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ABSTRACT

GRANITE: A SCIENTIFIC DATABASE MODEL AND IMPLEMENTATION

by

Philip J. Rhodes 

University of New Hampshire, September, 2004

The principal goal of this research was to develop a formal comprehensive model for 

representing highly complex scientific data. An effective model should provide a 

conceptually uniform way to represent data and it should serve as a framework for the 

implementation of an efficient and easy-to-use software environment that implements the 

model. The dissertation work presented here describes such a model and its contributions 

to the field of scientific databases. In particular, the Granite model encompasses a wide 

variety of datatypes used across many disciplines of science and engineering today. It is 

unique in that it defines dataset geometry and topology as separate conceptual 

components of a scientific dataset. We provide a novel classification of geometries and 

topologies that has important practical implications for a scientific database 

implementation. The Granite model also offers integrated support for multiresolution and 

adaptive resolution data. Many of these ideas have been addressed by others, but no one 

has tried to bring them all together in a single comprehensive model.

The datasource portion of the Granite model offers several further contributions. In 

addition to providing a convenient conceptual view of rectilinear data, it also supports

xv
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multisource data. Data can be taken from various sources and combined into a unified 

view.

The rod storage model is an abstraction for file storage that has proven an effective 

platform upon which to develop efficient access to storage. Our spatial prefetching 

technique is built upon the rod storage model, and demonstrates very significant 

improvement in access to scientific datasets, and also allows machines to access data that 

is far too large to fit in main memory. These improvements bring the extremely large 

datasets now being generated in many scientific fields into the realm of tractability for the 

ordinary researcher.

We validated the feasibility and viability of the model by implementing a significant 

portion of it in the Granite system. Extensive performance evaluations of the 

implementation indicate that the features of the model can be provided in a user-friendly 

manner with an efficiency that is competitive with more ad hoc systems and more 

specialized application specific solutions.

xvi
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CHAPTER 1

INTRODUCTION AND OVERVIEW

1.1 Introduction

Building effective tools for handling scientific data presents many challenges to 

system designers. Scientific data is often extremely large, and comes in a variety of types 

and formats. Traditional database systems simply do not effectively support large 

scientific data. In particular, they cannot efficiently represent the structure that is 

implicit in the geometric relationships between the data points. In contrast to traditional 

databases where relationships among items are explicitly known, a scientific database 

should assist the researcher in discovering the relationships hidden among the data.

The principal goal of this research is to develop a formal comprehensive model for 

representing highly complex scientific data. An effective model should provide a 

conceptually uniform way to represent different kinds of data and it should serve as a 

framework for the implementation of an efficient and easy-to-use software environment 

that supports the model. The dissertation work presented here describes such a model,

1
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called the Granite Model. This model encompasses a wide variety of datatypes and data 

organizations used across many disciplines of science and engineering today. We validated 

the feasibility and viability of the model by implementing a significant portion of it in the 

Granite System. Extensive performance evaluations of the implementation indicate that 

the features of the model can be provided in a user-friendly manner with an efficiency that 

is competitive with more ad hoc systems and more specialized application specific 

solutions.

The Granite Model consists of the Lattice Model and Datasource Model, implemented 

as separate layers in the Granite System. The rest of this chapter summarizes these major 

components and the contributions of the research.

1.2 Scientific Data Model

We define scientific data as a collection of sample values that represents some natural 

phenomenon [HIBB94]. We refer to the phenomenon being sampled as a function (|) 

defined over a domain D. The dataset consists of a sampling of (|> taken at a finite set of 

points A G D .  Our model is specifically tailored to handle data defined over a continuous 

n-dimensional domain. We use the term dimensional to identify such datasets.

1.3 Lattice Overview

The Lattice layer of the model is the most general, and supports both uniform and

unstructured data. An example of uniform data is rectilinear data. Uniform data is

uniformly distributed in the geometry and has neighbors to the north, south, east, west,

etc. Elements of unstructured data sets are placed arbitrarily throughout the dataset

domain, and have some arbitrary number of neighbors that must be explicitly specified.

Figures 1.1.a and 1.1.b show two and three dimensional rectilinear data, while figure 1.1.c
2
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shows a small two dimensional unstructured dataset.

C

0 0~~0

A B

Figure 1.1. a) 2d Rectilinear data, b) 3d rectilinear data, c) 2d unstructured data 

Our Lattice model is unique in that it separately represents geometry and topology.

Geometry refers to the placement o f sample points within a domain. Topology refers to 

the neighborhood relationships between points, regardless of their placement. Cells, an 

important topological concept, are often defined as regions bounded by arcs connecting 

neighboring points. Through the combination of different kinds of geometries and 

topologies, the lattice model can accommodate a wide variety of data formats within a 

single conceptual framework.

The Lattice itself contains several components. In addition to the geometry and 

topology, it also includes a value space, which specifies the set of values found in the 

data, and an approximating function, which is used to provide values for lattice locations 

that do not correspond to sample points.

The model allows users to access lattice data either geometrically or topologically. 

With geometric access, the user specifies a location in the domain from which data is 

returned. With topological access, the lattice provides an iterator that returns successive 

points or cells for user processing.

The current Lattice implementation supports two dimensional unstructured data with 

multiresolution, as well as n-dimensional rectilinear multiresolution data with the help of 

the datasource layer, described below. The implementation is very general and is easily

3
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extended to higher dimensionalities. However, Lattice development is sufficiently 

advanced to validate the feasibility of our model for scientific data.

1.4 Multiresolution

The lattice model provides support for both multiresolution (MR) and adaptive 

resolution (AR) data, in which a dataset is represented at several levels of detail, allowing 

a lattice user to access only the most interesting data at the finest resolution. These 

formats avoid storage or processing costs associated with uninteresting and unnecessary 

data. Granite builds support for these formats directly into the model, while other 

systems may require an experimenter to devise more ad hoc support.

A multiresolution hierarchy is a stack of lattices viewing the same n-dimensional 

volume at different resolutions. Typically, we think of these lattices as ordered vertically 

from the most detailed on the bottom to the least detailed on top. The spatial overlap of 

these lattices facilitates the correlation of coarse and fine views of the same regions. We 

use these spatial semantics to map a sub-volume vertically through the hierarchy using 

support and influence. Each neighboring set of points or cells in a coarse view is related to 

a (larger) set of neighboring points and/or cells in a finer view; this set forms the support 

for the items in the coarser view. Each point or cell in the finer view participates in the 

support for a set of items in the coarse view; this set in the coarse view is its influence.

An adaptive resolution representation allows resolution to vary within a single lattice. 

The resolution near a point may depend on the behavior of the sampling function, on the 

behavior o f the error function, or on the nature of the domain in the neighborhood of the 

point. An AR representation is a coarse view with interesting regions replaced with data 

often taken from more detailed views acquired by drilling down an MR hierarchy. The

4
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AR representation approximates the functional accuracy of the finer view with the 

memory cost of the coarser view.

It is possible to define a hierarchy of adaptive resolutions on the same data.

Typically, each coarser level of this hierarchy is created using successively relaxed error 

tolerances. Because an AR hierarchy contains multiple resolutions within each level, it has 

the potential to achieve a representation with the same accuracy as MR using less storage. 

Alternatively, for a given amount o f memory, it can retain increased detail and accuracy in 

important regions of the domain.

1.5 DataSource Layer

The DataSource Layer assists the Lattice layer in the handling of rectilinear data, 

though it can also be used alone. Conceptually, the datasource model represents rectilinear 

topologies using an array. The array axes form an index space, and each element of the 

array contains a single datum, which has one or more fields or attributes. Physical 

datasources may be directly associated with a file or network stream. A composite 

datasource combines one or more component datasources. For example, the 

AttributeJoinDataSource can join one or more attributes taken from each of several 

component datasources to produce a single, unified representation of the several 

component datasets. Similarly, the BlockJoinDataSource can form a single view of several 

component datasources by joining their index spaces. These two datasources form the 

core of our support for multisource data, in which data is combined from several different 

sources.

The datasource model also supports adaptive resolution for cell oriented rectilinear 

data. The ARRCellDataSource uses various tree data structures to present a single

5

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



representation of the data that contains different resolutions for different regions o f the 

index space.

1.6 Spatial Prefetching

Physical datasources must address the problem of efficiently reading data from a one 

dimensional file in order to populate an ^-dimensional index space. The rod storage model 

has proven an effective platform for developing solutions to this problem. Coupled with 

the development of several kinds of iterators, the rod storage model has also led to 

significant research on caching and prefetching. This work culminated in the development 

of the spatial prefetching technique, described in chapter 5. Spatial prefetching not only 

greatly accelerates access to data on disk, it also brings very large datasets within reach of 

the Granite system. For example, at the end of chapter 5 we describe an interactive 

Granite application used with the 39GB Visible Female dataset, provided by the National 

Institutes of Health.

1.7 Contributions

This document describes a collection of important contributions to the field of

scientific database systems. The Granite model is unique in that it defines dataset

geometry and topology as separate conceptual components of a scientific dataset. We

provide a novel classification of geometries and topologies that has important practical

implications for a scientific database implementation. Unlike the systems commonly in

use today, the Granite model also offers integrated support for multiresolution (MR) and

adaptive resolution (AR) data. AR and MR formats attempt to reduce the cost of

representing or processing data that has resolution higher than required for the task.

Many of these ideas have been addressed by others, but no one has tried to bring them all
6
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together in a single comprehensive model.

The datasource portion of the Granite model offers several further contributions. In 

addition to providing the user with a convenient conceptual view of rectilinear data, it also 

offers support for multisource data. Data can be taken from various files or network 

sources and combined using an attribute join  or block join, still providing a unified view of 

the combined data.

The Granite System is our implementation of the Granite model, and is not only a 

working system that provides useful and novel functionality, but also serves to validate 

the effectiveness and feasibility of the model. The system supports both unstructured 

trimesh datasets and n-dimensional rectilinear datasets. With the help of the datasource 

layer, the Granite system also handles adaptive resolution for rectilinear cell and point 

based data.

The rod storage model is an abstraction for file storage that has proven an effective 

platform upon which to develop efficient access to storage. Our spatial prefetching 

technique is built upon the rod storage model, and demonstrates very significant 

improvement in access to scientific datasets. It not only speeds access to datasets, it also 

allows machines to access data that is far too large to fit in main memory. These 

improvements bring the extremely large datasets now being generated in many scientific 

fields into the realm of tractability for researchers using conventional machines.

The remainder of this document begins with an overview of background and related 

work, followed by a description of the Lattice layer, both the model and implementation. 

The next two chapters address the model and implementation o f  the Datasource layer, 

and spatial prefetching, respectively. We end with conclusions and a discussion of future 

work.

7
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CHAPTER 2 

BACKGROUND AND RELATED WORK

2.1 Introduction

Although traditional databases have been around for many years, they are not well 

suited for scientific data. They do not handle the tremendous size of scientific datasets 

well, and there is a fundamental mismatch between the design of traditional databases and 

the operations scientists want to perform on scientific data. One important weakness is in 

the role o f metadata. In traditional databases, metadata is mainly structural, describing the 

types and relationships of the various attributes. In scientific databases, the relationships 

within the data are initially unknown; it is these relationships that the scientist hopes to 

discover through an exploration of potentially huge datasets. Appendix B contains a 

discussion of metadata issues. For a discussion of the unique features of scientific data, 

see [PFALTZ98],

8
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The process of exploring scientific data should be as interactive as possible, even 

though large volumes of data can make this difficult. Recently, researchers have been 

studying the advantages of multiresolution (MR) representations for scientific data 

[CIGN094, CIGN097, DEBE98, HECK97,STOLL96, WONG95], MR representations 

allow the same data to be examined different resolutions. Examining a coarse 

representation of the data can provide enormous savings in processing and storage costs, 

thereby enhancing interactivity. These advantages can be extended further by employing a 

distributed and/or parallel processing system to increase the speed at which data is 

retrieved, visualized, and manipulated. Appendices C and D contain further discussion 

regarding both MR and distributed processing.

The remainder of this chapter reviews the field of scientific databases and scientific 

data, providing the necessary background for the rest of this dissertation. The appendices 

contain a much expanded discussion of these same issues as well as additional areas that 

are not strictly necessary for understanding the remainder of this document.

