular bimorph piezo actuators. The physical nature of
the model allows it to be used in design optimizations to derive new walking piezo
actuators with different properties, e.g. with a different contact force, larger step
sizes, etc. Due to the energy based modeling approach, the model can be easily
extended with the dynamics of the system to be actuated and with nonlinear
effects, such as hysteresis, stick-slip, etc. Furthermore, the model gives insight
in the dynamics of the bimorph piezo motors and the maximum allowable drive
frequency before which the dynamic effects become apparent.
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The description of piezoelectric actuators involves combined mechanical and elec-
trical effects. Although piezoelectric actuators exhibit an inherent hysteresis non-
linearity, often the operating conditions are chosen to achieve a nearly linear be-
havior [57]. In this chapter, we focus on modeling the structural dynamics of the
bimorph walking piezo actuator.

Piezoelectric actuators are constructed using either piezo stacks or multimorph
piezo elements, consisting of multiple films of piezo elements. The piezo stacks are
capable of producing large forces, but generally have only a small displacement.
The multimorph piezo elements on the other hand enable large displacements.

In literature, three different modeling approaches are used to describe the behavior
of bimorph piezo actuators; bending beam analogies, thermal analogies and energy
approaches.

A model incorporating hysteresis is derived using beam analogy in [119] for a
three layer bimorph beam consisting of two piezo elements separated by a metal
shim. Design equations for a multimorph piezo beam are derived in [212]. Beam
analogies are generally used for piezo actuators that have wide thin piezo elements
and that obtain the movement by bending the piezo elements, which is by design
different from the working principle of the walking piezo actuator in this chapter.

Thermal analogy methods are based on the similarities between the piezoelectric
strains and thermal strains [38, 48, 52]. Although software packages exist for dy-
namic analysis of thermal analogy models, the models are not easily extended with
for example hysteresis or with the dynamics of the system surrounding the piezo
actuator. Therefore, we have not adopted this modeling approach for the walking
piezo actuator.

The electro-mechanical coupling of piezo actuators can be modeled using energy
based methods [74]. The dynamics of single stacked piezo actuators are described
using electro-mechanical models in [5,35,72]. The different layers of a piezo stack
can be modeled as a chain of lumped mass-spring-damper systems [5]. Also, the
nonlinear hysteresis effects are incorporated into the model. In [57], the electro-
mechanical coupling in multilayered piezoelectric structures is modeled as an ad-
ditional stiffness matrix to the constitutive equations. In [31], the single stack
piezoelectric actuators of a x, y, θz micro-positioner are modeled as a single spring,
damper and a displacement element. Although a Lagrangian energy approach is
followed, the piezoelectric effects are only included in the finite element method
(FEM) model.

In literature, several types of piezo motors have been modeled such as piezo
tube actuators [69, 159], standing wave ultrasonic motors [156], inchworm actu-
ators [194], L-shaped piezo actuators [219] and multimorphs [64]. To the authors
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best knowledge, no model of a bimorph walking piezo actuator was published so
far. In this chapter, we will model the walking piezo actuator using the Lagrange
approach. The bimorph piezo stacks of the legs are modeled using lumped mass-
spring-damper systems, incorporating the electro-mechanical coupling effects.

For the sake of completeness, the existing literature on modeling the nonlinear
effects in piezoelectric actuators due to hysteresis is briefly mentioned. Hysteresis
effects have been modeled using the generalized Maxwell slip model [72], the gener-
alized Prandtl-Ishlinskii hysteresis model [6], the Preisach model [89,181] and the
Coleman-Hodgdon model [130]. In the model presented in this chapter, hysteresis
is not included. However, the model structure is chosen such that it can easily be
extended with a hysteresis model.

The contributions of this chapter are threefold. Firstly, an analytical model of the
walking piezo legs actuator based on its physical properties is derived. Secondly,
analytical expressions for the static approximation between the tip trajectories and
the supplied voltages are derived. Finally, the results are experimentally validated.

This chapter is organized as follows. The walking piezo motor is described in
more detail in Section 3.2. In Section 3.3, both the dynamic model of the walking
piezo actuator and the static approximation are derived. Also, an analysis on
the changing dynamics for different operating conditions is presented. The model
identification is included in Section 3.4. Section 3.5 contains the static, dynamic
and experimental results. Finally, conclusions are drawn in Section 3.6.

3.2 The piezo motor

The piezo motor, shown in Fig. 3.1, consists of four piezoelectric drive legs [155].
The drive legs are driven by electric waveforms via the connector. The top of
each leg is covered with an aluminum oxide drive pad. The drive legs can be
pressed onto a drive surface of a stage to transfer the movement to a translational
movement with nanometer accuracy and with speeds in the range of nanometers
per second to millimeters per second (see Chapter 2). The legs are cast in rubber
to add damping to the movement. The dimensions of the piezo motor of Fig. 3.1
are 22×10×10 mm. Its weight equals 15 g.

Each piezoelectric leg consists of two electrically separated piezo stacks and em-
ploys a bimorph working principle. The piezo stacks elongate when they are elec-
trically charged. A schematic representation of the side view and the working
principle of the piezo motor are shown in Fig. 3.2. The legs elongate in y-direction
when an equal voltage is applied to the two piezo stacks of one leg. Applying



48 Chapter 3 Modeling of a walking piezo actuator

x
y

xs

u1 u2 u3 u4

A B C D

Figure 3.2: Working principle of the walking piezo motor.

different voltages on the two piezo stacks of one leg causes the leg to bend. By
choice of the supply voltages, the tip of the drive leg can be placed in an arbitrary
position within a working region in the (x, y)-plane (see Fig. 3.2) spanned by the
waveforms ui(t) (V), i ∈ {1, 2, 3, 4} with min(ui) = 0 V and max(ui) = 46 V.

As can be seen in Fig. 3.2, the drive legs always work together in pairs of two
(p1 = {A,D} and p2 = {B,C}). The first pair of legs p1 is driven by the input
waveforms u1(t) (V) and u2(t) (V), the second pair p2 is driven by u3(t) (V) and
u4(t) (V).

3.3 Modeling

The piezo legs work together in pairs. It is assumed that two legs of a single pair
are identical. Therefore, each pair is modeled as a single leg. Since the model is
based on physical properties, this only causes the dimensions in the model to be
the combined dimensions of both legs in one pair. Because of similarity, in the
remainder we will discuss only the modeling of one pair.

Each piezo stack in the bimorph piezo legs contains nt = 96 piezoelectric elements.
Since both stacks have an equal amount of elements, the leg can be considered to
have nt layers, each consisting of two piezoelectric elements, one in each stack.
Each layer is modeled as two piezo elements, connected by a mass m, representing
the total mass of that layer. A schematic overview of the model in the Cartesian
(x, y)-plane for an example of n = 3 layers can be seen in Fig. 3.3(a). Each layer
has a local coordinate frame, centered at the center of mass of the layer, as shown
for the first layer in Fig. 3.3(b).

Due to the polarization of the piezo elements and the assumption of a uniform
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Figure 3.3: Schematic representation of one pair of piezo legs for n = 3 layers.

electric field in the local y-direction, each piezo element is assumed to have only an
extension in longitudinal direction, i.e., its local yi-direction. The expansion of the
individual piezoelectric elements in perpendicular direction, i.e., local xi-direction,
is assumed to be negligible small. If the input voltages u1(t) and u2(t) are equal,
the piezo elements in each layer extend equally. This results in a translation of the
mass’ m in y-direction. Different input voltages u1(t) and u2(t) result in unequal
extension of the piezo elements and with this in a rotation of the mass’ m around
each center of mass (see Fig. 3.3(b)).

Due to a different extension of the different piezo elements, the mass m of each
layer rotates around its center of mass. Therefore, the mass of each layer has only a
translation in the local yi-direction (longitudinal) and a rotation around the center
of mass due to the input voltages u1(t) and u2(t) on the different piezo stacks. The
global x-translation of the leg is caused by stacking the model of one layer n times
on top of each other, creating a lumped model structure (see Fig. 3.3).

3.3.1 Modeling the piezo elements

A single discrete piezoelectric element can be visualized as shown in the left of
Fig. 3.4. If a voltage u (V) is provided to the electrodes of the piezo element,
this will result in an electric charge Q (C) and with this in a force ft (N) and a
displacement ∆ (m).

The constitutive equations of the piezo element, made of a one-dimensional piezo-
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Figure 3.4: Model of a single piezoelectric element.

electric material, are [158]

D = εTE + d33T, (3.1)

S = d33E + sET, (3.2)

where D (C/m2) is the electric displacement, E (V/m) the electric field, T (N/m2)
the stress, S (-) the strain, εT (N/V2) the dielectric constant under constant stress,
sE (m2/V) the compliance when the electric field is constant and d33 (m/V) the
piezoelectric constant.

If the electric field of the piezo element is assumed parallel to the poling direction
and all the electrical and mechanical quantities are assumed uniformly distributed
in a linear piezo element with n layers, integrating (3.1) over the volume of the
piezo element gives [158]

[
Q
ft

]
=
[
C(1− k2) nd33Ka

−nd33Ka Ka

] [
u
∆

]
, (3.3)

where Q (C) is the total electric charge on the electrodes of the piezo element,
∆ (m) is the total extension, ft (N) is the total force and u (V) the applied voltage
between the electrodes of the piezo element. Furthermore, C (F) is the capacitance
of the piezo element with no external force, k (-) the electro-mechanical coupling
factor, n (-) the number of layers in the piezo stack and Ka (N/m) the stiffness
with short-circuited electrodes.

When a voltage source is used, as done in this chapter, the effect of the piezoelectric
element on a structure can be represented as a pair of self-equilibrating forces
applied axially to the ends of the piezo element [158]. In that case, with (3.3) the
total force in the piezoelectric element can be written as

ft = − nd33Kau︸ ︷︷ ︸
expansion under u

+Ka∆︸ ︷︷ ︸
spring

. (3.4)
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Figure 3.5: Model of a single layer.

So, each piezoelectric element can be represented as a parallel coupling of a force
due to an applied voltage u and a spring with spring constant Ka. A schematic
representation of the model of a single piezo element is shown in Fig. 3.4. When
desired, (3.4) can be extended to incorporate hysteresis effects in the piezo element.

3.3.2 Complete model

Since the different legs of the walking piezo actuator are cast in rubber, also a
damper is added to the model of the individual elements. This results in the
model for a single layer of the piezo legs as shown in Fig. 3.5. Let the width of a
single stack be denoted by bs (m). Since the applied force of a single piezo stack
is assumed to be located at the middle, i.e., through the center line of the stack
(see also Fig. 3.4), the width c = bs/2 (m). The width between the center lines
of both stacks is denoted by 2c (m) in Fig. 3.5, i.e., the widths of both stacks are
assumed to be equal and the separation layer is assumed to be negligible small.

The two piezoelectric elements apply different forces, resulting in a combined force
F (N) and a moment M (Nm) on the mass m of each layer (see Fig. 3.6). Under
the assumption that each piezo element only elongates longitudinally, the mass m
rotates around the center of mass and translates only in the local yi-direction. As
stated before, the individual piezo elements are assumed to have no perpendicular
displacement. The global x-translation results from stacking multiple layers, as
shown in Fig. 3.3(b) and Fig. 3.6.

Let nm be the number of layers in the model and nt be the total number of layers
in each stack of the bimorph piezo legs. As can be seen in Fig. 3.6, each layer
can be described by two generalized coordinates q, representing the elongations of
both piezoelectric elements in a layer. For nm layers in the model, the vector of
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Figure 3.6: Stacked representation of multiple layers.

generalized coordinates becomes

q(t) =
[
q1(t) q2(t) . . . q2nm(t)

]T
, q(t) ∈ R2nm .

The initial conditions are

q
0

:= q(0) =
[
L0 L0 . . . L0

]T
, q(0) ∈ R2nm ,

q̇
0

:= q̇(0) =
[
0 0 . . . 0

]T
, q̇(0) ∈ R2nm ,

where L0 (m) denotes the initial length of the different layers. The inputs are
the voltages u1(t) and u2(t). Since these are equal for each layer, the vector with
inputs becomes

u(t) =
[
u1(t) u2(t)

]T
, u(t) ∈ R2.

The angles αi(t), where i ∈ Znm is the index number of the different layers, due
to the elongations of the piezoelectric elements equal

αi(t) = arcsin
(
q2i − q2i−1

2c

)
, (3.5)

where α0 = 0. The absolute angle of each center of mass (CM) is defined as

βi(t) =
i∑

j=0

αj(t).
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The absolute position of the CM of each layer i ∈ Znm is

ri,CM (t) =



− sin (βi−1(t))
cos (βi−1(t))

0


 q2i−1(t) + q2i(t)

2
+ ri−1(t),

where r0,CM (t) =
[
0 0 0

]T and the absolute angle βi(t) is used.

Due to the angles αi, i ∈ Znm , the base length increases slightly. This increase is
considered to be negligible small, i.e., the extension of the base width due to the
cosine term is linearized to be 2c (m).

The angular rotation vectors of the centers of mass for each layer are defined as

φ
i,CM

(t) =
[
0 0 βi(t)

]T
.

The force applied on the different masses due to the extension of each the piezo-
electric elements can be combined into one force as

F (t) = f1(t) + f2(t),

where the exerted force by each piezo element due to an applied voltage follows
from (3.4) as

fi(t) =
nt
nm

d33Kaui(t), i ∈ {1, 2}. (3.6)

The forces F i ∈ R3, i ∈ ZnF , where nF = 2nm − 1 is the number of forces acting
on all masses, equal

F i(t)=







− sin(β0(t))
cos(β0(t))

0


F (t), for i = 1,




sin(βi−1(t))
− cos(βi−1(t))

0


F (t), for i ∈ [2, 4, .., nF − 1],



− sin(βi−1(t))
cos(βi−1(t))

0


F (t), for i ∈ [3, 5, . . . , nF ].

The positions ri(t), i ∈ ZnF where the forces act equal

r(t) = [ r1,CM (t) r1,CM (t) . . . rnF−1,CM (t) rnF−1,CM (t) rnF ,CM (t) ].
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The moment acting on each mass due to the extension of the piezo elements equals

M(t) = c(f2(t)− f1(t)).

The moments M i(t) ∈ R3, i ∈ ZnM , where nM = 2nm − 1 is the number of
moments, equals

M i(t)=








0
0

cos(αi(t))


M(t), for i ∈ [1, 3, . . . , nM ],




0
0
−1


M(t), for i ∈ [2, 4, . . . , nM − 1].

The positions where the moments φ
i
(t), i ∈ ZnM act equal

φ(t) = [ φ1,CM
(t) φ

1,CM
(t) . . . φ

nM−1,CM
(t) φ

nM−1,CM
(t) φ

nM ,CM
(t) ].

The damping forces Fd,i(t), i ∈ [1, . . . , 2nm] in the individual piezoelectric ele-
ments, acting on all individual generalized coordinates, equal

Fd,i(t) = d(q̇i(t)− q̇0,i).

The nonconservative generalized forces [43] can now be calculated as

Qnc =
nF∑

i=1

(
∂ri
∂q

)T
F i +

nM∑

j=1

(
∂φ

j

∂q

)T
M i −

nD∑

l=1

(
∂q̇l
∂q̇

)
Fd,l. (3.7)

The kinetic energy equals

T =
1
2

nm∑

i=1

mi ṙ
T
i ṙi +

nm∑

i=1

1
2
Ji φ̇

T

i
φ̇
i
, (3.8)

where ṙ = d/dt(r) and φ̇ = d/dt(φ) are the time derivatives of the position and
rotation vectors, respectively. The potential energy equals

V =
1
2

2nm∑

i=1

k(qi − q0,i)2, (3.9)

where k = Ka. For use in nano-motion stages, the piezo legs motor is rotated to
have the legs horizontally pressed against a drive surface (see Chapter 2). There-
fore, no gravity is added to the model. If desired, the gravity can be added easily
by extending (3.9) with V ex = −mg · rCM , where g is the gravitational constant.

The Lagrange’s equations of motion can now be calculated using [43]

d

dt

(
∂T

∂q̇

)
− ∂T

∂q
+
∂V

∂q
=
(
Qnc

)T
. (3.10)
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3.3.3 Equilibrium dependent dynamics

The dynamic behavior of the walking piezo legs motor is dependent on the chang-
ing contribution of the piezo legs in the drive direction over one drive cycle as
prescribed by the waveforms, i.e., on the momentary operating conditions. In or-
der to evaluate this dependency, the Lagrangian equations of motion are linearized
around different equilibrium positions q

e
.

The Lagrangian equations of motion of (3.10) can be rewritten as [43]

M
(
q
)
q̈ +H

(
q, q̇
)

= S
(
q
)
τ , (3.11)

where M
(
q
)

is the mass matrix, H
(
q, q̇
)

contains the centripetal and Coriolis
terms as well as the gravitational effects, S

(
q
)

represents the generalized force
directions and τ = [f1 f2]T contains the inputs.

The nonlinear dynamics of (3.11) can be linearized around an equilibrium position
q
e

by splitting the generalized coordinates as q = q
e

+ q
l
, where q

l
are small

perturbations around q
e
. Furthermore, define q̇

e
= 0 and q̈

e
= 0. The external

forces are split as τ = τe + τ l(t), where τe is the equilibrium input corresponding
to q

e
and τ l(t) is the time-dependent part that causes the small perturbations q

l
,

where in the equilibrium τ l(t) = 0.

For the model of the walking piezo actuator, the global tip position of the top
element in x- and y-direction is chosen as the output, which can be defined as

g
(
q
)

=
[
rnm,x rnm,y

]T
. (3.12)

Now, rename the matrices using the following definitions

M := M(q
e
), D :=

∂H

∂q̇

∣∣∣∣ q = q
e

q̇ = 0

,

S := S(q
e
), K :=

∂H

∂q

∣∣∣∣ q = q
e

q̇ = 0

− ∂Sτe
∂q

∣∣∣∣
q=q

e

,

to obtain the linearized system

Mq̈
l
+Dq̇

l
+Kq

l
= S τ l(t). (3.13)

Define the linearized output matrixW (q) :=
∂g

∂q (q
e
). Let the state x = [qT q̇T ]T :=

[xT1 xT2 ]T and the input array u := τ l. The linearized system in state space
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description can now be written as

ẋ = Ax+Bu,

y = Cx,
(3.14)

where

A =
[

0 I
−M−1K −M−1D

]
,

B =
[
0 M−1S

]T
,

C =
[
W 0

]
.

The transfer function can be calculated for every equilibrium position using the
Laplace transform

X(s) = C (sI −A)−1
BU(s) = Hru(s)U(s), (3.15)

where

Hru(s) =
[
Hx,u1(s) Hx,u2(s)
Hy,u1(s) Hy,u2(s)

]
.

3.3.4 Linear static relations

Since the mass of the different piezo elements is small and the stiffness high, the
resonance frequencies are expected to be very high.

In [92,155], the relation between the input voltages u1,2(t) and the tip positions in
the Cartesian (x, y)-plane, denoted by xt and yt, is specified to be a linear static
map as

xt = cx(u1(t)− u2(t)), (3.16)
yt = cy(u1(t) + u2(t)), (3.17)

where cx (m/V) and cy (m/V) are the constant bending and extension coefficients,
respectively.

The relations (3.16) and (3.17) will be validated in two steps, 1) by deriving a
static map of the model and 2) by linearizing the static map. The validity to use
a static linear map to describe the true leg positions is not assessed at this point.

Another goal of the static linearization is to derive analytical expressions based on
physical parameters for the bending and extension coefficients cx and cy in (3.16)
and (3.17), respectively.
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Analytical expressions for the bending and extension coefficients cx and cy as
function of the physical parameters can be derived by linearizing the equations of
motion for small movements q.

For the static relation, first define q̈ = 0 and q̇ = 0. Now we define

F (q, τ) := H
(
q, 0
)
− S

(
q
)
τ (3.18)

and consequently (3.11) implies that the equilibrium equations are described by
F (q

e
, τe) = 0.

Relation (3.18) is nonlinear in qe and τe = [f1,e, f2,e]T . For the validation of
(3.16) and (3.17), a linear approximation is pursued. In (3.13) a linearization
around an arbitrary equilibrium q

e
is performed. For the static linearized model,

a linearization around one specific equilibrium, i.e., with τe = 0 and q
e

= q
0
, is

performed. If the linear perturbations around the equilibrium position and input
are denoted by q̃ and τ̃ , the first order Taylor expansion of (3.18) can be written
as

F (q
e
, τe) ' F (q

0
, 0) +

∂F

∂q
e

∣∣∣∣∣ q
e

= q
0

τe = 0

q̃ +
∂F

∂τe

∣∣∣∣ q
e

= q
0

τe = 0

τ̃ , (3.19)

where τ̃ = [f̃1, f̃2]T are the linearized inputs. Equating (3.19) to zero yields

q̃ '
(
∂F

∂q
e

)−1
∣∣∣∣∣∣ q

e
= q

0
τe = 0


− ∂F

∂τe

∣∣∣∣ q
e

= q
0

τe = 0

τ̃ − F (q
0
, 0)


 . (3.20)

Note that the matrix ∂F/∂q
e

must be invertible for the above expression to exist.
For the static relation, also the nonlinear output equation (3.12) must be linearized
as

g̃(q̃) ' g
(
q

0

)
+

∂g

∂q
e

∣∣∣∣∣
q
e
=q

0

q̃. (3.21)

Substitution of (3.20) in (3.21) gives the approximated static relation between the
input τ̃ = [f̃1, f̃2]T and the global position of the tip of the leg g̃.

3.4 Model identification

Using an electron microscope, a detailed image of the piezo legs is made, from
which construction details and physical properties are derived. The structure of
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Figure 3.7: Picture of one piezo leg (side view).

one of the bimorph legs is shown in Fig. 3.7. Each leg contains two piezo stacks,
indicated by the dashed boxes. Between the two stacks, there is a connecting
layer. Each stack contains nt = 96 piezo elements, one of which is indicated by
the dash-dotted lines. Each layer in the model contains a piezo element from each
stack and a part of the connecting layer, as indicated by the dotted lines.

Using the measurements of the legs obtained using the image from the electron
microscope and the material properties for lead zirconate titanate (PZT) piezo
material [121,158,200], the model parameters are identified as given in Table 3.1.
Note that the mass m and the stiffness Ka are calculated using twice the area A
since each pair of legs is modeled as a single leg.

In practice, the legs of the walking piezo motor are pressed against the drive surface
of a stage using preload springs (see Chapter 2). If a preload force is applied, this
can be represented by a linear spring with pre-tension stiffnessKp (N/m) in parallel
with the separate piezo elements [158]. The equivalent properties of the prestressed
piezo elements can be obtained using (3.3) by changing the short-circuited stiffness
to k = Ka +Kp [158].

The applied force of each piezoelectric element (3.4) now becomes [158]

f = − nt
nm

d33Kau+ (Ka +Kp)∆. (3.22)
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Table 3.1: The identified model parameters for the bimorph piezo leg.

Parameter Unit Value Description
nt - 96 number of elements in stack
nm - [1, . . . , nt] number of layers in model
bs m 1.5 · 10−3 width single stack
c m bs/2 half width neutral line
ds m 3.0 · 10−3 depth single stack
A m2 bsds area single stack
L0 m 3.9 · 10−3/nm initial length of layer in model
e31 N/(Vm) -9.0 piezoelectric constant
d31 m/V −310 · 10−12 piezoelectric constant
sE m2/N d31/e31 tensor of compliance
d33 m/V 620 · 10−12 piezoelectric constant
ρ kg/m3 7600 density PZT
m kg 2ρAL0 mass single layer in model
J kgm2 1

12m(b2s + L2
0) inertia single layer in model

Ka N/m 2A/(sEL0) stiffness piezo element
Kp N/m 25.6 · 103nm pre-tension piezo legs
k N/m Ka +Kp total stiffness
d Ns/m 1 · 10−3 damping

To press the piezo actuator against the drive surface of the stage, two springs
with a stiffness of 12.8 · 103 N/m are applied. The equivalent spring stiffness for
the two parallel preload springs equals 25.6 · 103 N/m. The preload springs are
incorporated in the model of the individual layers. Due to the series connection
of the different layers in the model the preload stiffness of the individual layers
equals Kp = 25.6 · 103nm N/m, as specified in Table 3.1.

3.5 Results

In this section the results of the model derived in Section 3.3 with the model
parameters of Table 3.1 will be presented. The dynamics of the piezo legs model
will be presented in Section 3.5.1 for a varying number of layers nm and different
equilibrium positions q

e
. Furthermore, the derived static relation of Section 3.3.4

will be validated experimentally in Section 3.5.2.
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3.5.1 Dynamic model

In this section, the dynamic properties of the model are assessed for both varying
number of layers nm and varying equilibrium positions q

e
.

Each pair of input forces of the piezo stacks τe = [f1,e f2,e] results in an equi-
librium position q

e
. The elongations of the piezoelectric elements on the left side

of the leg, i.e., the generalized coordinates with an uneven subscript, depend in
steady-state only on the input voltage u1,e. On the right side, i.e., with an even
subscript, the equilibrium positions of the generalized coordinates depend on the
input voltage u2,e. The equilibrium vector can therefore be divided as

q
e

=
{
q1,e, for q = {q1, q3, . . . , q2nm−1},
q2,e, for q = {q2, q4, . . . , q2nm},

(3.23)

where the equilibrium positions qi,e, i ∈ {1, 2} are calculated using (3.20).

Varying number of layers nm

The model order and thus the number of resonances is dependent on the number
of layers nm that are contained in the model. The frequency response function
(FRF) of the system (3.15) is shown in Fig. 3.8 for nm ∈ [2, 4, 6, 8, 10] layers and
an equilibrium input of u1,e = 20.2 V, u2,e = 44.2 V. The frequency of the first
resonance and the static gain increase with increasing nm.

When comparing the FRFs of the transfer functions from the input voltages u1,2

to the tip positions in x- and y-direction, it can be seen that the variation in
steady-state gain is only visible in the FRFs for the x-direction. A change in the
number of layers nm has more effect on the steady-state gain in x-direction than
in y-direction. Furthermore, the steady-state gain in y-direction is larger than in
x-direction due to the bimorph working principle, i.e., an x-displacement is caused
by the difference of both the voltages u1 and u2 and since the x-displacement is
obtained through stacking of multiple layers with a rotated mass m.

The FRFs of the voltage u1 to the x-direction shows a difference from the FRF of
u2 to the x-direction. This difference is not visible in the FRFs of both voltages to
the y-direction. The difference is caused by the orientation of the leg in which the
FRFs are calculated, i.e., on the equilibrium position q

e
. For different equilibrium

positions, a change in the voltages has a larger effect on the dynamics in x- as in
y-direction and with this on the FRFs.

The high frequent resonance frequencies affect the steady-state gain. The steady-
state gains and the first resonance frequency of Hx,u1(s) are contained for nm ∈
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Figure 3.8: FRF of Hru(s) (3.15) for nm ∈ [2, 4, 6, 8, 10].

Table 3.2: Steady-state gain and first resonance frequency of Hx,u1 for
nm ∈ [2, 4, 6, 8, 10].

nm 2 4 6 8 10
|Hx,u1(s ↓ 0)| in dB -56.1 -51.9 -50.9 -50.4 -50.1
fres (kHz) 187.7 207.0 215.0 219.0 221.7

[2, 4, 6, 8, 10] layers in Table 3.2. The increase in the steady-state gain and of
the first resonance frequency are considered negligible small for nm ≥ 6 layers.
Therefore, the minimum number of layers in terms of the lowest model order with
sufficient accuracy is nm = 6. The steady-state gain of Hru for nm = 6 equals

Hru(s ↓ 0) =
[
−50.9 −44.1
12.7 12.7

]
dB,

the first resonance frequency is located at fres = 215.0 kHz.
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Varying equilibrium q
e

In Chapter 2, sinusoidal input voltages and asymmetric input voltages, resulting
in overlapping tip trajectories, are designed. The model is tested for both the
sinusoidal voltages

ũsin
1,2(t) =

A

2
sin(α(t) + ψ1,2) +

A

2
, (3.24)

and the asymmetric input voltages, which are described in Chapter 2 using a fourth
order Fourier series as

ũover
1,2 (t) =

A

Ā
a0 +

A

Ā

4∑

k=1

{ak cos[kα(t) + kψ1,2(t)] + bk sin[kα(t) + kψ1,2(t)]} ,

(3.25)

with Fourier coefficients a0 = 28.80, a1 = −10.78, b1 = 18.73, a2 = 2.387,
b2 = 4.097, a3 = 1.985, b3 = −0.007792, a4 = 0.2298, and b4 = −0.3901. The
amplitudes Ā = 46 V and A = 46 V. The phases ψ1 = 0 rad and ψ2 = π/2 rad for
the voltages u1 and u2, respectively.

In Fig. 3.9, the FRFs of the system (3.15) with nm = 6 layers and varying angle
α ∈ [0, π/36, π/18, . . . , 2π] rad are shown. The width c is of order O(c) = 10−3 m
and the elongations qi are maximally of order O(qi) = 10−6 m. To derive the
linearized equations of motion (3.13) from (3.11), the angles αi(t) are linearized
as

αi(t) = arcsin
(
q2i − q2i−1

2c

)
≈ q2i − q2i−1

2c
.

For each value of α, the input voltages can be calculated using (3.24) or (3.25).
The corresponding equilibrium positions q

e
can be calculated using (3.23).

The steady-state gains of the transfer functions Hx,u1(s) and Hx,u2(s) vary for
different equilibria, i.e., for different leg positions. The gain variations of Hx,u1(s)
and Hx,u2(s) are equal for varying α over a complete cycle, i.e., α ∈ [0, 2π] rad.
The variations of the steady-state gains Hy,u1(s) = Y (s)/U1(s) and Hy,u2(s) =
Y (s)/U2(s) and the dynamics in y-direction for varying α are negligible small.

The results show that the model structure can be used to analyze the dynamic
behavior of bimorph piezo actuators. However, the dynamics of the considered
piezo actuator are located at frequencies f > 215 kHz and are therefore irrelevant
for control design purposes, as addressed in this thesis. The static analysis is much
more relevant in this respect. The static analysis allows analytical expressions
based on physical properties to be derived for the static bending and extension
coefficients of the bimorph piezo legs, which is the subject of the next section
together with an experimental validation.
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Figure 3.9: FRF of Hru(s) (3.15) for different equilibria q
e
.

3.5.2 Static model

For the experimental validation of (3.20) and (3.21), the piezo legs motor is
mounted to a one degree-of-freedom (DOF) stage as shown in Fig. 3.10. The
drive pads of the legs are fitted to the drive strip of the 1-DOF stage using a mo-
tor suspension and preload springs such that the (xm, ym, zm)-axes of the motor
(see Fig. 3.1) coincide with the (x, y, z)-axes of the stage. The stage is equipped
with a linear incremental encoder with a resolution of 0.64 nm. The movement of
the back side of the motor is measured with a capacitive sensor with a resolution
of 0.44 nm.

Experiments are performed using both the sinusoidal waveforms of (3.24) and the
asymmetric waveforms of (3.25) for α(t) = 2πt rad. During the experiment, the
second pair of legs is kept at its zero state, i.e., u3(t) = u4(t) = 0. Since the
movement is performed at a low frequency, the stage and back of the motor are
assumed to follow the tip movement of the leg directly.
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Figure 3.10: Experimental setup containing the walking piezo actuator fitted to a
1-DOF stage.

The static linearized output equations for nm = 6 equal

x̃ =
15L0

2ck

(
f̃1(t)− f̃2(t)

)
, (3.26)

ỹ =
3
k

(
f̃1(t) + f̃2(t)

)
. (3.27)

Combination of (3.26) and (3.27) with (3.6) results in

x̃ =
15L0ntd33Ka

2cnmk
(ũ1(t)− ũ2(t)) , (3.28)

ỹ =
3ntd33Ka

nmk
(ũ1(t) + ũ2(t)) . (3.29)

The constant bending and extension coefficients of [155] follow by comparison of
(3.28) to (3.16) and (3.29) to (3.17) as

cx =
15L0ntd33Ka

2cnmk
, cy =

3ntd33Ka

nmk
.

With the setup of Fig. 3.10, only relative measurements of the x- and y-positions
are possible. Therefore, the contributions of x0 and y0 are not taken into account
in (3.26) and (3.27). To compare the results of the static linearized model and the
relative experimental data, the measurement results are shifted such the minimal
values of the model and measurements data coincide.

The measured positions in x- and y-directions are shown in Fig. 3.11 for sinusoidal
waveforms with the solid grey line. The tip trajectory according to (3.26) and
(3.27) is shown by the dashed black line. It can be seen that the magnitude of the
movement is approximately equal in both x- and y-direction.
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Figure 3.11: Measured (grey, solid) and calculated (black, dashed) tip trajectories
for sinusoidal waveforms.

The measured and calculated time signals in x- and y-direction are shown in
Fig. 3.12(a) and Fig. 3.12(b), respectively. The grey solid line represents the
measured positions and the black dashed lines represents the modeled positions
using (3.26) and (3.27). The errors between the calculated and measured positions,
defined as ex = x − x̃ and ey = y − ỹ with x and y the measured positions in x-
and y-direction, are also shown. The static relations describe the movement in
x-direction with an accuracy of 77% and in y-direction with an accuracy of 90%.
The cumulative power spectral densities of the errors, shown in Fig. 3.12(a), will
converge for f → ∞ to the squared rms values, which equal rms(ex) = 0.25 µm
and rms(ey) = 0.044 µm.

Besides the good correspondence, there is also a remaining difference between the
measured and modeled positions. The modeled tip position is symmetric around
the origin in Fig. 3.11 whereas an asymmetry can be seen in the measured response.
Also a small difference in amplitude in the x-direction is visible. These differences
are probably caused by unmodeled phenomena, e.g., hysteresis, variation in lengths
of the piezo stacks or different lengths of the legs in a single pair, or by measurement
errors, e.g., sensor alignment.

The measured and modeled positions are shown for the asymmetric waveforms of
(3.25) in Fig. 3.13. Also for these waveforms, the global shape of the trajectories
shows a good resemblance. The deviations are thought to be caused by the same
causes as for the sinusoidal waveforms.
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Figure 3.12: Measured (grey, solid) and calculated (black, dashed) positions, errors
and cumulative PSDs of the errors for sinusoidal waveforms.

The measured and modeled time signals are shown for the x- and y-direction in
Fig. 3.14(a) and Fig. 3.14(b), respectively. Also in the time domain, the responses
show a good resemblance. The root-mean-square (rms) values of the errors equal
rms(ex) = 0.15 µm and rms(ey) = 0.056 µm, respectively. The errors show that
for the asymmetric waveforms the x-direction is described with an accuracy of
87% and the y-direction with an accuracy of 85%. The cumulative power spectral
densities of the errors are shown in the bottom axes of Fig. 3.14.

3.6 Conclusions

In this chapter, we have derived an electro-mechanical model of a bimorph walking
piezo actuator. Each leg of the actuator consists of two electrically separated piezo
stacks. The piezoelectric elements are modeled as a parallel coupling of an actuator
force due to an applied voltage and a spring. The different layers in the bimorph
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Figure 3.13: Measured (grey, solid) and calculated (black, dashed) tip trajectories
for asymmetric waveforms.

piezo legs are modeled using a lumped structure of connected mass-spring-damper
elements. The model is derived based on physical properties of the motor.

An energy based approach is used to derive the dynamic model of the walking piezo
actuator through the Lagrange equations of motion. The varying system dynamics
are assessed by linearization of the nonlinear dynamics around different equilibria.
The resonance frequencies are located at frequencies f ≥ 215.0 kHz. Therefore,
the legs are considered static for control purposes. A linearization is performed to
find a static relation between the input waveforms and the tip trajectories of the
leg. The static linearization gives a physical interpretation of the constant bending
and extension coefficients of the legs.

The modeled tip trajectories show a good correspondence to the experimentally
obtained measurements for both sinusoidal and asymmetric waveforms. The model
describes the tip trajectories with an accuracy between 77% and 90%.

Future work includes extending the model to better describe the experimental
results by investigating the asymmetry in the measured results and by modeling
the hysteresis in the piezo motor. Furthermore, the model will be used to obtain
optimal input voltages to the legs using optimization techniques.

Since the analytical model is based on physical properties of the piezo actuator,
new walking piezo actuators with different properties could be developed by using
the model in a design optimization.
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Figure 3.14: Measured (grey, solid) and calculated (black, dashed) positions, errors
and cumulative PSDs of the errors for asymmetric waveforms.
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Chapter 4

Waveform optimization

Abstract - Piezo actuators are used in high-precision systems that require
nanometer accuracy. In this chapter we consider a nano-motion stage driven by
a walking piezo actuator, which contains four bimorph piezo legs. We propose
a (model-based) optimization method to derive waveforms that result in optimal
driving properties of the walking piezo motor. A model of the stage and motor
is developed incorporating the switching behavior of the drive legs, the contact
deformation and stick-slip effects between the legs and the stage. The friction-
based driving principle of the motor is modeled using a set-valued friction model,
resulting in a model in terms of differential-algebraic inclusions. For this model
we developed a dedicated numerical time-stepping solver. Experiments show a
good model accuracy in both the drive direction and the perpendicular direc-
tion. The validated model is used in an optimization, resulting in waveforms with
optimal driving properties of the stage at constant velocity. Besides the model-
based optimization, also a direct experimental data-based waveform optimization
is performed. Experiments with the optimized waveforms show that compared to
existing sinusoidal and asymmetric waveforms in literature the driving properties
can be significantly improved by the model-based waveforms and even further by
the data-based waveforms.

This chapter is based on: Roel Merry, Martijn Maassen, René van de Molengraft, Nathan
van de Wouw and Maarten Steinbuch. Modeling and waveform optimization of a nano-motion
piezo stage. Submitted, 2009.
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4.1 Introduction

Piezo actuators are used in high-precision systems that require nanometer accuracy
due to their attractive properties such as good reproducibility, high stiffness and
fast response. Stepping piezo actuators are able to drive nano-motion stages at
constant velocities in the order of nanometers per second to millimeters per second.
To obtain good positioning and tracking performance of the stages, a driving
principle of the stepping piezo actuators with a continuous actuation and smooth
transitions between the driving piezo legs is desired.

In this chapter we consider a nano-motion stage driven by a walking piezo actu-
ator. The walking piezo actuator employs four bimorph piezo legs to drive the
stage in pairs of two. The orbits of the drive legs are defined by the electric drive
waveforms to the motor. With the sinusoidal and asymmetric waveforms of Chap-
ter 2 no satisfactory driving properties are obtained; stick-slip effects and different
leg velocities at the transfer between the driving pairs of legs limit the actuation
of the piezo legs at a constant velocity and result in a non-smooth stage behavior.
To reduce the effect of these performance limiting factors (PLF), a model-based
approach is followed to obtain new actuator driver software. In this chapter, we
develop a model of the nano-motion stage and walking piezo actuator, which is ex-
perimentally validated and used to derive new waveforms by means of optimization
techniques.

