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The thing to be wished for is,

not that the mountains should become easier,

but than men should become wiser and stronger.

� EDWARD WHYMPER,
�rst climber of the Matterhorn



Abstract

During the last years, we have witnessed signi�cant improvements in digital ter-
rain modeling, mainly through photogrammetric techniques based on satellite
and aerial photography, as well as laser scanning. These techniques allow the
creation of Digital Elevation Models (DEM) and Digital Surface Models (DSM)
that can be streamed over the network and explored through virtual globe ap-
plications like Google Earth or NASA WorldWind.

The resolution of these 3D scenes has improved noticeably in the last years,
reaching in some urban areas resolutions up to 1m or less for DEM and buildings,
and less than 10 cm per pixel in the associated aerial imagery. However, in
rural, forest or mountainous areas, the typical resolution for elevation datasets
ranges between 5 and 30 meters, and typical resolution of corresponding aerial
photographs ranges between 25 cm to 1 m. This current level of detail is only
su�cient for aerial points of view, but as the viewpoint approaches the surface
the terrain loses its realistic appearance.

Another important aspect of current datasets is their cost of acquisition.
Selected sites can be reconstructed at higher resolutions through multiple tech-
niques, including terrestrial LIDAR � a technology that measures distances using
the time of �ight of a laser beam �, shape-from-motion and multi-view stereo.
Acquiring the data usually involves a displacement to the site, mounting the sen-
sors on some vehicle (like a car, or a plane for aerial views) and moving through
the scene to be captured. In order to improve the level of detail, a new acquisition
with more samples per surface area has to be carried out. This implies either
using better equipment and/or performing a more in-depth scan of the area.
The associated costs severely limit the scalability of this approach, preventing
it to handle arbitrarily large areas, and still result in deeply incomplete models
due to occlusions. Dense vegetation scenarios like forests are prone to numerous
reconstruction artifacts due to their complex geometry, self-similar appearance
and occlusions.

One approach to augment the detail on top of currently available datasets is
adding synthetic details in a plausible manner, i.e. including elements that match
the features perceived in the aerial view. By combining the real dataset with the
instancing of models on the terrain and other procedural detail techniques, the
e�ective resolution can potentially become arbitrary. There are several appli-
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cations that do not need an exact reproduction of the real elements but would
greatly bene�t from plausibly enhanced terrain models: video games and enter-
tainment applications, visual impact assessment (e.g. how a new ski resort would
look), virtual tourism, simulations, etc.

In this thesis we propose new methods and tools to help the reconstruc-
tion and synthesis of high-resolution terrain scenes from currently available data
sources, in order to achieve realistically looking ground-level views. In particular,
we decided to focus on rural landscapes, mountains and forest areas.

Our main goal is the combination of plausible synthetic elements and proce-
dural detail with publicly available real data to create detailed 3D scenes from
existing locations. Our research has focused on the following contributions:

• An e�cient pipeline for aerial imagery segmentation

• Plausible terrain enhancement from high-resolution examples

• Super-resolution of DEM by transferring details from the aerial photograph

• Synthesis of arbitrary tree picture variations from a reduced set of pho-
tographs

• Reconstruction of 3D tree models from a single image

• A compact and e�cient tree representation for real-time rendering of forest
landscapes
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1
Introduction

During the last years, we have witnessed signi�cant improvements in digital ter-
rain modeling, mainly through photogrammetric techniques based on satellite
and aerial photography, as well as laser scanning. These techniques allow the
creation of Digital Elevation Models (DEM) and Digital Surface Models (DSM)
that can be streamed over the network and explored through virtual globe ap-
plications like Google Earth [9] or NASA WorldWind [18].

The resolution of these models has improved noticeably in the last years,
reaching in some places of urban areas resolutions up to 1m for the DEM and
less than 10 cm per pixel in the aerial imagery. However, in rural and forest areas,
typical DEM resolutions range between 5 and 30 meters and from 25 cm to 1m
for the corresponding imagery. This current level of detail is only su�cient for
aerial points of view; as the viewpoint approaches the surface the terrain loses
its realistic appearance. On a global scale, the best available datasets are the
ones obtained by NASA Shuttle Radar Topography Mission (SRTM) [24], which
provide a resolution of 1 arc-second (30m). However, this dataset contains voids
at various desert and mountain regions - including all 14 peaks over 8000m
and most of the peaks over 7000m of the Himalayas. Therefore, applications like
Google Earth or WorldWind integrate data from various local sources to improve
details.

Another important aspect of current datasets is their cost of acquisition.
Selected sites can be reconstructed at higher resolutions through multiple tech-
niques including terrestrial LIDAR � a technology that measures distances using
the time of �ight of a laser beam �, shape-from-motion and multi-view stereo.
Acquiring the data usually involves a displacement to the site, mounting the sen-
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2 Chapter 1. Introduction

Figure 1.1: Far aerial, medium distance aerial and ground-level views of Les
Agudes peak as seen in Google Earth, using the 25 cm orthophoto by ICGC.

sors on some vehicle (a car or a plane for aerial views) and moving through the
scene to be captured. In order to improve the level of detail, a new acquisition
with more samples per surface area has to be carried out. This implies either
using better equipment and/or performing a more in-depth scan of the area.
The associated costs severely limit the scalability of this approach, preventing
it to handle arbitrarily large areas, and still result in deeply incomplete models
due to occlusions. Dense vegetation scenarios like forests are prone to numerous
reconstruction artifacts due to their extremely complex geometry, self-similar
appearance and occlusions.

As a consequence, rural areas and mountainous regions usually lack enough
resolution for close views. Even 25 cm per pixel is too low for ground-level views,
as exempli�ed in Figure 1.1. Note how easily identi�able trees and rocks in
aerial views become blurry spots as one zooms into the terrain, complicating
the perception of the natural elements around. Even in the medium distance
aerial view, the texture on the closest areas starts to become fuzzy. Figure 1.2
compares a real photograph with the rendered ground-level view on the same
spot using a 5m DEM and 25 cm/pixel aerial image.

An example of a well known technology that enables ground-level views is
Google Street View [10]: it allows detailed inspection - in available areas - from
surface points of views by using a �xed set of 360◦panoramic photographs. These
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Figure 1.2: Pedraforca summit: comparison between real photograph and ground-
level view as seen in Google Earth.

viewpoints are obtained using a camera set mounted on a vehicle, but some
trekking routes and natural parks have also been mapped using a backpack with
the camera. Recent popularization of head-mounted displays and smartphone-
compatible 360-cameras is boosting the amount of available spherical panoramas.
A remarkable example is Project360 [14] by the outdoor sports company Mam-
mut, which hired experienced alpinists and created sets of panoramas in famous
climbing routes like Mont Blanc, Everest or El Capitan (Yosemite). However, in
this kind of applications the navigation is constrained to jumping between �xed
positions and does not provide a smooth interpolation between viewpoints � al-
though there is ongoing research addressing this issue. Moreover, each panorama
is an independent image that has to be sent to the user, so the amount of redun-
dant data to stream can be huge.

Another approach is to augment the detail on top of currently available
datasets in a plausible manner, i.e. including synthetic elements that match
the features perceived in the aerial view. By combining the real dataset with
the instancing of models on the terrain and other procedural detail techniques,
the e�ective resolution can potentially become arbitrary. There are several ap-
plications that do not need an exact reproduction of the real elements but would
greatly bene�t from plausibly enhanced terrain models: videogames and enter-
tainment applications, visual impact assessment (e.g. how a new ski resort would
look), virtual tourism, simulations, etc.

Some virtual globe applications are already applying this strategy. For exam-
ple, Google Earth [9] includes a 3D tree view for certain locations. Figures 1.3a
and 1.3b show trees rendered using a billboard for each species. The repetition
and planar nature of the billboards is clearly evident. Moreover, for viewing
angles more perpendicular to the terrain, the billboards are automatically dis-
abled. Note also in 1.3b how some trees appear at locations where one would
not expect them, as well as identi�able trees in the aerial image not appearing in
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3D. For ground-level views, like in Figure 1.3c, 3D models improve the realism
but there is still lack of shading and the terrain texture is still the same photo-
graph used in aerial views, so it is basically showing the pictured canopy on the
ground. Finally, Figure 1.3d shows polygonal models for trees (and buildings)
which have been probably obtained from a laser-scanned point cloud or a set of
oblique photographs.

(a) Hills near San Francisco (b) Parks in Athens

(c) Surui Forest, Brazilian Amazon (d) Lincoln Park, Chicago

Figure 1.3: Screenshots from Google Earth.

1.1 Contributions

The goal of this thesis is the reconstruction and synthesis of high-resolution ter-
rain landscapes from existing locations, suitable for realistically looking ground-
level navigation. In particular, we have focused on natural landscapes such as
mountainous terrain and large areas of forest. We propose new methods and
tools to leverage currently available public datasets and help the reconstruction
and synthesis of detailed 3D models of these locations, by combining plausible
synthetic elements and procedural details with the real data.

Here we summarize our contributions, which we will later see in depth in
chapters 4, 5 and 6. Figure 1.4 shows the relationship between the di�erent
sections and how they combine towards the main goal.
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Figure 1.4: Overview and relationship between our contributions.

• A complete and e�cient pipeline for the segmentation of aerial
imagery

Placing synthetic elements onto a terrain set in a plausible manner requires
�rst identifying where each kind of element should be placed according to
its high resolution aerial photograph. In our case, categories may not be
known in advance � di�erent terrains could contain di�erent categories �
or they may even depend on artistic or technical criteria � for example, a
category for ground might be specialized into sand or rock and use di�er-
ent rendering techniques. Therefore, it is unfeasible to rely on prede�ned
training sets. We compared several feature sets and classi�cation algo-
rithms in order to build a segmentation pipeline that can be trained fast
and using only a few examples per label, while still yielding good accuracy
rates. We also provided some insights on how to build this training set for
best performance, as well as some post-processing tools that can be helpful
to users such as �ltering or reclassifying according to a perceptual metric.
Finally, we validated the usefulness of our proposed per-pixel segmentation
by comparing an enhanced terrain using either our segmentation or the
current o�cial land-cover map.

• Plausible terrain enhancement from high-resolution examples

One strategy to increase detail on low-resolution elevation models is to
replace parts of it with other patches that have similar features taken from
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a high resolution dataset. We improved an existing technique based on
this strategy in order to not only replace the high resolution elevation but
also coherently transfer any other additional information layers the source
dataset may have, like vegetation cover, population densities, or erosion
sediments.

• Super-resolution of DEM by transferring details from the aerial
photograph

As we have seen in the previous section, current high resolution aerial
images are in the order of 25 or 50 centimeters per pixel, while DEM
are rarely found at 2m grid resolution or less, being 5 to 15 meters the
usual resolution range. We demonstrated it is possible to infer additional
details on DEM from the aerial image through the use of a Convolutional
Neural Network. Our results indicate that the neural network is able to
double the e�ective resolution of a DEM, and the participants in our user
study perceived the resulting terrain as being a faithful high resolution
representation.

• Synthesis of arbitrary tree picture variations from a reduced set
of photographs

Billboards are a common technique for including vegetation on a terrain,
and using photographs from local species can contribute to the plausibil-
ity of the resulting scene. Nevertheless, as soon as the users see many
repetitions of the exact same picture, the scene looks very unnatural. We
proposed a method that is able to generate new tree images by interpolat-
ing between samples from a small set of tree photographs and synthesize
variations of them. This way, we make possible to populate an entire scene
without the user noticing repetitions, thus improving the realism.

• Reconstruction of 3D tree models from a single image

The principal limitations of using billboards for the trees are given by the
static nature of a �at image: it will always look the same from any di-
rection, it does not receive proper shadows, and it does not easily allow
for animation of external e�ects like wind, among others. We proposed an
algorithm that reconstructs a full 3D tree model from a single tree photo-
graph at di�erent levels of detail: a relief approximation of the tree crown,
a set of branchlet billboards, and a highly detailed branching structure up
to the leaves level.
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• A compact and e�cient tree representation for real-time render-
ing

A forest terrain of moderate size can contain tens of thousands of trees,
which poses a challenge for rendering this scene in real time for free navi-
gation applications. We introduced a compact multi-resolution tree model
representation using di�erent Levels of Detail that allow e�cient rendering
from arbitrary directions as well as realistic lighting and shading e�ects.

1.2 Document outline

This thesis manuscript has been structured as follows. In this chapter we have
introduced the problem, motivation and our goals. Chapter 2 serves as a brief
introduction to the di�erent types of terrain data and small survey of available
datasets. Chapter 3 surveys related work on the various areas covered: aerial
image segmentation, terrain modeling and vegetation synthesis. Then, the next
chapters explain our work and contributions following the possible order of a
terrain enhancement pipeline: we start with the segmentation of the aerial im-
age (Chapter 4), then we improve the detail of the terrain and add additional
information like vegetation density layers (Chapter 5), and �nally we synthesize
plausible vegetation that resembles local species (Chapter 6). Finally, Chapter 7
summarizes the di�erent contributions and outlines ideas of future research.





2
GIS Preliminaries

The Encyclopedia Britannica de�nes a Geographic Information System (GIS)
as a �computer system for performing geographical analysis�, and includes in
the de�nition all the components used to recollect, organize, manipulate, query,
visualize, and interact with geographical data. In this thesis, we will tackle visu-
alization and interaction from a Computer Graphics perspective. This chapter
provides a brief introduction to the concepts from GIS and types of data that
we will use in the text. Moreover, since the development and applicability of
our project relies partially on the public availability of terrain data � mainly
elevation and aerial imagery � we also brie�y report some of the sources we are
aware of or we have used during the development of our work.

2.1 Elevation

The elevation of a point corresponds to its height with respect to another refer-
ence point, for example the mean sea level. Typically, elevation is represented
using topographical maps that show the contour lines alongside some color or
patterns palette that depends on the type of terrain or intention of the map.
However, in digital systems, elevation data is commonly provided as a uniform
raster grid or heightmap: each point/cell contains an elevation value, and the
horizontal spacing between neighboring cells represents the spatial or horizontal
resolution of the dataset. This resolution should not be confused with the verti-
cal accuracy: in Catalonia, the 2m elevation grid provided by ICGC [12] has a
vertical mean square error of 0.15m.

9
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Usually, the name Digital Elevation Model (DEM) is applied to any elevation
raster grid. The term Digital Surface Model (DSM) is used when the elevation
values represent the top-most layer of the terrain, including vegetation, buildings,
bridges or roads. If the elevation data corresponds to the bare-ground terrain
level, it is common to de�ne the dataset as a Digital Terrain Model (DTM). In
some places, the terms DEM and DTM are used as synonyms, while DSM is
commonly reserved for those datasets that include vegetation and objects.

Elevation data is currently obtained mainly through remote sensing approaches
like photogrammetry, synthetic-aperture radar (SAR) or LiDAR, although direct
land surveyed data can also be used. For example, the 5m elevation grid pro-
vided by ICGC has been generated through stereo pair photogrammetry of aerial
images to obtain a dense set of 3D points, but also combines surveyed positions,
level curves and other known pro�les from a vector data topographic base. Then,
all these points are combined and triangulated to generate a mesh, and �nally
the grid is obtained by sampling and interpolating the grid positions on this
mesh surface. The more recent 2m elevation grid dataset has been generated
from a LiDAR point cloud dataset, keeping only the points labeled as ground,
adding breaklines and contours to ill-sampled areas, and triangulating the points
to produce the mesh.

Figure 2.1: Elevation grid (normalized for visualization) and 3D render of Pe-
draforca mountain, using the 5m resolution DTM from ICGC.

Datasets

In 1996, the U.S. Geological Survey (USGS) completed a topographic elevation
model called GTOPO30 [11] that provides global coverage using a grid resolution
of 30 arcseconds, approximately 1km at the equator. This set was obtained by
combining information from several sources. Later, USGS and NGA developed
an enhanced model to replace GTOPO30 named GMTED2010, Global Multi-
resolution Terrain Elevation Data 2010 [8]. It provides elevations at 30, 15 and
7.5 arcseconds spatial resolution (1000, 500 and 250m) and incorporates the best
available global elevation data.
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The ASTER Global Digital Elevation Model [1] was developed jointly by
NASA and Japan's Ministry of Economy, Trade, and Industry. The �rst version
was released in 2009, and an improved second version in 2011. The ASTER
GDEM covers land surfaces between 83◦N and 83◦ S - which encompass 99% of
Earth's land - at 1 arcsecond resolution, but it is advised that the data may con-
tain anomalies or artifacts that can reduce its usability for certain applications,
and should be regarded as "`experimental or research grade"'.

One of the most widely used datasets comes from the Shuttle Radar Topog-
raphy Mission (SRTM), which obtained digital elevation between latitudes 60◦N
and 54◦ S at a raw resolution of 1 arcsecond (30m) [24]. Initially, SRTM Digital
Terrain Elevation Data was publicly distributed at 3 arcsecond resolution (90m)
for the latitudes covered, and at 1 arcsecond in the United States. The original
datasets contained many voids and single pixel errors in the form of pits and
bumps. Therefore, some researchers have worked on �lling the void either with
interpolation or by combining sources. While the no-data areas only amount
to 0.2% of the surveyed area, it is a problem in mountainous areas, gorges and
canyons. For instance, all 8,000m mountains and most of the highest summits
in all mountain ranges were a�ected. SRTM version 3, released in 2013, �lled
all voids primarily from ASTER GDEM2 but also using GMTED2010 and other
sources. Since 2014, the full dataset at 1 arcsecond is also publicly available.

A highly detailed, globally available and consistent dataset is still missing
nowadays. However, it is possible to �nd middle and high resolution DEM at
country or region level. These datasets are usually provided by the respective
geographical or geological service of the area, and it may be di�cult to �nd
them as their webpages are often written in the o�cial language of each region.

Figure 2.2: OpenDEM availability maps for middle resolution (left) and high
resolution (right) elevation datasets as of June 2018, and non-exhaustive listing of
the available resolution on sample regions.
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OpenDEM Searcher [19] maintains a list of publicly available elevation sets at
middle (2-30m) and high (≤2m) resolution, shown in Figure 2.2. For example,
as of June 2018, the USGS 3D Elevation Program Datasets provide 1/3 arcsecond
(10m) nationally in the US, but only a few areas have 1/9 arc-second (3m) and
even fewer at 1m. In Europe, some high resolution datasets covering mountain-
ous areas can be obtained from Spain (Basque Country and Catalonia), Italy
(Tuscany, Sardinia, Sicily and South Tyrol), Switzerland, Slovenia, England or
Wales.

In Spain, the Instituto Geográ�co Nacional (IGN) [13] provides Web Map
Services to download datasets. Currently, they provide 1000, 200, 25 and 5m grid
resolution. Similarly, in Catalonia, Institut Cartogrà�c i Geològic de Catalunya
(ICGC) [12] provides WMS to access Digital Elevation Models at 15, 5 and 2m
resolution. The �rst two were acquired using photogrammetry techniques, the
more recent 2m dataset has been derived from LIDAR point clouds.

2.2 Aerial imagery

Aerial imagery is usually provided as orthophotographs or orthorecti�ed pho-
tographs. The image distortions introduced by the lenses, camera parameters
and terrain morphology are corrected in order to simulate an orthographic pro-
jection and uniform scale. This recti�cation process needs the DEM or topo-
graphical representation of the underlying terrain. The resulting orthoimage has
the expected properties of a map, and can be used to measure planar distances.
Therefore, we can de�ne their resolution as the ground distance between two
neighboring pixels.

There are also di�erent imagery products depending on the bands (light wave-
lengths) they represent. For satellite images, it is common to �nd multispectral
images containing from 3 to 15 di�erent bands, or panchromatic images that
accumulate the response among several wavelengths and can potentially provide
higher resolutions. On the other hand, aerial photography taken from planes is
normally distributed in the visible spectrum as RGB bands, sometimes including
the Near Infrared channel as well.

Datasets

It is easy to explore and download low resolution satellite imagery, even in nearly
real time - within a few hours after the satellite took them. For example, NASA
provides the Global Imagery Browse Service [6] with access to multiband imagery
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from Terra, Aqua or Landsat satellites among others. The resolution, however,
is very coarse at 250m/pixel for the �rst two and about 30m for Landsat.

Private enterprises do own and sometimes sell higher resolution datasets.
For example, DigitalGlobe uses its own constellation of satellites and sells high
resolution imagery from 30 to 60 cm per pixel in the region of interest. The
company ESRI provides a layer for ArcGIS calledWorld Imagery which combines
the 15m resolution images from TerraColor with high resolution datasets from
several parts of the world where available, like 30 cm for the US, 60 cm for parts
of Western Europe, or 1m in some other regions of the world. This layer even
contains examples of very high resolution sets from 10 cm pixel down to 3 cm
pixel for very speci�c locations. Similarly, Google Earth shows aerial imagery
from 15m to 15 cm.

Regional services, again, can provide much higher resolution. For example, in
the US there is full aerial imagery coverage at 1m resolution through the National
Agriculture Imagery Program (NAIP) dataset [17], which is also updated yearly.
In Spain, IGN provides via Web Map Services aerial imagery at 50 and 25 cm
per pixel, and it is planned to o�er 10 cm in the future as proposed in the Plan
Nacional de Ortofotografía Aérea [21]. In Catalonia, ICGC provides web map
services to access current or historical aerial images at 50 and 25 cm per pixel,

Figure 2.3: Aerial image and textured DEM of Pedraforca mountain. 25 cm RGB
and NIR-R-G orthophotos from ICGC.
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and they are gradually updating the 10 cm/pixel imagery service; as of January
2018, it covers the full coastline plus the metropolitan area of Barcelona and a
handful of county capital cities.

2.3 LiDAR point clouds

LiDAR scanners use pulses of laser light to measure distances by measuring
the changes in the return times and wavelength of the re�ected pulse. One of
the major advantages of LiDAR is that it is possible to record multiple returns
(echoes) of the light pulses, so in a forest area it might be possible to obtain
di�erent bounces of a pulse penetrating the canopy cover before it �nds the
ground. This way, it is possible to �lter vegetation and ground points and build
a DTM or DSM from the same dataset. Currently, airborne LiDAR is considered
as one of the best and most precise methods for obtaining elevation data.

LiDAR information is distributed as a point cloud, usually in LAS format.
Alongside the 3D position, each point can have additional information �elds like
the intensity of the return pulse, the return number and total number of returns
of the emitted pulse, scan direction, and even a standard classi�cation into a
handful of classes including ground, low/medium/high vegetation, building, wa-
ter or noise. RGB color, when provided, is normally obtained from calibrated
photographs taken during the same �ight.

More recently, there has been a growing interest towards not only recording
the discrete set of returns of the pulse but a continuous wave, called full-waveform

Figure 2.4: Class-colored LiDAR point cloud around Pedraforca Mountain, with
an average density of 2.1 points/m2.
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LiDAR. This allows for studying not only geometric but also radiometric prop-
erties of the object, and statistical analysis of these features has been shown to
be useful for point classi�cation [RBJ+14].

Datasets

Due to the large size of point clouds, LiDAR data is usually found at local or
regional scales. The website OpenTopography [20] maintains a list of point cloud
datasets. In the US, there are local datasets with resolutions ranging between
10 and 20 points per square meter. In the Italian South Tyrol region, there is a
dataset covering the bottom of the valleys with at least 4 points/m2 [22].

A LiDAR dataset covering all Spain is being developed, with a �rst pass
ensuring a density of 0.5 points/m2 and a second pass at 1 point/m2. In Catalo-
nia, ICGC [12] currently provides full LiDAR coverage with varying resolutions
between 0.5 to 4.4 points/m2.

2.4 Land Cover

Land Cover maps provide a segmentation of the terrain into regions depending on
the material or elements on the surface, i.e. vegetation, rocks, water, roads, etc.
The de�ned classes usually depend on the dataset and region, but it is common
to �nd several types of forest cover, agricultural areas, and urban constructions.
It is also possible to de�ne a label hierarchy, thus allowing the user to choose the
desired level of detail. For example, from general to speci�c, a region could be
labeled as: forest, dense trees, conifers, mountain pine (pinus mugo). These maps
are a valuable tool in monitoring earth resources and human activity impact.

The main di�culty for creating land cover datasets is their cost of acquisition
and maintenance. Usually, creating such a map is done via human interpretation
of the aerial or satellite imagery: experts usually identify homogeneous regions
in the images, delineate them using selection tools, and assign them a label that
is often veri�ed using other existing catalogs or even on-site survey.

While on a large scale signi�cant changes on a terrain might take several
years, on a local scale the cover is easily a�ected by human activities and natural
events (landslides, �res), thus rendering a map outdated. There have been e�orts
in crowd-sourcing the creation of Land Cover maps, like Geo-Wiki [5] platform
or the Landspotting project [SWP+13], which integrated aerial image labeling
into di�erent online multi-player game mechanics.
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Datasets

Despite the di�culty on generating such maps, there are some world-wide
cover maps usually derived automatically from satellite imagery. The Global
Land Cover 2000 [7] provides a world-wide segmentation of the images from the
SPOT 4 satellite of the year 2000 into 21 classes � which are later specialized on a
region basis � and using a 1 km resolution. MODIS land cover [16] uses supervised
segmentation on the MODIS satellite imagery at 500m resolution from NASA's
Terra satellite to provide 16-class land cover maps at annual time steps since
2001. GlobCover [3] uses the 2009 MERIS sensor images from ENVISAT satellite
mission, and has a spatial resolution of 300m.

Higher resolutions are available for more regional areas. The most recent
edition (2012) of the European CORINE Land Cover inventory [2] maps all
39 member countries of the European Environment Agency with at least 100m
resolution. In Spain, the SIOSE portal [23] provides national coverage maps using
polygonal regions with at least 15m width. In Catalonia, the fourth version of
the Mapa de Cobertes de Sòl de Catalunya (MCSC) [15] provides a hierarchical
classi�cation into up to 241 categories, using polygons with minimum width of
10m, and distributed as a 5m raster grid as well.

Figure 2.5: Land cover map of Pedraforca mountain, from MCSC.

2.5 Other information layers

There are many other types of geographical information layers available depend-
ing on the region and provider. From geological maps with information about
the soil type, to biophysical variables in a forest � like biomass index, average
tree diameter or estimated height �, or even historical and yearly registers of
aerial imagery.



3
State of the art

In this chapter we will review the state of the art on the topics related to the goals
of the thesis. We have identi�ed three major areas of study that we will detail
in the next sections. First, the segmentation of aerial images into a set of labels,
which has been mainly addressed from machine learning and computer vision
�elds. Second, the enhancement of details on terrains, mainly through procedural
modeling methods that take inspiration from geological phenomena. Finally,
modeling and rendering vegetation combines computer graphics and computer
vision with biology.

3.1 Segmentation of aerial images

Synthesizing plausible details onto terrains, and providing a realistic and smooth
transition between the orthophoto and the added details, requires a segmentation
of this aerial image in order to identify the di�erent elements it contains. For
some years now, segmentation tasks have been almost always undertaken with
machine learning approaches. Typically, a set of feature descriptors is obtained
for each pixel on the image, and then some algorithm learns the mapping from
this feature space into the set of segmentation categories or classes. In this
section, we will explain relevant works on both feature descriptors and learning
algorithms, focusing on those aimed to classi�cation or segmentation of aerial
images.

17
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3.1.1 Descriptors

Descriptors or features are n-dimensional vectors representing measurable char-
acteristics about a pixel � and sometimes neighboring region � that will help the
segmentation algorithm in discriminating between the di�erent classes. There
has been extensive research on proposing novel features and comparing their per-
formance with existing ones. While recent deep learning end-to-end approaches
have eliminated the need for the design of features, each layer of such networks
can still be seen as a set of features computed over the ones produced by the
previous layer, so the �rst layer is actually a set of image features. Moreover,
extensive training sets are required in order to correctly train a deep network,
while hand-crafted descriptors can potentially lead to similar results from much
smaller training sets.

A survey about natural image descriptors and statistics is provided by Pouli
et al. [TWE11], and they classify statistics into �rst, second and higher order.
First order statistics are those computed over individual pixels, for example the
�rst four moments of the intensities histogram: mean, variance, skewness (asym-
metry) and kurtosis (sharpness of the distribution peak). While these statistics
are easy to compute, they do not provide information about spatial relationships
and structure between pixels.

Second order statistics are those computed over pairs of pixels, and the two
main statistics of this type are gradients and power spectra. Gradients are a
discrete approximation of the (oriented) derivative of the pixel intensity, and
histograms of oriented edges have been used to discriminate between image cat-
egories. The power spectrum, computed through Fourier analysis, provides in-
formation about the di�erent spatial frequencies on an image. It has been found
that the average spectra over several images and orientations follows a power law:
A = 1/fβ , where β is called the spectral slope and the amplitude A decreases
with respect to frequency f . Torralba and Oliva [TO03] showed that the spectral
signature of images is correlated with the category as well as scale (Figure 3.1):
images of man-made environments tend to show more vertical and horizontal
edges while natural images are more isotropic and denser in high frequencies,
but on large-scale natural scene shots the horizon dominates and textures ap-
pear smoother.

Similarly, patterns and regularities for natural images have also been found
on higher order statistics, i.e. over larger groups of pixels. Gradient statistics can
be computed hierarchically using Wavelet transforms, thus providing analysis on
local regions with di�erent orientations and frequencies instead of computing
them over the whole image as the Fourier transform does. Moreover, much of
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Figure 3.1: Spectral signatures of di�erent scene categories obtained from the
average of several hundred images in each case. Plot axes correspond to fx and fx,
and the curves represent 60%, 80% and 90% of the energy of the spectral signature.
Image from [TO03]

the structure of an image has been shown to be located in phase spectrum,
rather than power spectrum, and second order statistics are insensitive to phase.
Principal Component Analysis and Independent Component Analysis have also
been used to study the sources of commonality and variations between images.

Ruiz et al. [RFR04] compared di�erent texture and spectral feature descrip-
tors sets for pixel classi�cation of remote sensing images, in particular statistical
features extracted from the Grey Level Concurrence Matrix (GLCM), energy �l-
ters, Gabor �lters and wavelet transform features. They compared the accuracies
obtained on three forest scenes and a urban area using a maximum likelihood
classi�er, and concluded that there is no universal criteria - the suitable set of
features depends on the type of landscape units de�ned in each application.

Similarly, dos Santos et al. [SPd10] also compared the e�ectiveness of various
color and texture descriptors for remote sensing image classi�cation and retrieval.
Although their task was not pixel based, the best descriptors were also dependent
on the type of input dataset.

Tokarczyk et al. [TMS12] used Random Forests [Bre01] on high-resolution
aerial images to evaluate di�erent feature sets: raw intensities, pixel neighbour-
hood blocks, texture �lters, PCA bases, and the �rst three layers of a trained
deep network used as �lter banks. Their results show that features based on
patches dominate those based on individual pixels, i.e. texture holds impor-
tant information in high-resolution images. However, complex feature extraction
methods or even non-linear feature learning yield small or no improvement, while
adding a signi�cant computation cost.
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Cheriyadat [Che14] proposed a minimization problem to automatically �nd
the best reduced set of basis functions that sparsely encode the original feature
vectors extracted from image patches raw pixel values, �lter banks and texture
descriptors. The feature vectors are then projected onto the basis function set
and pooled to obtain the �nal patch representation fed to a linear SVM classi�er.

Penatti and dos Santos [PNS15] studied whether Convolutional Neural Net-
works trained for classi�cation of everyday objects would generalize to aerial and
remote sensing images. They used the output of the last fully-connected layer of
two networks: OverFeat [SEZ+13] and Ca�eNet [JSD+14], and used it as input
of a linear SVM for image classi�cation. For comparison, they also trained the
SVM using low-level feature descriptors and bags of visual words. On the aerial
dataset, deep features achieved the best results, but for remote sensing images
they were outperformed by the low-level descriptors.

3.1.2 Algorithms

The most basic image segmentation algorithms are based on unsupervised learn-
ing approaches like thresholding, clustering (e.g. k-means) or region growing
algorithms, and produce a set of k clusters (on the feature space) for which a
label is manually assigned afterwards. Therefore, semantic segmentation or clas-
si�cation is commonly treated as a supervised learning problem, with a given
training set and known labels. Given the feature vectors for the pixels in the im-
ages, we can potentially train and use any of the several classi�cation algorithms
existing in the machine learning �eld: Naive Bayes, logistic regression, k-nearest
neighbors, support vector machines, decision trees, neural networks, etc.

The performance of di�erent algorithms depends on the data and problem.
Therefore, we will describe in more detail and compare several classi�cation
algorithms in Chapter 4.2.3.

Multiple works also compare the accuracy of classi�cation algorithms in the
context of segmentation of aerial images, including Bayesian classi�ers [Aks08],
Random Forests [TMS12], SVM [Che14; PNS15] and Deep Learning methods [CPS+15].

Aksoy [Aks08] proposed a two-step algorithm for classi�cation of hyperspec-
tral images of urban areas. First, a Bayesian classi�er is trained using per-pixel
spectral and texture features to obtain the probability maps for each class, and
each pixel is assigned its most probable class. Then, an iterative split-and-merge
algorithm converts the pixel class map into contiguous regions. The �nal classi-
�cation is obtained using again Bayesian classi�ers, but this time trained with
region-level statistics and features.