2.2 Scientific Data

A scientific database should be able to represent or model scientific data gathered 

either from the real world, or from simulation. In other words, a set of scientific data is a 

collection o f sample values that represents some “natural” phenomenon [HIBB94].

We refer to the phenomenon being sampled as a function <j> defined over a domain D. 

The dataset consists of a sampling of (j) taken at a finite set o f points A E  D. A mesh 

consisting of the points of A along with connecting edges generally spans the domain D. 

Cignoni, et al. postulate a function/ which interpolates values of <j> for domain points not 

in A [CIGN097], The mesh assists the approximating function, since edges of the mesh

9
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connect points, and also form regions within which values can be approximated or 

interpolated.

Notice that in order for this model to be useful, the domain D must be defined over 1 

or more dimensions. For example, in 3D Cartesian space these dimensions would 

correspond to the x, y, and z axes.

We focus our research on data that can be meaningfully represented in a continuous k- 

dimensional data space. Practically speaking, if one or more independent attributes of the 

data can be mapped to the set of real numbers 9t, then the data is dimensional for our 

purposes. In the event that a researcher wishes to use non-metric data as a dimension in a 

scientific database, Kao [KA097] has developed techniques for imposing a metric on data 

that would otherwise be considered categorical or nominal.

2.3 Scientific Databases

It is the job of the scientific investigator to develop hypotheses that explain the 

natural world. An important part of a scientist’s work is to collect data either from the 

real world or from simulation, and compare this data with values predicted by the 

hypothesis. Since it is important not to contaminate the collected data in any way, 

scientific datasets are not usually modified once they have been loaded into the database 

system. Data may be viewed in different ways, but the values themselves are not 

changed, although new derived datasets are often created. In contrast, an important part of 

traditional databases is the update operation, which changes existing values [PFALTZ98].

2.4 The Multiresolution Representation

A Multiresolution (MR) dataset contains several representations of the same data at

different resolutions. These different representations are referred to as levels. According
10
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to Cignoni et a/.[CIGN097], the number of levels in a true MR dataset depends upon the 

size of the original data. If the number o f levels is constant regardless of data size, we 

have a Level o f  Detail (LoD) representation [CIGN097]. Conceptually, there is a 

correspondence between a value v at level i and one or more values { v o . .V i}  at level i-1.

For this reason, authors sometimes use the term hierarchical to describe MR techniques. 

The precise nature of this correspondence between levels depends upon the particular 

MR method used.

2.5 Adaptive Resolution

MR techniques can be divided into two groups. In non-adaptive MR, the resolution 

used to represent the dataset is constant throughout the domain for any one level. 

Adaptive techniques, which are usually called Adaptive Resolution (AR) are able to vary 

the resolution of an area of the domain depending on the behavior of the data within that 

area [CIGN094, LARAMEE02], Local resolution may be reduced if this coarser 

resolution still represents the area with an acceptable amount of error. Another important 

application of AR is to reduce resolution in areas that are considered uninteresting in 

some sense.

A multiresolution representation allows a researcher to view data using resolutions 

ranging from low (very coarse) to high (the original data). Using a low resolution can 

vastly reduce the size of the data that needs to be stored, manipulated, and displayed. It 

also serves as an overview of the entire dataset, allowing the researcher to pick out regions 

of interest without examining the original data directly. Once an interesting region has 

been determined, the researcher may examine it at higher, more detailed resolutions, 

perhaps even descending to the original data. Note that higher resolutions are thought of
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as being below lower levels, with the original data on the very bottom. Descending 

through this hierarchy is called "drilling down" [OLAP]. Drilling down allows the 

researcher to examine only data of interest at high resolution, minimizing processing and 

display costs.

By using Adaptive Resolution, we can save storage space as well as processing costs. 

In this case, the hierarchy is much the same as before, except that a single level can 

contain data at different resolutions where uninteresting areas are represented as coarsely 

as possible.

2.6 Multidimensional Access Methods

When processing scientific data, it is important to consider inter-instance 

relationships. While relational databases are good at representing relationships between 

attributes, they are not well suited for representing relationships between instances of the 

same attribute.

Spatial Data Models use a different approach. Here, data points are represented using 

coordinates in a vector space [KA097]. If data is dimensional it can be represented using 

a spatial data model. Because spatial data models are so different from the relational data 

model, their use introduces a new set of problems and techniques.

Gaede et al. list several kinds of multidimensional (MD) queries [GAEDE98], Exact 

Match, Intersection, Enclosure, Containment, Nearest Neighbor and Adjacency Queries all 

take the spatial extent of an object o, and return the set of objects that properly answer 

the query. For example, the containment query returns the set of objects contained in the 

extent of o. The Point Query takes a single point as argument, and returns the objects that 

intersect that point. The Window Query returns the set of objects that intersect with the
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^-dimensional interval l d = [/ i ,w1] x [/2,m2] x ---x [/i ,m1]. Id should be aligned with the 

domain axes, or iso-oriented. The Nearest Neighbors Query returns the set o f objects with 

minimum distance from o.

2.7 Access to Large Datasets

Providing efficient access to huge scientific datasets is a challenging problem, and has 

attracted a lot of attention from both operating system and scientific data management 

communities. Work has focused on either providing comprehensive scientific data and 

metadata management systems, or optimizing file systems using techniques like 

prefetching, caching and parallel I/O.

2.7.1 File Access

Reorganizing datasets on disk to speed access has been explored by a number of 

researchers. Sarawagi and Stonebraker [Sarawagi94] describe chunking, which groups 

spatially adjacent data elements into n-dimensional chunks which are then used as a basic 

I/O unit, making access to multidimensional data an order of magnitude faster. They also 

arrange the storage order of these chunks to minimize seek distance during access. 

Following this work, many other reorganization methods have been developed. More and 

Choudary [MoreOO] reorganize their data according to the expected query type, and the 

likelihood that data values will be accessed together. The Active Data Repository (ADR) 

uses chunking to reduce overall access costs and to achieve balanced parallel I/O 

[CChangOO, CChangADR],
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2.7.2 Prefetching and Caching

Software prefetching has been used by many researchers to hide or minimize the cost 

of I/O stalling. In the file systems arena, approaches to this problem can be distinguished 

by whether or not prefetching is guided by explicit information about the access pattern. 

Albers et al. [Albers98] describe an algorithm that produces an optimal schedule for 

prefetching and discarding cache blocks when the entire access pattern is given in advance. 

Other researchers have explored the case where the access pattern is disclosed less 

completely in the form of hints. Patterson et al. [Patterson95] developed a framework for 

informed caching and prefetching based on a cost-benefit model. This model has been 

extended to account for storage devices with very different performance characteristics 

[Fomey02], Cao et al. have had success by letting applications have control o f data cache 

replacement strategy in their share of cache blocks [Cao96],

When no explicit information about access pattern is available, the history of prior 

accesses can be used to predict future accesses. Amer et al. group files together based on 

historical file access patterns [Amer02], Other researchers have used probability trees or 

graphs to represent the likelihood of future block accesses given past and current block 

accesses [Vellanki99, Highley02, Highley03, Griffioen94]. Madhyastha et al. use a hidden 

Markov model to automatically predict file access patterns over time; the file system 

adaptively selects appropriate caching and prefetching policies according to the detected 

pattern [Madhyastha96, Madhyastha97],

At the application level, Chang [ChangOl] adds a separate thread to the user program 

that performs prefetching by mimicking the I/O behavior of the main thread and 

preloading data. The VisTools [Nadeau] system is most similar to our approach. It 

provides an application level data prefetching and caching service for huge
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multidimensional datasets using the Paged-Array schema. It reads formatted pages of 

elements from the underlying files when the first element in the page is requested. Then, 

the formatted pages are stored in a page cache for fast future re-access. When the cache 

size limit is reached, the paged-arrays are deleted or written to a swap file. Like our own 

work, paged-arrays also support intelligent prefetching guided by iterators that have an n- 

dimensional view of the dataset. However, the one dimensional nature of pages fails to 

take into account the proximity of elements in N-dimensional space. By using pages as its 

unit of cache storage, VisTools and other page based methods may make poor decisions 

about what data to retain or discard.

2.8 Conclusion

We have presented a brief survey of the issues relevant to scientific databases, and to 

the design and implementation of the Granite system. For a more in-depth examination of 

these issues, the reader is invited to look at appendices B, C, and D at the end of the 

document.
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CHAPTER 3

THE LATTICE LAYER

3 Introduction

Our formal scientific data model provides a conceptual framework for defining and 

processing a wide range of scientific data. This chapter describes those aspects of the 

model that are encapsulated in the Lattice layer of the model and summarizes the current 

state of the lattice implementation in the Granite system.

3.1 Dimensional Data

A scientific database should be able to represent or model data gathered either from 

the real world, or from simulation. We focus our research on data that can be meaningfully 

represented in a continuous k-dimensional data space. If a dataset consists of some 

attributes that are ordinal1, independent, and defined on a continuous value range, we can

1 An attribute is ordinal if  its values have a complete ordering.
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say that the dataset contains dimensional data, and that these attributes are dimensional.

It is not necessary for all attributes to be dimensional. If we view the data as a 

function, some of the dimensional attributes define the domain of this function, and the 

remaining attributes define the range. Our function therefore maps any point in the 

domain defined by the dimensions to a particular range value. Choosing which attributes 

should be used as dimensions is up to the researcher using the system, and can be an 

important part of the data exploration process. We call each possible combination of 

dimensions a view of the data: a notion similar to the “view” found in traditional 

databases. So, for data with k dimensional attributes, there are 2k-l possible views. Each 

view affords a different way of looking at the same data.

A natural example of dimensional data is spatial data such as satellite images and fluid 

flow datasets. Here, the data represents an actual physical space. However, it is possible 

for a dataset to be dimensional without being spatial. For example, data from a Greenland 

ice core sample might contain readings for calcium, nitrogen, and carbon concentrations at 

different times in the Earth’s history. Even though this data does not correspond to a real 

space, it may be very beneficial to visualize the data as if  it were spatial, since humans 

find this representation familiar and easy to grasp. For this reason, we often use the word 

“spatial” in this document, even when referring to data which does not represent a 

physical space.

It may be convenient to treat a set of attributes as if  they are dimensional attributes 

even though they may not satisfy all the conditions for dimensional data. In particular, we 

often don't know exactly which attributes are independent o f  each other, but we might 

want to assume they are independent for exploration purposes with the goal of either 

validating or disproving that assumption.
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3.2 Geometry and Topology

Granite’s scientific data is n-dimensional, and like most systems that manipulate such 

data, we must develop efficient ways o f mapping between data that is fundamentally 

multidimensional and a storage scheme such as a file or array that may not directly reflect 

the dimensionality of the data.

With this in mind, it is useful to examine the complexity of the mapping between the 

dataset and an n-dimensional array. We call the space formed by an array an index space, 

a concept used extensively in the datasource layer, described in the next chapter. The 

geometry of a dataset consists of the dataset spatial domain D, and the placement of the 

set of sample points within that domain. Generally, if the sample points are distributed 

throughout this geometry with uniform spacing, we say that the data is uniform. Figure 

3.1 shows three uniform geometries in one, two, and three dimensions.

o •  e •  © „o °o °o °
® O O O O n  n  rP

O o o o .§*0*0°
@ o o o o  • • •
A B C

Figure 3.1. Three uniform geometries in one, two and three dimensions 

The mapping from index space to geometry can be defined as a function:

/ ( / , W ) - > p G D

where I  is the index space, D  is the geometry domain, p  is a location in D, and W is the 

auxiliary information consisting of a set of numbers required to perform the mapping. 

Geometries can be classified by examining the size of this set. For uniform geometries, the 

only extra information needed is the spacing between the points for each dimension. In 

this case, the size of W (i.e. |W |) is 0(d), where d  is the dimensionality of an index space.

18

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Figure 3.2. Two examples of non-uniform data. The left example is sometimes called a 

perimeter lattice, while the one on the right is known as unstructured data.