The model of the nano-motion stage with the piezo motor includes the alternat-
ing nature of the walking movement of the piezo legs, the contact dynamics and
the stick-slip effects between the motor and the stage. Although the piezo legs
contain some hysteresis, in most applications nearly linear operating conditions
are selected [57]. Therefore, in this chapter hysteresis is not taken into account.
An overview of models for contact dynamics for an ultrasonic piezo motor is given
in [211]. The contact between the piezo legs and the drive strip of the nano-motion
stage is modeled using a nonlinear contact stiffness. The driving principle of the
walking piezo motor is based on friction. Therefore, accurate modeling of the fric-
tion between the stage and motor is important. In [98], three different friction
models are compared for a friction drive piezo actuator. It is found that the vari-
ation of the friction force due to a variation in normal force should be taken into
account. To model the friction force, which depends on the normal forces, and to
properly model stiction, a set-valued friction model is used [71,143].

Numerical simulation of the dynamic model including the set-valued friction model
could be performed by smoothening of the set-valued nonlinearity, but this leads
to (non-unique) approximations and stiff differential equations [3]. Event driven
methods [153] are not favorable for our application since we split the model of
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the piezo-driven nano-motion stage in a model in the drive direction and a model
in the perpendicular direction, of which simulation results at each time-step have
to be combined. Furthermore, the model results are compared to experimental
data at an equidistant sampling grid. Since we are interested in the effect of
friction on the global dynamics, but not in exact timing information of stick-slip
transitions, we exploit time-stepping methods to perform numerical simulations
with the dynamic model including the set-valued friction model [3, 108]. Here we
formulate the model in terms of a differential-algebraic inclusion, for which we
develop a dedicated time-stepping solver. The model and numerical solver can be
used for the optimization of the waveforms to the piezo legs to optimize the legs
orbit design.

In literature, several algorithms have been described for waveform optimization.
In [152], a computationally efficient real-time trajectory optimization technique is
proposed. Optimal input signals are derived in [61] for systems in which part of the
trajectory is chosen fixed. Although interesting, these methods are not adopted
in this chapter since, firstly, in our problem the optimization is performed off-line
and as a consequence computational efficiency is not really an issue and, secondly,
the input signals to be designed are completely free.

Waveforms for piezo devices have already been studied in literature. In [101],
triangular, rectangular and sinusoidal waveforms for an inchworm actuator are
compared. The sinusoidal and triangular waveforms perform best. The period time
and slopes of triangular driving waveforms are optimized for maximum velocity
in [90]. In [118], possible trajectories for a walking micro-robot employing six
bimorph piezo legs are described. However, no trajectory optimization for a specific
goal is performed. In [203], iterative learning control of two parameters is applied to
obtain a smooth stepping function for a piezo stepper with six legs. To the authors
best knowledge, no trajectory optimization for bimorph walking piezo motors has
been described yet in literature. In Chapter 2, we proposed asymmetric waveforms,
which improve the driving properties of the bimorph walking piezo motor. The
optimized waveforms derived in this chapter will be compared to these asymmetric
waveforms.

The cost functions for the optimizations in this chapter are typically nonlinear
in the optimization parameters. Since we are interested in the global optimum,
stochastic methods, such as simulated annealing or evolutionary algorithms, are
preferred over nonlinear gradient-based methods [122,141]. The different results of
comparative studies with genetic algorithms (GA) and simulated annealing (SA)
as performed in [85, 177] indicate that the most suitable algorithm depends on
the problem under study. Therefore, different methods have been tested, namely
genetic algorithms (GA) [56, 80], simulated annealing (SA) [177] and the particle
swarm optimization (PSO) [97] for the algorithms as proposed in [36] and [198].
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For each method, also a two-phase approach is used, consisting of using the global
optimization to approach the global minimum followed by a local gradient-based
optimization [76,151].

The contributions of this chapter are threefold. Firstly, a model of the nano-motion
stage driven by the walking piezo actuator is presented. The model includes the
switching behavior between the driving pair of piezo legs, the contact dynamics
and the stick-slip behavior between the stage and the motor. Secondly, a dedicated
time-stepping solver is developed for the derived model, which is described by a
set of differential-algebraic inclusions. Finally, optimal waveforms are derived by
means of a model-based optimization and a data-based optimization on the setup.

This chapter is organized as follows. In Section 4.2, the nano-motion stage and the
walking piezo actuator will be discussed in more detail. The derivation of the model
will be presented in Section 4.3, in which the dedicated time-stepping solver will
also be introduced. The model identification and validation using experimental
data will be shown in Section 4.4. Section 4.5 contains both the model-based
and data-based waveform optimizations. Finally, conclusions will be drawn in
Section 4.6.

4.2 The experimental setup

The one degree-of-freedom (DOF) nano-motion stage, shown in Fig. 4.1, is equipped
with a roller cage bearing to minimize the amount of friction in the stage move-
ment. The position of the stage in x-direction is measured using a linear incre-
mental encoder with a resolution of 0.64 nm. The displacement of the back of the
motor housing is measured using a capacitive sensor with a resolution of 0.44 nm
and a root-mean-square (rms) value of the noise of 1.6 nm.

Using the dedicated motor suspension of Chapter 2, the drive pads of the walk-
ing piezo motor are pressed against the drive strip of the stage such that the
(xm, ym, zm)-axes of the motor coincide with the (x, y, z)-axes of the stage (see
Fig. 4.1). The motor suspension is designed such that the motor is properly aligned
with respect to the drive surface of the stage to minimize slip and wear of the drive
legs, as described in Chapter 2. The drive pads of the piezo motor are pressed
against the drive strip by two preload springs with a total preload force of 55 N.

The walking piezo motor contains four bimorph piezoelectric legs, which work
together in pairs of two to drive the nano-motion stage. A schematic working
principle of the walking piezo motor is shown Fig. 4.2. The first pair, denoted by
p1, consists of legs A and D, the second pair, p2, consists of legs B and C. Each leg
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Figure 4.1: The nano-motion stage driven by the walking piezo actuator.

contains two electrically separated piezo stacks. Each stack is driven by an electric
waveform ui(t) (V), i ∈ {1, 2, 3, 4}, which position the tips of the piezo legs in the
(xm, ym)-plane (see Fig. 4.1). Applying equal voltages to the piezo stacks of one
leg causes the leg to extend in ym-direction. Different voltages introduce a bending
of the leg in xm-direction. The relative positions of the tips of the leg pairs p1 and
p2 in x- and y-direction as function of the input waveforms can be written as [155]

xp1 = cx(u1(t)− u2(t)),
yp1 = cy(u1(t) + u2(t)),
xp2 = cx(u3(t)− u4(t)),
yp2 = cy(u3(t) + u4(t)),

(4.1)

where cx (m/V) and cy (m/V) are the constant bending and extension coefficients,
respectively.

By choosing the waveforms ui(t) (V), i ∈ {1, 2, 3, 4} in (4.1), the tips of the piezo
legs can perform a walking movement in the (xm, ym)-plane, which can be used
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Figure 4.2: Schematic working principle of the walking piezo motor.

to drive the nano-motion stage. With sinusoidal waveforms or the asymmetric
waveforms as proposed in Chapter 2, elliptical tip orbits and an alternating drive
motion between the pair of legs are obtained. Due to the preload, at least one pair
of legs is in contact with the drive strip of the stage at all times.

4.3 Modeling

This section contains the model of the walking piezo actuator and the nano-motion
stage. First, the contact dynamics between the piezo legs and the stage are dis-
cussed, after which the models are presented. Since the model is described by a
differential inclusion, we develop a dedicated time-stepping solver for the numerical
simulations.

At low stage velocities the errors due to the shape of the input waveforms to the
piezo motor are most apparent compared to other errors, e.g., due to measurement
disturbances or system dynamics. Therefore, the model will be used for the wave-
form optimization at low stage velocities, corresponding to low drive frequencies
of the piezo legs. The purpose of the model is to accurately describe the behavior
of the system for frequencies f < 50 Hz, under the assumption that the stochastic
disturbances and the high-frequent disturbances introduced by the hitting of the
legs on the stage do not determine the performance.

Since the piezo legs are actuated in pairs by two input voltages as described in
(4.1) and under the assumption that the legs in each pair are identical, each pair
of legs can be lumped into as a single leg.

The leg positions are decomposed in an x- and y-displacement. Due to the de-
coupling of the x- and y-directions and the design of the motor suspension of
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Chapter 2, the motor housing is assumed to move only in y-direction and the
stage only in x-direction. Therefore, the model is split into two separate models
for the x- and y-directions, respectively. This allows to compute the normal forces
between the legs and the drive strip of the stage from the model in y-direction,
which can then be used as an input for the model in x-direction to evaluate the
friction forces between the legs and stage.

The voltage-actuated piezo legs are modeled as mass-spring-damper systems, anal-
ogous to existing piezo models [5, 31, 72, 158]. In Chapter 3, we showed that the
dynamics of the piezo legs are located at frequencies f > 215.0 kHz, which is
above the frequency range of interest for this model. The internal dynamics of the
piezo legs can therefore be neglected. Also the contribution at lower frequencies of
these high-frequent resonance modes of the piezo legs is assumed negligibly small.
Since experiments show that the extensions of the different pairs of legs in (x, y)-
direction are different and asymmetric, the static model of Chapter 3 and (4.1) is
slightly extended by incorporating additional bending and extension coefficients
as

xp1(t) = cx1u1(t)− cx2u2(t),
yp1(t) = cy1u1(t) + cy2u2(t),
xp2(t) = cx3u3(t)− cx4u4(t),
yp2(t) = cy3u3(t) + cy4u4(t),

(4.2)

where xp1 and xp2 are respectively the x-positions of the first and second pair of legs
and yp1 and yp2 are the corresponding positions of the leg models in y-direction.

4.3.1 Contact dynamics

Due to the preload springs at least one pair of legs is in contact with the stage at all
times. However, this contact is not rigid. The contact deformation is assumed to
exist in y-direction only and is modeled by a spring with stiffness kc1,2 , which may
nonlinearly depend on the contact deformation. The static contact deformation
obtained by a FEM model of the aluminum oxide tip and drive strip with physical
dimensions is shown in Fig. 4.3. A Hertzian contact model for a cilinder on a flat
surface [16,145] equals

yc =
2Fcλ
L

(
1 + ln

(
L3

2λFcR

))
, (4.3)

where yc (m) is the displacement, Fc (N) is the force, L = 3 mm is the contact
length, R = 0.2 mm is the radius of the cylinder and λ = 1−ν2

πE , with ν = 0.24
the Poisson’s ratio and E = 377 GPa the Young’s modulus of the aluminum oxide
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material. The Hertzian contact model (4.3) resembles the contact deformation of
the FEM model for contact forces Fc < 10 N, as shown in Fig. 4.3 by the dark grey
dash-dotted line. Since the actual contact forces are larger, the Hertzian contact
model is not applicable for this application. A fitted linear spring through the
FEM data, shown by the light grey dashed line in Fig. 4.3, also does not give
satisfactory model accuracy. Therefore, the following nonlinear restoring force
model of the form

Fc =
(
yc
q1

)1/q2

(4.4)

is fitted to the FEM data to obtain the parameter estimates q1 = 1.77 · 10−8 and
q2 = 0.705. To gain insight in the force model (4.4), the equivalent nonlinear
stiffness kc(yc) for a contact force Fc = kc(yc)yc is calculated from (4.4) as

kc(yc) =
1
q1

(
yc
q1

) 1−q2
q2

.

The experimentally identified friction between the piezo legs and the stage in x-
direction, obtained by measuring the angle at which the tilted stage with known
mass starts sliding [16], showed a large variation, possibly due to the orientation of
the contact surfaces between legs and motor at a microscopic level, environmental
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conditions or contamination of the sliding surfaces [16,211]. Therefore, we confine
ourselves to an elementary set-valued Coulomb friction model, which however does
describe stick-slip phenomena:

λ ∈ µFNSign(v), (4.5)

where µ is the friction coefficient, FN1,2 (N) the normal force in the two pairs of
piezo legs, v (m/s) is the relative sliding velocity between the sliding surfaces and
the set-valued Sign function is defined by

Sign(x) =




{−1}, for x < 0,
[−1, 1], for x = 0,
{1}, for x > 0.

(4.6)

Finally, experiments showed that the friction in the bearings is negligible.

4.3.2 Model x-direction

The model for the x-direction is shown in Fig. 4.4. Since the mass of the piezo
legs is very small compared to the mass of the stage and since the dynamics of the
piezo legs are located at frequencies f > 215.0 kHz, which is outside the frequency
range of interest for the model, the legs are modeled as mass-less elements with
stiffness kx1,2 (N/m) and damping dx1,2 (Ns/m). The subscripts 1, 2 denote the leg
pair. The force exerted by the piezo legs in x-direction due to the applied voltages
to the stacks of the legs equals

Fx1 = kx1xp1 = kx1(cx1u1(t)− cx2u2(t)), (4.7)
Fx2 = kx2xp2 = kx2(cx3u3(t)− cx4u4(t)), (4.8)

where we used (4.2). The position of the stage is denoted by xs (m) and the
positions of the legs by x1,2 (m), i.e. for readability the subscript p has been
omitted. The mass of the stage is represented by Ms (kg). The friction forces
between the pairs and the stage are denoted by λ1,2 (N). These friction forces
depend on the normal forces of the leg pairs in y-direction and are described by a
set-valued friction model, as described in (4.5).

The equations of motion for the model in x-direction are given by the following
differential inclusions:

Msẍs = λ1 + λ2,

kx1x1 + dx1 ẋ1 = Fx1 − λ1,

kx2x2 + dx2 ẋ2 = Fx2 − λ2,

(4.9)
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Figure 4.4: Model of the system in x-direction.

where the friction forces λ1,2 in (4.9) satisfy the following set-valued force laws:

λ1 ∈ µFN1Sign(ẋ1 − ẋs),
λ2 ∈ µFN2Sign(ẋ2 − ẋs),

(4.10)

in which the set-valued Sign function is defined by (4.6). The first equation of (4.9)
describes the equation of motion for the stage and the latter two the equilibrium
equations for the mass-less legs. The set-valued nature of the friction forces λ1,
λ2 (4.10) between the leg and the stage allows for a non-zero friction force at zero
relative velocity. The latter fact implies that real sticking (zero relative velocity)
is modeled.

4.3.3 Model y-direction

A schematic representation of the system in y-direction is shown in Fig. 4.5(a).
From top to bottom, the roller bearings are indicated by a spring with stiffness
kb (N/m) and damper with damping coefficient db (Ns/m). The mass of the stage is
again denoted by Ms (kg). The contact dynamics are depicted as a nonlinear one-
sided spring with stiffness kc1,2 (N/m). The piezo legs are shown as mass-spring-
damper systems with mass Ml (kg), spring constants ky1,2 (N/m) and damping
coefficients dy1,2 (Ns/m). The motor housing is represented by the mass Mh (kg)
with position xh (m). Finally, the stiffness of the preload springs is denoted by
kp (N/m).

For the model in y-direction the leg masses are again neglected. A frequency
response function (FRF) measurement in y-direction from the input voltages to
the piezo legs to the measured displacement of the housing shows a pure static
gain for frequencies f < 500 Hz. Since we require the model to be accurate up to a
frequency of 50 Hz, no masses are incorporated in the model. The compression of
the preload springs due to the movement of the housing in y-direction is maximally
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Figure 4.5: Schematic representation and model of the system in y-direction.

0.03% for a maximal motor displacement of 1 µm and a compression of the preload
springs of 3 mm. The resulting variation in preload force is assumed to be negligibly
small. Therefore, the preload springs are modeled as a constant preload force Fp.
This leads to the model in y-direction as shown in Fig. 4.5(b).

The exerted forces by the piezo legs in y-direction due to the applied voltages equal
using (4.2)

Fy1 = ky1yp1 = ky1(cy1u1(t) + cy2u2(t)), (4.11)
Fy2 = ky2yp2 = ky2(cy3u3(t) + cy4u4(t)). (4.12)

The equations of motion of the model in y-direction are given by

ky1(yh − y1) + dy1(ẏh − ẏ1) = Fc1(y1)− Fy1 ,
ky2(yh − y2) + dy2(ẏh − ẏ2) = Fc2(y2)− Fy2 ,

(4.13)

where the forces Fy1 and Fy2 exerted by the piezo legs due to the applied voltages
follow from (4.11) and (4.12) and the subscript p in the leg positions has been
omitted again to improve readability. The contact forces Fc1 and Fc2 are coupled
through the motor housing and the constant given preload force Fp. Dependent
on the contact properties between the leg pairs and the stage, the preload force
is divided over the contact forces Fc1,2 of one or two leg pairs dependent on their
elongation.
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The preload force Fp is equal to the sum of the two contact forces Fc1,2

Fp = Fc1(y1) + Fc2(y2). (4.14)

The forces in the one-sided contact springs as function of the elongation of both
leg pairs p1,2 in y-direction can be calculated using (4.4) as

Fc1,2(y1,2) =





2
(
y1,2

q1

)1/q2

, if y1,2 ≥ 0,

0, if y1,2 < 0.
(4.15)

The factor two is added since one leg in the model represents a pair of legs, i.e.,
Fc1,2 = 2Fc. Since the damping in the piezo legs is very high, super- and subhar-
monic responses introduced by the one-sided contact [60] are not expected. The
coupling between the models in x- and y-directions follow from the contact forces
as FN1,2 = Fc1,2 .

4.3.4 Numerical methods

In this section, the methods used for the numerical simulations of the models in
x- and y-direction are described. To facilitate the coupling between the models in
x- and y-direction, fixed time solvers with a time-step ∆t = 0.25 ms are chosen
for the simulations. Let the start of a time-step be denoted by tA, then the end
time equals tE = tA + ∆t.

For the simulations in x-direction the normal forces FN1,2 are required. Solvers for
differential-algebraic equations (DAEs) can be used to simulate the model in y-
direction [75], of which we omit a description for the sake of brevity. The obtained
normal forces FN1,2 from the simulation in y-direction are subsequently used in
the simulation of the model in x-direction.

The model in x-direction as shown in Fig. 4.4 can be simulated using a time-
stepping solver [108]. The model (4.9), (4.10) is in the form of a set of differential
inclusions. A dedicated time-stepping algorithm is developed to simulate the spe-
cific problem of Fig. 4.4 including the mass-less elements. Using a backward Euler
discretization scheme for the time derivatives ẋs and ẋ1,2, the equations of motion
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(4.9) can be discretized as follows:

ẋs,E = ẋs,A +
(λ1 + λ2)∆t

Ms
,

x1,E =
dx1x1,A + (Fx1 − λ1)∆t

dx1 + kx1∆t
,

x2,E =
dx2x2,A + (Fx2 − λ2)∆t

dx2 + kx2∆t
,

xs,E = xs,A + ẋs,E∆t,

(4.16)

where ∆t is the fixed time-step and the subscripts ·A and ·E denote the values at
the start and end times of the fixed step iteration, respectively. The discretized
version of the friction law (4.10) is given by

λ1 ∈ µFN1Sign
(
x1,E − x1,A

∆t
− ẋs,E

)
,

λ2 ∈ µFN2Sign
(
x2,E − x2,A

∆t
− ẋs,E

)
.

(4.17)

The iteration scheme for the dedicated time-stepping solver at each time-step is
as follows:

1. Gather the known coordinates xs,A, ẋs,A, x1,A and x2,A, and actuator forces
Fx1 and Fx2 at the beginning of each time instant, i.e., at time tA.

2. Simulate the model in y-direction to retrieve the normal forces FN1,2 at the
corresponding time instant.

3. Take the friction forces λ1,2 from the previous time-step as an initial esti-
mate for the current time-step.

4. Using a root finding algorithm, e.g., a fixed point iteration, compute the
friction forces in the following iterative loop where the superscript L denotes
the iteration number.

(a) Evaluate x1,E , x2,E , xs,E and ẋs,E from (4.16) for given λ1,2.
(b) Update the friction forces λL+1

1,2 as

λL+1
1 = proxC1

(
λL1 + r

(
x1,E − x1,A

∆t
− ẋs,E

))
,

λL+1
2 = proxC2

(
λL2 + r

(
x2,E − x2,A

∆t
− ẋs,E

))
,

(4.18)

where r > 0, Ci = [−µFNi , µFNi ], i ∈ {1, 2}, is the set of admissible
friction forces and

proxCi(x) =




−µFNi , for x ≤ −µFNi ,
x, for −µFNi < x < µFNi ,

µFNi , for x ≥ µFNi ,
(4.19)
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in which i ∈ {1, 2}, is the proximal point to the convex set Ci. Note
that the proximal point formulation of the set-valued friction law in
(4.18) is equivalent to that in (4.17) and is introduced to be able to
compute λ1, λ2 by solving (4.18) using a root-finding algorithm.

(c) If λL+1
1,2 − λL1,2 < ε for a given desired accuracy ε, the simulation step

is complete, otherwise continue to the next iteration at step 4a with
the updated friction forces λ1,2 = λL+1

1,2 .

In principle, the choice for r > 0 is free. The step size of the fixed point solver
is determined by r. For small r the fixed point iteration is likely to converge but
with low convergence speed, whereas higher r speeds up the convergence. If r is
chosen too large, the scheme can become unstable (see also [3]). The choice for ε
is a trade-off between convergence speed of the fixed point iteration and accuracy
of the determined friction forces.

4.4 Experimental validation

This section deals with the identification of the model parameters and subsequent
validation of the identified models using experimental data.

4.4.1 Parameter identification

For the parameter identification it is assumed that the material properties for
both legs are identical. The constant parameters Pf ∈ {Ms, kx1,2 , ky1,2 , Fp, q1, q2}
are identified from separate experiments. Weighing the stage mass yields Ms =
0.428 kg. The parameters q1 and q2 are fitted to FEM data of the contact dynamics,
as described in Section 4.3.1. The stiffness of the pairs of legs in y-direction is
determined as ky1,2 = EA/L = 3.2 · 108 N/m, where the cross area A = 9 mm2,
the length L = 4 mm and the modulus of elasticity E = 70 GPa. The stiffness kx1,2

denotes a combined stiffness of the leg and motor suspension and is determined
using the known mass Ms combined with the first resonance from the measured
FRF in x-direction at 543 Hz (see Appendix A), which yields kx1,2 = 5.0 ·106 N/m.
The preload force Fp = 55 N.

The remaining damping parameters, the bending and extension coefficients of the
legs and the friction coefficient are determined using optimization techniques. For
this purpose, experimental data obtained with the nano-motion stage at a fixed
driving frequency of 10 Hz for differently shaped waveforms is used. The used
waveforms are 1) sinusoidal, 2) asymmetric (see Chapter 2), 3) rhombic waveforms
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(waveforms that lead to a tip trajectory with four linear sides of equal length) with
90 deg phase shift and 4,5) two manually obtained alternatives of the asymmetric
waveforms. The parameters P ∈ {dx1,2 , dy1,2 , cx1 , cx2 , cx3 , cx4 , cy1 , cy2 , cy3 , cy4 , µ}
are obtained by solving the following minimization problem

min
P

f(P )=
5∑

i=1

{rms (r̄w − r̂w(P ))+|(r̄w(t0)− r̂w(P, t0))|} , (4.20)

where rms(·) denotes the root-mean-square value, | · | the absolute value operator
and w ∈ {1, 2, 3, 4, 5} the waveform number. Furthermore, r̄w = {x̄w, ȳw} denotes
the average experimental data over 10 periods for each individual waveform number
w and r̂w(P ) = {x̂w(P ), ŷw(P )} reflects the model output. The averaging is
performed to minimize the effect of stochastic disturbances. The second term
in the objective function weights the start points in order to obtain an equal
starting point for the steps of the model compared to the experimental data. Since
the average values of the model and the experimental data are removed in every
iteration due to the relative measurements, the second term also weights the end
point of each step due to the periodicity.

The minimization in (4.20) is performed using GA, SA and PSO algorithms. The
PSO algorithm [36,198] appears to be best suitable for the identification problem
at hand, i.e., with the PSO algorithm results the lowest objective function value
f(P ) is obtained the most times for 200 runs of the optimization problem.

Since the results of the model in y-direction are required for the model in x-
direction, first the identification is performed in y-direction after which the x-
direction is identified. The identified model parameter values are given in Table 4.1.
When comparing the bending and extension coefficients of the different legs, it can
be seen that the coefficients for the second pair are smaller than for the first pair,
indicating that this pair makes smaller steps. Different values are also obtained
for the coefficients within one pair, indicating an asymmetric step shape.

4.4.2 Model validation

The experimental results contain stochastic disturbances as well as disturbances
caused by the roughness of the drive strip, contamination, etc. Therefore, the
model response, obtained with the developed time-stepping solver of Section 4.3.4,
is compared to the experimental data of 200 periods for each waveform. The
model errors are defined as ex = x̄− x̂ and ey = ȳ− ŷ, where ·̄ denotes the average
measurement over the different periods and ·̂ the simulated model output. The
data is offset to an average value equal to zero since only relative measurements
are performed.
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Table 4.1: The obtained model parameters using PSO optimization of (4.20).

Parameter Unit Value
by1,2 Ns/m 1.86·106

cy1 m/V 1.49·10−8

cy2 m/V 1.87·10−8

cy3 m/V 1.33·10−8

cy4 m/V 1.38·10−8

bx1,2 Ns/m 2.98·104

cx1 m/V 5.29·10−8

cx2 m/V 7.02·10−8

cx3 m/V 2.63·10−8

cx4 m/V 3.33·10−8

µ - 0.587

For the validation of the model four additional waveforms, other than those used for
the identification, are used. The waveforms numbered 6, 7 and 8 are different, man-
ually obtained variations of the asymmetric waveforms of Chapter 2. Waveform 9
is a rhombic waveform with 45 deg phase shift. Furthermore, the performance of
waveforms 6 and 8 is validated for different drive frequencies f ∈ {5, 10, 20} Hz,
whereas the identification is performed only with a drive frequency f = 10 Hz.

The time responses of the model and experiments are compared for the asymmetric
waveform w = 7 and rhombic waveform w = 9, shown in Fig. 4.11. The model and
experimental results for the manually obtained alternative asymmetric waveform
w = 7 are contained in Fig. 4.7. It can be seen that the model response overlaps the
experimental data of the 200 periods in both x- and y-directions. The mismatch
between the measured position and the model position around t = 0.09 s is located
at the take-over point, at which the model accuracy is somewhat limited due
to the chosen friction and contact models. In y-direction a large deviation in
measured position data is visible, which is caused by the limited accuracy of the
measurements with the capacitive sensor, which is very sensitive to orientation
errors and tilt of the motor housing. The cumulative power spectral densities
(CPSDs) in the bottom figures show the accuracy of the model by the low CPSDs
of the errors ex and ey. For frequencies f → ∞, the CPSDs converge to the
squared rms values of the signals.

The model also accurately describes the system response for non-harmonic wave-
forms such as rhombic waveforms (w = 9), as can be seen in Fig. 4.8. The CPSDs
in the bottom figures of Fig. 4.8 show no increase in the errors at frequencies
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Figure 4.6: Input voltages ui, i ∈ {1, 2, 3, 4} of the verification waveforms w = 7
and w = 9, u1 (black, solid), u2 (grey, solid), u3 (black, dashed), u4 (grey, dashed).
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Figure 4.7: Measured (solid, light-grey) and model (dashed, black) positions, errors
(solid, dark-grey) and CPSDs of the position and error signals in x- and y-direction
for validation waveform w = 7.
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Figure 4.8: Measured (solid, light-grey) and model (dashed, black) positions, errors
(solid, dark-grey) and CPSDs of the position and error signals in x- and y-direction
for validation waveform w = 9.

f > 50 Hz, so above the drive frequency of the experiments with which the model
is identified. This confirms the assumption that the system performance is not
determined by high-frequent disturbances.

The rms values of the errors in x- and y-direction for all identification and valida-
tion waveforms are shown in Fig. 4.9. The variation in the rms error over all 200
periods is also shown. In y-direction a larger variation in the model accuracy is
present, which is caused by the larger noise bound of the capacitive sensor with an
rms value of 1.6 nm. The average rms errors and sizes of the leg trajectories for
the different waveforms are contained in Table 4.2 for a driving frequency of 10 Hz.
The model describes the experimental data for all waveforms with an accuracy of
93% in x-direction and with an accuracy of 80% in y-direction. Note that the re-
duced model accuracy in y-direction is present for all identification and validation
waveforms. Fig. 4.9 also shows that the model describes the experimental data
obtained at drive frequencies f ∈ {5, 20} Hz with the same accuracy. The model
accuracy is approximately equal for the identification and validation waveforms.
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Table 4.2: Sizes of the leg trajectories and model errors of the different waveforms
at 10 Hz, waveforms 1-5 are used for the model identification and waveforms 6-9
for the model validation.

waveform stroke x rms(ēx) stroke y rms(ēy)
w type (µm) (µm) (µm) (µm)
1 sinusoidal 5.25 0.26 0.60 0.06
2 asymmetric 3.92 0.19 0.40 0.04
3 rhombic 90 deg. 5.23 0.30 0.56 0.11
4 identification 1.52 0.11 0.81 0.06
5 identification 3.29 0.22 0.58 0.04
6 verification 3.04 0.22 0.71 0.05
7 verification 2.95 0.16 0.61 0.05
8 verification 1.84 0.13 0.65 0.06
9 rhombic 45 deg. 3.05 0.16 0.56 0.08

This is because the used validation waveforms show a large correlation with some
of the identification waveforms. The verification waveforms w = {6, 7, 8} are simi-
lar to the identification waveforms w = {4, 5} in the sense that all are described by
fourth order Fourier series. Furthermore, the validation waveform w = 9 and the
identification waveform w = 3 are both rhombic waveforms, but with a different
phase.

With all waveforms (sinusoidal, asymmetric, rhombic and manual waveforms used
for the model identification and validation) stick-slip effects between the piezo legs
and the stage are observed in the simulation results. Since slip between the legs
and the drive surface of the stage affects the stage velocity and determines the
quality of the waveforms to achieve the desired performance, it is important to
include stick-slip in the model used for the waveform optimization.

4.5 Waveform optimization

The model derived in Section 4.4 can be used to optimize the waveforms for driving
the walking piezo motor with different objective functions such as minimal energy,
minimal driving frequency, maximum step size, etc. In this research we focus
on optimizing the shape of the tip trajectories through the input waveforms to
obtain a constant stage velocity. First, a model-based waveform optimization will
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Figure 4.9: Model errors ex (µm) and ey (µm) for various identification and veri-
fication waveforms with waveform driving frequencies fα ∈ {5, 10, 20} Hz.

be discussed, followed by a data-based experimental waveform optimization. The
(dis)advantages of both methods are shown by means of experiments. The chosen
reference velocity for the waveform optimization equals ẋr = 50 µm/s, which is
chosen such that the required nominal drive frequency to achieve the reference
velocity with asymmetric waveforms of Chapter 2 is in the frequency range where
the model is accurate.

4.5.1 Model-based waveform optimization

The shape of the waveforms ui (V), i ∈ {1, 2, 3, 4} is chosen to be specified by eight
equidistant points on one period α ∈ [0, 2π] rad. The optimization parameters ξ
contain these eight points of each waveform that has to be optimized. For the
optimization, different choices can be made for the specification of the four wave-
forms. If a single waveform shape is chosen for all waveforms ui, i ∈ {1, 2, 3, 4},
this requires only eight ξ = 8 parameters. This is the case with the sinusoidal and
asymmetric waveforms of Chapter 2, where the different waveforms have a phase
difference of ∆φ = 90 deg. Specifying each individual waveform ui, i ∈ {1, 2, 3, 4}
by eight separate points would require ξ = 32 waveform parameters to be opti-
mized. However, this also adds a lot of freedom to the optimization to improve the
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drive velocity while incorporating the specific leg characteristics such as different
lengths of the stacks, asymmetry, etc. Also intermediate optimizations are possi-
ble, e.g., allowing different waveform shapes for different leg pairs, for the different
stacks in one pair, or by allowing a variable phase between different waveforms.
In general, the more freedom is allowed, the better the results can become, but at
the cost of additional parameters and probably CPU effort in the optimization.

From the optimization parameters ξi, i ∈ {1, 2, 3, 4}, of each waveform, the input
voltages to the stacks are obtained by fitting a Fourier series model of order n = 4
in a least-squares sense through the optimized points on one period described by
ξi as

{a∗k,i, b∗k,i} = arg min
ak,i,bk,i

(ξi − û(α, ak,i, bk,i)), (4.21)

where ak,i and bk,i are the Fourier coefficients and the Fourier series model

û(α, ak,i, bk,i) =
n∑

k=0

ak,i cos(kα) + bk,i sin(kα). (4.22)

The waveforms ui, i ∈ {1, 2, 3, 4} for each iteration of the optimization now fol-
low from (4.22) with the fitted Fourier coefficients a∗k,i and b∗k,i, i.e., ui(α) =
û(α, a∗k,i, b

∗
k,i). The Fourier series model is chosen because the waveforms should

describe period signals. The input signals u1,2 determine the trajectory of the tips
for the first pair of legs p1 in the (x, y)-plane and analogously u3,4 for the second
pair of legs p2. By changing the shapes of the waveforms, the leg orbits change
and thus the drive properties of the motor.

One might argue that direct optimization of the Fourier coefficients, i.e., ξi =
{ak,i, bk,i} would give the same results. Although direct optimization of the Fourier
coefficients is possible and both sets of optimization parameters ξi could describe
the same waveforms, different optimization problems are solved. The two sets of
optimization points ξ1 and ξ2 of waveforms u1 and u2 directly describe eight points
on the leg orbits of pair p1 as described by (4.1). A change of one of the eight points
on the waveforms directly influences the optimized leg orbit. This direct relation
of the optimization parameters to the leg orbits is not present when optimizing
the Fourier coefficients ak,i, bk,i since a change of one of these parameters changes
a harmonic component in the waveform throughout the complete period of the
waveform and thus on the complete leg orbit.

The goal of the optimization is twofold, namely to design waveforms that, firstly,
are able to accurately drive the stage at a given reference velocity and, secondly,
minimize slip between the legs and stage to prevent wear of the drive surfaces and
to optimize the efficiency of the actuator. Intuitively one would choose the velocity
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error between the reference velocity and the obtained stage velocity of the model,
i.e., ev = ẋr − ẋs, to be minimized in the waveform optimization. This would
however only address the first criterion and may lead to waveforms introducing
extensive amounts of slip. Therefore, we opt for an objective function incorporating
the leg velocities. The difference between the velocity of the legs and the reference
velocity is minimized when the legs are in proximity of the stage. By doing so, slip
is less likely to occur since the leg velocity already matches the desired velocity
(of the stage) when the leg approaches the stage, thereby avoiding large velocity
differences between the leg and stage upon contact. The desired clearance between
the legs and the drive strip at which the relative velocity between legs and stage
should be zero is denoted by δy, where δy = 0 denotes the model-based contact
point and δy < 0 denotes an open distance between the legs and the drive strip.
Note that by minimizing the occurrence of slip by optimizing the legs velocities
when they are close to or in contact with the stage, we are effectively optimizing
for the stage velocity as well.

Let the amplitudes of the points on the waveforms be contained in ξ. The opti-
mization problem can now be formulated as

min
ξ
g(ξ) = rms(ẋr − ẋ∗1(ξ)) + rms(ẋr − ẋ∗2(ξ)), (4.23)

where the weighted leg velocities based on the desired clearance δy equal

ẋ∗1,2(ξ) =
{

ẋ1,2(ξ), if y1,2 ≥ δy,
0, if y1,2 < δy. (4.24)

If the leg positions y1,2 < 0, the specific legs are not in contact with the stage.
Also, if y1,2 < δy, the legs are outside the region in which the leg velocity is taken
into account in the optimization. Note that slip is only implicitly minimized by
(4.23). The main objective is to obtain a smooth reference velocity and no explicit
slip minimization is taken into account. Slip could be minimized by extending the
objective function (4.23), e.g., by the error between the individual leg velocities in
the proximity of the stage. This is a subject of future research.

The objective function is calculated at each optimization step in the following
steps:

1. Generate the waveforms to the piezo legs by fitting an nth order Fourier
series through the optimization points ξ on the waveform period according
to (4.21) and (4.22).

2. Perform a simulation with the new waveforms and the models in x- and
y-direction as derived in Section 4.3.

3. Derive the objective function value using (4.23).
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Figure 4.10: Calculation objective function.

This procedure is schematically shown in Fig. 4.10. For the waveform optimization
of (4.23) also GA, SA and PSO algorithms are tested. For this problem, the lowest
objective function value g(ξ) is obtained the most times for 200 optimization runs
using simulated annealing (SA) [177].

In the next section, the results for a model-based optimization with 8 individual
parameters per waveform, i.e., ξ contains 32 parameters, and a clearance of δy =
0.05 µm are shown. For this optimization, the driving frequency is chosen as
fα = 14 Hz. The driving frequency fα (Hz) is chosen based on the required
driving frequency to achieve a velocity of 50 µm/s with the asymmetric waveforms
of Chapter 2.

4.5.2 Validation of new waveforms

In this section the results of the experiments with the waveforms obtained from
the model-based optimization are presented. The optimal waveforms are shown in
Fig. 4.11(a). It can be seen that the shapes of all waveforms are different. This
indicates that the waveform optimization accounts for the differences in the piezo
legs (see also Table 4.1).

Since the objective of the waveform optimization is to obtain a constant stage veloc-
ity of 50 µm/s, the performance will be evaluated using the resulting stage velocity.
The velocity errors of the simulations and experiments, defined as ev,s = ẋr − ẋs
and ev,e = ẋr − ẋs,e, respectively, are shown for the model-based optimal wave-
forms in Fig. 4.12. The velocity ẋs,e is obtained from the experiment by numeri-
cal differentiation of the encoder output and a subsequent anti-causal filtering of
the differentiated signal by a fifth order low-pass filter with a cut-off frequency
fc = 500 Hz.

Fig. 4.12 shows that the velocity error of the stage obtained with the model-
based waveforms is much smaller in simulation than during the experiment. The
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Figure 4.11: Resulting waveforms of the model-based and data-based optimiza-
tions, u1 (black, solid), u2 (grey, solid), u3 (black, dashed), u4 (grey, dashed).

rms values of the velocity errors equal rms(ev,s) = 10.24 µm/s and rms(ev,e) =
25.14 µm/s (note that the reference velocity is 50 µm/s). The cumulative PSDs of
the velocity errors show the difference between simulation and experiment, which
is caused by the model error. The model mismatch is influenced by the contact
dynamics and friction model, both of which could only be identified with limited
accuracy due to the sensitivity of the capacitive sensor in the setup. The influences
of even small model errors become more apparent in the velocity signals.