3.1. Segmentation of aerial images 21

Frölich et al. presented Iterative Context Forests [FRD13], a classi�cation
system based on Random Forests that builds the trees level-wise and adds the
class probability maps of one level as a new input channel for the next level
(Figure 3.2). A huge randomized set of features is computed from the input
channels by using diverse operators on pairs of pixels or rectangular regions.
In [FBW+13], they apply this algorithm on remote sensing data.

Figure 3.2: Iterative Context Forests, image from [FRD13]

A similar approach by Tokarczyk et al. [TWW+15] uses boosting instead
of Random Forests. Instead of selecting features, they construct a vast and
redundant set of simple features, and use them as input to a multiclass extension
of AdaBoost [SS99]. Their best results are achieved with four-leaf decision trees
as weak learners. Training on the set of Randomized Quasi Exhaustive (RQE)
features outperforms prede�ned �lter banks, but accuracies are very similar to
the ones from raw pixel intensities in a 15×15 neighborhood in conjunction with
the Normalized Di�erence Vegetation Index (NDVI) [KMN+69; Roe07], being
the latter preferable to avoid the high memory and runtime requirements during
the training with RQE.

Recent works on aerial scene classi�cation and image retrieval have studied
unsupervised feature learning approaches. Castelluccio et al. [CPS+15] com-
pared three di�erent options for classi�cation with Convolutional Neural Net-
works: training the network from scratch, �ne-tuning the last layers of the net-
work using training images, or using the last fully-connected layer as a feature
vector as in [PNS15]. They performed experiments with Ca�eNet [JSD+14] and
GoogLeNet [SLJ+14] networks. On the aerial images dataset, the best accura-
cies were achieved by �ne-tuning, then using the feature vector, and �nally by
training from scratch. On the remote sensing dataset, training from scratch or
�ne-tuning provided the best results depending on the network used.
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3.1.3 Filtering

Keeping the class with maximum a posteriori probability as the �nal pixel class
can result in noisy labelings. The smoothness assumption states that nearby
pixels tend to have similar labels, thus individual pixels are not independent
variables but form a random �eld.

Conditional Random Fields [LMP01] are a kind of probabilistic graphical
models that have been used, among other applications, in image segmentation
either as a classi�er or as a post-processing operator to improve the result of a
segmentation. They usually include a unary energy term de�ned for a pixel or
region, and pairwise terms de�ned for pairs of pixels or regions. When applying
a CRF as a post-process, the unary term is usually the result of a pixel classi-
�er, and pairwise terms try to enforce similar labels between neighboring pixels.
Although the main issue with CRFs can be the huge size of the model and long
inference times in the order of tens of hours, Krähenbühl and Koltun [KK11]
managed to improve the results of a pixel-level classi�er on 2MPixel images in
less than a second using a fully-connected CRF, i.e. with pairwise potentials de-
�ned for all pixel pairs on the image. Their model has also been used to improve
�ne-scale detail on recent deep network architectures [CPK+18].

Schindler [Sch12] compared di�erent smoothing strategies that increase ac-
curacy on high resolution aerial images: majority voting in a neighborhood,
Gaussian and bilateral �ltering, and approximate inference via global methods
for random �elds such as graph cuts and semiglobal labeling. His test results
show that any smoothing method improves performance, and thus a smoothness
assumption is necessary when segmenting high resolution images mainly due to
�ne texture details inducing more per-pixel errors. Among his compared algo-
rithms, global methods outperform local methods, with contrast-sensitive graph
cuts giving the best results for all datasets and metrics. However, the di�erence
between the worst-performing smoothing method and the best is smaller than the

Figure 3.3: Impact of label smoothing on a low-contrast 40 cm aerial image: image
(a), ground truth (b), raw segmentation (c), majority voting (d) and contrast-
sensitive graph cut (e). Image from [Sch12].
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di�erence between raw segmentation and the worst performing method. He also
notes that including feature descriptors computed over the pixels neighborhood
implicitly produces a smoother labeling.

3.1.4 Summary

Image segmentation is a vast and growing topic, mainly from Computer Vision
and Machine Learning research. Most of the research focuses on designing new
features or algorithms that lead to better accuracy results. Training times are
often neglected, since it is common to assume that once a good trained model
is produced, this model will be prede�ned and constant in the �nal application.
In our case, we want segmentations that lead to plausible detail enhancement
on arbitrary terrain landscapes, i.e. we mainly care about the perceived details
from a user point of view, rather than the accuracy towards a speci�c dataset �
which may not be representative of all the variety of terrains. Moreover, since
classes will not be known in advance and may even be modi�ed or specialized
during modeling, we need a segmentation pipeline that allows for easy retraining
of the model.

3.2 Terrain detail synthesis

There are two main reasons why we are interested in modeling details on terrain
DEM. First, as we have already discussed, the current availability of high res-
olution datasets is not enough for large portions of the Earth, and specially on
mountainous areas. Second, aerial photographs only represent the topmost layer
of an area; in case we wanted to render a walkthrough at ground level in a forest
area, for example, we would need to invent the missing details on the ground.

We can distinguish three main approaches for modeling terrains [STB+14;
NLP+13]: procedural methods, which can empirically generate plausible terrains
from a set of rules and parameters, simulations, based on modeling geological
and physical e�ects for a time period onto a base terrain, and example-based
approaches, which use a set of real terrains to generate new similar models.

3.2.1 Procedural modeling

Early approaches to synthesize procedural details on height �elds made use of
fractal noise generators such as Perlin noise [Per85], thus exploiting the observa-
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tion that landform features repeat at di�erent scales. For example, using subdivi-
sion methods like midpoint displacement, every time a new point is generated its
height is set to the average of its neighbors plus a random o�set that decreases
iteratively [FFC82]. Other stochastic methods scale and sum several octaves
of noise of increasing frequency to produce mountain-like structures [MKM89].
This type of noise is usually called fractional Brownian motion (fBm). Ebert et
al.'s book Texturing and Modeling: a procedural approach [EMP+98] provides a
good overview of these methods.

Rivers can also be modeled procedurally and incorporated into the landscape.
Prusinkiewicz and Hammel [PH93] combined the midpoint displacement method
with a squig-curve fractal model of a non-branching river using a context-sensitive
rewriting mechanism. Kelley et al. [KMN88] presented a recursive algorithm that
constructs a drainage network based on climate and soil parameters, and then
�lls the terrain height map from it using scattered data interpolation. Similarly,
Genevaux et al. [GGG+13] also model terrains starting from the generation of
a river network. They also use a classi�cation of the water-courses into di�erent
hydrological categories (springs, junctions, deltas, ...) to build river blocks that
will be combined to produce the �nal terrain using a modeling tree approach
inspired by Constructive Solid Geometry.

Figure 3.4: Genevaux et al. terrain generation from river networks. River net-
work graph (left), produced terrain (center) and a rendered scene (right). Images
from [GGG+13].

The main problem with these methods is that they provide little or no control
over the position or appearance of generated features like ridges or valleys, the
user can only adjust the initial parameters and regenerate the terrain. Specifying
generative rules that preserve the overall coherence of the scene is a di�cult task,
mainly because of the indirect control over the generation processes. Therefore,
several improvements have been proposed to provide user control.

Schneider et al. [SBW06] implement multifractals using GPU shaders to pro-
vide immediate visual feedback for a terrain editor interface, in which the user
can interactively adjust parameters and paint the fractal's basis functions. Gain
et al. [GMS09] present a sketching editor in which users can draw and edit the
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vertical silhouette and shadow curves to generate mountain ridges, as well as
de�ning noise patterns for closed regions. Hnaidi et al. [HGA+10] use sketched
feature curves with elevation and slope parameters to de�ne ridges, rivers, hills,
or cli�s. These curves are then rasterized and a di�usion method �lls the rest of
the height map.

Figure 3.5: Sketch-based terrain editors. Left, sketching a mountain in [GMS09].
Right, sketched curves (in blue) act as constraints for the di�usion method
of [HGA+10].

Genevaux et al. [GGP+15] introduce a hierarchical representation for terrains
using a construction tree. Leaves are parametrized terrain features like moun-
tains, rivers or lakes, and inner nodes are combination operators like carving,
blending or warping. This model allows for intuitive control over the shape and
distribution of both local and global landform features.

Figure 3.6: Hierarchical representation of terrains using feature primitives. Image
from [GGP+15].

Dachsbacher et al. [DBS06] proposed a procedural texturing method on the
GPU that accounts for elevation, slope, and geographic conditions like tempera-
ture, rainfall or solar distribution. Their model can be semi-automatically �tted
to real data, such that new texture of arbitrary resolution is synthesized at run-
time and the original orthophoto is not needed.
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3.2.2 Simulations

Realistic landscapes with eroded mountains, sedimentary valleys and realistic
plant distributions can be generated through physics-based simulations that
model geological phenomena.

Erosion simulations

Erosion simulations are often used as a post processing step to add realism to
procedurally generated terrains. In general, erosion processes transport rocks
and sediments from one location to another. Thermal erosion is produced by
the expansion and contraction of rocks caused by di�erent temperatures. These
rocks break and move material from high steep points to lower locations until
the material stability angle is reached, thus smoothing sharp edges. Hydraulic
erosion is caused by water �owing through the material, dislodging and carrying
rock particles along with it and carving valleys. Wind can also be an important
erosion e�ect in arid areas, wearing down exposed surfaces through abrasion.

The seminal work by Musgrave et al. [MKM89] introduced simple models
for hydraulic and thermal erosion, moving sediments from a vertex to its neigh-
bors. Hydraulic erosion techniques were further extended and re�ned in [Nag98;
CMF98]. Corrosion simulation was introduced by Wojtan et al. [WCM+07].

The limitation of height �elds is their inability to represent caves, overhangs
or arches, since every position of the terrain grid can only contain one elevation
value. Using a full 3D mesh or a voxel grid can solve this problem, but at a
higher memory cost. Benes and Forsbach [BF01] proposed a layered data rep-
resentation: instead of storing a single elevation, each 2D grid position contains
a stack of terrain layers with an associated thickness and material properties.
They demonstrate the use of this representation on thermal erosion simulations
with di�erent materials.

Stava et al. [�BB+08] use the layered representation [BF01] and integrate
the simulation of force-based erosion caused by running water, dissolution-based
erosion caused by slowly moving water that penetrates the soil, and sediment
slippage produced by thermal weathering. They implemented the simulation
entirely on the GPU, allowing interactive terrain modeling.

Peytavie et al. [PGG+09] also use a layered representation to build a frame-
work that can represent arches and caves, as well as realistically simulating loose
piles of rocks and providing editing and erosion tools. In Benes et al.[BTH+06],



3.2. Terrain detail synthesis 27

Figure 3.7: Stava et al. erosion simulations. Top, force-based erosion produces a
meander break. Bottom, dissolution-based erosion softens the river bed and erodes
the banks. Images from [�BB+08].

Figure 3.8: Stone arches, caves and piles of rocks modeled with by Peytavie et
al. [PGG+09].

a 3D voxel grid representation is used to simulate hydraulic erosion through the
Navier-Stokes equations of �uid dynamics.

Instead of using Eulerian approaches based on grids like the techniques before,
Kri²tof et al. [KBK+09] introduced a Lagrangian approach for hydraulic erosion
using Smoothed Particle Hydrodynamics (SPH) [GM77; Luc77]. SPH is able to
simulate full 3D erosion on any terrain features and can be applied on large scale
terrains, since particles act locally and only where the �uid is located. However,
a considerable number of particles needs to be simulated for realistically looking
results.

Simulation of erosion at the level of entire mountain ranges and for large tem-
poral scales has been addressed in Cordonnier et al. [CBC+16]. They combine
the development of mountains through tectonic uplift (the local speed at which
terrain grows) as well as the �uvial hydraulic erosion caused by streams. Users
can control the process using an uplift map, a gray-scale image representing the
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growth speed on di�erent parts of the terrain. In a subsequent paper [CCB+17],
a set of gesture-based methods on multi-touch devices provides users with inter-
active tools to simulate the action of plate tectonics and compute uplift maps.

Figure 3.9: Gesture methods for interactive simulation of plate tectonics. Image
from [CCB+17].

Ecosystem simulations

Ecosystem simulations aim at producing realistic plant distributions according
to the characteristics of the environment. In general, they rely on particle-
based simulations where plants compete for resources such as light, water and
space [DHL+98]. Individual plants can be represented using circles that de�ne
the neighborhood area in which a the plant interacts with its neighbors. Biolog-
ical rules are used to determine the outcome of interactions between circles: the
competitive abilities of the individuals are based on their characteristics and the
environment where they are located, and the �ttest individual survives while the
rest may die.

Figure 3.10: Deussen et al. ecosystem simulation. Left: the terrain water con-
centration ranging from high (blue) to low (yellow). Center: the �nal individuals
distribution from eight plant species. Plants with a preference for wet areas are
shown in blue. Right: rendered scene. Images from [DHL+98].

Several improvements have been proposed. Lane and Prusinkiewicz extended
Deussen et al. method [DHL+98] to multi-level plant communities and groups of
plants, simulating e�ects like self-thinning, succession and clustering, as a plant
not only limits the development of other plants in its neighborhood but increases
the probability in the vicinity of it. Alsweis and Deussen [AD05] included also
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asymmetric plant competition in which only one individual in the overlapping
area gains access to the resources, thus limiting the growth rate of the rest.

Ecosystem simulations are often applied on an already modeled terrain as
a layer on top of it, but rarely modify it. Cordonnier et al. [CGG+17] pro-
pose a framework that models the interaction between vegetation development
and terrain erosion, using a layered representation of the terrain and integrat-
ing stochastic events such as rock slides or �res. This framework has also been
applied in [CEG+18] to simulate snow-covered terrains and related phenom-
ena: melting due to radiation, wind transport e�ects (e.g. cornices on ridges),
avalanches and skiers tracks.

Figure 3.11: Combined ecosystem and erosion simulation by Cordonnier et
al. [CGG+17]. In (1), falling rocks destroy vegetation. In (2), plants grow on
accretion zones. Image from [CGG+17].

3.2.3 Example-based synthesis

Instead of modeling terrains using a set of rules or running physical simulations,
these approaches borrow ideas from texture synthesis methods [WLK+09] and
build terrains by combining information from available real terrains.

Brosz et al. [BSS07] use multi-resolution analysis to extract high resolution
information from an existing DEM, and transfer these details onto another low
resolution terrain. In Andujar et al. [ACV+14], a point cloud of a small part of
the terrain is used to estimate the fractal parameters that will be used to add
detail to the rest of the terrain DEM. They obtain this point cloud from using
multi-view stereo on a set of roadside photographs.

Zhou et al. [ZST+07] generate terrains based on an example height map
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and a user line sketch drawing that de�nes the main features such as mountain
ridges or valleys. Their system, similarly to example-based textured approaches
like [EF01; KSE+03], �nds patches from the example terrain that match the
sketched features, and blends these patches together using graph cuts.

Figure 3.12: Example-based terrain synthesis by Zhou et al. [ZST+07]. The
grayscale image columns show, from top to bottom, the user sketch, the example
terrain and the synthesis result. From left to right, the example DEM corresponds
to: Mount Jackson, Mount Vernon and Grand Canyon. Images from [ZST+07].

Gain et al. [GMM15] specialize a hierarchical pixel-based texture synthe-
sis method [LH05] for terrain generation, and also o�er interactive user control
through geometric modeling constraints, terrain type constraints using labeled
exemplars, and copy and paste operations.

Guérin et al. [GDG+16] introduce a sparse representation for terrains. A
height �eld is decomposed into overlapping patches, and each patch is represented
as the weighted sum of several atoms found in an optimized dictionary extracted
from (real) terrain exemplars. Through the use of multi-resolution dictionaries,
they are able to increase details on coarse height �elds or sketches.

Recently, Guérin et al. [GDG+17] make use of Conditional Generative Ad-
versarial Networks (cGAN) [IZZ+16] to build an interactive sketch-based terrain
modeling interface. Their system uses two cGAN: a �rst one that produces a
heigh map from a sketch, and a second one that mimics erosion simulation to
increase details on a height map. In order to train the �rst network, real DEM
datasets are used and converted to sketches and features. To train the second
network, a hydraulic and thermal erosion simulation [CGG+17] is run on the
real DEM.

It is also possible to learn from exemplars the distribution of individual
scene objects as well as structured content, and reuse it for synthesis. World-
Brush [EVC+15] presents an interactive editing system that uses a painting
metaphor: learned statistical distributions and parameters are stored as palettes,
which can be later used as input of a procedural content generator through paint-
ing tools like brushes or gradients. WorldBrush relies on the user to maintain
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Figure 3.13: Terrain sketching using cGAN. Image from [GDG+17].

Figure 3.14: EcoBrush: terrain conditions (a) are used to locally index a database
of plant distributions (b) and produce an initial ecosystem on the terrain (c), which
can be modi�ed by the user using brushes (d). Image from [GLC+17].

the realism between the terrain conditions and the selected distribution. Eco-
Brush [GLC+17], on the other hand, creates biome-speci�c databases indexed
by abiotic terrain conditions such as temperature, rainfall, sunlight or slope. The
input terrain is automatically populated with an initial ecosystem matching the
abiotic conditions. Users can then apply brushes that adjust ecosystem age,
plant density or variability, or even paint speci�c distributions.

3.2.4 Summary

We started this section introducing di�erent procedural techniques capable of
generating arbitrary detailed terrains, and how to control them towards speci�c
outcomes (e.g. sketching interfaces). In order to enhance the detail on a terrain
model, it is also possible to run simulations of varied e�ects like erosion from
water or wind, ecosystems, snow, etc. Real data has mostly been used either as
initialization on simulations or as a resource on example-based algorithms, but
their goal has been generating plausible models.

We want to augment detail on existing DEM in a plausible manner as well,
but focusing towards �delity to real terrain by introducing additional information
from other sources, for example the associated aerial imagery.



32 Chapter 3. State of the art

3.3 Vegetation modeling

Vegetation is an important component of natural scenes, having a huge impact
on the realism and level of detail of them. Ever since the early days of computer
graphics, e�ectively and realistically modeling plants has been an area of interest
and, due to the complex nature of trees, it is still an ongoing research topic. In
this section, we will discuss the state of the art on tree modeling from two
di�erent perspectives: generating synthetic trees and acquiring models for real
trees. Although both approaches seem to solve opposite problems, they bene�t
from advances and novel ideas in either of them. Moreover, if our goal is not
only to model a tree but also to e�ciently render thousands of di�erent trees �
as is the case of forest terrains � we will probably have to take into account some
of the existing rendering optimization techniques when modeling a tree, in order
to choose appropriate data structures for representing it.

3.3.1 Synthetic generation of trees

For a comprehensive and detailed survey on procedural and rule-based methods
of tree generation, the book �Digital Design of Nature: Computer Generated
Plants and Organics� by Oliver Deussen and Bernd Lintermann [DL06] is a very
useful reference. Here we will brie�y summarize some of the methods described
in chapters 4, 5 and 6 of the book, as well as more recently presented articles.

Procedural methods

Procedural methods, algorithms using a set of rules and its associated parame-
ters, were the �rst approaches for reproducing certain types of plants or species.
The �rst branching patterns were de�ned using cellular automata on regular
grids by Stanislaw Ulam in 1966. One year later, Dan Cohen proposed the �rst
continuous branching procedural model [Coh67]. The �rst branching structures
in 3D were introduced by Honda [Hon71], using a very simple recursive algorithm
characterized by branching angles and length ratios of consecutive branch seg-
ments. Aono and Kunii [AK84] extended Honda's work to a variety of branching
patterns through statistical variations of angles, attraction and inhibition. Op-
penheimer [Opp86] used a method inspired by fractals that recursively calls itself
to simulate the branching along a trunk and to generate smaller branches onto
large ones. Bloomenthal [Blo85] focused on the geometrical aspects of tree mod-
eling, proposing techniques to represent the trunk, branches, and bark of a tree
more faithfully.
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Figure 3.15: Branching structures by Aono and Kunii: (a) binary branching with
angles 35◦ and -35◦, (b) single branching with angle -70◦, (c) use of an inhibitor
to simulate wind, (d) branching angle depending on age. Image from [DL06].

De Re�ye et al. [REF+88] proposed a procedural method inspired by botan-
ical growth rules. The growth of the shoots is simulated in discrete time steps,
and each bud carries the probability of dying (stop branching), resting or branch-
ing out. However, it takes a considerable knowledge of both botany and of their
model to create images with great �delity to nature. On the other hand, Weber
and Penn [WP95] proposed a method that captured the approximate appear-
ance of the trees instead of using botanical principles. The downside is the large
amount of parameters of their method, about 80, including the enclosing shape
of the tree, the height of the trunk before branching, the number of branching
levels, branching angles and relative lengths, and phototropism.

Figure 3.16: Trees generated by Weber and Penn, and a detailed view of a Black
Tupelo tree. Images from [WP95].

L-systems

In parallel, another set of procedural techniques was introduced by Lindenmayer
[Lin68]: the L-systems. Morphological forms of plants are described through
string rewriting systems, thus exploiting the capabilities of formal languages.
The main di�erence between rule-based systems and other procedural methods
is that an initial state (a string) is transformed into a �nal state (another string)
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by applying a number of changes or substitutions de�ned by the set of rules (the
grammar). In order to reproduce variability as seen in nature, stochastic rules
and dynamically modi�ed parameters were introduced. Furthermore, context
sensitive grammars can allow signal exchanges between di�erent parts of the
plant. Prusinkiewicz and Lindenmayer's book �The algorithmic beauty of plants�
[PL96] examines many aspects of plant modeling using L-systems.

L-systems have also been extended to use time information in timed L-
systems and di�erential L-systems [PHM93], which permit the simulation of
growth procedures through the use of di�erential equations for the parameter
set. Environment-sensitive L-systems [PJM94] can simulate local aspects of the
environment (for example, pruning) with an inquiry symbol based on the posi-
tion. Open L-systems [MP96] also enable communication modules for sending
and receiving parameters, so interaction between branches or trees such as light

(a) Animation with di�erential
L-systems

(b) Tree interaction with
open L-systems

(c) Pruning with environment-sensitive L-systems

(d) Modeling a fern leaf using positional functions

Figure 3.17: Examples of various extensions of L-systems. Images from [DL06].
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competition can be simulated. Finally, user-de�ned functions and modeling tools
can also be inserted [PMK+01], facilitating the reproduction of a particular plant.

Although rule-based procedures such as L-systems are a very powerful method
that allows the generation of a large variety of plants, they are not very intu-
itive. The production of a precise plant is a di�cult process even for skilled
users. Small changes can cause a complete modi�cation of the total shape, and
after a rule or parameter change the whole expansion process must be worked
through. On the other hand, procedural methods have the opposite characteris-
tics: only a very limited number of plants can be modeled with a method, but
the parametrization is usually straightforward and intuitive.

Therefore, some tools like the Xfrog modeling system by Lintermann and
Deussen [LD99] o�er a combination of the two approaches in the so-called rule-
based object production approach. Here, a plant is represented by connecting
components. Each component generates parts of the plant geometry such as
leaves, stems or simple geometric primitives by using procedural methods. These
components are then connected in a directional graph with multiplication nodes,
which represents the rule system (Figure 3.18).

Figure 3.18: Examples of plants generated with the rule-based Xfrog system.
Images from [DL06].
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Competition for resources

One recent strategy is based on the observation of the factors that in�uence the
�nal shape of a tree. In particular, competition for resources (sunlight, space)
by di�erent branches of a tree seems critical for the general shape of temperate-
climate trees. The Space Colonization algorithm of Runions et al. [RLP07]
uses this fact and generates a set of attractors inside the volume de�ned by the
tree foliage. These attractors are then iteratively conquered by the branches as
they occupy the available space. Figure 3.19 provides more details about the
branching algorithm.

Figure 3.19: Runions et al. Space Colonization algorithm. (a) The tree consists
now of six nodes (black) and four attraction points (red). (b) Each attraction point
is associated with its closest node inside a radius of in�uence. (c) In�uence vectors
from a node to its associated attraction points. (d) Normalized sum of in�uence
vectors (red arrows) provides new node locations (e). The neighborhoods of the
two leftmost attraction points have been penetrated (f), so they are removed (g).
A new iteration begins (h). Images from [RLP07].

Palubicki et al. [PHL+09] also propose a self-organizing model for plant de-
velopment that extends the Space Colonization method by using a signaling
mechanism to mimic di�erent types of growth. In addition to the space colo-
nization, they also model the competition for light using a shadow propagation
algorithm, proposed also by Palubicki in [Pal07]. The results of space and light
availability are used to control the fate of the buds: produce a new branch, pro-
duce a �ower, remain dormant or abort. In [XM15] Xu and Mould improved the
performance of tree generation algorithms based on space competition by using
pregenerated guiding vector �elds and Yao graphs.

Kohek and Strnad [KS15], on the other hand, used competition for incoming
light as the main competition resource. They computed on the GPU how the
shadows projected by the growing branches propagated through a regular grid.
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Then branches could grow on directions that maximized the amount of received
light while the shadow grid was being updated.

Other factors such as wind and surrounding space also in�uence a tree's
growth. Pirk et al. [PSK+12] presented a technique that made it possible for
content creators to change a tree's position inside a scene and see its shape
adapt to changes in light distribution and the occupation of surrounding space.
In [PNH+14] it was extended to include the e�ect of wind. The wind �eld was
physically simulated to consider both high-frequency changes and long-term wind
stress resulting in broken branches and bud abrasion. Recently, in [PJM+17],
Pirk et al. have also modeled the combustion of trees, its propagation and the
e�ects on the branching structure and texture.

Figure 3.20: Top: plastic trees from [PSK+12]. The original tree model adapts
to growing close to another tree and obstacles casting shadows. Middle: scene with
trees that react to a wind simulation in [PNH+14]. Bottom: combustion on a group
of trees [PJM+17].

Inverse procedural modeling

Given the di�culty of predicting the outcome produced by procedural and rule-
based models, some authors have proposed methods that guide the process to-
wards a desired goal.

One possibility is to let the user explore the space of all possible models while
guiding this search [TGY+09]. In order to help users explore the space of possible
models it is interesting to provide a relatively small set of parameters that control
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the generation. These may be provided by the procedural algorithm designer but
they may also be obtained semi-automatically. In [YAM+15] Yumer et al. use
autoencoder networks to �nd a lower dimensional space that can be used as the
set of parameters for users to play with. A weak point of these systems is that
the resulting trees follow the intention of the artist more closely but the cost of
generating a great quantity of similar models is very high.

Consequently, to automate the process Talton et al. [TLL+11] presented an
approach using Markov chain Montecarlo. Given a grammar and a high-level
speci�cation of the desired production, they optimize over the space of possible
productions from the grammar in order to compute the one that better conforms
to the speci�cation. However, its convergence is a�ected by the fact that the
algorithm receives its feedback from completely-generated models only. Ritchie
et al [RMG+15] improved upon it by developing a new sequential Montecarlo
algorithm capable of using incremental feedback provided by incomplete models.

Figure 3.21: Talton et al. Metropolis Procedural Modeling: conifer, old oak, and
poplar grammars targeted to sketches. Image from [TLL+11].

Stava et al. [SPK+14] developed an inverse procedural modeling algorithm
speci�cally tailored for trees. Given an input tree model, their method estimates
the values of the parameters for an ad-hoc procedural model capable of reproduc-
ing a wide variety of tree species. Then, they can generate more trees similar to
the input exemplar, simulate environmental responses or di�erent developmental
stages (see �gure 3.22).

Recently, Wang et al. [WLX+18] generate tree model variations by blending
between two given models. They de�ne a tree-shape space with a proper metric
that quanti�es deformations, such that the shortest path between two trees cor-
responds to the optimal deformations to morph from one to the other, allowing
a continuous blend between them.
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Figure 3.22: Stava et al. inverse procedural modeling approach. From an input
model (a) the parameters for the procedural model are estimated. Similar trees (b-
d) can be generated, as well as environmentally sensitive models (e). Image from
[SPK+14].

Figure 3.23: Optimal blending path between the trees on the left and the trees
on the right. Image from [WLX+18].

Sketch-based modeling

Some authors have also addressed the possibility of allowing artists to directly
draw the desired shape and appearance of the tree. In Okabe et al. [OOI05]
sketch interface, the user draws the branch structure in 2D. Sketched branches
are then positioned in 3D using a greedy strategy under the following constraints:
the branches projection onto the 2D draw plane must �t the sketch, branches
must be located inside the 3D convex hull obtained from the sketch 2D convex
hull by sweeping a circle along it, and the distance between sibling branches must
be as large as possible.

Wither et al. [WBC+09] inspired on the methodologies used by botanists and
artists when they create 2D drawings of trees incrementally: instead of drawing
the full tree with details, they usually draw the shape and specify details on
certain areas using zoom rectangles. Thus, the authors design a system that
makes use of successive silhouettes sketched at di�erent zoom levels and smaller
areas; the details of a re�ned area are then propagated to the rest of the tree.
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Figure 3.24: Wither et al. sketching system. User sketches at each stage are
marked in green. Changes on small areas or single branches are transferred to the
rest of the tree. Image from [WBC+09].

Longay et al. [LRB+12] developed a gesture based sketching system that
integrates the procedural generation of trees based on self-organization [PHL+09]
with a multi-touch interface to control the output, thus reducing modeling time
while maintaining the artist's ability to obtain the desired result. The modelers
can specify the overall shape of the crown with a lasso tool, or use a brush with
di�erent thicknesses to create attractors that will direct the growth of the tree.
The �nal model can also be edited interactively.

In the recent modeling system described by Xie et al. [XYS+16], a repository
of detailed branching structures obtained from cuts of real tree scans is provided
to the user, who selects and arranges them spatially to specify the tree shape
that will result of connecting them using botanical constraints. User-sketched
lobes guide the growth of detailed branches and foliage using a space colonization
approach.

Figure 3.25: Xie et al. modeling from real tree parts by arranging shapes (in
pink) and drawing foliage lobes. Image from [WBC+09].

3.3.2 Model acquisition from real trees

Recently, improvements in imaging and scanned point clouds acquisition have led
to methods that reconstruct a tree model from a real exemplar. These methods
have the advantage of producing realistically looking results and often do not
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need to spend some trial and error time tuning parameters of an algorithm nor
expertise in the rule de�nition. The obvious disadvantage is that they need input
data which may not always be available.

From photographs

Shlyakhter et al. [SRD+01] recovered the trunk and major branches of a tree from
a set of instrumented photographs. Starting from a manual segmentation of the
tree crown on each picture, they reconstruct the visual hull as the intersection
of all the back-projected volumes of the silhouettes. The main trunk and �rst
levels of branching are obtained as the medial axis of this visual hull, and the
rest of the volume is �lled with small branches and details using an L-system.

Reche et al. [RMD04] also start from a set of calibrated photographs. They
extract an alpha mask for each picture using an image matting algorithm, and
combine the results to generate an opacity volume grid. This volume is then ren-
dered view-dependently by attaching onto opaque cells small billboards extracted
from the original photographs.

Neubert et al. [NFD07] also compute an opacity grid from the matting of the
input pictures, and a 2D skeleton for each matting that they call attractor graph.
The volume is then used to initialize the positions of a 3D �ow simulation using
particles that will de�ne the branches. These particles are attracted to other
nearby particles as well as to the direction �eld computed from the set of 2D
attractor graphs. Once the branching structure has been computed, the model of
the branches is generated and populated with leaves extracted from photographs
according to the density grid.

Figure 3.26: Neubert et al. method overview: one of the input images (a), its
density estimation and attractor graph in red (b), the density grid (c), branching
structure obtained from the particle simulation (d) and �nal rendering (e). Images
from [NFD07].
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Some methods transform the input collection of photographs into a set of
points using a structure-from-motion algorithm. Quan et al. [QTZ+06] used the
generated point cloud to extract and segment individual leaves using a graph-
based optimization, and asking the user to model the branch structure. On
the other hand, Tan et al. [TZW+07] classi�ed the points as branch/leaf and
synthesized hidden branches from visible ones with texture-based synthesis al-
gorithms. Then, they added the crown instantiating leaf clusters identi�ed in
the point cloud. Also starting from a point cloud � in addition to an example
mesh of a leaf � the technique by Bradley et al. [BNB13] is capable of generating
plausible foliage con�gurations. In order to do this, it �ts the exemplar leaf to
the point cloud, extracting a statistical model of the shape, appearance, and
transformations between neighbors.

Most reconstruction methods that take photographs as input need either sev-
eral images to work properly or require signi�cant user interaction. However, in
Tan et al. [TFX+08], they propose a reconstruction from a single image and
little user input. The user draws one stroke in the photograph to identify the
crown, and another one (or sometimes more) for the visible branches. The crown
is segmented and the visible branches are converted to 3D using the approach
proposed in [OOI05]. This initial skeleton is extended into the crown by itera-
tively substituting an existing branch by a subtree from a database. Finally, the
leaves are added using rectangles textured with the input image foliage.

Figure 3.27: Tan et al. single image method overview: input image (a), user-
drawn strokes (b) for crown (red) and branches (blue), generated branch structure
(c) and �nal tree model (d). Image from [TFX+08].

Guenard et al. [GMB+13], also extract the foliage from one input image
and compute a vector �eld from this segmented shape that is used to obtain a
tree skeleton. This base skeleton is populated with leaves and branchlets via an
L-system. This method, however, needs knowledge of the tree species to feed
correct parameters to the L-system and has to generate a series of candidate
models to select the one that better �ts the input image.
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From scanned point clouds

Some of the approaches we have already seen in the previous section ran a struc-
ture from motion algorithm to the input photographs and obtained a 3D point
cloud [QTZ+06; TZW+07; BNB13]. However, others start directly from a laser-
scanned point cloud. In recent years, these techniques have become more popular
due to the increasing number of scanned datasets produced, specially from city
streets.