If  JW| is not 0(d), we say the geometry is non-uniform. Figure 3.2 shows two

examples of non-uniform geometry. However, important distinctions can still be made

between different kinds of non-uniform geometries. In figure 3.2a, the spacing between

the points is consistent between each row and column, so we can perform the mapping

using just two arrays, each storing the spacing between each row and column. The length

of these two arrays is related to n, the number of points. For example, if  the dataset is

square, |Vf| will be o [^ n ^. In contrast, the geometry in figure 3.2b has no pattern

whatsoever, and requires that the position of each point be given explicitly. In this case,

where |VF | is O(n), we say the geometry is unstructured. Accordingly, the less difficult

situation shown in figure 2a is an example of a semi-uniform geometry, meaning |VF | is

greater than 0(d) but less than 0(«).

The topology of a dataset refers to the way that points are connected to each other. A

dataset’s topology is a graph, with data points as nodes and arcs between nodes

representing a neighbor or adjacency relationship. Often, the researcher wants to view the

data using the geometry, but the system most efficiently accesses the topology, since it is

the topology that gives a dataset its structure. Figure 3.3 gives examples of some different
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topologies.

C

- Q — Q —'0 ~ ~ 0

Figure 3.3. Various topologies

As with geometries, we can also classify topologies according to an index space 

mapping. Since the topology is a representation of the neighborhood relationship, this 

mapping function should produce a set of neighbor nodes for any node represented by a 

point in the index space. That is,

f ( I , W ) - * N

where W is defined as before, but N is a set of neighbor nodes. As before, a topology for 

which |W| is 0(d) is uniform. If |W| is O(n), the topology is unstructured, and we use 

semi-uniform for the cases in between. Figures 3.3.a and 3.3.b are both examples of 

uniform topologies, while figure 3.3.C is an unstructured topology.

A particularly important kind of uniform topology is the rectilinear topology. In a 

two dimensional rectilinear dataset, the topology of the data points is a rectangular grid. 

For three dimensions, the topology is a hexahedral (e.g. cubic) mesh. Figure 3.4 shows 

several rectilinear topologies. Notice that figures 3.4.d and 3.4.e do not have uniform 

geometries. Various combinations of geometric and topological types are possible.
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Figure 3.4. Some rectilinear topologies

Within an array, if  two elements of an array have an index that differs by only one, we 

consider the elements to be neighbors. Therefore, we can exploit the natural topology of 

the array to represent the topology of rectilinear data.

In cases where both the topology and geometry is unstructured, the array 

representation can offer only storage space. For two dimensional datasets of this kind a 

mesh of triangles can be created such that the vertex of each triangle is a known data 

point. These meshes are commonly called trimeshes. Figure 3.3.c shows a small trimesh 

for a non-uniform dataset. This approach can also be used to handle three dimensional 

surfaces, where the vertices now have three coordinates instead of two. For true three 

dimensional volume data sets, the triangle is replaced with a tetrahedron. This process can 

be extended to handle dimensions greater than three.

Warp w m

Regular Computational Geometry Curvilinear Physical Geometry

Figure 3.5. Warping a regular grid to a curvilinear dataset

It is sometimes possible to map a rectilinear grid to a set of points that is not 

uniformly distributed in the geometry. For example, a fluid flow simulation of air 

velocities over the top surface of an airplane wing might produce samples that lie in
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concentric curves echoing the shape of the wing. We say this arrangement of points is 

curvilinear. However, a rectilinear grid can be warped to the physical space to provide a 

dataset that is regular in computational space. Figure 3.5 illustrates the warping 

transformation.

3.3 Periodic Tilings and Data

The study of tilings (tessellations) has some relevance to our research since topologies 

often define a tiling. A tiling is an arrangement of contiguous shapes that cover a domain. 

A review of this field can be found in [Schatt97].

If a tiling is periodic, then it is possible to duplicate the tiling, translate it some 

distance, and place it down again so that it matches exactly with the original copy. That 

is, the tiling consists of a number of translated repetitions of some pattern of tiles. An 

important and related property of periodic tilings is that there exists a subset of the space 

S that can be repeatedly copied and translated throughout the space to complete the tiling. 

A minimal subset of this kind is called a fundamental domain or generating region. A 

regular tiling is a periodic tiling made up of identical regular polygons [Schatt97]. The 

three tilings shown in figure 3.6 are the only regular tilings for 2D space. Other shapes do 

not meet the mathematical constraints required for a single shape to tile the plane.

B ffl
a b c

Figure 3.6. The fundamental domains of the 2D regular tilings
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Figure 3.7. A possible supercell implementation.

Although tilings are defined entirely in terms of geometry, the concepts can also be 

applied to our notion of topology. We use the notion of the supercell to represent 

periodic sampling topologies. As shown in figure 3.7, a supercell represents a generating 

region for the topology, allowing the entire topology to be conceptually represented by a 

grid of repeated supercells while only storing a single supercell definition. If we can find 

where in the grid a point lies, we can very easily form a search key from the position in 

the grid (i.e., supercell identifier), and the position of the point within the supercell (i.e., 

point identifier). Such a technique promises a quick way to access a point’s data given its 

geometric position.

3.4 Neighborhood

Many scientific applications require access to the neighborhood of a point. Generally, 

the neighborhood o f a point p  is a contiguous set of points containing p  and points that 

are near p. Deciding which points are near p  depends on whether we are computing a 

geometric neighborhood or a topological neighborhood. A typical geometric 

neighborhood might include all points that are within distance d  o f  p  in the geometric 

space. On the other hand, a topological neighborhood might include all points that are 

within n arcs of p. Notice that these two kinds of neighborhood are not normally
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equivalent. For example, if  we map a geometric neighborhood to the dataset’s topology, 

the result need not be a topological neighborhood. The corresponding fact is also true 

when we map a topological neighborhood to the dataset’s geometry.

Despite this, the dataset topology may still be useful in generating a geometric 

neighborhood. In order to retrieve sample points near p  in geometric space, the system 

may traverse the dataset topology and test the geometric location of sample points to see 

if they should be included in the geometric neighborhood.

3.5 A Model for Scientific Data

In order to develop a multiresolution (MR) model of scientific data, we must first 

define a model for scientific data. We define scientific data as a collection of sample values 

that represents some natural phenomenon [HIBB94], We’ll view this phenomenon as a 

function over a domain D, which might be time, space, radio frequency, etc. or some 

multidimensional combination. In the next two sections, we describe our general 

requirements for representing scientific data, followed by a description of the lattice 

representation. First developed by Bergeron and Grinstein [BERG89], the lattice satisfies 

our requirements for a data representation.

3.5.1 Data Representation

An investigator using a scientific database should be able to represent hypotheses in 

the system, and determine whether the data supports the hypothesis. A hypothesis model 

is represented as a function H:

H: D—

That is, the hypothesis model maps every point in the domain D to a point in a value

space V. The elements of a value space are defined on arbitrary n-tuples of values.
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The goal of the investigator is to find a hypothesis that describes the natural 

phenomenon as closely as possible. Therefore, we need to represent the phenomenon 

within the scientific database. This representation is called a data representation. Of 

course, since the domain D is continuous, it contains an infinite number of points. 

Therefore a data representation represents the phenomenon at a finite set of points within 

the domain [HIBB95], This set of points, known as sample points, constitutes our 

scientific data. We represent the sample points with a sampling function [KA097]. W e’ll 

denote the finite set of domain points as A C D . A sampling function fA maps A to a 

value space V :

fA: A-»V

Notice that in order to implement a sampling function, we only need A, the set o f sample 

points, and a set of data values v, such that each Vt; £  V is the value measured at a 

corresponding d,. £  A . We also require a localized error function EA, known as the 

sampling error, that indicates the error for any sample point by mapping A to an error 

space E:

Ea: A-*E

Together, fA and E a  model the behavior of a measuring instrument as it gathers data from 

the real world. They may also model a resampling from another dataset. In many cases, 

the error (or accuracy) of the values is not known, so E a  may default to zero. In other 

cases, an instrument or dataset has a known accuracy and precision, so a better error 

estimate can be made.

It is convenient to package the domain and data values into a single item. We define a 

data representation as:

R = { D , V A f , )
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That is, a data representation consists of the domain and value space for the data, along 

with the data values, and sampling function. Our definition of a data representation is 

quite general. In the next section, we discuss the lattice, an elaboration on the 

representation presented here.

So far, we can only give values and error for any point d  E A . In order to generate 

values for points that may not be sample points, we need an approximating function. An 

approximating function is defined as:

f  A:D-*V

The approximating function takes any point in the domain, and returns a value that 

approximates the value of the phenomenon at that point, based on the sampling function. 

An important class of approximating functions is the interpolation functions, which must 

satisfy the following condition:

Vd G A , f  A(d)=fA(d)

That is, for a point in the sample domain A, the interpolation function and the sampling 

function must produce the same value. Usually, the approximating function is an 

interpolation function. For any data set, a large number of approximating functions are 

possible. Some are better for a selected task than others. Hypothesis development can be 

viewed as the process of discovering increasingly better approximating functions.

We are now ready to define a data model. A data model consists of a data 

representation and error functions E a  and E d  along with the approximating function / a.

M = { R , E A,ED, fA)

The error representation E d  should be defined over the entire domain D. That is, for 

every dED, Eo(d) provides an estimate of the data model error associated with the point 

d. When a data model is first produced from the original data, we have EA, the error
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associated with the sampling function, which is defined only over A. One possible 

definition of the initial E d  could b e /£4, which uses the approximation function to find 

values E d  from the values of E a. Data models can also be derived from other data models 

through a function that introduces additional error. W e’d like E d  to record the total 

cumulative error in the data model.

3.5.2 The Lattice Representation

The lattice model can be extended to meet our requirements for a data representation. 

The lattice includes both topological and geometric views of the dataset. We can refer to 

the dimensionality of a topology. Intuitively, this is the dimensionality of the space 

required to contain the topology graph without having any arcs intersect. The first three 

diagrams of figure 3.4 in section 3.2 illustrates one, two, and three dimensional topologies 

of the simplest kind.

As described in [BERG89], a lattice Lkn has k dimensions that define a space, and n 

attributes for a point located in that space. We say that k is the dimensionality of the 

lattice. It is also the dimensionality of the lattice topology. So, a O-dimensional lattice is 

simply an unordered set, while a 1-dimensional lattice is an ordered list, a 2-dimensional 

lattice defines a plane, and so on. Notice that the lattice geometry does not need to have 

the same dimensionality as the lattice topology. As an example, Kao points out that a 2D 

lattice can be mapped to a surface that exists in three dimensional space [KA097].

Perhaps the simplest form of lattice is the rectilinear lattice, which has a rectilinear 

topology, as described in section 2.2. O f course, such a lattice can easily be represented 

using a rectangular array. Kao defines a lattice to be a function from an index space to a 

value space [KA097]. Given indices into the array, we can easily retrieve the value stored
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there. In addition, we need a way to map points in our geometric space to index space. 

Kao calls this mapping a logical transformation. Although the logical transformation for a 

regular lattice is trivial, it is not nearly so apparent for data that is non-uniform with 

respect to geometry. W e’d like to extend the lattice model to handle a much wider variety 

of data formats, and redefine a lattice to be a function that maps the geometric space to 

the value space. That is, we’d like to include the logical transformations in the lattice 

itself. More formally, a lattice is defined as:

L = (l), V, A ,t , /a)

where D  is the geometric domain, V is the value space, A is the location of the data points 

within D, r  is the lattice topology, and f& is the sampling function, which produces points 

in V. Note that the lattice meets the requirements for a data representation, and also 

explicitly includes the lattice topology. For a lattice L, we denote a member of the lattice 

using dot notation. For example, L.D refers to the domain of a lattice L, and L. V refers to 

that lattice’s value space.

3.5.3 Lattice Transformations

We need to define transformations that can be applied to lattices. We can characterize 

such transformations by noting their effect on the lattice value space, geometry, and 

topology. These transformations normally do not change the lattice they are applied to. 

Instead, a new lattice representing the result of the transformation is created.

We call transformations that change data value transformations, described as a 

function Tv:

Tv: L ->  L' where L ./A * Z/./A 

For example, suppose a transformation simply normalizes values to the range [0... 1], We
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create a new lattice L ’ and apply the normalization operation to the sample values o f the 

old lattice, producing the new sample values for L ', contained in L ’/ a .

