590 research outputs found

    Realistic reconstruction and rendering of detailed 3D scenarios from multiple data sources

    Get PDF
    During the last years, we have witnessed significant improvements in digital terrain modeling, mainly through photogrammetric techniques based on satellite and aerial photography, as well as laser scanning. These techniques allow the creation of Digital Elevation Models (DEM) and Digital Surface Models (DSM) that can be streamed over the network and explored through virtual globe applications like Google Earth or NASA WorldWind. The resolution of these 3D scenes has improved noticeably in the last years, reaching in some urban areas resolutions up to 1m or less for DEM and buildings, and less than 10 cm per pixel in the associated aerial imagery. However, in rural, forest or mountainous areas, the typical resolution for elevation datasets ranges between 5 and 30 meters, and typical resolution of corresponding aerial photographs ranges between 25 cm to 1 m. This current level of detail is only sufficient for aerial points of view, but as the viewpoint approaches the surface the terrain loses its realistic appearance. One approach to augment the detail on top of currently available datasets is adding synthetic details in a plausible manner, i.e. including elements that match the features perceived in the aerial view. By combining the real dataset with the instancing of models on the terrain and other procedural detail techniques, the effective resolution can potentially become arbitrary. There are several applications that do not need an exact reproduction of the real elements but would greatly benefit from plausibly enhanced terrain models: videogames and entertainment applications, visual impact assessment (e.g. how a new ski resort would look), virtual tourism, simulations, etc. In this thesis we propose new methods and tools to help the reconstruction and synthesis of high-resolution terrain scenes from currently available data sources, in order to achieve realistically looking ground-level views. In particular, we decided to focus on rural scenarios, mountains and forest areas. Our main goal is the combination of plausible synthetic elements and procedural detail with publicly available real data to create detailed 3D scenes from existing locations. Our research has focused on the following contributions: - An efficient pipeline for aerial imagery segmentation - Plausible terrain enhancement from high-resolution examples - Super-resolution of DEM by transferring details from the aerial photograph - Synthesis of arbitrary tree picture variations from a reduced set of photographs - Reconstruction of 3D tree models from a single image - A compact and efficient tree representation for real-time rendering of forest landscapesDurant els darrers anys, hem presenciat avenços significatius en el modelat digital de terrenys, principalment gràcies a tècniques fotogramètriques, basades en fotografia aèria o satèl·lit, i a escàners làser. Aquestes tècniques permeten crear Models Digitals d'Elevacions (DEM) i Models Digitals de Superfícies (DSM) que es poden retransmetre per la xarxa i ser explorats mitjançant aplicacions de globus virtuals com ara Google Earth o NASA WorldWind. La resolució d'aquestes escenes 3D ha millorat considerablement durant els darrers anys, arribant a algunes àrees urbanes a resolucions d'un metre o menys per al DEM i edificis, i fins a menys de 10 cm per píxel a les fotografies aèries associades. No obstant, en entorns rurals, boscos i zones muntanyoses, la resolució típica per a dades d'elevació es troba entre 5 i 30 metres, i per a les corresponents fotografies aèries varia entre 25 cm i 1m. Aquest nivell de detall només és suficient per a punts de vista aeris, però a mesura que ens apropem a la superfície el terreny perd tot el realisme. Una manera d'augmentar el detall dels conjunts de dades actuals és afegint a l'escena detalls sintètics de manera plausible, és a dir, incloure elements que encaixin amb les característiques que es perceben a la vista aèria. Així, combinant les dades reals amb instàncies de models sobre el terreny i altres tècniques de detall procedural, la resolució efectiva del model pot arribar a ser arbitrària. Hi ha diverses aplicacions per a les quals no cal una reproducció exacta dels elements reals, però que es beneficiarien de models de terreny augmentats de manera plausible: videojocs i aplicacions d'entreteniment, avaluació de l'impacte visual (per exemple, com es veuria una nova estació d'esquí), turisme virtual, simulacions, etc. En aquesta tesi, proposem nous mètodes i eines per ajudar a la reconstrucció i síntesi de terrenys en alta resolució partint de conjunts de dades disponibles públicament, per tal d'aconseguir vistes a nivell de terra realistes. En particular, hem decidit centrar-nos en escenes rurals, muntanyes i àrees boscoses. El nostre principal objectiu és la combinació d'elements sintètics plausibles i detall procedural amb dades reals disponibles públicament per tal de generar escenes 3D d'ubicacions existents. La nostra recerca s'ha centrat en les següents contribucions: - Un pipeline eficient per a segmentació d'imatges aèries - Millora plausible de models de terreny a partir d'exemples d’alta resolució - Super-resolució de models d'elevacions transferint-hi detalls de la fotografia aèria - Síntesis d'un nombre arbitrari de variacions d’imatges d’arbres a partir d'un conjunt reduït de fotografies - Reconstrucció de models 3D d'arbres a partir d'una única fotografia - Una representació compacta i eficient d'arbres per a navegació en temps real d'escenesPostprint (published version

    Real-time Photorealistic Visualisation of Large-scaleMultiresolution Terrain Models