Figure 3.28: Xu et al. main skeleton production: neighbors graph (a), shortest
distance paths to root (b), clustered distances to root (c) and skeleton formed by
connecting neighboring bins (d). Image from [XGC07].

Xu et al. [XGC07] method starts building a graph connecting each point to
its neighbors, and computes the shortest distance path from the root point to
each other point. This set of lengths is then quantized, and connecting the cen-
troids of neighboring bins produces the skeleton of the tree. As several connected
components may appear in the initial graph due to scanning resolution and oc-
clusions, an appropriate position and angle is found to attach each component
skeleton to the main trunk. The points that are not connected to the main skele-
ton are considered to be leaves, and clustered according to some species-speci�c
parameters to de�ne leaf locations. Fine branches are synthesized to reach these
positions.

Livny et al. [LYO+10] also reconstruct a tree skeleton from a neighboring
graph between points with distance-weighted edges. After a �rst skeleton has
been computed as the minimum-weight spanning tree of the graph, an orienta-
tion �eld is derived and used to optimize the spatial embedding of the skeleton
through a least squares problem. In an follow-up work, they also propose a lobe-
based representation to reconstruct and lightly store or transmit trees [LPC+11].
Using three parameters that depend on the tree species, they follow the edges in
the points graph and identify points in which the average edge length is bigger
than the expected diameter of the branches. These points are unlikely to be
connected to the branching structure, so they cluster them in lobes. Each lobe is
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represented as the triangulated surface produced from its α-shape, an extension
of convex hulls that allows non-convex envelopes. Afterwards, during the tree
reconstruction step, each species has a library of textured branch patches and
each lobe volume is iteratively �lled by �tting and anchoring patches until the
desired level of detail is reached.

Figure 3.29: Two examples of Livny et al. iterative lobe reconstruction using
branch patches. Images from [LPC+11].

While the previous methods were developed for terrestrial laser scanning,
Hu et al. [HLZ+17] recently focused on airborne LiDAR point clouds, in which
branching structures are often di�cult to capture. They �rst segment individ-
ual tree point clouds from the input point cloud using a normalized cut method.
Then, for each individual tree point cloud, the tree skeleton is obtained as a span-
ning tree generated of the point cloud neighbors graph, using directional �elds
and bending angle constraints to restrict the growth direction of the branches.

Figure 3.30: Hu et al. tree reconstruction from airborne LiDAR point clouds.
Image from [HLZ+17].

3.3.3 Summary

We have seen in this section several methods to generate synthetic trees. While
procedural methods have the advantage of being capable to produce as many dif-
ferent models as desired, one of their principal drawbacks is the non-intuitiveness
and di�cult control towards obtaining a particular tree type or shape. Some
methods like the Space Colonization algorithm guide the synthesis towards a
speci�c volume or shape, and thus integrate well with modeling tools via user
sketches. There has also been extensive research on reconstructing speci�c real
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trees. However, most of the approaches require access to the physical location in
order to capture several photographs or a point cloud before the reconstruction,
and their output is usually limited to just that tree.

We will present a method capable of generating plausible tree models from
just a single picture, since it is quite easy to obtain di�erent tree images. This
picture will serve as shape initialization of a procedural algorithm which will be
capable of generating more than one model resembling the desired individual,
while eliminating the need for user interaction.

3.4 Forest rendering

Trees are complex objects and their representation usually requires a large num-
ber of polygons. Some characteristics that in�uence the rendering realism of a
plant are: the number and variety of organ shapes, the number of organs and the
spatial organization of these organs depending on the species [BMG06]. Also, a
plant aspect drastically varies with observation distance: at close scale we see
a branching system with detailed organs, but at large distances the aggrega-
tion of individual details yields an overall impression of a fuzzy volume. This
is why most classical rendering optimization and simpli�cations techniques that
are successfully applied on regulars objects usually produce non-adequate results
for plants, and a wide range of techniques tailored for plants has been developed.

3.4.1 Image-based representations

The most common tool to achieve a real-time rendering scenes with a large
number of trees are billboards. Classical billboards use a single quad oriented
towards the camera, but there is no parallax when the camera moves and a
tree slightly behind another may pop in front depending on the angle. Cross
billboards use a small set of �xed quads crossing each other, but artifacts appear
when a quad is viewed from a grazing angle.

Jakulin [Jak00] extended the cross billboard representation for the crown
using slicing, and used traditional geometry rendering for the trunk and limbs.
In a preprocessing step, several sets of parallel slices are created from various
viewpoints, and for each set the crown leaves are assigned to the closest slice.
The leaves of each slice are then rendered to a 2D texture. During rendering, the
two slice sets closest to the viewing direction are selected, and the slices rendered
using the correct transparency and blending (�gure 3.31e).
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Figure 3.31: Tree representations using billboards: (a) classical, (b) cross bill-
board, (c) 3-cross billboard, (d) 4-cross billboard, (e) billboard slices. Image from
[BMG06].

Another extension of billboards was proposed by Qin et al. [QNT+03] in a
representation they called quasi-3D trees. This representation stores a set of 2D
bu�ers containing the vertical tree billboards with information of color, normal
vectors, relative depths and shadowing. Two or three horizontally sliced masks
are used to cast shadows. Self-shadowing due to skylight is stored in a small
voxelization.

Image-based representations are also widely used to build a hierarchy of bill-
boards from a single quad representing the whole tree to hundreds of quads for
the branches or even to the leaves level. Behrendt et al. [BCF+05] explain why
approaches that work for smooth objects, like the billboard clouds by Decoret et
al. [DDS+03], do not work well with plants. They propose a new clustering algo-
rithm that uses information about the tree hierarchical structure to build the set
of billboards. Realistic lighting is approximated using spherical harmonics. For
distant trees, they de�ne square tiles in the background consisting of many plant
models which are represented by shell textures - sets of parallel semi-transparent
billboards. Other proposed adaptations of billboard clouds for trees are adding
penalty terms to plane selection and tweaking their position [FUM05], stochastic
selection of the billboard planes [LES+06], or indirect texturing to reduce the
resolution of the impostor textures [GSS05].

Some authors also leveraged volumetric textures for representing the complex
geometry of trees. Decaudin and Neyret [DN04] proposed a volumetric texture
rendering technique for forest �yovers, using a sliced triangular prism shape that
covers the ground using aperiodic tiling. They combined two di�erent types
of slicing: a simple one parallel to the ground for most views except grazing
angles, and a more complex one parallel to the screen used near the landscape
silhouette. This technique, however, did not allow individual placement of trees.
They later generalized their representation [DN09] and proposed creating 6 sets
of axis-aligned slices (one for each direction), thus allowing for arbitrary view
directions of complex and transparent individual objects.
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Figure 3.32: Original tree (a), billboard cloud using k-means clustering (b), im-
proved clustering by Behrendt et al. [BCF+05] with hierarchical information (c).
Other examples (d). Image from [BCF+05].

3.4.2 Points and lines

Point-based rendering was already used in the early work of Reeves and Blau [RB85],
as particle systems can represent irregular 3D volumetric structures such as trees
with ease, and the level of detail can be smoothly adapted by adding or removing
points. In Weber and Penn [WP95] and Deussen et al. [DHL+02], the tree geom-
etry is progressively reinterpreted as branches become lines and leaves become
points.

Figure 3.33: Point-based representations of trees: (a)(b) stochastic shadowing
model for particle systems proposed by Reeves and Blau [RB85], (c) results by
Weber and Penn [WP95], (d)(e) results from Deussen et al. [DHL+02]. Image
from [BMG06].

Gilet et al. [GMN05] proposed a technique to visualize trees based in the
sequential point trees by Dachsbacher et al. [DVS03]. A tree or group of trees
is organized into a regular grid, and inside each cell a hierarchical clustering
computes a binary tree such that the �nest level contains the original triangles
and coarser levels are point-based representations de�ning an average of their
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subtrees. Clasen and Prohaska [CP10] also build a sequential model that ap-
proximates branches with lines and foliage with ellipsoids, and select the Level
of Detail using an image error metric.

3.4.3 Stochastic simpli�cation

Vegetation rendering has been also approached from a simpli�cation viewpoint.
However, most mesh simpli�cation schemes do not work on vegetation scenes
because the individual elements in it are already simple. The complexity of
such scenes is due to the aggregate detail : having a lot of elements even if they
are very simple. Cook et al. [CHP+07] addressed this problem and proposed to
render a scene using a randomly selected subset of elements statistically altered to
preserve the overall appearance. Each selected element is modi�ed independently
of its neighbors. In particular, the element area is scaled with the inverse of the
fraction of selected elements, and its color shifted to the mean element color to
preserve contrast.

Figure 3.34: (a) Original model, (b) model with only 10% of leaves, (c) with area
correction, (d) with area and contrast correction. Image from [CHP+07].

Neubert et al. [NPD+11] improve the stochastic prunning of Cook et al. by
introducing a view-dependent Precision and Recall measure and heuristic: an
unset pixel that should have been covered is as bad as a set pixel that should not
have been covered. They use this measure to �nd the optimal scaling depending
on the fraction of selected elements. Moreover, instead of a pure stochastic
selection of the elements, they de�ne a priority based on the degree of silhouette
preservation and the orientation of the elements.
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3.4.4 Mixed techniques

Recent works propose a combination of di�erent representations and rendering
techniques depending on the distance to the camera. The approach by Bruneton
and Neyret [BN12] proposes a representation for medium-distance views called
z-�eld. The tree is rendered from 181 views on the upper hemisphere, and they
store the minimal and maximal depths, the ambient occlusion and the opacity.
During rendering, the three closest precomputed views are used to reconstruct the
tree shape and compute the shading. For very distant trees that account for less
than a pixel, they also propose an illumination model mapped on the terrain that
reproduces the photometric behavior of a forest. Although the modeled forests
display a variety of realistic lighting e�ects such as view-dependent re�ectance,
slope-dependent re�ectance, hotspots and silverlining (the silhouettes of backlit
trees appear brighter), each di�erent tree model requires about 50MB.

Kohek et al. [KS17] generate tree geometry on the �y using a particle �ow
algorithm similar to [RCS+03], starting from a particle distribution inside the
crown shape de�ned using spherical coordinates functions. Coarser levels of
detail are obtained by lowering the frequency of trajectory sampling. Distant
trees are rendered using an icosphere perturbed in the vertex shader according
to the radial functions, and ray casting the probability function to instantiate
the leaves.

3.4.5 Summary

As we have seen, in order to achieve e�cient real-time rendering of large-scale
tree scenes, it is common practice to use impostors or other LOD techniques that
alleviate the rendering cost for far instances by simplifying their representations.
One of the main issues with these techniques are artifacts due to transition
between models. We will propose a novel representation of tree crowns that
enables continuous adjustment of the render complexity and smooth transitions
between di�erent representations.





4
Aerial image segmentation

In this chapter, we introduce a pipeline for the automatic segmentation of aerial
imagery, based on machine learning techniques. First, we will discuss the speci�c
issues that we face when compared against other image segmentation problems.
Next, we will describe the experiments and results that guided the design of the
segmentation pipeline. Finally, we will evaluate and demonstrate the usefulness
of this pipeline.

4.1 Introduction

Aerial images provide many visual cues about the type of terrain and elements
above it such as rocks, vegetation, lakes, etc. Therefore, the required step before
enriching a Digital Elevation Model with plausible detail is the identi�cation of
where each kind of element should be placed according to its high resolution
aerial photograph, i.e. the segmentation of this image. Each pixel needs to be
labeled according to a set of categories, either by selecting a label from this set
or by assigning a probability of the pixel belonging to each of the categories, thus
creating a set of probability maps.

There exist publicly available Land Cover maps, which are in fact segmen-
tations of the terrain. We have already listed some datasets in Chapter 2.4. In
summary, datasets covering wide areas also have very coarse pixel resolutions in
the order of tens or hundreds of meters per pixel. While it is possible to �nd re-
gional maps at higher resolution, like the Catalonia Land Cover Map [15] at 5m
per cell, this is still not enough for our intended plausible synthesis. Moreover,
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the process of creating such maps involves a tremendous amount of human ef-
fort: experts usually identify homogeneous regions in the aerial images, delineate
them using selection tools, and assign them a label that is often veri�ed using
other existing catalogs or even �eld work. Therefore, creating a cover map at
very high resolution � for example, 25 cm pixel like the aerial photographs � is
a prohibitively laborious task. That is why machine learning approaches, which
can be trained to segment aerial images, are already used to some extent.

We de�ne the segmentation for synthesis problem (S4S from now on) as the
segmentation of a high resolution aerial photograph for synthesis purposes, for
enhancing a terrain model with plausible details perceived in this aerial picture
(Figure 4.1). This problem has some unique issues when compared to other
segmentation approaches.

First, categories in S4S are usually de�ned according to di�erent detail syn-
thesis techniques artists might want to apply. For example, in a particular desert
scene for a Dakar rally game, one artist might want to distinguish rock, sand,
cacti and palm trees, whereas in a tropical forest scene the artist could be in-
terested in segmenting vegetation and rivers. This prevents or complicates the
compilation of a prede�ned training set that will be later used for any type of
terrain.

Second, we want to give artists the possibility to add new classes dynamically.
This way, they can progressively re�ne the appearance of di�erent materials,
which due to their variety are hard to know in advance (e.g. forest, shrub, grass,
crops, sand, bare rock, scree, water courses, inland marshes, snow...) and can
decide to distinguish non-anticipated categories (e.g. deciduous from coniferous
forests).

Consequently, this �exibility means that a S4S pixel classi�er should be able

Figure 4.1: Segmentation of aerial images for synthesis. Each class can then be
rendered using speci�c shaders and procedural content (yellow boxes).
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to work with relatively small training sets (containing examples from a varying
set of classes) and that both training and segmentation times should be within
the range of a few minutes, so artists can easily iterate on building the training
set and obtaining the desired results. Notice also that we cannot assume balanced
classes in the segmented exemplars, neither the exemplar class distributions to
be representative of the true class distributions.

As we have seen in Section 3.1, although there is an extensive literature
on image segmentation in remote sensing applications, previous approaches ei-
ther require extensive training sets (unfeasible in the context of dynamic cate-
gories), use descriptors tuned for very speci�c categories (e.g. crops), assume
balanced and representative datasets, or rely on expensive-to-train classi�cation
algorithms.

Our goal is to explore what are the optimal components of a standard im-
age segmentation pipeline speci�cally tailored for the segmentation-for-synthesis
case, and provide the necessary tools to apply it e�ectively.

4.2 Segmentation pipeline

We will describe now the design of our proposed segmentation pipeline, shown
in Figure 4.2 below.

Figure 4.2: Overview of the segmentation pipeline.

4.2.1 Input data

The input data we used during the design and test of our proposed pipeline
consists in aerial imagery (visible light as RGB, plus an additional Near Infrared
channel) and the elevation of the underlying terrain as a height�eld.

We downloaded our datasets from the Web Map Services of the Institut Car-
togrà�c i Geològic de Catalunya [12], which provides 25 cm/pixel aerial imagery
(RGB and Near Infrared) and elevation as a 5m/pixel grid.
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Figure 4.3: Input of the segmentation pipeline, dataset Andorra: aerial RGB
image, aerial image combining NIR-R-G channels, terrain elevation normalized for
visualization.

In Spain, the datasets from the Plan Nacional de Ortofotografía Aerea [21]
also provide RGB and NIR imagery at similar resolution, as well as the 5m DEM
grid. As an example from another country, the italian South Tyrol province
catalog [22] contains 20 cm/pixel aerial imagery (also RGB and Near Infrared)
and 2.5m/pixel elevation grids.

4.2.2 Feature set

Previous studies on the segmentation of aerial images have found that the optimal
feature set depends on the speci�c set of categories [RFR04; SPd10]. Recent deep
learning approaches obviate feature engineering, but for the speci�c case of pixel-
wise aerial image segmentation they have shown little or no improvement with
respect to low-level features [TMS12; PNS15]. We also performed a test using
end-to-end learning on a deep neural network, which we will discuss later in
Section 4.2.11.

Since we want to let artists choose the desired classes, we decided to include
a large number of well-known color and texture features used previously in the
context of segmentation of remote sensing images, see e.g. [RFR04], and test
their contribution on the classi�cation of typical classes (Section 4.2.7). Features
were computed based on the red, green, blue, near infrared and elevation of the
pixel itself and its neighborhood, at the original resolution of the input images
(25 cm/pixel).

Our 91 chosen features can be divided into seven groups: Height, Color,
NDVI, GLCM, Spectral, HOG and LBP.

Height features [4 values]: we considered the elevation at the pixel loca-



4.2. Segmentation pipeline 55

tion (interpolated from the lower resolution available elevation map), as well as
its gradient (orientation and magnitude). Orientation is represented with two
sin/cos values to avoid discontinuities. As we shall see, we propose to use gra-
dient magnitude but discard elevation and gradient orientation as they penalize
generalization (see Section 4.2.7).

Color features [10 values]: we use the RGB color components of the pixel,
as well as its components in HSL and CIELab color spaces. Hue is represented
with sin/cos values. For the CIELab space we use a generic conversion since we
do not need exact chromatic coordinates but just a perceptual-based descriptor.

NDVI [1 value]: the Normalized Di�erence Vegetation Index (NDVI) is a
well-known ratio used to predict whether a region contains live green vegetation.
Using the Red (R) and Near Infrared (I) channels, NDVI is computed as NDVI =
(I−R)/(I+R). Note that this index is not helpful for the detection of vegetation
when it is dry, deciduous or shadowed.

GLCM [20 values]: the Grey Level Co-occurrence Matrix is a 2D array Cd

in which each element Cd(i, j) indicates how many times the grey tone i co-occurs
with the grey tone j in the direction d = (dr, dc), being dr the displacement in
rows and dc the displacement in columns. For a discretized grey-scale image I,
Cd is de�ned as:

Cd(i, j) = |{(r, c) | I(r, c) = i and I(r + dr, c+ dc) = j}| (4.1)

Normalizing the matrix Cd such that all entries sum up to 1, we obtain the
matrix Nd. As in [SS01], we use the following set of features based on Nd to
characterize texture: energy, entropy, contrast, homogeneity and correlation.

Energy
∑n

i=0

∑n
j=0(Nd(i, j))2

Entropy −
∑n

i=0

∑n
j=0N

d(i, j) logN(i, j)

Contrast
∑n

i=0

∑n
j=0(i− j)2Nd(i, j)

Homogeneity
∑n

i=0

∑n
j=0

Nd(i,j)
1+|i−j|

Correlation
∑n

i=0

∑n
j=0(i−µi)(j−µj)Nd(i,j)

σiσj

We extract these �ve features over four di�erent normalized symmetric grey-
level co-occurrence matrices computed on the pixel lightness discretized into 8
values. We used displacement vectors d1 = (0, 1), d2 = (1, 0), d3 = (1, 1) and
d4 = (−1, 1). The matrices are computed using a sliding window of 15 pixels.
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Spectral features [6 values]: we compute the Discrete Fourier Trans-
form F (u, v) of the image lightness and compute the power spectrum P (u, v) =√
Re(F (u, v))2 + Im(F (u, v))2. Since, the power spectrum is symmetric about

the origin u = 0, v = 0, it can be sampled in rings to extract features that can
be useful for classi�cation purposes [SS01]. According to [TWE11], the power
spectrum of natural images tends to follow a power law that can be modelled as
P = 1/fβ , where P is the power as function of frequency f and β is the spectral
slope. That means that, on a log-log scale, the power as a function of frequency
lies approximately on a straight line. We extract features of the power spectra
calculated over a sliding window of 16 pixels. To compute the total power spec-
trum over rings, the frequency domain is partitioned into 4 ring-shaped regions
around the origin. There will be one feature as the result of adding the power
values over each region. Linear regression is used on the logarithm of these values
as a function of the logarithm of the mean frequency they represent, obtaining
information about the spectral slope and the intersect value. These 2 values will
also be used as features.

HOG features [8 values]: the Histogram of Oriented Gradients counts oc-
currences of gradient orientations over a sliding window around a pixel. Image
lightness must be �rst processed using an edge detecting �lter (we chose a Gaus-
sian derivative �lter, since it is considered relatively invariant to rotations). For
each pixel, we obtain the gradient magnitude and orientation from its response
to both horizontal and vertical �lters. Afterwards, we just count over a sliding
window how many magnitude responses turned out to be bigger than a certain
threshold and add them to a speci�c bin according to the orientation associated
to it. We used a sliding window of 15 pixels and discretized our histogram into
8 bins.

LBP [42 values]: the Local Binary Pattern descriptor [OPM02] encom-
passes two complementary measures: local spatial patterns and gray scale con-
trasts. The most basic version consists in, for each pixel in an image, comparing
its value to its neighbours and then building a binary number with the results
of these comparisons. Once this is done, compute an histogram of the decimal
numbers encoded, for all the pixels inside a sliding window. A rotation-invariant
descriptor based on this one can be extracted by only keeping the so called uni-
form patterns, which are those that at most contain two bitwise transitions from
0 to 1 (or vice versa) when the pattern is traversed circularly. In this case, all
the uniform patterns are assigned a label independent of the starting traversing
point, achieving rotation invariance. It has been shown that for 8-neighborhoods
with radius 1, 90% of the patterns are uniform ones. We compute a rotationally
invariant version of LBP over the channels HSL and RGB using 8 points and
radii 1, 2, 4 and 8, and using 16 points and radii 16, 32 and 64.
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Figure 4.4: Visualization of some features computed on dataset Andorra.
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4.2.3 Algorithms for multi-class segmentation

We now describe multiple traditional classi�cation algorithms usually available
on many machine learning toolkits such as KNIME software [BCD+08] or the
scikit-learn library for Python.

Ideally, we aim to obtain the best possible accuracy while achieving inter-
active training and inference times. Let X = {xi} be a set of feature vectors
(observations) with associated labels li, and let C = {Ck} be the set of classes.
We want our algorithm to estimate the probability P (Ck|xi) of xi being an ob-
servation from the class Ck.

K Nearest Neighbors estimate P (Ck|xi) given a distance metric d and a
user-de�ned number of neighbors K as:

P (Ck|xi) =
Kk

K
(4.2)

where Kk = |{xj ∈ Xi | lj = k}| and Xi is the set of K observations that are
closest to xi according to the metric d.

Multinomial Logistic Regression estimates the posterior probabilities
P (Ck|xi) using the softmax function:

P (Ck|xi) = yk(xi) =
exp(wTk xi)∑
j exp(wTj xi)

(4.3)

The maximum likelihood function given parameters wj is de�ned as:

P (T |w1, ..., wk) =

|X|∏
i=1

|C|∏
k=1

P (Ck|xi)tik =

|X|∏
i=1

|C|∏
k=1

yk(xi)
tik (4.4)

where ti for an observation xi with label li = k is a vector of zeros that contains
a 1 at position k, and T is the |X|× |C| matrix of target variables with elements
tik. The parameters wj can be estimated by minimizing the minus logarithm of
this function, also known as the cross-entropy error :

E(w1, ..., wk) = − ln (P (T |w1, ..., wk)) =

|X|∑
i=1

|C|∑
k=1

tik ln (yk(xi)) (4.5)

The Hessian matrix of E is positive de�nite and so the error function has a unique
minimum. The IRLS (Iteratively Reweighted Least Squares) algorithm can be
used in order to �nd the wj parameters that minimize it.
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Support Vector Machines �nd the optimal separating hyperplanes, i.e.
the planes that maximize the margin for linearly separable data. For the two
class problem, let ti = −1 when li = 0 and ti = 1 when li = 1. Given the plane
π : g(x) = 〈w, x〉+ b = 0 we want to �nd w, b such that:

max
w,b

{
min

1≤i≤|X|
d(xi, π) =

〈w, xi〉+ b

‖w‖

}
subject to

ti(〈w, xi〉+ b) > 0, 1 ≤ i ≤ |X|
(4.6)

Rescaling w, b such that |〈w, x〉+ b| = 1 for the points closest to the hyperplane
(support vectors), the problem can be reduced to minimizing 1

2‖w‖
2 and can be

solved using quadratic programming techniques.

Using Lagrange multipliers we can �nd the dual form which expresses w as
a linear combination of the input features:

w =

|X|∑
i=1

αitixi subject to
|X|∑
i=1

αiti = 0 (4.7)

Kernel functions K(xi, xj) = φ(xi)
Tφ(xj) can be introduced to e�ciently work

in higher dimensional spaces and �nd more complex boundaries. For prediction
we use the function y(x) = sgn(〈w, φ(x)〉+ b) which can also be rewritten as:

y(x) = sgn(

|X|∑
i=1

αitik(xi, x) + b) (4.8)

To support multiple classes one can train a separate SVM yk(x) for each class k
and make predictions for new inputs as:

y(x) = max
k

yk(x) = max
k

(

|X|∑
i=1

αiktikK(xi, x) + bk) (4.9)

Binary Decision Trees partition the input space into cuboid regions. The
division is built as a branching structure: at each intermediate node the set of
observations is split into two subsets according to a certain criterion, and leaf
nodes contain the examples that ful�lled all the conditions along the path that
leads to them. One feature and one threshold for it are chosen at each node,
usually by trying to minimize the entropy on the resulting subsets. Large tree
depths often lead to over-�tting, therefore trees are pruned before all the labels
of the elements on the leaves are homogeneous.

In order to classify a new example, it is pushed down the tree following
the conditions at each node until the corresponding leaf is found. Then, the
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probability for a given class is reported as the ratio between the examples of
that class in the leaf and the overall number of examples in the leaf.

Random Forests consist on building multiple Decision Trees with randomly
selected subsets of features. Once the model is trained, class probabilities can
be obtained by averaging the values reported on the di�erent trees. This process
usually leads to better performance because it reduces the variance of the model
while maintaining the bias. Namely, whereas a single tree might be sensitive to
the noise of the data, their average is much more robust.

4.2.4 Dataset used during design tests

In order to evaluate the algorithms, features and other designs of the pipeline, we
needed segmented aerial images. However, land cover datasets, as we mentioned
in the introduction of this chapter, lack enough detail for our Segmentation for
Synthesis goals. Therefore, we manually classi�ed the terrain shown in Figure 4.3,
which we will refer to as Dataset Andorra from now on.

Figure 4.5: Dataset Andorra: aerial image and manual segmentation (red:
ground, yellow: grass, green: tree).

The aerial image has 3600 × 3600 pixels, i.e. the terrain is a square of 900
meters per side. We used image processing software to assist the segmentation
into three categories: ground, grass and trees. Figure 4.5 shows the aerial image
and the manual segmentation. Note that the classes are not distributed homo-
geneously, there are much more tree pixels than grass or ground. However, this
is usually the case on S4S both during training and inference steps, and we will
address it on Section 4.2.8.
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4.2.5 Segmentation algorithms comparison

Given the variety of learning algorithms, and each one with its own parameters
to test and adjust, we decided to �rst select the one that better suits our Segmen-
tation for Synthesis needs � the best possible accuracy with low inference and
training times �, before adjusting the rest of the pipeline. All of the algorithms
described in Section 4.2.3 can output the estimated per-class probability p̂k(x),
not only the best label k,

We performed this comparison using Dataset Andorra, with the feature set
discussed in Section 4.2.2. We randomly sampled 250,000 pixels for training, and
another 250k pixels for validation.

The algorithms were executed on KNIME [BCD+08], which contains imple-
mentations for all of them, so we just needed to input the data and adjust the
parameters. We will discuss below the parameter setup of the Random Forest
model. For the SVM, we tried two kernels: a linear kernel with gamma and bias
set to 1, and a radial basis function with three di�erent values of σ: 0.1, 1.0 and
10. On logistic regression tests, we did a maximum of 500 boosting iterations
with a heuristic stop after 50 iterations of no improvement on a cross-validation
set. Lastly, the only parameter to set up on the kNN model is the number of
neighbors, which we report on their corresponding rows, and we did not assign
them distance-based weights.

Algorithm Accuracy Training Inference

Random Forest (N=50, D≤15) 94.80% 6min 9 s 58 s

SVM Polynomial (linear) 93.80% 13 h 26min 3 h 7min

SVM RBF (σ = 0.1) 74.51% 33 h 9min 20 h 40min

SVM RBF (σ = 1.0) 94.68% 5 h 35min 2 h 59min

SVM RBF (σ = 10.0) 92.90% 45 h 30min 4 h 46min

Logistic Regression 93.78% 1h 40min 1min 42 s

Logistic Regression (norm.) 93.76% 1h 36min 45 s

kNN (k = 20, norm.) 92.46% n/a 3 h 52min

kNN (k = 10, norm.) 92.51% n/a 3 h 36min

kNN (k = 1, norm.) 90.44% n/a 2 h 59min

kNN (k = 20) 75.25% n/a 2 h 54min

kNN (k = 10) 74.85% n/a 2 h 18min

kNN (k = 1) 64.47% n/a 1 h 35min

Table 4.1: Average times and accuracies of the di�erent machine learning algo-
rithms we tried. In some cases, features were normalized (indicated as norm).
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Table 4.1 compares validation set accuracies and running times averaged over
�ve executions (except for SVM, which we only executed once due to its high
training time cost). Random Forest, SVM and Logistic Regression all provided
similar accuracies. However, Random Forest were much faster to train than
the other two, also o�ering the fastest classi�cation times. We thus claim that
Random Forest is the best option for our S4S pipeline.

The two parameters of Random Forests are the depth (D) of the trees, and
the number (N) of trees. For each combination of D ∈ {5, 10, 15, 25} and
N ∈ {10, 25, 50, 75, 100}, we measured the average accuracy obtained on 10 dif-
ferent pairs of training and validation sets from Andorra. Figure 4.6 shows the
accuracies obtained. Unless explicitly stated, all experiments in this article use
N=50 and D=15 since it gives the best trade-o� between computation e�ciency
and accuracy. Our results are similar to the ones obtained by [TMS12], who also
chose N=50, D=15. Regarding the number of features each tree can randomly
select, all tests were set up to use dlog2 91e = 7 features.

Figure 4.6: Accuracy of Random Forests depending on number of trees (N) and
maximum depth (D).

4.2.6 Features on multiple resolutions

Some features in the chosen feature set are computed using sliding windows of
up to 16 pixels (except LBP, which uses larger radii). Since our input data has
a resolution of 25 cm/pixel, our feature set takes into account neighborhoods up
to 4m wide. We could increase this span either by increasing the sliding window
size � which would also signi�cantly increase feature extraction costs �, or using
an image of the same area at a coarser resolution.
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We performed an experiment using again Dataset Andorra to assess whether
providing multiresolution features improved accuracy. We used a training set
and a validation set, each one containing about 2% of the input image pixels
(250 k samples), and measured the accuracy of a RF classi�er (D=15, N=50)
with features computed at varying resolution levels. We averaged the results
over 10 executions.

Our baseline performance was given by a minimum feature set which included
the four height features H (elevation, gradient magnitude and orientation), as well
as the LBP features. LBP was included in the baseline because it is computed
using radii up to 64 pixels. We then added the rest of the features (F) computed
at varying resolutions: 25 cm/pixel, 50 cm/pixel, 1m/pixel and 2m/pixel.

Table 4.2 shows the resulting accuracies. Since the best accuracies were given
by the highest resolution image (25 cm/pixel), we also tried combining the fea-
tures of this one with one of the downsampled images. Results slightly improved
in all three combinations; the best case was adding 1m/pixel features, yield-
ing a 0.4% gain in accuracy. However, the additional memory and computation
time needed to obtain such a small accuracy improvement made us discard the
multiresolution approach for S4S purposes.

Feature sets Accuracy Training Inference
LBP, H 78.34% 93 s 22 s
LBP, H, F(0.25m) 94.85% 91 s 28 s
LBP, H, F(0.50m) 93.94% 94 s 28 s
LBP, H, F(1m) 93.09% 97 s 28 s
LBP, H, F(2m) 91.71% 94 s 28 s
LBP, H, F(0.25m), F(0.5m) 95.14% 134 s 37 s
LBP, H, F(0.25m), F(1m) 95.26% 106 s 36 s
LBP, H, F(0.25m), F(2m) 95.14% 103 s 36 s

Table 4.2: Average accuracies using di�erent sets of feature resolutions.

4.2.7 Feature analysis

Besides excellent classi�ers, Random Forests have been shown to be able to
estimate the importance of the features and thus have been used both for feature
quality estimation and feature selection [�B10]. Quality estimates for feature
j can be based on the di�erence between classi�cation accuracy on the original
data set and on a modi�ed data set where the observed values for that feature xji
have been randomly permuted (thus preserving the original distribution) between
examples [�B10].
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Figure 4.7 shows the relevance (as % of accuracy loss, following [�B10]) of the
tested features on randomly selected samples of a varied training set containing
8 di�erent classes (we will introduce this set later, see Figure 4.17).

Figure 4.7: Accuracy loss after randomly permuting the samples of a certain
feature group. Original accuracy was 91.6%.