It is important to realize that a value transformation does not necessarily just map one 

value space to another. A value transformation may use the location of a value in the 

domain and its relationship with surrounding values. For example, consider a value 

transformation that produces a value 1 if a domain location corresponds to a local 

maximum for attribute A, and 0 otherwise. The value 5 may occur many times in a lattice, 

but it may be a local maximum only once. Our transformation can’t just map the value 5 

to a single value. Rather, it must map one occurrence of 5 to 1, and the others to 0, and 

can only do so by looking at values surrounding an occurrence of 5. Therefore, this 

transformation must examine values contained by subdomains of the lattice. On the other 

hand, this is not true of all value transformations.

A transformation that changes the lattice geometry is really changing the lattice 

domain, so we call such transformations domain transformations, described as a function 

Td:

Td \L -» L' where L.D * L'.D 

That is, the transformation acts upon a domain D  and produces a new domain D ’.

Creating a new domain implies changes in L ’./a  as well. Examples of domain 

transformations include affine transformations like scaling, rotation, translation and shear. 

Bergeron [BERG89] also describes extensions and restrictions. An extension is a mapping 

to a higher dimensional space. Restrictions include projection to a lower dimensional 

space, and also the generalized subset operation. The subset operation is normally 

considered to be purely geometric. However, a subset can be computed either on the basis 

of domain shape, or through an examination of data values. Computing a subset via data
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values is an important tool for reducing the amount o f uninteresting data contained in a 

lattice.

Lastly, a topological transformation is defined as 

Tr:L -^  L' where Lx  * L'.x 

For example, extensions and restrictions can apply to the topology as well as geometry. 

Also, any subset operation that removes points or arcs from the lattice can be 

characterized as a topological transformation.

3.6 Multiresolution Representations for Data

This section presents our model of multiresolution (MR) data, and describes an 

important subclass known as adaptive resolution.

3.6.1 The MR model

The key to our description of a multiresolution model is a reducing operator R:

R : M - h> { M , E r )

This function takes a data model M as an argument and returns a new data model M \ 

along with associated localized error E r  that was introduced into M ’ by the operator. 

Remember that any data model contains a data representation, error functions E a  and E d , 

and an approximating function. It is important to note that the domains of M  and M ’ are 

both D, the domain of the natural phenomenon. M ’.E d  is a composition of M .E d  and E r  , 

to reflect the error that R introduced. The data representation M ’.R and sampling error 

M ’.E a  must also differ from their counterparts in M  since it is a requirement for any 

reducing operator that:

|a | < | a |
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In other words, M ’.R should contain fewer sample points than M.R. It is for this reason 

that R  is called a reducing operator. This change in A causes M ’./a  to differ from M /a  

since the reduction in data points is likely to change the approximating function.

An MR hierarchy "Tft is a pair of items:

^  = (A P )

where A  is a sequence of levels {A o.. .A n} and P  (rho) is a sequence of reducing functions 

{Ro...Rn-i}. Each Ai in A  is defined to be a pair containing a data model and associated 

localized reduction error:

A  , = ( m \ e )

Each Rj in P  is defined as:

That is, the reducing function Ri maps the finer level Ai to the coarser level Ai+i. The M R  

hierarchy is formed by repeated applications of reducing operations. First, the original 

data is stored in M° which is then stored in level Ao. Since no reduction has yet occurred, 

Eo is assumed to be null. Next, a reducing operator is applied to M° to form M 1 and an 

error E r which now becomes Ei. M 1 and Ei make up level A i. The process is repeated an 

arbitrary number of times, typically depending on whether the size o f the data has been 

reduced sufficiently, or further reductions would produce too much error.

3.6.2 Resolution

In some MR hierarchies, the reducing operator works uniformly over D. We call these

methods non-adaptive MR, since the reducing operator doesn’t change or adapt over the

domain. For example, if  the points in A are uniformly distributed in D, R might discard

alternate data points so that A' is half the size of A. Such a reduction would affect the
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accuracy of the new data model similarly over all of D. Of course, it is most appropriate 

to use a uniform reducing operator if the original data is evenly distributed, and of equal 

interest. On the other hand, if  the data distribution is uneven, or some data is more 

interesting to the researcher than the rest, another kind of reducing operator may be more 

suitable.

3.6.3 Adaptive Resolution

A reducing operator that behaves differently over parts of D is a hallmark of a subset 

o f MR known as adaptive resolution (AR). An AR hierarchy is a kind of MR hierarchy in 

which an AR reducing operator is used. An AR reducing operator still needs to reduce the 

size of A, but it is more sophisticated in how it chooses to do so. For example, an AR 

reducing operator might examine the cumulative error for a data model, and attempt to 

reduce resolution in areas with lowest error when forming the data model for the next 

level. Alternatively, it might try to preserve resolution in areas of rapid value change, and 

instead reduce resolution from less volatile areas. In general, an AR reducing operator’s 

behavior over the domain is determined by the data and the requirements of system 

designers or perhaps the experimenter.

3.6.3.1 AR Representations vs. AR Hierarchies

When an AR reducing function is used to produce a series of levels, the result is an 

AR hierarchy. On the other hand, a representation of a domain with resolution that varies 

in response to data values is known as an AR representation. The levels of an AR 

hierarchy are actually AR representations. An AR representation is not a hierarchy; any 

point or region of the domain is represented only once. In fact, an AR representation can

be formed by navigating a non-adaptive MR hierarchy, and choosing suitable non-
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overlapping regions from different levels. These distinctions are shown in figure 3.8.

Non Adaptive MR Hierarchy AR Hierarchy AR Representation

Figure 3.8. Non-adaptive MR and AR hierarchies, and an AR representation

3.6.3.2 Locally Monotone Reductions

Consider two levels of a hierarchy Aa and Ab, where Aa is coarser than Ab. The only 

restriction our model specifies is that Aa must contain fewer points than Ab. This leaves 

open the possibility for some subdomain to be represented with more points in Aa than 

Ab, even though Aa contains fewer total points. For example, there may be two regions 

that have reduced resolution in Aa when compared to Ab, but one region where resolution 

in Aa is higher. Overall, this still satisfies the model. However, we feel that most of the 

time every region of the domain will be represented with either the same or less resolution 

in Aa as in Ab. In this case, we’ll say that the reducing function that produced Aa from Ab 

is locally monotone. A rigorous definition of locally monotone requires a rigorous 

definition o f what locality means. One possible definition is based on a partitioning o f D. 

That is, given a partitioning of the domain, a reducing function is locally monotone with 

respect to the partitioning if it either reduces or preserves the number of points within 

every partition, but never increases it.
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3.6.4 Support and Influence

Our model for MR is very general. In practice, most MR hierarchies place further 

restrictions on the reducing function. Recall that reducing functions relate a level Ai to 

level Ai+i, where A;+i is a coarser representation of the same domain as Ai. Most MR 

methods require that the reducing function be spatially coherent. That is, any contiguous 

set of points in A; should map to a contiguous set o f points in Ai+i. More formally, we 

could characterize a reducing function R as a collection of functions {ro.. .rn} such that 

each n maps a contiguous set of points S, C A in level Ai to a contiguous set of points 

S j  C A in level Ai+i. We say that Si is the support for Sj. The union of all Si for any level 

should equal A. Notice that this allows the domains of each n to overlap, meaning that a 

pointp  in Ai might belong to the support for several different points in Ai+i. We call the 

set of these points the influence of p. Both support and influence are shown in figure 3.9. 

A common example of this overlapping support is when the reducing function computes 

weighted averages for several points of A;, to produce a new point for Ai+i.

Influence of C

Support for B 

Figure 3.9. Support and Influence

Such overlapping support can introduce problems at the boundaries of the domain.

For example, consider a reducing function in which each point in Ai+i is supported by

overlapping sets of points in Ai, as seen in figure 3.9. Points like A ,  located at the edge of

Ai+i may be missing some support from Ai. For the same reason, points like D , located at
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the edge of Ai will be under-represented in Ai+i because they influence only one or two 

points in Ai+i instead of the expected three.

3.6.5 MR for Regular Data

A  common implementation of non-adaptive M R  uses an array of points to represent 

the data set function S. Since Ao is the original data, we expect that A i represents the same 

information at a coarser resolution, i.e. with fewer data points. A  simple way to do this is 

to have each point in Ai represent 2d points of A j-i, where d is the dimensionality of the 

dataset. So, for a one dimensional dataset, the first point of A i should represent points 0 

and 1 of Ao, the second point should represent points 2 and 3, and so on. So, A i is half 

the size o f Ao, and A 2 half the size of A i, etc. This approach can be extended to any 

number of dimensions. For example, in three dimensions, each point of Ai represents 

eight points of Ao, which is analogous to the familiar octtree data structure used 

commonly in computer graphics.

Another important issue is how to combine two or more points into a single point for 

the next level. The method used depends upon the application. In the simplest case, 

where each point represents one value, we might just average points together to get a 

single value. However, it might be desirable for a point in Ai to keep track of attributes 

like m inimum and maximum value, and standard deviation for all the points it represents 

in Ai-i. Li et al. [LI98] store a probability density function for each point in their M R  

hierarchy.

3.6.6 MR for Irregular Non-Rectilinear Data

With regular data, the reducing operator can easily do something simple like removing
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every other point. Researchers [DEBE98] have also developed non-adaptive MR 

techniques that work on triangular meshes. However, the implementation of non-adaptive 

reducing functions for triangular meshes is not trivial. For this reason, we envision that 

such data will more commonly be represented using AR, while uniform data may use 

either AR or non-adaptive MR.

For example, Cignoni et al. [CIGN097] outline a method for three dimensional data 

represented as a tetrahedral mesh. Their method produces a new, coarser level by 

removing the tetrahedron from the current level that causes the least error. Since this 

method looks at the data values (and their error) when deciding where to reduce 

resolution, this is an example of adaptive resolution. Notice that each level differs from 

the last by only one tetrahedron. This means that the number of levels will be large 

compared to a non-adaptive technique that removes half the points with each level.

3.6.7 Advantages of MR for Scientific Data

The principal advantage of the MR model is that it allows a researcher to examine a 

low resolution summary or overview of a dataset. Using this overview, the researcher can 

decide which areas of the data require more detailed examination. Because MR provides 

several levels of increasingly fine resolution, the area of interest can be progressively 

refined at each level. This process is known as "drilling down". It's very possible that the 

researcher's needs are met by a level of the MR hierarchy that is coarser than the original 

data. If so, there is likely to be a significant savings in network and visualization costs, 

since the coarser representation should be much smaller than the original data. If the 

researcher's needs are always met by levels above the original data, then storage costs are 

also saved, since there is no need to store the original data. Even if the researcher does
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need to descend to the bottom level of the hierarchy, the refinement of the area of interest 

as he or she descends means that less of the original data is required.

3.6.7.1 Noise Filtering with MR

Some kinds of M R  hierarchies specify that each value of a level Ai+i is related to a 

small set of neighboring values from Ai. Notice that our definition of a reducing function 

allows this, but does not require it. However, if  a reducing function averages values over 

some area o f the domain, it may not only reduce the size of the next level’s data set, but 

also eliminate noise. The reducing function is effectively working as a low-pass filter of 

the sort used in image processing. If imprecise instruments generate high frequency noise 

during data collection, a coarser level of the data might provide a better view than the 

original data.

3.6.7.2 Advantages o f  Adaptive Resolution fo r  Scientific Data

Using an AR hierarchy yields all the advantages described in the previous paragraphs, 

along with some others. An AR hierarchy uses reducing functions that respond to the 

data, preferring to reduce resolution over uninteresting areas of the domain. In a way, this 

is an automation of the process the researcher would go through when drilling down 

through a non-adaptive MR hierarchy. If the researcher is allowed to choose the reducing 

functions used, we can say that choice is communicating his or her idea of what 

constitutes “interesting” data. Therefore, the AR hierarchy contains information about 

which areas o f the domain are interesting to the researcher. Such information is very 

useful when trying to distribute data over several machines, since good load balancing 

should place a roughly equal amount of interesting data on each machine. Similarly, in a 

parallel environment, this information can be used to help minimize communication
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between processors.

3.7 Representing Domains

Our model requires a flexible representation for domains and subdomains, since they 

play an integral role in the representation of domain relative data. Since we model 

scientific data as dimensional data, we must represent the number and kind of dimensions 

that make up the domain space. Often, a dataset is defined within an infinite space such 

as 9ft3, which cannot be directly represented in the database. Therefore, we must represent 

this information symbolically in a universal domain. A universal domain defines the 

space that a dataset resides in by specifying the number and type of dimensions, along 

with a distance metric. The universal domain can be considered structural metadata. 