4.5.3 Data-based waveform optimization

To eliminate the influence of the model mismatch, also a data-based experimental
waveform optimization is performed. For this purpose, the simulation in the cal-
culation of the objective function (see also Fig. 4.10) is replaced by an experiment
with the nano-motion stage and walking piezo leg actuator. For the data-based
waveform optimization the leg velocities cannot be measured. Therefore, the error
between the reference velocity ẋr and the measured stage velocity ẋs,e is mini-
mized, resulting in the following objective function:

min
ξ
g(ξ) = rms(ẋr − ẋs,e(ξ)). (4.25)

The sampling frequency for the experiments equals 4 kHz.

The obtained waveforms of the data-based optimization are shown in Fig. 4.11(b).
Comparison of the waveforms of Fig. 4.11(a) and Fig. 4.11(b) shows that globally
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the shapes look similar. However, on a more detailed level there are some differ-
ences. The velocity errors of 200 periods, shown in Fig. 4.13, are smaller than the
velocity errors of the model-based waveforms. The rms value of the velocity error
equals rms(ev,e) = 17.01 µm/s.

4.5.4 Discussion

Since the experiments show that the error of the model-based optimization is
larger than the data-based optimization, the latter is recommended. Alternatively,
the derivation of a model that even more accurately describes the velocity of the
stage and piezo legs could further improve the model-based waveform optimization
results. This is a subject for future research.

In Fig. 4.14 the velocity errors of experiments at different driving frequencies fα ∈
{10, 12, 14, 16, 18, 20} Hz are shown for the asymmetric waveforms of Chapter 2,
the model-based optimized waveforms and the data-based waveforms. It can be
seen that both optimized waveforms outperform the asymmetric waveforms for all
driving frequencies, i.e., at all velocities. The best performance is obtained with
the data-based optimized waveforms. A least squares fit through the experimental
data is shown in Fig. 4.14 by the solid lines. For a velocity of 50 µm/s, the model-
based waveforms outperform the asymmetric waveforms by 24%. The data-based



4.5 Waveform optimization 95

i
i

“waveform˙opt˙rms˙err˙temp” — 2009/11/25 — 11:32 — page 1 — #1 i
i

i
i

i
i

20 30 40 50 60 70
0

10

20

30

40

50

60

v̄ (µm/s)

rm
s(

e v
)

(µ
m

/s
)

Figure 4.14: Velocity errors for experiments with asymmetric waveforms (light
grey), model-based optimized waveforms (dark grey) and data-based optimized
waveforms (black) for driving frequencies fα ∈ {10, 12, 14, 16, 18, 20} Hz.

optimized waveforms reduce the velocity error by 47% compared to the asymmetric
waveforms and by 30% compared to the model-based waveforms.

The results shown in this chapter are all obtained in open-loop experiments. Using
the walking piezo motor with the optimal waveforms in a closed-loop setting, as
described in Chapter 2, is expected to further improve the performance of the
nano-motion stage.

By describing each waveform by independent parameters, more freedom is obtained
in the optimization to better account for the characteristics of the specific motor,
thus improving the results. However, these characteristics might change between
motors. So, the optimal waveforms obtained with more independent optimization
parameters, might not be optimal for a batch of motors.

The optimized waveforms are described by eight parameters, representing points
on one period of the waveforms. The Fourier series model (4.21) fitted through
the eight points can exceed the allowable voltage range. If the range is exceeded,
linear scaling is applied such that the fitted waveforms do not exceed the allowable
range of ui ∈ [0, 46] V, i ∈ {1, 2, 3, 4}.
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4.6 Conclusions

In this chapter, a model of a nano-motion stage driven by a walking piezo actuator
is presented. The model includes the alternating drive principle of the drive legs
of the piezo motor, the contact dynamics and the stick-slip behavior between the
legs and the stage. Since the driving principle of the motor depends on friction, it
is important that the exact friction force is known at each time instant. Therefore,
the friction is modeled using a set-valued force law to accommodate for non-zero
friction forces at zero relative velocity. For the resulting model, formulated in
terms of a differential inclusion, we developed a dedicated time-stepping solver.
Furthermore, the model is used in a waveform optimization, which derives optimal
leg orbits to improve the driving properties of the motor. Finally, a data-based
waveform optimization was applied to further improve the driving properties of
the motor.

The dedicated time-stepping solver is able to simulate the model in terms of a
set of differential inclusions. The model is identified using experimental data for
different waveforms. The identification and validation experiments show that the
model describes the experimental data in the driving x-direction with an accuracy
of 93% and in the perpendicular y-direction with an accuracy of 80% for all tested
waveforms.

Waveforms are optimized for a constant stage velocity using a model-based opti-
mization. The limited accuracy of the obtained velocity by the model limits the
results of the experiments with the model-based waveforms. Therefore, a data-
based optimization is performed to further improve the waveforms and obtain
a better performance of the nano-motion stage. Compared to the asymmetric
waveforms of Chapter 2, the model-based waveforms result in a reduction of the
velocity error of 24%. The data-based optimized waveforms reduce the velocity
error by 47% compared to the asymmetric waveforms and by 30% compared to
the model-based waveforms.

Future work will include the derivation of a model that more accurately predicts
the leg and stage velocities, which could further improve the results of the model-
based waveform optimization.
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Chapter 5

Delay-varying repetitive control

Abstract - The performance of systems that exhibit repetitive disturbances can
be significantly improved using repetitive control. If the repetitive disturbance
is periodic with respect to time, perfect asymptotic disturbance rejection can be
achieved by well known methods. However, many systems have a repetitive nature
with respect to a variable other than time. For this type of systems, we propose
a delay-varying repetitive control (DVRC) method, which employs a time-varying
delay in the repetitive controller that is continuously adjusted based on the repet-
itive variable. An H∞ norm based criterion is derived that guarantees stability
of the time-varying delay system for a given range of variations of the repetitive
delay. To show the strengths of this new repetitive control scheme it is applied to
a nano-motion stage driven by a walking piezo actuator. The repetitive nature of
the walking movement introduces repetitive disturbances in the system, which are
periodic with respect to the angular orientation of the legs, but not with respect to
time. Experiments show that DVRC can successfully suppress these repetitive dis-
turbances. The performance of the nano-motion system is improved significantly
by DVRC compared to standard repetitive control.

This chapter is based on: R.J.E. Merry, D.J. Kessels, M.J.G. van de Molengraft, W.P.M.H.
Heemels and M. Steinbuch. Delay-varying repetitive control applied to a walking piezo actuator.
Submitted, 2009.
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5.1 Introduction

The performance of systems that perform repetitive tasks or that are subject to
repetitive disturbances can be improved significantly using repetitive control (RC).
In most available RC methods it is assumed that the repetitive variable is time,
meaning that the disturbances are periodic with respect to time. This leads to
a fixed value for the repetitive delay in the memory loop of RC, for which many
RC schemes with guaranteed properties and asymptotic disturbance rejection are
available in the literature [34,77,81].

However, many systems have a repetitive nature with respect to another variable
than time. One such example, which is studied in detail in this chapter, is a nano-
motion stage driven by a walking piezo actuator. The walking piezo actuator
employs four bimorph piezo legs to obtain a periodic walking movement. This
introduces repetitive disturbances in the system, which become the performance
limiting factor (PLF). These disturbances are fully repetitive with respect to the
angular orientation of the piezo legs, but are not periodic in time. Existing RC
schemes for disturbances periodic in time, i.e., with a constant repetitive delay,
are not applicable in these circumstances in a straightforward manner.

Several solutions for the application of RC to systems that are subject to repetitive
disturbances with a (slowly) varying period with respect to time have already been
proposed in literature. Adaptive RC methods continuously estimate the time-
varying period of the repetitive disturbance and adjust the sampling frequency
accordingly [30] or use a multi-rate implementation [27]. Adaptive RC suffers from
the drawback that it is implemented at a variable sampling rate, which complicates
the use in real-time in combination with a feedback controller at a fixed sampling
frequency. In contrast with [27,30], the adaptive RC scheme proposed in [53] does
not change the sampling frequency, but adapts the delay in the memory loop based
on a physical model of the time-varying character of the repetitive delay. Since
the variation is assumed to be slowly in time, the delay is adjusted at a fixed
rate that is much less than the controller sampling rate. Furthermore, no stability
guarantees of the feedback system including the switching repetitive controller
are given. The assumption on the slow variation of the period-time is not valid
in various applications, including the walking piezo actuator considered in this
chapter.

High-order RC uses multiple memory loops to provide robustness against small
variations in the period-time of repetitive disturbances [32, 185]. High-order RC
makes a trade-off between robustness for changes in the period-time and the reduc-
tion of the error spectrum in-between the harmonic frequencies of the repetitive
disturbances [187]. A systematic design approach for high-order RC yielding op-
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timal performance trade-offs is developed in [157]. The performance indications
are incorporated in the repetitive controller design using linear matrix inequalities
(LMIs). Although this approach is very interesting, it is not considered in this
chapter due to the resulting large size of the LMIs with matrices in the order of
250× 250.

Another line of research considers systems that exhibit spatially repetitive dis-
turbances, e.g., disturbances that are periodic with respect to a rotation angle
in motor/gear transmission systems [33] and internal combustion engines [191].
Transformation of these systems to the rotational-angle domain renders the delay
constant in the new independent variable being the rotation angle. However, the
design of the stabilizing feedback controller becomes very complicated since the
transformed system becomes nonlinear.

In this chapter, we propose a delay-varying repetitive control (DVRC) scheme for
systems that have a repetitive variable other than time. DVRC makes use of a
measured or observed repetitive variable, e.g., the angular orientation of the legs
in the walking piezo actuator, to adjust the repetitive delay in the RC scheme.
The proposed method overcomes many of the mentioned drawbacks of existing
schemes, e.g., it is applicable in real-time at a fixed sampling-time and it can cope
with fast and large variations in the repetitive delay. As the resulting closed-
loop system is time-varying in nature, a stability analysis is required. A small
tutorial on discrete-time delay-systems is given, followed by a formal stability
proof of DVRC incorporating time-varying delays, leading to frequency domain
design criteria for the learning filters. Note that design methods for robust RC are
available [111, 213, 216]. However, these RC schemes are made robust to system
variations, while robustness to varying delays has not been considered. Finally,
the proposed DVRC method is applied to a walking piezo actuator, used to drive
a nano-motion stage. Experimental results show the significant improvement of
DVRC compared to standard RC. The results are compared to high-order RC as
presented in [185]. The applicability of DVRC for setpoints with varying velocity,
i.e., with an inherent variation in the repetitive delay, shows the strength of the
proposed DVRC method.

This chapter is organized as follows. Standard RC is briefly addressed in Sec-
tion 5.2. The DVRC method is introduced in Section 5.3. The stability of DVRC
incorporating the time-varying delay is assessed in Section 5.4. The experimental
setup and the learning control design for standard RC, DVRC and high-order RC
are presented in Section 5.5. The experimental results on the nano-motion stage
are given in Section 5.6. Finally, conclusions are drawn in Section 5.7.
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5.2 Repetitive control

RC is applied to control loops (as in Fig. 5.1 without the M(z, α) block) in which
repetitive disturbances and/or references are present for which further performance
enhancement is required. The repetitive nature of the disturbances (similar for ref-
erences) means that these disturbances are periodic with respect to some variable
α in the system. In standard RC schemes [34, 77, 81] this repetitive variable α
is the (continuous) time t, in which case the repetitive disturbances dr are pe-
riodic with respect to time, i.e., dr(t + Pα) = dr(t) for all t ∈ R+ and some
Pα ∈ R+, called the repetitive period. In a discrete-time implementation one nor-
mally chooses the sampling time Ts of the controller such that Pα = TsN , with
N ∈ N the number of samples corresponding to the repetitive period. Basically,
RC employs the internal model principle [62] to enable asymptotic rejection of the
periodic disturbances. To suppress the periodic disturbances in time, a memory
loop is included in the discrete-time repetitive controller using a constant delay
of N samples. There might also be non-repetitive disturbances dnr that are not
compensated for by RC. However, they also enter the memory loop and affect the
achievable performance of RC [133].

To explain standard RC, in which the repetitive variable α is equal to time, the
single-input-single-output (SISO) case is briefly addressed. For the application
of RC to multiple-input-multiple-output (MIMO) systems, the reader is referred
to [44]. However, the derived stability criterion in Section 5.4 is also applicable in
a MIMO setting. A schematic representation of a feedback controlled system with
RC is shown in Fig. 5.1, where G(z) denotes the transfer function of a linear time-
invariant discrete-time system with input u and output y. The feedback controller
is denoted by K(z) with sampling time Ts (s). The tracking error is given by
e = r − y, where r is the reference. The repetitive controller M(z, α) is depicted
within the dashed block, in which L(z) is the learning filter with a delay of l samples
and Q(z) the linear-phase robustness filter with a phase delay of q samples. Since
in standard RC the repetitive variable α is time, the repetitive delay, denoted in
Fig. 5.1 by z−N(α), is constant, i.e., N(α) = N = Pα/Ts (samples).

For standard RC with a constant repetitive delay N , the transfer function of
the repetitive controller M(z, α) = M(z), i.e., the transfer function between the
tracking error e and the output w, equals

M(z) =
W (z)
E(z)

=
L(z)Q(z)z−(N−l−q)

1−Q(z)z−(N−q) , (5.1)

where W (z) and E(z) are the discrete Laplace transforms of the time signals
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K(z)
u yer + e∗
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−

+

+

+

+

M(z, α)

w

+

+

dr(α)

dnr

vq

d

+ +

Figure 5.1: Block diagram of a feedback controlled system with DVRC.

w and e, respectively. The sensitivity function S(z), relating the independent
disturbances d to the tracking error e is given by

S(z) =
E(z)
D(z)

=
1

1 +G(z)K(z)(1 +M(z))
. (5.2)

Substitution of (5.1) in (5.2) gives

S(z) = (1 +G(z)K(z))−1Ms(z), (5.3)

where S̄(z) = (1 + G(z)K(z))−1 is the sensitivity function of the system without
RC. The modifying sensitivity function Ms(z) [32] is given by

Ms(z) =
1−Q(z)z−(N−q)

1−Q(z)z−(N−q) (1− T̄ (z)L(z)z+l
) , (5.4)

where T̄ (z) = G(z)K(z)/(1+G(z)K(z)) is the complementary sensitivity function.

5.2.1 Stability when the repetitive variable is time

For a constant delay of N samples, the stability of the system of Fig. 5.1 can
be evaluated using the equivalent error system of (5.3) and (5.4) [188]. Stability
of the closed-loop system with RC is achieved if the following two conditions are
fulfilled:
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1. the sensitivity S̄(z) has all poles in the open unit circle of the complex
plane,

2. the following criterion is fulfilled

|Q(z)
(
1− T̄ (z)L(z)z+l

)
| < 1, (5.5)

for all z ∈ C with |z| = 1.

Above conditions give a sufficient criterion for stability [187], where (5.5) is based
on the small gain theorem [179]. Indeed, considering Fig. 5.1 as the feedback
interconnection of H(z) = Q(z)z−l(1− T̄ (z)L(z)z+l), being the transfer function
from input v to output q, and a contant delay block z−N , for which |z−N | = 1 (see
also Fig. 5.2 below), the result follows from small gain arguments.

5.2.2 Filter design when the repetitive variable is time

From the criterion (5.5) it follows that a straightforward choice for the learning
filter is the inverse of the complementary sensitivity function, i.e., L(z) = T̄−1(z).
In case an exact inverse cannot be obtained, e.g., when T̄ (z) is non-minimum
phase and/or non-proper, an approximation of the inverse is made. One generally
used method to obtain a proper and stable inverse is using the zero-phase-error-
tracking-control (ZPETC) method [197].

For the determination of the fixed delay value N , the tracking error e containing
the repetitive disturbances dr is measured without RC. From the spectrum of e,
the repetitive period Pα can be determined as the lowest harmonic in the signal.
The fixed delay value then follows as N = Pα/Ts, as discussed before.

The filter Q(z) is designed to account for mismatches between L(z) and T̄−1(z).
For standard RC with a fixed delay, the filter Q(z) is designed such that the crite-
rion (5.5) is fulfilled. The use of the Q(z) filter restricts the learning performance
of RC in certain frequency bands since part of the frequency content in the track-
ing error is reduced [185]. The filter Q(z) is constructed to have a linear phase of
q samples. The introduced phase delay of the L and Q filters can be compensated
for in the memory loop of N samples (see Fig. 5.1) by redefining N := N − q − l.

5.3 Delay-varying repetitive control

In this section, the problem formulation leading to the development of DVRC is
described. Furthermore, a design procedure for the learning filters and the delay-
variation of DVRC is provided.
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5.3.1 Problem formulation

In many practical situations disturbances are periodic with respect to other vari-
ables α than time, e.g., angles in rotating systems or the angular orientation of the
piezo legs in the walking piezo actuator of Section 5.5. Essentially, any variable
can be a repetitive variable. The only properties that we impose on the repetitive
variable α is that it is monotonically increasing in time1 and that the relevant dis-
turbances dr(α) are periodic in α: there is a Pα ∈ R+ called the repetitive period
such that dr(α+ Pα) = dr(α) for all α ∈ R+.

Clearly, variations in the rate α̇ result in disturbances that are not fully repetitive
in time. To suppress these types of disturbances, we develop an alternative RC
scheme, referred to as delay-varying repetitive control (DVRC). The rate-variation
of the repetitive variable α is incorporated in the scheme by making the repetitive
delay time-varying as N(α(t)). The dependency of the delay z−N(α) on the repeti-
tive variable α results in an α-dependency of the repetitive controller M(z, α) (5.1),
of the modified sensitivity function S(z, α) (5.3) and of the modifying sensitivity
function Mx(z, α) (5.4).

The assumption that the repetitive variable α is monotonically increasing in time
and α(0) = 02 guarantees that there is a one-to-one correspondence between the
repetitive variable α ∈ R+ and the (continuous) time t ∈ R+. Hence, for each value
of α(t) there is a unique corresponding time t = α−1(α(t)), where α−1 : R+ → R+

denotes the inverse function of α. Clearly, t = α−1(θ) ∈ R+ is the time at which
the repetitive variable α takes the value θ ∈ R+. The time-varying delay N(α(t))
in z−N(α(t)) at time t ∈ R+ is equal to

N(α(t)) = t− α−1(α(t)− Pα) for α(t) ≥ Pα (5.6)

in continuous time. The calculated delay N(α(t)) is the elapsed time between the
current time t (at which the repetitive variable is equal to α(t)) and the time at
which the repetitive variable α was exactly one repetitive period Pα less than α(t).

In a discrete-time implementation with sampling time Ts > 0 as used here, all
signals including the repetitive variable α are considered at discrete times kTs,
k ∈ N. To accommodate for this discrete nature in (5.6), we determine at each
sample k the sample index k∗ at which α is closest to α(kTs)−Pα, which is given
by

k∗(α(kTs)) = arg min
l∈N

(α(lTs)− α(kTs) + Pα)2
. (5.7)

1In case α is monotonically decreasing one can take −α as the repetitive variable.
2In case α(0) = a 6= 0 the same reasoning applies for α : R+ → [a,∞) and α−1 : [a,∞)→ R+.



5.3 Delay-varying repetitive control 105

The time-varying delay as in (5.6) can now be approximated as

N(αk) = k − k∗(αk) for αk ≥ Pα, (5.8)

where αk = α(kTs). Interestingly, standard RC with α(t) = t is recovered as a
special case of the DVRC scheme as in (5.8) N(αk) = N(kTs) = N and in (5.7)
k∗(αk) = k∗(kTs) = k − N . Also the design conditions will reduce to the ones
described above (including the stability condition (5.5), cf. (5.9) below).

5.3.2 Design procedure for DVRC

The design of standard RC involves determining the constant repetitive delay N ,
the learning filter L and the robustness filter Q. For DVRC, the repetitive delay
is continuously adjusted using (5.8) once α and Pα are chosen. For the design
of the learning filters and the stability guarantee of DVRC the following design
procedure can be used.

1. Choose the repetitive variable α, determine the repetitive delay N(αk) as
in (5.8) and implement the time-varying delay z−N(αk) at k ∈ N.

2. The complementary sensitivity T̄ (z) is not affected by the time-varying
delay z−N(α). The learning filter L(z) for DVRC can therefore be designed
analogous to standard RC as L(z) = T̄−1(z).

3. Criterion (5.5) is not valid anymore for DVRC due to the time-varying delay.
Let the time-varying delay N(α) satisfy N(αk) ∈ [m,M ], for k ∈ N, where
m and M denote the minimum and maximum repetitive delay, respectively.
Using a robust approach (as proven in Section 5.4), the following generalized
criterion of (5.5) for stability of the DVRC scheme with time-varying delay
N(α) can be derived:

(a) S̄(z) has all poles in the open unit circle of the complex plane,
(b) the following criterion is fulfilled

|Q(z)
(
1− T̄ (z)L(z)z+l

)
| < 1√

M −m+ 1
, (5.9)

for all z with |z| = 1.

The linear-phase Q filter is designed to fulfill (5.9).

The sufficiency of (5.9) for stability is proven next.
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q

H(z)

z−N(α)

v

Figure 5.2: Feedback interconnection of a system H(z) with a time-varying delay
z−N(α).

5.4 Stability analysis

The stability criterion (5.5) holds for fixed values of the delay, i.e., N(αk) = N for
all k ∈ N. However, when the delay z−N(αk) becomes time-varying, the criterion
(5.5) is no longer applicable. In this section, it is proven that (5.9) guarantees
stability of the RC scheme when the repetitive delay lies in a given range, i.e.,
Nk := N(αk) ∈ [m,M ], where m,M ∈ N with 0 ≤ m ≤M .

If we ignore the external signals d and r for the moment, the system in Fig. 5.1
can be represented as the feedback interconnection of the discrete-time system

xk+1 = Axk +Bvk; qk = Cxk (5.10a)

and the varying delay block
vk = qk−Nk , (5.10b)

where xk ∈ Rnx is the state and vk ∈ Rnv and qk ∈ Rnq are the interconnection
variables at discrete time k ∈ N. System (5.10a) is a state space representation
of the transfer function H(z) = Q(z)z−l

(
1− T̄ (z)L(z)z+l

)
between v and q in

Fig. 5.1. Hence, Fig. 5.1 reduces to Fig. 5.2 using this perspective. The delay
Nk is time-varying, but assumed to lie in the interval [m,M ] ∩ N with bounds
0 ≤ m ≤M , i.e., m ≤ Nk ≤M for all k ∈ N. The varying delay block (5.10b) can
also be written in state space notation as

ζk+1 =




0 0 0 . . . 0 0
Inq 0 0 . . . 0 0
0 Inq 0 . . . 0 0
...

...
...

0 0 . . . 0 Inq 0



ζk +




Inq
0
0
...
0



qk, (5.11a)

vk =
[
Γ1(Nk) . . . ΓM (Nk)

]
ζk + Γ0(Nk)qk (5.11b)

with ζk = (qTk−1, . . . , q
T
k−M )T and for i = 0, 1, . . . ,M

Γi(N) =

{
Inq , when N = i,

0, when N 6= i.
(5.12)
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Here, Im denotes the identity matrix of dimension m×m. Although in the setup
in Fig. 5.1 all signals are scalar valued (i.e., nq = nv = 1), we present the stability
for MIMO plants for reasons of generality.

5.4.1 A short tutorial on stability of discrete-time delay systems

We quickly review some of the methods to analyse discrete-time delay systems. A
recently proposed method [79] is lifting the model (5.10) by using the augmented
state vector ξk = (xTk , ζ

T
k )T = (xTk , q

T
k−1, . . . , q

T
k−M )T , which results in the system

ξk+1 = Λ(Nk)ξk (5.13)

with

Λ(N)=




A+ Θ0(N)C Θ1(N) . . . ΘM−1(N) ΘM (N)
C 0 · · · 0 0
0 Inq · · · 0 0
...

. . .
...

0 0 · · · Inq 0




(5.14)

and

Θi(N) =

{
B, when i = N,

0, when i 6= N,
(5.15)

for i = 0, 1, . . . ,M . Since Nk ∈ [m,M ] ∩ N one can now search for a parameter-
dependent Lyapunov function V (Nk, ξk) = ξTk PNkξk (see e.g. [39]) for the switched
linear system (5.13), which amounts to checking feasibility of the linear matrix
inequalities (LMIs)

[
Pi Λ(i)TPj

PjΛ(i) Pj

]
� 0 for i, j = m, . . . ,M, (5.16)

where the inequality indicates positive definiteness of the matrix. In case that
C = Inx it was observed in [79] that the Lyapunov function V (Nk, ξk) = ξTk PNkξk
is equivalent to a so-called Lyapunov-Krasovskii functional (LKF) for the system
(5.10) given by

V (Nk, xk, xk−1, . . . , xk−M ) =
M∑

i=0

M∑

j=0

xTk−iP
(i,j)
Nk

xk−j , (5.17)

where P (i,j)
Nk

denotes the (i, j) block element of PNk . LKFs are typically chosen
as quadratic forms that depend on the current and delayed states. Classically the
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LKF approach was the common method to assess stability of time delay systems
as in (5.10) (both in continuous and discrete time). The general delay-dependent
LKF in (5.17) encompasses all of the earlier forms of quadratic LKFs used in the
literature as proven in [79]. For instance, the discrete-time LKFs given in [183] for
m = 1 are of the form

xTk Pxk +
M∑

i=1

k−1∑

j=k−i
xTj Qxj (5.18)

with P and Q positive definite matrices, which are obviously a special case of
(5.17). Also extended variants of the LKFs in (5.18) as in e.g. [68] are still a
particular case of (5.17). Based on the LKFs as in (5.18) the following sufficient
conditions for stability of (5.10) with m = 1 are provided in [183].

Lemma 1 [183] Suppose there exist positive definite matrices P and Q such that
the following LMI is satisfied:

[
P −ATPA−MQ ATPBC

CTBTPA Q− CTBTPBC

]
� 0. (5.19)

Then the system (5.10) with Nk ∈ [1,M ] ∩ N is asymptotically stable.

Due to the results in [79] feasibility of the conditions in Lemma 1 implies feasi-
bility of the LMIs in (5.16). Hence, from a conservatism point of view, the lifted
model approach using the condition (5.16) is preferred. However, given the large
size of the maximal delay M (in the order of 5500 for the working range of the
experimental system considered in Section 5.5) the state dimension of the lifted
model (5.13) becomes prohibitively large for the available LMI solvers to solve
(5.16). Even the LMI in (5.19) is of a reasonably large size due to the orders of
C(z), G(z), Q(z) and L(z) (e.g., the dimension of A in (5.10a) is in the order of
118 for the experimental system), which causes numerical and memory problems
as well.

Due to the fact that today’s LMI solvers cannot handle (yet) such large size LMI
problems, it is more convenient to obtain H∞ characterizations for stability such
as in (5.5). This has the additional advantage that such a frequency domain
characterization would be more in line with the frequency domain based tuning of
ILC and RC in the literature.

5.4.2 Frequency domain characterizations of stability

The condition (5.5) is based on small gain arguments by observing that (5.10) is
the feedback interconnection of a linear system (5.10a) and the delay block (5.10b)
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(see Fig. 5.2). Indeed, as a constant delay block has H∞ norm equal to 1 (see
also Theorem 8 below), the small gain theorem would prove that (5.5) guarantees
stability. The condition (5.5) only applies whenm = M , but not for a varying delay
Nk ∈ [m,M ] ∩ N with m 6= M . To provide frequency domain characterizations of
stability in the latter case as well, we introduce some terminology.

Definition 2 [`2 gain] A general discrete-time system

xk+1 = f(xk, Nk, vk); qk = g(xk, Nk, vk) (5.20)

with state xk, (disturbance) input vk, uncertainty Nk and output qk at discrete
time k ∈ N is said to have `2 gain equal to γ∗ for disturbances in the set Υ, if
γ∗ is the smallest γ ≥ 0 such that for initial condition x0 = 0 and any input
sequence {vk}k∈N with

∑∞
k=0 ‖vk‖2 < ∞ and any disturbances sequence {Nk}k∈N

of uncertainties with Nk ∈ Υ for all k ∈ N, it holds that the corresponding output
sequence {qk}k∈N satisfies

∑∞
k=0 ‖qk‖2 ≤ γ2

∑∞
k=0 ‖vk‖2.

For linear systems the following result on `2 gains is well known. See [54,67] for a
proof.

Theorem 3 The following statements are equivalent:

1. system (5.10a) has `2 gain smaller than γ,
2. the H∞ norm supz∈C,|z|=1σ̄(H(z)) with H(z) = C(zI − A)−1B is smaller

than γ, where σ̄ denotes the maximum singular value,
3. there exist a matrix P and a β > 1

γ satisfying
[
P −ATPA− β2CTC −ATPB

−BTPA I −BTPB

]
� 0 and P � 0. (5.21)

Now we state a stability result of (5.10) for time-varying delays when m = 0.

Theorem 4 Consider system (5.10a) with A Schur and `2 gain smaller than
1√
M+1

for M ∈ N. Then system (5.13) with time-varying Nk ∈ [0,M ] ∩ N, k ∈ N
is asymptotically stable.

Proof: Eq. (5.13) is just the closed-loop form of (5.10a) and (5.11). Take the
Lyapunov function V (ξk) = V̄ (xk)+

∑M
i=1(M−i+1)qTk−iqk−i with V̄ (xk) = xTk Pxk

and P satisfying (5.21) for some β2 > M + 1. This Lyapunov function is a special
case of the one used in [183].
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Then

V (ξk+1)− V (ξk) = V̄ (xk+1)− V̄ (xk)+
M∑

i=1

(M − i+ 1)qTk+1−iqk+1−i−

M+1∑

j=2

(M − j + 2)qTk+1−jqk+1−j

≤ vTk vk − β2qTk qk + (M + 1)qTk qk −
M∑

l=0

qTk−lqk−l,

where we used that (5.21) implies that V̄ (xk+1)− V̄ (xk) ≤ vTk vk − β2qTk qk. Since
vk = qk−Nk for some Nk = 0, 1, . . . ,M (see (5.10b)), the term vTk vk is canceled by
one of the terms in

∑M
l=0 q

T
k−lqk−l and thus

V (ξk+1)− V (ξk) ≤ −(β2 −M − 1)qTk qk. (5.22)

Clearly, (5.22) proves Lyapunov stability as V (ξk+1) ≤ V (ξk) for all k ∈ N and
c1‖ξ‖2 ≤ V (ξ) ≤ c2‖ξ‖2 for all ξ for some 0 < c1 ≤ c2. To show that limk→∞ ξk =
0, note that by summing (5.22) for k = 0, 1, . . . , ` we obtain that

V (ξ`+1)− V (ξ0) ≤ −α
∑̀

k=0

‖qk‖2 (5.23)

with α := β2 −M − 1 > 0 and thus
∑∞
k=0 ‖qk‖2 ≤ 1

αV (ξ0). This implies that
qk → 0 (k →∞) and due to (5.10b) also that vk → 0 (k →∞). Since A is Schur,
this yields that limk→∞ xk = 0 and thus limk→∞ ξk = 0. �

The following result is a simple corollary of Theorem 4, which shows so-called
input-to-state stability (ISS) [91,184] (and thus also bounded-input bounded out-
put (BIBO) stability) of the system (5.13) when external inputs are present (e.g.,
the references r and d as in Fig. 5.1). Including the external signals changes the
system description (5.10a) into

xk+1 = Axk +Bvk + Edk; qk = Cxk, (5.24)

where, for shortness, we included all external disturbances (including the reference
r) into the signal d by a suitable choice of E. In the lifted model notation as in
(5.13) we obtain

ξk+1 = Λ(Nk)ξk +
[
ET 0 0

]T
dk. (5.25)

For self-containedness we recall the definition of input-to-state stability for the
system (5.25). A function ϕ : R+ → R+ belongs to class K if it is continuous,
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strictly increasing and ϕ(0) = 0 and to class K∞ if, additionally, ϕ(s) → ∞ as
s→∞. A function β : R+×R+ → R+ belongs to class KL if for each fixed k ∈ R+,
β(·, k) ∈ K and for each fixed s ∈ R+, β(s, ·) is decreasing and limk→∞ β(s, k) = 0.

Definition 5 The system given by (5.13) with uncertainty set Υ ⊆ N is called
input-to-state stable (ISS) with respect to d, if there exist a KL-function β and
a K-function γ such that, for each ξ0 ∈ Rn, all {dk}k∈N and all {Nk}k∈N with
Nk ∈ Υ, k ∈ N, it holds that ‖ξk‖ ≤ β(‖ξ0‖, k) + γ(supk∈N ‖dk‖) for all k ∈ N.

Corollary 6 Consider system (5.25) with A Schur and `2 gain of (5.10a) smaller
than 1√

M+1
for M ∈ N with M ≥ 0. Then system (5.25) with uncertainty set

[0,M ] ∩ N is ISS with respect to d.

Proof: The proof is based on observing that since A is Schur the system
(5.10a) has a finite `2 gain from v to x. Since the H∞ norm from v to q is
(strictly) smaller than 1√

M+1
, this implies that there is an ε > 0 (small enough)

such that the system (5.10a) has a H∞ norm smaller than 1√
M+1

from v to a new
output [qT xT ]T = [CT I]Tx. Applying Theorem 3 yields that there exist a P > 0
and a β > M + 1 satisfying the LMIs

[
P −ATPA− β2CTC − εI −ATPB

−BTPA I −BTPB

]
� 0. (5.26)

Applying now the reasoning as in the proof of Theorem 4 gives after some straight-
forward manipulations that

V (ξk+1)− V (ξk) ≤ −µ1‖ξk‖2 + µ2‖dk‖2 (5.27)

for the system (5.25), where µ1 and µ2 are positive constants. As (5.27) is a
Lyapunov characterization for ISS [91,104] this proves ISS. �

The case m 6= 0 is covered in the next corollary.

Corollary 7 Consider system (5.10a) with A Schur and `2 gain smaller than
1√

M−m+1
, where M ≥ m ≥ 0. Then system (5.13) with time-varying Nk ∈

[m,M ]∩N, k ∈ N is asymptotically stable. In addition, system (5.25) with uncer-
tainty set [m,M ] ∩ N is ISS with respect to d.

Proof: The system (5.10) is equivalent to the feedback connection of a varying
delay block z−pk with pk ∈ [0,M−m]∩N on the one hand and the series connection
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of (5.10a) with the constant delay block (z−mIny ) on the other. The latter series
connection can be represented in a state space realization by

ξk+1 =



A 0
C 0
0 I(m−1)ny


 ξk +



B
0
0


 vk; q̄k=(0 . . . 0 Ip)ξk. (5.28)

The transfer matrix of (5.28) is H(z)z−m with H(z) the transfer matrix of (5.10a),
which implies that the H∞ norm (and thus the `2 gain according to Theorem 3)
of (5.28) is smaller than 1√

M−m+1
. Applying now Theorem 4 to (5.28) yields that

its feedback interconnection with z−pk with pk ∈ [0,M −m]∩N is asymptotically
stable and thus that (5.13) with time-varying Nk ∈ [m,M ] is asymptotically stable.
The ISS result follows similarly. �

Interestingly, this corollary shows that the size of the variation in the delay deter-
mines the requirement on the H∞ norm of the linear system, not the (absolute)
size of the delay itself. Actually in case there is no variation in the delay a con-
dition of the form (5.5) suffices for closed-loop stability, but the H∞ conditions
become more stringent if the delay is time-varying. The following result sheds
some light why this is the case.

Theorem 8 Consider the system vk = qk−Nk that can be represented in state
space realization as in (5.11). Let the varying Nk, k ∈ N be contained in [m,M ]∩N
with m,M ∈ N and 0 ≤ m ≤ M . The `2 gain of the delay system (5.11) with
disturbance set [m,M ] ∩ N is equal to

√
M −m+ 1.

Proof: First of all we show that the `2 gain is larger than or equal to√
M −m+ 1 by taking the input signal

qk =

{
q, when k = 0,
0, otherwise.

Note that the input energy is given by
∑∞
k=0 ‖qk‖2 = ‖q‖2. If the varying delay

acts as

Nk =

{
k, when k ∈ [m,M ],
arbitrary, otherwise,

then the corresponding output vk satisfies for k ∈ [m,M ] that vk = q and for
k 6∈ [m,M ] that vk = 0. Hence,

∑∞
k=0 ‖vk‖2 = (M −m+ 1)‖q‖2 thereby showing

that the `2 gain is larger than or equal to
√
M −m+ 1. To prove that the `2 gain

is smaller than or equal to
√
M −m+ 1, observe that due to vk = qk−Nk with
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Nk ∈ [m,M ] ∩ N we have that

∞∑

k=0

‖vk‖2 ≤
∞∑

k=0

max
l∈[k−M,k−m]

‖ql‖2 ≤
∞∑

k=0

k−m∑

l=k−M
‖ql‖2

=
∞∑

k=0

(M −m+ 1)‖qk‖2,

where we used that due to initial state 0, q−M = q−M+1 = . . . = q−1 = 0. This
completes the proof. �

Theorem 8 explains why the `2 gain or equivalently the H∞ norm of (5.10a) should
be smaller than 1√

M−m+1
. Indeed, as the `2 gain of a varying delay block z−Nk

with Nk ∈ [m,M ] is equal to
√
M −m+ 1, small gain arguments would require

that the H∞ norm of (5.10a) is smaller than 1√
M−m+1

to guarantee closed-loop
stability of (5.10).

Remark 9 Alternative frequency domain characterizations for discrete-time delay
systems as in (5.10) are given in [95]. In particular, if for all z ∈ C with |z| = 1∣∣∣ H(z)

1−H(z)

∣∣∣ < 1
M |z−1| , [95] implies that the system as in Fig. 5.2 is stable for Nk ∈

[0,M ]∩N. These conditions are in various situations more conservative than our
H∞ based conditions. For instance, for H(z) = 0.1

z stability is guaranteed by our
condition for Nk ∈ [0, 98] ∩ N as the H∞ norm of H(z) is equal to 0.1, while
the condition in [95] only guarantees stability for Nk ∈ {0, 1, 2, 3, 4}. For this
reason and the fact that in our setup H(z) always represents an asymptotically
stable system by design, we use the novel conditions derived here. Note that the
conditions in [95] have the advantage that they also apply when H(z) does not
represent a stable system with a finite H∞ norm.

Remark 10 Since we consider arbitrary variations of N(α) and do not use pos-
sible smoothness or structure in the variation, conservatism is introduced in the
criterion (5.9) besides the usual conservatism present in the small gain criterion
as is also present in (5.5).

5.5 Application and controller design

In this section, first the experimental setup and the control configuration are dis-
cussed. Afterwards, the designed learning filters for DVRC and for high-order
control are presented.
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5.5.1 Nano-motion stage

The nano-motion stage, depicted in Fig. 5.3, is driven by a walking piezo motor.
The piezo motor consists of four bimorph piezoelectric drive legs, each of which
consist of two electrically separated piezo stacks that can be driven by electric
waveforms through the connector [155]. The drive pads of the legs are pressed
against the drive strip of a one degree-of-freedom (DOF) stage using a motor sus-
pension and preload springs such that the (xm, ym, zm)-axes of the motor coincide
with the (x, y, z)-axes of the stage. The position of the stage is measured using an
optical incremental encoder with a resolution of 0.64 nm. The movement of the
back of the motor housing in ym-direction is measured using a capacitive sensor
with a resolution of 0.44 nm.

y
z

x

stageruler

guidance

walking piezo motor

drive strip

housing
rubber
aluminum oxide
drive pad

22 mm

10 mm

10 mm

ym

zm

xm

connector

y
z

x

encoder
head

capacitive
sensor

Figure 5.3: The 1-DOF nano-motion stage with the walking piezo actuator.