The height feature group appears to play an important role in accuracy.
However, it does not depend on the appearance of the patch containing the pixel
but on its absolute location, and so the causal relation learned by RF (e.g. snow
and water con�ned to speci�c height ranges) might be very speci�c to the chosen
exemplars, and could generalize poorly on di�erent scenes. Slope orientation can
also introduce bias in the results. In our selected training set, we were not aware
that bushes and grass regions had been selected only from a few orientations, and
thus when classifying full terrains we obtained incorrect results (see Figure 4.8).
Therefore, we decided to remove height and slope orientation (sin/cos pair) in
our �nal pipeline, resulting in 88 features.

Notice as well the contribution of the NDVI feature, which is computed from
the near-infrared channel. For datasets lacking this channel, we could still use
our pipeline expecting an accuracy around 6% lower. Similarly, discarding some
of the features (energy, entropy, spectra, HOG) leads to small accuracy losses
(below 1%), and thus are potential candidates to be omitted to simplify the im-
plementation. However, it is important to observe that after removing a feature,
the losses shown in Figure 4.7 would no longer be valid, since the new Random
Forest could then rely more strongly on previously less used features. In case
we wanted to reduce the size of the feature set, this analysis should be repeated
each time a feature is discarded, in order to select the next least useful feature.
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Figure 4.8: Orientation features can introduce undesirable bias in the segmenta-
tion. For example, using the training from Figure 4.17 � in which inadvertently all
bush and grass examples have been taken from similarly oriented slopes � produces
an incorrect segmentation (left). Just removing the orientation features eliminates
this bias and yields a better segmentation (right), with bushes and grass distributed
more evenly as expected.

4.2.8 Training set sampling

Unlike typical classi�cation problems, with �xed classes and large training sets,
we deal with dynamic classes and user-provided exemplars. Given an exemplar
image, one easy way to construct a training set is to ask the user to select man-
ually a few homogeneous regions for each class. The system will then properly
sample a subset of the labeled pixels and use them as training data. This op-
tion puts much less e�ort on the user than asking for a completely-segmented
exemplar, a task that could take several hours for a reasonable sized dataset.

In this setup, we have to face three di�erent problems:

• Non-representative neighborhoods: since training instances will be selected
from the manually-identi�ed homogeneous regions, the corresponding pix-
els are likely to have coherent neighborhoods that are not necessarily rep-
resentative of arbitrary pixels (in contrast to selecting arbitrary pixels from
a completely-segmented exemplar).

• Imbalanced data: in some exemplars, the ratio of the majority class (e.g.
tree) to the minority class (e.g. scree) instances can be very large. This
can be due to the predominance of some classes in the chosen exemplars,
or to the fact that some objects (e.g. pathways) can be more di�cult to
select manually than others (e.g. forest). Therefore some degree of class
imbalance is expected.

• Di�erent class distributions: the class distribution largely depends on the
scenario the exemplars have been chosen from. Therefore, the class distri-
bution used for training (e.g. 80% trees) might be quite di�erent from the
true class distribution at inference.
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Non-representative neighborhoods

We will �rst address the non-representative neighborhood problem. We con-
ducted an experiment to evaluate how large was the e�ect of training with data
coming from homogeneous regions. We used again the well-separated Dataset
Andorra, for which a complete segmentation was available. Each pixel was con-
sidered to be homogeneous if all pixels within its r×r neighborhood had the same
class (see Figure 4.9). Otherwise, the pixel was considered to be heterogeneous.

Then, we built three training sets: one with only homogeneous pixels, one
with only heterogeneous pixels and one with 50% of each type. Each training set
was randomly undersampled to about 260K training examples. We trained a RF
(D=15, N=50) for each training set and measured the resulting accuracies on a
validation set including pixels from all across the image. Figure 4.10 compares
the resulting segmentations on a small part of the image. Averaged accuracies
over 10 executions are shown in Table 4.3.

Figure 4.9: From left to right: segmentation of Andorra, and pixels with homo-
geneous neighborhood for r = 5, 10, 15 respectively. Pixels with an heterogeneous
neighborhood are those in the black regions, although they have a class.

Window size Homogeneous Half and half Heterogeneous

r = 2 92.9% 95.2% 93.7%
r = 5 89.7% 95.1% 94.9%
r = 10 86.8% 94.9% 95.1%
r = 15 84.6% 94.9% 95.1%

Table 4.3: Average accuracies depending on the training set selection.

The �rst column in Table 4.3 shows that as we increase the window size r,
which means that samples with homogeneous neighborhoods are taken farther
from the image-space boundaries between classes, the accuracy of the classi�er
trained only with homogeneous neighborhood pixels decreases. For small values
of r, the window used by some of the features is still able to incorporate infor-
mation of bordering areas, but for large values of r all the windows are always
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Figure 4.10: From left to right: part of the photograph, classi�cation using ho-
mogeneous neighborhoods, classi�cation using heterogeneous neighborhoods, and
manual classi�cation.

describing the content of a single class. This makes the trained model more
error-prone in the pixels close to class boundaries, as shown in Figure 4.10.

On the other hand, if we train the classi�er on heterogeneous neighborhoods
only, increasing r leads to better performance of the classi�er. This also makes
sense, as for small r the features computed over a window always take into ac-
count other nearby classes, and the trained model has never been shown obser-
vations from same-class regions. However, in this case the di�erence in accuracy
between small and large values of r is much smaller, probably due to the fact that
some of the features are computed using only the information in the pixel and it
is easier to generalize to homogeneous regions after training with heterogeneous
samples, than the opposite case.

Finally, if we train using half the samples from each distribution, the accuracy
remains pretty much constant. Note that this is not exactly the same as allowing
the samples to come from anywhere in the image, as for di�erent window size
r the proportion of pixels considered homogeneous or heterogeneous varies and
does not necessarily represent 50 and 50% of all the image.

These results show the positive impact of including some examples near the
(image-space) class boundaries. Both the heterogeneous and the 50%-50% train-
ing sets resulted in high accuracy, since both include examples with representative
neighborhoods. However, if training examples are taken from homogeneous re-
gions, we cannot guarantee representative neighborhoods as long as user-selected
region boundaries might not match class boundaries. Fortunately, reducing the
window size used for the homogeneity criterion (i.e. allowing homogeneous pixels
to get closer to class boundaries) leaded to reasonable accuracy (above 90% in
the experiment, see Table 4.3).
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So far we have shown that heterogeneous neighborhoods are important, but
we have been sampling randomly from the pixels that met the homogeneity
criteria de�ned by the window size r. We want to test whether there is a better
sampling strategy. We will compute a distance �eld Dk for each class k in the
segmentation, storing the image-space distance Dk(x, y) from the pixel (x, y) to
the closest pixel labeled as another class j 6= k. We normalize Dk to 0..1 range,
and add a random value as follows:

Sk(x, y) = λ ·Dk(x, y) + (1− λ) · rand(0,1)

Then, when we construct our training set, we will order all the pixel samples of
each class k according to Sk and choose them accordingly. For λ = 0, they are
ordered completely randomly. For λ = 1, they are ordered according to the dis-
tance �eld. So if we choose the N samples with highest Sk value, we are selecting
the N samples that are farther from another class, i.e. we are going towards the
center of the segmented regions. Conversely, if we choose the N samples with
lowest Sk, we are selecting the N samples that are closest to a di�erent class, i.e.
we are going towards the boundaries of the segmented regions. Varying λ yields
di�erent degrees of randomness/distance in the sampling strategy, as shown in
Figure 4.11.

Figure 4.11: Sampling the training set examples using Sk for di�erent values of
λ and towards the segmented groups center (top) or towards the borders (bottom).
Pixels in white represent selected samples for the training set. Contrast and point
size has been adjusted for better visualization.

After trying di�erent values of λ, the results shown in Table 4.4 indicate
that best accuracy is always obtained for λ = 0, i.e. for a completely random
sampling in the image.
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min Sk max Sk
λ (to border) (to center)
0 94.6 94.6

0.05 94.6 94.5
0.10 94.5 94.1
0.25 94.4 91.4
0.50 93.9 89.2
0.75 93.1 88.1
0.90 91.5 85.9

1 88.9 87.5

Table 4.4: Average accuracies when gradually sampling on forcing training samples
towards border or towards center of the segmented regions.

Moreover, these results also agree with those obtained in the previous exper-
iment. Sampling with preference towards the border (i.e. heterogeneous neigh-
borhoods) does not penalize accuracy as much as sampling towards the center
(homogeneous neighborhoods). Moreover, lower values of λ (more randomness,
so sampled distribution is not only homogeneous or heterogeneous) achieve better
results, like we obtained with the 50/50 distribution in the previous test.

In conclusion, taking into account the results from both experiments, we
can now de�ne the best strategy for obtaining a training set. Since a complete
pixel-wise segmentation of the exemplars is a very time-consuming task, a good
trade-o� is achieved by asking users to select nearly-maximal homogeneous
regions, with its boundary near examples from other classes. Then, the train-
ing set can be randomly sampled within those regions. Following this guideline,
exemplars are still easy to label (with respect to a complete pixel-wise segmenta-
tion) while still resulting in reasonably good classi�cation accuracy. Figure 4.17
shows a set of exemplars with nearly-maximal homogeneous regions manually
segmented.

Imbalanced data and dissimilar class distributions

We now address the problems of imbalanced data (one class having much more
exemplars than other classes) and dissimilar class distributions (training distri-
bution di�erent from target distribution), two problems than can easily appear
in a S4S project.

First, we analyzed the impact of di�erent distributions on Andorra. The real
distribution on this set is 74.5% tree, 13.7% grass and 11.8% ground. Using a
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training set consisting of 74% tree, 14% grass and 12% ground gave an accuracy
of 94.72%. Using the same amount of training samples distributed equally among
each class (33.3%), gave 93.39% accuracy, and inverting the proportions (i.e. 13%
tree, 43% grass and 44% ground) resulted in 90.30% accuracy. Therefore, even
if training and target class distributions are very di�erent, it is still possible to
achieve good accuracy segmentation.

Next, we executed a more detailed test varying the percentage of the class tree
samples in the training set, and distributing the rest of the samples equally among
grass and ground classes. Figure 4.12 shows the curve obtained. As expected,
the best segmentation results are achieved when the training distribution roughly
matches the target distribution (vertical dashed red line). However, we only
observe small changes in the overall accuracy even with completely erroneous
distributions.

Thus, we decided to give the user the opportunity to provide the expected
class distribution on the type of images to be classi�ed as rough estimates of the
per-class percentages. We sample the training set according to the user-provided
distribution, train the RF, and use it to segment the input image. This way the
user has some control on the desired result, accuracy is less sensible to the class
distribution on the selected exemplars, and potential model over�tting, if any, is
biased towards user expectations.

Figure 4.12: Accuracy obtained for di�erent distributions of the training set
samples.
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4.2.9 Smoothing class probabilities

Since the output of our classi�er is a set of per-class pixel probabilities, rather
than just the identi�er of a class, we could apply post-classi�cation �ltering tech-
niques. Although including feature descriptors computed on the pixel neighbour-
hood implicitly produces smoother labellings, we explored di�erent fast options
working on the probability maps. Therefore, users can apply post-classi�cation
�ltering techniques to correct noise or small errors in the �nal labeling.

Schindler [Sch12] compares di�erent smoothing methods that can be used to
produce a �nal labeling from class probabilities. Due to their speed and simplic-
ity, we decided to implement the three �ltering methods he presents: majority
voting, Gaussian �lter and bilateral �lter. Additionally, the user can provide, for
each label, the minimum expected footprint σ of the objects belonging to this
class. For example, a single pixel (0.25m in our case) labeled as tree surrounded
by non-tree pixels is very likely to be erroneous, while a single grass pixel may
be plausible.

Figure 4.13: Top row: input image, classi�cation output without �ltering (MAP),
bilateral �lter with σ = 4 pixels, bilateral �lter with σtree = 4, σbush = 2, σgrass = 1
and σground = 0.5pixels. Bottom row: probability maps of classes tree, bush, grass
and ground.

Figure 4.13 shows an example from Croscat dataset (4 classes: tree, bush,
grass and ground) in which no �ltering results in a very noisy classi�cation, while
a bilateral �lter over-smooths some grass or bush regions. However, �ltering with
a di�erent σ on each probability map eliminates undesired single-pixel trees while
keeping small vegetation clusters.
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4.2.10 Cost-sensitive classi�cation

Recall that we aim at replacing pixels by synthetic detail in the context of free-
camera applications, supporting large zoom levels and close-up views. Misclas-
si�ed pixels are likely to have a varying perceptual impact, depending on the
predicted/true labels and on the speci�c detail synthesis techniques that will be
applied to the output labeled images. For example, misclassifying terrain with
any of the other vegetation classes (tree, shrub, grass) is likely to have a higher
visual impact than e.g. confusing shrubs and trees.

Given the estimated class probabilities p̂k(x) for a test pixel x, its �nal class
ŷ(x) is computed as the one minimizing the expected misclassi�cation costs,

ŷ(x) = arg min
i=1,...K

K∑
j=1

ci |j p̂j(x) (4.10)

where ci |j is the user-de�ned cost of misclassifying as class i a pixel whose true
label is j.

Without loss of generality [OGG08], elements on the diagonal of the cost
matrix C = ci |j can be assumed to be 0, and elements o�-diagonal can be
assumed to have a positive cost. Scaling C by a positive constant does not a�ect
the optimal decision, so the minimum non-zero cost can be assumed to be 1. For
K = 4 classes, the cost matrix requires only 11 values to be provided by the user.

Table 4.5 shows an empirical cost matrix example where misclassi�cation of
terrain pixels as tree incurs the highest penalty, since this would cause synthetic
trees to pop up unexpectedly when zooming into a terrain region. Figure 4.14
shows the e�ect of applying this cost matrix.

Predicted / Truth Tree Bush Grass Ground
Tree 0 1 3 7
Bush 2 0 3 6
Grass 3 2 0 4

Ground 4 4 4 0

Table 4.5: A reasonable cost matrix for vegetation and ground classes.

Costs should be based on a perceptual study considering the particular detail
ampli�cation techniques. In Section 4.3.2 we provide some insights on how to
derive well-founded costs based on perceptual di�erences between pairs of classes.
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Figure 4.14: Segmentation of Croscat terrain into four classes: tree, bush, grass
and ground. Aerial image (left), segmentation after �ltering (middle), and after-
wards applying the misclassi�cation cost matrix from Table 4.5 (right).

4.2.11 End-to-end segmentation using Convolutional Networks

As mentioned in Section 4.2.2, in the past years there has been a growing interest
into applying Deep Networks to a variety of problems, as modern GPU hardware
and novel techniques have enabled their e�cient training and they have proven to
outperform previous methods in many domains. One of the advantages of Deep
Nets is that they can provide an end-to-end learning framework, i.e. there is no
need for feature engineering as the input of the network is directly the image.

Recently, Deep Learning has been successfully applied to image segmentation
using Fully Convolutional Neural Networks (FCN). In [LSD15], Long et al. con-
vert image classi�cation networks like VGG-16[SZ14] into per-pixel segmentation
networks by turning the fully-connected layers into convolutions, thus being able
to output classi�cation maps from any input size. Since typical classi�cation ar-
chitectures apply several pooling layers that reduce the size of the original image,
the output classi�cation map has lower resolution. The FCN proposed by Long
et al. performs upsampling as well as fusing information from previous layers in
order to output a per-pixel segmentation. They are able to reduce the maximum
upsampling required from 32× to 8×, but explain that fusing further layers to
reduce the upsampling only yields slight improvements at a larger cost.

In order to evaluate the use of FCN in our pipeline, we used the implementa-
tion and trained weights of the network FCN-8s-atonce using Ca�e [JSD+14], as
provided by the authors. This network performs an 8x upsampling and reported
their best performance in the PASCAL VOC segmentation dataset. Figure 4.15
shows the architecture of this network.
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Figure 4.15: Architecture of the FCN proposed by Long et al. [LSD15]. Each
time a Pooling layer is applied, the image is reduced to half the size. Therefore,
the prediction map from conv7 layer has to be upsampled 32x. However, better
results are obtained if the prediction by conv7 is upsampled only twice, merged
with the prediction from pool4, and upsampled 16x. Taking it yet one step further,
the prediction map only needs to be upsampled 8x. The authors show that further
repeating this process yields diminishing gains, so they stop at 8x. Figure adapted
from their article [LSD15].

First, we modi�ed the last layer of the net to match our classes, and retrained
using our fully-segmented Dataset Andorra split as 75% training and 25% valida-
tion. After 10 training epochs (11min 38 s), the obtained accuracy was 89.26%.
Classifying a 1000× 1000 image took 15.42 s in CPU, 0.84 s in GPU. Figure 4.16
shows the output of this network. Note that the output is smooth, as the net-
work is in fact learning an 8× upsampling of the per-pixel labeling in its last
layers. Modifying the network to avoid this upsampling was out of the scope of
our work.

Figure 4.16: Part of Andorra terrain set. Left: aerial image, center-left: ground
truth, center-right: classi�cation using FCN-8s-atonce [LSD15] with fully-classi�ed
training set, right: classi�cation using FCN-8s-atonce [LSD15] with nearly-maximal
homogeneous regions training set.
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However, in this �rst test we trained the FCN using a complete per-pixel
segmented dataset. Recall that our goal is to allow the user to train the classi�er
using a few homogeneous training regions, as in our experiments. If we train
the net in this way � by letting the loss function ignore pixels outside training
regions, using a special label �, results are much worse as shown in Figure 4.16
rightmost image, which shows the classi�cation after 100 training epochs (4 h
40min). This can be caused by the net not being allowed to learn the shapes of
boundaries between classes. Even after a huge training time, results are still far
from an acceptable segmentation, e�ectively rendering FCNs unusable for our
S4S pipeline.

4.3 Results

In this section, we will analyze the results of our segmentation pipeline. As men-
tioned before, obtaining a fully per-pixel segmented dataset is nearly impossible,
as it would take an immense e�ort. Therefore, we will compare our results on a
per-region basis. Moreover, since our goal for the segmentation is to add plau-
sible detail on terrains, we will evaluate the quality of our segmentation with a
user study.

4.3.1 Training set

We downloaded several small terrain regions from Catalonia, using the web map
services (WMS) provided by ICGC [12]. For each terrain, we downloaded the
aerial RGB and Near Infrared images, and the 5m DEM. We manually seg-
mented nearly-maximal homogeneous regions using standard image editing soft-
ware, computed features for these pixels, and stored the list of examples for each
class. Figure 4.17 shows this training set.

4.3.2 Classi�cation accuracy of human labelers

We conducted a �rst experiment to analyze how humans classify regions in aerial
images. The purpose was twofold: to obtain ground truth labels to test our al-
gorithm with, and to analyze the di�culty and resulting accuracy of human
labelers. Since per-pixel classi�cation is a long and tedious task, we selected a
total of 56 uniform regions (not necessarily continuous) from 8 datasets (Fig-
ure 4.19-top) representing a variety of forest and rural areas around Catalonia.
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Figure 4.17: Terrains on the training set and manually segmented regions.
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For each region, we asked users to choose between four labels: tree, bush,
grass and ground, as well as three additional labels expressing doubts between
two classes: tree or bush, bush or grass, grass or ground. During the test, one
region at a time was presented to the user as a blinking, semi-transparent overlay
on top of the current aerial photograph (Figure 4.18). Users were able to zoom
in and out using the mouse wheel. Twenty-three users (19 male, 4 female, ages
22-45, normal-sighted, most of them familiar with computer games) participated
in the experiment.

Figure 4.18: Interface of the �rst user study, users were asked to provide their
perceived label for the region highlighted using a red blinking overlay.

Ground-truth labels were not directly available, so we computed and com-
pared against the crowdsourced labels. One way to obtain these labels is through
majority voting, i.e. taking the most voted label at each region. However,
this strategy does not account for how good each individual labeler is, nor
the intrinsic di�culty of labeling each particular region. Following Whitehill et
al. [WWB+09], we inferred the label of each region using a probabilistic graph-
ical model in which observed labels depend on three causal factors: di�culty
of the image, expertise of the labeler, and the true label of the image. Using
an Expectation-Maximization approach, all three causal factors can be inferred
from the observed labels. For our special case in which a user expressed doubt
between two classes, we treated this as two di�erent observed labels for that
region given by the same user.

Figure 4.19-middle shows the resulting ground truth labels using the imple-
mentation provided in [26]. These labels will be used in Section 4.3.3 to test our
classi�cation pipeline.
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Figure 4.19: Datasets used in the �rst user study (top), ground-truth labels com-
puted following [WWB+09] (center), majority class given by our per-pixel classi-
�cation (bottom). The datasets shown are (from left to right): Andorra, Croscat,
Garraf, Rocacorb, Peguera, Setcases, Garraf-Quarry, Montserrat. For better visu-
alization, we have used a di�erent color scheme: red (ground), green (tree), blue
(bush), yellow (grass).

Alongside ground truth labels, we can also read from the probabilistic model
the region di�culty parameter β. Whitehill et al. [WWB+09] model image
di�culty as 1/β ∈ [0,∞). When β is close to 0, the image di�culty is very high
and even the most skilled users become just pure random labelers. Figure 4.20
shows the β parameters averaged by input image (left) and by ground truth
label (right). Notice that di�culty estimates exhibit large variance across classes
and datasets. In particular, bush regions are hard to classify, and consequently
images that contain regions similar to bushes are more prone to misclassi�cation
errors.

Figure 4.20: Average classi�cation easiness for each dataset (left) and for each
class (right). The lower the value, the higher the di�culty. Intervals represent the
standard deviation.
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Table 4.6 shows the resulting users' confusion matrix. Participants were
relatively good at distinguish between high and low vegetation (tree/grass), but
bushes were easily confused with trees or grass. These confusion matrices provide
a perceptual basis to measure how easy a label can be misclassi�ed as another
label, and thus provide a solid foundation to build perceptual cost matrices:
in the context of S4S, the higher the confusion rate between two classes, the
lower should be the corresponding misclassi�cation cost. The matrix shown in
Table 4.5 (Section 4.2.10) is an example derived from this confusion matrix.

Predicted / Truth Tree Bush Grass Ground
Tree 85.4% 14.6% 0.0% 0.0%
Bush 11.1% 63.9% 23.7% 1.3%
Grass 0.0% 0.4% 95.4% 4.0%

Ground 0.0% 0.2% 8.3% 91.5%

Table 4.6: Confusion matrix as percentages per label.

4.3.3 Classi�er accuracy vs human accuracy

The user study above shows that identifying tree, shrub, grass and terrain classes
on 25 cm/pixel aerial images is not an easy task, and that users often express
doubt or misclassify well-delimited regions. This suggests that a manual segmen-
tation from a single user is just a biased estimate of the ground truth. Therefore,
we decided to conduct a follow-up study. We asked eight new users (7 male, 1
female, ages 22-32, normal-sighted, all of them familiar with computer games)
to classify the regions in Figure 4.19, but this time only the four classes were
available to them, as they were not allowed to express doubt.

The number of regions each user marked di�erently from the 23-subject
ground truth ranged between 5 and 10, concretely: 5, 5, 5, 8, 8, 9, 10, 10. The
average is 7.5 incorrectly classi�ed regions out of 56 (87% accuracy). This shows
again the inherent di�culty in classifying some regions in the aerial images.

We compared this user accuracy with that of our classi�er, keeping the ma-
jority class among all the pixel labels inside each of the regions to produce a
unique label of the whole region. The classi�er output showed 7 misclassi�ed
regions (see Figure 4.19 bottom row), similar to the expected error from human
labelers. Figure 4.21 shows examples of these missclassi�ed regions. All but one
of these error regions correspond to what users perceived as ground truth bush
and were confused with trees or grass, a distinction that is also usually hard for
humans as we explained in the previous section. During this second study, most
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Figure 4.21: Some misclassi�ed regions and their corresponding per-pixel clas-
si�cations. The �rst region was perceived by the users as grass, and the rest as
bush. The majority class from the classi�er results inside each region is, from left
to right: ground, tree, grass, tree, tree.

users expressed di�culty on determining whether a highlighted region belonged
to the bush class. Also, they had to zoom in and out of the image and look at
other areas to compare vegetation appearance in the rest of the image before
choosing.

4.3.4 Visual validation of complete segmentations

We used our classi�er to perform full per-pixel classi�cations of di�erent datasets.
The �rst eight datasets consisted of a 3600×3600 aerial image (rgb and infrared),
and the corresponding digital elevation model. These datasets were segmented
by our algorithm into four classes: tree, bush, grass, and ground. The last three
datasets were bigger (16000× 16000 pixels) and included four additional classes:
scree, rock, water, and snow.

The test hardware was a single PC equipped with an Intel Core i7 at 3.40GHz
and 16GB of RAM.

We used OpenCV and Matlab to extract the 88 features of each pixel. For a
km2 of terrain (4000× 4000 pixels), computing the height, color and NDVI fea-
tures took less than a second, spectral features 2min and 40 s, HOG 12 s, GLCM
3min, and LBP 2min and 45 s. On average, the feature extraction performance
is 32 s/Mpixel, or 8.75min/km2. Note that features only need to be extracted
once per terrain.
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Figure 4.22: Top and middle: Andorra, Garraf-Quarry, Croscat, Garraf, Montser-
rat, Peguera, Rocacorb, and Setcases, segmented using 4 classes (tree, bush, grass,
ground). Bottom: Besiberris, Nuria, Sant Maurici, segmented into 8 classes. Color
legend as in Figure 4.17.
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The classi�er, as well as the various tests presented in previous sections, was
implemented using KNIME [BCD+08]. The training set was randomly sam-
pled from the gallery of nearly-maximal homogeneous regions that was easily
segmented by an expert (Figure 4.17), the proportion of samples of each class
being user-adjustable and reported in Table 4.7. These training regions are not
contained in any of the 11 sets to classify. Training a random forest using 400K
samples took about 2min. Classi�cation took around 21.5 s/Mpixel: on average
5min 45 s per square kilometer or 4000× 4000 pixels patch.

Dataset Tree Bush Grass Ground Rock Scree Water Snow

Andorra 75 - 15 10 - - - -
Garraf 20 10 40 30 - - - -
Croscat 65 5 10 20 - - - -

Rocacorb 60 5 10 25 - - - -
Garraf-Quarry 30 30 10 30 - - - -

Montserrat 40 15 5 40 - - - -
Setcases 35 20 35 10 - - - -
Rassos 40 5 40 15 - - - -
Nuria 15 10 30 30 4 10 1 -

Sant Maurici 30 5 20 10 15 15 5 -
Besiberris 4 1 12 8 40 25 5 5

Table 4.7: Percentage of samples from each class per dataset.

Figure 4.22 shows the 11 datasets as well as the output of our classi�er �
as the most probable class � before applying smoothing or cost matrix. These
segmentations can be assessed only visually since no ground-truth is available.

4.3.5 Detail synthesis application

The most relevant application of the proposed pipeline is to synthesize terrain
and vegetation detail depending on the per-pixel labels. Here we show some
sample images obtained by a straightforward approach.

Regions labeled as trees or shrubs were covered by a blue noise pattern, each
point representing the location of a synthetic tree/shrub. The minimum distance
between generated points was determined by the size of the synthetic vegetation
models. In our case the radii of tree and shrub billboards were respectively 20
and 8 pixels (which given the 25 cm resolution of the aerial images correspond
to 5 and 2 meters). Grass regions were enhanced by instantiating 3D models of
grass and �owers.

Terrain regions were detailed on-the-�y through displacement mapping shaders
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Figure 4.23: Example application: vegetation synthesis on terrain. Rocacorb,
Croscat and Garraf shown with the result of the classi�er (left) and the rendered
images with vegetation on the terrain (right).

perturbing the original DTM according to Fractional Brownian Motion noise.
Fragments covered by water and snow were rendered using speci�c shaders. Fig-
ures 4.23 and 4.28 show some resulting images.

4.3.6 Adding new classes and training examples

Adding new classes or specializing an existing class is a use case that we had in
mind when designing this S4S pipeline. Here, we will show how it can be easily
done using the provided work�ow. Suppose a user wants to classify the terrain
shown in Figure 4.24 into the following set of classes: tree, bush, ground, rock,
beach, sea and road.

First, it is possible to just apply the classi�er using the previously built
training set (Figure 4.17) to see the results, as in Figure 4.24 top-right. Then,
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for the three vegetation classes, the user decides that the training set already
contains a good collection of samples. Thus, it is only needed to provide extra
training samples for the new beach and road classes, and for the sea class, as it
has a very di�erent appearance than the water class examples segmented from
lakes. Similarly, a small region for rock class has also been added because these
rocks are also very distinct from the ones in the training set. Figure 4.24-middle
shows the regions marked by the user, in less than 5minutes using standard
image processing software.

Figure 4.24 bottom-right is the output of our classi�er after including the
new samples and classes on a training set, training a new Random Forest model
and running the classi�cation for this terrain.

Figure 4.24: Segmentation of Torn dataset, in which new classes have been com-
bined with the existing training set. The user provided new classes: road (red),
beach (brown), and sea (blue), as well as additional samples for rock class. On the
right column, we show the result using the previous training set (top) and after
adding the additional segmentations from the user (down).
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4.3.7 Detail synthesis validation

We conducted a �nal user study to evaluate the quality of our segmentation
pipeline in the context of detail synthesis. We selected a set of 30 viewpoints
on a large DEM (Figure 4.22, Nuria terrain), and rendered the scene with
procedurally-generated detail (vegetation, rocks, water) placed according to ei-
ther our segmented image (OURS) and an o�cial 5m/pixel land cover map
(LCM). The set of images used in the study can be found in the supplementary
material published in [ACC+18].

Our study consisted of a selection task, in which participants were presented
both images (OURS/LCM) and had to choose which one showed a better place-
ment of the synthetic elements, and a scoring task, in which participants were
shown one particular image at a time (either OURS or LCM) and had to indi-
cate the plausibility of detail placement using a 4-point Likert scale. Both tasks
started with a tutorial video and displayed instructions throughout the trials.

For the selection task (Figure 4.25-left), participants were shown 12 random
image tuples (from the set of 30), where each tuple consisted of rendered images
from the same viewpoint, using either our segmented image or the LCM. Users
were requested (forced choice) to select the best image in terms of the placement
of the added elements. A reference image showing just the DEM textured with
the orthophoto was also shown. For all participants, the order of the tuples was
randomly chosen, along with the order of the images within the tuple.

For the scoring task (Figure 4.25-right), we randomly selected 12 images as
in the �rst task, but now each image was shown separately rather than in a
tuple. One half of the images were detailed using our segmentation, the other
half through LCM. Participants were asked to assign a score {1,4} based on

Figure 4.25: Design and interface of the detail synthesis user study. Left, plausi-
bility task; right, scoring task.
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how plausible they thought the detailed elements were placed, again according
to a reference (no synthetic detail) image. Low values corresponded to success-
ful cases, whereas high values indicated the presence of synthetic elements not
matching the reference image. The order of the two tasks (selection then scoring)
was �xed for all participants.

The study was deployed on a website, and participants (21, contacted through
email) could complete the task remotely using the device of their choice. We ap-
plied Bayesian data analysis [Kru14] using an experiment design in the same
spirit of [GTB15]. Reported results represent the posterior mean, and the con-
�dence interval (CI) represents the range including 95% of the posterior proba-
bility.

Concerning the selection task, we modeled the posterior probability of each
method (OURS, LCM) being selected as the best as a Bernoulli random variable
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Figure 4.26: Left : Posterior probability p(θ|D) of each method being chosen as
the most plausible in a selection round. LCM: 26% (21%-31% HDI); Ours: 74%
(69%-79% HDI). Right : Posterior probability of each method getting the highest
score in the scoring task. LCM: 32% (25%-40% HDI); Ours: 81% (75%-87% HDI).
Shaded rectangles indicate the 95% Highest Density Interval (HDI).
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Figure 4.27: Posterior probability of winning a selection round, conditioned on
the camera elevation: ground views (1m to 30m), and aerial views (90m to 180m).
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with a uniform Beta prior. As shown in Figure 4.26-left, our method was signif-
icantly more likely to be selected as the best in terms of detail placement, when
comparing against LCM-based placement. Figure 4.27 shows also the posterior
probability, but this time conditioned to the viewpoint type (aerial/ground); as
expected, the advantage of OURS over LCM is higher for ground-level views
where element misplacement is more apparent and the lower resolution of the
LCM plays an important role. Nevertheless, our segmentation outperformed
LCM also for aerial views, presumably because LCM involves manual user input
and lacks the �ne-grained contours of our fully-automatic per-pixel classi�cation.

Regarding the scoring task, we computed how likely each segmentation was
to get the highest plausibility score in the 4-Likert scale. Figure 4.26-right shows
that our method was signi�cantly more likely to get the highest score. Summa-
rizing, these results show that our segmentation pipeline is suitable for plausible
detail synthesis and that it outperforms an o�cial (expert-assisted) land cover
map.

4.4 Summary

To summarize, the key contributions of our aerial image segmentation work are:

• A complete pipeline for segmenting aerial images, which can then be used
by external procedural synthesis algorithms to generate plausible details
on top of publicly-available DTMs, enabling detailed close-up views of real
scenarios in video games and entertainment applications.

• A performance comparison of state-of-the-art machine learning algorithms
for S4S. Our experiments show that Random Forests provide an excellent
option considering accuracy and performance both at training and inference
times. RF training times in the order of a few minutes allow artists to
experiment with di�erent sets of classes (e.g. adding water or sand) and
to add training examples from new segmented regions as soon as they
become available. Fast inference times enable fast segmentation and data
ampli�cation.