Notice that the domain of a dataset must be a finite subset or subdomain of this universal 

domain.

We clearly need a way to represent the domain of a dataset, but there are other 

applications that are less obvious, as we demonstrate in our discussion of semantic 

metadata. In particular, we’d like to represent subdomains in a very expressive way.

3.7.1 Stencils

A subdomain is a subset of some larger domain. Domain relative semantic metadata,

described in section 6.3, lends support to the classification of regions and feature

identification within the data. To support this application, our subdomain representation

must be able to handle complex and irregularly shaped and perhaps disjoint subdomains,

and even subdomains with fuzzy boundaries. In our model, the stencil is the object used

to represent this wide variety o f subdomains. Like a cardboard stencil used in painting

letters and figures, our stencil represents the shape of a subdomain carved out of some
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larger, enclosing domain. A stencil may be a subdomain of the universal domain, or of 

another stencil. In either case, a stencil’s base domain is the domain from which the 

stencil is taken. If the stencil is the result of a filter, described in section 5.4, the base 

domain is the domain that was examined by the filter. Regardless of how it is produced, a 

stencil is always a subset of this base domain. Historical metadata, described in section 6, 

can be created that relates the stencil to its base and universal domains, including the 

process through which it was selected from the base domain. The universal domain is 

needed in order to make sure that certain stencil operations are sensible. Such operations 

include the union, intersection, and subtraction operators, as well as transformations like 

scaling and translation. If two stencils are defined on entirely different domains, it 

probably isn't sensible to combine them with a union operation. Similarly, there should be 

restrictions on translation and scaling. For example, if one dimension of a domain is a 

probability, no subdomain should be translated along that axis so that it exceeds the range 

[0 . . .1],

3.7.2 Stencil Representation

The stencil object must be able to represent a wide variety of different domain shapes. 

It is unlikely that a single representation can give such flexibility, so several underlying 

implementations are needed. In choosing an implementation, we must decide what kind of 

queries a stencil object must answer. Certainly, any stencil must be able to answer a 

query of the form:

Q . p e D ha„ - * [  0...1]

That is, given a point p  in the base domain of the stencil, return a value in the range [0... 1] 

that indicates whether the point is outside (0) or inside (1) the subdomain represented by
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the stencil. In the case of crisp stencils, only 0 or 1 is returned, meaning that a point’s 

membership in the subdomain is either total or none. For fuzzy stencils, intermediate 

values may be returned, indicating some uncertainty about a point’s membership. Such 

uncertainty may be due to the criterion used to create the subdomain or to error in the 

data to which the criterion was applied.

Representing crisp stencils can be done efficiently by using a multidimensional (MD) 

access method, as discussed in [GAEDE98]. Since subdomains are essentially regions 

within an enclosing domain, we want to use an MD access method designed to store 

regions, rather than points. In order to answer the query above, a crisp stencil must 

determine whether it holds a region that contains the point and return 1 if such a region is 

found, and 0 otherwise. Regions can often be represented with dramatically less storage 

than a collection of points with the same spatial extent. For example, rectangular regions 

can be represented with just a pair o f coordinates. Even complex curved regions can be 

represented with comparatively little storage using parametric curves or surfaces.

Fuzzy stencils may require more storage space, since they don’t have sharp borders. 

One possibility is to use a representation similar to methods used for data. A lattice of 

points accompanied by an approximation function would certainly be capable of 

representing a fuzzy domain. Other methods may also have the advantage of saving 

storage space. For example, we should be able to use an AR representation to store border 

information in great detail, while saving storage space in more homogeneous areas.

3.7.3 MR Stencils

Imagine a researcher is developing a feature recognition algorithm. The researcher 

might generate a stencil that identifies areas of the domain where the feature exists by
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running the algorithm with low resolution data. This result could be compared with 

another stencil that was generated via high resolution data to see how well the algorithm 

performs with the low resolution information. In such a scenario, an MR stencil might be 

useful, since it would demonstrate the difference that resolution makes to the recognition 

algorithm’s performance. An MR stencil could be even more useful if  the recognition 

algorithm is trainable like a neural net. In this case the algorithm’s success at low 

resolution could be enhanced by reward or punishment based on high resolution 

information.

Clearly, there are times when it is beneficial to always store stencils using MR, and 

therefore store domain information at different levels of resolution. For fuzzy stencils this 

is especially true, since membership in the subdomain is represented in a continuous 

fashion over the enclosing domain. For crisp stencils the domain can be stored very 

efficiently as regions using an MD access method, so we would only use MR if the 

application required it. In many cases, the researcher is interested in having the best 

possible information at his or her disposal. In such situations, the stencil may have only a 

single resolution that represents this best available information, perhaps taken from 

several resolutions of the data. In other situations the researcher may want to store even 

discrete stencils using MR for reasons having to do with the stencil’s application.

3.7.4 Making Stencils

Since representing domains is a fundamental task in a scientific database, we must 

provide several ways of producing stencils. The simplest way of generating a domain is to 

specify its extent within the universal domain. Note that stencils are fixed within their 

base domain, although new stencils with a different placement can be created using the
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operations described in the next section. For example, a simple rectangular stencil can be 

made by specifying its comer points. O f course, a stencil is not restricted to rectangles, 

and can be any polygon, polyhedron, or curved shape. Such stencils are called shaped 

stencils. Shaped stencils are used to represent the domain of a dataset, and also for 

selecting areas or volumes of data defined on a larger domain.

In contrast, other stencils are produced by examining data values in a dataset. This 

examination is conducted by a filter which accepts or rejects areas of a domain depending 

on the data values found there. The output of the filter is stored in a result stencil. 

Normally we use historical metadata, described in section 6, to relate a stencil, filter, and 

result stencil. Such information can also be used to support delayed evaluation. That is, 

we don’t require that a stencil be fully materialized upon creation. Instead, we can define 

the parameters of the stencil at creation time, and only compute the stencil’s domain 

when it is actually needed. Delayed evaluation should be especially helpful with complex 

queries involving several filters. For example, consider a query on a satellite data set that 

asks for areas of land not covered by clouds that appear to contain urban development. 

Let’s assume that filters are available to identify clouds, land, and urban development. 

One way of answering the query is to create three stencils that each refer to a filter. 

(Notice that the cloud stencil has to be negated.) The final result is formed by computing 

the intersection of the three stencils. By delaying the evaluation of the stencils until the 

entire query is answered we have an opportunity for optimization. Suppose the land 

filter is the most selective, and eliminates 80% of its base domain. It makes sense to 

evaluate this filter first, and feed the results to the cloud filter. By evaluating the most 

selective filter first, we can prevent the cloud filter from being run on areas that turn out 

to be ocean anyway.
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There are two wrinkles with this sort of optimization. First, we must have at least an 

estimate of how selective a filter is likely to be. This could be computed by running the 

filter on a very low resolution version of the data to get a rough measure of how selective 

it is. The other possibility is to get an estimate from the experimenter. In either case, the 

estimate can be updated as the filter is used. The second wrinkle is that some filters may 

require other filters to be run first. For example, if  the land filter in the last example 

performs very poorly if clouds are left in the data, we’d have to evaluate the query 

differently.

3.7.5 Stencil Operations

In addition to representing domains, stencils play an important role in the 

representation of domain relative information. For this reason, stencils must support a 

variety of operations including set operators like union and intersection, transformations 

like scaling, rotation, and translation, and also operations to allow domains to be 

converted from one type to another.

Set operations include union, intersection, subtraction, and negation. For binary 

operations, it is important to check that the two stencils have the same base domain. If 

they share a base domain, the result is a new stencil with the expected value.

B ase Domain M l *
**» 5̂sm

u —
• imi

Stencil A Stencil B AUB

Figure 3.10. A simple stencil union 

For example, the union of two stencils sharing a base domain should be a stencil with this
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same base containing all regions contained in the operand domains. We may choose to 

combine overlapping regions into a single region, but this is left up to the implementation.

• m l
AU B

Figure 3.11. Union of stencils with different base domains.

The situation grows more complicated if two stencils do not share a base domain. For 

example, consider the union operation performed on two stencils with base domains that 

overlap, but are not the same. The proper behavior really depends on what the stencils 

represent, and what the user wants. In figure 3.11, let us assume that stencil A indicates 

areas where property A is found within the base domain of stencil A. The lighter area of 

the stencil denotes the region in which property A was found not to exist. The 

corresponding statements can be made about stencil B and property B. For the result 

stencil, the lighter area should denote places where neither property A nor B was found. 

In order for this to work properly, we have to trim the base domain for the result stencil 

so that it only contains the area that was examined for both property A and property B. 

In other words, the base domain of the result should be the intersection of the base 

domains of the operands. This example is only one way of handling different base 

domains in set operations. If the stencils represent something besides presence of a 

property, a different behavior may be required.

Base Domain

'J
U i f  ’

" Base Domain

Stencil A Stencil B
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Subset Data Object

Figure 3.12. A subset operation

Consider a stencil C which identifies areas of a data object’s domain that meet some 

criterion. As shown in figure 3.12, we can make a new data object that has a domain 

formed by the intersection of the original object’s domain and the stencil C. We can say 

that the new data object is a subset of the original data. This subset operation is very 

useful, because it allows researchers to reduce the size of the data being manipulated and 

allows them to focus only on data which they consider interesting.

Transformations like scaling, rotation, and translation are used to move a stencil

within the universal domain. This functionality is useful when a stencil is used to extract

data from different places in a dataset, or when a new dataset is constructed from two or

more existing datasets. As an example of extraction, consider a stencil which is meant to

indicate areas containing urban development. The stencil is originally defined with a

square base domain with sides of length 1 centered at the origin. As it stands, only areas

within this base domain will be examined for urban development. However, with a

translation operation, we can create a new stencil with a base domain of the same size, but

at a different location in the dataset’s domain. Similarly, we might want to scale the

45

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



stencil to a size that encompasses the entire dataset domain so the entire dataset can be 

examined at once.

When constructing a new database from one or more existing databases, two issues 

must be addressed. The first problem is the placement of the old domains within the new 

domain. For projections, the new domain has fewer dimensions than the old. The 

projection must therefore specify how the dimensionality of the space will be reduced. 

Even if the dimensionality of domains is the same, several things must still be specified. 

The axes of the old domain may need to be aligned with axes of the new domain using 

rotation. If the domains use different units of measurement or points of origin, a scaling 

and translation operation may be required. Next, the universal domains of the existing 

databases must be checked to see if they can be sensibly represented within the new 

universal domain. We must verify that an old dimension can be represented by the 

corresponding (aligned) dimension in the new domain.

3.8 Representing Derived Data and Metadata

Although the representation of data in a scientific database is of great importance, an 

investigator needs an effective way of managing information about the data. This 

information could come from the researcher’s pool of expert knowledge, from some 

previous exploration, or it could be generated semi-automatically by the system itself. 

Such information is commonly referred to as “metadata”. However, the term “metadata” 

is vague. For example, if  A is a set of facts about data, A is clearly metadata. But, if we 

use A to generate B, a set of facts about A, then is A still metadata? Should we call B 

meta-metadata? The problem is that classifying information as data or metadata depends 

upon the context, which leads to confusion. We can use the very general term derived
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data to refer to information that was somehow derived from another dataset. This term 

can be used even when it is not clear whether “metadata” is an appropriate label.

The following sections describe our thoughts on how to represent derived data and 

metadata. First we explain our terminology, and then describe how we represent these 

different kinds of information, and how they interact within the database.

3.8.1 Terminology

Within our model, we have decided to make a distinction between semantic metadata, 

structural metadata, and historical metadata. Semantic metadata represents information 

that the user has extracted from raw data through the application of expert knowledge and 

adds meaning to the data to which it refers. This metadata is directly available for the 

researcher to use in the production of further information. Structural metadata represents, 

among other things, information about the type, size, organization and source of a dataset, 

as well as the domain upon which it is defined. Notice that it is possible for such 

information to be specified before a dataset is populated with data. Structural metadata is 

needed to determine what operations and applications of data are sensible. Historical 

metadata keeps track of operations performed on data and how data is used. It primarily 

describes how a dataset was formed from one or more datasets in the database. This 

information establishes a chain that records the complete history o f a data object, 

extending back to the original dataset it was derived from. Notice that historical metadata 

does not by itself add meaning to the data, so it should not be considered semantic 

metadata. Also, since it records the relationship between two or more data objects rather 

than a single data object, it does not fit well as structural metadata.