The drive legs of the walking piezo motor employ a bimorph working principle
through two electrically separated piezo stacks. A schematic working principle of
the walking piezo motor is shown in Fig. 5.4. It can be seen that the piezo legs
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x
y

xs

V1 V2 V3 V4

A B C D

Figure 5.4: Working principle of the walking piezo motor with leg trajectories for
sinusoidal waveforms Vi(t), i ∈ {1, 2, 3, 4}.

are driven by four independent waveforms Vi(t) (V), i ∈ {1, 2, 3, 4}. Each pair of
piezo legs, p1 = {A,D} and p2 = {B,C}, is driven by two waveforms. When the
waveforms of one pair of legs are equal, the legs elongate in ym-direction, different
waveforms result in a bending of the leg in xm-direction. This can be described
as [155]

xm,p1(t) = cx(V1(t)− V2(t)),
ym,p1(t) = cy(V1(t) + V2(t)),
xm,p2(t) = cx(V3(t)− V4(t)),
ym,p2(t) = cy(V3(t) + V4(t)),

(5.29)

where the bending and extending coefficients equal cx = 64.5 nm/V and cy =
29.8 nm/V, respectively. In Chapter 2, asymmetric waveforms have been devel-
oped, which result in periodic tip trajectories with a take-over between the driving
pair of legs at a non-zero velocity of the legs in x-direction. The asymmetric
waveforms enable the stage to be driven continuously at velocities in the range of
nanometers per second to millimeters per second. The asymmetric waveforms are
defined as

Vi(t) =
A

Ā
a0 +

A

Ā

4∑

k=1

{ak cos[kα(t) + kψi(t)] + bk sin[kα(t) + kψi(t)]} , (5.30)

where i ∈ {1, 2, 3, 4} and the Fourier coefficients a0 = 28.80, a1 = −10.78, b1 =
18.73, a2 = 2.387, b2 = 4.097, a3 = 1.985, b3 = −0.007792, a4 = 0.2298, and b4 =
−0.3901. The maximum amplitude Ā = 46 V. For the experiments of this chapter,
the maximum step size is used, i.e., A = 46 V. The phases equal [ψ1, ψ2, ψ3, ψ4] =
[0, π/2, π, 3π/2] rad. In (5.30), α(t) denotes a nominal angle of the legs on the
tip trajectory. The angle α(t) follows from the drive frequency fα(t) as α(t) =
2π
∫ t

0
fα(τ)dτ .
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Figure 5.5: Measured FRF (solid, black) and model (dashed, grey).

5.5.2 Control configuration

The shape of the tip trajectories of the legs is fixed and described by (5.29) and
(5.30). For feedback control, the angular frequency of the legs fα (Hz) is chosen
as the control input to the system, i.e., u(t) = fα(t) in Fig. 5.1. The output of
the system is the stage position xs(t). The measured frequency response function
(FRF) from the angular frequency fα(t) (Hz) to the stage position xs(t) (nm),
shown in Fig. 5.5 with the solid black line, shows a decay of 20 dB/decade at low
frequencies. At a frequency of 527 Hz the first resonance can be seen, directly
followed by an anti-resonance and resonance at 624 Hz and 650 Hz, respectively.
At higher frequencies, more (anti-)resonances are present. Furthermore, the FRF
shows a phase delay of three samples at a sampling frequency of fs = 4 kHz.

To design the feedback controller and the learning filters, a parametric model
containing a pure integrator, two resonances and one anti-resonance is fitted to
the measured FRF as

Ĝ(s) =
2π
s

c

s2 + 2πfp1bp1s+ (2πfp1)2

s2 + 2πfz1bz1s+ (2πfz1)2

s2 + 2πfp2bp2s+ (2πfp2)2
, (5.31)

where c = 14.9 · 109, fp1 = 527 Hz, bp1 = 0.033, fz1 = 624 Hz, bz1 = 0.02,
fp2 = 650 Hz and bp2 = 0.175. The phase delay of three samples is added to the
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(a) Original nonlinear system.

α
∫fα xs

Glin(z)

gnlin(α)
d(α)

(b) Equivalent system.

Figure 5.6: System representation, original and equivalent system containing a
linear part Glin(z) and an additive nonlinearity Gnlin(z).

model by multiplying it after discretization with a discrete-time delay z−3. The
model Ĝ(s) approximates the measured FRF well, as shown by the dashed line in
Fig. 5.5.

The system of Fig. 5.3 has an inherent nonlinearity since the output xs(t) con-
tains for a constant input drive frequency fα(t) repetitive components with other
period-times than 1/fα (s). This nonlinearity is caused by the harmonic com-
ponents in the waveform generation (5.30), resulting in a repetitive movement of
the drive legs (see also Chapter 2). The disturbances introduced by the walking
movement are fully repetitive with respect to the angular orientation α, which is
chosen to be the repetitive variable. The system is considered to be composed of a
linearized system model G(z) = Xs(z)/Fα(z) (see Fig. 5.5), which is used for the
feedback control, and a nonlinear disturbance generating model, which generates
the repetitive disturbance dr(α) = gnlin(α) (see also Fig. 5.6(b)).

For the stability analysis of the DVRC scheme with the system of Fig. 5.6, the
nonlinear part gnlin(α) is not explicitly modeled. However, based on the physical
nature of the repetitive nonlinear part, being the periodic leg movement, the repet-
itive disturbances dr(α) are bounded in amplitude. The (bounded-input bounded-
output) stability of the DVRC scheme with the bounded repetitive disturbances
d(α) follows then from the input-to-state stability (ISS) property (Def. 5) as will
be proven based on Corollary 6, i.e., the learning filters will be designed such that
the condition (5.9) will be satisfied (see Section 5.5.3 below).

A continuous-time controller K(s) is designed using loopshaping techniques [63]
as K(s) = k s+2πfzc

s , where the gain k = 2.8 · 10−3 and the fzc = 5 Hz, resulting
in a closed-loop bandwidth fBW = 5 Hz. The controller is then discretized using
a Tustin discretization at a sampling frequency of fs = 4 kHz.
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5.5.3 Learning filters DVRC

The tracking error for an experiment with a reference velocity ṙ = 10 µm/s, de-
picted in Fig. 5.7, shows on the first sight a repetitive structure. The power spectral
density (PSD) of a part of the repetitive error shows that on average over a larger
time span a base repetitive frequency of 1.98 Hz is present, which corresponds to
N = 2020 samples for a sampling frequency of fs = 4 kHz. However, a closer
look shows that the period-time of the repetitive disturbances is not constant over
time as can be seen in the bottom figure of Fig. 5.7. The repetitive delay N(α)
shows for t > 40 s, i.e., after the transient response, a fast variation in the range
N(α) ∈ [2006, 2029] samples. The amount of variation, i.e., M −m in Section 5.4,
is a function of the reference velocity. Therefore, the Q filter should be designed
for the worst-case range of variation in N(α) over all relevant references. For the
working range of the nano-motion stage of Fig. 5.3 with velocities ranging from
nanometers per second to millimeters per second the worst case variation in repet-
itive delay equals M −m = 180 samples. The absolute number of samples delay
N(α) can reach up to 5500 for a sampling frequency fs = 4 kHz.

The learning filter L(z) is derived as a proper stable approximation of a discrete-
time model of the complementary sensitivity function T̂ (z) = Ĥ(z)C(z)/(1 +
Ĥ(z)C(z)) using the ZPETC method [197], i.e., L(z)T̂ (z) ≈ 1. The FRFs of T̂
and L have an exact inverse phase, as shown in Fig. 5.8 by the solid black and grey
dashed line, respectively. The magnitude of L deviates mainly at high frequencies
from T̂−1 to obtain a proper and stable learning filter.

For a variation in the repetitive delay of M − m = 180 samples, the H∞ norm
bound in the stability criterion (5.9) equals 1√

M−m+1
= 1/

√
181 = −22.6 dB

(black, dashed line in Fig. 5.9). The criterion (5.9) without Q filter, shown in
Fig. 5.9 by the black solid line, exceeds the allowed H∞ norm of -22.6 dB for
frequencies f > 228 Hz. To guarantee stability of DVRC, a low-pass Q(z) FIR
filter with 100 taps and a cut-off frequency of 220 Hz is used. With the robustness
filter Q(z) stability is guaranteed, as shown in Fig. 5.9 with the grey dashed line.

The change in the cut-off frequency of the Q filter due to the variation of the
repetitive delay can be seen in Fig. 5.9 by the dashed and dotted vertical lines.
The frequency up to which learning can be applied is reduced from 590 Hz to
228 Hz due to the variation in the repetitive delay. At low frequencies the level of
the convergence criterion is mainly determined by the quality of the model used
to determine the learning filter. With the current model a maximum deviation
of -25 dB, i.e., 6%, is achieved. This level can be further reduced using a more
accurate model.
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Figure 5.7: Tracking error, PSD of the tracking error and variation in N(α) for an
experiment without RC and ṙ = 10 µm/s.



120 Chapter 5 Delay-varying repetitive control

i
i

“LT˙temp” — 2009/9/21 — 11:50 — page 1 — #1 i
i

i
i

i
i

10
0

10
1

10
2

10
3

−100

−50

0

50

100
|T̂

|,
|L

|
(n

m
/n

m
in

dB
)

10
0

10
1

10
2

10
3

−200

−100

0

100

200

f (Hz)

6
T̂

,
6
L

(d
eg

)

Figure 5.8: Bode diagrams of the complementary sensitivity T̂ (z) (black, solid)
and the learning filter L(z) (grey, dashed).
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5.5.4 High-order repetitive controller

For comparison, a high-order repetitive controller that incorporates two periods,
i.e., with two memory loops [185], is designed. The high-order repetitive controller
equals

MHO(z) =
L(z)W (z)Q(z)z−(N−q−l)

1−Q(z)W (z)z−(N−q) ,

where W (z) is the high-order repetitive function

W (z) =
nHO∑

i=1

wiz
−(i−1)N

and nHO = 2 is the order. The optimal weighting filter for a second order repetitive
controller is determined in [185] as Wopt = (wopt,1, wopt,2) = (2,−1).

5.6 Results

In this section, the results of standard RC and DVRC are discussed for both
constant velocity setpoints and a setpoint with a sinusoidal velocity profile. For
comparison, the constant velocity experiments are also performed using a high-
order RC [185].

For the nano-motion stage driven by the walking piezo actuator, the repetitive
variable α is a rotational angle. The repetitive period equals Pα = 2π rad, i.e.,
one complete cycle of the piezo legs. The delay z−N(α) varies with changing leg
velocity, i.e., with varying angular frequency α̇(t) = 2πfα(t).

5.6.1 Constant velocity

The tracking errors of the experiments with standard RC, DVRC and the high-
order RC for ṙ = 10 µm/s are shown in Fig. 5.10. The rms value of the tracking
error without RC (top left figure) equals rms(e(t)) = 109 nm. A clear repetitive
structure is present in the error, as shown in the zoom plot of Fig. 5.11 by the
light grey line.

Standard RC reduces the tracking error to rms(eRC) = 18.3 nm (top right figure
in Fig. 5.10). Although the error is reduced significantly, a clear fluctuation in the
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Figure 5.10: Tracking errors of the experiments with ṙ = 10 µm/s without RC,
with RC, with high-order RC and with DVRC.
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magnitude of the error is visible, which is caused by the fact that the repetitive
variable is not time. The zoom plot of Fig. 5.11 shows that the remaining error
with RC (black dashed line) still contains a significant repetitive part.

The high-order repetitive controller, shown in the bottom left figure of Fig. 5.10,
reduces the tracking error further to rms(eHO) = 13.7 nm. The convergence of the
error is clearly visible. However, the second order repetitive controller is not able
to completely remove the fluctuation in the error, indicating that it is not able
to cope with the amount of variation in the repetitive delay. Increasing the order
of the repetitive controller would slightly increase the robustness to the variation,
but requires a larger memory buffer to incorporate an additional period.

The tracking error with DVRC, shown in the bottom right figure of Fig. 5.10,
significantly reduces the tracking error to rms(eDVRC) = 2.77 nm and has a faster
convergence rate. DVRC reduces the tracking error by 97% compared to the track-
ing error without RC, by 85% compared to standard RC and by 80% compared
to the high-order repetitive controller. After convergence no deterministic part is
visible anymore in the tracking error as can be seen from the solid black line in
Fig. 5.11. Also, the cumulative power spectral densities (CPSDs) of the tracking
errors in Fig. 5.11 clearly show the reduction of the tracking error by DVRC with
respect to the other RC experiments. For frequencies f →∞, the CPSDs converge
to the squared rms values of the tracking errors.

The rms values of the errors with the different repetitive controllers for constant
velocity setpoints ṙ ∈ [1, 10, 100, 1000] µm/s are given in Table 5.1. The range
of N(αk) varies with varying setpoint, i.e., m and M are dependent on the spe-
cific setpoint r. However, the robustness filter Q is designed using the worst-case
variation for all relevant setpoints to guarantee stability. It can be seen that the
errors are significantly reduced by DVRC except for the lowest velocity, for which
a deteriorated performance is obtained. At this velocity the repetitive errors are
very small and large non-repetitive errors exist. The time-varying delay N(α(t))
is more sensitive to the influences of the non-repetitive disturbances, e.g., mea-
surement noise, than the fixed delay of standard RC. At large reference velocities
DVRC outperforms high-order RC, but not standard RC. This is caused by the
reduction in the cut-off frequency of the Q filter needed to account for the de-
lay variations in DVRC. For large velocities, the repetitive disturbances have a
frequency content that is located above the cut-off frequency of the Q filter used
for DVRC, resulting in a degraded performance with respect to standard RC. Be-
sides these observations, for velocities in the range of 10 µm/s to 0.1 mm/s the
DVRC scheme results in a significant error reduction compared to the experiments
without RC, with standard RC and with high-order RC.
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Table 5.1: Tracking errors for different constant reference velocities
ṙ ∈ [1, 10, 100, 1000] µm/s without RC, with RC, with high-order RC and
with DVRC.

velocity 1 µm/s 10 µm/s 0.1 mm/s 1 mm/s
rms(e) 5.1 nm 109.4 nm 192.5 nm 274.8 nm

rms(eRC) 5.1 nm 18.3 nm 29.0 nm 54.2 nm
rms(eHO) ∞ nm 13.7 nm 20.6 nm 123.4 nm

rms(eDVRC) 21.0 nm 2.8 nm 5.3 nm 99.3 nm
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Figure 5.12: Tracking errors and CPSDs of the experiments without (grey) and
with DVRC (black) for a varying reference velocity.

5.6.2 Varying velocity

Since the repetitive delay is continuously adjusted in DVRC, it can be used for
setpoints that have a varying velocity, i.e., which have an inherent variation in
repetitive delay for the walking piezo actuator. For an experiment with a time-
varying reference velocity ṙ(t) = 2 · 10−4 + 10−4 sin

(
2π
100 t

)
the variation in the

repetitive delay equals 124 samples. For this experiment the same Q filter as
for the experiments with a constant reference velocity is used. The results of the
experiment with the time-varying reference velocity are shown in Fig. 5.12. DVRC
clearly reduces the tracking error compared to the experiment with only feedback
control. The zoom plot in the bottom axis of Fig. 5.12 shows that with DVRC
hardly any repetitive structure is present anymore in the tracking error. Standard
RC and high-order RC are not applied since they cannot cope with such fast and
large changes in the repetitive delay.
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The sinusoidal shape of the tracking error with DVRC in Fig. 5.12 corresponds to
the variation in velocity and is larger for higher reference velocities (larger drive
frequency fα) and smaller for low velocities (small fα). This corresponds to the
magnitude of the sensitivity S̄ on which the repetitive ‘notches’ are placed, which
has a smaller magnitude for low frequencies (low velocities) and vice versa. The
rms values of the errors over the complete experiment equal rms(e) = 173.3 nm
and rms(eDVRC) = 34.3 nm, which is a reduction of 80%.

The CPSDs of the error signals without and with DVRC clearly show applicability
of DVRC for reference signals with a varying velocity. The variation in the velocity
directly results in a variation of the repetitive delay. The CPSDs show that the
largest error reduction is obtained by DVRC at low frequencies f < 5 Hz, i.e., in the
frequency range where the base repetitive frequencies are contained. Furthermore,
it can be seen that DVRC reduces the tracking error for all frequencies up to the
cut-off frequency of the Q filter, i.e., for f < 200 Hz.

5.7 Conclusions

In this chapter, we presented a delay-varying repetitive control (DVRC) method,
which is applicable for systems that have a repetitive nature with respect to a
repetitive variable other than time. Interestingly, DVRC has the standard repet-
itive control (RC) scheme as a special case when the repetitive variable is time.
DVRC uses knowledge of the repetitive variable of the system to determine and
adjust the time-varying repetitive delay accordingly.

Due to the time-varying delay in the RC memory loop, the conventional stability
criteria for standard RC are not applicable anymore. After giving a short tutorial
on existing stability analysis methods for discrete-time delay systems, we derived
a new H∞ norm based stability criterion for the proposed DVRC method. This
novel stability criterion gives a sufficient condition for stability using the variation
in the repetitive delay, while still allowing the design of the learning filters using
frequency domain techniques as is common in RC.

The performance of DVRC is compared experimentally to standard RC and high-
order RC using a nano-motion stage driven by a walking piezo actuator. The
walking movement of the piezo motor has as a repetitive variable the angular
orientation of the piezo legs and hence even for constant velocity references a
time-varying delay is needed. We showed that the developed DVRC method is
able to significantly suppress the periodic disturbances induced by the walking
movement of the piezo motor, while we can formally guarantee the stability of
the scheme. In addition DVRC reduces the tracking error by 85% compared to
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standard RC and by 80% compared to high-order RC.

Since the repetitive delay can be continuously adapted by DVRC, it is also able
to cope with references that have a varying velocity, i.e., which have an inherent
time-varying repetitive delay. Experimental results show that for these setpoints
DVRC also significantly improves the tracking performance.

DVRC can be applied for any repetitive variable as long as it is monotonically
increasing (or monotonically decreasing) with respect to time. This condition cor-
responds in the walking piezo actuator to a continuously increasing (or decreas-
ing) angle of the legs and thus a velocity of the nano-motion system that does
not change sign. Future work involves extending the DVRC scheme to allow also
non-monotonically increasing repetitive variables, i.e., references with a changing
sign of the velocity. However, the derived stability criterion is already applicable
in these circumstances.
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Part III

The metrological AFM
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Chapter 6

Identification, control and
hysteresis compensation

Abstract - Atomic Force Microscopes (AFMs) are widely used for the investiga-
tion of samples at the nanometer scale. The metrological AFM used in this work
uses a three degree-of-freedom (DOF) stage driven by piezo stack actuators for
sample manipulation in combination with a fixed cantilever. The piezo stack ac-
tuators suffer from hysteresis, which acts as a nonlinear disturbance on the system
and/or can change the system dynamics. The contributions of this chapter are the
application of feedback control to all three DOFs of the metrological AFM and the
design and application of a hysteresis feedforward for the asymmetric hysteresis
present in the system. The amount of coupling between the DOFs is assessed by a
non-parametric MIMO identification. Since the dynamics appear to be decoupled
in the frequency range of interest, feedback controllers are designed for each DOF
separately. For the modeling of the asymmetric hysteresis an extended Coleman-
Hodgdon model is proposed. This model is used for feedforward compensation of
the hysteresis. The combination of feedback control for all DOFs and the asym-
metric hysteresis feedforward enables the AFM to track scanning profiles within
the sensor bound of 5 nm. Real-time imaging of the sample is possible with an
accuracy of 2 nm.

This chapter is based on: R.J.E. Merry, M. Uyanik, M.J.G. van de Molengraft, K. R. Koops,
M.G.A. van Veghel and M. Steinbuch. Identification, control and hysteresis compensation of a
3 DOF metrological AFM, Asian Journal of Control, 11(2):130–143, 2009.
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6.1 Introduction

Atomic force microscopes (AFMs) are a specific type of scanning probe microscopes
(SPMs) in which the surface of a sample is scanned by an atomically sharp probe.
The sample to be investigated can either be moved under the probe (scanning
sample mode) or the probe can be moved over the sample (scanning tip mode). The
sample causes the cantilever, to which the tip is attached, to deflect. The deflection
can be used to obtain the height information of the sample. The atomic force
microscope was invented in 1986 by Binning, Quate and Gerber [17] and is widely
used for sample imaging, the characterization of materials and the manipulation
of particles at nanometer scale [171].

In this chapter, a metrological AFM is considered. The metrological AFM is used
to calibrate transfer standards for commercial AFMs. In contrast to commercial
AFMs, the accuracy of the measurements is much more important than the scan-
ning speed. Furthermore, the measurements have to be traceable to the standard
of length. This imposes different constraints on both the mechanical and control
design of the AFM.

In current AFMs, the positioning of the sample under the probe, i.e., the scanning
motion in x- and y-direction, is often done using piezoelectric actuators in an open-
loop manner [149,176]. Examples of these techniques are H∞ based [165,176,189]
and model-inverse based [226] feedforward control. However, due to the presence of
disturbances in AFMs the performance can benefit from applying feedback control
in the scanning directions [171]. Another issue is that the piezoelectric actuators
exhibit nonlinear behavior such as hysteresis and creep, which limit the positioning
accuracy of the sample. Furthermore, the manipulation of samples in multiple
degrees of freedom inherently makes the AFM a multiple-input-multiple-output
(MIMO) control system. The increasing interest in AFMs for nano-applications
requires a higher precision and therefore an increasing closed-loop bandwidth for
disturbance attenuation.

During the last decades a lot of research on the design, operating mode and con-
trol of AFMs has been done. The sample manipulation is often performed using
tube piezo actuators [40], which can move the sample in three directions using one
actuator. The lateral bending of the piezo-tubes results in a large cross coupling
to the vertical direction, which distorts the image of the AFM. Tripod scanners
employ three piezoelectric stack actuators, one for each translational axis [17]. The
path lengths are determined by the length of the stack piezos, resulting in either a
small range or in low-frequency mechanical resonances and thus low speeds [171].
Resonant scanners use an oscillating tuning fork as actuator to obtain fast scan-
ning [84]. However, the scan rate is dependent on the resonance frequency of the
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tuning fork and cannot be chosen independently. Stages where the piezo-actuators
for the various degrees-of-freedom (DOFs) are stacked on top of each other typ-
ically have a large moving mass, which results in a low-frequency first resonance
and low scanning speed [8]. Rigid scanners combine piezoelectric stack actuators
with a flexure mechanism [99,172], which decouples the different axes of motion to
a large extent in combination with a high performance. In this chapter, a 3-DOF
rigid scanner driven by three piezoelectric stack actuators is used [154].

Probing of the sample surface can be performed in contact or tapping mode. In
this chapter we will only consider contact scanning, in which the tip and sample
are in contact at all times. The image of the sample is commonly retrieved based
on the control effort of the actuator in the imaging z-direction. The deflection of
the tip can be controlled either in constant force mode, where the force between
the sample and the tip is held constant, or in constant height mode, where the
feedback is disabled completely [173]. The constant height mode allows for faster
imaging, but the varying force can damage the sample and/or tip. The constant
force mode gives a high-resolution, but only at low speed. In this chapter, we use
constant force scanning in combination with a scanning sample mode to obtain a
fully traceable image of the sample.

SPM stages are mostly designed to minimize coupling between the different DOFs,
especially with respect to the imaging z-axis. However, practically always an
amount of coupling is present, e.g., due to alignment errors or manufacturing
tolerances. In literature, the AFMs are mainly identified and modeled as three
separate SISO systems in x-, y- (scanning motion) and z-directions (imaging).
For control design purposes the MIMO aspects often assumed to be negligible
small [149]. MIMO identification of the scanning motion only is performed for
a tube piezoelectric actuator in [40] and for a 2-DOF nano-positioner driven by
piezo stack actuators in [176]. The coupling to the imaging z-axis is not taken into
account. To assess the coupling, which appears as a performance limiting factor
(PLF) in the AFM, a MIMO identification in all three directions is performed and
the coupling effects between the various axes are assessed.

The asymmetry in the used 3-DOF rigid scanner results in an asymmetric hys-
teresis in the system [182]. The hysteresis in the metrological AFM shows an
asymmetry between increasing and decreasing voltage paths and different offsets
for various voltage ranges. In literature, several models and methods are proposed
for asymmetric hysteresis. An extended Preisach model for asymmetric hysteresis
requires 80 parameters to be identified [180], which makes it difficult and time
consuming to find a general model for the complete operating range. Separate
Preisach models for each voltage range are identified in [89]. For the compensation,
switches between a large number of models have to be made based on the different
parts in the reference trajectory. A Bouc-Wen model, using only 9 parameters, is
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identified in [102] using genetic algorithms. However, the model only incorporates
asymmetry near zero velocity of the stage. A Bouc-Wen model for symmetric hys-
teresis is combined to a PI feedback compensation for the asymmetric part in [113],
which does not utilize the a-priori knowledge about the asymmetry. A generalized
Bouc-Wen model that splits the hysteresis in 6 different parts [182] requires a lot
of parameters for the identification and a lot of switches between different mod-
els during the compensation. In [50], a Coleman-Hodgdon model is proposed for
the modeling and compensation of symmetric hysteresis in a scanning microscope.
The model only requires five parameters to be identified. The variations in the
offset for various voltage ranges are included in an enhanced Coleman-Hodgdon
model in [217]. However, for each voltage range a new model has to be identified.
To compensate for the hysteresis PLF, an extended Coleman-Hodgdon model is
proposed to incorporate the variations in the offset. Furthermore, different models
are identified for increasing and decreasing voltages. For the feedforward compen-
sation, this requires only a switch between two models at standstill of the stage.

The contributions of this chapter are threefold. Firstly, we justify SISO-based
controller design for the MIMO AFM system by assessing the amount of coupling
between the three axes. Secondly, feedback control is applied to all three DOFs,
so also to the scanning motion. Loopshaping techniques have been employed to
tune three feedback controllers at bandwidths below which the coupling effects can
be neglected. Finally, an extended Coleman-Hodgdon model is proposed to model
the asymmetric hysteresis in the system. Using the proposed model, a hystere-
sis feedforward is designed, which efficiently compensates hysteretic disturbances
in the system. The combination of feedback control and hysteresis feedforward
control allows the sample to be positioned with a tracking error within the sensor
bound of 5 nm.

This chapter is organized as follows. In Section 6.2, the metrological AFM is dis-
cussed in more detail. In Section 6.3, MIMO identification is used to assess the
amount of coupling between the various axes of the AFM. The extended Coleman-
Hodgdon model to describe the asymmetric hysteresis is also discussed in Sec-
tion 6.3. The design of the feedback and hysteresis feedforward controllers is
presented in Section 6.4. The results of the experiments with the metrological
AFM are shown in Section 6.5. Finally, conclusions are drawn in Section 6.6.

6.2 The metrological AFM

The metrological AFM, shown in Fig. 6.1, consists of a Topometrix AFM head, a
piezo stack driven 3-DOF stage and a ZYGO laser interferometer to measure the
stage position in all DOFs. The PI P517.3CL 3-DOF stage [154] is a rigid stage
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opticslaser AFM head stage

Figure 6.1: Picture of the metrological AFM containing a Topometrix AFM head,
a piezo stack driven 3-DOF PI P517.3CL stage and a ZYGO laser interferometer.

containing three piezo stack actuators, which can move the stage through a flexure
mechanism in a range of 100 µm in x- and y-directions and in a range of 20 µm in
z-direction. The PI 3-DOF stage is designed to minimize the amount of coupling
between the different DOFs, especially to the imaging z-axis. Furthermore, in
each direction it has an angular deviation of maximum 2 arcsec over the entire
range. A mapping as function of the position can be made to correct for this small
deviation, thus eliminating the need for a full 6 DOF stage. The mirrors and lasers
of the interferometer are aligned such that the laser spots in all DOFs are exactly
aligned with the tip of the cantilever. This eliminates Abbe errors, i.e., a change
in orientation between the sample and tip of the cantilever does not affect the
measurements of the ZYGO laser interferometers. The deflection of the cantilever
in the AFM head is measured by an optical sensor consisting of a laser and a
photo-detector. The measurement resolution of the ZYGO laser interferometer
equals 0.15 nm in all directions. The cantilever deflection can be measured with
a resolution of 0.05 nm. The resolution and noise bounds of the different sensors
are given in Table 6.1. The noise bound is defined as the measured output range
of the sensors when the stage is at standstill and the input to the piezo actuators
is decoupled.

A schematic representation of the AFM and the feedback control loop is shown
in Fig. 6.2. For clarity the flexure mechanisms between the piezo stack actuators
and the stage are not shown. Feedback control is applied in x- and y-directions
by steering the piezo stack actuators using the ZYGO position measurements. In
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Table 6.1: Resolution and noise bound of the different sensors.

Sensor Resolution Noise bound
ZYGO x 0.15 nm ±5 nm
ZYGO y 0.15 nm ±4 nm
ZYGO z 0.15 nm ±2 nm
Head zt 0.05 nm ±0.15 nm

z-direction, the tip is controlled in constant force mode while the stage with the
sample is moved in 3 DOFs under the cantilever. The setpoint to the cantilever is a
constant deflection, which is realized by moving the stage in z-direction. Keeping
the deflection of the cantilever constant has the advantage that the orientation
of the tip compared to the sample topography remains constant, thus minimizing
Abbe errors. Since the tip is controlled to a constant deflection, the laser of the
head cannot be used to obtain the sample topography. Instead of using the control
effort in z-direction, the height of the sample is measured directly using the ZYGO
laser interferometer in z-direction. Since the stage position in x- and y-directions
is directly traceable to the standard of length, the image of the sample topography
can be constructed using all three ZYGO laser interferometer measurements.

The piezoelectric actuators in the 3-DOF stage suffer from hysteresis, which act as
nonlinear disturbances on the system and/or change the system dynamics. Hys-
teresis can contribute to loss of robustness, performance degradation or instabilities
in feedback controlled piezoelectric devices [140]. The measured hysteresis in the
system is shown in Fig. 6.3 for separate symmetric scans in x-direction and volt-
age ranges VR ∈ {2, 10, 20, 40, 60, 80, 100} V while controlling the stage in y- and
z-direction to a constant value.

In Fig. 6.3 can be seen that the level of hysteretic distortion varies depending on
the maximum value of the input voltage. Let for each voltage range VR, the offset
ε be defined as

ε(VR) =
1
2

(xM (VR)− xm(VR)) ,

where xM is the maximum position and xm is the minimum position of the mea-
sured response for a given voltage range VR. For the hysteresis curves of various
voltage ranges VR (Fig. 6.3), the offsets ε(VR) are not equal. Furthermore, the trace
(increasing voltage) and retrace (decreasing voltage) directions of each hysteresis
curve are different in shape. For the feedforward compensation of the hysteresis
a model that incorporates the voltage range dependent offset ε(VR) and the non-
symmetry between the trace and retrace directions will be derived in Section 6.3.2.
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Figure 6.2: Schematic representation of the AFM and the feedback control. Each
DOF is driven by a piezo stack actuator, thus minimizing the amount of coupling.
The ZYGO laser interferometers are aligned on the cantilever tip to eliminate
Abbe errors. The sample topography is measured directly by the interferometer
in z-direction.

6.3 Identification

Although ideally the different axes of the 3-DOF stage are decoupled, practically
a certain amount of cross coupling will still be present due to alignment errors
or parasitic dynamics. In this section, non-parametric MIMO identification of
the metrological AFM is performed to assess the amount of coupling between the
various DOFs. Furthermore, an extended Coleman-Hodgdon model is proposed to
model the asymmetric hysteresis.

6.3.1 MIMO identification

In order to investigate the amount of coupling between the different axes, full non-
parametric MIMO identification of the system is performed. The system inputs are
the voltages Vi, i ∈ {x, y, z} to the piezo stack actuators and the outputs are the
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Figure 6.3: Measured hysteresis for various voltage ranges. The hysteresis curves
are asymmetric with respect to the trace and retrace direction. The offset of the
hysteresis curves is dependent on the voltage range.

position measurements of the ZYGO laser interferometer in x- and y-directions
and of the optical sensor in the AFM head in z-direction. The system can be
written as

P (f) =



Pxx(f) Pxy(f) Pxz(f)
Pyx(f) Pyy(f) Pyz(f)
Pzx(f) Pzy(f) Pzz(f)


 , (6.1)

where Pji(f) denotes the frequency response function (FRF) from the input Vi in
direction i to the output in direction j as a function of the frequency f (Hz) and
i, j ∈ {x, y, z}.

The different FRFs Pji(f) of (6.1) are determined using the non-parametric open-
loop identification method and Welch’s averaged periodogram method [116]. On
each input independently a zero-mean white noise signal with a variance of σ2 =
0.05 V2 is applied while all outputs are measured. The Bode magnitude plots of
the different FRFs are shown in Fig. 6.4. The FRFs show a zero slope at low
frequencies. At frequencies f ≥ 40 Hz several resonances can be seen. It can be
seen that for frequencies f < 100 Hz the magnitude of the off-diagonal FRFs is
approximately 40 dB lower than the diagonal FRFs. For frequencies f ≥ 100 Hz
the amplitudes of all FRFs are in the same order of magnitude.

To investigate the amount of coupling between the different axes, the frequency-
dependent relative gain array (RGA) [22,179] of the non-singular square complex
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Figure 6.4: Bode magnitude plots of the MIMO system (6.1). Up to the first
resonance at ±40 Hz, the FRFs show a zero slope. For frequencies f < 100 Hz the
magnitude of the off-diagonal terms is ±40 dB lower than the magnitude of the
diagonal terms.
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matrix P (f) is calculated

RGA(P (f)) = P (f)× (P (f)−1)T , (6.2)

where × denotes element-wise multiplication. The rows and columns of the RGA
sum to one for all frequencies f (Hz). The RGA provides a measure for the
amount of interaction between the different axes. If the RGA(f) = I, ∀f , perfect
decoupling is achieved. The RGA for the FRFs of Fig. 6.4 is shown in Fig. 6.5.
It can be seen that for frequencies f < 100 Hz, the RGA is almost equal to the
identity matrix. Therefore, for the purpose of feedback controller design the axes
are assumed to be decoupled for frequencies up to 100 Hz. However, the small
amount of coupling for f < 100 Hz will still affect the performance of the stage
by approximately 1% (40 dB) in an open-loop manner. Possibly, this can even
be lower by the virtue of feedback. For frequencies f ≥ 100 Hz, RGA(f) 6= I as
the axes are clearly coupled in this frequency range. Note that the coupling to
the imaging z-axis is still smaller than the coupling between the scanning x- and
y-axes.

6.3.2 Hysteresis model

The Coleman-Hodgdon model was formulated in 1986 to describe rate-independent
hysteresis in ferromagnetically soft materials [37]. In [50], the Coleman-Hodgdon
model is applied successfully to describe the hysteresis in a scanning probe micro-
scope driven by piezo actuators, i.e., the hysteresis between the applied voltage V
and the resulting position x. For closed hysteresis loops, the position x(V ) can be
described as

x(V ) =





bV − b−u
α

(
1− 2

e−αVm+e−αVM
e−αV

)
, if V̇ ≥ 0,

bV + b−u
α

(
1− 2

eαVm+eαVM
eαV

)
, if V̇ < 0,

(6.3)

where V̇ = dV
dt . The parameters b, α > 0 and u are the constant parameters to be

identified. The linear asymptote of the hysteresis curve has a slope determined by
b and a position at 0 V of ± b−uα dependent on the scan direction.

The sensitivity of the hysteresis curve, bV in (6.3), is for the metrological AFM of
Fig. 6.1 not linear as function of VR [49]. Expansion of (6.3) with an exponential
asymptotic sensitivity gives

x(V ) =





(
b− ae−cVR

)
V − b−u

α

(
1− 2

e−αVm+e−αVM
e−αV

)
, if V̇ ≥ 0,

(
b− ae−cVR

)
V + b−u

α

(
1− 2

eαVm+eαVM
eαV

)
, if V̇ < 0,
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Figure 6.5: RGA (6.2) of the MIMO system (6.1). For frequencies f < 100 Hz, the
RGA resembles an identity matrix and can be assumed decoupled. For frequencies
f ≥ 100 Hz the axes show a significant amount of coupling.



6.4 Controller design 141

where the voltage range VR = VM − Vm with Vm and VM the minimum and
maximum voltage, respectively. The above model does not incorporate any voltage
range dependent offset ε(VR). Since the hysteresis in the metrological AFM shows
an offset that is dependent on the voltage range VR (see also Fig. 6.3) and because
the trace and retrace directions are not symmetrical, we propose an extended
Coleman-Hodgdon model as

x(V ) =





εt(VR) +
(
bt − ate−ctVR

)
V − bt−ut

αt

(
1− 2

e−αtVm+e−αtVM
e−αtV

)
,

if V̇ ≥ 0,

εr(VR) +
(
br − are−crVR

)
V + br−ur

αr

(
1− 2

eαrVm+eαrVM
eαrV

)
,

if V̇ < 0,
(6.4)

where εt,r(VR) describes the voltage range dependent offset. The offset as a func-
tion of VR is shown in Fig. 6.6. It can be seen that the offset changes quadratically
with the voltage range. Therefore, the functions εt,r(VR) are chosen as

εt(VR) = dtV
2
R + etVR + ft,

εr(VR) = drV
2
R + erVR + fr.

The identification of the model parameters {a, b, c, u, α, d, e, f}t,r is done by means
of an optimization over the measured first-order reversal hysteresis curves for var-
ious voltage ranges VR ∈ {2, 10, 30, 40, 60, 80, 100} V. The optimization is per-
formed using a nonlinear least-squares data-fitting method, because the model
described by (6.4) is highly nonlinear. The initial parameters are chosen based on
an explorative measurement in combination with the findings from [49]. For the
trace direction xt (V̇ ≥ 0) and the retrace direction xr (V̇ < 0), different models
are identified of which the parameters are given in Table 6.2.

In Fig. 6.7 the errors between the measured and modeled hysteresis are shown for
various voltage ranges VR. By comparing the hysteresis curves of Fig. 6.3 to the
errors of Fig. 6.7, it can be seen that the model accurately describes the asymme-
tric hysteresis of the system. The model described by (6.4) with the trace/retrace
parameters of Table 6.2 describes the hysteresis in the metrological AFM of all
voltage ranges with an accuracy of 97%. This model will be used for the feedfor-
ward compensation, discussed in the next section.