• An analysis on the contribution of di�erent color and texture pixel descrip-
tors (at varying resolution levels) in the classi�er accuracy. The analysis of
feature contributions revealed the key role of NDVI, an excellent discrim-
inator of non-dry vegetation. Adding features from downsampled images
only yielded very slight accuracy improvements. We did expect a higher
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impact, considering the fact that human perception of vegetation types (at
least on 25 cm/pixel aerial images) seems to be a�ected by surrounding
regions.

• A discussion on di�erent strategies for sampling the training set from
partially-segmented exemplars. We have shown that training examples
from homogeneous regions (the fastest manual labeling approach) lead to
suboptimal accuracies, but getting closer to the actual region border is
always bene�cial.

• A user study analyzing human accuracy when manually labeling uniform
regions in aerial images. We estimate the di�culty of the regions, the
expertise of the labelers, and the �true� label of the regions. We also show
how a perceptual cost matrix to apply as a post-classi�cation �lter can
be easily derived from this user study using the confusion matrix of the
participants. Our Random Forest classi�er is able to achieve accuracies
similar to those obtained by the participants in the uniform regions of the
labeling task.

• A second user study demonstrating the e�ectiveness of our approach. We
asked users to compare renders built from images segmented using either
our approach or o�cial land cover maps. The classi�cation from our clas-
si�er pipeline are signi�cantly more likely to be selected as better when

Figure 4.28: Examples of detail synthesis on big terrains (4 × 4 km), enhanced
using the result from our segmentation pipeline.
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choosing between both images side to side, and signi�cantly more likely to
be given the best plausibility score when showing a render of the enhanced
terrain as in Figure 4.28.

4.5 Publications

Our contributions on aerial image segmentation led to the following publication:

• O. Argudo et al. �Segmentation of Aerial Images for Plausible Detail Syn-
thesis�. In: Computers & Graphics 71 (2018), pp. 23�34





5
Terrain enhancement

We will discuss in this chapter two strategies we have developed for improving
the resolution and adding detail on terrain models, through the use of exem-
plars from other high resolution datasets. First, we present a dictionary-based
approach that can be used to improve resolution on an elevation model, but also
to synthesize new information layers available on the exemplars like vegetation
density, for example. Next, we will see how some of the perceived details of
aerial imagery can be transferred to the elevation model in order to increase its
e�ective resolution.

5.1 Coherent terrain synthesis from exemplars

Current resolution for publicly available DEM can vary considerably from one
region to another, as we have seen in the introduction (see Section 2.1). While it
is true that some regions have a unique geomorphology not to be found anywhere
else in the world, in most cases it is possible to �nd another area similar enough
and more detailed.

Therefore, a possible strategy to increase the resolution of a low resolution
DEM is to replace patches of it with patches from a higher resolution dataset that
have matching characteristics, like in the example in Figure 5.1. This replacement
method was indeed one of the proposed applications of the dictionary-based
sparse representation by Guérin et al. [GDG+16], which we summarize in the
following section.

91
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Figure 5.1: Left, a terrain set extracted from the central Pyrenees, combining
elevation from two service providers at di�erent resolutions. On the right, the low
resolution part has been augmented using similar patches extracted from the high
resolution part.

5.1.1 Sparse representation of terrains

We now introduce the sparse terrain representation by Guérin et al. [GDG+16],
which we will later extend. Given a terrain T , we can decompose its domain
into a set of overlapping patches P, such that they cover it completely. In their
implementation, they use disc-shaped primitives distributed over a regular grid
with step size the radius r of the disk. A dictionary D is a collection of atoms,
terrain patches centered to zero mean and normalized. Then, given a dictionary
D, each patch Pi can be represented as a vector xi of coe�cients in the dictionary
such that:

Pi = xi · D (5.1)

and ||xi||0, i.e. the number of non-zero elements in xi, is called the sparsity of
the representation. Logically, the larger this value is, the better the terrain T
can be represented using D.

Finding the decomposition x of a patch Pi on the dictionary with a sparsity
constraint of s, i.e. expressing Pi as a linear combination of s dictionary atoms, is
an NP-hard problem. However, an approximate solution can be found using the
Orthogonal Matching Pursuit algorithm[MZ93; TG07]. Brie�y, this method �nds
the atom that maximizes the projection of Pi onto it, removes this projection
from Pi, and iterates s times.

5.1.2 Multi-resolution and multi-layer dictionary

One of the applications of the sparse terrain representation, already proposed by
Guérin et al. [GDG+16], is terrain ampli�cation. A multi-resolution dictionary
is a set of two dictionaries (D, D̃), low and high resolution, with a one-to-one
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correspondence between their atoms. Then, if we �nd the set of coe�cients x
that lead to a representation of a terrain T using D, by replacing D with D̃
and keeping the decomposition we can reconstruct a more detailed version of the
terrain: T̃ = X · D̃. We used this method to obtain Figure 5.1 right. Note also
that atom radius can be di�erent in D and D̃, usually rD̃ = k · rD, with k being
the ampli�cation factor.

The dictionary is created on a preprocessing step, and can be reused for
many synthesis executions. To obtain the low resolution dictionary, we just
down-sampled the exemplars provided, although it would also be possible to use
existing multi-resolution data if available.

We propose to augment the information contained in the dictionary with ad-
ditional layers. These layers can represent any kind of data, and be provided
or computed from other layers. For example, elevation, vegetation density for
di�erent species or aerial imagery can come from public web map services, while
terrain slope, �ow accumulation (upstream drainage area) or average solar irra-
diance can be derived from the elevation layer.

The motivation behind a multi-layer dictionary is that di�erent information
layers on the same terrain tend to be correlated. The shape of the terrain is a
consequence of the geological properties of that area; for example, the rain does
not sculpt the terrain in the same way on granite than it does on sandstone.
In the same way, the type of soil � related to geology of the terrain � as well
as terrain slope, orientation or elevation will determine the vegetation that can
grow in that area. Therefore, we want to exploit this coherence between the
various information layers to improve the terrain augmentation.

Figure 5.2: Example of di�erent layers provided by ICGC [12] on the Cadí moun-
tain range. It is easy to observe certain coherence between them.

We will use superscripts to refer the di�erent layers, and subscripts for the
individual atoms. Thus, Dji refers to the j-th layer of the i-th atom in the
dictionary, as exempli�ed in Figure 5.3. For a better readability, instead of the
layer indices j ∈ {0, . . . , l− 1}, we will use letters representing the type of layer.
Table 5.1 lists the di�erent layers and their indices.
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Figure 5.3: Multi-resolution multi-layer dictionary.

information type
De elevation vector
Dh normalized elevation vector
Da elevation mean (altitude) scalar
Ds elevation deviation (steepness) scalar
Dc class vector
Dv vegetation density vector/scalar
Du upstream area vector/scalar
Dl light (irradiance) vector/scalar

Table 5.1: Summary of superscripts of the di�erent layers presented in this section.

Layers can store vector or scalar data per patch: elevation or vegetation
density map, for example, are stored as the array of values inside the patch,
while the mean elevation or mean vegetation density of a patch are stored as a
scalar layers. We will see applications of di�erent types of layers in the following
sections.

While any kind of spatial domain shape could be used for the dictionary
atoms, we use disc-shaped primitives as in [GDG+16]. If the radius of the disc
is r, each atom is actually a 2r × 2r square patch and its values are multiplied
by the following radial fall-o� function:[(

1− d2

(
1− 1

2r + 1

))+
]2

(5.2)

where d is the spatial distance between the patch center and the pixel coordi-
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nates. Figure 5.4 shows an example of how the disc-shaped atoms are internally
constructed and represented.

Figure 5.4: Construction of disc-shaped patches.

This masking ensures that we give more importance to the values on the
center of the patch, and less on the extremes, which will overlap with neigh-
boring patches during the reconstruction. The distribution of the discs over the
exemplars used to build the dictionary can be arbitrary, although we usually
distributed them on a regular grid with r or 2r spacing, depending on the size
of the exemplar. However, when distributing discs on the input terrain T , we
want to ensure full coverage of it. Therefore, we always used a regular grid with
r spacing, blend the overlapping patches according to the mask weights at each
position, and normalize them afterwards as they do not necessarily add up to 1
at each position. Larger spacing leads to empty gaps not covered by any disc.
Smaller spacing could be used, but then there is too much overlap and the results
appear over-smoothed.

5.1.3 Multi-layer terrain synthesis
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Figure 5.5: Multi-layer terrain synthesis pipeline.

Figure 5.5 shows the overview of the coherent synthesis pipeline. The input is
a low resolution terrain T , and optionally additional information layers or control
layers for the matching process (not shown in the �gure). The synthesis process
�rst computes the required extra layers, which are automatically derived from
the DEM like a �ow map, the mean elevation or average sun irradiance. The
terrain (elevation along with all additional layers) is then split into patches. For
each patch, the matching function �nds the best low resolution atom from the
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multi-resolution dictionary to replace the patch with the high resolution elevation
as well as all additional layers contained in it. All patches are blended together
to produce the �nal terrain model.

In order to be matched with a given atom Di of the dictionary, an input
terrain patch P comes with a subset Γ of the set of layer indices Ω = {0, . . . , l−1}.
Let Pj be the j-th layer of the input terrain patch. Let gj denote the matching
function of the jth layer. We de�ne the matching function g : Rn × Rn → [0, 1]
as:

g(P,Di) =
∑
j∈Γ

ωj gj(Pj ,Dji )
∑
j∈Γ

ωj = 1 (5.3)

The coe�cients ωj form a partition of unity and weight the relative impact of the
di�erent layers in the matching. The matching functions gj detailed in the next
subsections evaluate the similarity between patches and atoms for the di�erent
types of layers. The higher the value g(P,Di), the better the correspondence
between the input patch and the i-th atom. Let k denote the atom index that
minimizes the matching function:

k = argmax
i

g(P,Di)

The reconstructed patch P̃ = {P̃j} contains the layers of the high-resolution
matched atom k. The reconstructed elevation will be computed as:

P̃e = (Ph · Dhk)Ps D̃hk + Pa

All the other layers will be directly reconstructed from the dictionary atoms,
therefore

∀j ∈ Γ− {e}, Pj = D̃jk

In the particular setting of l = 1, Γ = {h} and gh(Ph,Dhi ) = |Ph · Dhi | where
the layer h contains vector data and atoms in the dictionary are normalized, we
obtain the regular Matching Pursuit algorithm [TG07] with a sparsity of s = 1.
Our framework generalizes this approach by introducing additional layers in the
matching step and allowing complex matching layouts.

The landscape reconstruction from the patches P̃ is performed by blending
the overlapping patches with the fall-o� function of the distance to the patch
center (Equation 5.2). In the remainder of this section, we rely on this general
framework and show how the di�erent types of layers are processed.
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Orientation

Consider the layer h that represents the elevation of a terrain. Recall that dic-
tionary atoms Dhi and terrain patches Ph are centered at zero in order to avoid
a constant component term in the projection which would make the matching
less meaningful. Consequently, if we use the matching function gh(Ph,Dhi ) =
|Ph · Dhi |, a good matching can be achieved with Ph · Dhi < 0, i.e. by inverting
the dictionary atom, which produces inaccurate results for our landscape gen-
eration: North faces may become South faces, ridges may become valleys, with
dramatic consequences on additional layers, such as riverside vegetation on top
of mountains as illustrated in Figure 5.6.

Figure 5.6: By using standard sparse synthesis, the atom that best matches the
input ridge elevation data has a negative coe�cient and corresponds to a valley.
The vegetation density of the valley atoms are incorrectly placed on top of the
terrain patch. In contrast, our approach avoids inversions.

In our framework, we are synthesizing layers that store other important prop-
erties, therefore we need to preserve the overall coherence between layers. To
solve this problem, we use the following matching function that maps onto [0, 1] :

gh(Ph,Dhi ) = (1 + Ph · Dhi )/2 (5.4)

By avoiding the absolute value computation, matching with inverted atoms no
longer occurs.

Figure 5.7 demonstrates using a toy example the importance of preserving
the terrain orientation. The dictionary was created from multi-layer data con-
taining the elevation (used for patch matching) and the normal map (used only
as synthesis layer). The generated terrain is a high resolution elevation map
augmented with a coherent normal map. In contrast, when allowing for atom
inversion, the result is completely inconsistent. Note that the obtained normals
are not exactly the same as in the computed ground truth, as that would obvi-
ously require the dictionary terrain to contain all possible shapes and normals
found in the input. Still, the distribution of orientations is well preserved.
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Figure 5.7: Sparse synthesis generates patches with arbitrarily-oriented atoms,
resulting in inconsistent orientations that can a�ect the generation of other layers.
Our method preserves the orientation and generates coherent patches.

Elevation and slope layers

The matching algorithm can also bene�t from information about the altitude of
the atoms and patches, as well as their mean elevation deviation, which can be
used as an approximation of the slope.

Consider for example a perfectly shaped conical mountain, like a volcano,
that has vegetation on the lower parts, then a transition to grass on the middle,
and only rocks and volcanic scree on the upper parts of the mountain. The
centered and normalized atoms of the upper parts can be identical to those of
the lower parts. Similarly, a steep slope will probably have sparse bush-like
vegetation and many rocks or cli�s, while a nearly �at slope is likely to have a
forest or a meadow.

Since both patches and atoms have their constant term (mean) removed,
and the dictionary atoms are also normalized, we can introduce in the matching
function scalar layers Pa for the mean altitude, and Ps for the slope. Since these
layers are scalars, they only need to store one value per atom/patch. Then, we
de�ne the altitude layer matching as:

ga(Pa,Dai ) = k(|Pa −Dai |) k(x) = e−x
2/σ2

Analogously, we use the same matching function for the slope function gs.

The standard deviation coe�cient σ serves as a user-control parameter. In
our implementation, we de�ne σ automatically by setting that the Gaussian
should be equal to 0.5 at the medium di�erence between the elevation of patches
and atoms in the dictionary.

σ = (2
√

ln 2)−1 max
i,j

(|Paj −Dai |)
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Note that this de�nition compares every patch j mean with every atom i mean
(or slope). In practice, we can reuse a �xed σ value computed from a variety of
terrains, or compare a small subset of atoms and patches in order to approximate
it.

When we introduce these functions onto the general matching equation (Equa-
tion 5.3), the weight ωa allows users to control altitude-dependent content such
as snow on high peaks, whereas ωs controls slope-dependent content such as
sediments or trees.

Figure 5.8: Two texture layers computed on the input DEM with di�erent com-
binations of weights ωa and ωs.

Figure 5.9 illustrates the contribution of each ω. The dictionary is constructed
from a single exemplar with two additional layers: a texture with the color-coded
elevation, and another texture with the color-coded slope. The input terrain is
then matched against this dictionary, and augmented with two synthetic textures.
Note that these textures are obtained by simply blending the texture patches
from the best matching atoms, so they are implicitly encoding information about
the mean elevation and the slope of these atom on each position of the terrain.
The matching will use the elevation, mean altitude and slope functions with
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weights ωh = 1, and varying ωa and ωs, normalized in order that ωh+ωa+ωs = 1.
We can see how even relatively small values of ωa or ωs already produces better
matches with atoms of similar altitude/slope.

Figure 5.9 illustrates the impact of the coe�cients ωa and ωs on a vegetation
synthesis example when using a dictionary containing a mean altitude layer and
a slope layer that are derived directly from the elevation data. The synthesis was
performed on a input elevation map T with steeper slopes than the exemplar,
which explains the scattered vegetation compared to large forests in the exemplar.

ωh = 0.4  ωa = ωs = 0.3

ExemplarInput

ωh =1  ωa = ωs = 0.0

Figure 5.9: Activating the altitude and slope matching functions gives a vegetation
distribution that better �ts the exemplar.

Context layers

Some layers often exhibit features or properties that are not local but range
beyond the domain of a patch, so taking into account the context can improve
the overall matching process. We introduce context layers, which can be used to
increment the spatial extent of a patch in an e�cient manner.

In general, using small patch/atom sizes lead to better shape matching be-
tween the input patches and the dictionary atoms, but these matches can be
less meaningful as they do not provide much information about the surround-
ing shape or overall structure. On the other hand, if the patches are big, more
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Figure 5.10: Elevation synthesis using context layers. The input sketch is shown
as an inset on the top left. The grey square denotes the patch size, and the white one
indicates the approximate extent of the neighborhood Ω considered for computing
the context layers.

shape and structural information will be used on the matching function, but the
chances of modifying the overall shape are bigger, as it will be more di�cult to
�nd an atom with the same shape.

Therefore, we propose to use two di�erent spatial domains for matching and
for replacement. During the matching, we want the spatial extent to be big in
order to account for the context of the patch, but only the smaller central part
of this domain will be included in the synthesis step. Formally, the context data
for a given patch Pj is computed over a spatial domain Ωj embedding Pj . In
our experiments, the radius of the domain ranged from twice to eight times the
radius of the patch.

A naive implementation of this new matching domain can produce a signi�-
cant increment on the computation time: since the number of elements in vector
layers increases quadratically with the radius of a patch, matching functions that
apply a dot product increase their computation time and memory as well. Thus,
instead of extending the size of the patch, we derive additional layers that repre-
sent the vector data (e.g. elevation) using a hierarchical down-sampling pyramid.
For example, if we down-sample the elevation layer h to half the size, we obtain
the layer h1/2 in which the same patch size represents a spatial extent twice
as large. We can then de�ne matching functions for each of these new layers,
although in practice we just use Equation 5.4 on each of them with a di�erent
weight.

Note that this is a di�erent concept from the low and high resolution dic-
tionaries (D, D̃). Although context layers include data from a larger domain
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Ωj ⊃ Pj , atoms Dj and D̃j have identical spatial extents. Atoms in D̃ are used
exclusively in the last step of the terrain synthesis when replacing patches with
their high resolution counterparts.

Figure 5.10 compares the results obtained by increasing the size of the neigh-
borhood when using context layers for capturing the landform features. Context
layers allow for a more realistic reconstruction of the cli�s, valleys and �at ter-
rain landforms such as plateaus, since the best matching atom can be determined
according to the features in the neighborhood of the patch.

Environmental layers

Layers representing global environmental information can be used to further im-
prove the overall landscape, i.e. terrain and vegetation, synthesis process.
Contrary to elevation or density layers that only provide local information at
a given point, or context layers which represent a larger domain but still only
contain information around the point, global layers store parameters that are
derived from a global analysis of the terrain. Such layers are particularly useful
for implicitly representing correlations between neighboring patches and intro-
ducing coherence terms in the equation that evaluates the matching between
patches and atoms.

In our system, we experimented with two types of global information layers:
the upstream drainage area that approximates the average �ow of water passing
through a patch, and the average solar irradiance that represents the average
amount of sunlight received by a patch. If not provided, those layers can be
computed from the elevation data of the exemplars and the input T to generate
the corresponding layers for patches Pu and P l and dictionary atoms Du and Dl.
The matching function can be simply de�ned like in the previous vector layers:

gu(Pj ,Dji ) = (1 + Pj · Dji )/2 j ∈ {u, l}

The upstream drainage area is computed by simulating the �ow of a large
number of particles randomly distributed over the surface of the terrain and
measuring the number of particles passing through every patch. Figure 5.11
shows that taking the drainage area into account allows for a better matching
reconstruction of ravines and gullies.

Solar irradiance (layer P l) is calculated based on latitude and longitude by
intersecting rays from the sun position along its trajectory with the terrain. This
captures terrain self-shadowing and provides average direct illumination from the
sun.
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Without drainage With drainage

Figure 5.11: In�uence of the upstream drainage area layer: gullies and ravines
are better reconstructed using it.

Class density layers

We introduce class layers as a powerful tool to control the style of the synthesized
multi-layer terrain model, e.g. rocky mountains, snow peaks, hills with forests.
Classes are de�ned by using an abstract layer that de�nes the class of patch.
However, instead of specifying a single class, we allow for a density value between
0 and 1, thus allowing several classes to be present at the same location.

Dictionary atoms are �rst labeled to identify multiple di�erentiated regions
from distinct classes (Figure 5.12). A classi�cation layer stores vectors whose
components de�ne the relative probability (terms range in [0, 1] and sum to 1)
that the patch should belong to the corresponding class. An exemplar with 3
di�erent classes leads to 3-component vectors for the class layer (Figure 5.12).
The matching method consists in choosing atoms that have preferably the same
class distribution as the input patches. We de�ne the matching function gc as:

gc(Pc,Dci ) =
1

n

n∑
k=1

P̂c(k) · D̂ci (k)

where n represents the number of samples; and P̂c(k) and D̂ci (k) represents
the normalized class vector kth sample for the input patch and dictionary atom
respectively. While it is possible to take into account all the class vectors in
the patch/atom class layer, class densities normally present smooth variations
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and using only a few samples leads to the same or very similar results while
using much less computation time and memory. In our implementation, we used
a Poisson disc-based distribution of samples inside the patch area, and n = 8
provided a good tradeo� between e�ciency and similarity to full computation.

Normalization of the class vectors is important so that patches with smoothly
varying classes do not match with atoms of a single class instead of atoms with
slightly di�erent class distributions. For example, image we have density maps
with 2 classes and the current patch sample is Pc = (0.7, 0.3), so it represents
a mix between the two classes with larger density of the �rst class. Suppose
now that our dictionary has two atoms a and b: Dca = (1, 0), Dcb = (0.6, 0.4).
If both atoms are equally valid candidates as the best match, we would like to
choose b since the distribution of classes is more similar to the distribution on the
patch. However, if we apply the dot product without normalizing these vectors,
Dca · Pc = 0.7 > Dcb · Pc = 0.54, resulting in a better score for atom a. If we
normalize the vectors, D̂ca · P̂c = 0.92 < D̂cb · P̂c = 0.98, and now b has a better
score.

Exemplar Input Output

Figure 5.12: Terrain authoring from a sketch de�ning 3 classes: hills with forests,
desert mountains, snowed peaks. The dictionary was built from an exemplar of
the central part of the Himalayas, using the aerial photograph (bottom) as a guide
to produce the segmentation into di�erent types of terrains (bottom inset), which
would be later represented as di�erent textures on the output terrain.

Matching multiple dictionaries

Our method allows to use dictionaries created from di�erent exemplars and fea-
turing various types of landscapes. While a dictionary can be built from as many
exemplars as we like, in some cases it may also be useful to build di�erent dic-
tionaries for di�erent types of terrains or biomes, and let the user specify where
to use each one and how to blend them, as in Figure 5.13.
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Without loss of generality, we explain how to perform matching on multiple
dictionaries with 2 biomes. In this particular setting, we consider two dictionar-
ies A and B that represent the two biomes. The user has to paint two additional
input layers α and β that describe the relative in�uence of the respective biomes
on top of the input terrain. Note that the sum of α and β should be 1 every-
where. For the matching and reconstruction, we use the following algorithm for
all patches P in the input terrain:

1. Find the atom Ai ∈ A that maximizes g(Pα � P,Pα �A).

2. Find the atom Bj ∈ B that maximizes g(Pβ � P,Pβ � B).

3. Blend the two high resolution atoms and generate P = P̃α� Ãi + P̃β � B̃i
where P̃α and P̃β are the upsampled versions of Pα and Pβ .

where � denotes Hadamard element-wise vector multiplication.

ExemplarsInput T Control layers

Generated terrain Close-up

A B Cα β γ

Figure 5.13: High-resolution landscape generated from a low resolution eleva-
tion map, three exemplars and control layers indicating the preferred exemplar.
The dictionaries were created from the Rocky Mountains, the Grand Canyon and
Smokies National Park elevation maps.

Note that this algorithm is similar to applying the matching algorithm in-
dependently on each dictionary, and then merging the chosen atoms from each
one according to the weights of the biome distribution layers α and β. Addition-
ally, before computing the matching function g on a dictionary, all the vector
layers on the patch P are masked by the in�uence that dictionary will have on
this patch, which is encoded by the corresponding biome layer, and each atom
of A is also masked accordingly. The motivation behind this masking is that
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we only want to match between the parts of the atoms and patch that will be
represented on the blended terrain. Atoms that match the patch but that do not
lie in the area of in�uence on the patch will obtain a low matching score. This
yields more coherent results than simply blending the di�erent layers synthesized
independently.

5.1.4 Applications and results

Our system automatically synthesizes coherent high-resolution multi-layer land-
scapes, i.e., terrains with detailed elevation, soil type, sediment layers covered
with a realistic distribution of di�erent types of vegetation from a few input
low-resolution layers (usually, elevation and control layers). Instead of relying
on complex procedural ecosystem simulations, our method reproduces the pat-
terns and characteristics of the dictionary exemplars and preserves the overall
coherence of the di�erent layers, as shown in Figure 5.14.

Figure 5.14: Comparison between sparse synthesis and our method. Left image
shows the vegetation distribution without taking into account the orientation, mean
altitude and slope. Right image shows the coherent distribution, which better
preserves the appearance of the exemplar terrain.

An important feature of our framework is its versatility: it can be used to gen-
erate an arbitrary number of layers of di�erent types. Moreover, our dictionary-
based system allows the user to enhance the database with as many atoms as
needed, completing it with atoms featuring sediments or di�erent kinds of plants.
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User control

The user controls the multi-layer terrain generation process by adjusting the
weighting coe�cients for the input and synthesized layers (Figure 5.9). Artists
can freely provide, besides the elevation data, arbitrary layers as inputs, choose
the layers and de�ne their purpose: soil type, humidity, vegetation density or
biome as long as the dictionary atoms encode these layers. The algorithm
produces high-resolution terrains or additional layers consistent with the user-
provided input and exemplars, as shown in Figure 5.14.

Figures 5.12 and 5.13 show examples of sketch-based authoring. The sketch
contains a coarse description of the desired classes (forest, desert, peaks), with
the purpose of synthesizing consistent biomes. The in�uence of the sketches in
the matching process can be controlled by modifying the weighting coe�cients.

Similarly, Figure 5.15 shows an example where control is achieved by sketch-
ing as class density layers the expected distribution of three di�erent vegetation
types (tree, shrub/grass, sand soil), represented together using RGB for visual-
ization purposes.

Figure 5.15: Vegetation control over a large terrain: the vegetation distribution
dictionary was created from the eastern Pyrenees exemplars (Figure 5.14), and
the di�erent species were prescribed by the user by de�ning three di�erent classes
(trees in red, bushes in green and sand in blue). Individual synthesized layers and
rendered results are shown for di�erent values of the control parameter ωv.

Our matching framework can further simplify user control tasks. Instead of
de�ning a vegetation distribution for each vegetation type, the user may sim-
ply provide a vegetation density layer (single scalar), and use the dictionary to
convert the overall density into vegetation distributions for the di�erent types
of vegetation. Figure 5.16 illustrates this case. Since the user only wanted to
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specify an overall density map, a procedure can be speci�ed to create on the dic-
tionary another layer that encodes the weighted sum of the speci�c vegetation
layers (e.g. tree density contributes much more than grass density to the overall
sum). This derived layer is then used to compare the average density between
atoms and patches during the matching step.

Figure 5.16: Vegetation control: left image shows a terrain without vegetation
density control, i.e., following the distribution of the dictionary exemplar, whereas
right image shows a smooth disc-shaped constraint. The algorithm automatically
selects atoms with no vegetation under water.

Iterative synthesis

Our method allows to execute the synthesis process iteratively, using some of the
output layers of one iteration as input layers for the next iteration. Therefore,
we can use several dictionaries with di�erent layer subsets in a coherent way.

Figure 5.17 shows an example of a two-step work�ow. Given the input el-
evation data, the �rst iteration applied a multi-resolution dictionary extracted
from a real dataset of Catalonia to synthesize coherent population and vegetation
densities on top of this terrain by taking into account the DEM, mean elevation
and slopes. Then, the second iteration used a dictionary obtained from a small
part of Catalonia (10× 10 km2) with information on per-class vegetation distri-
butions. During the matching step, the vegetation density layer computed in the
�rst iteration was introduced as a density control layer to guide the matching
and placement of vegetation. It can be seen how the vegetation has been dis-
tributed according to the previously generated density, whereas if we apply this
dictionary directly on the input terrain without the density map it produces a
very di�erent result.

This example demonstrates that output layers (here, vegetation density) can
be in turn used to guide the synthesis in a coherent feedback loop.
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Figure 5.17: Example of a two-step vegetation synthesis. First, we produce a
vegetation layer coherent with a population density. Then, this layer is used to
produce the distribution of three vegetation classes. Using directly the second
dictionary on the input terrain cannot account for population density and thus
places forests on areas with a high population density.

Terrain authoring

As a demonstration on the versatility and e�ectiveness of our pipeline for editing
terrains, Figure 5.18 shows an example of an authoring session in which the
user incrementally edits a low-resolution elevation map � using any preferred
image processing software � and this map is augmented to higher resolution and
additional coherent vegetation layers.

In Figure 5.18 step 1, the input is the initial terrain map, which shows a
cone-shaped mountain that is enhanced and populated with vegetation following
the distribution exemplar from the Pyrenees (Figure 5.14). Then, in step 2, the
user edits the elevation map by copying from another DEM smooth volcanic hill
on the top right corner. The render shows how the vegetation is redistributed
on this region after running again the pipeline, while it is maintained as before
on the rest of the terrain. Step 3 adds a canyon to the lower part of the terrain.
Finally, in step 4, the designer re-used the synthesized vegetation layers from
the previous, down-sampled them, modi�ed the density in the canyon to leave
it empty and the density on the volcanic hills to have only grass, and then
relaunched the vegetation synthesis process on the same elevation map as in
step 3 but now with these modi�ed vegetation density maps as matching layers.
The output vegetation distribution follows the user constraints. This authoring
session took less than 10 minutes, including user editing and terrain synthesis.
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Figure 5.18: Example of an incremental authoring session. Orange shapes high-
light DEM editing steps, and green the vegetation density edits.

Terrain texturing

Up to some extent, our pipeline can also be used to synthesize textures, like aerial
photographs, on a terrain. For example, in Figure 5.19 we used a high resolution
dataset from Mount Rainier (Washington, US) as exemplar to augment a scaled
DEM of Olympus Mons, the largest volcano in Mars (and known Solar System).
In this case, we did not only transfer the high resolution elevation data but also
the texture, which the exemplar had as aerial imagery. However, as there is no
guarantee on the continuity of texture between neighboring patches, the more
structured this texture is the more apparent becomes the discretization of the
terrain into patches and their blending. However, for natural landscape scenes
with moderate degree of variation on the aerial imagery (i.e. not covering an
area with very di�erent biomes) results are convincing.

Figure 5.19: Example of a high resolution multi-layer dictionary extracted from
Mount Rainier and applied to a low-resolution model of Olympus Mons.

Similarly, another application is terrain-aware aerial image repairing as we
show in Figure 5.20, in which we perform shadow removal on the aerial image
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of Montserrat mountain range, which has very steep rock faces. In this case,
the input terrain contained a mask indicating where to repair the texture. The
dictionary is built using atoms the unmasked parts. Like in the previous example,
using this dictionary a texture layer is synthesized for the whole input terrain,
and texture on the masked parts are used to replace the original texture. As we
can see in Figure 5.20, our texture synthesis provides better results than context-
aware image inpainting techniques available on image processing packages. These
methods do not take into account the terrain, so the steep rock faces appear
textured with trees instead, and even some parts of the road are copied on it.

Figure 5.20: Shadow removal on aerial imagery using coherent synthesis on the
DEM, compared with context-aware image inpainting.

5.1.5 Performance

Our method was implemented and tested on an Intel Core i7 with 16 GB of
RAM. Table 5.2 presents an overview of the di�erent cases and reports the cor-
responding statistics. Timings demonstrate that our approach is e�cient and can
be used in practical terrain authoring applications. Although our current frame-
work has been coded into a single-threaded CPU implementation, our method
lends itself for a parallel implementation on the GPU.

The dictionary generation step can be performed once as a pre-processing
step and does not count in the synthesis generation time. The dictionaries can
be extended easily by adding new layers to existing atoms, or by adding new
atoms from other exemplars. Increasing the size of the dictionary allows for more
variety and yields better results, at the cost of a more computationally demanding
matching step. Matching performs in a few seconds and even less than a second
for average-size dictionaries. The matching step of Figure 5.13 required one pass
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Layers Multi-layer terrain synthesis Time (s)
Input Output Figure Patch Atoms Patches Input Output Scale Dict. Match. Synth.

h, c h, t 5.12 242 3920 289 1852 7402 ×4 0.20 0.07 0.43
h, c h, t 5.13 242 5401 1521 4502 13502 ×3 0.35 3.19 9.95
h h, v 5.14 322 2116 324 2802 14002 ×5 0.08 0.03 0.47
h, v, c h, v 5.15 102 3969 10816 5132 51302 ×10 0.07 1.91 7.45
h, v h, v 5.16 242 3481 29584 20482 20482 ×1 0.11 3.07 7.47
h h, t 5.19 122 2304 729 1542 24642 ×16 0.03 0.04 1.50

Table 5.2: Statistics: patch size, number of atoms in the dictionary, number
of patches, size of the input and output terrains, ampli�cation factor. We also
report timings (in s) for the dictionary construction, matching process, and patch
replacement.

per class; timings take into account the multiple passes. Synthesis and blending
performs in less than a few seconds on most examples. Notable exceptions are
reported for the largest synthesized model (Figure 5.15), with a large terrain
(5130× 5130) involving more than 10 k patches, and Figure 5.16 which contains
almost 30 k patches.