Our model for scientific data is restricted to data that can be represented
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dimensionally. That is, our data model Md is defined over a domain space D that consists 

of an arbitrary number of dimensions. A data value at a location in D is an attribute of 

that location in the domain. We therefore use the term domain relative to describe 

information that refers to a point or region in a domain. Notice that this term can be 

applied to data and either structural or semantic metadata. Since we model scientific data 

as dimensional data, much of the data in the system is domain relative. We commonly 

think of historical metadata as not being domain relative, but this need not always be so. 

Semantic metadata may or may not be domain relative. However, we feel it is important 

for a scientific database to support domain relative semantic metadata since this is the 

kind of information used to represent identification of features or patterns within the 

data, and the classification of regions of the domain.

3.8.2 Requirements for Domain Relative Derived Data

In the previous section, we mentioned that the term “derived data” can be used to 

describe information when it is ambiguous whether the data should be considered 

metadata. Generally, derived data is information that was produced through the 

application of some operation on an initial data object. The value space of the derived 

data may be different from the value space of the initial data. For example, if  the initial 

data has a value space [0.. .100], and we produce from it a new data object that is 

normalized to the range [0... 1], we would say that the second data object is derived from 

the first. By itself, derived data need not have any more semantic value than the data it is 

derived from. However, it may be a component of a piece of semantic or historical 

metadata.

We should use an MR hierarchy for derived data as well as data, and for similar
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reasons. Derived data is distinguished only in how it is produced, so there is no need to 

represent it differently from other data. In fact, all the advantages o f the MR model for 

data apply to derived data as well. In addition, using the same representation makes the 

association between different resolutions of data and derived data clear. It is convenient to 

have levels of derived information that correspond easily to the data they were derived 

from. Also, if  we know how to distribute data between multiple machines or processors, 

the same distribution can be used for the derived data.

A third requirement for derived data is that we be able to produce yet more derived 

data from existing derived data. More specifically, the system should be able to take one 

or more MR data objects and perform an operation upon them that results in a new MR 

object. If  we represent data and derived data in the same way, this ability follows 

naturally.

It is important to realize that producing derived data is conceptually equivalent to 

adding a new attribute to the domain. For example, suppose a domain is defined by three 

dimensional attributes X, Y, and Z. A data object maintains attributes A,B, and C for points 

within the domain. Now we produce a derived data object containing attribute D, defined 

over the same domain. The points in the domain space now have four attributes A,B,C, 

and D. Whether these four attributes are stored in a single data object or spread over two 

objects does not make any difference to their meaning. One of the roles of historical 

metadata is to allow the retrieval of attributes defined over a given domain.

Lastly, levels of derived MR data may be produced in either of two ways. The 

derived levels can be produced directly from the lowest level o f  the original data. W e call 

this bottom-up construction. This yields the most accurate results, but it may be 

expensive to access the original data because of its size, or because it is not stored locally.
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In such situations, it may be desirable to construct the different levels of the derived data 

object from the levels of the original data. That is, A; of the derived data is not constructed 

from its own Am, but from Ai of the original data. We call this sideways construction. A 

sideways construction yields considerable savings by reducing access to the original data, 

but the results may not be as accurate, depending on the method used to generate the 

derived data. We must also take care that the derived data still satisfies the resolution 

constraints of an MR hierarchy. Figure 3.13 shows sideways construction.

—
Original MR Hierarchy Derived MR Hierarchy

Figure 3.13. Sideways construction of derived data.

3.8.3 Representing Domain Relative Semantic Metadata

There are two parts to the job of representing semantic metadata that is domain 

relative. First, we must represent the semantic information, and secondly we must 

represent the domain or domain relative data to which the semantic information refers.

The semantic information has some meaning to the experimenter, and may be as simple as 

a label or short string of text. This could be stored in a standard relational database.

Although we allow semantic metadata to refer to MR derived data, we expect that it 

will most commonly refer to a domain represented by a stencil. The combination of one 

or more stencils and semantic metadata is known as a map. The metadata gives meaning to 

the domains delineated by the stencils. Notice that the stencil may be formed from a
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detailed representation of data without greatly affecting the storage size of the stencil.

This is particularly true for crisp stencils, because they can be represented with a 

collection o f regions. It is usually much cheaper to store a region than to store the points 

enclosed by it. Therefore, even if  a researcher finds the size of high resolution data 

prohibitive, he or she is still able to use metadata produced from a high resolution 

representation.

Many of the operations supported by stencils will be very useful when the stencil is 

part of a map. Certainly, all the set operations described in section 3.7.5 can be used to 

support similar operations with maps. The only complication is that if  two maps are 

combined using a set operator, e.g. union or intersection, the semantic metadata of the 

result map must also be computed somehow. One option is to use the historical metadata 

to form the semantic metadata. For example, suppose a new map is formed from two 

existing maps named "UV<0.5" and "IR>0.2" using an intersection operator. The resulting 

map indicates areas where ultraviolet reflectivity is less than 0.5 and infrared reflectivity 

is greater than 0.2. The historical metadata for the result would indicate that the new map 

was formed by the application of the intersection operator to the two operands. So, if  we 

automatically generate semantic metadata for the result map, the name will probably be 

similar to "UV<0.5niR>0.2". However, the expert researcher may know that the result 

map corresponds to areas containing vegetation. Therefore, he or she may decide to name 

or label the result map's domain to be "vegetation". In doing so, the researcher is encoding 

expert knowledge into the database in the form of a map label.

Notice that a map may contain more than one stencil, each with a separate label. This 

allows related domain relative metadata to be grouped together into a single object. The 

stencils must all have the same base domain, since the map as a whole is required to refer
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to a single domain. Also, the map must have a piece of metadata referring to each stencil. 

As a metaphor, consider a loose-leaf binder filled with labeled transparencies. Each label 

refers to a colored region drawn on a transparency. Let’s also have a piece of paper the 

same size and shape as the transparencies that represents data values over a domain. 

When one or more transparencies are laid over the paper, they classify or annotate areas 

of the domain and the data values found there.

In addition to clarifying the functionality of maps, the preceding metaphor also 

suggests a way of visualizing maps. The stencil domains could be used to tint the visual 

representation of the underlying data values, giving a clear visualization of the domain 

relative metadata. In fact, maps can play an important role in the user’s interaction with 

the database because they can be so effectively visualized.

3.8.4 Access Maps

We mentioned earlier that historical metadata refers to information about operations 

performed on data and how data is used. This metadata does not need to be domain 

relative, but it certainly can be. The access map is an example of domain relative historical 

metadata. It consists of a fuzzy stencil and fixed metadata that identifies it as an access 

map referring to a particular data object. The access map keeps a record of what parts of 

an MR data object have been most frequently accessed by the experimenter. The base 

domain of an access map is the same as the base domain of the data object to which it 

refers. When the map is created, its stencil domain is empty. When a subdomain of the 

data object is accessed by the experimenter, the membership value of the corresponding 

subdomain of the access map is adjusted to record the visit. Over time, the fuzzy domain 

in the stencil indicates what areas of the domain are most frequently accessed. The most
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frequently accessed areas would have a membership value near 1, while areas which were 

only occasionally visited would have a value near 0.

This information can be used to help distribute data efficiently among several 

machines or processors. Also, a subdomain’s frequency of access is a measure of how 

interesting that area of the data is to the researcher. Such information could potentially be 

transformed into a normal map, making it visible to the user.

3.9 Operations on MR Data and Metadata

We have already described how a researcher would explore an MR hierarchy by hand. 

The process consists of scanning a coarse overview of a region, selecting interesting areas, 

and then drilling down into a finer resolution representation of those areas. Even though 

an MR hierarchy allows the researcher to work with large volumes of data in this manner, 

it is still desirable to have tools that at least partially automate this process. That is, if  the 

researcher can define with some rigor what is “interesting”, the database system should be 

able to find regions of the domain that match that definition. Also, the researcher may 

want to apply an operation to every location in the domain. Therefore, traversing an MR 

data object is an important operation for our model.

3.9.1 Traversing MR

Several things are necessary for traversal of an MR hierarchy. The traverse operator

controls which regions of a single level are visited, and in what order. Its implementation

depends partly on the format of the MR data, and partly on the purpose of the traversal.

The descend and ascend operators are given a region of the domain, and return the next

finer or coarser level, respectively. The implementation of descend and ascend operators

depends solely on the data format. It is possible to design an MR iterator consisting of a
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traverse operator and a descend function. Next, some lattice transformation T, described 

in section 3.3, must be applied to the subdomains visited during the traversal. Different 

definitions o f T are used to implement the various MR operations.

The descend and ascend operators may use a predicate that examines the domain, and 

decides, for example, whether descending is warranted based on the data. W e’ll call the 

predicates used by the descend and ascend operators finer and coarser, respectively. The 

behavior of these predicates is very specific to the purpose of the traversal. If the 

transformation should be applied to all levels of a hierarchy, the finer predicate should 

return true in all cases except for the bottom-most level. This is commonly the case when 

the transformation being applied is a value transformation that produces a new derived 

data object. In other cases, the finer predicate must decide whether an area is sufficiently 

interesting to warrant being visited at finer resolution. For example, a domain subset 

transformation may not need to descend to a finer level if a subdomain can be eliminated 

based on a coarser representation. A filter can be implemented as an iterator that applies a 

subset transformation to the domain of an MR hierarchy.

Similarly, the traverse operator may behave differently depending on the 

circumstances. For example, the traversal could be depth-first, breadth-first, or best-first, 

depending on the application. A best-first ordering implies that different subdomains can 

be ranked by how likely they are to contain some feature or meet some other constraint.

3.9.2 Search

For any search, the researcher specifies the domain to be searched and the criteria for 

the desired data, and in reply expects a subdomain containing values that meet the criteria. 

The search criteria can be specified with a subset transformation, as described in section
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3.5.3.

If suitable maps exist in the system, a search through a dataset can be greatly 

accelerated in certain circumstances. For example, a researcher might ask, “Find a place 

where the temperature is over 30°C and oxygen is less than 20%.” If a map has been built 

which contains the maximum and minimum temperatures for regions of the domain, then 

the search can avoid regions for which it is known that 30°C falls outside the indicated 

range. We call this process pruning the search domain. If a similar map exists for oxygen 

percentages, the search domain can be pruned even further.

3.9.2.1 “Find O ne” Searches

The easiest search to perform is one in which only a single example of an interesting 

feature is required. After the pruning process, it may be possible to rank regions of the 

search domain so that the most promising regions are searched first. Such a ranking may 

use a simple heuristic, or may require expert knowledge of the experimenter's field.

We hope that ranking the search domain will improve search performance in cases 

where data meeting the search criteria actually does exist. Note that if  no such data exists, 

the entire search domain will be examined, and the ranking won't have made any 

difference. Even in this worst case, though, search domain pruning should still be 

beneficial.

3.9.2.2 “Find All" Searches

If a researcher wants to find all instances of data meeting certain criteria, there’s no 

point in ranking regions of the search domain. However, pruning the search domain is still 

helpful, since there is no point in searching regions that cannot meet the search criteria. Of 

course, whether pruning can be done at all depends on the metadata available. Pruning a
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region from the search domain is only appropriate if  it is impossible for that region to 

contain data meeting the search criteria.

There are at least two different ways to represent the result of a fmd-all search. The 

most obvious way is to use a discrete stencil with a domain containing only the data that 

meets the search criteria. Such an approach is most useful when the distinction between 

“matching” and “not matching” is sharp and discrete. However, some searches use criteria 

that are fuzzier. In such cases it would be useful to assign a value to each region o f the 

domain indicating how well that region matches the search criteria. The fuzzy stencil 

provides just such a representation.

3.10 Distributed and Parallel Computing

Because of the enormous size of scientific data, it is very desirable to split the burden 

of storing and manipulating data across several processors or machines. For our purposes, 

distributed computing is the storage and manipulation of data on machines connected by a 

network. These machines might all be in the same room, connected by a LAN, or might be 

located on different continents, reachable through the Internet. In contrast, parallel 

computing refers to computation on a single machine that has more than one processor. In 

practice though, the line between distributed and parallel computing is not clear cut.