    Get PDF
    Height field terrain rendering is an important aspect of GIS, outdoor virtual reality applicationssuch as flight simulation, 3-D games, etc. A polygonal model of very large terrain data requiresa large number of triangles. So, even most high-performance graphics workstations have greatdifficulty to display even moderately sized height fields at interactive frame rates. To bringphotorealism in visualisation, it is required to drape corresponding high-resolution satellite oraerial phototexture over 3-D digital terrain and also to place multiple collections of point-location-based static objects such as buildings, trees, etc and to overlay polyline vector objects suchas roads on top of the terrain surface. It further complicates the requirement of interactive framerates while navigation over the terrain. This paper describes a novel approach for objects andterrain visualisation by combination of two algorithms, one for terrain data and the other forobjects. The terrain rendering is accomplished by an efficient dynamic multiresolution view-dependent level-of-detail mesh simplification algorithm. It is augmented with out-of-corevisualisation of large-height geometry and phototexture terrain data populated with 3-D/2-Dstatic objects as well as vector overlays without extensive memory load. The proposedmethodology provides interactive frame rates on a general-purpose desktop PC with OpenGL-enabled graphics hardware. The software TREND has been successfully tested on different real-world height maps and satellite phototextures of sizes up to 16K*16K coupled with thousandsof static objects and polyline vector overlays

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Granite: A scientific database model and implementation

    Get PDF
    The principal goal of this research was to develop a formal comprehensive model for representing highly complex scientific data. An effective model should provide a conceptually uniform way to represent data and it should serve as a framework for the implementation of an efficient and easy-to-use software environment that implements the model. The dissertation work presented here describes such a model and its contributions to the field of scientific databases. In particular, the Granite model encompasses a wide variety of datatypes used across many disciplines of science and engineering today. It is unique in that it defines dataset geometry and topology as separate conceptual components of a scientific dataset. We provide a novel classification of geometries and topologies that has important practical implications for a scientific database implementation. The Granite model also offers integrated support for multiresolution and adaptive resolution data. Many of these ideas have been addressed by others, but no one has tried to bring them all together in a single comprehensive model. The datasource portion of the Granite model offers several further contributions. In addition to providing a convenient conceptual view of rectilinear data, it also supports multisource data. Data can be taken from various sources and combined into a unified view. The rod storage model is an abstraction for file storage that has proven an effective platform upon which to develop efficient access to storage. Our spatial prefetching technique is built upon the rod storage model, and demonstrates very significant improvement in access to scientific datasets, and also allows machines to access data that is far too large to fit in main memory. These improvements bring the extremely large datasets now being generated in many scientific fields into the realm of tractability for the ordinary researcher. We validated the feasibility and viability of the model by implementing a significant portion of it in the Granite system. Extensive performance evaluations of the implementation indicate that the features of the model can be provided in a user-friendly manner with an efficiency that is competitive with more ad hoc systems and more specialized application specific solutions

    Methods for constructing 3D geological and geophysical models of flood basalt provinces

    Get PDF
    In this thesis, realistic 3D geological models of flood basalt provinces are constructed. These models are based on outcrop observations and remote sensing data from the North Atlantic Igneous Province, collected by a variety of methods including terrestrial laser scanning. Geophysical data are added to the models to make them suitable for generating synthetic seismic data. Flood basalt provinces contain a number of different volcanic facies, distinguished by their outcrop appearance and physical properties. These include tabular-classic and compound-braided lava flows, intrusions and hyaloclastites. 3D models are constructed for tabular-classic lava flows based on satellite data from Iceland and laser scanning data from a variety of locations. Models for compound-braided lava flows are based on terrestrial laser scanning data and field observations from the Faroe Islands and the Isle of Skye. An additional finding of this work is that volcanic facies can be differentiated in wireline log data from boreholes. Facies show characteristic velocity distributions which can be linked to onshore observations and used to understand volcanic facies in offshore boreholes. Data from boreholes on the Faroe Islands are used to add seismic velocities to the 3D geological models above. This thesis also develops methods and workflows for constructing 3D geological models of flood basalt lava flows. The collection of digital 3D data using terrestrial laser scanning is evaluated, and data processing workflows are developed

    Remote Sensing and Geosciences for Archaeology

    Get PDF
    This book collects more than 20 papers, written by renowned experts and scientists from across the globe, that showcase the state-of-the-art and forefront research in archaeological remote sensing and the use of geoscientific techniques to investigate archaeological records and cultural heritage. Very high resolution satellite images from optical and radar space-borne sensors, airborne multi-spectral images, ground penetrating radar, terrestrial laser scanning, 3D modelling, Geographyc Information Systems (GIS) are among the techniques used in the archaeological studies published in this book. The reader can learn how to use these instruments and sensors, also in combination, to investigate cultural landscapes, discover new sites, reconstruct paleo-landscapes, augment the knowledge of monuments, and assess the condition of heritage at risk. Case studies scattered across Europe, Asia and America are presented: from the World UNESCO World Heritage Site of Lines and Geoglyphs of Nasca and Palpa to heritage under threat in the Middle East and North Africa, from coastal heritage in the intertidal flats of the German North Sea to Early and Neolithic settlements in Thessaly. Beginners will learn robust research methodologies and take inspiration; mature scholars will for sure derive inputs for new research and applications