6.4 Controller design

Based on the RGA of Fig. 6.5, for controller design purposes the axes of the
metrological AFM are assumed decoupled for frequencies f < 100 Hz. Using the
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Table 6.2: The identified parameters of the extended Coleman-Hodgdon model
for both the trace and retrace directions.

Parameter Value trace xt Value retrace xr
a (µm/V) 2.6570·10−1 3.0892·10−1

c (V−1) 2.3318·10−2 9.2649·10−2

b (µm/V) 1.1530 1.3555
u (µm/V) 9.4970·10−1 8.7338·10−1

α (V−1) 5.5306·10−2 2.5985·10−2

d (µm/V) -2.9444·10−4 -3.0051·10−4

e (µm/V) -2.8998·10−3 -1.4058·10−3

f (µm) 6.2200·10−2 8.4353·10−2

measured FRFs of Fig. 6.4, three SISO controllers are designed using loopshaping
techniques, all resulting in bandwidth frequencies fBW < 100 Hz, i.e., where no
coupling is present. Here, we use the definition bandwidth fBW as the cross-over
frequency of each diagonal loop gain Lji(f) = Pji(f)Cji(f), i = j, i, j ∈ {x, y, z}.

Moreover, for the x- and y-axes, position and hysteresis feedforward controllers are
designed and applied separately. The performance of the hysteresis feedforward
will be compared to the position feedforward in Section 6.5.2.

6.4.1 Feedback

Using the FRFs of the diagonal elements of (6.1), stabilizing feedback controllers
Cji, i = j, i, j ∈ {x, y, z} are designed such that the modulus margin ‖Sji(f)‖∞ =
maxf |Sji(f)| < 6 dB, or

|Sji(f)| =
∣∣∣∣

1
1 + Pji(f)Cji(f)

∣∣∣∣ ≤ 6 dB, ∀f.

This corresponds to a phase margin φ ≥ 30 deg and an amplitude margin A ≥ 6 dB.
The controllers consist of an integrating action and a low-pass filter as

Cji(s) = k
1
s︸︷︷︸

integrator

2πfLP
s+ 2πfLP︸ ︷︷ ︸

low-pass

, (6.5)

where k denotes the controller gain and fLP (Hz) the cut-off frequency of the low-
pass filter. In Table 6.3, the controller parameters, the resulting bandwidths fBW
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Table 6.3: The controller parameters and the resulting bandwidth, phase margin
and amplitude margin for the different axes.

Axis k fLP (Hz) fBW (Hz) ‖S‖∞ in dB
x 0.07790 50 7.87 3.635
y 0.07790 50 8.03 4.052
z 0.1198 100 45.6 4.939
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Figure 6.8: Characteristic loci λ(P (f)C(f)) (left part) and Nyquist plots of the
separate diagonal loop gains (right part) in x-direction (black), y-direction (dark
grey) and z-direction (light grey). The characteristic loci show that the SISO
controlled MIMO system has a good phase margin and is stable. The resemblance
between the two figures indicates that the axes are almost decoupled.

and the modulus margin ‖S‖∞ for the different axes are shown. The margins are
chosen somewhat higher to be robust against shifts in the resonance frequencies
due to the nonlinearities in the piezo stack actuators [176].

The characteristic loci λ(PC) [179] of the SISO controlled MIMO system are shown
in the left part of Fig. 6.8. The characteristic loci show that the controlled MIMO
system has a good MIMO phase margin. The Nyquist plots of the separate di-
agonal loop gains, depicted in the right part of Fig. 6.8, almost coincide with
the characteristic loci, i.e., λ(PC) ≈ λ(diag(PC)). This again indicates that the
different axes are almost decoupled. Furthermore, Fig. 6.8 shows that the diago-
nal loop gains are stable and do not enter the circle with radius 0.5 centered at
(Re,Im)=(-1,0), indicating that ‖S(f)‖∞ < 6 dB.
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6.4.2 Hysteresis feedforward

The extended Coleman-Hodgdon model of (6.4) describes the position x as func-
tion of the applied voltage V . In order to use the model for a feedforward hysteresis
compensation, expressions of the voltage as function of the position are required.
These expressions equal

V (x) =





x−p4,t
p1,t

− 1
p3,t

LW

(
p2,tp3,t
p1,t

e
p3,t(x−p4,t)

p1,t

)
, if ẋ ≥ 0

x−p4,r
p1,r

− 1
p3,r

LW

(
p2,rp3,r
p1,r

e
p3,r(x−p4,r)

p1,r

)
, if ẋ < 0,

(6.6)

where LW denotes the LambertW function, which is the inverse of the function of
z(W ) = WeW , and

p1,t = bt − ate−ctVR , p1,r = br − are−crVR ,
p2,t = 2(bt−ut)

αt(e−αtVm+e−αtVM )
, p2,r = 2(br−ur)

αr(eαrVm+eαrVM )
,

p3,t = −αt, p3,r = αr,

p4,t = − bt−utαt
+ dtV

2
R + etVR + ft, p4,r = br−ur

αr
+ drV

2
R + erVR + fr.

Eq. (6.6) describes the required voltage as a function of the position x. If the input
of (6.6) is chosen to be the reference position of the control loop rx, the model can
be used for feedforward control purposes. The model parameters of Table 6.2 are
identified for the x-direction of the metrological AFM. For the other axes, model
parameters can be obtained in an analogous manner.

Since the hysteresis is asymmetric with respect to the trace and retrace direction,
the hysteresis feedforward consists of two parts, one for each direction. The switch
between the two parts Vt(rx) and Vt(rx) depends on the direction of the reference
position, i.e., on the sign of the reference velocity. For increasing reference position
rx (ṙx ≥ 0) the feedforward of the trace part Vt(rx) is used and for decreasing
reference position rx (ṙx < 0) the retrace hysteresis feedforward part Vr(rx) is
used. The switch between the two hysteresis feedforward models is performed at
standstill of the stage, i.e., outside the imaging region. A schematic overview of
the implementation of the hysteresis feedforward for the x-axis is shown in Fig. 6.9.

6.5 Results

In this section, the results of the experiments on the metrological AFM are dis-
cussed. Scanning experiments are performed in x-direction. The y-direction is
controlled to a constant position.
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Figure 6.9: Schematic representation of the hysteresis feedforward implementa-
tion. At the turnaround points where ṙx = 0, the hysteresis feedforward switches
between the trace (Vt) and retrace (Vr) hysteresis feedforward or vice versa.

6.5.1 Hysteresis

The hysteresis feedforward of Section 6.4.2 is first tested in an open-loop experi-
ment. The reference trajectory is a forward and backward scan in x-direction over
a range of ±18 µm. The resulting voltage of the hysteresis feedforward, described
by (6.6), is applied to the piezo stack actuator in x-direction. The reference po-
sition rx, the stage position in x-direction and the input voltage V are shown in
Fig. 6.10. The resulting voltage of the feedforward (6.6) also has an offset and
asymmetry in order to obtain the desired symmetric stage movement. The discon-
tinuity at the turnaround point in the reference also results in a discontinuity in
the hysteresis compensation due to the switching between the two models. This
results in ringing of the positioning error. However, the ringing only occurs in
a short time-span after the turn-around point, i.e., outside the imaging region.
The stage position x closely matches the reference position rx, with a maximum
absolute error max(|ex|) = max(|rx − x|) = 0.2941 µm.

6.5.2 Scanning motion

In Fig. 6.11, the results of a closed-loop experiment for a scan in x-direction over
±18 µm with a speed of 7.2 µm/s are shown. The use of only feedback control
results in a tracking error of max(|ex|) = 160.9 nm, as can be seen with the light-
grey line in Fig. 6.11.

Since the piezo stack actuators act as position actuators, a position feedforward
can be used to improve the performance of the stage [129]. The control input of
the position feedforward can be added to the output of the feedback controllers
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Figure 6.10: Results of the open-loop hysteresis experiment, reference (black) and
measured position (grey, dashed), error and voltage resulting from the model.
The stage position in x-direction resembles the reference position rx closely. The
ringing of the error at the turnaround points is caused by the discontinuity of the
hysteresis feedforward due to the switch between models.
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Figure 6.11: Measured positions, tracking errors and square root of the cumulative
PSDs of the tracking errors in x-direction for the closed-loop experiments, reference
(dotted), without feedforward (light-grey), with position feedforward (dark-grey)
and with the hysteresis feedforward (black). The hysteresis feedforward improves
the tracking performance with 89% compared to the feedback only case and with
43% compared to the feedback with position feedforward case.

Vi, i ∈ {x, y}, resulting in a new input to the system V ∗i as

V ∗i (t) = Vi(t) +Kiri(T ), i ∈ {x, y}, (6.7)

where r is the reference signal and K the feedforward gain. The results for a closed-
loop experiment with a position feedforward Kx = Ky = 11 V/µm are shown in
Fig. 6.11 with the dark grey line. The position feedforward largely reduces the
tracking error to max(|ex|) = 86.11 nm.

The results of the experiment with feedback control and the hysteresis feedforward
of Section 6.4.2 are shown in Fig. 6.11 by the black line. Compared to the position
feedforward the hysteresis feedforward reduces the tracking error even further.
The ringing of the input voltage due to the discontinuity by the switching of the
hysteresis feedforward at the turnaround point results in a ringing of the tracking
error. At these points, the feedback controller reduces the tracking error very
quickly to the noise bound of ±5 nm.

The right part of Fig. 6.11 shows the square root of the cumulative power spec-
tral densities (CPSDs) of the tracking errors for the various experiments. For
frequencies f → ∞, the cumulatieve PSDs converge to the squared root-mean-
square (rms) value of the respective errors. The rms values of the errors are for
the experiment without feedforward rms(eno FF) = 99.57 nm, with the posi-
tion feedforward rms(epos FF) = 19.34 nm and with the hysteresis feedforward
rms(ehyst FF) = 11.08 nm. The hysteresis feedforward added to the feedback
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Figure 6.12: Measured topography of the sample with the ZYGO laser interfer-
ometer (black) and constructed topography using the control effort in z-direction
(grey). Misalignment and calibration issues cause the reconstructed topography to
show an additional global slope. Also, the reconstructed topography shows a dif-
ference between the trace and retrace direction, which is not present in the direct
topography measurement.

controller improves the tracking performance compared to using only the feedback
control case with 89% and compared to the case with feedback control and position
feedforward with 43%.

The sample topography, measured by the ZYGO laser interferometer in z-direction,
is shown as a function of the x-position in Fig. 6.12. Since a triangular shaped
reference in x-direction is used, the topography of Fig. 6.12 contains the measured
height of the sample for the scan in both positive and negative x-direction. No large
deviations in the measured height between the two directions can be seen. The
measured topography shows a decaying height in x-direction, indicating that the
sample is tilted under the AFM. Since the output of the ZYGO laser interferometer
is used instead of the control effort in z-direction as is done in most literature, the
height of the sample is directly measurable and traceable to the standard of length.

The reconstructed topography using the control effort in z-direction, shown in
Fig. 6.12 by the grey line, clearly shows a global slope difference between the mea-
sured height by the ZYGO laser and the constructed height. This difference is
likely to be caused by misalignments between the piezo stack actuator and the
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Figure 6.13: Tracking error (top left), control effort (bottom left) and CPSD (right)
in y-direction. A clear correlation between the control effort in y-direction and the
sample topography of Fig. 6.12 can be seen, indicating a coupling between the
axes.

ZYGO laser interferometer in z-direction and by the fact that the piezo stack ac-
tuator is not calibrated. Furthermore, a clear distinction can be made between
the reconstructed height in positive and negative x-direction as two lines are vis-
ible. The control effort in z-direction also contains influences of the hysteresis
and creep of the piezo stack actuators and the small amount of coupling between
the different DOFs. This causes the errors in the constructed topography image.
Further postprocessing of the data in combination with an accurate system model
is required to better reconstruct the sample topography from the control effort in
z-direction.

During the experiment, the y-axis is controlled to a fixed position. The tracking
error in y-direction is shown in Fig. 6.13 together with the control effort. The
shape of the control effort of Fig. 6.13 clearly shows a correlation with the sample
topography of Fig. 6.12 and the triangular scanning movement in x-direction.
Based on the FRF of the system (see Fig. 6.4) a coupling of 1% between the
axes was expected for frequencies f < 100 Hz. The CPSD of ey (right figure in
Fig. 6.13) converges for f →∞ to 4.83 nm, so rms(ey) = 2.20 nm.

6.5.3 Scanning speed

The tracking errors are dependent on the scanning speed. Real-time imaging of the
sample is only possible if the scanning movement is controlled within the sensor
noise bound during the imaging periods, except for the turning points where no
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Table 6.4: Root-mean-square (rms) values of the tracking errors over the complete
scanning movement for varying reference speeds.

Speed (µm/s) 3.6 7.2 14.4 28.8

rms(|ex(t)|) (nm) 7.317 11.08 14.38 23.28

image is made. The rms values of the tracking errors for experiments with feedback
and hysteresis feedforward control are shown in Table 6.4 for various scans speeds.
The error increases with increasing scanning speed.

In order to increase the scanning speed, the tracking errors have to be reduced.
One possible solution is the increase of the bandwidth of the system. However, this
would require MIMO control since decoupling of the axes is no longer guaranteed
when increasing the bandwidth fBW much further (Fig. 6.5).

6.6 Conclusions

Using a full non-parametric MIMO model of the system, the coupling between the
different axes has been investigated using the frequency dependent relative gain
array (RGA). The RGA shows that for feedback controller design the axes can be
considered to be decoupled up to a frequency of 100 Hz.

For all DOFs separately, feedback controllers are designed using loopshaping tech-
niques, resulting in bandwidth frequencies below which the coupling effects may
be disregarded for the feedback control design. The characteristic loci show that
the SISO controlled MIMO system has a good MIMO phase margin.

An extended Coleman-Hodgdon model containing a scan range dependent offset
has been identified in x-direction for the trace and retrace directions separately to
account for the asymmetry in the hysteresis. The generic extended model describes
the hysteresis with an accuracy of 97%. Similar models can be identified for the
other axes.

A hysteresis feedforward has been made using two different extended Coleman-
Hodgdon models, one for the trace and one for the retrace direction. The switch
between the models is done at standstill of the stage. The application of the
hysteresis feedforward improves the tracking performance by 89% compared to
using only feedback control and by 43% compared to using feedback control and
a position feedforward.
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With the presented control method, the AFM can perform scanning movements
with a velocity up to 3.6 µm/s and a tracking error within the sensor bound
of ±5 nm. A separate laser is used to measure the sample topography directly
through the stage movement in vertical direction. Sample images are obtained
with a sensor bound of 2 nm.

Although for controller design purposes the system is assumed decoupled for fre-
quencies f < 100 Hz, still 1% coupling is present in the performance. Further-
more, the position measurements of the stage in all DOFs suffer from disturbances,
which deteriorate the achievable performance of the AFM. In future research,
MIMO control methods will be employed to further increase the bandwidth and
with this the achievable scanning speed and to account for the disturbances acting
on the MIMO system.

Reduction of the discontinuity of the hysteresis feedforward at the switching in-
stances is also subject of further research. Reduction of the discontinuity is ex-
pected to result in a reduction of the ringing in the input voltage and an improved
positioning accuracy.
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Chapter 7

MIMO and repetitive control

Abstract - Atomic force microscopes (AFMs) are used for sample imaging and
characterization at nanometer scale. In this work, we consider a metrological AFM,
which is used for the calibration of transfer standards for commercial AFMs. The
metrological AFM uses a three degree-of-freedom (DOF) stage to move the sample
with respect to the probe of the AFM. In this chapter, a MIMO controller is de-
signed for the three DOFs simultaneously, i.e., for the scanning and imaging axes.
Despite the small amount of coupling, it is shown that a better disturbance sup-
pression and decoupling can be obtained with the MIMO controller in comparison
with a high-gain decentralized controller. The triangular scanning movement and
the repetitive sample topography introduce repetitive disturbances in the system.
To suppress these disturbances, repetitive control (RC) is applied to the imaging
axis. A rotated sample orientation with respect to the actuation axes introduces
a non-repetitiveness in the originally fully repetitive errors and yields a deterio-
rated performance of RC. Directional repetitive control is introduced to align the
axes of the scanning movement with the sample orientation under the microscope.
Experiments show that the proposed directional repetitive controller significantly
reduces the tracking error as compared to standard repetitive control.

This chapter is based on: R.J.E. Merry, M.J.C. Ronde, M.J.G. van de Molengraft, K. R.
Koops and M. Steinbuch. MIMO H∞ and directional repetitive control of a metrological AFM.
Submitted, 2009.
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7.1 Introduction

Atomic force microscopes (AFMs) are widely used for the investigation of samples
at sub-nanometer resolution. The AFM, invented in 1986 by Binning, Quate and
Gerber [17], uses an atomically sharp probe to scan the surface of a sample under
the microscope. Applications include the imaging of (biological) samples [166,173,
174], characterization of materials [2] and nano fabrication [47].

In this chapter, we consider a metrological AFM (see Fig. 7.1), which employs a
piezo stack driven three degree-of-freedom (DOF) stage. The metrological AFM
is used for the calibration of transfer samples for commercial AFMs. For calibra-
tion purposes, accuracy of the measurements is more important than the scanning
speed. However, to limit the influence of changing operating conditions (e.g., tem-
perature, humidity, drift) to the measurement uncertainty, the scan time should
be limited, i.e., a higher scan speed is required.

opticslaser AFM head stage

Figure 7.1: The metrological AFM.

In Chapter 6, we applied decentralized control on all three DOFs of the metro-
logical AFM combined with a hysteresis feedforward. The experimental results
clearly illustrated the coupling effects between the different axes and the repet-
itive nature of the disturbances introduced by the repetitive sample topography
of the transfer standards and the scanning movement. Both the coupling and the
repetitive disturbances appear as the next performance limiting factors (PLFs) in
this application. Hence, to further increase the performance of the metrological
AFM, we focus in this chapter on (1) the application of a MIMO controller to
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account for the coupling effects that are present in the stage and (2) on the appli-
cation of repetitive control to suppress the repetitive disturbances introduced by
the repeating scanning movement and the repetitive structure of the sample.

In many AFMs the sample positioning is currently done in an open-loop manner,
whereas some AFMs use sensors for the sample positioning in feedback [149,176].
Operation of AFMs in constant height mode requires no feedback control. Feed-
back control can be applied to the imaging direction when the AFM is operated in
constant force mode or dynamical tapping mode, which can improve the imaging
results [173].

In literature, MIMO controllers are not commonly used for AFMs [26]. MIMO
identification of a piezo stack driven 2-DOF nano-positioner is combined with SISO
control in [176]. A 3-DOF parallel kinematics nano-positioner with three actuators
oriented at a 120 deg angle is controlled in [51] using MIMO techniques without
considering the possibility of geometric decoupling. AFMs that use piezo tube
scanners inherently have a coupling between the different axes [171]. Although,
MIMO identification of these scanners has been performed in [40], the coupling
terms are not incorporated in the control design, resulting in separate SISO control
loops. In this chapter, we perform a MIMO identification and controller synthesis
for a metrological AFM driven by a 3-DOF piezo stack driven stage. The control
design includes the scanning x- and y-directions as well as the imaging z-direction.

For the second PLF, being the repetitive disturbances, data-based learning control
techniques have been applied in literature to AFMs and piezo scanners. In [195],
inversion based iterative learning control (ILC) is applied to compensate for the
dynamic coupling from the scanning x-, y-axes to the imaging z-axis in a piezo tube
scanner. The hysteresis effects in the piezo scanners of AFMs are compensated
using ILC in [11, 105,214]. In the imaging z-direction, a 1-scan delay feedforward
controller can be used to improve the performance under the assumption that
two adjacent scan lines are quire similar [26, 174, 175]. The same assumption is
made for the application of ILC to the imaging z-direction in [215]. Although the
performance is improved by ILC, still a repetitive component is clearly visible in
the remaining tracking error. Furthermore, ILC assumes identical initial conditions
at the beginning of each iteration, which is not the case for continuous scanning
movements. For this purpose, we use repetitive control (RC) in this chapter to
suppress the repetitive disturbances of the scanning movement and the sample
topography of the transfer standards.

To the authors best knowledge, RC has not yet been applied to the scanning and/or
imaging directions in an AFM. Although both ILC and RC are based on similar
ideas, the design and application are clearly different. ILC requires identical initial
conditions every iteration and is an inherent feedforward technique, whereas the
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equal initial conditions are not required for RC, which acts in feedback and can
thus affect the time domain stability. Sometimes it is wrongfully posed that RC
is not implementable in real-time [51]. In this chapter, we show the real-time
applicability of RC to the imaging axis of the metrological AFM. An extension of
the general RC method is proposed, in which the reference and controller axes are
aligned with the orientation of the sample topography under the AFM.

In this chapter, we design a MIMO controller for all three DOFs of the metrologi-
cal AFM. The performance of the MIMO controller is experimentally compared to
a high-gain decentralized controller with an equal cross-over frequency of the diag-
onal loop gains. Although the amount of coupling between the axes is small, the
MIMO controller can reduce the amount of coupling even further, thus improving
the accuracy of the AFM. Furthermore, we a apply RC to the imaging axis of the
AFM. Since the sample orientation is generally not perfectly aligned with the scan-
ning axes, we propose an adjusted RC scheme, called directional repetitive control
(DRC). In DRC, the scanning axes are rotated to correspond with the orientation
of the sample under the metrological AFM. Experiments show the performance
improvement of DRC in comparison with standard RC for the imaging z-axis.

This chapter is organized as follows. The metrological AFM and its control archi-
tecture will be discussed in Section 7.2 together with the model identification. In
Section 7.3, the decentralized and MIMO control designs and the corresponding
stability assessments will be treated, as well as the comparison of the two con-
trollers. DRC will be presented in Section 7.4. The results of the experiments
with the decentralized and MIMO controllers and of the experiments with DRC
are contained in Section 7.5. Finally, conclusions are drawn in Section 7.6.

7.2 The metrological AFM

The metrological AFM, shown in Fig. 7.1, consists of a Topometrix AFM head, a
3-DOF stage and a ZYGO laser interferometer to measure the stage position in
all DOFs. The 3-DOF stage is driven by piezo stack actuators through a flexure
mechanism in a range of 100 µm in the scanning x, y-directions and in a range
of 20 µm in the imaging z-direction. The mirrors on the AFM, the optics and
the laser of the interferometer are aligned such that the laser spots in all DOFs
intersect at the tip of the cantilever, thus minimizing Abbe errors [170]. The
deflection of the cantilever in the AFM head is measured by an optical sensor,
consisting of a laser and photo-detector. The measurements of the ZYGO laser
interferometer in all DOFs are traceable to the standard of length. The resolution
and root-mean-square (rms) values of the standstill noise with decoupled piezo
actuators are given for all sensors in Table 7.1.
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Table 7.1: Resolution and rms values of the noise for the different sensors.

Sensor Resolution Noise rms value
ZYGO x 0.15 nm 3.56 nm
ZYGO y 0.15 nm 3.06 nm
ZYGO z 0.15 nm 1.25 nm
Head zt 0.05 nm 0.14 nm

7.2.1 Control architecture

A schematic representation of the metrological AFM and the feedback control
architecture is shown in Fig. 7.2. For clarity, the flexure mechanism is omitted.
For the application of feedback control, the inputs of the system are the voltages
ui, i ∈ {x, y, z} to the piezo stack actuators in all DOFs. The outputs of the system
are the measurements of the ZYGO laser interferometers in the scanning x, y-
directions in nanometers and the output of the optical sensor zt of the AFM head
in the imaging z-direction in Volts. The output zt can be translated to nanometers
using the sensitivity of the cantilever and the optical sensor as 1 V ≡ 20.83 nm.
For the application of feedback control to the imaging z-axis, the output does not
have to be converted to nm, but can be directly used.

The tip of the cantilever is controlled in constant force mode while the stages
moves the sample with respect to the cantilever in all three DOFs. The setpoint
of the cantilever is a constant deflection, which is realized by moving the stage in
z-direction while moving the sample with respect to the cantilever. In this way
the orientation of the tip compared to the sample topography remains constant,
thus minimizing Abbe errors.

The output of the ZYGO laser interferometer in z-direction is not used for feedback
control, but to measure the height of the sample directly. Using the measurements
of the ZYGO laser interferometer in all three DOFs, a fully traceable image of the
sample topography can be constructed.
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Figure 7.2: Schematic representation of the metrological AFM and the feedback
control.

7.2.2 Identification

The system G with input u =
[
ux uy uz

]T and output y =
[
x y zt

]T is
defined as

G(f) =



Gxx Gxy Gxz
Gyx Gyy Gyz
Gzx Gzy Gzz


 . (7.1)

In Chapter 6, a full nonparametric MIMO identification of the system together with
an analysis of the amount of coupling between the different axes is performed. The
magnitudes of the measured non-parametric frequency response functions (FRFs)
of (7.1) are shown in Fig. 7.3 by the grey line. This FRF is measured under closed-
loop conditions, by measuring the closed-loop sensitivity S = (I +GK)−1 and the
process sensitivity GS while sequentially exciting one of the axes by a zero mean
white noise signal [207]. Then, G follows from G = GS · S−1.

For the MIMOH∞ control synthesis a linear plant model is required. Modeling the
system G with subspace techniques [208,210] requires very high order models to fit
the diagonal terms sufficiently accurate. Even then, the model does not describe
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the low frequent off-diagonal terms with sufficient accuracy [160]. Furthermore, a
high order model leads to high order controllers, which is generally not favorable.
The model order can be reduced using model reduction techniques, but always at
the cost of a reduced model accuracy. Recently emerging robust-control-relevant
modeling techniques [147,148] show a very promising approach to the identification
step, but are at this stage not applied to the problem of interest in this chapter.
Since the order of the H∞ controller is equal to the model order plus the order of
the weighting filters, a low order model is desired. Therefore, a model was made
by fitting the various elements of G. The diagonal terms are approximated by a
second order model, representing the mass of the stage, which is connected to the
fixed world through the combined stiffness of the piezo stack actuators and the
flexure mechanism. The off-diagonal terms are modeled by constants, representing
a static coupling between the axes, e.g., as introduced by alignment errors. The
fitted model G̃ equals

G̃(s) =



G̃xx −80 300
−150 G̃yy 230
−4.5 −3.5 G̃zz


 ,

where

G̃xx(s) =
6000

1.65 · 10−6s2 + 7.70 · 10−5s+ 1
,

G̃yy(s) =
5100

1.58 · 10−6s2 + 5.03 · 10−5s+ 1
,

G̃zz(s) =
72.4

2.72 · 10−7s2 + 1.41 · 10−5s+ 1
.

The resonance peaks at 124 Hz and 126 Hz in Gxx and Gyy, respectively, represent
two different modes [18] despite their close frequency location. The gains of the
off-diagonal terms are chosen to match the magnitude of the measured FRF in the
frequency range of the desired bandwidth of 10 Hz. Some off-diagonal terms have
a minus sign in order to let the phase correspond to the phase at low frequencies
in the measured FRF (grey line in Fig. 7.3).

The Bode magnitude plot of G̃ is shown in Fig. 7.3 by the black line. It can be seen
that the model accurately describes the DC gains and first main resonance peak
of the diagonal terms. The small resonances and resonances at higher frequencies
are not taken into account in the model in order to keep the model order as low
as possible. Furthermore, since a high-frequent roll-off will be enforced, these
resonances are not considered to be relevant for the controller synthesis. The off-
diagonal terms show a good correspondence with the measured FRF around the
desired control bandwidth of 10 Hz. Note that a model of equal order identified
using subspace techniques turned out to be less accurate, as it does not accurately
describe the static gain and first resonance of the diagonal terms.
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Figure 7.3: Bode magnitude plots of the measured FRF (grey) and the parametric
model (black).
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7.3 Control design

In this section, the control design for the metrological AFM is discussed. First,
the design and stability analysis for a decentralized controller are discussed. Af-
terwards, the MIMO H∞ control design is presented.

The purpose of the controller design is not to maximize achievable cross-over fre-
quencies. Since the amount of coupling for frequencies f < 100 Hz is very small
(see Chapter 6), equal cross-over frequencies should be achievable with a proper
synthesis in both methods. The purpose is to compare the differences of the de-
centralized and MIMO controller, which have an equal amount of integrators and
equal cross-over frequencies of the loop gains on the diagonal terms.

7.3.1 Decentralized control

Using the non-parametric FRF of Fig. 7.3 a decentralized controller is designed
employing loopshaping techniques [63] as

Kd =



Kxx 0 0

0 Kyy 0
0 0 Kzz


 , (7.2)

where

Kxx =
0.56
s2

s/(10π) + 1
s/(90π) + 1

1
s2/(240π)2 + s/(240π) + 1

,

Kyy = Kxx,

Kzz =
2.2
s

1
s2/(200π)2 + 1.4s/(200π) + 1

.

In x- and y-direction equal controllers are used, containing a double integrator to
track constant velocity setpoints without steady-state error, a lead filter to create
a phase gain around the bandwidth frequency and a second order low-pass filter
to obtain high-frequent roll-off. In z-direction, a single integrator is used since
step shaped disturbances caused by the sample structure of the transfer standards
are expected and to limit the amplification of disturbances at high frequencies due
to the Bode sensitivity integral. The Bode magnitude plot of the decentralized
controller Kd is shown in Fig. 7.4 by the black lines.

The cross-over frequencies of each diagonal loop gain Lji(f) = Gji(f)Kji(f), i =
j, i, j ∈ {x, y, z} equal {16.7, 14.7, 25.4} Hz. The loop gains can be further in-
creased by including a notch filter in the controllers of especially the x- and y-
directions. However, since the resonance frequencies may shift due to position
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Figure 7.4: Bode magnitude plots of the decentralized (black) and MIMO (grey)
controllers.
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u
Gd

y+

+

Gnd

(a) Additive perturbation.

u
Gd

y+

+

E

(b) Output multiplicative perturba-
tion.

Figure 7.5: Plant representation with an additive perturbation and multiplicative
output perturbation.

dependency of the 3-DOF stage, this has not been done at this point. For the
comparison intended in this chapter, it is also not necessary.

The stability of a MIMO controlled system can be evaluated using the characteris-
tic loci λ(GK(f)), defined as the eigenvalues of the open-loop frequency response.
The system is closed-loop stable when the characteristic loci do not encircle the
point (-1,0). Notice however that the margins only indicate stability with respect
to a simultaneous parameter change in all of the loops [179].

The non-diagonal parts Gnd of the plant can be considered as an additive pertur-
bation of the diagonal terms Gd = diag(G) as G = Gd+Gnd (see also Fig. 7.5(a)).
The stability of the system with a decentralized controller Kd can be evaluated
using the structured singular value [18, 73]. The diagonal closed-loop transfer
functions equal

Sd = (I +GdKd)−1,

Td = I − Sd.

The interaction due to the non-diagonal terms of the plant can be described as an
output multiplicative perturbation E as shown in Fig. 7.5(b) such that

E = (G−Gd)G−1
d . (7.3)

If G(s) is stable and (I + Gd(s)Kd(s))−1 is stable, a sufficient condition for the
stability of the MIMO system (1 + G(s)Kd(s))−1 equals for s = jω [18, 73]:

σ̄(Td(jω)) < µ−1
Td

(E(jω)), ∀ω, (7.4)

where σ̄(·) are the maximum singular values and µTd(·) is the structured singular
value with respect to the block diagonal structure of Td.

Condition (7.4) is shown in Fig. 7.6 for the decentralized controller of (7.2), where
the grey line represents the inverse of the structured singular value µ−1

Td
and the



7.3 Control design 165

i
i

“MIMO˙decenK˙stability˙temp” — 2009/9/21 — 11:32 — page 1 — #1 i
i

i
i

i
i

10
1

10
2

10
3

−150

−125

−100

−75

−50

−25

0

25

f (Hz)

σ
(T

d
),

µ
−

1
T

d
in

dB

Figure 7.6: Sufficient condition (7.4) for the decentralized control loop with Kd
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three black lines the singular values σ of Td. It can be seen that condition (7.4) is
satisfied for all frequencies, i.e., the decentralized controller stabilizes the MIMO
system.

7.3.2 MIMO control

For the norm based H∞ control synthesis, the system is transformed into a stan-
dard plant configuration as shown in Fig. 7.7(a). The generalized plant is denoted
by P and the MIMO controller by K. The external inputs (disturbances, sensor
noise and reference trajectories) are contained in the vector w. The control vari-
ables are contained in z, which are typically the servo errors and control actions.
The vector v contains the measured variables and u the input variables. The gen-
eralized plant P contains the modeled system dynamics G̃ and the weighting filters
used for the controller synthesis. The generalized plant can be written as

[
z
v

]
=
[
P11 P12

P21 P22

]

︸ ︷︷ ︸
P

[
w
u

]
. (7.5)

For a given controller K, the closed-loop performance is analyzed using the system
N , which is an interconnection of the controller K and standard plant P [179].
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K

u v

zw
P

(a) Standard plant for con-
troller synthesis.

zw N

(b) N structure for perfor-
mance evaluation.

Figure 7.7: Standard plant configuration for controller synthesis and N structure
for performance analysis.

The closed-loop transfer function N from w to z is given by the lower fractional
transformation (LFT) [224], denoted by Fl, as

N = Fl(P,K) = P11 + P12K(I − P22K)−1P21, (7.6)

The MIMO controller K is designed such that the closed-loop system is internally
stable and that the influence of the exogenous variables on the regulated variables
is minimized with respect to the H∞ norm. The controller K is optimized among
all stabilizing controllers as [179]

γopt := min
K
‖N(P,K)‖∞ = min

K
sup
ω
σ̄(N(jω)). (7.7)

For the controller synthesis, weighting filters WS , WKS and WT are added to
the sensitivity (for performance), the control sensitivity (to penalize the control
effort) and the complementary sensitivity (for robustness and to avoid sensitivity
to noise), respectively. The feedback loop with the weighting filters is schematically
shown in Fig. 7.8, where the reference is contained in w = −r and the tracking
error v := e = r − y. This results in a generalized plant P [179] as




z1

z2

z3

v


 =




0 WKSI
0 WTG

WSI WSG
−I −G




︸ ︷︷ ︸
P

[
w
u

]
, (7.8)

where the output sensitivity So = (I + GK)−1 and the complementary output
sensitivity To = GK(I + GK)−1. The controller K is optimized by minimizing
‖N(K)‖∞ with respect to K, where

N =



WKSKSo
WTTo
WSSo


 . (7.9)
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K− G WS
uv z3

z2

z1
w

WT

WKS

+
+

Figure 7.8: Schematic representation of the feedback loop with the weighting fil-
ters.

The weighting filters WS , WT and WKS are designed employing classical loop-
shaping knowledge. The weight on the sensitivity WS is designed to enforce low
frequent disturbance suppression, an integrating action at low frequencies and such
that the peak value is below 6 dB for all frequencies. The weight on the control
sensitivity WKS is chosen constant to limit the maximum input. To prevent am-
plification of sensor noise, the weight on the complementary sensitivity WT can be
used to enforce high-frequent roll-off. To compare the MIMO controller to the de-
centralized controller of Section 7.3.1, the filters are chosen such that the number
of integrators in the controller and the cross-over frequencies of the diagonal loop
gains are approximately equal. The diagonal filters WS , WT and WKS equal

WS(i, j) =

{
kS

(s+2πfS1(i))(s+2πfS2(i))
(s+2πfS3(i))(s+2π10−6) , if i = j,

0, if i 6= j,
(7.10)

WKS(i, j) =
{
c, if i = j,
0, if i 6= j,

(7.11)

WT (i, j) =

{
kTα

2
T

s2+4πβT fT (i)s+(2πfT (i))2

s2+4πβTαT fT (i)s+(2παT fT (i))2 , if i = j,

0, if i 6= j,
(7.12)

where i, j ∈ {x, y, z}. Furthermore, kS = 0.5, c = 0.5, kT = 0.5, αT = 100 and
βT = 0.7. The axis dependent parameters fS1, fS2, fS3 and fT are contained in
Table 7.2. For the z-axis the parameters fS2 = 0 Hz and fS3 = 0 Hz and thus
only a single integrator is enforced in the controller in z-direction (see also (7.10)),
instead of a double integrator as in the controllers in x- and y-directions.

With the generalized plant (7.8) and the weighting filters (7.10), (7.11) and (7.12),
a controller K is obtained with γopt = ‖N‖∞ = 0.91. This implies that all the
objectives specified by the weighting filters are satisfied in the obtained closed-loop
system. Furthermore, the individual transfer functions in N and the controller K
are all stable.
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Table 7.2: Parameters of the weighting filters WS , WKS and WT .

axis fS1 (Hz) fS2 (Hz) fS3 (Hz) fT (Hz)
x 10 10 10−6 23
y 8 8 10−6 19
z 40 0 0 45

The Bode magnitude plot of the derived MIMO controller K is shown in Fig. 7.4
by the grey lines. The MIMO controller is of order 17, which is equal to the
order of the plant model G̃ plus the order of the weighting filters. The cross-over
frequencies of each loop gain (diagonal elements of the open-loop transfer function
matrix L = GK) equal {15.9, 13.4, 22.9} Hz, which are comparable to the cross-
over frequencies for the decentralized controller. The decentralized and MIMO
controllers show a large similarity on the diagonal terms. Besides the obvious
difference that the MIMO controller is a full 3 × 3 matrix, the MIMO controller
contains several notches in all elements. Since the H∞ controller synthesis results
in a proper controller, additional zeros are located in the controller around the
Nyquist frequency, resulting in the increased controller gain above these frequencies
as can be seen in Fig. 7.4. Due to the roll-off present in the system (see Fig. 7.3), the
increased controller gain does not affect the stability. This effect could be reduced
by enforcing additional roll-off in the weighting filter WT for the complementary
sensitivity.

The stability of the MIMO controller is assessed by evaluating the characteristic
loci λ(GK) calculated with the measured FRF of Fig. 7.3. The characteristic loci,
shown in Fig. 7.9, show that the MIMO controller K stabilizes the system.

7.3.3 Controller comparison

The output sensitivities calculated with the measured FRF and, respectively, the
decentralized and MIMO controllers are shown in Fig. 7.10. The output sensitivity
So obtained with the MIMO controller K is smaller than So obtained with the
decentralized controller Kd in the off-diagonal terms at the frequencies where the
MIMO model is accurate, i.e., around 10 Hz. This indicates that the coupling
effects of the disturbances to the errors in the different DOFs are reduced by
the MIMO controller in this frequency range. However, at high frequencies the
coupling effects of the disturbances are amplified by the MIMO controller.

The obtained reduction in the off-diagonal terms of the output sensitivity by the
MIMO controller is not enforced in the controller synthesis since only diagonal
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the measured FRF of Fig. 7.3.

weighting filters are used. The design of non-diagonal weighting filters to enforce
certain desired properties is non-trivial since the non-diagonal filters are hard to
interpret as relevant closed-loop bounds in the frequency domain and are therefore
hard to tune [206]. In the control synthesis the directional information of the
disturbances acting on the AFM system is not taken into account. Incorporating
the directional information of the disturbances in the control synthesis can further
improve the results [19], which is subject of future research.