Many algorithms for parallel computation can be run on a collection of machines 

connected via network, forming a distributed (virtual) parallel machine. For this reason, 

many of the issues that arise in parallel computation also apply to a distributed 

environment.

3.10.1 How MR Can Help With Load Balancing

Load balancing is an important part of using parallel machines effectively. One of the
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problems with scientific data is that it may contain large areas of uninteresting 

information. These areas are unlikely to require much processing by the database system, 

whereas other areas may represent a very significant amount of work. It is important that 

each processor in a parallel system get roughly the same amount o f work to do. We can 

see at least three ways that our model might assist with balancing processor load.

AR hierarchies are clearly useful for our purposes, because their reducing functions 

say something about what kind of data the user finds interesting. One possibility is to 

examine the data at a coarse resolution and use it as a guide to aid in distribution o f lower 

levels of the data object. (In this case it would be beneficial if  all processors have copies 

of the coarsest levels.)

Stencils should prove particularly useful, since they can explicitly eliminate areas of 

the domain that are not considered interesting. If the remaining areas are evenly divided 

among processors, reasonable load balancing should result. Since stencils are widely used 

in our model, this represents a significant bonus.

Access maps should also be useful in this context. If a user has been working with a 

particular region of the domain extensively, then the distribution of data can be adjusted 

to reflect the user's focus. We can envision a system where a user's access map is saved 

between sessions, so that when they log on again, data is distributed in the appropriate 

way. If multiple users of the same data are likely to use the data differently, several 

access maps can be saved, and a compromise distribution generated from this information.

3.10.2 Problems at Boundaries

In section 3.6.4, we mention that boundaries can cause difficulties for region based 

data with overlapping support. Such problems are exacerbated with parallel computation
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because the distribution of the domain among several processors creates many more 

boundaries. If data is distributed naively, some of the data in Aj providing support for a 

value in Ai+i may be located on another processor. Since we have seen that interprocessor 

communication is expensive, we would like to either eliminate or at least minimize the 

cost o f this communication. Since more than one processor is likely to need access to data 

at the boundaries, it seems desirable to duplicate information at the edges. This could be 

done either during the initial distribution of the data, or perhaps dynamically. If it is done 

dynamically, a processor should try to send one large block of data to its neighbor, rather 

than several small blocks so the fixed communications cost is incurred only once.

3.10.3 Distributing Data

Consider a system in which data is stored on several machines in a network, but 

processing is always done on a local machine sitting in front of the user. The MR data 

model is very well suited for such a system, since the highest resolution levels can be 

stored on a large server somewhere on the Internet, while coarser levels are stored locally.

Deciding where to store a particular level of an MR object is a classic time-space 

tradeoff. Clearly, it is not feasible for most users to store a terabyte of data on their local 

workstation. Even if a user has the storage capacity, it is very likely that most of the data 

is not interesting and will never be used. Instead, a low resolution version of the dataset is 

stored locally, and the high resolution representation is stored on the remote server. As 

the user drills down into the MR data, subsets of the higher resolution levels are 

downloaded to their workstation for visualization and manipulation. O f course, the cost 

of this storage efficiency is time, since it usually takes longer to transfer data over a LAN 

or the Internet than it would to retrieve the data from a local disk. The users may want to
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make some decisions about where data is stored, depending on what data they expect to 

be most interesting, or perhaps a caching algorithm could be employed to manage the 

space on the local machine automatically. Once again, since history maps indicate which 

data the user has found interesting in the past, it might be possible to configure data in an 

efficient manner based upon this history. That is, when a user logs on to the system in 

the morning, data could be distributed in a pattern that supports what he or she was doing 

the night before.

3.11 Lattice Implementation

The Lattice layer of the Granite system is responsible for providing the user with a 

uniform view of a wide range of data formats. This is accomplished with the help of 

various components that are tailored to a particular kind of data. By constructing a Lattice 

object with the appropriate components, the Granite system is able to provide the user 

with a convenient abstraction o f the underlying data, regardless of the format.

This section describes the implementation of the Lattice components and their role in 

the Lattice layer and also addresses Granite’s way of handling multiresolution data.

3.11.1 Geometry

The implementation of the Geometry class is very straightforward. This class has two 

main jobs. First, it must represent the extent of the Lattice domain, which is easily done 

with the help of a GBounds data member. Secondly, the geometry class maintains a 

spatial partitioning that is used to facilitate searching within the domain. In general it is 

expected that a geometry will use a rectilinear partitioning because that is most likely to 

provide the best search support. However, this is not required.

The value of the partitioning is most obvious when dealing with unstructured data. In
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this case it is particularly difficult to map a point in the geometry to the sample points 

and cells defined in the topology. It is easy, however, to map a point in the geometry to a 

partition identifier, especially for a rectilinear partition. This partition identifier can then 

be passed to the Topology class which uses the identifier to greatly accelerate the search 

for relevant sample points. This implementation allows the geometric location of sample 

points to be stored with their data values, which reduces the complexity and cost of 

access to disk.

The mapping between geometric and index spaces is done with the help of the 

Partitioning class. This class stores the dimensions of each partition, and uses these 

values to perform the mapping with some simple arithmetic operations. For a uniform 

rectilinear partitioning it is only necessary to store a single value for each axis o f the 

space, since all partitions are the same shape. To represent partitionings with various 

shapes, more information must be stored, but the mapping is still very straightforward.

3.11.2 Topology and Cells

The Lattice contains a Topology component which is responsible for retrieving data 

values from disk. For rectilinear data, this can be done very easily by passing the index 

space location produced by the geometry directly to a DataSource, which then retrieves 

the data. For unstructured data, the topology uses a partitioning corresponding to the one 

used in the geometry. The partition identifier computed by the geometry can then be 

used to help navigate the topology. For both kinds of data, the topology can be viewed as 

a contiguous collection of cells that span the Lattice domain. Cells are particularly useful 

for computing approximated values for locations in the domain that do not correspond to 

sample points.
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3.11.3 Cell Implementation

The Cell class defined in the Lattice layer consists simply of two arrays containing 

Point and Datum objects that correspond to the cell vertices. Important methods include 

containment operations that indicate if  a cell contains a Point, and the cell/GBounds 

intersection operation, which indicates if  a Cell intersects with a GBounds. This form of 

intersection is used extensively during construction of unstructured topologies to 

determine which partition to place a cell in. The containment operation is used to 

determine which cell should be used when computing an approximate value for a point 

that is not a sample point.

For rectilinear data, these operations are trivially implemented with a few 

comparisons. For unstructured cells, these operations are more complex. Intersection with 

GBounds is implemented with the help of outcodes, bit strings that help to eliminate line 

intersection tests by identifying trivial cases. Containment is decided by drawing a line 

through a point and counting the number of intersections between the line and the cell 

boundary.

Currently, the Datasource and Lattice layers have their own separate implementations 

of the Cell class. However, these implementations are extremely similar, so it is likely that 

they will be merged and moved to the Common package at some future time, a location 

where the class will be available to the rest of the system.

3.11.4 Out of Core Unstructured Topologies

The datasource layer, which handles rectilinear data, is an “out of core” 

implementation, meaning that we do not have to load the entire dataset into memory at 

once. However, with unstructured data the Lattice layer cannot simply depend upon the
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datasource layer, so more work is required to achieve an out of core implementation.

The key feature of our out of core support for unstructured data is the partitioning 

described earlier. If we can determine which cells lie in each partition and store those cells 

together on disk, we can often greatly reduce the amount o f memory needed at one time 

by only loading partitions that are actually being used.

The motivation for out of core methods is to be able to process data that is too large 

to fit in memory at once. It would defeat this goal if  the cell lists associated with each 

partition were kept in memory until the end of processing. Instead, we write sections of 

each list out to disk as it is being built. Writing the list in sections instead of directly to 

disk reduces I/O operations, and also allows us to close partition files between 

operations. If we did not close these files, the number of partitions would be limited by 

the number of files the operating system allows us to keep open at one time 

This partitioning process is reasonably efficient, mainly because we use the 

partitioning to greatly reduce the number of intersection tests that must be performed. 

Since partitions are meant to contain a fairly large number of cells, it is usually just a 

single partition that needs to be tested for intersection. However, it is not at all unusual 

for a cell to intersect several partitions. This situation could be handled by simply making 

duplicate entries in the cell list of each partition that intersects the cell. This approach is 

simple, but increases disk space usage, especially if the fineness of the partitioning is 

increased. On the other hand, it is important that each partition have a complete list of the 

cells that it intersects with. Otherwise, we would later be unable to answer queries for 

domain locations that map to a partition, but for which no containing cell can be found.

Our solution to this problem is a compromise in which the point information for all 

intersecting cells is stored in each partition’s cell list, but the data associated with the cell
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may be stored only in one partition. This partition is called the owner of the cell. All 

cells have exactly one owner. Partitions that intersect with a cell that is owned by another 

partition are borrowers with respect to that cell. A cell may have an arbitrary number of 

borrowers, always one less than the number of partitions it intersects with. If a cell has 

no borrowers, then it must be entirely contained within its owner partition. Borrowed 

cells are represented on disk using only the vertex indices necessary for representing the 

cell, and an identifier that denotes the owner partition and position in the owner cell list. 

Since all cells have exactly one owner, the data associated with the cell need only be 

stored once. Scientific datasets may contain a large number of attributes for each point, so 

this can result in significant space savings over a duplication method.

3.11.5 Queries and Out of Core Topologies

The partitioning process described above only needs to be performed once, after 

which it is ready for repeated use. When the lattice receives a user query for some 

location d  in the domain, the lattice geometry first maps d  to a partition. This information 

is passed to the topology, which can then check to see if this partition is already in 

memory and load it if  necessary2.

The relevant partition is now asked to retrieve the cell that contains d. This cell could 

be either an owned or borrowed cell. If it is owned, then the data associated with the 

vertices is available, and an approximation can be directly applied to produce a value 

associated with d. If the cell is a borrowed cell, then the partition does not have the vertex 

data. In this case, upon receiving the borrowed cell, the topology will check to see if the 

owner is in-core, and load it if  necessary. The vertex data for the borrowed cell is now 

available, so a value for d  can be computed.

2 The list o f in-core partitions is maintained in a simple LRU fashion.
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3.11.6 Iteration over Unstructured Topologies

In addition to accessing data through the Lattice, the Granite user is allowed to access 

the topology directly through a Celllterator. The Celllterator is itself a kind of Cell, with 

a value equal to one of the cells in the topology. With each invocation of the nextQ 

method, the Granite user causes the Celllterator to take on the value of the next cell, 

making it available for processing or rendering. The topology is able to avoid duplicating 

cells in the iteration by only iterating through the owned cells for each partition.

Currently, the Celllterator does not allow the user to specify any particular order for 

the iteration, but the interface is general enough to allow future implementations which 

perform variations such as depth or breadth first search, or perhaps iteration based on 

data value.

3.11.7 Multiresolution Support

The Lattice layer supports multiresolution through the MRLattice class. This class is 

essentially a list of lattice objects ordered with respect to level of resolution. MRLattice 

maintains a current resolution level, which is used to select which of the component 

lattice objects should be used to satisfy queries. The user can decide the appropriate level 

of resolution based on application parameters and communicate that information to the 

MRLattice.

MRLattice functionality should prove particularly useful for applications requiring 

Level of Detail (LOD) functionality. For example, when visualizing a terrain, areas 

distant from the camera point are rendered very coarsely to the screen. Retrieving fine 

resolution data is wasteful in this case. Instead, the application should decide the 

appropriate resolution for various regions of the terrain, and use MRLattice to choose the
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resolution of the data to be rendered.
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C H A P T E R  4

T H E  D A T A S O U R C E  L A Y E R

4.1 Datasources

Lattices provide the scientist with a conceptual view of his or her data that should be 

consistent with the operations that need to be applied to the data. In principle, this 

conceptual view is reflected in the organization of the physical data. In practice, 

however, this is often not feasible. The scientist may need different views of the same 

data and the data may be too large to replicate and reorganize to match each desired view. 