    From GeoVisualization to visual-analytics: methodologies and techniques for human-information discourse

    Get PDF
    2010 - 2011The objective of our research is to give support to decision makers when facing problems which require rapid solutions in spite of the complexity of scenarios under investigation. In order to achieve this goal our studies have been focused on GeoVisualization and GeoVisual Analytics research field, which play a relevant role in this scope, because they exploit results from several disciplines, such as exploratory data analysis and GIScience, to provide expert users with highly interactive tools by which they can both visually synthesize information from large datasets and perform complex analytical tasks. The research we are carrying out along this line is meant to develop software applications capable both to build an immediate overview of a scenario and to explore elements featuring it. To this aim, we are defining methodologies and techniques which embed key aspects from different disciplines, such as augmented reality and location-based services. Their integration is targeted to realize advanced tools where the geographic component role is primary and is meant to contribute to a human-information discourse... [edited by author]X n.s

    Visual Techniques for Geological Fieldwork Using Mobile Devices

    Get PDF
    Visual techniques in general and 3D visualisation in particular have seen considerable adoption within the last 30 years in the geosciences and geology. Techniques such as volume visualisation, for analysing subsurface processes, and photo-coloured LiDAR point-based rendering, to digitally explore rock exposures at the earth’s surface, were applied within geology as one of the first adopting branches of science. A large amount of digital, geological surface- and volume data is nowadays available to desktop-based workflows for geological applications such as hydrocarbon reservoir exploration, groundwater modelling, CO2 sequestration and, in the future, geothermal energy planning. On the other hand, the analysis and data collection during fieldwork has yet to embrace this ”digital revolution”: sedimentary logs, geological maps and stratigraphic sketches are still captured in each geologist’s individual fieldbook, and physical rocks samples are still transported to the lab for subsequent analysis. Is this still necessary, or are there extended digital means of data collection and exploration in the field ? Are modern digital interpretation techniques accurate and intuitive enough to relevantly support fieldwork in geology and other geoscience disciplines ? This dissertation aims to address these questions and, by doing so, close the technological gap between geological fieldwork and office workflows in geology. The emergence of mobile devices and their vast array of physical sensors, combined with touch-based user interfaces, high-resolution screens and digital cameras provide a possible digital platform that can be used by field geologists. Their ubiquitous availability increases the chances to adopt digital workflows in the field without additional, expensive equipment. The use of 3D data on mobile devices in the field is furthered by the availability of 3D digital outcrop models and the increasing ease of their acquisition. This dissertation assesses the prospects of adopting 3D visual techniques and mobile devices within field geology. The research of this dissertation uses previously acquired and processed digital outcrop models in the form of textured surfaces from optical remote sensing and photogrammetry. The scientific papers in this thesis present visual techniques and algorithms to map outcrop photographs in the field directly onto the surface models. Automatic mapping allows the projection of photo interpretations of stratigraphy and sedimentary facies on the 3D textured surface while providing the domain expert with simple-touse, intuitive tools for the photo interpretation itself. The developed visual approach, combining insight from all across the computer sciences dealing with visual information, merits into the mobile device Geological Registration and Interpretation Toolset (GRIT) app, which is assessed on an outcrop analogue study of the Saltwick Formation exposed at Whitby, North Yorkshire, UK. Although being applicable to a diversity of study scenarios within petroleum geology and the geosciences, the particular target application of the visual techniques is to easily provide field-based outcrop interpretations for subsequent construction of training images for multiple point statistics reservoir modelling, as envisaged within the VOM2MPS project. Despite the success and applicability of the visual approach, numerous drawbacks and probable future extensions are discussed in the thesis based on the conducted studies. Apart from elaborating on more obvious limitations originating from the use of mobile devices and their limited computing capabilities and sensor accuracies, a major contribution of this thesis is the careful analysis of conceptual drawbacks of established procedures in modelling, representing, constructing and disseminating the available surface geometry. A more mathematically-accurate geometric description of the underlying algebraic surfaces yields improvements and future applications unaddressed within the literature of geology and the computational geosciences to this date. Also, future extensions to the visual techniques proposed in this thesis allow for expanded analysis, 3D exploration and improved geological subsurface modelling in general.publishedVersio

    Ontology based data warehousing for mining of heterogeneous and multidimensional data sources

    Get PDF
    Heterogeneous and multidimensional big-data sources are virtually prevalent in all business environments. System and data analysts are unable to fast-track and access big-data sources. A robust and versatile data warehousing system is developed, integrating domain ontologies from multidimensional data sources. For example, petroleum digital ecosystems and digital oil field solutions, derived from big-data petroleum (information) systems, are in increasing demand in multibillion dollar resource businesses worldwide. This work is recognized by Industrial Electronic Society of IEEE and appeared in more than 50 international conference proceedings and journals
    corecore