The amount of reduction by the MIMO controller could be possibly increased
further, especially at higher frequencies, by decreasing the model mismatch. Since
the reduction in the off-diagonal terms of the output sensitivity So is influenced by
a combination of several terms of the system G and the controller K, the model
mismatch should be reduced in all terms simultaneously.

7.4 Directional repetitive control

The triangular scanning movement of the AFM and the repetitive sample topogra-
phy, which is typical for transfer standards for the metrological AFM, introduce
repetitive disturbances in the system. These disturbances can be asymptotically
suppressed using repetitive control (RC) [34,77,81].
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Figure 7.11: Block diagram of a 1-DOF feedback controlled system with RC added.

In this section, first standard RC will be addressed briefly. Next, directional
repetitive control (DRC) is introduced, in which the scanning directions of the
repetitive controller are adjusted based on the orientation of the sample under the
AFM. For an in-depth treatment of RC, see [185,187].

7.4.1 Repetitive control

For the metrological AFM, RC can be applied to the fast scanning and the imaging
axes since these have a repetitive reference trajectory (triangular) and a repetitive
external disturbance (transfer sample), respectively. The repetitive controllers
are combined with the decentralized controllers Kd of the corresponding axes, as
described in Section 7.3.1. The decentralized controllers are used since this allows
RC to be added directly to the control loop, whereas the combination of RC with
a MIMO controller would require a redesign of the MIMO controller K [44].

Fig. 7.11 shows a block diagram of the feedback controlled system for one DOF
with RC added. For the moment, consider the matrix R = I, i.e., ra = rr,
er = ea and ua = ur. In Fig. 7.11, Gd represents the diagonal system dynamics
of one DOF, Kd the decentralized controller and Md the repetitive controller of
that specific DOF, respectively. The signal d contains the repetitive disturbances
acting on the system.

From the transfer function from the error er to the output eM follows for the
repetitive controller Md(z)

Md(z) =
L(z)Q(z)z−(N−q−l)

1−Qz−(N−q) , (7.13)
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where L(z) is the learning filter with a phase delay of l samples, Q(z) is the
robustness filter with a phase delay of q samples and N is the number of samples
that determines the length of the repetitive period. With the repetitive controller
Md, the modified sensitivity, describing the effect of the repetitive disturbances d
on the tracking error ea, equals

S =
1

1 +GdKd(1 +Md)
=

1
1 +GdKd

MS , (7.14)

where the modifying sensitivity function [32]

MS =
1−Qz−(N−q)

1−Qz−(N−q)(1− TLz+l)
. (7.15)

For SISO systems, the closed-loop system with RC is stable if the original diagonal
sensitivity Sd = (1 +GdKd)−1 is asymptotically stable and if for all frequencies

|Q(1− TLz+l)| < 1. (7.16)

The criterion (7.16) is a sufficient condition for stability of SISO systems with RC
and is derived using the small gain theorem [179].

For MIMO systems, a framework for the synthesis of MIMO repetitive controllers
is presented in [44], which is based on the internal-model-principle. In a MIMO
framework, the stability can be evaluated using (7.16) with the complementary
sensitivity T = RGRTK(I+RGRTK)−1 and full transfer matrices for the robust-
ness filter Q, learning filter L and delays. An independent design of the learning
filter L and feedback controller K is not recommended in a MIMO setting [44].
Since the addition of RC to a MIMO controller requires a redesign, direct compar-
ison is not possible. To show the applicability of DRC, we will restrict ourselves
in this chapter to the SISO case. DRC will be applied to the z-axis only since a
sample rotation is most likely to occur around this axis due to the positioning of
the sample on the stage.

The learning filter L(z) compensates for the dynamics between the input and out-
put of the repetitive controller, namely the complementary sensitivity Td. There-
fore, ideally the learning filter equals L(z) = T−1

d (z). In case Td is non-proper
or has non-minimum phase zeros, an approximation L(z) ≈ T−1

d (z) is made to
obtain a stable, proper learning filter. The approximated learning filter can be
obtained using the zero-phase-error-tracking-control (ZPETC) method [197].

The Q filter provides robustness against modeling errors and is designed such that
the convergence criterion (7.16) holds. The use of the Q(z) filter also restricts the
working principle of the repetitive controllers in certain frequency bands [185]. If
the filter Q(z) is constructed to have a linear phase of q samples, the introduced
phase delay of the filter can easily be compensated for in the memory loop of N
samples, provided that N > q [111].



7.4 Directional repetitive control 173

xa

ya

(a) Perfectly aligned.

xr

ya

xa

yr

α

(b) Rotated.

Figure 7.12: Sample orientation with respect to the scanning axes xa and ya.

7.4.2 Sample dependent scan directions

For RC, the disturbances need to be fully repetitive. The sample topography
introduces a perfectly repetitive disturbance over the different scan lines if the
sample orientation is perfectly aligned with the actuation directions, as shown in
Fig. 7.12(a). However, in general, especially on a nanometer scale, the sample
under the metrological AFM is not perfectly aligned with the actuation directions.
The largest rotation is expected in the positioning of the sample on the sample
holder, i.e., a rotation around the z-axis. The misalignment of the sample causes
the disturbances introduced by the sample topography to be non-repetitive in time
while scanning the sample in x- and y-direction, as indicated in Fig. 7.12, where
the actuation directions are indicated by the subscript a and the rotated sample
axes by the subscript r. The sample is rotated around the z-axis over an angle of
α (rad) with respect to the actuation directions.

By rotating the scan trajectory over the angle α such that the scan lines are aligned
with the rotated axes xr, yr, the sample disturbance becomes fully repetitive again
over the subsequent scan lines. The rotation of the coordinate system (xa, ya) to
(xr, yr) as shown in Fig. 7.12(b) can be described by the rotation matrix R(α) as



xr
yr
zr


 =




cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1




︸ ︷︷ ︸
R(α)



xa
ya
za


 . (7.17)

For the rotation matrix holds that RTR = I. The rotation only involves a rotation
in the plane of the sample, i.e., in the scanning direction. Possible tilt of the sample
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caused by a rotation around the axes xa and/or ya is not taken into account in
this analysis, but could be incorporated in a similar manner with an additional
rotation matrix.

The rotation is incorporated in the reference trajectories to the different axes and
in the decentralized feedback controllers with RC KRC

d as shown in Fig. 7.11. The
RC scheme with the rotated axes is referred to as DRC.

7.4.3 Rotation estimation

For the application of DRC, the sample orientation, i.e., the angle α, should be
known. To determine the orientation, two line scans are performed in the fast scan-
ning y-direction at different constant positions x1,2. Under the assumption that
the sample structure is identical for the two scan lines, the orientation and thus α
can be determined from the recorded sample heights z1,2 of the laser interferometer
in z-direction. The number of samples phase shift between the sample features of
the two recorded sample heights z1(t) and z2(t) is determined by calculating the
correlation R as

Rz1,z2(τ) = E{(z1(t)− µ1)(z2(t− τ)− µ2)}, (7.18)

where τ is the number of samples phase shift, µ1 and µ2 are the mean values of the
sample heights of the two line scans respectively and E{·} denotes the expected
value operator. The correlation is maximal when the phase shifted sample heights
are similar. The number of samples phase shift δs can be determined as

δs = arg
(

max
τ

(Rz1,z2(τ))
)
. (7.19)

Using the scanning velocity vy (nm/s) and the sampling time ts (s), the difference
in distance between the sample features over the scanning lines δy (nm) can be
calculated as

δy = δstsvy. (7.20)

The accuracy of δy is dependent on the scanning velocity and sampling frequency.
To determine the orientation α accurately, the scanning speed should be chosen
low and a high sampling frequency is preferred. The sample rotation angle α can
finally be calculated as

α = arctan
(∣∣∣∣

δy
x2 − x1

∣∣∣∣
)
. (7.21)

Summarizing, the orientation of the sample can thus be obtained in a five step
procedure as:
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1. perform a line scan in the fast scanning y-direction at constant x1-position
and record the sample height z1,

2. perform a second line scan at a different constant x2-position and record
the sample height z2,

3. determine the phase shift between the sample heights z1,2 using (7.19),
4. determine the shift in position between the sample features using (7.20),
5. calculate the sample rotation angle α from (7.21).

The non-repetitive disturbances present in the measured sample heights z1,2 of
the two scan lines affect the calculated sample rotation α. To reduce the influence
of the disturbances on α, more line scans can be performed. Averaging of the
different obtained angles α of two subsequent line scans reduces the influence of
the non-repetitive disturbances.

7.5 Experimental results

This section contains the results of the experiments with the decentralized con-
troller Kd, the MIMO controller K and DRC applied to the metrological AFM.
The proposed DRC method has the largest influence in z-direction, i.e., where the
sample topography acts as a repetitive disturbance. Therefore, the experimental
results of RC and DRC in z-direction are shown.

For the experiments, a constant velocity setpoint of 125 nm/s is used for the slow
scanning x-direction. In the fast scanning y-direction a triangular shaped setpoint
profile over a range of±25 µm with a velocity of 25 µm/s is used, i.e., with a period-
time of 4 s. The z-direction is controlled to a constant tip deflection. The controller
sampling frequency for the experiments equals fs = 2 kHz. The repetitive period
for the RC experiments is determined by the setpoint in y-direction and equals
N = 8000 samples.

7.5.1 Decentralized versus MIMO control

The largest output disturbance is introduced by the unknown sample topography
in z-direction. The largest reduction in coupling by the MIMO controller K is ob-
tained from the disturbance in z-direction to the x-direction, as shown in Fig. 7.10.
Therefore, the time response of the x-direction is presented.

The tracking errors ex = rx − x of the experiments with the decentralized con-
troller Kd and the MIMO controller K are shown in Fig. 7.13. The tracking error
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Figure 7.13: Tracking errors ex and cumulative PSDs of the errors obtained with
the decentralized (black) and MIMO controllers (grey).

looks similar in time with both controllers. The rms values of the errors equal
rms(ex,Kd) = 44.3 nm and rms(ex,K) = 51.3 nm, respectively. The slight increase
in error obtained with the MIMO controller is caused by the high-frequent external
disturbances acting on the system in combination with the larger magnitudes of
the off-diagonal output sensitivities at high frequencies (see Fig. 7.10).

The cumulative power spectral densities (CPSDs) of the errors, shown in Fig. 7.13,
show the reduction of the error in x-direction in the frequency region where the
model terms G̃xy and G̃xz are accurate, i.e., around the desired bandwidth of
10 Hz. The frequencies at which the error is reduced correspond to the frequencies
where the coupling from the disturbances in y and z are reduced to the error in
x-direction, as shown in Fig. 7.10.

Although the rms value of the error is slightly increased by the application of the
MIMO controller, the error is reduced in the frequency range where a reduction
was expected by the controller design. With a better MIMO model, possibly an
overall performance improvement by application of MIMO control can be obtained.
The derivation of a more accurate MIMO model in the high frequency region will
be part of future research.
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7.5.2 Results DRC

Since timing is crucial for the success of the repetitive controller, a zero-phase
error is required. Using a discrete model of the complementary sensitivity T̃d
in z-direction and the ZPETC method [197], the learning filter Lz(z) is derived
as a proper, stable approximation of the inverse complementary sensitivity, i.e.,
Lz(z) ≈ T̃−1

d,z (z). The Bode diagrams of the complementary sensitivity function
T̃d(z) and learning filter L(z) in z-direction are shown in Fig. 7.14. It can be
seen that the phase of the learning filter is an exact inverse of the complementary
sensitivity function. The magnitude of the learning filter approximates the inverse
complementary sensitivity very well, but has a slight deviation in amplitude at
high frequencies in order to obtain a stable and proper filter L(z).

The convergence criterion (7.16) is plotted in Fig. 7.15 using the measured FRF
data with and without the Q(z) filter. The convergence criterion evaluated without
Q filter (grey line in Fig. 7.15) exceeds 0 dB for frequencies f > 215 Hz. To
guarantee stability of the RC scheme and to restrict the modified sensitivity (7.14)
to S < 10 dB, a low-pass Q(z) FIR filter with 200 taps and a cut-off frequency of
50 Hz is used. With the low-pass robustness filter Q(z) the convergence criterion
(7.16) is fulfilled as shown in Fig. 7.15 by the black solid line.

In order to show the applicability of the proposed DRC method, the sample is
intentionally rotated under the metrological AFM at two different angles α (rad).



178 Chapter 7 MIMO and repetitive control

i
i

“RC˙exp˙temp” — 2009/10/2 — 13:58 — page 1 — #1 i
i

i
i

i
i

0 0.25 0.5
−300

−150

0

150

300

z α
1

(n
m

)

0 0.25 0.5
−120

−60

0

60

120

e z
,α

1
(n

m
)

0 0.25 0.5
−300

−150

0

150

300

z α
2

(n
m

)

0 0.25 0.5
−120

−60

0

60

120

e z
,α

2
(n

m
)

0 0.25 0.5
−300

−150

0

150

300

z D
R

C
(n

m
)

t (s)
0 0.25 0.5

−120

−60

0

60

120

e z
t
,D

R
C

(n
m

)

t (s)

Figure 7.16: Measured sample topographies z (left column) and tracking errors ez
(right column) for various scan lines with RC for rotations α1 = 0.22 rad (top)
and α2 = 0.15 rad (middle) and with DRC (bottom).

The measured sample topographies of different scan lines for the two experiments
with a rotated sample are shown in Fig. 7.16 in the top left two figures. The shift
in the sample topography in between the subsequent scan lines is clearly visible.
The rotation in the second experiment is smaller since the phase shift between the
different lines is smaller. Using the procedure described in Section 7.4.3, the sample
orientations are determined as α1 = 0.22 rad and α2 = 0.15 rad, respectively.

The tracking errors of the RC experiments with the rotated sample over α1,2 rad
contain a phase shift and large oscillations for the various scan lines, as shown in
the top right figures in Fig. 7.16. The root-mean-square (rms) values of the errors
of the different iterations are shown in Fig. 7.17(a) as function of the iteration
number. It can be seen that despite of the phase shifts RC is still able to reduce the
tracking error. Furthermore, the rms value of the tracking error for α1 = 0.22 rad
is larger than for α2 = 0.15 rad. After convergence, the rms values of the errors of
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Figure 7.17: Convergence plot and cumulative PSD of the errors at iteration k = 15
for the experiments with RC and α1 = 0.22 rad (light grey) and α2 = 0.15 rad
(dark grey) and with DRC (black).

the various iterations fluctuate due to the presence of non-repetitive disturbances.

If DRC is applied, the measured sample topography over the different scan lines
does not show a phase shift, as shown in the bottom left axis of Fig. 7.16. The
measured tracking errors of the different iterations, shown in the bottom right axis
of Fig. 7.16, are only present at the time instants where a transition in the measured
sample topography is detected. With DRC, no phase shift or large oscillations at
other time instants are present in the tracking errors. The rms values of the
errors of the different iterations are shown in Fig. 7.17(a) by the black line. DRC
reduces the tracking error ez for a rotated sample over α1 = 0.22 rad by 44%
from rms(ez,α1) = 10.42 nm to rms(ez,DRC) = 5.86 nm. For a rotated sample
over α2 = 0.15 rad, the error is reduced by 33%. Furthermore, the rms values
of the errors are for all iterations smaller for DRC than for RC with a rotated
sample. The rms values of the errors at the iterations k = 1 and k = 15 of the
experiments of RC applied with α1 = 0.22 rad and α2 = 0.15 rad and DRC are
given in Table 7.3. Note that the errors at iteration k = 1 are only influenced by
the feedback controller Kd, i.e., the repetitive controllers are not active during the
first iteration since no repetitive error is available yet. In Fig. 7.17(b) the square
root of the CPSDs of the tracking errors of RC with the rotated sample and of
DRC are shown for iteration k = 15. The reduction in tracking error by DRC can
clearly be seen. For frequency f →∞, the square root of the CPSDs converge to
the rms values of the tracking errors.
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Table 7.3: rms values of the errors at iterations k = 1 and k = 15 for the RC
experiments in z-direction with α1 = 0.22 rad and α2 = 0.15 rad and for the DRC
experiment in z-direction.

Iteration rms(ez,α1) rms(ez,α2) rms(ez,DRC)
k = 1 23.96 nm 23.54 nm 25.39 nm
k = 15 10.42 nm 8.71 nm 5.86 nm

7.6 Conclusions

In this chapter, a MIMO H∞ controller design for a metrological AFM has been
presented together with a novel directional repetitive control (DRC) scheme, which
aligns the scanning axes with the sample orientation.

Using a low order system model, a MIMO H∞ controller is derived. The MIMO
controller is compared to a high-gain decentralized controller that has comparable
cross-over frequencies of the diagonal loop gains. Despite the small amount of
coupling present in the system, the output sensitivity is shown to have a better
disturbance suppression using the MIMO controller compared to the decentralized
controller.

The orientation of the sample under the AFM is not necessary aligned with the
direction of actuation. This causes the topography of the transfer samples to
result in non-repetitive disturbances, thus limiting the performance of repetitive
learning controllers. The DRC scheme aligns the actuation axes with the sample
orientation. The required coordinate transformation is obtained from a scan over
a couple of lines.

The experimental results of the imaging z-axis of the metrological AFM show the
applicability of the proposed directional repetitive controller. Even for a small
sample rotation of 0.22 rad, DRC is shown to reduce the tracking error by 44%
compared to a standard repetitive controller.

The improved disturbance suppression and decoupling properties of the MIMO
controller are not explicitly enforced in the controller synthesis step since only
diagonal weighting filters are used. The MIMO H∞ controller design with non-
diagonal weighting filters is subject of future research.

The combination of MIMO and RC could improve the results even further. This
requires a simultaneous redesign of both the MIMO feedback controller and the
learning controller, which will be subject of future research.
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Chapter 8

Time-stamping with velocity
and acceleration estimates

Abstract - Optical incremental encoders are extensively used for position mea-
surements in motion systems. The position measurements suffer from quantization
errors. Velocity and acceleration estimations obtained by numerical differentiation
largely amplify the quantization errors. In this chapter, the time-stamping con-
cept is used to obtain more accurate position, velocity and acceleration estimations.
Time-stamping makes use of stored events, consisting of the encoder counts and
their time instants, captured at a high-resolution clock. Encoder imperfections
and the limited resolution of the capturing rate of the encoder events result in
errors in the estimations. In this chapter, we propose a method to extend the
observation interval of the stored encoder events using a skip operation. Experi-
ments on a motion system show that the velocity estimation is improved by 54%
and the acceleration estimation by 92%.

This chapter is based on: R.J.E. Merry, M.J.G. van de Molengraft and M. Steinbuch. Velocity
and acceleration estimation for optical incremental encoders. Mechatronics, accepted, 2009.
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8.1 Introduction

Optical incremental encoders are widely used to apply feedback control on motion
systems where the position is measured at a fixed sampling frequency. They are
available in both rotational and linear form. The position accuracy is limited by
the quantized position measurement of the encoder, i.e., it is limited by the number
of slits on the encoder disk.

The quantization errors can be reduced using more expensive encoders with more
increments at the expense of increased cost price. Velocity and acceleration in-
formation is often obtained by numerical differentiation of the quantized position
signal. Direct differentiation mostly leads to signals that are not useful [94]. The
quantization errors limit the performance in high-accuracy control applications.

Smart signal processing techniques can be used in combination with cheap low-
resolution encoders to obtain position estimations with the same accuracy as ex-
pensive high-resolution encoders. In literature, several methods have been pro-
posed to improve the accuracy of velocity and acceleration estimations for optical
incremental encoders. The methods can be divided into two kinds; fixed-time
(clock-driven) methods and fixed-position (encoder-driven) methods.

For real-time control purposes, a fixed-time method is desired since the controller
is generally evaluated at fixed-time intervals. Fixed-time velocity and acceleration
estimations can be obtained using three different approaches; predictive postfilter-
ing techniques, linear state observers and indirect measurement techniques.

Predictive postfiltering techniques perform a filtering on differentiated position
signals. Euler based methods [115] and polynomial delayless predictive differen-
tiators [202] both disregard the variable rate of occurrence of the encoder events to
estimate the velocity or acceleration. The transition based logic algorithm of [110]
estimates only the velocity under the assumption that the sampling frequency is
much larger than the rate of the encoder events.

Linear state observer techniques use the encoder position measurements, without
the need for differentiation. Dual-sampling rate observers [100] and Kalman fil-
ters [13] require accurate system models to be available. The non-model based ob-
server of [196] switches between two estimation filters based on an estimation error,
which is generally not available. Data-based observers using neural networks [29]
or fuzzy logic [221] estimate the velocity using only the position information, thus
disregarding the non-constant time occurrence of the encoder events.

Indirect measurement techniques are based on analog or digital postprocessing of
available position and/or velocity signals. In [164], the velocity is estimated by a
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polynomial fit through a number of encoder counts. No time information of the
encoder events is taken into account and no acceleration information is obtained.
In [23], both encoder counts and their time instants are used to estimate the
velocity. This is called the time-stamping concept. However, only simulations are
performed at a practically unrealistic sampling frequency of 1 MHz and all encoder
events are taken into account, which is not practically applicable.

Since for control purposes fixed-time methods are desired and since the encoder
events have a fixed-position nature, occurring at a varying rate in time, a combina-
tion of the two approaches would be favorable. To reduce the effect of quantization,
which is the performance limiting factor (PLF) in optical incremental encoders,
we propose a method to accurately estimate the position, the velocity as well
as the acceleration using the time-stamping method of [23]. The time-stamping
concept was used for position estimation in combination with the calibration and
compensation of encoder errors in [132]. The time-stamping concept involves the
capturing of encoder events, i.e., the encoder transitions and their time instants,
at a high-resolution clock added to the encoder in the data-acquisition hardware.
The encoder events are stored in a register and transferred to the controller at a
lower fixed sampling rate. Polynomial interpolation through the encoder events
and extrapolation of the obtained polynomial make it possible to estimate position,
velocity and acceleration at the time of interest.

In this chapter, we propose a skip option for the event selection as an extension of
the time-stamping concept of [132]. The need for the skip option is originated by
two factors. Firstly, the storage register for encoder events is of finite length. The
skip option is a selection method for the storage of the encoder events captured
at the high-resolution clock in the data-acquisition hardware and enables a more
flexible use of the available register space. Secondly, the velocity and acceleration
estimation using time-stamping are distorted by the presence of encoder imper-
fections. For this use, the skip option can perform a spatial low-pass filter on the
encoder events to reduce the effect of the encoder imperfections. Since the most
recent event is always included in the register, the skip option effectively does not
influence the resolution or the quadrature of the encoder. It only influences the
spatial data history in the register used for the polynomial interpolation.

The proposed method is an indirect measurement approach which is fully data-
based, so no model of the system is required. Note that the required model for
estimation of the position, velocity and acceleration is different from the model
required for feedback controller design, e.g., the model required for estimation
purposes should include friction, which is difficult to model accurately.

Experiments on a motion system show the applicability of the proposed method to
obtain more accurate velocity and acceleration signals. Since the skip option and



8.2 Time-stamping concept 187

tk tc3

Tc

xkx
e

real
quantized
event

tc1 tc2 tc4 tc5

tc (-)

x
(c

ou
nt

s)

Figure 8.1: Time-stamping concept; the encoder transition xk and time tk are
captured and stored as an event.

the capturing of the encoder events are implemented in hardware, the estimation of
the signals is of the fixed-time kind. Therefore, the proposed method is applicable
in real-time closed-loop experiments.

This chapter is organized as follows. The time-stamping concept will be explained
in more detail in Section 8.2. The position reconstruction method will be briefly
addressed in Section 8.3. In Section 8.4, the principle of skip in time-stamping
will be introduced and its effects on the position reconstruction will be described.
The influence of skip will be shown in Section 8.5 by means of experiments on a
motion system. Finally, conclusions will be drawn in Section 8.6.

8.2 Time-stamping concept

In most motion control applications the position is measured by reading out the
quadrature encoder counter value at the fixed controller sampling rate Tc. This
introduces even for ideal encoders a quantization error in the position measurement
of maximally half the encoder resolution xe. The quantized signal contains the
encoder counter value at the controller sampling times tc, as can be seen in Fig. 8.1.

A possibility for increasing the accuracy of the position information with the same
resolution encoders is using the concept of time-stamping [23]. The time-stamping
concept stores the time instants tk of a number of encoder transitions together
with their position xk. The pair (tk, xk) is called an encoder event. The encoder
events are captured by a high-resolution clock with a sampling-period Te << Tc.
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8.3 Position reconstruction

The use of encoder events for feedback control is not trivial since the encoder events
are obtained at a variable rate proportional to the instantaneous velocity of the
system during the measurement. To obtain a position estimation at the equidistant
sampling times of the controller, a polynomial is fitted through a number of past
encoder events. This polynomial is extrapolated to the desired time instant of the
controller. Velocity and acceleration estimations are obtained by differentiation of
the fitted polynomial with respect to time and extrapolation to the fixed sampling
times of the controller.

For the position, velocity and acceleration estimations, a low order polynomial is
fitted through a number of encoder events by the least squares method. Let n be
the number of encoder events used in the fit, m the order of the fit, and k the
index number of the events. Furthermore, let p0,...,m be the polynomial coefficients
to be estimated, t1,...,n the time information of the encoder events, and x1,...,n the
position information of the encoder events. Now define the matrices A ∈ Rn×m+1,
P ∈ Rm+1, and B ∈ Rn as follows

A =




tmk−n+1 tm−1
k−n+1 · · · 1

...
...

...

tmk−1 tm−1
k−1 · · · 1

tmk tm−1
k · · · 1



, (8.1)

P =
[
pm pm−1 · · · p0

]T
, (8.2)

B =
[
xk−n+1 · · · xk−1 xk

]T
. (8.3)

To prevent numerical problems with the higher-order terms in (8.1), the time
variable t can be redefined to be zero every controller sampling time tc, i.e., t :=
t− tc.

If n = m, an exact fit is made through the events. For the least squares method
n > m. The over-determined system of linear equations to be solved for the
polynomial fit equals

AP = B.

The polynomial coefficients can be calculated using the least squares method as

P = (ATA)−1ATB. (8.4)

The polynomial coefficients P of (8.4) have to be calculated in real-time. For this
purpose, LU-factorization without pivoting is used [103]. The inverse matrix will
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not be calculated in a recursive manner since the events contained in the register
are likely to vary every sampling time of the controller and thus the information
contained in the A matrix is different every time. Instead, (8.4) will be solved at
each controller sample.

If the time instants between the events in the register are very small, the A matrix
can become ill-conditioned. To avoid numerical problems, the time span ∆tK in-
between the time instants of the first and last event is scaled to 1 for the polynomial
fit. In this way, the time instants of the events are of order 1 and the A matrix is
well conditioned.

As an example of the time scaling, let the true time instants of the last five
encoder events equal tK =

[
1 2 3 4 5

]
· 10−5 s. The time range of the

events equals ∆tK = 4 · 10−5 s. The time instants are scaled as t∗K = tK
∆tK

=[
0.25 0.5 0.75 1 1.25

]
s. The scaled time instants are of order 1 and the

scaled time range equals exactly 1. For a second order fit with five events, i.e.,
m = 2 and n = 5, the condition number of the A matrix (8.1) with the scaled
time instants equals cond(A(t∗K)) = 26.96 whereas the condition number of the A
matrix with the original time instants equals cond(A(tK)) = 5.976 · 109. The time
scaling improves the conditioning properties of the A matrix for the estimation of
the polynomial coefficients.

Since the position, the velocity and the acceleration estimations are required at
the sampling times of the controller, the polynomial with the fitted coefficients P
is extrapolated to the desired time instant tc. The extrapolation of the polynomial
to the time instant tc results in an estimated position x̂, estimated velocity ˙̂x, and
estimated acceleration ¨̂x as

x̂(t)|t=tc = pm(tc∆tK)m + pm−1(tc∆tK)m−1 + . . .+ p0,

ˆ̇x(t) = ˙̂x(t),
ˆ̈x(t) = ¨̂x(t).

The time scaling factor used for the estimation of the polynomial coefficients is
accounted for in the extrapolation to obtain the correct position, velocity and
acceleration estimations.

If the estimation exceeds the quantized position measurement by more than one
count, the estimation is replaced by the quantized measurement. This results in
an used estimation signal x̂∗(t) as

x̂∗(t) =

{
x̂(t), if |x̂(t)− x̄(t)| ≤ 1

x̄(t), else,
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where x̄(t) (counts) denotes the quantized position measurement. This can for
example occur when no new events are detected over a longer time interval.

The easiest motion profile for the time-stamping concept would be a constant
velocity reference since this would result in an equally distributed series of events
in time. Oscillating signals that change sign in the velocity are more difficult to
be handled since these signals have a lower event rate at the turnaround points.
In this chapter we consider sinusoidal setpoint profiles since these have a constant
changing event rate in time and also contain the turnaround points.

8.4 Skip option

The encoder events (tk, xk) suffer from errors due to encoder imperfections, such
as a non-uniform slit distribution, misplacement of the sensor photodiodes, ec-
centricity of the encoder disc, etc. The encoder imperfections introduce an error
between the real and observed encoder event. The time instant tk of the encoder
event can have an error of maximum Te due to the limited resolution Te of the
high-resolution clock.

For real-time experiments, n events are used in the polynomial fit. The errors in
the encoder events act as disturbances on the position information. These distur-
bances are amplified in the velocity estimation and even more in the acceleration
estimation. A possible solution would be to increase the number of events. How-
ever, in most hardware, the number of available events is limited. In this section,
a skip option is proposed to extend the time span covered by the n events in the
fit without the need for more events.

8.4.1 Skip

The skip option makes it possible to skip a fixed number of events in between
two stored events. In Fig. 8.2, the skip option is shown graphically for a skip of
σ = 2 counts. The real signal and the quantized signal are shown by the solid and
dashed line, respectively. The arrows show the events to be discarded since the
last stored event. The stored events are shown by the dark grey circles. The light
grey circles are the discarded events. In between two dark circles always σ = 2
events are skipped.

The skip option performs a low-pass filtering on the encoder events with a spatial
cut-off frequency that is dependent on the momentary event rate.
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Figure 8.2: Visualization of the skip option in time-stamping for σ = 2 counts.

For a skip factor of σ (counts), the index numbers of the events to be stored and
used for the polynomial fit can be calculated using

kσ(k, i) = k −mod(k − 1, σ + 1)− (i− 1)(σ + 1), (8.5)

where i ∈ [1, . . . , n] and the modulus after division is defined as

mod(x, y) = x− ybx/yc, (8.6)

in which bqc = max{p ∈ Z | p ≤ q} denotes the floor function.

8.4.2 Position reconstruction

The events to be used for the position reconstruction with skip are determined
by (8.5). In most control applications, the controller is sampled at a fixed sample
interval. With skip it can occur that the last event before a controller interrupt
is discarded. However, the last encoder event before a controller interrupt is the
most recent measurement. Despite the skip option, we choose to always store the
most recent encoder even k. This results in the set K ∈ Rn with the index number
of the events to be stored in the register for a skip option of σ (counts) as

K(k) =

{
[k kσ(k, 1) kσ(k, 2) . . . kσ(k, n− 1)], if k 6= kσ(k, 1),

[kσ(k, 1) kσ(k, 2) . . . kσ(k, n)], if k = kσ(k, 1).
(8.7)



192 Chapter 8 Encoder velocity and acceleration

When using skip, the matrices A and B for the polynomial fit of (8.4) equal

Aσ =
[
tmK tm−1

K · · · 1
]
, Bσ = [xK ].

8.4.3 Discussion

One might think that the obtained position information when using the skip option
is equal to using a lower resolution encoder or to cancelation of the quadrature
signal in the case that σ = 3 counts. However, the skip option only affects the
information that is stored in the register and which occurred in history. Since
the most recent event, i.e., the encoder event just before a controller interrupt, is
always included in the register (see Section 8.4.2) the resolution or quadrature of
the encoder is not affected by the skip option.

As an illustrative example, the position information for a signal when using the skip
option and with a lower resolution encoder are compared in Fig. 8.3. To illustrate
both the effects of a lower resolution encoder and cancelation of the quadrature,
a skip option of σ = 3 counts is chosen. The true signal is shown in Fig. 8.3 with
the solid black line. The encoder events captured at a high-resolution clock are
shown by the dots. The light grey circles are skipped events and the dark grey
circles denote events that are stored in the register to be used for the polynomial
fit. Note that for the fit at t = 20 s, the last event before this time is also stored.
The position information used for the polynomial fit with σ = 3 counts is clearly
different from the information of an encoder with a four times lower resolution
as indicated by the black dashed line in Fig. 8.3. A fit through the stored events
in Fig. 8.3 can yield a more accurate position estimation than the low-resolution
quantized position.

8.5 Experimental results

In this section, the results of the application of the time-stamping concept to a
motion system are discussed. Experiments are performed for different skip values
σ and for sinusoidal reference profiles.

The experimental setup consists of the mechanical setup, an amplifier, a TUeDACs
Microgiant data-acquisition device [205] and a computer, as shown in the block
diagram of Fig. 8.4.

The mechanical setup, shown in Fig. 8.5, consists of a DC motor, which is con-
nected to a rotating mass. On the DC motor, a HEDS-5540 encoder [1] with a re-
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Figure 8.3: Position information for using the skip option with σ = 3 counts and
a 4 times lower resolution encoder.

solution of 100 slits/revolution (1.5707·10−2 rad/slit) is mounted. On the opposite
site, a Heidenhain ROD-426 encoder with 5000 slits/revolution (3.1416·10−4 rad/s-
lit) is connected to the rotating mass. The output of the Heidenhain encoder will
be used as a reference to determine the improvement of the time-stamping concept.

The data-acquisition device, shown in Fig. 8.6, is equipped with 32 bit quadrature
counter inputs with a clock frequency of 20 MHz and can thus capture encoder
events with a time resolution of 50 ns [205]. Up to five encoder events can be stored
in a register. The data of the register is transferred to the controller through USB
at a fixed sampling rate of 1 kHz. Furthermore, the Microgiant is equipped with
a DAC output, which is used to drive the mechanical setup. The selection and
storage of the encoder events when using skip is also performed in the Microgiant.

The real-time application is hosted by a fully preemptive Linux kernel. The com-
puter reads the time-stamping registers of the Microgiant for the polynomial fitting
and generates the control signal to the system in order to track a reference profile.

To compare the results for different skip values σ, the system must follow a known
reference profile. Therefore, the system is feedback controlled using the high-
resolution reference encoder at a bandwidth of fBW = 10 Hz. The time-stamping
concept is applied with a second order polynomial fit (m = 2) though five encoder
events (n = 5). Experiments are performed without skip and with skip values
σ ∈ {1, 2, 3, 4, 5, 10, 20}. The calculation time of the polynomial fit and
the extrapolation is in the order of microseconds, which is much smaller than the
controller sampling time tc = 1 ms and can thus be performed in real-time.



194 Chapter 8 Encoder velocity and acceleration

Polynomial
fitting

Counter with
time stamping

DAC Controller

DC motor

Low res.
encoder

High res.
encoder

ComputerTUeDACs
Microgiant

Mechanical
setup

Amplifier

Figure 8.4: Block diagram of the experimental setup.

In order to evaluate the estimation accuracy, reference signals are made by off-line
anti-causal filtering of the high-resolution position measurement by a fifth order
low-pass filter L(s) with cut-off frequency at 50 Hz. The bandwidth of the low-pass
filter L(s) is chosen sufficiently above the frequency of the reference profile and
with a sufficiently high order to suppresses the quantization effects present in the
high-resolution reference encoder. The reference position, velocity and acceleration
are denoted by xr, ẋr and ẍr, respectively. The estimation errors are defined as
ex = xr − x̂, ev = ẋr − ˆ̇x and ea = ẍr − ˆ̈x.

The skip option performs a time-independent spatial filtering on the encoder
events. For constant velocity setpoints, the smallest errors are obtained for maxi-
mum skip values. This results in an observation window with the largest position
history and thus maximally reduces the effect of the generally high frequent event
errors. In this chapter, sinusoidal setpoint profiles are used since these contain
varying event rates in time and turnaround points.

Experiments are performed with sinusoidal reference signals r(t) = A sin(2πft).
The influence of varying amplitudes on the estimations is investigated. A changing
frequency does not affect the optimal skip option since a changing frequency only
affects the time properties of the signal and not the amplitude. The position
estimations of time-stamping with σ = 0 and σ = 3 are shown in Fig. 8.7 for
f = 1 Hz and A = π/2 rad. For the sake of clarity, the position curves are offset
from each other by 0.2 rad. The largest errors occur at the maxima of the reference
signal, where the velocity equals zero and the time in between events is large.

The measured and the estimated velocities without skip and with σ = 3 are de-
picted in Fig. 8.8. For clarity, the overlapping curves are offset from each other by
2 rad/s. The velocity obtained by differentiation of the quantized position (grey
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dotted) is clearly not useful for control purposes. With σ = 3 counts, the es-
timated velocity (black) results in a lower error than with σ = 0 counts (dark
grey). The momentary oscillations caused by the event errors are filtered out by
the skip option. The estimation with σ = 3 is 54% more accurate than without
skip (σ = 0).

The measured and estimated acceleration signals are shown in Fig. 8.9, for clar-
ity, the overlapping curves are offset from each other by 30 rad/s2. The quan-
tized acceleration obtained by two times differentiation of the quantized posi-
tion is completely useless. The acceleration obtained with time-stamping and
σ = 0 counts shows large bursts and is not useful for control purposes. With a
skip of σ = 3 counts, an acceleration signal that is useful for control purposes
is estimated. The acceleration estimation with σ = 3 is 92% more accurate than
with σ = 0 counts.

The power spectral densities (PSDs) of the measured and estimated acceleration
signals, depicted in Fig. 8.9, show the influence of time-stamping and the skip
option. The PSD of the quantized acceleration is for all frequencies located above
the PSDs of the estimated accelerations. The PSD of the estimation with σ =
3 counts clearly shows the reduction of the high frequencies in the estimation.

The estimation errors for a frequency f = 1 Hz and a varying amplitude A ∈
{π/16, π/4, π/2, π} are shown in Fig. 8.10. For varying amplitude, the optimal
skip value varies. A change in the amplitude changes the amount of encoder counts
over one period. Since the skip values perform a spatial low-pass filtering based
on the encoder counts, a change in the amplitude changes the cut-off frequency for
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Figure 8.10: Estimation errors with various skip values σ for sinusoidal reference
with varying amplitude A, π/16 rad (black), π/4 rad (dark grey), π/2 rad (light
grey) and π rad (dashed).

constant skip value. The optimal skip setting, i.e., the skip setting to obtain the
smallest estimation error, is dependent on the amplitude. For increasing amplitude
the optimal skip value also increases.