The time needed to evaluate gj(Pj ,Dji ) for complex data becomes the more
expensive as the number of layers increases. In our implementation, we optimized
the computation by using a Poisson disc-based distribution of samples inside the
patch area and evaluating gj only over the reduced set of center points.

5.1.6 Discussion

Our dictionary-based framework has several applications. The input can be real
digital elevation models, rough sketches drawn by hand, or a combination of both,
containing a single layer (e.g. elevation), or multiple layers. The output terrain
contains always as many layers as available in the dictionary, thus providing
coherent data ampli�cation.

A key feature of our approach is to provide a uni�ed, easy-to-control, and
�exible model for multi-layer landscape synthesis generating plausible and pre-
dictable results. Although alternative methods exist for some speci�c problems,
none of them cover simultaneously all the applications supported by our frame-
work. Our method provides control to the user and allows him to create any
arbitrary layer in a coherent way. These two features are key for dictionary
reusability and, ultimately, for e�ective terrain creation, editing and synthesis.
Context layers combined with global environmental layers allow us to generate
spatially coherent patches that more faithfully reproduce landform features such
as gullies, erosion lines or plant clusters. Finally, our approach can be extended
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easily by considering other types of layers and de�ning the corresponding appro-
priate matching function.

As for all example-based approaches, our method may require a large input
dataset to synthesize terrains. The dictionary extraction pre-processing step is
very e�cient. Although it may be di�cult to �nd real world exemplars with
appropriate layers, the set of exemplars can be completed with results obtained
by computer simulations. Our framework o�ers many possibilities for reusing
dictionaries, since it is built independently of the synthesis step.

Although the coherence between the di�erent layers of an output patch is
guaranteed by construction, the coherence between neighboring patches in the
output is a�ected by the variety of atoms in the dictionary. This limitation
has two consequences. First, mixing exemplars from radically di�erent biomes
(e.g. rain forest and desert) into the same dictionary may result in poor spatial
coherence or sharp transitions. That limitation may be alleviated by providing
a sketch of the desired distribution, as described in Section 5.1.3.

Another limitation of our method is that it does not properly handle struc-
tured layouts such as road-networks, villages or cities: the synthesis process does
not guarantee that the structures would seamlessly link between two neighboring
patches. Our method can nevertheless synthesize statistic information such as
population density (Figure 5.17), which in turn may be used as input to generate
villages or cities [EBP+12].

5.2 DEM super-resolution through aerial imagery

Current resolution of aerial imagery is about an order of magnitude higher than
DEM, so virtual globe applications show the terrain mesh textured with these
pictures. If we look at as these textured terrains, it is easy to infer some interme-
diate scale terrain detail, in the range between the resolutions of the image and
the elevation mesh. We decided to study whether this type of perceived details
could be transferred as geometric detail on the elevation mesh.

We saw in Section 2.1 that current DEM resolutions on country-level datasets
range between 5 and 30 meters, while regional datasets can be found at greater
detail like 2m, 1m. While highly detailed datasets will probably become more
commonly available in the future, there is still a considerable cost on their ac-
quisition (they are usually obtained through LIDAR instead of photogramme-
try), processing and data storage. Therefore, it is reasonable to assume that we
can leverage the currently available high resolution datasets to improve other
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neighboring regions or areas that have similar characteristics and for which only
medium resolution elevation maps exist.

In the previous section, we introduced an algorithm for synthesizing detail
and additional coherent layers on top of (low resolution) elevation maps. How-
ever, dictionary-based methods focus on generating plausible detailed terrains.
On this part we emphasize on the �delity of the reconstruction, we want to
generate a terrain that is as close as possible to the real one. As we show in Fig-
ure 5.21, using large terrain patches during replacement causes large distortions
on the terrain shape. If we reduce the patch size, then the terrain is closer to the
original shape but the matching is less meaningful, as there is less information
in the patch shape, and more repetitions appear. Moreover, these methods do
not take into account the information contained in the aerial photograph.

Figure 5.21: Terrain super-resolution using dictionaries. Left: 15m DEM with
the silhouette highlighted. Center: enhanced terrain using 16× 16 patches and the
15m silhouette overlaid. Right: enhanced terrain using 8× 8 patches and the 15m
silhouette overlaid.

Inferring geometric details from a photograph is a problem that has also been
approached using shape-from-shading methods. However, these methods usually
make assumptions or rely on the lighting conditions in order to estimate the
geometry from the occlusions and shadows in the picture. In our case, we can-
not rely on two aerial image datasets having similar lighting conditions; �ight
times may be di�erent and, consequently, shadow orientations and lengths. Fur-
thermore, we have observed that for mountainous terrains as the ones we are
interested in reconstructing, shadows are usually too dark in order to being able
to infer any details from them, as we exemplify in Figure 5.22. Small rocks and
scree on the image texture appears as very contrasted and high frequency de-
tails, which leads to a lot of noise in the inferred geometry. Finally, we would
not like to infer detail from the photograph on tree and vegetation areas, as we
are only modifying the DEM which represents the elevation of the terrain. A
shape-from-shading approach is not aware of the elements shown in the aerial
image unless we provide a segmentation along with it.

Recently, deep learning approaches have proven to outperform other meth-
ods on many machine learning and image processing tasks, like image segmenta-
tion [LSD15] or image super-resolution [DLH+16] by using Convolutional Neural
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Figure 5.22: Terrain super-resolution using shape from shading. Left, terrain
textured with the aerial image. Right, terrain with added geometric details.

Networks (CNN). Given the di�cult nature of our problem, we decided to in-
vestigate whether these convolutional networks would help us to infer geometric
details on a DEM from the aerial image. First, in Section 5.2.1 we will see how
we obtained and constructed the dataset to train the network, and Section 5.2.2
will discuss the di�erent architectures we experimented with and the intuitions
behind them. Finally, in the rest of sections we will present the results from a
numerical, visual and users point of view.

5.2.1 Dataset

We chose mountainous areas with alpine-like features because in this kind of
terrain we can �nd many geological formations that are hard to preserve in
mid-resolution DEM but appear clearly visible on aerial photographs, such as
sharp ridges, boulders, couloirs, glacier crevasses, etc. Although in areas covered
with vegetation it is not possible to infer details on the DEM from the aerial
photograph, it would still be possible to use our method in case we had the
appropriate DSM or Lidar point cloud obtained at the same time than the aerial
imagery.

We downloaded several terrain regions from two publicly available geograph-
ical services that provided very high resolution aerial imagery (1m or less per
pixel) and high resolution DEMs (around 2m) in mountainous regions. From
Institut Cartogrà�c i Geològic de Catalunya [12] we downloaded 10 terrain ar-
eas from the Pyrenees, summing up a total area of 643 km2. From Südtiroler
Bürgernetz GeoKatalog [22] we downloaded 12 regions of the South Tyrol Alps,
a total area of 304 km2.

Figure 5.23 shows all the downloaded terrains as textured meshes. Note the
di�erent aspect that aerial imagery shows on the Pyrenees and the Tyrol. Apart
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from snow and glaciers on the Tyrol set, the colors, saturation and shadows also
have distinct appearance. This will be useful in order to evaluate whether our
proposed network can generalize well from the training examples to other regions.

Figure 5.23: Terrains dataset. On the top half, the 10 terrains from the Pyrenees.
On the bottom half, the 12 terrains from Tyrol. The four terrains highlighted in
orange will be used as test and evaluation of the results.

In order to build a uniform set, we scaled all aerial imagery to 1m resolution
and all DEMs to 2m resolution. The low resolution version of the DEM was
automatically derived from the 2m resolution by downsampling. We used 15m as
low resolution, since middle resolution DEM providers usually return resolutions
multiple of 5m between 5 and 25m, and 15m is quite common.

Four of the downloaded regions (highlighted in Figure 5.23) were completely
excluded from training and validation splits, in order to be later used as eval-
uation (see Section 5.2.5): Bassiero (48.7 km2) and Forcanada (25.7 km2) from
Pyrenees, Dürrenstein (9.9 km2) and Monte Magro (64.7 km2) from Tyrol.

The remaining regions were split into 400 × 400m tiles, yielding a total of
4741 tiles. As data augmentation, each tile was also rotated at 90, 180 and 270
degrees, transposed, and �ipped vertically and horizontally. We obtained 33,187
total tiles, 23744 from Pyrenees and 9443 from Tyrol. These tiles were then
distributed into three sets:

• Pyrenees: 15000 tiles training, 8000 tiles validation.

• Tyrol: 6400 tiles training, 3000 tiles validation.

• Both: 22000 tiles training, 11000 tiles validation.



5.2. DEM super-resolution through aerial imagery 117

5.2.2 Network architecture design

Our network design takes inspiration from recent Convolutional Neural Networks
(CNN) architectures that have proven to be successful in image applications like
segmentation and super-resolution. We will brie�y introduce in this section those
that we consider more relevant.

Regarding single-image super-resolution, Dong et al. [DLH+16] construct a
three layer network of convolutional �lters. The intuition behind this structure is
that the �rst layer of convolutions acts as a bank of �lters that extracts patches
and features from them, then the second layer encodes the patches onto some
space using a non-linear mapping, and the third and �nal layer reconstructs
the high-resolution patches from this representation. In their experiments, they
show that good results are obtained with kernel sizes 9× 9, 3× 3 and 5× 5 for
each convolution layer, respectively, and using 64 �lters (channels) on the �rst
layer and 32 on the second. They also observed that increasing the number of
non-linear mapping layers (depth of the network) did not yield better results,
probably due to di�culty during training.

Kim et al. [KKM16] showed that learning residuals instead of a direct low-to-
high mapping � i.e. learning the di�erence between the low and high resolution
image and adding it to the upscaled low resolution� allows for deeper networks
with smaller kernel sizes, simpli�es training, and yields better results. They use
20 layers of 3× 3 convolutions with 64 channels. The input of the network is the
low-resolution image interpolated to the desired high resolution size.

Finally, Long et al. [LSD15] showed how to convert an image classi�cation
network like VGG-16 [SZ14] onto a per-pixel segmentation network using a Fully
Convolutional architecture (FCN). In VGG-16, the spatial resolution of the im-
age is downsampled after every two or three convolutional layers through a max
pooling layer, an operation that outputs the maximum value inside the kernel
support. After some pooling steps, the image feature maps are encoded as a vec-
tor and fully-connected layers output the classi�cation prediction for the whole
image. Instead, Long et al. propose to compute the class per pixel without using
fully-connected layers but applying 1× 1 convolutions. Note that, given a set of
n �lters on a w× h image, a 1× 1 convolution will compute for each position of
that image a value based on these n �lters, and the result will be a w × h map
of values (in their case, the di�erent classes).

One last step is required on the FCN in order to produce a segmentation
map the same size as the input image. Since this 1 × 1 convolution is applied
after some pooling operations have taken place, the spatial extent of the image
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has been downsampled several times. Therefore, an upsampling step using a
deconvolution � or a convolution with fractional stride � is required in order
to recover the original size. Moreover, Long et al. [LSD15] showed that better
results are obtained by upsampling and combining the �lter maps from di�erent
levels of the network.

With these ideas in mind, we designed our network architecture which is
depicted in Figure 5.24. It has two main components: an orthophoto analysis
network (top row of the diagram), and a DEM analysis network (bottom row
of the diagram). These two separate components are concatenated at di�erent
spatial resolutions and a height o�set is computed from the joint information
provided by both components.
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Figure 5.24: Architecture of our FCN.

The orthophoto analysis network will produce features from the aerial image
in order to guide the o�set computation depending on elements detected on the
photo, so it can be thought of as a network that is inferring a segmentation
of this orthophoto although we never end up computing the classi�cation map.
It has been adapted from the �rst layers of the image segmentation network
FCN-8s-atonce by Long et al. [LSD15]. This allowed us to initialize this part
with the weights of their network, which has been already trained with a huge
set of images, and will improve the convergence of our training process. This
part starts with an RGB aerial image at 1m resolution, and applies two 3 × 3
convolutions followed by a ReLU activation layer. The resolution is then halved
through a max pooling layer and two additional convolution-ReLU layers are
applied, now with twice the number of channels.

The DEM analysis network follows the same structure, but starting at 2m
resolution instead of 1m. The input is a low resolution height�eld upsampled to
2m resolution (we used bicubic upsampling in our datasets) and with its mean
substracted. Note that, in this part of the network, we changed the max pooling
operation for an average pooling. The intuition behind this is that we are more
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interested in the average shape of the low resolution terrain, rather than �nding
a signal in any of the positions inside the extent of the convolutions. In practice,
we did not observe signi�cant di�erences on the error metrics with either max
or average pooling on the DEM analysis network.

Orthophoto network and DEM network are merged together by concatenat-
ing their features into a joint network. We can then apply d additional 3 × 3
Convolution-ReLU layers (green boxes in Figure 5.24) to the merged feature set
before the last two convolutions that will produce the height o�set. This o�set
is upsampled again to the original DEM resolution (2m in our case) through as
many deconvolutions as pooling layers had been applied. We fuse the informa-
tion of di�erent resolutions to produce the �nal height o�set map as a weighted
sum of the individual height o�sets at each resolution. The weights of this sum
are also learned parameters.

Network hyperparameters

Our network architecture has two main hyperparameters. In order to experiment
with several network architectures and �nd the best hyperparameters, we used
a subset of Pyrenees set distribution, with 5000 tiles for training and 2000 tiles
for validation. After every training epoch, validation error was measured on the
same randomly selected set of 100 tiles out of the 2000 in order to speed the
computation, but a complete measure on the whole validation set was performed
every 10 epochs.

The �rst hyperparameter is the set of resolutions that we use to compute
the height o�set. Theoretically, we could continue downsampling and merging
information from orthophoto and DEM analysis networks to produce o�sets as
long as the spatial size of the image is still large enough. We compared four
architectures varying the maximum resolution to which we downsample: up to
2m, 4m, 8m and 16m. In each case, the �nal height map is obtained as the
weighted sum of all the o�sets computed at each resolution and upsampled to
2m (see Figure 5.24).

Figure 5.25 shows the evolution of the validation set RMSE with two di�erent
learning rates. Adding downsampled resolutions to the net contributes to lower
error rates. However, the contribution of an additional downsample diminishes
every time: using up to 16m is only marginally better than using up to 8m, but
we need to include and learn 5 additional convolution layers, 2 deconvolutions
and the scaling parameter. We can also see how this a�ects the learning process
when using small learning rates (Figure 5.25 left): the network that uses reso-
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lutions up to 8m converges faster. Therefore, in our �nal architecture, we used
downsampling up to 8m.

Figure 5.25: Validation RMSE on di�erent network architectures with varying
numbers of downsampling stages. Training using Adam and learning rate α =
10−6 (left) and α = 10−4 (right). Note the di�erent scale of the horizontal axes,
corresponding to the number of trained epochs.

Then, we tried d = 1, 2, 3 layers of 3× 3 convolution-ReLU after merging the
features at 2, 4 and 8m. Results showed a slight improvement when adding one
and two additional layers, but only marginal improvements using a third layer at
the cost of slower convergence (Figure 5.26). In our �nal architecture, we kept
d = 2 which produces the best results according to the validation set.

Figure 5.26: Validation RMSE on di�erent network architectures varying the
number d of convolution+ReLU layers applied after concatenating image and DEM
features. Training using Adam and learning rate α = 10−6 (left) and α = 10−4

(right). Note the di�erent scale of the horizontal axes, corresponding to the number
of trained epochs.

Table 5.3 shows the training time of each network as ms/iteration, where
each iteration corresponds to a forward and backward pass of a mini-batch of
4 terrain tiles. Note that the purpose of this table is comparative as in our
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current implementation the selected terrain tiles and photos are read from disk
at every iteration; keeping them in memory or in a database with an appropriate
format would speed up these timings. Reconstruction times per tile do not show
signi�cant di�erences when using either small batches or individual tiles.

Network Training Inference
2m 374 ms/iter 13 ms/tile
2,4m 546 ms/iter 20 ms/tile
2,4,8m 612 ms/iter 27 ms/tile

2,4,8,16m 661 ms/iter 31 ms/tile
2,4,8m, d=1 803 ms/iter 38 ms/tile
2,4,8m, d=2 998 ms/iter 50 ms/tile
2,4,8m, d=3 1130 ms/iter 62 ms/tile

Table 5.3: Training and inference times of the di�erent networks.

Summing up, if we take into account the accuracy obtained and the train-
ing/inference times of the various networks we presented, it is reasonable to keep
2, 4, 8m, d = 2 as our �nal network choice. In the following sections, we will
present the results obtained on this speci�c architecture.

5.2.3 Training and validation

We have implemented our network using Ca�e [JSD+14] and Python 3.5. Train-
ing and execution times have been measured on a computer equipped with Intel
Core i7 3.40GHz and NVIDIA GTX 1070 hardware.

The orthophoto analysis part was initialized using the already trained weights
of the image segmentation network FCN-8s-atonce [LSD15] and provided by the
authors. Upsampling layers were initialized as a 2D bilinear kernel. The weights
on the rest of layers were initialized using a Gaussian distribution with a standard
deviation of 0.001 and biases were set to 0. We did not freeze the values on any
weights or biases during training, all network parameters can be modi�ed during
the backpropagation step.

The model optimization has been performed using Adam [KB14], a gradient-
based solver with adaptive moment estimation. We used the solver parameters
recommended by the authors: β1 = 0.9, β2 = 0.999, ε = 10−8. Each training
iteration was executed using a mini-batch of 4 randomly selected tiles, which
corresponds to the maximum size we could run on our GPU. Figures 5.25 and 5.26
show the e�ect of learning rates α = 10−4 and α = 10−6. Using α = 10−4 makes
the model converge very quickly, which can produce over�tting on some models.
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In fact, using α = 10−3 caused the optimization to diverge. On the other side,
setting α = 10−6 causes some models to take very long to converge, and smaller α
can be impractical. Therefore, unless stated otherwise, we trained models using
α = 10−5. Finally, L2 regularization was added with weight decay constant 10−4.

Figure 5.27 shows the training error and validation error (RMSE) for each of
the tree distributions we constructed (see Section 5.2.1). Due to the large size of
the validation set, we only evaluate the validation error on a subset of 500 tiles
after every 1000 training iterations, and evaluate the error on the full validation
set after each epoch (full pass on the training set). As can be observed, with
only a few training epochs the validation error converges. However, as training
progresses on Pyrenees or Tyrol, the variance increases: the validation error
becomes higher than the training error. This is a sign of over�tting the model to
the training data. Luckily, when training on the joint distribution, the validation
curve does not seem to su�er of over�tting. In fact, as we will con�rm later in
Table 5.5, it is bene�cial to train on data from multiple sources.

Figure 5.27: Training RMSE (blue) and validation RMSE on the full validation
partition set (green with dots) and on a randomly selected subset of 500 tiles from
it (orange). Training on Pyrenees, Tyrol, and both distributions.

Our network consistently reduces the error with respect to the low resolution
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15m DEM, as shown in Tables 5.4 and 5.5. For Pyrenees this error reduction
is equivalent to using an 8m DEM (assuming bilinear interpolation), while for
Tyrol it is equivalent to a 7m DEM (with the same assumption). This means
that our output produces new elevation data faithful enough to resemble one of
double the resolution. The additional detail contributes to its high resolution
appearance and is visually plausible as veri�ed by the user study described in
Section 5.2.6. Training on Both converges to a RMSE on the validation set
around 0.75m. Table 5.4 summarizes the equivalent resolutions of the validation
data errors.

set RMSE equivalent res.
bilinear bicubic validation bilinear bicubic

Pyrenees 1.45m 1.23m 0.80m 8m 10m
Tyrol 1.93m 1.50m 0.66m 7m 9m

Table 5.4: Accuracy improvement on validation data. The �rst two columns show
the error between the 2m DEM (our ground truth) and the upscaled versions of
the 15m DEM using bilinear and bicubic interpolation. The third column shows
the error achieved by our network when densifying 15m DEMs on the validation
set. Finally, the last two columns contain the resolution at which each of the
interpolation �lters (bilinear and bicubic, resp.) result in a RMSE equivalent to
our method.

We also trained our network using 30m (instead of 15m) as low resolution
DEM and keeping 2m as high resolution. Initial validation errors were about
2.45m and converged at around 1.56m, in the order of the errors of the 15m
dataset. However, if we then apply the network trained from 15m to increase
the detail again, the output has larger RMSE, probably because the intermediate
terrain (output from 30m) does no longer contain the correlations between aerial
image and DEM at 15m. It may be observed that using either 15 or 30 meters
as low resolution data, the trained network is capable to reduce the RMSE to
about a 60% of the initial error, which is similar to the error of the data with
twice the resolution.

It is also possible to evaluate the individual contribution of the two analysis
networks. In order to do so, we just avoid concatenating the corresponding
features into the joint analysis part of the network, and proceed with the training
as usual. Figure 5.28 shows the equivalent networks that would be obtained.

If we train using only the DEM subnetwork, an approach similar to single
image multi-resolution, the validation RMSE on Both converges to 0.89m. On
the contrary, if we train using only the aerial image network and sum the o�set to
the low resolution DEM, like in a shape-from-shading approach, the same distri-
bution RMSE converges to 0.98m. Recall that the combined network converges
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to 0.75m on this set, so these results con�rm that both networks are contributing
and complementing each other in our proposed architecture.
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Figure 5.28: Super-resolution network using only the DEM.
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Figure 5.29: Shape-from-shading network using only the orthophoto.

5.2.4 Qualitative evaluation

We now apply the trained network using Both distribution (tiles from Pyrenees
and Tyrol) to our test terrains that we omitted from training and validation
splits. Figure 5.30 shows a render of the enhanced DEM on Forcanada (from
Pyrenees), with specular lighting for better perception of the details. Figure 5.31
shows close up views on this terrain. For this �gure, we have selected a normal
example (top), an area in which the DEM did not contain much information
(middle), and an area in which the aerial image contained large and dark shadows
(bottom). The ampli�ed results show that our network is able to leverage both
the DEM and orthophoto information, and also compensates for the lack of good
features from either of them.

Figure 5.32 shows one view on each of the four test terrains, with di�erent
ampli�cation methods applied. The starting point for all tested ampli�cation
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Figure 5.30: Visual evaluation of terrain super-resolution using our CNN. Top
row: the low elevation dataset, and the corresponding aerial image used as texture.
Bottom: the output terrain produced by the CNN.

Figure 5.31: Visual evaluation of close-up areas.
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Figure 5.32: Comparison of di�erent DEM ampli�cation methods on the four test
terrains: Bassiero, Forcanada, Dürrenstein and Monte Magro.
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methods was the 2m DEM generated by bicubic upsampling the original 15m
DEM and encoding it as a 16-bit PNG image. We did parameter tuning for all
methods until we got visually pleasant results, as described below. Parameters
using non-default values are shown in italics.

Noise-based ampli�cation methods, such as Fractional Brownian Motion (fbm)
and Ridged noise, can potentially provide as much detail as wanted. However,
they place detail everywhere unaware of the morphology or terrain type. There-
fore, we can clearly see bumps appearing on the �at lakes of the �rst two terrains,
or on the smooth glacier of the last terrain. Noise-based versions in Figure 5.32
were generated using the Fractal Noise �lter from Wilbur 1.86 (a freely dis-
tributable height �eld editor by Joseph Slayton). For fBm noise, we used H=0.2,
lacunarity=1.9, octaves=10, amplitude=1. For ridged multifractal noise, we used
H=0.5, lacunarity=1.9, octaves=10, amplitude=1, o�set=1, gain=2. In both
cases, the noise image was scaled by 0.02 and then added to the DEM. Notice
that Wilbur's noise �lters have been designed for terrain authoring rather than
terrain super-resolution. We could not test more advanced options such as mod-
ulating noise strength with slope or altitude, which are found in other terrain
authoring packages.

Erosion simulations add detail on terrains by transporting particles from
upper to lower altitudes, creating gullies and accumulating sediments on �at re-
gions. These simulations produce realistically-looking terrains and increase detail
on low resolution terrains. In our particular case, however, we found two main
issues. First, since our low-resolution terrains are already 15m, much of the
geological features that erosion causes are already present at this scale. There-
fore, the simulation rapidly encounters many local minima and generates a large
number of small rivers and pits. While this problem can be alleviated through
parameter tuning, the method is still unaware of the underlying aerial image
and can create inconsistent features (e.g. river-like �ows or cavities appearing on
top of a snow�eld). Erosion images shown in Figure 5.32 were generated using
Wilbur 1.86. We �rst added Gaussian random noise (with σ=0.5%) to prevent
locally �at areas from producing large straight-segment channels. We applied
the Incise Flow �lter, which computes water �ow across the surface and erodes
the terrain accordingly. We used default values (amount=1, �ow exponent=2/3,
e�ect blend=1) , except for the pre-blurring �lter=0.5, which controls the width
of the water channels. We then applied the Fill basins �lter to �ll little depres-
sions at the places where �ows join, and we �nally blurred the DEM image using
a 3x3 box �lter to avoid jagged edges.

Shape from shading approaches aim to produce o�sets on a base model by
analyzing the luminance of the corresponding texture. Its main problems, visible
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in our images, are sensitivity to orthophoto noise and high frequency details such
as small rocks, and shadowed areas in which relative luminance variations are
tiny and therefore little or no o�set is applied on the terrain (for example, right
side of the �rst terrain, or above the central lake of the second). Displacement
maps were created from the aerial RGB images using the GIMP plugin by Omar
Emad (with default parameters). This map was scaled by 0.01 and then added
to the DEM.

Then, we compare with the terrain augmentation techniques using dictionar-
ies: the sparse synthesis by Guérin et al. [GDG+16], and the coherent multi-layer
synthesis [AAC+17] presented in this chapter (Section 5.1), using the mean el-
evation and slope layers in the matching function. The dictionary was built
from the terrains in Pyrenees and Tyrol as well as their rotated, �ipped and
transposed versions � as in Both distribution � with 8× 8 pixel patches. These
methods produce realistically looking terrains since they replace entire parts of
the low resolution DEM by other high resolution DEM parts from the dictionary.
By construction, the level of detail we can see in the result is the same as the
high resolution detail provided in the exemplars (2m in our case). However,
relief shapes represented in the low resolution terrain are often substituted by
di�erent formations. For example, on the second terrain, we can see noticeable
changes on the small rounded lake or the long diagonal gully in the rock walls
above the big lake.

Finally, our network is capable of combining low resolution DEM and aerial
image information and yields a consistently detailed terrain. While the resulting
images look smoother than other algorithms, and lack very �ne scale details,
the relief features are more visually faithful to the 2m DEM ground truth. The
smooth look of our network-generated terrains is consistent with the discussion
on the previous section: our RMSE is equivalent to that of an 8m DEM, so our
output terrain is a consistent upsample of the low-resolution input.

5.2.5 Quantitative evaluation

Our goal is to produce faithful ampli�cation of terrains, and we have seen that
the validation error is reduced to about a 60% when we train the network. Now,
we analyze numerically how well our network performs on the four test terrains.
Table 5.5 summarizes the RMSE and PSNR values obtained using our networks
as well as those methods that could potentially augment the resolution of the
DEM.

One enhancement method in the line of shape-from-shading approaches is
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RMSE (m) Bicubic [YYD+07] [GDG+16] [AAC+17] Net (Pyrenees) Net (Tyrol) Net (Both)
Bassiero(Pyrenees) 1.406 2.681 2.571 3.184 1.013 1.125 1.005
Forcanada(Pyrenees) 1.632 3.017 2.890 3.571 1.101 1.266 1.097
Dürrenstein(Tyrol) 1.445 3.650 3.508 4.637 1.122 0.941 0.901
Monte Magro(Tyrol) 0.917 2.293 2.205 2.993 0.708 0.600 0.587

PSNR (dB) Bicubic [YYD+07] [GDG+16] [AAC+17] Net (Pyrenees) Net (Tyrol) Net (Both)
Bassiero(Pyrenees) 60.5 54.9 55.3 53.4 63.3 62.4 63.4
Forcanada(Pyrenees) 58.6 53.2 53.6 51.8 62.0 60.8 62.0
Dürrenstein(Tyrol) 59.5 51.5 51.8 49.4 61.7 63.2 63.6
Monte Magro(Tyrol) 67.2 59.3 59.6 57.0 69.5 70.9 71.1

Table 5.5: RMSE (in meters) and PSNR (in dB) of di�erent algorithms applied
to 15m DEMs with respect to 2m DEMs. The network has been trained for 60,000
iterations on Pyrenees, Tyrol, and both datasets.

Times (s) [YYD+07] [GDG+16] [AAC+17] Ours

Bassiero 199 6.1 20.9 14.9
Forcanada 104 3.2 12.9 8.0
Dürrenstein 40 1.4 4.2 3.3
Monte Magro 264 8.4 27.7 18.6

Table 5.6: Running times (in seconds) of three of the implemented enhancement
algorithms.

to apply some iterations (3 in our tests) of a bilateral �ltering on a bicubic
upsampled terrain and using the aerial image as the source, following the spatial-
depth super resolution method by [YYD+07]. The error increases with respect
to just upsampling, mainly due to discontinuities introduced by shadows in the
aerial image that are not present in the DEM as well as failing to add detail on
dark areas.

The dictionary-based ampli�cation methods of [GDG+16] and [AAC+17],
described in Section 5.1, also increase the RMSE with respect to the bilinear or
bicubic upsampled versions of the 15m DEM. Note, however, these approaches
are concerned with the plausibility of the synthetic results rather than �delity to
ground truth, and while RMSE increases the appearance of the terrain is that of
a 2m terrain, as shown in Figure 5.32. In the next section, we will evaluate how
users perceive these details in terms of �delity and plausibility.

Finally, the last three columns in Table 5.5 show the results for our network
trained on the three di�erent datasets for 60,000 iterations (about 16.5 hours,
of which 5.5 are spent on disk reads). In all cases, the RMSE is reduced with
respect to the upsampled versions, even when we apply to a terrain the network
trained using only tiles from the other data source (e.g. applying the net trained
using Tyrol to Forcanada from Pyrenees). This implies that our network is able
to generalize well to other areas and data sources, even when the aerial images
have di�erent appearance.
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Moreover, the best results are achieved when we apply the network trained
using both data sources. On one hand, this is probably due to the variance reduc-
tion and less over�tting we saw in Figure 5.27 when training on the distribution
that uses both data sources. On the other hand, this also means that the more
data variety our network is trained on, the better it will generalize and perform.
Consequently, as more regions release high-resolution datasets, our network can
be trained further, incorporating these datasets, and it will keep improving it
performance on other areas.

Table 5.6 compares the running times of our networks and our implementation
of the method we compare against. Note that our network runs on GPU using
Ca�e [JSD+14], our implementation of [GDG+16] and [AAC+17] uses Matlab
built-in functions, and the bilateral �ltering runs on multi-threaded CPU.

5.2.6 User study

We conducted a user study to compare our method with competing approaches
in terms of visual �delity (perceived closeness to ground-truth) and visual plau-
sibility (perceived consistency with the aerial image). We selected a set of 6
viewpoints on our four test datasets and rendered the scenes produced by the
di�erent methods.

Our study consisted of two parts: �delity and plausibility. In the �delity task
(Figure 5.33), participants were presented three images ([GDG+16], [AAC+17]
and ours) and had to choose the most similar to a reference image, which was
a render of the high-resolution DEM. Since this task clearly penalizes deviation
from ground truth, we excluded fractal methods that clearly increase such a
deviation.

In the plausibility task (Figure 5.34), participants were presented two images
(a pair randomly selected from all the methods we compared against to), and
had to choose the most plausible according to a reference image, which included
a render of the low-resolution DEM with and without aerial imagery.

The study was deployed on a website, and participants (22, contacted through
email, aged 18-55) could complete the task remotely using the device of their
choice. In both tasks, the order of images was randomized between methods and
between trials (12 and 10 trials for each task, respectively).

We applied Bayesian data analysis [Kru14] and modeled the posterior prob-
ability of each method being selected as a Bernoulli random variable with a
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Figure 5.33: User study �rst task: �delity. Left, layout of the web page. Right,
posterior probability p(θ|D) of winning a �delity round.
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Figure 5.34: User study second task: plausibility. Left, layout of the web page.
Right, posterior probability p(θ|D) of winning a plausibility round.

uniform Beta prior. Reported results represent the posterior mean, and the con-
�dence interval (CI) represents the range including 95% of the posterior proba-
bility.

Fidelity to ground truth. As shown in Figure 5.33, our method was signif-
icantly more likely to be selected as the best in terms of accuracy with respect to
the high-resolution ground truth, when comparing against the dictionary-based
approaches. Mean probabilities were: 15% (11%, 19% CI) for [GDG+16], 18%
(13%, 22% CI) for [AAC+17] and 68% (62%, 73% CI) for our method. These
results clearly demonstrate that the elevation detail created by our approach is
more faithful to actual DEM data than competing example-based approaches.

Plausibility of added detail. We computed how likely each method was to
be selected as most plausible in a round with a random competitor. Figure 5.34
shows no clear di�erences among methods, with the exception of fBm which was
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signi�cantly less likely to be selected as the best (notice that glossy re�ections
could have over-emphasized noise features giving unnatural e�ects). None of the
other di�erences were statistically signi�cant. Our method performed reasonably
well, considering that all other methods can provide higher resolution detail.