In case of a skip of σ = 3 counts, every fourth subsequent count is stored. For a
movement in one direction this corresponds to storing the same event of the four
quadrature signals of one encoder slit. As an additional advantage, a skip value of
σ = 3 counts therefore eliminates all event errors that are caused by phase errors
between the quadrature signals. The phase errors have the largest contributions
at twice the period-time of the quadrature output pulse signals. For sinusoidal
setpoints, the velocity changes in time and with this the period-time of the pulse
signals. The amount of phase error reduction by the time-stamping concept with
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σ = 3 counts cannot be quantified easily in either the time or the frequency domain
due to the change in period-time and the existence of other encoder errors [132].

8.6 Conclusions

The position measurements of optical incremental encoders suffer from quantiza-
tion errors. Velocity and acceleration estimations obtained by numerical differ-
entiation of the quantized position measurements show large spikes. The time-
stamping concept uses encoder events, consisting of the counter value and the
corresponding time instant. Through the stored events a polynomial is fitted and
extrapolated to the desired time instant. Differentiation of the fitted polynomial
and extrapolation lead to velocity and acceleration estimations that are applica-
ble for control purposes. As more and more general-purpose embedded processers
have time-stamping capabilities, the opportunities for real-time implementation
are highly feasible. This chapter shows that the concept of encoder time-stamping
is really useful in control system design.

Encoder imperfections and the limited resolution with which the encoder events
are captured lead to errors in the encoder events. These errors result in oscillations
in the velocity and acceleration estimations. Increasing the time span covered by
the stored encoder events reduces the oscillations in the estimations. However,
the amount of events to be stored is limited. Therefore, a skip option is proposed
to discard a fixed number of events in between stored events. The skip option
increases the covered time span without the need for additional events. The skip
option performs a spatial low-pass filtering on the encoder counts.

Experiments show the improvement of the velocity and acceleration estimations
with a skip of three events in comparison with differentiation of the quantized
position measurement and in comparison with the time-stamping concept without
skip. Compared to time-stamping without skip, the velocity estimation is improved
by 54% and the acceleration estimation by 92%. The optimal skip value is for
sinusoidal references independent on the frequency since a change in the frequency
does not change the position information stored in the register. However, it is
dependent on the amplitude of oscillation.

Future research includes the derivation of explicit conditions for the optimal num-
ber of events, the optimal fit order and the optimal skip value for various operating
conditions.
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Chapter 9

Optimal higher-order encoder
time-stamping

Abstract - Optical incremental encoders are often used to measure the posi-
tion of motion control systems. The accuracy of the position measurement is
determined and bounded by the number of slits on the encoder. The position
measurement is affected by quantization errors and encoder imperfections. In
this chapter, a higher-order time-stamping (HOTS) method is proposed that uses
stored events, consisting of the encoder counts and their time instants, captured
at a high-resolution clock. Through the stored events a polynomial is fitted and
extrapolated to the controller sampling times. The encoder imperfections are ac-
tively compensated using a look-up table. The HOTS method is extended with
skip and delay options in order to obtain a good HOTS estimate even for a very
limited number of stored events, as desired in many embedded control applica-
tions. The skip and delay options perform a spatial and time-based filtering of the
stored events without introducing additional delay in the estimates. The optimal
HOTS settings are obtained using a measured system response to a band-limited
white noise signal and a mixed integer optimization. Real-time experiments on a
motion system show that the proposed HOTS method significantly improves the
position, velocity and acceleration estimates.

This chapter is based on: R.J.E. Merry, M.J.G. van de Molengraft and M. Steinbuch. Opti-
mal higher-order encoder time-stamping. Submitted, 2009.
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9.1 Introduction

Optical incremental encoders are commonly used for position measurements in
motion control systems and are available in both rotational and linear form. They
consist of three basic components: a slotted disk, a light source and a dual light
detector, as shown in Fig. 9.1. The light source shines on the disk, which has
a regularly spaced radial pattern of transmissive and reflective elements, called
encoder increments. The quadrature light detector measures the amount of light
passed through the slotted disc and generates two quadrature output pulse signals,
denoted by A and B. The up and down changes of the pulse signals are counted
as a measurement of the encoder position.

digital
outputs

rotating
encoder

disk

light
source

quadrature
light detector

A
B

Figure 9.1: Schematic representation of an optical incremental encoder.

For the application of feedback control to motion systems with optical incremental
encoders, the position is generally measured at a fixed sampling frequency. The
measurement accuracy is limited by the quantization of the encoder, i.e., it is lim-
ited by the number of slits on the encoder disk. The velocity and acceleration
information obtained by numerical differentiation will contain large spikes due to
the quantization of the position signal. The quantization errors can be reduced by
either using more expensive encoders with more increments or by using smart sig-
nal processing techniques. Furthermore, the position information of the encoders is
distorted by several encoder imperfections, such as eccentricity and tilt of the disk,
misalignment of the light detector/source, a non-equidistant slit distribution, etc.
The quantization and encoder imperfections are the performance limiting factors
(PLFs) in optical incremental encoders.

In literature, several signal processing techniques using the measured encoder in-
formation are proposed to improve the position, velocity and acceleration infor-
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mation obtained from optical incremental encoders. The methods can be divided
into two categories [14]: fixed-time methods, which measure the traveled encoder
counts over a fixed period-time, and fixed-position methods, which measure the
time necessary to travel over a fixed amount of encoder counts.

Fixed-position methods, as proposed in [120,139] and the hybrid algorithm of [41],
which switches between fixed-time and fixed-position measurements, are not appli-
cable for control purposes where the controller is evaluated at fixed-time intervals.
Although the recent work in event driven control [168] looks promising, today
fixed interval timing is still the standard framework for real-time control. Also al-
gorithms that adjust the sampling interval based on the momentary velocity [120],
or that switch between sensors with different sampling frequencies based on a
velocity threshold [163] do not directly fit into this framework.

The fixed-time methods can be divided into three groups: predictive postfilter-
ing techniques, observer based techniques and indirect measurements. Predictive
postfiltering techniques perform a filtering on differentiated position signals to ob-
tain velocity and/or acceleration estimates. The Euler-based methods [115, 223],
the discrete-time adaptive windowing velocity estimation [88] and the polynomial
delayless predictive differentiators [202] only use the position information of the
encoder, thus disregarding the variable rate of occurrence of the encoder events.
The transition based logic algorithm [110] assumes the sampling frequency to be
much higher than the rate of the encoder events, which does not hold in most
motion systems.

Observer based techniques perform a model-based postprocessing on the quantized
position measurement to derive more accurate position information. Examples of
observer based techniques are Kalman filters [13, 14, 25], dual-sampling rate ob-
servers [100] and neural network [29] or fuzzy logic [221] based observers. The
acceleration estimator of [107] assumes a high-resolution position signal to be
available, which is often not the case. The angular speed and acceleration ob-
server of [196] switches between two filters based on an estimation error, which is
generally not available. Since the focus of this chapter is to remove the quantiza-
tion effect from the measured encoder events, these techniques are not applicable
for our purpose. However, combinations of the technique proposed in this chapter
with the above observer based techniques might lead to interesting results in the
future.

Indirect measurement techniques perform an analog or digital postprocessing of
available position and/or velocity signals. In [15], a Taylor-series method and a
least-squares method are compared. In [106], the velocity in low-speed regions
is estimated using an auxiliary sampling period to measure the interval between
the encoder event and the controller sampling time. The velocity is estimated
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in [225] by combining the information of an encoder in the low frequency range
with the information of an accelerometer in the high frequency range [225], i.e.,
two sensors are required for the estimation. Furthermore, at low frequencies the
velocity of the encoder is obtained by numerical differentiation without taking time
information of the encoder events into account. Both the encoder counts and their
time instants are used in [23] to estimate the velocity. This method is referred to
as the time-stamping concept and will be used as a starting point for the proposed
method in this chapter.

Other methods that use the time-stamping concept have been proposed before in
literature. The time-stamping concept in combination with an exact quadratic fit
through three events is presented in [58] with application to a permanent-magnet
motor drive. In [24,28], it is shown that the least squares fit estimators give better
performance than Taylor series, FIR filters and backward difference expansion
estimators in the presence of encoder imperfections.

The effects and compensation of different kinds of encoder imperfections have
also been addressed in literature. The use of a Kalman filter [218] to reduce the
effect of encoder measurement errors requires a model of the encoder errors to be
available. The encoder errors are regarded to have a stochastic nature [115], are
assumed negligible small [163] or are assumed to be repetitive over a small number
of increments [24]. In [20], a learning algorithm is applied to generate a look-up
table for the encoder slit errors only. A look-up table for the compensation of errors
in analog (SinCos) encoders is presented in [193]. In [96], a method to generate a
look-up table with the encoder errors for an absolute shaft encoder is described.
A neural network is used in [192] to obtain a look-up table containing the encoder
errors. In this chapter, we will adopt a data-based approach and combine encoder
error compensation using a look-up table with the time-stamping concept.

The contributions of this chapter are threefold. Firstly, a method to estimate accu-
rate position, velocity and acceleration signals based on the time-stamping concept
is proposed. The method, referred to as higher-order time-stamping (HOTS), con-
sists of capturing the encoder events in hardware, fitting a polynomial through a
number of encoder evens and extrapolating this polynomial to the next controller
sampling time. HOTS is an extension of [23,58] for encoder applications and with
different polynomial orders fitted through more events in a least squares sense, as
recommended in [24, 28]. Compared to Chapter 8, the time-stamping concept is
extended with both a skip and delay option, which perform a filtering of the en-
coder events with a spatial and time-based low-pass filter, respectively. Secondly,
a procedure for selecting the optimal HOTS setting such as fit order, number of
events and skip or delay parameters is provided. The procedure uses a measured
system response to a band-limited white noise signal in a mixed integer optimiza-
tion. The number of events that can be stored and handled is very limited in most
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embedded controllers due to limited memory and CPU resources, which raises the
need for the skip and delay options. We show that based on the amount of events
that can be captured in hardware, the skip and delay options can be applied to
extend the time span covered by the stored events, which allows good position,
velocity and acceleration estimates to be made with less stored events. Finally,
experimental validation of optimal HOTS combined with active compensation of
the encoder imperfections using a look-up table shows the real-time applicability
of the proposed method.

This chapter is organized as follows. The higher-order time-stamping concept
and the skip and delay options will be explained in more detail in Section 9.2.
The optimization problem for the selection of the optimal HOTS settings will be
discussed in Section 9.3. The different kind of encoder imperfections and their
influence on the encoder events will be described in Section 9.4. The experimental
setup will be treated in Section 9.5. The encoder calibration will be presented in
Section 9.6. The experimental results of optimal HOTS will be shown in Section 9.7
for different lengths of the hardware register. Finally, conclusions will be drawn
in Section 9.8.

9.2 Higher-order time-stamping

In most motion control applications that use optical incremental encoders, the po-
sition is measured by reading out the encoder counter value at the sampling times
tc of the controller, as shown in Fig. 9.2. For feedback control, the encoder counter
values are generally read at a fixed sampling period Tc. This introduces even for
ideal encoders a quantization error of maximally half the encoder resolution xe.

Using the time-stamping concept [23], the accuracy of the position information
using the same resolution encoder can be improved. The time-stamping concept
consists of capturing and storing both the time instants tk and the corresponding
position values xk of the encoder pulse transitions. The index k denotes the
encoder event number. The pair (tk, xk) is called an encoder event.

If encoder events are used for feedback control, a fixed sampling frequency is not
straightforward anymore since the stored encoder events have a non-equidistant
distribution in time. To obtain a position estimation at the equidistant sampling
times of the controller, a polynomial is fitted through n past encoder events. The
fitted polynomial is extrapolated to the next controller sampling time tc to obtain a
fixed-time position estimation, which can be more accurate than the raw quantized
measurement.
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Figure 9.2: Time-stamping concept; the encoder transition xk and time tk are
captured and stored as an event.

For the fit a polynomial function is chosen because of its wide applicability. How-
ever, the ideas and methods proposed in this chapter may also be used with other
type of fit functions, e.g., parabolic functions or Fourier series.

The higher-order time-stamping (HOTS) concept consists of executing the follow-
ing three steps at each controller sampling time:

1. read the hardware register containing stored encoder events at a high-
resolution clock added to the encoder,

2. polynomial fitting through n past encoder events,
3. extrapolation of the polynomial to the next controller sampling time tc.

The individual steps will be discussed in more detail next.

9.2.1 Event capturing and polynomial fit

The higher-order time-stamping concept fits a polynomial of order m through n
past encoder events, as shown in Fig. 9.3 for an illustrative example.

The encoder events are captured in hardware at a high-resolution clock added to
the encoder, with a sampling rate that is larger than the occurrence rate of the
encoder events.

Let the polynomial coefficients to be estimated be denoted by p0,...,m. For the
polynomial fit the last n events are used, i.e., the events with index numbers
K = [k, k − 1, . . . , k − n + 1], where the most recent events has index k. The
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Figure 9.3: Example of the time-stamping concept and polynomial fit.

register contains the stored events EK =
[
tK xK

]T . Now define the matrices
A ∈ Rn×m+1, P ∈ Rm+1 and B ∈ Rn as

A =




tmk−n+1 tm−1
k−n+1 · · · 1

...
...

...

tmk−1 tm−1
k−1 · · · 1

tmk tm−1
k · · · 1



, (9.1)

P =
[
pm pm−1 · · · p0

]T
, (9.2)

B =
[
xk−n+1 · · · xk−1 xk

]T
. (9.3)

For a least squares fit, the number of events n > m. The over-determined system
of linear equations to be solved for the polynomial fit equals

AP = B.

The polynomial coefficients P are obtained in a least squared manner as

P = (ATA)−1ATB. (9.4)

To calculate the coefficients P of (9.4) in real-time, LU factorization without pi-
voting is used.
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9.2.2 Polynomial extrapolation

The HOTS method is to be used in real-time control. Therefore, the estimates
for the position, velocity and acceleration are obtained in a fixed-time manner by
extrapolating the fitted polynomial to the desired controller sampling time tc. The
estimated position x̂, velocity ˆ̇x and acceleration ˆ̈x equal

x̂(tc) = pmt
m
c + pm−1t

m−1
c + . . .+ p0, (9.5)

ˆ̇x(tc) = mpmt
m−1
c + (m− 1)pm−1t

m−2
c + . . .+ p1, (9.6)

ˆ̈x(tc) = m(m− 1)pmtm−2
c + (m− 1)(m− 2)pm−1t

m−3
c + . . .+ p2. (9.7)

Since the estimates for the position, velocity and acceleration are predicted to-
wards every controller sampling time, no phase lag is introduced in the signals in
comparison with for example numerical differentiation of the position signal.

The estimated position can only be an improvement if it is within one encoder
increment of the last quantized measurement. If the deviation is larger than one
count, the estimation is replaced by the quantized measurement. This results in
an adjusted estimated position x̂∗(t) as

x̂∗(t) =

{
x̂(t), if |x̂(t)− x̄(t)| ≤ 1

x̄(t), else,

where x̄(t) (counts) denotes the quantized position measurement.

The stored encoder events used for the polynomial fit contain several error sources,
such as encoder imperfections, quantization effects of the high but finite resolution
clock, electric noise, and external disturbances influencing the encoder position. In
Fig. 9.4, an illustrative example of the quantization effects of the high-resolution
clock is shown. A linear fit through the last two stored events does not resemble the
real signal and is clearly affected by the error in the captured events. If the time
in between captured events that are used for the polynomial fit is increased, the
effect of the clock errors can be reduced, as shown by the different fits in Fig. 9.4.
Moreover, in most embedded hardware, memory and CPU resources seriously limit
the practically allowed number of events to be stored, which in turn strongly affects
the length of history that can be taken into account. To increase the time span in
between stored events, two different options are proposed, referred to as skip and
delay. Since these options affect only the stored past encoder events, they do not
introduce a phase lag in the polynomial fit and extrapolation procedure. The skip
and delay options are introduced in the next sections.
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Figure 9.4: Stored events at a high-resolution clock with period-time Te.

9.2.3 Skip

The skip option skips a fixed number of events in between two stored events. The
skip option changes the stored encoder events based on the position information.

In Fig. 9.6(a), the skip option is visualized for a skip value of σ = 2 counts.
The events that are stored in the register are indicated by the dark grey circles,
the skipped events by the light grey circles. The arrows in Fig. 9.6(a) show that
the skip option performs a filtering on the stored events with a constant position
interval.

For a given event k the index numbers of the events to be stored in case of a skip
factor of σ (counts) can be calculated as

kσ(k, i) = k −mod(k − 1, σ + 1)− (i− 1)(σ + 1), (9.8)

where i ∈ [1, . . . , n] and the modulus after division is defined as

mod(x, y) = x− ybx/yc, (9.9)

in which bqc = max{p ∈ Z | p ≤ q} denotes the floor function. Despite the skip
option, we choose to always store the most recent encoder even k. This results in
the set Kσ ∈ Rn with the index number of the events to be stored in the register
for a skip option of σ (counts) as

Kσ(k) =

{
[k kσ(k, 1) kσ(k, 2) . . . kσ(k, n− 1)], if k 6= kσ(k, 1),

[kσ(k, 1) kσ(k, 2) . . . kσ(k, n)], if k = kσ(k, 1).
(9.10)

In Fig. 9.5 the selection of Kσ is shown for an illustrative example with n = 3
and σ = 1. For the polynomial fit in case of skip, the events EKσ are used in the
matrices A and B of (9.1) and (9.3), respectively.
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Figure 9.5: Selection of the stored events Kσ(k) for skip with n = 3 and σ = 1.
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Figure 9.6: Visualization of the skip and delay options.

9.2.4 Delay

The delay option guarantees a fixed minimal time interval of δ (s) in between two
stored events. The delay option changes the stored encoder events based on the
time information. Since the delay is only applied to the stored encoder events and
the estimates are still obtained every controller sampling time, no delay is added
to the estimated position, velocity and acceleration signals.

The delay option is visualized in Fig. 9.6(b) for a delay of δ = 1.2Tc. Although
the delay is chosen as δ > Tc for this illustrative example, this is not necessary.

For a delay of δ (s), the index numbers of the events to be stored in the register
equal

kδ(k, i) = {k∗ | k∗ ≤ k, t∗k − tkδ(k,i−1) > δ}, (9.11)
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where i ∈ [1, . . . , n]. According to (9.11), the minimal delay between stored events
equals δ (s). So, the delay option can also omit the most recent events from the
register. As was the case for the skip option, the most recent event is always
required to be stored in the register, leading to the set Kδ ∈ Rn with the index
number of the stored events in case of a delay of δ (s) as

Kδ(k) =

{
[k kδ(k, 1) kδ(k, 2) . . . kδ(k, n− 1)], if k 6= kδ(k, 1),

[kδ(k, 1) kδ(k, 2) . . . kδ(k, n)], if k = kδ(k, 1).
(9.12)

When using the delay option, the events EKδ are used for the polynomial fit of
(9.1) and (9.3).

9.2.5 Scaling

Both the absolute time values and the time span of the stored encoder events
EK =

[
tK xK

]T can be very small, even in the order of the sampling period of
the high-resolution clock. This can introduce numerical problems in the polynomial
fit and/or conditioning problems in the A matrix. To prevent numerical problems
with the higher-order terms in (9.1), the time variable of the oldest event in the
register, i.e., the event with time tk−n+1, is redefined to be zero every controller
sampling time tc, i.e., tk−n+1 := tk−n+1−tc. Furthermore, to avoid ill-conditioning
of the A matrix, the time span ∆tK of the stored events is scaled to one for the
polynomial fit (see also [136]). The scaling of the time values of the stored events
is done as follows

α =
1

∆tK
,

t∗K = αtK ,

where α (s−1) is the scaling factor and t∗K (s) are the scaled time instants of the
stored events. The scaling factor α also needs to be taken into account in the
polynomial extrapolation by redefining the desired polynomial extrapolation time
in Eq. (9.5) - (9.7) as tc := αtc.

9.3 Optimal parameter settings

The performance of the HOTS method depends on the chosen settings for the
fit order m, the number of events n and the chosen skip σ or delay δ values. In
this section an optimization procedure is presented, which determines the optimal
settings for a given system based on experimental data.
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For the optimization, the system is excited with a band-limited white noise of
which the upper bound is equal to the desired bandwidth of the system since this
is generally the frequency up to which the signals have to be accurately tracked.
For the optimization, the quantized position measurement and a high accuracy
reference signal are required.

The optimization parameters are the settings of HOTS, i.e., ξ = [m,n, σ, δ]. The
parameters m, n and σ are integer variables, whereas δ is a continuous variable.
Since the time-stamping concept is used to estimate the position, velocity and
acceleration signals, they are all included in the objective function. The parame-
ters in ξ are optimized such that the root-mean-square (rms) errors between the
estimations and the reference signals are minimal. The bounded values of the
optimization parameters and the constraint n > m lead to the following bounded
mixed-integer optimization problem

min
ξ
f = α rms(êx(ξ)) + β rms(êv(ξ)) + γ rms(êa(ξ)),

subject to 2 ≤ m ≤ mmax,
2 ≤ n ≤ nmax,
0 ≤ σ ≤ σmax,
0 ≤ δ ≤ δmax,
m− n < 0,

(9.13)

where the position errors ex = x − x̂(ξ), the velocity error ev = ẋ − ˆ̇x(ξ) and the
acceleration error ea = ẍ − ˆ̈x(ξ). The scaling parameters α, β and γ are chosen
such that the different terms in the objective function f are weighted equally. If
the acceleration signal is to be estimated, the fit order m has a minimal value of
m = 2 and since n ≥ m, the minimal number of events equals n = 2. Furthermore,
the skip and delay options are optimized independently, i.e., δ = 0 if σ 6= 0 and
vice versa.

In literature, several methods to solve mixed-integer optimization problems have
been proposed, e.g., using evolutionary algorithms [46, 114]. However, in (9.13)
the maximum allowable ranges of the integer parameters are not very large, which
results in a limited number of possible parameter settings. The optimization of the
real parameter δ has only to be done if no skip option is used, i.e., only if σ = 0.
The optimization problem (9.13) is therefore solved by evaluating the objective
function for all possible combinations of the integer parameters and by performing
a bounded single-variable optimization using the golden section search [21, 150]
and parabolic interpolation to obtain the optimal delay δ for all possibilities of
(m,n) and σ = 0. Based on this bounded number of function evaluations and
the single-variable optimization, the optimal parameter settings for the selected
parameter ranges are obtained.
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9.4 Encoder errors

Optical encoders incorporate both mechanical and electrical errors in their output
signals, such as [45]:

1. quantization errors,
2. assembly errors (eccentricity, etc.),
3. coupling error (backlash, loose fit, etc.),
4. structural limitations (deformation due to loading),
5. manufacturing tolerances (slit distribution, etc.),
6. ambient effects (temperature, vibrations, dirt, etc.).

These error sources affect the position measurement, the encoder events and thus
the quality of the position, velocity and acceleration estimates. The effect of the
error sources can be reduced to some extend using the skip and delay options.
However, deterministic reproducible errors in the position measurement can be
identified.

The encoder imperfections lead to errors in the measured signals. They can be
specified as phase shifts, in electrical degrees ◦e, of the rising or falling edges from
the quadrature pulses A and B of the encoder output signal (see also Fig. 9.1). The
errors can be related to the cycle C, defined as the amount of rotation between
two rising edges of channel A. One complete cycle corresponds to 360◦e.

In this chapter, we will focus on the calibration of the assembly and manufacturing
encoder imperfections. For these types of imperfections, the main error sources in
the measured encoder signals are the following

Cycle error
Indicates the cycle uniformity: the difference between an observed shaft
angle which gives rise to one electrical cycle and the nominal angular
increment. The cycle error causes the rising edge of the time-stamps of
channel A to be shifted.

Pulse width error
The deviation of the pulse width from its ideal value of 180◦e. The pulse
width error introduces a time shift between the time-stamps of the rising
edge and falling edge of an equal channel.

Phase error
The deviation of the phase between channel A and B from its ideal value
of 90◦e caused by the misalignment of the two light sensors. The phase
error introduces a time shift between the edges of channel A with respect
to the edges of channel B.
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Table 9.1: Errors for the HEDS-5540 encoder [1].

Error (◦e)
Description Typical Maximum
Cycle error 3 5.5

Pulse width error 5 35
Phase error 2 15
Eccentricity 0.04 mm

Electrical characteristics at 25◦C Rise time: 180 ns
Fall time: 40 ns

Eccentricity
Eccentricity of the code-wheel introduces a time shift to all edges. The
amount of shifting describes a sinusoid with a period of one revolution.

For the experiments presented in this chapter, a HEDS-5540 encoder is used.
Table 9.1 contains the encoder imperfections as specified on the data sheet of
the encoder [1]. The captured time-stamps also contain information about the
encoder imperfections. One method to identify above errors is by driving the
encoder at a constant velocity and comparing the measured encoder positions to a
high-resolution reference signal. The identified footprint of the encoder errors can
be used to adjust the events according to their index number, also for different
setpoints than constant velocities. The calibration of the encoder errors makes it
possible to compensate for the imperfections, as will be presented in Section 9.6.

9.5 The experimental setup

The experimental setup consists of the motion system, an amplifier, a TUeDACs
Microgiant data-acquisition device [205] and a computer, as shown in the block
diagram of Fig. 9.7.

The motion system, shown in Fig. 9.8 consists of a DC motor, which is connected
to a rotating mass. On the DC motor, a HEDS-5540 encoder [1] with a resolution
of 100 slits per revolution is mounted. On the opposite side, a Heidenhain ROD-
426 encoder with 5000 slits per revolution is connected to the rotating mass. The
HOTS concept is applied to the low-resolution HEDS-5540 encoder. The output
of the Heidenhain encoder is used as a reference to determine the improvement of
the higher-order time-stamping concept.
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Figure 9.8: The mechanical setup.

The data-acquisition device is equipped with 32-bit quadrature counters with a
maximum count frequency of 20 MHz and can generate and store encoder events
with a time resolution of 50 ns [205]. Up to 30 past events can be stored inside
the register contained in the data-acquisition device. The stored encoder events
are transferred to the computer via a USB 2.0 connection at the fixed sampling
period tc of the controller.

A fully preemptive Linux kernel hosts the real-time application at a fixed sampling
rate of 1 kHz. The computer reads the stored encoder events of the Microgiant
for the polynomial fitting and generates the control signal to the system in order
to track a reference profile.
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9.6 Calibration results

In this section, calibration of the encoder imperfections of the HEDS-5540 encoder
in the setup of Fig. 9.8 is presented. For the experiments, the system is feedback
controlled using the output of the high-resolution reference encoder at a closed
loop bandwidth of 10 Hz.

The reproducible error sources of the low-resolution encoder can be calibrated
using the high-resolution encoder as a reference. The calibration of the encoder
imperfections and the validation of the derived look-up table are discussed in the
remainder of this section.

9.6.1 Look-up table

Using the measured low- and high-resolution encoder outputs for an experiment
with a constant velocity of 0.5 rad/s, a look-up table is constructed by matching
each increment of the low-resolution encoder with the output of the high-resolution
encoder and averaging over a number of revolutions.

The look-up table, depicted in Fig. 9.9, can be used to adjust the encoder events
according to their pulse index. The look-up table shows that the encoder imperfec-
tions contain a large low frequent harmonic content with a period of one revolution.
This error is probably caused by a combination of the eccentricity and tilt of the
code-wheel. Other error sources, such as the non-equidistant distribution of the
slits on the code-wheel, are also present in the look-up table.

The derived look-up table of Fig. 9.9 contains high-frequent oscillations. These
oscillations are partially due to the encoder imperfections of the individual slits,
but also due to the limited resolution of the high-resolution clock at which the
events are captured and due to the quantization of the high-resolution reference
encoder. Because of the latter two disturbances, the encoder events and quantized
position measurements will be compensated for encoder imperfections using a low-
pass filtered version of the determined look-up table, as shown in Fig. 9.9 by the
solid black line. The low-pass filtered version is obtained by anti-causal filtering
with a sixth order low-pass filter with a cut-off frequency of 15 Hz.

9.6.2 Validation

For the validation of the look-up table, an experiment with and without the com-
pensation of the encoder imperfections using the look-up table is performed. For
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this experiment, the higher-order time-stamping concept is applied with settings
{n,m, σ, δ} = {5, 1, 0, 0}. The quantized error ēx and the estimated error êx with
and without application of the look-up table are shown in Fig. 9.10.

The quantized error ēx clearly shows the influence of the encoder imperfections on
the position measurement by the sinusoidal shape. Although the time-stamping
concept reduces the position error, still the influence of the encoder imperfections is
clearly visible by the offset and the low-frequent oscillation. The obtained position
error of the HOTS concept with adjusted encoder events using the look-up table of
Fig. 9.9 is centered around zero and does not contain a distinct harmonic content
anymore, as shown by the solid black line in Fig. 9.10.

Since application of the look-up table clearly improves the position estimate, it
will be applied to the quantized measurement and stored encoder events of the
low-resolution encoder during all experiments for the remainder of this chapter.

9.7 HOTS results

In this section, first the optimal HOTS settings are determined for the large dedica-
ted register length of 30 events. Subsequently, the HOTS optimization is performed
for various lengths of the hardware register, where the skip and delay options are
considered separately. Finally, the overall optimal HOTS settings and the HOTS
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settings for a limited register length of 5 events are experimentally validated for a
point-to-point movement, as typically encountered in high-tech mechatronic sys-
tems. Besides the position, also the velocity and acceleration signals are estimated.

At the beginning of each experiment, a homing procedure towards the index pulse
of the low-resolution HEDS-5540 encoder is performed to obtain reproducible ini-
tial conditions. The feedback over the high-resolution encoder is only used for the
tests in this chapter to compare different types of setpoints and to evaluate the
performance of the HOTS concept. In real-life applications the HOTS estimates
themselves are likely to serve as the feedback signals.

The calculation time of the polynomial fit and the extrapolation of the polynomial
is in the order of microseconds, which is much smaller than the controller sampling
time tc = 0.001 s. Therefore, the higher-order time-stamping can be performed
in real-time.

The high-resolution reference encoder also contains quantization effects, although
of a much smaller order than the HEDS-5540 encoder. In order to obtain smooth
reference position, velocity and acceleration signals, anti-causal filtering of the
output of the high-resolution encoder is performed off-line with a fifth order low-
pass filter L(s) with a cut-off frequency fL = 50 Hz, which is chosen a factor 5
above the bandwidth of the feedback controlled system. The filtered reference wil
be named xr and its first two derivatives ẋr and ẍr, respectively.

The velocity and acceleration estimations obtained by differentiation of the low-
resolution encoder contain large spikes, which makes these signals not applicable
for control purposes. Therefore, often a low-pass filtered version of the differen-
tiated encoder position is used. The results of the HOTS concept will be com-
pared to a low-pass filtered differentiated version of the low-resolution encoder
position. The choice of the cut-off frequency fc (Hz) of the first order low-pass
filter Lenc,lr(s) = (s/(2πfc) + 1)−1 is a trade-off between the amount of noise that
remains in the signals (high fc) and the phase delay that is introduced by the
filter (low fc). For the results shown in this chapter, the cut-off frequency equals
fc = 25 Hz. The velocity and acceleration signals obtained by low-pass filter-
ing of the differentiated low-resolution encoder signals are denoted by ˙̄x and ¨̄x,
respectively.

The estimation errors are defined as êx = xr − x̂, êv = ẋr − ˆ̇x, êa = ẍr − ˆ̈x.
The error of the quantized position measurement is defined as ēx = xr− x̄, where
x̄ is the quantized low-resolution encoder measurement. The errors of the low-
resolution low-pass filtered encoder outputs equal ēv = ẋr − ˙̄x and ēa = ẍr − ¨̄x.
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Figure 9.11: Band-limited white noise reference signal and PSD of the signal.

9.7.1 Optimal settings

The optimal HOTS settings for the system of Fig. 9.8 are determined using the
optimization (9.13). For this purpose, the system is excited with a band-limited
white noise reference signal up to 10 Hz, as shown in Fig. 9.11 together with its
power spectral density (PSD).

The upper bounds of the optimization parameters are chosen as mmax = 5, nmax =
30 (depends on hardware register), σmax = 10 (can be chosen arbitrarily) and
δmax = 0.01 (s) (chosen as max 10 controller samples). With these upper bounds,
since m > 2, n ≥ m and no skip and delay can be applied simultaneously, the
total number of possibilities equals 1224. Using the optimization procedure as
described in Section 9.3, a hardware register of 30 events and scaling factors α = 1,
β = 1 ·10−3 and γ = 1 ·10−5, the optimal HOTS settings for the system of Fig. 9.8
are determined as {m,n, σ, δ} = {2, 8, 0, 0}. This means that the best overall
performance is obtained with a second order fit through eight events without skip
and delay. The optimal fit order and number of events are a trade-off between
under- and overfitting of the data with respect to the bias and variance of the
estimated signal [116].

The position errors and the cumulative power spectral densities (CPSDs) of the
quantized measurement and the HOTS concept with the optimal settings are
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Figure 9.12: Position error with CPSD and velocity and acceleration errors
for the band-limited white noise signal of Fig. 9.11 and time-stamping settings
{m,n, σ, δ} = {2, 8, 0, 0}: quantized low-resolution position and low-pass filtered
derivatives (grey) and HOTS (black).

shown in Fig. 9.12(a) for the band-limited white noise signal of Fig. 9.11. It
can be seen that the variation in the position error with HOTS is smaller than the
quantized position error. The CPSDs show the reduction in errors by the HOTS
concept. For f →∞ the CPSDs converge to the squared rms value of the errors,
rms(ēx) = 4.89 mrad for the quantized measurement and rms(êx) = 2.78 mrad
for HOTS. In both cases the encoder imperfections are compensated for using
the look-up table of Fig. 9.9. At lower frequencies the position error is larger with
HOTS compared to the quantized position due to the deteriorated estimation qual-
ity at the time instants where the event rate is low, i.e., at the instants where the
velocity of is small. At high frequencies no increase in error is visible since the
HOTS concept does not suffer from the quantization errors that are present in the
quantized position.

The velocity and acceleration errors of the HOTS concept and the low-pass filtered
differentiations of the quantized measurement of the low-resolution encoder are
shown in Fig. 9.12(b). The HOTS concept reduces the velocity error by a factor
7.6 from rms(ēv) = 17.69 rad/s to rms(êv) = 2.33 rad/s. The acceleration error
is reduced from rms(ēa) = 1487.17 rad/s2 for the low-pass filtered differentiated
signal to rms(êa) = 371.61 rad/s2 for the HOTS concept, which is an improvement
of a factor 4.0. The spikes in the velocity and acceleration errors obtained with
HOTS are caused by the limited estimation accuracy at the time instants where
the velocity is low, i.e., where the event rate is small.
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For the application of the optimal HOTS settings a hardware register of n = 8
events is required. However, this register size may be too large to be incorporated
in embedded systems. In Table 9.2, the optimization results for register lengths
n ∈ [2, 7] are given. The optimizations are performed for the skip and delay
options separately. In both cases, the possibility of σ = 0, respectively δ = 0, is
also included. It can be seen that for smaller lengths of the hardware register, skip
and delay options are required to obtain the optimal results according to (9.13).

For register lengths n ∈ [4, 7] a skip factor of σ = 1 events results in the optimal
estimation results. The skip option extends the time span covered by the stored
events scaled by the instantaneous velocity. The different estimation errors are
somewhat larger than for the overall optimal settings, but are still a significant
improvement compared to the original quantization errors. A register length of n =
4 events with a skip of σ = 1 resembles the optimal settings the most for all register
lengths. These settings also result in smaller errors than with n ∈ {2, 3, 5, 6, 7}.
For a register length of n = 3 events the optimal skip factor is increased to σ = 3
events, because in that case the time span of the history contained in the register
resembles the optimal settings the best. Finally, for n = 2 again a skip of σ = 1
is optimal. Note however that for n = 2 and m = 2 only an exact fit through the
stored events is possible.

The optimizations with delay for register lengths n ∈ [1, 7] all result in non-zero
delays. It can be seen that for a decreasing register length, the optimal delay
value increases. This only does not hold for a register n = 2, in which an exact
fit is made. The estimation errors of the optimizations with skip and delay are
comparable. In general, better estimation results are obtained if longer registers
can be used. However, for all cases a significant improvement compared to the
quantized measurements is obtained. As expected, the skip and delay options
are especially useful to increase the time span covered by the stored events in
applications where the length of the register is limited.

In the next section, the overall optimal HOTS settings will be compared to the
settings for n = 5 for a point-to-point movement.

9.7.2 Point-to-point movement

The HOTS concept is applied to a point-to-point movement over 2 rad, described
by a third-order setpoint. Fig. 9.13 shows the measured and estimated position
signals for the overall optimal settings {m,n, σ, δ} = {2, 8, 0, 0} and for the optimal
settings for a buffer length of n = 5 events with skip, i.e., {m,n, σ, δ} = {2, 5, 1, 0}.
The estimated position signals of HOTS are available after n events are captured
and are therefore not available at the start of each experiment. The application of
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Table 9.2: Optimal time-stamping settings optimized with several maximum reg-
ister lengths n for both skip and delay options and the corresponding rms values
of the position, velocity and acceleration errors, compared to the quantized results
and the overall optimal results for n ≤ 30 events.

register n mopt σopt δopt rms(ex) rms(ev) rms(ea)
(ms) (mrad) (rad/s) (rad/s2)

quantized 4.89 17.69 1487.17
8 2 0 0 2.78 2.33 371.61
7 3 1 − 4.01 2.62 441.39
6 2 1 − 3.89 3.39 433.56
5 2 1 − 3.94 3.15 500.87
4 2 1 − 3.81 2.73 380.98
3 2 3 − 3.97 3.85 449.32
2 2 1 − 4.64 3.79 922.66
7 2 − 0.82 3.42 2.30 387.92
6 2 − 0.66 3.26 2.09 373.22
5 2 − 1.46 3.53 2.08 390.90
4 2 − 1.67 3.92 1.96 393.20
3 2 − 3.61 4.70 2.61 472.33
2 2 − 0.94 4.36 2.88 922.16

the optimal HOTS settings improves the position estimation by a factor 3.3 from
rms(ēx) = 4.92 mrad to rms(êx) = 1.51 mrad. With the register of n = 5 events
still an improvement of a factor 2.4 to rms(êx) = 2.07 mrad is obtained. The
CPSDs of the error signals in Fig. 9.13 show the error reduction of both HOTS
experiments compared to the quantized measurement. The HOTS results obtained
with the smaller hardware register show a small increase in error compared to the
overall optimal HOTS. However, for f → ∞ both CPSDs obtained with HOTS
converge to a much smaller value than the CPSD of the quantized error.

The velocities, errors and CPSDs of the velocity errors for the point-to-point move-
ment over 2 rad are shown in Fig. 9.14. The optimal HOTS settings improve the
velocity from a quantized error of rms(ēv) = 0.13 rad/s to rms(êv) = 0.025 rad/s,
which is an improvement of a factor 5.3. The estimated velocity with the register
of n = 5 events is a bit more noisy, but still the error is reduced by a factor 4.0
to rms(êv) = 0.033 rad/s. The CPSDs of both errors obtained with HOTS are
located below the CPSD of the quantized error for the complete frequency range.
Also the slight increase in error by the limited register length is clearly visible.
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Figure 9.13: Positions, errors ex and CPSDs of ex for the point-to-point movement:
reference (dashed-dotted, black), quantized measurement (solid, light-grey, added
offset = 0.1 rad), HOTS with {m,n, σ, δ} = {2, 5, 1, 0} (solid, black, added offset
= 0.2 rad) and with {m,n, σ, δ} = {2, 8, 0, 0} (dashed, dark-grey, added offset =
0.3 rad).

The estimated velocities at the end of the movement keep on increasing in time
because the estimated velocity with the last stored encoder events is not equal to
zero. Since no new events are obtained, the estimated velocity will not change
and thus the position will also keep on increasing. This can easily be corrected
for by resetting the estimated velocity if no new events occurred during some
specified time interval, i.e., if the last estimation becomes too old. Another possible
correction method would be to add a weighting to the least squares fit of (9.4).
In this way, the most recent events could be weighted more heavily, which could
improve the estimation at very low event rates.

The acceleration signals obtained through filtered differentiation and by the HOTS
concept for register lengths n = 8 and n = 5 are shown in Fig. 9.15. Although
the estimated acceleration of HOTS shows significant disturbances, the general
trend resembles the reference acceleration signal. Furthermore, with the optimal
settings, HOTS outperforms the acceleration signal obtained by differentiation and
low-pass filtering of the low-resolution quantized measurement by a factor 10.4
with an error reduction from rms(ēa) = 10.93 rad/s2 to rms(êa) = 1.06 rad/s2.
Only a slightly deteriorated acceleration estimation is obtained for reduction of
the register length to n = 5 with a skip of σ = 1, the acceleration estimation is
still improved by a factor 8.5 to rms(êa) = 1.29 rad/s2.

All estimates deteriorate when the event rate is low. For the experiments pre-
sented in this section, the settings are fixed during the experiment. Adapting the
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Figure 9.14: Velocities, errors ev and CPSDs of ev for the point-to-point movement:
reference (dashed-dotted, black), quantized measurement (solid, light-grey, added
offset = 0.2 rad/s), HOTS with {m,n, σ, δ} = {2, 5, 1, 0} (solid, black, added offset
= 0.4 rad/s) and with {m,n, σ, δ} = {2, 8, 0, 0} (dashed, dark-grey, added offset =
0.6 rad/s).

settings based on the momentary event rate of the signal might further improve
the estimation quality. This requires an online change of the parameters and a
smooth transition between estimates using different settings, which will be subject
of future research.

9.8 Conclusions

The position measurements of optical incremental encoders suffer from quantiza-
tion errors, which are largely amplified in the velocity and acceleration signals
obtained by numerical differentiation. To reduce the quantization errors, we pro-
posed a higher-order time-stamping (HOTS) concept to estimate accurate position,
velocity and acceleration signals. The HOTS concept extrapolates a least-squares
polynomial fit through a number of past encoder events, consisting of the counter
value and their time instants.

The HOTS concept is extended with skip and delay options, which perform a
spatial and time-based filtering on the stored past encoder events, respectively.
The skip and delay options make it possible to extend the time span covered by
the stored events. In case of a limited length of the hardware register, the skip
and delay options can be used to improve the estimates of the position, velocity
and acceleration signals.
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Figure 9.15: Accelerations, errors ea and CPSDs of ea for the point-to-point move-
ment: reference (dashed-dotted, black), quantized measurement (solid, light-grey,
added offset = 3 rad/s2), HOTS with {m,n, σ, δ} = {2, 5, 1, 0} (solid, black, added
offset = 6 rad/s2) and with {m,n, σ, δ} = {2, 8, 0, 0} (dashed, dark-grey, added
offset = 9 rad/s2).

To reduce the effects of encoder imperfections, the HOTS concept is combined
with an encoder error calibration using a look-up table containing a footprint
of the encoder imperfections. The application of the look-up table significantly
improves the position estimation.

The optimal HOTS settings are obtained by solving a mixed-integer optimization
problem using the response of the system to a band-limited white noise input.
For optimizations where the register length is limited, skip and delay factors are
required to obtain the optimal estimates.

The application of HOTS to motion systems requires a high-resolution clock and a
hardware register in the data-acquisition to capture and store the encoder events.
Experiments show that HOTS with the overall optimal settings significantly im-
proves the position, velocity and acceleration estimates. If the size of the hardware
register is limited, the estimation quality reduces somewhat, but still a large im-
provement compared to the quantized and low-pass filtered differentiated quantized
measurements is obtained using skip and delay, even for a very limited number of
stored events.

Future research involves extending the HOTS concept to adjust the settings online
based on the momentary event rate of the signal to be estimated.
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Chapter 10

Conclusions and
recommendations

Abstract - The performance of three representative cases of nano-motion systems
has been improved by developing dedicated actuator driver software, sensor signal
processing and control algorithms. The selected performance limiting factors for
nano-motion systems have been modeled and suitable compensation algorithms
have been derived. Experimental validation shows the obtained performance im-
provement. In this chapter, the main conclusions of the different developed models
and control algorithms for the three nano-motion systems are given and grouped
according to the research objectives. Also, the main contributions of this thesis
are summarized. Finally, recommendations for future research are given.

10.1 Concluding remarks

In this thesis, the performance-driven control of nano-motion systems with piezo
actuators and/or encoder sensors has been considered. Nano-motion systems are
defined as the class of high-precision motion systems that require a movement
with velocities ranging from nanometers per second to millimeters per second with
(sub)nanometer resolution. To improve the performance of nano-motion systems,
state-of-the-art theoretical developments can be translated into useful technologies.
For this translation, we adopted a procedure consisting of modeling and compensa-
tion of a selected performance limiting factor (PLF) at a component level, followed
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by an experimental validation of the obtained performance improvement on a sys-
tem level.

The design freedom for the compensation methods as considered in this thesis are
the actuator driver software, the sensor signal processing and control algorithms.
To illustrate the applicability of the adopted PLF procedure, three illustrative cases
are selected. The first case is a long-stroke one degree-of-freedom (DOF) nano-
motion stage driven by a walking piezo actuator. The second case is a metrological
AFM, which contains a short-stroke 3-DOF stage driven by piezo stack actuators
through a flexure mechanism. The third case is a rotating encoder system. The
different cases exhibit different PLFs to which the adopted systematic approach has
been applied successfully, resulting in a performance improvement of the different
systems. The specific conclusions of the different developed models, actuator driver
software, sensor signal processing and control algorithms are mentioned next in
relation with the formulated research objectives.

10.1.1 Nano-motion piezo actuation

The long-stroke nano-motion stage is driven by a walking piezo actuator, which
is an elliptical stepping piezo actuator that employs four bimorph piezo legs. A
dynamic electro-mechanical model of the piezo legs has been derived, which shows
that the resonance frequencies of the legs are located at frequencies f > 215 kHz.
Although the dynamics of the considered model are irrelevant for control design,
the derived model structure could be used to predict the behavior of differently
dimensioned bimorph piezo actuators. A static linearization of the model gives a
physical interpretation of the bending and extension coefficients of the piezo legs.
Experimental validation shows that the static linearized model describes different
tip trajectories with an accuracy between 77% and 90%.

A model of the nano-motion stage with the walking piezo actuator is derived, in-
cluding the alternating drive principle of the piezo legs, the contact dynamics and
the stick-slip behavior between the legs and the stage. The friction is modeled
using a set-valued force law. For the model, formulated in terms of a differential
inclusion, a dedicated time-stepping solver has been developed. The model de-
scribes the experimental data in the driving x-direction with an accuracy of 93%
and in the perpendicular y-direction with an accuracy of 80% for various electric
drive waveforms to the piezo legs.

The short-stroke 3-DOF stage in the metrological AFM is driven by piezo stack
actuators in combination with a flexure mechanism. A non-parametric MIMO
identification of the 3-DOF stage is used to investigate the coupling beween the
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axes through the relative gain array (RGA). The RGA shows that for feedback con-
troller design the axes of the metrological AFM can be considered to be decoupled
up to a frequency of 100 Hz. The hysteresis present in the piezo stack actuators
of the 3-DOF stage shows an asymmetry between the trace and retrace direc-
tions and an offset that is dependent on the applied voltage range. An extended
Coleman-Hodgdon model is developed to describe the asymmetric hysteresis with
an accuracy of 97% over all voltage ranges.

10.1.2 Piezo driver software design

The use of sinusoidal input waveforms to the piezo legs of the walking piezo actu-
ator results in elliptical tip trajectories with a take-over point between the driving
pair of legs at a theoretical zero velocity in the drive direction. New asymmetric
waveforms are proposed resulting in overlapping tip trajectories with a take-over
point at a non-zero velocity in drive direction, which results in a smoother stage
movement at the cost of a somewhat reduced attainable velocity of the motor. The
asymmetric waveforms reduce the tracking error between 50% and 92%, depending
on the reference velocity.

Using the derived model of the long-stroke 1-DOF nano-motion stage with the
walking piezo actuator, a waveform optimization is performed to derive optimal leg
orbits for the piezo legs in order to improve the driving properties of the actuator
at constant velocity. The model-based waveforms improve the driving properties
of the piezo actuator for constant velocities by 24% compared to the asymmetric
waveforms. The limited accuracy of the obtained velocity from the model limits
the results of the experiments with the model-based waveforms. Therefore, a data-
based waveform optimization is performed using the measured stage velocity. The
data-based waveforms further improve the driving properties of the piezo legs for
constant velocity by 47% compared to the asymmetric waveforms and by 30%
compared to the model-based waveforms.

10.1.3 Control of nano-motion systems

The overshoot and settling time of the long-stroke nano-motion stage during point-
to-point movements can be reduced significantly by continuously adjusting the step
size of the walking piezo actuator dependent on the reference velocity. For this, a
feedforward control method of the amplitude and phase of the waveforms to the
piezo legs combined with gain scheduling is derived, which reduces the overshoot of
a step response by 96% and the settling time by up to 67% compared to feedback
control only.
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The periodic walking movement of the piezo actuator in the long-stroke nano-
motion stage introduces repetitive disturbances in the system. The disturbances
are fully repetitive with respect to the angular orientation of the piezo legs, but
have a time-varying period-time. A delay-varying repetitive control (DVRC)
method is developed, which uses knowledge of the repetitive variable of the sys-
tem to determine and adjust the time-varying repetitive delay accordingly. A new
H∞ norm based stability criterion is derived, which gives a sufficient condition for
stability using the variation in the repetitive delay, while still allowing the design
of the learning filters using frequency domain techniques as is common in repeti-
tive control (RC). DVRC reduces the tracking error by 85% compared to standard
RC. Furthermore, DVRC can also be applied for references that have a varying
velocity, i.e., which have an inherent time-varying repetitive delay.

Using the derived extended Coleman-Hodgdon hysteresis model for the short-
stroke 3-DOF stage of the metrological AFM a model-inversion based feedforward
is designed. The feedforward contains separate models for the trace and retrace
directions. The switch between the models is performed at standstill of the stage.
The application of the hysteresis feedforward improves the tracking performance
by 89% compared to using only feedback control and by 43% compared to using
feedback control and a position feedforward.

The coupling effects between the axes of the AFM affect the performance of the
metrological AFM. Using a low-order system model, a MIMO H∞ controller is
derived. The MIMO controller is compared to a high-gain decentralized controller
that has comparable cross-over frequencies of the diagonal loop gains. Despite the
small amount of coupling present in the system, the output sensitivity is shown
to have a better disturbance suppression using the MIMO controller compared to
the decentralized controller.

The orientation of the sample under the metrological AFM is not necessarily
aligned with the direction of actuation, which causes the repetitive disturbances
introduced by the sample topography of the transfer samples to become non-
repetitive. To compensate for this time-varying character a directional repetitive
control (DRC) scheme is developed that aligns the actuation axes with the sam-
ple orientation under the microscope. The required coordinate transformation is
obtained from a scan over a couple of lines. DRC is shown to reduce the tracking
error by 44% compared to standard RC for a rotated sample over 0.22 rad.

10.1.4 Signal processing for incremental encoders

The position measurements of optical incremental encoders suffer from quantiza-
tion errors and encoder imperfections. An encoder signal processing technique is
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developed based on the time-stamping concept, which uses stored past encoder
events consisting of the counter value and the corresponding time instant. The
method, referred to as higher-order time-stamping (HOTS), consists of storing cap-
tured encoder events in a hardware register, polynomial fitting through a number
of encoder events and a subsequent extrapolation to the desired controller sam-
pling time. The polynomial fit makes it possible to derive also accurate velocity
and acceleration information from the encoder.

HOTS is extended with skip and delay options, which perform a spatial and time-
based filtering on the stored past encoder events, respectively. In case of a limited
hardware register, the skip and delay options can be used to improve the position,
velocity and acceleration estimates. The optimal number of events, order of the
polynomial fit and skip or delay are determined by a mixed-integer optimization
using the response of the system to a band-limited white noise input.

To reduce the effects of encoder imperfections, HOTS is combined with an encoder
error calibration using a look-up table, which significantly improves the position
estimation. HOTS combined with the encoder error compensation makes it possi-
ble to estimate position, velocity and acceleration signals which are, respectively,
43%, 87% and 75% more accurate than the quantized position measurement and
its low-pass filtered derivatives for a point-to-point movements over 2 rad.

10.1.5 Experimental implementation

The derived actuator driver software, sensor signal processing and control algo-
rithms for the three cases have been implemented and validated experimentally.

The long-stroke nano-motion stage is able to track constant velocity profiles rang-
ing from nanometers per second to millimeters per second with tracking errors of
nanometers to micrometers using the derived waveforms for the walking piezo ac-
tuator and the developed DVRC method. Using the feedforward control method
with gain scheduling to adjust the step size, point-to-point movements over a
distance of nanometers to the complete stroke of the stage are possible with a
significantly reduced overshoot and settling time.

The metrological AFM with the short-stroke 3-DOF piezo stage can perform scan-
ning movements and obtain sample images within the sensor bound of the interfer-
ometers using the derived hysteresis feedforward in combination with the feedback
controller and the DRC method.

The effects of quantization in optimal incremental encoders can be reduced signifi-
cantly using HOTS in combination with a look-up table to compensate the encoder
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imperfections, resulting in a more accurate position estimate. Furthermore, HOTS
makes it possible to derive accurate velocity and acceleration estimates, which are
suitable for control purposes.

10.1.6 Thesis contributions

The major contributions of this thesis can be summarized as follows:

• The derivation of a feedforward control method combined with gain schedul-
ing to adjust the step size of a walking piezo actuator. The overshoot and
settling time of a nano-motion stage driven by a walking piezo actuator can
be reduced significantly by continuously adjusting the step size of the actu-
ator dependent on the reference velocity during point-to-point movements.

• The modeling and waveform optimization for a long-stroke nano-motion
stage with a walking piezo actuator. A model of a long-stroke nano-motion
stage with a walking piezo actuator containing the alternating drive princi-
ple and contact dynamics and stick-slip effects between the motor and drive
surface of the stage is derived, which enables a model-based optimization of
the electric waveforms to the piezo legs for a desired stage performance.

• A repetitive control scheme for systems containing repetitive disturbances
that are repetitive with respect to another variable than time. The periodic
walking movement of stepping piezo actuators introduces repetitive distur-
bances that are fully repetitive with respect to the angular orientation of the
piezo legs, but not with respect to time. For systems that exhibit repetitive
disturbances that are repetitive with respect to another variable than time,
a new repetitive control scheme is derived that adjusts the repetitive delay
using the knowledge of the repetitive variable. A new H∞ norm based cri-
terion is derived to guarantee stability of the repetitive control scheme for a
certain variation in the repetitive delay.

• A hysteresis feedforward for short-stroke piezo stack driven stages with asym-
metric hysteresis and an input voltage range dependent offset. An extended
Coleman-Hodgdon model is derived to model hysteresis effects with an asym-
metry between the trace and retrace directions and an offset that is depen-
dent on input voltage range. A corresponding model-inversion based feed-
forward controller is developed to compensate for the hysteresis.

• A repetitive control scheme for multi-DOF stages subject to repetitive dis-
turbances in a rotated coordinate frame. For multi-DOF nano-motion stages
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that encounter repetitive disturbances caused by an external source with
a rotated coordinate frame, as for example encountered in microscopes or
planar stages with repetitive samples, a novel repetitive control scheme is
derived that aligns the coordinate axes to render the disturbance fully repet-
itive.

• Signal processing algorithm and error compensation method for optical incre-
mental encoders. To reduce the quantization effects in optical incremental
encoders a higher-order time-stamping method is developed, which enables
accurate position, velocity and acceleration information to be derived from
a number of stored past encoder events.

10.2 Recommendations for future development

Based on the various derived models and compensation methods and performed
experiments with the three different cases considered in this thesis, the following
recommendations for future development can be given.

10.2.1 The walking piezo actuator

Experiments with the long-stroke nano-motion stage driven by the walking piezo
actuator reveal the presence of hysteresis effects, which appear to be located in
the separate piezo stacks of the different piezo legs. Modeling of the hysteresis
effects enables a feedforward control method to be derived to compensate for the
hysteresis in the piezo legs. By a proper adjustment of the input voltages to the
different stacks, the hysteresis effects of the legs in both the driving x-direction
and the perpendicular y-direction can be compensated for simultaneously, which is
expected to further improve the performance of the long-stroke nano-motion stage
driven by the walking piezo actuator.

Furthermore, the varying system dynamics, caused by the changing contribution of
the legs in the drive direction over one drive cycle as prescribed by the waveforms,
can be incorporated in the synthesis of a feedback controller, which could further
improve the performance. Available control techniques that can explicitly take
the operation-point dependent system dynamics into account are H∞ control or
linear-parameter-varying (LPV) control.

The actuation of nano-motion systems by elliptical stepping piezo actuators is
influenced by several microscopic effects, such as the contact dynamics between
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the piezo actuator, roughness of the drive surface, nano-stiffness and friction of
the bearings, etc. In this thesis, the effects of stick-slip and contact dynamics are
taken into account using elementary models, which give a course approximation.
More research into and modeling of these microscopic effects allows even more
accurate actuator driver software and control algorithms to be designed, which
ultimately improve the performance of the nano-motion stages driven by stepping
piezo actuators.

10.2.2 The metrological AFM

The obtained reduction of the coupling effects between the different axes in the
metrological AFM is not explicitly specified in the controller synthesis step since
only diagonal weighting filters are used. The use of non-diagonal weighting fil-
ters to prescribe the desired coupling reduction between the different axes could
further improve the performance of the metrological AFM. Specification of the
MIMO performance by non-diagonal weighting filters is however non-trivial and
is recommended as a direction for future research. Also, the derivation of a low-
order control-relevant MIMO model appeared to be a crucial step for a successful
control synthesis. For the reduction of dynamic coupling effects, model identifica-
tion techniques should be developed that derive accurate control oriented models,
especially also of the non-diagonal terms in case of a large dynamic range between
the different terms in the system FRF.

The derived control algorithms for the metrological AFM enable movements of
the 3-DOF stage within the sensor noise bound. However, the desired accuracy
of one nanometer in all axes is not achieved due to the large noise bounds on the
different axes. To meet the performance specification, the source of the external
disturbances should be located and appropriate modifications to the hardware de-
sign or control algorithms to suppress the external disturbances are recommended
as a future development to improve the performance of the metrological AFM.

10.2.3 The encoder setup

The derived encoder higher-order time-stamping (HOTS) method uses a fixed
(optimal) settings for the number of events, the polynomial fit order and the skip
or delay options. An extension of the HOTS method to continuously adjust the
settings based on the momentary event rate of the signal to be estimated could
possibly improve the estimated position, velocity and acceleration signals even
further, thus further improving the applicability of incremental encoders for use
in nano-motion systems.
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Appendix A

Position-dependent dynamics
of the walking piezo motor

Abstract - This appendix describes the varying dynamics of the nano-motion
stage driven by the walking piezo actuator. The system dynamics vary due to
the changing contribution of the legs in the drive direction over one drive cycle
as prescribed by the waveforms. To identify this variation, frequency response
function (FRF) measurements are performed for a grid of leg angles over one
walking period. The excitation level is chosen such that no slip is present. The
series of FRF measurements shows a clear variation of the static gain as function
of the leg orientation.

A.1 FRF measurements

To drive the nano-motion stage using the walking piezo actuator, the input volt-
ages to the different piezo stacks are described by periodic waveforms. Different
waveforms result in different tip trajectories and driving properties of the motor.
For a given choice of the waveforms, the contributions of the piezo legs in the drive
direction vary as function of the momentary orientation of the piezo legs α in each
drive cycle.

The derived model of the individual piezo legs in Chapter 3 shows that the dy-
namics vary with the angular orientation α (rad) resulting from the momentary
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Figure A.1: Schematic representation of the piezo-driven nano-motion stage from
a control perspective.

input voltages. In this appendix the frequency response function (FRF) measure-
ments of the system, consisting of the nano-motion stage (see Fig. 4.1) and the
walking piezo actuator, are presented for different angular orientations α (rad) of
the legs in each drive cycle as prescribed by the asymmetric waveforms, derived in
Chapter 2.

A schematic representation of the system from a control perspective is shown in
Fig. A.1. The input of the system is the drive frequency fα (Hz) of the piezo legs,
the output is the stage position xs (m). Integration of the drive frequency gives
the momentary leg angle α (rad) of the piezo legs as

α(t) = 2π
∫ t

0

fα(τ)dτ.

The input voltages to the motor ui(t), i ∈ {1, 2, 3, 4} are calculated for a chosen
waveform shape using the angle α. For the asymmetric waveforms, derived in
Chapter 2, the input voltages equal

ui,asym(t) =
A

Ā
a0 +

A

Ā

4∑

k=1

{ak cos[kα(t) + kψi] + bk sin[kα(t) + kψi]} , (A.1)

where the maximum and input amplitudes Ā = A = 46 V, the Fourier coefficients
equal a0 = 28.80, a1 = −10.78, b1 = 18.73, a2 = 2.387, b2 = 4.097, a3 = 1.985,
b3 = −0.007792, a4 = 0.2298 and b4 = −0.3901, and the phases [ψ1, ψ2, ψ3, ψ4] =
[0, 1

2π, π,
3
2π] rad.

The walking piezo motor contains four piezo legs, which drive the nano-motion
stage in pairs of two, i.e., the first pair p1 is driven by input voltages u1(t) and
u2(t) and the second pair p2 by input voltages u3(t) and u4(t). Using the model
derived in Chapter 3, the positions of the tips of the piezo legs in the driving
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Figure A.2: Leg trajectories of pair p1 (black, solid) and pair p2 (grey, dashed) for
the asymmetric waveforms (A.1), the marked points indicate the angular orienta-
tion α (rad) of the legs in one drive cycle.

x-direction and perpendicular y-direction equal

xp1 = cx(u1(t)− u2(t)),
yp1 = cy(u1(t) + u2(t)),
xp2 = cx(u3(t)− u4(t)),
yp2 = cy(u3(t) + u4(t)),

(A.2)

with bending coefficient cx = 64.5 nm/V and extension coefficient cy = 29.8 nm/V.
The theoretical tip trajectories of the piezo legs with the asymmetric waveforms
(A.1) for α ∈ [0, 2π] are shown in Fig. A.2. Since (A.2) only describes relative
positions, the trajectory of pair p2 is shifted over 1.73 nm such that the two curves
intersect at the theoretical take-over moment between the driving pair of legs at
α = 0.92π rad. Fig. A.2 shows that a variation in α over a fixed angle results
in displacements with different contributions in the driving x-direction, i.e., in a
different gain between the input α and output xs.

To measure the different FRFs as function of the orientation α, the integrator in
Fig. A.1 is omitted for the moment, making α the input variable of the system. The
FRFs are measured by exciting the system with a white noise signal for small angles
α̃ around a nominal angle α0. The occurrence of stick-slip between the legs and
the drive strip of the nano-motion stage would affect the FRF measurements and
the locations of the measured (anti-)resonances [146]. Therefore, the amplitude of
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the noise should be chosen such that slip between the legs and the drive strip of the
nano-motion stage is avoided. To determine the maximum allowable amplitude of
ũ, the waveforms ui, i ∈ {1, 2, 3, 4} are linearized at each nominal angle α0 as

ũi(t) = ui(α0) +
δui
δα

(α0)α̃, (A.3)

where the input α̃ is a white noise signal with frequencies f̃ up to the Nyquist
frequency, i.e., f̃ ∈ [0, 2] kHz for a sampling frequency fs = 4 kHz. The amplitude
of the white noise signal Ã (rad) should be chosen such that the resulting leg inertia
termmẍp1,2 (N) is less than the friction force Fw (N) in the contact between the legs
and the stage, with m (kg) the lumped mass of stage and the legs in x-direction.
The maximum allowable amplitude Ã of the noise on the angular orientation α̃ is
determined as Ãmax = 0.03 rad using the leg acceleration calculated with (A.2) for
the linearized waveforms (A.3), the mass m = 0.428 kg and a static friction force
Fw = 13 N.

The measured FRFs H(f) from the angle α to the position of the stage xs are
shown in Fig. A.3 for various nominal leg angles α0 ∈ [0, 2π]. A clear fluc-
tuation in the gain of the FRFs at low frequencies can be seen, with magni-
tudes of |H(f)|f<200 Hz ∈ {−143.0,−121.6} dB. The first resonance frequency
at f = 543 Hz and anti-resonance frequency at f = 575 Hz show no significant
changes for varying α, indicating that the corresponding modes of the system are
not affected by the angular orientation of the legs in the drive cycle. The resonances
at frequencies f > 600 Hz are affected by the momentary angular orientation of
the piezo legs in a drive cycle.

For feedback control purposes, the variation in system dynamics should be incor-
porated in the control synthesis to guarantee stability of the closed-loop system.
The variation of the low-frequent gain shows a structure over a complete drive
cycle α ∈ [0, 2π], which will be discussed in the next section.

A.2 Gain variations

The gain of the different FRFs at 100 Hz is plotted in Fig. A.4 as function of
the leg angle α. Two clear maxima can be observed at angles α = 2.79 rad and
α = 5.93 rad. From Fig. A.2 follows that at these angles the legs are located near
the theoretical take-over point, at which both leg pairs are in contact with the
stage and move both in positive x-direction. The minima are located at angles
where the driving pair of legs has only a small component in the driving x-direction
and the other pair of legs is located in the bottom corners of the leg trajectories.
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The sequence of FRF measurements is repeated several times to test the repro-
ducibility, as shown by the different lines in Fig. A.4. The two grey lines are
obtained by measurements at the same day, whereas the black line results from
measurements at a different day. The measurements performed at the same day
show a large correspondence. The measurement of the different day shows an
offset over the complete angle α. Possible explanations for the variation can be
temperature effects, contamination of the piezo legs or different contact properties
at the used parts of the drive strip during the different measurements.

Modeling of the gain variation and incorporating it in the controller synthesis,
e.g., using H∞ control, gain scheduling or linear parameter varying (LPV) control,
could possibly further improve the performance of the piezo-driven nano-motion
stage, which is subject of future research.
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Appendix B

List of symbols

Roman uppercase

Symbol Description Unit
A amplitude

area m2

system matrix
matrix with encoder event times

A pulse signal V
B input matrix

vector with encoder event positions
B pulse signal V
C controller transfer function

capacitance F
output matrix
set of admissible friction forces
cycle

D electric displacement C/m2

D damping matrix
E electric field V/m

Young’s modulus Pa
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E output multiplicative perturbation
matrix with encoder events

F force N
Fd damping force N
Fh holding force N
Fp preload force N
FN normal force N
Fl lower fractional transform
G system transfer function
H model matrix

system transfer function
I identity matrix
J inertia kgm2

K gain
index numbers of stored events

Ka stiffness N/m
KA gain scheduling term
Kφ gain scheduling term
L length m

learning filter transfer function
loop gain transfer function
low-pass filter transfer function

M mass kg
moment Nm
maximum delay -

M mass matrix
Mp overshoot m
Ms modifying sensitivity transfer function
N number of samples -

closed-loop transfer function
P system transfer function

parameter set
vector with polynomial coefficients

Pα repetitive period s
Q electric charge C

robustness filter transfer function
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Qnc nonconservative generalized forces N
R radius m

rotation matrix -
R correlation -
S sensitivity transfer function

matrix with generalized force directions
strain

SP process sensitivity transfer function
T period time s

stress N/m2

kinetic energy J
complementary sensitivity transfer function

Ts sampling time s
V potential energy J

Lyapunov function
voltage V

VR voltage range V
W weighing filter
W output matrix

Roman lowercase

Symbol Description Unit
a Fourier series coefficient
b damping Ns/m

Fourier series coefficient
bs width m
c motor constant

width m
cx bending coefficient m/V
cy extension coefficient m/V
d damping Ns/m

disturbance
d31 piezoelectric constant m/V
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d33 piezoelectric constant m/V
ds depth m
e error m, rad
e31 piezoelectric constant N/(Vm)
f frequency Hz

force N
objective function

fs sampling frequency Hz
ft total force N
fα drive frequency Hz
g gravitational constant m/s2

output function
i current A
k stiffness N/m

electro-mechanical coupling factor -
discrete time sample index -
gain
iteration number

l delay L filter -
m mass kg

minimum delay -
fit order

n number of layers -
n number of events -
nF number of forces -
nM number of moments -
p leg pair -

polynomial coefficient
q generalized coordinate

overlap
delay Q filter -

r reference
position vector
convergence parameter
model output

s Laplace variable (s = jω) rad/s
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sE compliance m2/V
t time s
ts settling time s
u voltage V

input
v velocity m/s

vector with measured variables
w external input signal

waveform number
x Cartesian coordinate m
x state variable
y Cartesian coordinate m
y output
z Cartesian coordinate m
z z-transform variable (z = ejω)
z vector with control variables
z sample height m

Greek

Symbol Description Unit
α angle rad

repetitive variable
gain

β angle rad
dimensionless damping coefficient -
gain

γ friction coefficient -
gain
optimization argument

δ delay
distance

∆ displacement m
ε accuracy

offset V
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εT dielectric constant N/V2

θ rotation around z-axis rad
λ friction force N

characteristic loci
µ friction coefficient -

structured singular value
mean value

ν Poisson’s ratio -
ξ optimization parameters
ρ density kg/m3

σ singular value
variance
skip factor

τ rotation around x-axis rad
input
phase shift

φ phase rad
rotational position vector

ϕ rotation around y-axis rad
ψ phase rad
Ω angular velocity rad/s
ω frequency rad/s

Subscripts, superscripts and indices

Symbol Description

0 initial

a acceleration
actuation

A amplitude
start of time step

BW bandwidth
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b bearing

CM center of mass

c contact
controller

d diagonal
decentralized

E end of time step

e equilibrium
experiment
event

h motor housing

i index

k index

K stored encoder events

LP low-pass

l leg
small perturbations

m model
motor

max maximum

nd non-diagonal

nr non-repetitive

o original
output

opt optimal

p leg pair
pole

r reference
repetitive
retrace
rotated

RC repetitive control

res resonance

s stage
simulation

t total
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t tip
trace

v velocity

x Cartesian coordinate

y Cartesian coordinate

z Cartesian coordinate

δ delay

σ skip

φ phase

Special symbols and operations

Symbol Description
j imaginary number
Re(a) real part
Im(a) imaginary part
aT transpose
|a| absolute value

complex modulus (magnitude)
bac floor function
∠a phase angle
ȧ time derivative
ā model

quantized
normalized
maximum value
average value

ã model
linear perturbation

â model
estimated

∆a finite difference
E(a) expected value
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Acronyms and initialisms

Abbreviation Description
AFM atomic force microscope
AQI advanced quadrature interface
BIBO bounded-input bounded-output
CM center of mass
CPSD cumulative power spectral density
CPU central processing unit
DAC digital-to-analog converter
DAE differential-algebraic equation
DC direct current
DMMS distributed micro-motion systems
DOF degree-of-freedom
DRC directional repetitive control
DVRC delay-varying repetitive control
FB feedback
FEM finite element modeling
FF feedforward
FIR finite impulse response
FRF frequency response function
GA genetic algorithms
HOTS higher-order time-stamping
ILC iterative learning control
ISS input-to-state stability
LFK Lyapunov-Krasovskii functional
LFT lower fractional transformation
LMI linear matrix inequality
LPV linear parameter-varying
LU lower-upper
MIMO multiple-input multiple-output
PI proportional-integral
PLF performance limiting factor
PSD power spectral density
PSO particle swarm optimization
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PZT lead zirconate titanate
RC repetitive control
RGA relative gain array
rms root-mean-square
SA simulated annealing
SISO single-input single-output
SPM scanning probe microscope
TTL transistor-transistor logic
USB universal serial bus
ZPETC zero-phase-error-tracking-control
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Summary
Performance-driven control of

nano-motion systems

The performance of high-precision mechatronic systems is subject to ever increas-
ing demands regarding speed and accuracy. To meet these demands, new actuator
drivers, sensor signal processing and control algorithms have to be derived. The
state-of-the-art scientific developments in these research directions can significantly
improve the performance of high-precision systems. However, translation of the
scientific developments to usable technology is often non-trivial.

To improve the performance of high-precision systems and to bridge the gap be-
tween science and technology, a performance-driven control approach has been
developed. First, the main performance limiting factor (PLF) is identified. Then,
a model-based compensation method is developed for the identified PLF. Experi-
mental validation shows the performance improvement and reveals the next PLF
to which the same procedure is applied. The compensation method can relate to
the actuator driver, the sensor system or the control algorithm.

In this thesis, the focus is on nano-motion systems that are driven by piezo actua-
tors and/or use encoder sensors. Nano-motion systems are defined as the class of
systems that require velocities ranging from nanometers per second to millimeters
per second with a (sub)nanometer resolution. The main PLFs of such systems are
the actuator driver, hysteresis, stick-slip effects, repetitive disturbances, coupling
between degrees-of-freedom (DOFs), geometric nonlinearities and quantization er-
rors.

The developed approach is applied to three illustrative experimental cases that
exhibit the above mentioned PLFs. The cases include a nano-motion stage driven
by a walking piezo actuator, a metrological AFM and an encoder system.

The contributions of this thesis relate to modeling, actuation driver development,
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control synthesis and encoder sensor signal processing. In particular, dynamic
models are derived of the bimorph piezo legs of the walking piezo actuator and
of the nano-motion stage with the walking piezo actuator containing the switch-
ing actuation principle, stick-slip effects and contact dynamics. Subsequently, a
model-based optimization is performed to obtain optimal drive waveforms for a
constant stage velocity. Both the walking piezo actuator and the AFM case ex-
hibit repetitive disturbances with a non-constant period-time, for which dedicated
repetitive control methods are developed. Furthermore, control algorithms have
been developed to cope with the present coupling between and hysteresis in the
different axes of the AFM. Finally, sensor signal processing algorithms have been
developed to cope with the quantization effects and encoder imperfections in op-
tical incremental encoders.

The application of the performance-driven control approach to the different cases
shows that the different identified PLFs can be successfully modeled and compen-
sated for. The experiments show that the performance-driven control approach
can largely improve the performance of nano-motion systems with piezo actuators
and/or encoder sensors.
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De markt voor ultra-precisie mechatronische systemen stelt steeds hogere eisen aan
de snelheid en nauwkeurigheid van machines. Om aan deze eisen te voldoen dienen
nieuwe methoden voor motorsturing, sensorverwerking en regelaarontwerp ontwik-
keld te worden. Recente wetenschappelijke resultaten op deze gebieden bieden een
goed perspectief om de prestaties van ultra-precisie mechatronische systemen te
verbeteren. De vertaling van nieuwe kennis naar bruikbare en toepasbare techno-
logie is hierbij echter niet triviaal.

Om de afstand tussen de wetenschappelijke resultaten en de technologie te verklei-
nen, is een prestatiegedreven regeltechnische methodiek ontwikkeld. De eerste
stap is de identificatie van de dominante prestatie-limiterende factor (PLF) in
het systeem. Vervolgens wordt een modelgebaseerd compensatie-algoritme voor
de betreffende PLF ontworpen. Implementatie en experimentele validatie van het
compensatie-algoritme tonen de behaalde verbetering en openbaren de volgende
PLF voor het systeem, waarop vervolgens dezelfde methodiek kan worden toege-
past. Compensatie-algoritmes kunnen deel uitmaken van zowel de motorsturing,
de sensorverwerking als het regelaarontwerp.

In dit proefschrift wordt gefocussed op nano-bewegingssystemen die aangedreven
worden door piezo-motoren en/of gebruik maken van optische incrementele enco-
ders als positiesensor. De nano-bewegingssystemen zijn de klasse van systemen
met snelheden variërend van nanometers per seconde tot millimeters per seconde
bij een (sub)nanometer resolutie in de positioneernauwkeurigheid. De belangrijk-
ste PLFs voor dergelijke systemen zijn de gebruikte motorsturing, de aanwezige
hysterese, het stick-slip gedrag, de aanwezige repeterende verstoringen, de koppe-
ling tussen de vrijheidsgraden van het systeem, de geometrische niet-lineariteiten
en de kwantisatiefouten in de encoders.

De ontwikkelde PLF-methodiek is toegepast op drie representatieve bewegings-
systemen die bovengenoemde PLFs bevatten: 1) een ultra-precisie platform dat
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wordt aangedreven door een wandelende piezo-motor, 2) een atomic force micro-
scoop (AFM), en 3) een roterend massasysteem met een positie-encoder.

De bijdragen van dit proefschrift bestaan uit een aantal technieken voor piezo-
motorsturing, encoderverwerking en regelaarontwerp. Als eerste bijdrage noemen
we het model van de wandelende piezo-motor in het ultra-precisie platform dat
zowel de overname van de aandrijvende pootjes als het stick-slip gedrag en de dy-
namische verschijnselen in het contact tussen motor en platform beschrijft. Met
behulp van dit model zijn optimale aanstuurspanningen voor de motor bepaald.
Zowel het ultra-precisie platform als de atomic force microscoop zijn onderhevig
aan repeterende verstoringen, waarvoor twee verschillende modelgebaseerde le-
rende regelaars zijn ontwikkeld. De koppeling tussen en de hysterese in de verschil-
lende assen van de microscoop zijn gemodelleerd en vervolgens gereduceerd met
een modelgebaseerd regelaarontwerp. Tenslotte is een gecombineerde model/data-
gebaseerde techniek ontwikkeld om de kwantisatiefouten en imperfecties in optische
incrementele encoders te reduceren.

De behaalde resultaten met de verschillende systemen tonen aan dat de presta-
tiegedreven regeltechnische methodiek met succes kan worden toegepast om de
gëıdentificeerde PLF’s achtereenvolgens te modelleren en te compenseren. De ex-
perimenten laten zien dat de toepassing van de PLF-methodiek significante ver-
beteringen in de prestaties van nano-bewegingssystemen met piezo-motoren en
positie-encoders kan opleveren.
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