5.3 Summary

Our contributions on terrain enhancement can be summarized as:

• A novel multi-layer example-based approach to synthesize realis-
tic landscapes

We have presented a multi-layer example-based approach to synthesize real-
istic landscapes, i.e. terrains containing heterogeneous information layers
such as elevation, vegetation density or soil type. The cost function for
matching dictionary atoms with terrain patches allows joint synthesis of
coherent information layers. The input can be real digital elevation mod-
els, rough sketches drawn by hand, or a combination of both, containing
a single layer (e.g. elevation), or multiple layers. The output terrain con-
tains always as many layers as available in the dictionary, thus providing
coherent data ampli�cation.

A key feature of our approach is to provide a uni�ed, easy-to-control, and
�exible model for multi-layer landscape synthesis generating plausible and
predictable results. Our method provides control to the user and allows him
to create any arbitrary layer in a coherent way. As the implementation is
fast and can be easily parallelized, it could be possible to develop interactive
terrain editors based on our strategy.

• A new Convolutional Neural Network architecture for terrain
super-resolution

We have proposed an architecture of a CNN capable of inferring high reso-
lution detail from a low resolution DEM and the corresponding orthophoto.

Numerical evaluation of our network showed that it e�ectively doubles the
resolution of the elevation data. When we input a 15m resolution DEM, the
resulting DEM has a RMSE with the 2m ground truth similar to the RMSE
of this ground truth downsampled to around 8m and then upsampled again
using bicubic interpolation. The obtained RMSE is also better than other
approaches like dictionary-based methods or depth-from-shading �lters.

Qualitative evaluation from the user study showed that this error decrease
is perceived as higher �delity to the original terrain when compared with
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other approaches. Moreover, our generated DEM is comparable in terms
of plausibility with alternative DEM ampli�cation methods, some of which
can potentially provide details at an arbitrary scale.

5.4 Publications

Our work on terrain and DEM enhancement led to the following two articles.
The �rst one contains the dictionary-based method for enhancing DEM from
exemplars, and the second one the DEM super-resolution using the aerial image.

• O. Argudo et al. �Coherent multi-layer landscape synthesis�. In: The Visual
Computer 33.6 (2017), pp. 1005�1015

• O. Argudo, A. Chica, and C. Andújar. �Terrain Super-resolution through
Aerial Imagery and Fully Convolutional Networks�. In: Computer Graphics
Forum 37.2 (2018), pp. 101�110

We also provided an online repository with the source code, datasets, and trained
weights of our convolutional neural network, available at:
http://gitrepos.virvig.eu/oargudo/fcn-terrains

http://gitrepos.virvig.eu/oargudo/fcn-terrains




6
Plausible vegetation synthesis

The vegetation layer plays a key role for the realism of natural scenes like moun-
tains or forests. Typically, artists create a set of tree models resembling the
species of the represented terrain area. However, time and budget constraints
may limit the size of the modeled set. Procedural approaches can help in generat-
ing as many as needed varied trees, but adjusting the parameters and controlling
these methods to produce a particular type of tree is not always intuitive and re-
quires expertise in the used algorithms and tools. We envision a fully automatic
tree generation pipeline for populating terrain models with plausible native veg-
etation, starting from photographs of local species. This chapter will describe
this pipeline alongside the contributions we have made.

6.1 Pipeline for vegetation modeling from pictures

The �rst step for populating a scene with local vegetation is obtaining a repre-
sentative set of trees found in the region. Some tools like Flickr map search [4]
o�er a combined search by semantic tags and location, so we can look for tree
photographs taken in or nearby our terrain area. Another possibility is to obtain
a list of the species from an area � for example, from land cover maps like [15] �
and then search images using these names. In either case, the obtained images
still need to be analyzed to check whether they contain a tree and segment it �
ideally, with alpha matting.

While recent Deep Neural Networks have proven to achieve remarkable results
on image segmentation [GOO+17], they are still not directly usable in our fully

135
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Figure 6.1: Vegetation segmentation using a state-of-the-art deep net-
work [CZP+18]. Input photographs, segmented vegetation (light green) and terrain
(dark green), and segmentation overlaid on the picture.

automatic pipeline. For example, Figure 6.1 illustrates vegetation segmentation
using the state-of-the-art network DeepLab-v3+ [CZP+18] with the Xception-
65 backbone [Cho16] and trained on both ImageNet and Cityscapes [COR+16]
datasets. Note that Cityscapes contains tree and terrain (grass/soil/sand) labels,
but as the name suggests this collection is made of urban street scenes. This test
shows that vegetation cover is e�ectively recognized, but more training or speci�c
datasets would be required in order to correctly identify the individual trees.

Regarding the matting step, Figure 6.2 shows results using the trained CNN
by Cho et al. [CTK16]. In this case, the quality usually depends on the input
trimaps provided by the user indicating opaque, fully transparent and intermedi-
ate regions (Figure 6.2 top). As image segmentation and matting was out of the
scope of this thesis goals, we have been providing tree photographs, segmentation
and mattes manually. Yet, we believe this step could be fully automated in the
near future.

The next step in our proposed pipeline is creating tree models from the set of
pictures. While static images can be directly used as billboards in distant views,
they lack the volumetric detail needed for closer views or shading. Therefore,
we propose to automatically generate tree models that resemble the trees in the
photographs. The result will be a 3D model of the branching structure and
textured leaves that will look as similar as possible to the provided picture.
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Figure 6.2: Tree matting using a state-of-the-art deep network [CTK16] on the
same photographs from Figure 6.1 top. From top to bottom: user-painted trimaps,
output matte, result using the obtained matte as alpha channel

The last step is including the models in the scene and being able to e�ciently
render thousands of them. Consequently, the data structure used for the tree
model must be properly designed to be rendered as fast as possible on a GPU,
and allow for Level of Detail techniques without noticeable transitions between
representations.

Additionally, a realistically looking forest scene does not contain repetitions
of the same tree or, at least, appears not to have them. Tree variety can be
added at di�erent stages of our proposed pipeline: before the modeling step by
obtaining or synthesizing more tree pictures; during the modeling step by creating
more than a tree model per photograph; and during rendering by adding color
variations, transformations and small deformations on each instance of a tree
model. Furthermore, if we independently animate the leaves or branches of each
tree during navigation through the scene, it will not only increase variety but
realism as well.

6.2 Tree picture variations

Using photographs of trees as billboards is a common technique for populating
a scene with vegetation. However, in order to produce realistic and convincing
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renders using them, a good alpha mate is also needed. There exist some billboard
libraries that contain tree pictures with matting, but they are usually too few to
cover a scene without repetitions, and usually only a scarce set of variations per
species is included. Moreover, since these billboards have been edited by some
artist in order to create a good alpha channel, they usually ask for a small fee per
picture. Therefore, in this section, we will describe our approach for generating
a huge variety of pictures of trees from a reduced set of exemplars.

We assume a library L of tree images (RGBA side views of trees) is available.
Tree images from the library (or a user-de�ned subset of it) will be referred to
as exemplars. Our approach has two main stages: exemplar processing and tree
synthesis.

An overview of the exemplar processing stage is shown in Figure 6.3. We start
by resizing all exemplars to a �xed resolution. A transparent border is added
if necessary to preserve the aspect ratio. Each non-transparent exemplar pixel
is then segmented into crown and trunk classes using a trained Convolutional
Neural Network. We then extract all contours of the alpha channel using a
border following algorithm, and take the largest external contour as the overall
tree contour C.

Then, we resample C to create a new contour Cr with a �xed number N
of 2D points. The resampling uses three pinpoints (tree bottom, trunk top-left,
trunk top-right) that are computed from the intersection of the tree contour with
the segmented crown/trunk components. We then resample again the contour
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Figure 6.3: Overview of the exemplar processing algorithm. Given a collection of
RGBA images of trees, we generate �xed-length contours representing the overall
shape of the trees.
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Cr to obtain a simpli�ed contour Cs that will be used later to encode interior
points of the tree as Mean Value Coordinates. The output of the preprocessing
step is, for each tree exemplar, a couple of contours Cr and Cs, along with a
binary mask representing the crown/trunk segmentation.

Regarding tree image synthesis, we propose two variants. The �rst one creates
tree variations from scratch, using exemplars from the library. A new overall
contour is created by computing a random convex combination of the exemplar
contour vectors Cr. This contour already de�nes a preliminary segmentation
of the output alpha channel. Then, we transfer the RGBA color from some
exemplars to the target tree, using Mean Value Coordinates inside Cs. This
allows us to associate each point of the target image to a matching point on the
source(s) images from which we will compute the �nal RGBA color. Since we
also transfer alpha values, the �nal shape of the tree is richer than the original
contour.

The second synthesis variant requires the user to specify a tree image T . This
image will be combined with features from the library to create variations of T .
In this case, we apply to T all the processing steps we apply to exemplars, and
then apply a similar synthesis procedure but giving higher weights to T features.

6.2.1 Exemplar processing

We now describe the preprocessing steps to be performed for each exemplar
RGBA image from the library. The main outcome of these steps is a suitable
encoding of the overall tree shape through a �xed-length contour.

Image normalization

We start by normalizing the images so that all exemplars have the same size. This
normalization is bene�cial for subsequent steps, specially for the segmentation
through FCN. In particular, we perform the following normalization steps. We
�rst compute a binary version of the alpha channel through alpha thresholding,
and set all transparent pixels to black to simplify the classi�er task. We then
crop the image to the minimum axis-aligned rectangle that encloses all opaque
pixels, and add a padding black (and transparent) border to make the image
square without distorting the tree. Finally, we resize the image to a �xed size
(we used 1024 × 1024 pixel images for the experiments). Figure 6.4 shows the
normalized versions of a collection of exemplars from di�erent sources.
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Figure 6.4: Tree images used as exemplars and our manual segmentation into
crown/trunk.

Contour extraction

We extract the overall (external) tree contour from the alpha channel A. We
�rst threshold the alpha channel (we used 0.5 as threshold, assuming normal-
ized values) to get a binary alpha mask At. Then we apply a border-following
algorithm [Suz+85] to At to extract all the contours separating opaque regions
from transparent ones. Each contour is represented as a collection of 2D point
coordinates.

Figure 6.5 shows the contours extracted from some exemplars. Typical tree
images include multiple contours; trees with sparse foliage have multiple see-
through parts (holes in At) and even multiple connected components (due e.g.
to thin branches not appearing in At). In our exemplar set, the number of
contours varied from 1 (trees with opaque dense foliage) up to 5,481 (a very
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sparse tree).

We classify the extracted contours as exterior (not inside any other contour)
and interior (inside another enclosing contour). We take as the overall contour
the longest exterior contour C (Figure 6.5). Notice that C = {(xi, yi)} will have
a variable number of points depending on, among other factors, the fractal nature
of the tree silhouette. So far, we only guarantee that contour C vertices are given
in counter-clockwise order.

Figure 6.5: Some RGBA images (left), thresholded (0.5) alpha channel (center
left), all contours extracted from this mask (center right), and longest external
contour (right). Internal contours are shown in light gray, and external contours in
black.

Crown/Trunk segmentation

The contour contains both the tree crown as well as the trunk. For better
results, we would like to have approximately the same number of contour points
belonging to the trunk independently of how big each trunk is. Therefore, we
need to segment the crown from the trunk.

While several image segmentation approaches exist, state-of-the-art approaches
mainly rely on deep Convolutional Neural Networks. Long et al. [LSD15] explain
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how classi�cation networks can be converted into fully convolutional networks
(FCN) such that a per-pixel segmentation can be learned end-to-end. They ex-
tend various networks into their respective fully convolutional form. We decided
to use the network they refer to as FCN-8s-atonce, which they obtain by extend-
ing into a FCN the VGG16 classi�cation net [SZ14] - which, in turn, had been
trained using the ImageNet database. The authors provide their network imple-
mentation and trained weights for the Deep Learning framework Ca�e [JSD+14].
We downloaded it, modi�ed the output layer to produce three classes - back-
ground, crown and trunk - and �ne-tuned the net.

From our tree dataset, we segmented manually 55 exemplars (Figure 6.4),
trained the net for 200 epochs (21 s/epoch), and obtained around 95% accuracy
and 86% mean IoU (Intersection over Union) on the same training set. Since our
number of exemplars was limited, we did not split them into train and validation
sets. Moreover, we expect new exemplars to be very similar to those already
provided, and obtaining a rough segmentation su�ces for our needs as we shall
see in the next section. Figure 6.6 shows the segmentation output of our net
on new inputs not seen during the training phase. Segmenting each of these
1024× 1024 images takes on average 15.5 s on a GTX 1070 GPU.

Figure 6.6: Trees segmented automatically using our FCN.

Pinpoint selection

The creation of new contours through linear combinations of existing contours
requires the de�nition of a minimum set of matching points across all contours,
so that e.g. the �rst contour point always refers to the point at the tree bottom.

For each exemplar, we select three pinpoints on the extracted contour C:
tree bottom (B), trunk top-left (L) and trunk top-right (R), see Figure 6.7. The
tree bottom is set to the index of the point with minimum y. If multiple points
share such a minimum, we set B to the index of the median point. For the trunk
L and R points, we traverse the points in C, starting from B, in both forward
and backward directions. We stop the traversal as soon as the current contour
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segment intersects the crown baseline, i.e. the lowest height on the segmented
crown. In the rare case that the segmented image contains no trunk pixels, we
set L=R=B.

Figure 6.7: Resampled contour Cr (in red), simpli�ed contour Cs (in blue), crown
baseline (in orange) and pinpoints (in yellow). Top row: manually segmented trees,
bottom row: automatically segmented trees.

Resampled contour Cr

Extracted contours C are variable-length and thus not suitable for generating
variations through linear combinations of exemplars. Therefore, we resample the
overall contour C of each exemplar to include exactly N points. Our resampling
strategy considers three di�erent segments on C: the crown segment (R to L),
the left truck segment (L to B) and the right trunk segment (B to R). Each
segment is assigned a �xed number of samples in the resampled contour Cr.

Resampling within each segment is performed as in chord-length parame-
terization, i.e. attempting to generate uniform chord lengths between samples.
The output contour Cr has thus N points, all of them uniformly distributed
(in a chord-length sense) within each segment. We then concatenate the mean-
subtracted (x, y) coordinates of the N contour points onto a 2N vector u that
represents the overall tree shape in R2N space as u = [BR,RL,LB].
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With this parameterization, we are trying to enforce similar morphological
elements of the tree (e.g. branches on the left side of the crown) to be located
in nearby indices of the 2N -dimensional vector among di�erent exemplars. The
reason of dividing the tree trunk in two segments using the bottom B is to
prevent rotations of the trunk shape, and allowing the bottom of the tree to
remain always the lowest point when morphing between shapes.

In our experiments, we used N = 2000 points, allocating 1600 points for the
crown segment, and 200 points for trunk segments. In the special case L=R=B,
we directly take all 2000 points from the contour C starting at B. Figure 6.7
shows the resampled contours (in cyan) for a few exemplars.

Simpli�ed contour Cs

The resampled contour Cr is detailed enough to be used for contour synthesis,
but too complex for the generation of Mean Value Coordinates. We thus further
resample Cr to M = 100 points to generate a simpler contour Cs.

We observed that the distortions on the color image produced by the Mean
Value Coordinates after warping the contour are more acute for those pixels near
the contour or outside of it. Therefore, we actually generate Cs by �rst rendering
the mask of the interior of Cr, dilating this mask for some iterations (8 in our
tests) and resampling to M points the contour of this mask. Figure 6.7 shows
the simpli�ed contours (in red) for a few exemplars.

6.2.2 Tree picture synthesis

We now discuss di�erent strategies to generate new tree images through random
combinations of exemplars. We �rst de�ne the overall tree shape by synthesizing
a new contour through linear combinations of contours. Then, the contour is
�lled by transferring RGBA color from the exemplars.

Contour synthesis

Let uj ∈ R2N be the vector that results from �attening the coordinates of the
resampled contour Cr from the j-th exemplar.

We can linearly interpolate two contours u′ = (1− t)u0 + tu1 with t ∈ [0, 1]
to produce a continuous morphing between them. Figure 6.8 shows several snap-
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shots of the interpolation between two contours. The quality of the interpolated
contours is highly dependent on the matching contour points; the use of the B,
L, R pinpoints prevents excessive rotations during morphing.

Figure 6.8: Morphing between two contours through convex combinations. From
left to right, w2 = 0, 1/8, 2/8, . . . , 1

We can extend this idea to incorporate additional contours through convex
combinations of existing contours, i.e., u′ =

∑
wiui, with wi ≥ 0 and

∑
wi = 1.

We avoid negative weights to prevent contours from being re�ected (e.g. −ui

would result in an upside-down contour).

The generated contour C ′r as a combination of resampled contours Cr provides
a preliminary version of the output alpha channel (see Figure 6.8), which will be
re�ned later as we explain in the following section. We obtain this alpha mask
by simply drawing the contour onto a blank alpha channel (with alpha set to 1.0
for all pixels), and then using a region �ll algorithm from any seed outside the
contour to clear the alpha values of the pixels outside this contour. This method
is robust against potential self-intersections of the combined contours.

Color transfer

So far, we have generated new contours C ′r and their associated alpha masks.
Analogously, we also obtain the new contours C ′s as a convex combination of the
simpli�ed contours Cs applying the same weights. We now explain how to �ll
the non-transparent pixels of the preliminary alpha channel with color.

We address this problem by transferring color �and transparency� from one or
more exemplars (the source images) to the image being synthesized (the target).
We pose this color transfer problem as an image warping problem. Let w × h
be the resolution of the (processed) exemplar images, and let Ω be their w × h
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rectangular domain. Given a source contour Cs and a target contour C ′s, both
with vertices in Ω, we aim at de�ning a smooth warp function f : Ω 7→ Ω
mapping each vertex (xi, yi) ∈ Cs to the corresponding vertex (x′i, y

′
i) ∈ C ′s.

Such a warping function can be used to deform any source image E de�ned on
Ω to a target image E′ by simply letting E′ = E ◦ f−1.

We de�ne the mapping above through barycentric coordinates with respect
to (a simpli�ed version of) the source and target contours. In particular, we
use mean value coordinates [HF06], which are well-de�ned for arbitrary planar
polygons.

When transferring RGBA color from a single source exemplar E, the algo-
rithm proceeds as follows. For each non-transparent pixel p′ = (x′, y′) of the
target image E′, we �rst compute the mean value coordinates λ′i of p

′ with re-
spect to the target contour C ′s. We then �nd the corresponding point on the
source image, p = f−1(p′), by simply using the resulting coordinates λ′i with the
vertices {vi} of the chosen source contour Cs, i.e. p =

∑
λ′ivi. The �nal RGBA

color for pixel p′ is just E(p). As in [HF06], color sampling can be improved
through bilinear interpolation on the 2×2 grid of pixels surrounding each source
pixel.

The color transfer approach above can be extended to take colors from multi-
ple exemplars. Let (cj , aj) be the RGB and A components of the color extracted
(through mean value coordinates) from j-th exemplar. We compute the output
alpha value as a′ = max aj , i.e. the �nal pixel will take the highest opacity
from the source pixels. We do this to avoid an excessive amount of transparent
pixels to be transferred to the target image. The color is computed as a random
convex combination of the exemplar colors with non-null opacity values. Fig-

Figure 6.9: Examples of morphing between two trees through RGBA color transfer
and contour deformation.
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ure 6.9 shows examples of morphing between two exemplars using the RGBA
color transfer to �ll the interpolated contours.

Histogram transfer

As a result of the previous operations we have been able to generate new trees.
We can add more variation by changing the color histogram of the generated
image. Since we want the result to be plausible, we use a histogram transfer
algorithm [GW07] so that the image we have generated has the same color dis-
tribution as another image provided as a reference.

In order to do this we compute the cumulative histograms for both images
(source image and template image). We then interpolate linearly to �nd the
unique pixel values in the template image that most closely match the quantiles
of the unique pixel values in the source image. This process is performed for each
RGB color channel separately and it always ignores transparent pixels.

Histogram matching is also useful both to improve the matching between the
combined images, since they can be taken in varying lighting conditions, as well
as to simulate the change of vegetation coloration during di�erent seasons.

Figure 6.10 shows an RGB transition using histogram matching. Note how
the histogram matching produces much more plausible results and smoother color
transition.

Figure 6.10: Morphing two trees through RGBA color transfer; with histogram
transfer (top) and without (bottom).
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6.2.3 Examples and results

Figure 6.11 shows some convex combinations of multiple contour pairs with
weights w1 = 1/3, w2 = 2/3 (upper triangle of the table) and w1 = 2/3, w2 = 1/3
(lower triangular part). Figure 6.12 shows the same combinations of multiple tree
pairs, now distorting the image of each row towards the shape of the image in
each column. Despite trying to combine radically-di�erent tree species, most
combinations look plausible.

Figure 6.11: Contour combination table. For each cell, the contour has been
obtained as a combination of the row and column exemplars contours, with corre-
sponding weights 2/3 and 1/3, respectively.
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Figure 6.13 illustrates the usage of tree the variations using small sets ex-
emplars from the same species, by morphing between each pair with w1 =
0.25, 0.50, 0.75. When the shapes of the exemplars are very similar between
them, the resulting variations look quite similar between them. Still, all pictures
are unique and can be used to populate a forest scene with less repetitions than
using only the the ones in the exemplar set. While obtaining similar variations
is reasonable within the same species, more variety could be introduced by using
trees from other species to distort only the shape contour and preserving the
color texture as in Figure 6.12.

Figure 6.12: Tree deformations table. For each cell, the tree image from the
row exemplar has been distorted to match the shape of the combined contours of
Figure 6.11.
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Figure 6.13: Tree variations within the same species: �r pines, stone pines, oaks,
and cork oaks. The exemplars on each group have been highlighted.

Figure 6.14 shows more variations obtained by combining two randomly se-
lected exemplars among the 55 trees dataset shown in Figure 6.4 plus 17 addi-
tional and not manually segmented pictures (some of them shown in Figure 6.6).
The contour variations were computed using a convex combination of the con-
tours with w1 ∈ [0.3, 0.7] and w2 = 1 − w1. For the color, it was randomly
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Figure 6.14: 800 randomly generated tree variations from 75 exemplars (top).



152 Chapter 6. Plausible vegetation synthesis

set as either the convex combination with the same weights as the contour, or
one of the two warped images directly. Generating each of these new trees at
1024× 1024 resolution takes between 8 and 12 seconds on an Intel Core i7 CPU
at 3.40GHz, mainly depending on the ratio of non-transparent pixels.

Although the synthetic tree images we create are not necessarily plausible
from a botanical point-of-view (specially when combining exemplars from radi-
cally di�erent tree species), these images are still suitable for mainstream appli-
cations such as video games, where indeed artists often look for �ctional trees.

The color transfer approach works best when the two contours are not radi-
cally di�erent. Otherwise, the source image needs to be severely distorted to �t
the target contour, as shown in Figure 6.15.

Figure 6.15: Failure example of the tree variations algorithm. The thin, sparse
tree on the left has been used to �ll the thick contour on the middle, obviously
resulting in a large distortion.

6.3 Single-picture tree crown reconstruction

Directly rendering alpha matted pictures of trees as billboards is an inexpensive
technique which can be used for large scenes with distant trees. However, their
�at nature becomes evident as we approach them: they always look the same from
any viewing direction, they lack volume and parallax produced by the branches,
it is complex to make them cast and receive proper shadows, etc.

We will now present di�erent approaches we have developed to generate a
complete 3D model of the tree crown from a single picture. Currently, we have
limited our scope to dense trees, i.e. those trees for which the foliage can be
approximated by a single crown volume in which the branches are hardly visible.
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However, for the case of trees consisting of various separated foliage nuclei, our
proposed methods could be applied to each foliage region independently.

Moreover, since we will generate the complete tree from just a frontal photo-
graph, an implicit assumption of our method is that the pictured foliage has to be
representative of the whole tree, i.e. the tree should not exhibit strong, large-scale
directional patterns that would completely change its appearance from another
viewpoint (e.g. a palm tree). Small scale directional patterns (e.g. preferred leaf
orientations due to phototropism and high-frequency features alike) have little
impact on our synthesized textures and are thus well supported.

6.3.1 Base crown envelope

The �rst step of the 3D reconstruction consists in estimating the volume occupied
by the foliage crown of the tree from the 2D contour of its silhouette. We will
refer to this volume as the crown envelope.

Sketch-based systems [IMT99; Rep05] provide algorithms to in�ate a mesh
from a simple boundary curve. They either use a mapping function applied to
a distance transform of the provided boundary or apply di�usion-based tech-
niques. Results with typical tree silhouettes are rather poor (see side views in
Figure 6.19) as elevation values on spine vertices directly depend on the distance
to the silhouette (to make wide areas fat, and narrow areas thin).

The input crown's silhouette can be either obtained by automatic or manual
segmentation of the crown image. Since we cannot make assumptions about
the level of detail or quality of this segmentation, we �rst apply some Laplacian
smoothing iterations to the contour. The main reason is that we will be inferring
a smooth approximation of the crown volume, and it does not make sense to
have a highly detailed silhouette but a smooth mesh elsewhere.

First, we will try to obtain an envelope mesh by generating a heightmap over
the segmented image (see Figure 6.16). This heightmap would provide the frontal
half of the envelope mesh, and its inverted version would provide the other half.

Due to the ill-de�ned nature of this problem, we �x the silhouette points of
the heightmap on the z = 0 plane (z represents height) and we ask their tangents
to be parallel to the z axis, while requiring that all points inside the crown reduce
their bending energy. We can intuitively think of this process as extruding or
in�ating the segmented shape upwards.
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Figure 6.16: From the tree segmentation, we can compute a heightmap that
represents the front half of the envelope mesh using the bilaplacian �lter.

Formally, we achieve this by minimizing the thin-plate energy de�ned by a
biharmonic equation inside the crown C, while restricting the silhouette S to
have z = 0. Written as a continuous optimization problem, we propose to apply
the biharmonic equation:

∇4z = 0 (6.1)

with boundary conditions:

z(x, y) = 0 for (x, y) ∈ ∂C
∂z
∂n = ∇z · n̂ = −f(x, y) for (x, y) ∈ ∂C

where z is a function from IR2 to IR that represents the heightmap, ∂C repre-
sents the boundary of C, n̂ is the outwards-pointing unit normal of ∂C, and f
is a positive real function controlling the gradient of the distance �eld at the
silhouette points.

The optimization problem above can be written as a linear system for the z
values using the bilaplacian �lter [KCV+98]. We discretize the domain C using
our input segmentation image as a 2D grid discretization, where a pixel subset S
of C will represent ∂C. We will use this subset S to apply the Dirichlet boundary
condition. We also de�ne the outer silhouette So of the image as the set of pixels
outside C but adjacent to a pixel in S. So will be useful to apply the Neumann
boundary condition. In this setting, both boundary conditions are translated
into equations:

z(i, j) = 0 if (i, j) ∈ S
z(i, j) = −f(x, y) if (i, j) ∈ So

Then, for each unknown z value in the heightmap we add an equation ob-
tained from the convolution of its corresponding point with its neighbors, repre-
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senting the thin-plate energy computation:∑
−2≤di≤2
−2≤dj≤2

Mdi+2,dj+2 · z(i+ di, j + dj) = 0 (6.2)

M =
1

16


0 0 1 0 0
0 2 −8 2 0
1 −8 20 −8 1
0 2 −8 2 0
0 0 1 0 0


This convolution is the result of the application of two successive laplacian

�lters, a well known edge detector image �lter, as the bilaplacian itself is the
result of computing the laplacian of a laplacian.

Solving the system yields promising results, but there are still some issues
(as shown in Figure 6.17-left). As we have been restricting the problem on a
heightmap, and due to the way we express the tangent constraints using the
outer silhouette on this grid, tangents cannot be de�ned as vectors pointing in
the z direction because there will always be a small displacement in x and y
between So and S. As a consequence, the resulting envelope will never look as
smooth as we want. Using larger values of f for the pixels in So alleviates this
problem, but tangents will never match with the mirrored ones at the silhouette
because they will always have non-null x and y components. What we really
need is to de�ne tangents at the same x, y position where we specify z = 0.

One possible way to solve the problem would be to compute a volumetric
distance �eld instead of a heightmap, generalizing Equation 6.1 to 3D and ex-
tracting an isosurface from the resulting volumetric distance �eld. This would
be straightforward but the resulting system would grow considerably, making it
less e�cient.

Instead, we found that it is easier to just free vertices in C and So from
their grid positions. Inner vertices (∈ C\S) will no longer be restricted to a grid
arrangement, so we extend the previous linear system with unknowns for the x
and y components as well as the z as before. In this new setup, grid vertices
have coordinates:

(xx, xy, xz) if (i, j) ∈ C\S
(i, j, 0) if (i, j) ∈ S
(i′, j′, f(i′, j′)) if (i, j) ∈ So

(6.3)

where xx, xy and xz are the unknowns, and (i′, j′) is just the projection of (i, j) ∈
So onto the closest silhouette pixel in S. We use Equation 6.2 independently on
each unknown to solve the problem. Notice that this is still a discretization of
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Figure 6.17: In�ating the envelope of a circle (left) while keeping the x and
y components �xed does not produce the desired results (center left). However,
expressing the minimization problem in 3D helps solve this problem (right) but only
if a 8-connected silhouette is used. A 4-connected silhouette produces unacceptable
artifacts (center right).

f(x, y) = 1.5 f(x, y) = 2.1 f(x, y) = 2.7 f(x, y) = 4.5(1−y)2

Figure 6.18: Side views of a circle in�ated using di�erent contour functions.

the continuous problem proposed in Equation 6.1, because the resulting mesh
is still going to be a function of (x, y). We can think of this new version as
creating a height�eld mesh initialized using the grid positions, and then allowing
its vertices to move while staying close to their neighbors.

Lastly, it is important to mention that pixel connectivity plays a big role in
the mesh generation process using these Equations 6.3. The set of pixels in S
contains pixels classi�ed as inside the crown but adjacent to pixels outside. If
we assume 4-connectivity for the silhouette pixels S, results are not su�ciently
smooth (e.g. we cannot reconstruct a sphere from a circle boundary, as shown
in Figure 6.17). Using 8-connectivity, however, solves these artifacts.

As for function f(x, y), which could be arbitrary, we provided artists with two
choices: either a constant function f(x, y) = k for roughly spherical crowns, or a
quadratic function with the form f(x, y) = k(1 − y)2 for approximately conical
trees. In both cases we assume Y is the vertical axis pointing upwards, and
(x, y) are normalized pixel coordinates in [0, 1] range. Note that both functions
are intuitively controlled through a single parameter (i.e. a slider): larger k values
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Figure 6.19: From left to right: input photograph, segmented silhouette, front
and side views from a sketch-based system [IMT99], front and side views using a
function-based crown model from [ACV+14], front and side views of our envelope
crown, and front and side views of our detailed crowns.

result in more extruded crowns. Figure 6.18 shows some example functions.

Figure 6.19 shows some tree silhouettes and the resulting envelope. We imple-
mented the solver for Equations 6.3 using the LDL decomposition in Eigen [25].
The generation times on an Intel i7 3.40 GHz CPU for crown shapes discretized
as 256 × 256 pixel grids range between 1 and 2.5 seconds, depending on the
interior and silhouette pixels (i.e., the number of equations and constraints).

6.3.2 Crown envelope with relief perturbation

The envelope reconstruction we have extracted using the bilaplacian equations
has a smooth appearance. In fact, the silhouette is the only detailed part of
the tree. We want to add more details to the crown shape as perceived in the
photograph. However, a single frontal picture of a tree contains less than a half
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of the tree's outer surface. We assume that the occluded parts will have a similar
appearance as those which are visible, and thus use a texture synthesis approach
to infer the missing parts.

First, the segmented photograph is scaled to have unit aspect ratio, and
placed at the center of a 4:3 canvas such that it occupies 5/12 of its width and
5/9 of its height. We do this under the assumption that the original photograph
must cover a face of a cubemap plus about a third of the neighboring faces. We
then �ll the rest of the canvas using the texture synthesis algorithm from [Har01].
The color cubemap is constructed by cropping the six faces of this synthetic
texture, as shown in Figure 6.20, and applying a local synthesis again on the
bands around the borders of the faces that were not originally in contact. This
additional step guarantees continuity across all cubemap edges. The texture
synthesis step for a 1024× 768 image takes between 1 and 2 minutes on an Intel
i7 3.40GHz CPU using the Resynthesizer plugin for GIMP. This step could be
further optimized: for example, Photoshop CS6 content-aware �ll executes in
only 5-10 seconds.

This synthesized cubemap can be used to texture all the surface of the crown
envelope. Recall that our goal was to add details onto this smoothed enve-
lope. Our relief estimation method is inspired by shape-from-shading (SFS)
algorithms like [GWM+08]. Unfortunately, we can assume very little about the
lighting conditions of the input photographs, and typical assumptions in SFS
approaches (known re�ectance model, known direction of light sources) do not
hold in our case. Furthermore, tree leaves form complex structures with high-
frequency variation across the image � a worst-case scenario for SFS approaches,
which describe the surface shape either in terms of the surface normal, or in
terms of the height�eld gradient.

Figure 6.20: Left: placement of the segmented photograph inside the synthesized
cubemap. Right: synthesis result and cubemap outline. Notice that the synthesized
result includes the segmented photograph.
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Figure 6.21: Gaussian decomposition pyramid (top) and multiscale relief gener-
ation example (bottom). Each height�eld is the result of adding its corresponding
Gaussian pyramid level to the previous one, and decreasing the weight at each step.

Since we assume the envelope mesh already captures the rough and low fre-
quency shape of the crown, we directly estimate depth from luminance. De-
spite the fact that a tree has a huge number of self-occlusions from the di�erent
branches and leaves, a fraction of incoming light is likely to reach occluded por-
tions due to light scattering and non-opaque leaves. The deeper we are inside the
crown, the darker we expect it to be. Again, we assume a dense foliage crown,
preventing deep areas close to the crown center from receiving direct light.

We start by computing the luminance of the input image and normalizing it
to be in the [0, 1] range. Then, we compute a blur pyramid of this luminance
image, similar to the Gaussian pyramid of Burt and Adelson [BA83]. We also
tried a Laplacian decomposition with very similar results; the relief obtained
from the Gaussian is more prominent due to lower frequencies being counted
multiple times. Once we have N levels of the pyramid (we tested N = 4 and
N = 5), we combine them using an exponentially-decreasing set of weights.
Lower levels (blurrier) will have larger weights because they represent large-scale
(and potentially deeper) structures, while higher levels are usually noisier and
just add small �ne details to the relief.

Figure 6.21 shows an example of relief perturbation map, computed on the
plane of the input image for clarity. In practice, we compute a relief perturbation
cubemap from the color texture cubemap we synthesized before, and use it to
extrude or sink the surface of the crown envelope (Figure 6.22). The last two
columns in Figure 6.19 show examples of detailed tree crowns obtained with the
cubemap approach.
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Figure 6.22: Front, side and top views of the textured envelope mesh (top) and
the resulting detailed crown with relief perturbation (bottom).

Due to the assumptions we made during the crown envelope stage, our
method does not generate convincing shapes for certain types of trees (like some
species of �rs or palm trees), which have large-scale branch structures on the pho-
tograph silhouette but that should not lie on the same plane as they are facing
towards or away from the camera. In order to improve the overall shape of these
trees, we allow the user to combine some rotated copies of the crown envelope
(as an example see Figure 6.23). In order to do so, we compute the union of the
rotated copies of the crown envelope, and then add the relief perturbation using
the cubemap. Note that, although each rotated envelope copy is identical, the
added relief will be distinct at di�erent points on the union surface.

Figure 6.23: Base envelope mesh computed from a segmentation (left). Tree
crown created from three rotated copies of the envelope and relief perturbation
(right).
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6.3.3 Billboard clouds from a photograph

The crown envelope with relief perturbation and color texture like in Figure 6.22
bottom row, provides a convincing representation for medium and far distance
trees. However, on closer views, there is lack of more detailed texture and paral-
lax e�ects due to branches and leaves occluding each others as we move around
the tree, an e�ect di�cult to reproduce on a single surface as we have used so
far. Billboard clouds are a common representation for volumetric tree foliage:
each small branch or group of leaves is represented as a textured quad or a very
simple planar mesh, and given enough billboards the tree can look very realistic.
We will now introduce an approach for generating a billboard cloud from the
segmented input photograph of the tree crown.

The �rst step is to obtain a set of billboard textures from the photograph. A
naive approach could be just random sampling of regions inside the crown area,
ideally with a fractal contour. This strategy, however, would not be taking into
account the existing shapes and groups that as humans we can easily perceive on
the picture. There are some methods that partition an image into superpixels,
groups of connected pixels representing perceptually meaningful regions of the
image. In particular, we used SLIC [ASS+12]. This method, based on k-means
clustering, has two parameters: the approximate numberN of regions to compute
in the image, and the compactness c, which balances between spatial proximity
and color similarity. Figure 6.24 compares di�erent values of N and c. We
empirically found that N = 256 and c = 0.35 yields good results for the several
1024 × 1024 pictures in our library, and thus adopted these values as constants
in our pipeline.

Figure 6.24: Comparison of di�erent SLIC parameters. Top row: N = 64, 128,
256, 512 and c = 0.3. Bottom row: c = 0.1, 0.3, 0.5, 0.9 and N = 128.
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Figure 6.25: Segmentation into superpixels for di�erent trees, using SLIC with
N = 256 and compactness 0.35.

Figure 6.25 shows the segmentations obtained on di�erent tree pictures using
N = 256 and c = 0.35. As we can see, there are regions with long rectilin-
ear edges on the boundary. This is undesirable; when we render the billboard
cloud, sharp straight edges will be easily perceived by the viewer and will reduce
the plausibility of the tree model, as vegetation has a very fractal appearance.
Reducing the compactness would yield more fractal edges, but as we show in
Figure 6.24 the regions can largely di�er in size, which we do not want either.
We tried looking for a graph cut in the region around the straight edges to ob-
tain a possible better segmentation, but we realized that these rectilinear edges
tend to appear on dark or homogeneous areas, and thus graph cuts do not of-
fer much improvement over the SLIC segmentation. Another simple idea, just
adding fractal noise to perturb the straight edges, results in segments that look
quite di�erent to the rest of the contour.

Then, we observed that we already had the information about how the con-
tour of a region, i.e. a group of branches and leaves, should look like: like
the external contour of the tree crown. Therefore, we substitute each straight
edge on a region contour by some curve taken from the silhouette of the tree
crown following these two contraints: the relative positions of the endpoints of
the silhouette segment must coincide with the endpoints of the straight line (up
to a small tolerance), and the segment must not cross the straight line. This
second constraint is optional, but we added in order to ensure that each pixel
from the original photograph is represented at least in one region. This way, the
frontal view of the billboard cloud will look almost identical to the input photo-
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Figure 6.26: Improving region segmentation by substituting straight edges with
segments taken from the silhouette of the tree crown. Orange: pixelwise contour
drawn twice as wide for visualization. Purple: polygonal contour obtained as a
simpli�cation of the pixelwise contour [TC89], with contour points in yellow. Red:
segments for which the distance between endpoints is greater than a threshold (8
pixels). Blue: substitution contour extracted from the silhouette. The bottom row
compares the cropped billboards without and with edge replacement.

graph. Figure 6.26 shows some improved contours using this silhouette segments
replacement strategy and provides more details about how we obtain it.

The next step is placing these billboards to populate the tree crown. Since
we want the front view to be as close as possible to the original photograph, we
will simply respect the relative positions of the billboards, and use the height
of the crown envelope at their center position to assign an initial height for the
�rst (frontal) layer of billboards. We improve this positioning by deepening the
height of those billboards with mean luminance smaller than the mean luminance
of the crown. The reason is that we do not want dark billboards appearing on
the silhouette when rendering the tree from lateral views, because we interpret
darker areas as more occluded and the billboards on the silhouette do not tend
to have occluders, thus producing unnatural views of the tree. By forcing dark
billboards to be deeper in the crown, we are also creating some big cavities in
the otherwise smoother surface of the envelope, and the next layers of billboards
will be visible through them providing convincing parallax e�ects when rotating
around the crown.

The rear layer of the crown is obtained similarly, but now we horizontally �ip
the relative positions of the billboards. Note that we are not �ipping the texture
of the billboards, just their positions. If we did, we would see the rear side as a
�ipped version of the front side, seeming unrealistic when inspecting the tree and
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looking symmetric from a lateral view. Finally, we randomly select billboards
and place them at random positions following a blue noise-like distribution inside
the crown volume approximated by the frontal and rear layers. We also lower
the luminance of these billboards according to their depth inside the crown.
Figure 6.27 shows some results, although a video or interactive inspection is
needed in order to perceive the parallax e�ects that our representation produces.

About the generation times, the SLIC implementation provided in the Python
package scikit-image with N = 256 and c = 0.35, plus the improvement of the
region contours, takes from 20 to 50 seconds depending on the tree. Billboard
placement is executed in less than a second for models with about 500 billboards.

Figure 6.27: Examples of automatically generated billboard clouds. Note how
the frontal view (�rst column) looks almost exactly as the original photograph (see
Figure 6.25), and how the deeper billboards also appear darker.
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6.3.4 Branches, leaves and detailed tree models

The billboard cloud representation provides a good representation of the photo-
graph that also allows for volumetric and parallax e�ects, but the level of detail
is still insu�cient for closer views.

In order to support highly detailed models, a branching structure for the
crown can be generated with resource competition algorithms, for example the
Space Colonization algorithm by Runions et al. [RLP07]. Given the volume occu-
pied by a crown, for example the space inside our crown envelope representations
(we will use the envelope with relief perturbation), we generate a set S of N at-
traction points using a blue noise distribution in this volume. Then, starting
from a �xed root node � we simply de�ne a downwards displacement from the
crown center of mass � the Space Colonization algorithm generates a branching
structure iteratively by extruding new edges of average length D from current
nodes towards their closest attraction points. The level of detail of the gener-
ated branching structures can be controlled with the number N of the attraction
points placed around the volume, and the kill distance dk that determines the
minimum distance between attraction points and the nodes in the branching
structure in order to be kept in S.

Fully-detailed tree models can be generated by increasing the re�nement of
the branching structure. Figure 6.28 shows a couple of tree models generated
using this approach in about 90 seconds (Python code running on Blender).

Figure 6.28: Fully-detailed models created by generating attraction points within
the crown envelope and then using a space colonization algorithm. The images
show the crown envelope, the branching system, and the �nal tree (full/detail).
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Notice that the �nal shape of the tree models closely matches that of the crown
envelopes. In these examples, we used N = 10, 000 attraction points, dk = 0.01r
(r being the average radius of the crown envelope) to ensure that the branching
system provides a dense coverage of the crown volume, and an internode length
D = 0.5kd. The resulting models have around 300K textured quads (leaves) plus
about 100K quads (branching system), so their use should be reserved to very
close-up views.

In order to keep real time framerates during rendering, we will use much
simpler branching structures, like the ones shown in Figure 6.30, and larger
billboards representing groups of leaves and small branches. These billboards
are created by instantiating multiple copies of a lea�et, a photograph of leaves or
small branches � it could even be a 3D mesh if available. For a fully automatic
pipeline, we would need to specify or derive some correspondence between the
species from the photographs and the type of leaves associated with them. In
our work, we have manually provided a picture as input, which also has the
advantage of being able to generate additional model variations from the same
crown shape just by changing the associated kind of leaves.

The distribution and arrangement of lea�ets inside each billboard is also
based on the Space Colonization algorithm with an arbitrary input volume. We
found that using simple shapes like spheres or cones yields convincing results
(see Figure 6.29). Conical volumes yield billboards representing branchlets that
will be connected from the base of the cone to the branching structure. Spherical
clouds, although less realistic when seen in isolation, can be rotated arbitrarily
around the connecting point - their center - and thus can be oriented at runtime
to face the viewer at any time, achieving more variety of leaves on the tree with
fewer billboards.

Figure 6.29: Input lea�et (left) and automatically generated billboards using
Space Colonization in a conical (center) and a spherical (right) point clouds.
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We can then reconstruct with the Space Colonization algorithm much simpler
tree skeletons than the ones we depicted in Figure 6.28, and attach the branchlet
billboards to the nodes of the branching structure, as shown in Figure 6.30.
For N = 1, 000, dk = 0.15r and D = (0.5 ± 0.25)dk, our C++ implementation
executed in 50 - 200ms.

Figure 6.30: Tree skeletons generated from the crown envelope and rendered
branches with billboards attached. We painted the branchlets with transparency
and without depth test to represent their density and show the branches.
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Figure 6.31: Summary of the di�erent reconstruction steps and resulting models.



168 Chapter 6. Plausible vegetation synthesis

6.4 Real-time rendering of forest scenes

In the previous section, we have introduced a handful of di�erent tree models, all
of them derived from a single picture of the tree. Recall that our goal is to render
mountain and forest landscapes with models of trees inspired on local species,
and these models should integrate it into real-time applications like virtual globe
navigation or video games.

Next, we describe how to combine these di�erent representations into a level
of detail (LOD) strategy to allow for real-time rendering of tens of thousands
of trees. But �rst, we still need to introduce an additional data structure: the
Radial Distance Map (RDM). Then, we will see how we use it to smoothly
transition between representations. Finally, we will analyze the performance and
costs of our proposed models.

6.4.1 Radial Distance Map

One of the major drawbacks of LOD techniques is the popping e�ect that occurs
when transitioning between di�erent rendering techniques or model representa-
tions. This e�ect is yet more noticeable when the shape of the object changes
abruptly. Therefore, in order to provide better and smooth transitions, we want
to ensure that a particular tree always has the same shape; i.e. we need to repre-
sent the shape of the tree crown and be able to tell if a point is inside or outside
it.

So far, we already have a representation of the boundary between the interior
and exterior space of the tree crown: the crown envelope mesh (from now on, we
refer to the detailed version with relief perturbation). However, testing whether
a point is inside an arbitrary mesh is an operation too expensive for real-time
rendering of thousands of tree instances. We could approximate the crown vol-
ume using a voxel grid, i.e. a 3D texture, and the interior test would reduce to
a simple texture look-up, but the memory cost in this case would be prohibitive
for many di�erent models.

We propose to represent the crown surface using a radial function r = f(C,ϕ),
where C is the crown center, ϕ a 3D direction, and r is the (maximum) radial
distance from C to the surface of the crown. The drawback of a radial repre-
sentation is that it only allows for star-shaped surfaces, but in practice we can
still approximate a large variety of crown shapes, as shown in Figure 6.32. In
fact, the crown envelopes with relief perturbation shown in Figures 6.19 (last two
columns), 6.22 (bottom row) and 6.23 (right), for example, were already showing
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the RDM representation. On the other hand, the two major advantages of this
representation are:

• The interior test of a point p can be performed with a simple comparison:
p is interior if ||p− C|| < f(C, p− C).

• We can e�ciently store and query f from the GPU using a cubemap, which
we will name Radial Distance Map.

Moreover, since we know for any point inside the volume the distance to
the center and to the surface, we can pro�t on this information when designing
LOD strategies as well as shading algorithms. For example, we use the ratio
||p− C||/f(C, p− C) to darken billboards inside the crown.

Figure 6.32: Crown contours (green) and star-shaped contour (orange) de�ned
by their computed radial function from the center of mass (black dot).

In the next sections, we will see how we use the radial distance map to gen-
erate di�erent Level of Detail representations and smoothly transition between
them.

6.4.2 Direct rendering of the RDM

Our �rst rendering method implements a direct visualization of the RDM through
fragment-based relief mapping. Relief mapping approaches [POC05] cannot com-
pete with current tessellation engines when close-up views of detailed geometry
are required, but o�er excellent performance for distant objects (especially in
deferred shading setups) since their rendering cost is output-sensitive, i.e. the
cost directly depends on the number of covered pixels [BPA15]. This is thus the
LOD we use for rendering distant trees.

The classic approach for relief mapping [POC05] is to compute the ray-
height�eld intersection by sampling points along the ray, �rst using linear search
to �nd a sample inside the object, and then re�ning the intersection point through
binary search. For each sampled point, the height of the sample is compared with
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Figure 6.33: Computing ray intersections for a height �eld (left) and a radial
distance map (right). The red arrows indicate the direction of projection; black
arrows show the distance stored in the texture, which is checked against the real
distance at the ray sample.

the depth stored in the relief map to determine whether the sample is inside or
outside the height�eld (Figure 6.33 left).

We apply this idea to radial distance maps (Figure 6.33 right). Each individ-
ual tree is rendered as an instance of a simple geometry; we used an icosahedron
as it better �ts the shape of most tree crowns than a bounding box. This proxy
geometry will initiate the ray traversal on the fragment shader. When traversing
the ray along the viewing direction, ray samples are computed in world space
(instead of tangent space). For a ray sample P , we compute ~v = (P − C)/Rmax

(C is the crown center and Rmax is the maximum crown radius), and check if P
is inside the crown by comparing ||~v|| with the radial distance value stored for
direction ~v. The number of linear steps, their length, and the number of binary
steps depend on the screen-projected radius of the bounding sphere. Addition-
ally, since we know the minimum and maximum value of the radial distance map,
Rmin and Rmax, if the perpendicular distance d between C and the ray is greater
than Rmax, we can early discard this fragment without raycasting. Similarly, if
d is smaller than Rmin, we know that this ray will hit the crown. In this case,
we compute the �rst hit with a sphere of radius Rmin and skip the linear search.

We considered two options for computing the fragment color. The simplest
option is to get the color directly from the color cube map. However, crown parts
along the same radial direction get the same color from the cube map, resulting
in some texture stretching that might be noticeable in trees with prominent
branches and abrupt relief changes. Alternatively, we can get the fragment color
from the central part of the synthetic 2D texture (Figure 6.20), using the same
texture coordinates we would use for a planar billboard. This second option
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provides higher quality images, but the re-usage of the same texture portion for
all view directions becomes apparent when rotating the camera around a closep-
up tree. We thus use this second option only for distant trees. Notice that with
both options the rendered tree silhouette matches that of the RDM.

6.4.3 Clipped billboard clouds

For closer views we add high-frequency details by drawing a billboard cloud
with an RGBA texture showing leaves and small branches. Billboard centers
are placed on points of the branching structure generated using the Space Col-
onization algorithm (see Section 6.3.4 and Figure 6.30). A single vertex bu�er
is shared among all tree instances of the same species. The actual number of
points to render (converted into quads in the geometry shader) varies for each
instance and depending on the distance to the viewer.

In order to preserve the overall crown shape of the species, we clip the geom-
etry outside the crown volume. Again, a point-inside-crown test requires a single
texture lookup to the RDM. This clipping operation can be performed at di�er-
ent granularity levels. Discarding complete billboards based on their center (e.g.
in the geometry shader) is the simplest option, but tends to produce popping
artifacts around the tree silhouette when large textures are used. Discarding in-
dividual fragments faithfully preserves the crown shape (except for transparent
texels in the leaf texture), but tends to cut individual leaves in the texture.

A better option is to discard fragments based on the centroid of the individual
leaves in the texture (Figure 6.34). This requires additional segmentation infor-
mation where individual leaves point towards the cell centroid. We automatically
generate this information when we create the billboards of the branchlets. This
clip technique yields better silhouettes at the only expense of an extra texture
lookup, so we use it when trees approach the camera.

Apart from the RGBA color and leaf centroid, we also store other information
in the billboards (see Figure 6.35). Normals and precomputed ambient occlu-
sion are used during shading. Depth is used to reduce the artifacts when two
billboards cross: by modifying the depth of the fragments we avoid the inter-
section of two billboards to render as a line, making it less visible and reducing
popping e�ects. The type bit (shown in black and gray for clarity) separates the
leaves from the branches, and we use this information during specular lighting
to avoid highlights on the branches. Finally, the texture coordinates refer to the
coordinates used to instantiate the original photograph (see Figure 6.29). For
very close trees, when the billboard texels become greater than a pixel, at the



172 Chapter 6. Plausible vegetation synthesis

cost of an additional texture lookup we can use these coordinates to recover the
details from the original leaves photograph, which has higher resolution than the
billboard.

Figure 6.34: Rendering clipped billboard clouds: (a) leaf texture; (b) segmenta-
tion showing individual leaf centroids, (c) per-fragment clipping, (d) per-leaf clip-
ping, based on the inside/outside classi�cation of the leaf centroid.

Figure 6.35: Information stored for the generated leaves billboards besides the
RGBA components. Left to right and top to bottom: normals, leaf centroids,
texture coordinates, ambient occlusion, depth, type bit.
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6.4.4 LOD transition

The cost of drawing a tree using either representation can be adjusted according
to its distance, thus providing a mechanism for LOD within each representation.
When using the direct rendering of the RDM through relief mapping, the step
size used during the linear search is inversely proportional to the screen-space
projection of the tree. For the rendering through clipped billboards clouds, we
reduce the number of billboards with the distance, and increase the size of the
remaining ones, as in [CHP+07]. To minimize popping billboards, this pruning
starts at some distance threshold (we used 40-60m). When the distance is close
to another threshold (160m), we only use about 16-20 billboards. During the
initialization stage, we sort the billboard anchor positions such that the i-th
anchor is the one that maximizes the distance to all the previous anchors. This
way, even with only a few billboards, we can still cover the tree surface.

Our proposed representations also allow for a smooth transition between them
without need for cross-fading, i.e. rendering both representations at the same
time with complementary alpha values. Billboard clouds far from the camera use
only a few billboards, but they have been enlarged enough such that per-pixel
clipping preserves the same crown silhouette that will be drawn with the RDM.
Matching the texture and shading of both representations can also be done if we
ray-march from the billboard fragment position to the camera, checking the RDM
at each step. However, doing so for each fragment generated by the billboard
clouds would be prohibitively expensive. Instead, we use the radial distance r
in the direction of the crown center to the fragment position � which we have
already fetched before to check whether to keep or discard the fragment � and
compute an approximate surface position as the intersection of the view ray with
a spherical crown of radius r. As trees get closer to the camera, we gradually
blend from this shading that approximates the one of the RDM, to the shading
based on the leaves billboards. Figure 6.36 shows di�erent representations for
the same tree.

Figure 6.36: LOD progression: close view, 256 billboard cloud, 16 billboard cloud
with enlarged billboards and color from the cubemap, direct render of the RDM
with the color cubemap, and direct render of the RDM with projected photo.
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Figure 6.37: Scene (left) and LOD visualization (right). Trees rendered using
the RDM appear in red, individual billboards are shown in di�erent tones of green.
LOD switch distance was set to 160± 40m.

Illumination and shading algorithms can also be made adaptive with the dis-
tance. Note that the RDM can be directly integrated with shadowing algorithms
like Shadow Mapping, and can project and receive shadows. We also simulate
some self-shadowing and di�use term simply with the radial direction of the
crown surface, obscuring the half facing away from to the light. When we tran-
sition to billboard clouds, we will also use the radial direction and distance to
the crown center to obscure the billboards according to the side of the tree they
are with respect to the light direction, as well as how deep they are inside the
crown. Moreover, on close billboards, we compute the Phong model per frag-
ment by modifying the billboard plane normal with the normal vector encoded in
the additional channels (Figure 6.35 as well as adding the precomputed ambient
occlusion term.

Finally, we also add a certain jittering to the LOD switch distance in or-
der to make the visual wavefront e�ect � produced by even small changes in
color/shading � less coherent and thus less noticeable. Therefore, trees do not
switch representation at a �xed distance but at a randomly sampled distance in
an interval, as illustrated in Figure 6.37.

6.4.5 Rendering performance

We measured the rendering performance of our tree representations on a dense
forest scene (Figure 6.38). We randomly placed 50,000 trees in areas of the aerial
image segmented as tree (depicted in green), following a blue noise distribution.
Tree instances had varying sizes. We chose a view with a large number of visible
trees (42K trees) with a broad range of distances (up to about 1,000m).
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Figure 6.38: Left, test scene used for performance analysis with 42K trees inside
the view frustum. Right, accumulated rendering times of both LOD representations
depending on the switch distance.

Rendering times were measured with di�erent distance thresholds (d) for the
LOD switch. Figure 6.38 shows average rendering times on NVIDIA GTX 970
hardware on a high-quality setting: Full HD (1920 × 1080) resolution, 8× mul-
tisampling, and alpha-to-coverage enabled. All tree instances within d distance
were rendered using the billboard cloud representation, using a varying number
of billboards per instance (from 16 to 144) according to the screen-projected
area. Tree instances beyond d were rendered using the direct (relief-mapping)
representation.

For the detailed representation, the throughput varied from 700 trees/ms
(only the closest trees being rendered with the detailed representation) to 1,300
trees/ms (all trees rendered as billboard clouds). For the direct rendering, the
throughput varied from 1,700 trees/ms (all trees rendered through relief map-
ping) to 12,000 trees/ms (only distant trees rendered with relief mapping). For
distant trees, the relief mapping was up to one order of magnitude faster than
billboard clouds, mainly due to its output sensitive nature.

From a visual quality point of view, we found out that the distance threshold
d should be greater than 150m (for smaller values the artifacts of the relief
representation become too apparent). From a performance point of view, optimal
d values were about 200m. The reason of a minimum point in the accumulated
rendering time is due to the relief representation becoming ine�cient for tree
instances covering a large part of the viewport, whereas the per-instance cost
for the detailed representation remains roughly constant once they reach the
minimum number of billboards. Frame rates for d = 200m were above 60 fps
even for this dense forest scene and the ones in Figure 6.39.
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Memory footprint
For each tree species we need to store the following data: a RDM encoded as a
single-channel cubemap (6×256×256), an RGB color texture (1024×768), a small
number of billboard textures (512× 512, encoding RGBA channels plus 8 bytes
per pixel for the additional information), and a branching structure (about 200-
400 3D points). Note that with only the RDM and the color texture (4.5MB of
uncompressed data) we can already render trees with the direct representations.
For the detailed representation we used four billboard textures per species, each
texture taking 3MB of uncompressed data.

The total memory footprint per species is less than 17MB. Using standard
compressed texture formats, the footprint per species is about 5MB, which is
negligible when compared with the aerial imagery. Therefore, our approach is
thus suitable for network streaming.

Figure 6.39: Forest landscapes populated with thousands of trees, rendered at
Full HD in real-time (60 fps) with shadows and simple wind animation e�ects. Top
to bottom: Croscat (46k trees and 10k shrubs), Creu de Gurb (31k trees and 112k
shrubs) and Montserrat (32k trees and 2k shrubs).
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Contour RDM RDM + tex Billboards + texture Billboards Photo

Figure 6.40: Examples of trees rendered using our representations. From left
to right: segmentation mask, front view of the volume represented by the radial
distance map, the same view using the color texture, two lightings of the billboard
cloud textured from the color texture, two lightings of the billboard cloud using the
color from the billboards, and the original photograph. Shadow patterns on the
ground are achieved by modulating shaded areas with a pattern texture.
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6.5 Summary

We started this chapter with the motivation of generating plausible vegetation
and populate forest landscapes with tree models resembling local species, while
keeping in mind real-time applications such as virtual globe navigation or video
games. We claim that our initial goals have been accomplished, as we summarize
our contributions as follows:

• An algorithm for the automatic generation of tree image variations starting
from a collection of example pictures. The tree variations we generate can
be used to author �ctional tree images and hybrid specimens, as well as to
create variations of the same type of tree to prevent identical copies of the
same billboard from being discovered by users.

• We described a method to obtain an approximate envelope for the volume
of the tree crown, from a single picture. Using this volume we can obtain
di�erent kinds of models for the pictures tree, with varying complexity and
degree of realism: a billboard cloud extracted from image superpixels, a
complete highly detailed branching structure, or a combination of branchlet
billboards and a simple branching structure.

• We introduced the Radial Distance Map as an e�cient representation for
rendering tree crowns. We showed how the RDM can be directly rendered
on far and medium distance views, supporting e�cient rending from ar-
bitrary view directions and shading. For closer views, we use the simple
branching structure with branchlet billboards, which also allows for ani-
mation e�ects such as wind. By leveraging the RDM, we explained how to
transition between LOD while preserving the overall shape and shading.

• We show that realistic forest scenes containing several thousands of trees
can be rendered in real time using our proposed models. Moreover, the
RDM is encoded in a compact, image-based, and easy to compress repre-
sentation, suitable for network streaming.



6.6. Publications 179

6.6 Publications

Our results on tree modeling and rendering have led to a journal article and a
presentation in a local conference. We are currently working on extending the
tree variations algorithm and we would like to publish it as another article.

• O. Argudo, A. Chica, and C. Andújar. �Single-picture reconstruction and
rendering of trees for plausible vegetation synthesis�. In: Computers &
Graphics 57 (2016), pp. 55�67

• O. Argudo, C. Andújar, and A. Chica. �Tree Variations�. In: CEIG -
Spanish Computer Graphics Conference. 2017





7
Conclusions and future work

7.1 Conclusions

As we stated in the introduction, our primary goal was the leverage of currently
available public datasets in order to create detailed 3D scenes from real-world
locations, focusing on natural scenarios such as forests and mountains, and pro-
viding a level of detail adequate for ground-level navigation views. We believe
our di�erent contributions on the many topics we have seen from Chapters 4 to
6 provide a valuable set of tools and techniques towards accomplishing this goal.

We have designed a usable pipeline to e�ciently segment aerial images of a
terrain set. With little e�ort and in short time, users can create a training set
for the arbitrary classes they may need, train a model, and classify the pixels in
the photograph. The result is a set of probability maps per class, as well as their
composition as a labeled pixel map. These outputs can be directly used as input
on procedural detail generators or synthesis algorithms.

The problem of the low resolution on publicly available DEM has been ad-
dressed through a Convolutional Neural Network that performs super-resolution,
e�ectively doubling it, if the aerial image is also available. For those cases where
aerial imagery is not available or does not have enough resolution, our proposed
network is still capable of enhancing the terrain details based on the DEM itself.
Moreover, we also proposed a dictionary-based approach that replaces patches of
the terrain with high-resolution patches from a set of exemplars. This approach
can also be used to synthesize coherent additional layers on a terrain, such as
vegetation densities or distributions, thus reusing more complete datasets on
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other regions that lack all the information we would like to have about it.

Finally, we proposed techniques for generating a variety of tree models taking
as input a set of pictures from the species found in the area of interest. As a �rst
step, this picture set can be enlarged through the synthesis of image variations,
and each image can be then converted into a relief representation suitable for
extracting a full tree model and rendering it e�ciently, as we have demonstrated
on landscapes covered with tens of thousands of trees.

Putting it all together, it is possible to download a terrain as low resolution
DEM with its corresponding aerial image, increase the resolution of this DEM,
identify where vegetation, water, or bare ground is located, synthesize coherent
extra layers � like vegetation species distribution �, and place a variety of tree
models on it that resemble the local species.

In conclusion, while there is still plenty of room for improvements and addi-
tional work, we believe we accomplished our global objective.

7.2 Future work

There are many ideas and avenues of work that would be interesting to follow.

Regarding the segmentation, a �rst extension could be using regression to es-
timate the height of vegetation, for example training from Digital Surface Models
or LiDAR data. This could also allow to identify individual trees in the pho-
tograph and de�ne the position where each of them is placed. It would also be
interesting to design tools for facilitating the manual segmentation of the aerial
images and constructing a good training set. Additionally, improvements on clas-
si�cation algorithms and hardware could lead to very fast � ideally interactive
� segmentation. Meanwhile, a hierarchical or incremental classi�cation could be
implemented, showing pixel labels to the user as soon as they are computed. In
that case, the training set examples could be provided through an interface, in
such a way that the resulting segmentation is updated after each user action (e.g.
including a new region sample for a class, de�ning a new class, correcting the
label of a region, etc.). Moreover, real-time segmentation would allow on the �y
classi�cation during a streaming of DEM and aerial imagery like in virtual globe
applications, with detail enhancement taking place on the client side.

On the terrain synthesis part, one of the current limitations of our dictionary-
based method is that it cannot be directly used to generate constructs such as
road networks or cities, as there is no direct relation between a patch and its
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neighbors. Exploring more complex functions to enforce coherence also between
neighboring patches is a problem worth investigating as future work. For exam-
ple, as suggested by a reviewer, we could blend neighboring patches by �nding
the best cut in the overlapping area. We agree this is an interesting idea as fu-
ture research on the topic, and might also improve the results on more structured
data patches.

Related to the DEM super-resolution work, a possible extension would be
testing if the use of hyper-spectral images � instead of visible RGB � helps with
the super-resolution enhancement. Additionally it could be worth to exploit the
information of DTMs (Digital Terrain Models) along with DSMs (Digital Surface
Models) wherever available. The proposed algorithm could bene�t from treating
di�erently any objects on the ground (vegetation and others) and captured in
the DSM (not in the DTM). Another possibility would be to bene�t from the
availability of multiple aerial images of the terrain taken at di�erent years, as
lighting conditions might be di�erent and could reveal more DEM details.

Finally, on the plausible vegetation section, an interesting avenue for future
work is the support of sparse crowns and multiple-nuclei foliage, since our crown
reconstruction algorithm is aimed for a single crown nucleus. Moreover, recon-
structing branch structures seen in the photograph was left out in our work, and
is certainly a useful extension. For the tree variations algorithm, the Mean Value
Coordinates allow multiple polygons, and we could explore how to �nd morphing
when target and source contours are not topologically equivalent. Another im-
provement of our proposed algorithms would be to compute which subset of the
given exemplar trees are su�ciently compatible for their combination, storing
it as a graph, and generating variations and models automatically using it as a
guide. Moreover, given the recent popularity of Generative Adversarial Networks
as generative models, it could be worth to explore their capabilities on generating
tree models and exploring a latent space for variations.
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7.3 Publications list

The contributions from this thesis have led to the following articles, four of them
in indexed journals:

• O. Argudo, A. Chica, and C. Andújar. �Single-picture reconstruction and
rendering of trees for plausible vegetation synthesis�. In: Computers &
Graphics 57 (2016), pp. 55�67

• O. Argudo et al. �Segmentation of Aerial Images for Plausible Detail Syn-
thesis�. In: Computers & Graphics 71 (2018), pp. 23�34

• O. Argudo et al. �Coherent multi-layer landscape synthesis�. In: The Visual
Computer 33.6 (2017), pp. 1005�1015

• O. Argudo, C. Andújar, and A. Chica. �Tree Variations�. In: CEIG -
Spanish Computer Graphics Conference. 2017

• O. Argudo, A. Chica, and C. Andújar. �Terrain Super-resolution through
Aerial Imagery and Fully Convolutional Networks�. In: Computer Graphics
Forum 37.2 (2018), pp. 101�110

An overview of this thesis has also been presented as a short talk and poster at
the Eurographics 2018 Doctoral Consortium.
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