In general, multisource data and distributed computing require sophisticated ways of 

dividing large files into smaller pieces while maintaining a simple view of the distributed 

data. The datasource layer helps the lattice perform these tasks, but also provides useful 

functionality as a stand-alone tool.

4.2 Mapping Lattices to Data

A lattice is able to map locations in the geometry to locations in the topology. It

remains to map topological locations to offsets in file or network streams. A datasource
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provides the lattice with a single, unified view of multisource data. This simplifies the 

mapping from topological locations to file and network stream offsets.

Some datasources are directly associated with a local file or remote source, and are 

known as physical datasources. Other datasources are composite, meaning they are made 

up of more than one component datasource. For example, a datasource that performs an 

attribute join would be composite. It is possible to perform very complex operations by 

combining several datasources together in a tree structure, with the root datasource at the 

top of the tree providing the lattice with an abstract, cohesive view of the data.

4.3 Datasource Model

A datasource can be modeled as an n-dimensional array containing a set of lattice 

sample points A. We think of arrays as an index space I  paired with a collection of 

associated data values. An index space can be expressed as the cross product of several 

indices, each defined as a finite subset of the integers:

/  = /1x / 2x.. . /„

where each Ik is an integer in the range [ak... bk]. When a datasource is used as a lattice 

component it is necessary to define a mapping of the index space I  to the lattice domain 

D. It is not necessary for the dimensionalities of I  and D  to match. If these 

dimensionalities do match, then the neighborhood relationships present in the lattice may 

be reflected in the adjacencies present in the datasource index space. In other cases, there 

may be no simple pattern in the distribution of A in D, so more effort is needed for the 

lattice topology to map points between D  and /.

Datasources must handle two basic kinds of queries. A datum query specifies a single 

location in the index space, and is satisfied by the return of a single datum. A subblock
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query specifies an n-dimensional rectangular region of the index space, and is satisfied by 

the return of a data block, which is conceptually an array of datums with a dimensionality 

matching the datasource.

The remainder of this chapter describes the various conceptual and design issues 

relevant to physical and composite datasources. Finally, we examine Granite support for 

rectilinear adaptive and variable resolution data at the datasource level.

4.4 Attribute Join Datasource

An attribute join datasource is a composite datasource for which each sample point is 

composed of attributes taken from two or more component datasources. If  A is the 

attribute set o f an attribute join datasource, then we say:

where At are the attribute sets of the component datasources.

For example, suppose dsl is a datasource with attributes {salinity, pH, oxygen} and 

ds2 is a datasource with attributes {temperature, depth). If  these two datasources are 

combined by an attribute join datasource ds3, each point in the index space of ds3 has 

attributes {salinity, pH, oxygen, temperature, depth). Such an operation is particularly 

useful when data has been organized into separate files, perhaps because it was gathered 

by different instruments. However, an attribute join can only be applied if the component 

datasources have compatible index spaces. For example, the index spaces of all 

components may be identical. Alternatively, congruent subsets could be taken from each 

component and used for the join.
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4.5 Blocked Datasource

A blocked datasource is a composite datasource in which the index spaces o f the 

component datasources are joined together to form a single index space. The components 

must have compatible attributes. For example, consider four datasources dsl through ds4 

that might represent several contiguous satellite image files, as shown in figure 4.1. Their 

index spaces can be joined together in the fashion shown by ds5, a blocked datasource, 

producing a single index space that can be manipulated as a single entity. O f course, a 

blocked datasource can have an arbitrary number of component datasources, allowing 

large amounts of data to be viewed as a single entity, but stored and accessed in a 

distributed fashion.

ds5

Figure 4.1. Four datasources joined by a blocked datasource.

4.6 Physical Datasources

The Granite system employs an abstract model of storage for multidimensional data 

that facilitates the development of efficient data access schemes. Researchers have been 

working for years to reduce the costs associated with disk access, but the Granite model 

allows the user to concentrate on the task at hand without worrying about the details o f  

efficient data access. It is also the framework upon which spatial prefetching is built, as 

described in the next chapter. Taken as a whole, the Granite approach to I/O allows a user
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to access data according to the science being done, rather than the way it is stored on disk.

Figure 4.2 is a conceptual diagram of the relationship between the datasource data 

model and the organization of the data file on disk. The datasource is the representation 

seen by a Granite user, and uses a storage model to help translate the n-dimensional

Other Other

Other

Native

Chunked

Rod
Storage
Model

Physical
Data

Source

Datasource Data Model Storage Models File Formats

Figure 4.2. Granite users interact with the Datasource data model, which employs a storage 

model to help map user operations to operations performed on the file residing on disk.

data space to the one dimensional file space. The storage model can work with more than 

one file format. For example, the rod storage model discussed in the next section 

represents both chunked data files and files that have been left in their native plane-row- 

column order.

4.7 The Rod Storage Model

While the file is a one-dimensional entity, a datasource has an index space that is n-

dimensional. The datasource is responsible for satisfying queries expressed in its index

space by reading data from the file. It must therefore map its index space to file offsets. It

does this with the help of an axis ordering, which is simply a ranking of axes from

outermost to innermost. “Innermost” and “outermost” suggest positions in a set of nested
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for  loops. Axes are labeled with numbers, so an axis ordering is really just a list of 

integers. The axis ordering associated with a physical datasource is called the storage 

ordering. The innermost axis of a storage ordering changes most frequently and is called 

the rod axis. For example, the storage ordering for figure 4.3 would be {1,0} if axis 0 is 

vertical and axis 1 is horizontal. The rod axis is always the rightmost axis in the ordering, 

so in this example, the rod axis is axis 0.

Axis 0 
(Rod Axis)

0 8 1 6 . 2 4 3 2 ■ 4 0 4 8 5 6

1 9 1 7 2 5 3 3 4 1 4 9 5 7

2 1 0 1 8 2 6 . 3 4 ■ 4 2 5 0 5 8

3 1 1 1 9 2 7 3 5 5 1 5 9

4 1 2 * 2 0 i 2 8 ; 3 6 j 4 4 ~ 5 2 6 0

5 1 3 ' 2 1 2 9

—j----
' 3 7 . 4 5

I___ 5 3 6 1

6 1 4 1 22 3 0 3 8 4 6 5 4 6 2

7 1 5 2 3

j----
. 3 1 3 9 4 7 5 5 6 3

Axis 1

Figure 4.3 The numbers represent the offset of each element in the 1 dimensional file space. 

For this two dimensional datasource, the storage ordering is {1, 0}, with axis 0 as the rod axis.

I/O performance depends on the number of separate read requests made to the storage 

device. It is important to minimize the number of reads from disk when satisfying a 

subblock query. Toward this end, the rod storage model views the datasource as being 

conceptually composed of rods. A rod is a one dimensional sequence of elements that are 

contiguous in the index space as well as the file space. Consequently, rods are always 

aligned with the rod axis. Rods can be accessed in a single read operation. When a 

subblock query is processed, the requested region of index space is decomposed into a 

collection of the rod subsets contained entirely within the region. We then retrieve the
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subblock data from disk in rod-by-rod fashion where each rod is read with a single I/O 

operation. In the case where a set of rods is itself contiguous (or nearly so) in the file, we 

issue only one read and retrieve many rods in one disk operation.

It is important to note that the rod storage model is a conceptual view of an n- 

dimensional dataset stored in a one dimensional file. It does not require any reordering or 

reformatting of the data on disk. The main function of this model is to provide a 

conceptual foundation for the prefetching technique described in chapter 5.

In the case where this set of rods is itself contiguous (or nearly so) in the file, we issue 

only one read and retrieve the entire set of rods in one disk operation. Although this may 

mean that some unneeded data is read, the savings in disk latency costs outweighs the 

cost of reading a surprising amount of extra data. On the other hand, a very long read 

operation can monopolize the system bus for a long period, which can be inconvenient for 

applications like animation. The point at which it becomes undesirable to read several 

rods at once therefore depends upon a mix of system characteristics (e.g., average seek 

time and bandwidth for the disk) and also the application that Granite is supporting. For 

these reasons, the Granite system allows the user to control two system parameters.

First, the user may limit the maximum amount of unneeded data that can be read in order 

to eliminate separate read operations. Second, the user may set the maximum amount of 

data that will be read in a single operation. These parameters can be given default values 

that are tuned to a particular installation.

4.8 File Formats and the Rod Storage Model

The rod storage model can be applied to more than one file format, as long as certain 

basic requirements are met. Consider a rectilinear partitioning of the n-dimensional index
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space. The rod storage model can be applied if partitions that are adjacent in some axis 

can be read from disk with a single read. Files which are stored on disk in simple plane- 

row-column format trivially satisfy this condition if we consider a partitioning in which 

each partition contains only a single datum. We call this the native file format, because the 

file has probably not been preprocessed in any way to increase access efficiency.

The other file format that satisfies the conditions for the rod storage model is the 

chunked file format. Chunked files are preprocessed using a partitioning so that each 

partition is stored as a contiguous chunk of data in the file, as shown in figure 4.4. 

Chunked files are widely used in the scientific computing community because they 

significantly accelerate block access to the data file, especially when the chunk shape 

matches the shape of the block query. The chunked format also greatly reduces the 

performance penalty associated with accessing the file with different orderings.

0 , 1 4 5 8 9 1 2 1 3

2 • 3 6 7 1 0 1 1 1 4 1 5

1 6 1 7 2 0 2 1 2 4 2 5 2 8 2 9

1 8 1 9 2 2 2 3 2 6 2 7 3 0 3 1

3 2 3 3 3 6 3 7 4 0 4 1 4 4 4 5

3 4 3 5 3 8 3 9 4 2 4 3 4 6 4 7

4 8 4 9 5 2 5 3 5 6 5 7 6 0 6 1

5 0 5 1 5 4 5 5 5 8 5 9 6 2 6 3

Figure 4.4 The numbers are file offsets for a 2D file organized into 2x2 chunks.

A brief examination of Figure 4.4 shows how the rod storage model can be applied on 

top o f the chunked file format. The shaded top row of chunks can be read from disk using 

a single read operation that loads elements at offsets 0 through 15. We can therefore 

regard this row of chunks, and others like it, as a rod suitable for use within the rod
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storage model.

4.9 Adaptive and Variable Resolution

The datasource layer supports rectilinear adaptive resolution data, and also supports 

the ability to view uniform resolution data at a different, but still uniform resolution. 

Although this functionality could be handled at the Lattice level, handling the rectilinear 

case at the datasource level produces increased performance and ease of implementation.

The VRDataSource allows the user to specify the resolution at which datum or 

subblock queries will be satisfied. If the resolution is finer than what is available on disk, 

an approximation technique is applied to generate intermediate points. Approximation 

may be as straightforward as a simple duplication of existing points, or could involve 

averaging or linear interpolation. When the requested resolution is coarser than the original 

resolution, we support the request by resampling. This may be just decimation, in which 

some points are simply left out of the query result, or possibly a more complex 

approximation method.

Support for point based rectilinear adaptive resolution is provided by the combination 

of BlockedDataSource and VRDataSource. For each component o f the 

BlockedDataSource, a VRDataSource is placed on top, ensuring that the resolution seen 

by the BlockedDataSource is uniform across all components.

4.9.1 In Core Support for Cell Based Adaptive Resolution Rectilinear 
Data

The Datasource layer also provides support for cell and point based adaptive 

resolution rectilinear (ARR) data through the ARRCellDataSource, ARRCell, 

URCellDataSource, URCellBlock, and ARRCelIB lock classes [Ye04]. Support for in core
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adaptive resolution data is implemented as a tree with leaf nodes containing blocks of 

uniform resolution cell data contained in a URCellBlock object. URCellBlock internally 

maintains the cell data using a plain “point based” DataBlock, and is responsible for 

mapping the cell index space to the point based index space o f the DataBlock.

Figure 4.5 shows an ARRCellDataSource and the corresponding region n-tree used to 

access the various blocks of uniform data. The root node A corresponds to the point

'
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Figure 4.5. a) An ARR Cell Data Source, and b) the corresponding region quad tree, 

in the middle of the space which divides the entire domain into four equal quadrants.

Three of these quadrants contain data of uniform resolution, and are represented with leaf

nodes containing URCellBlocks. The remaining quadrant contains data of two different

resolutions, so it is divided again using the internal node B and the corresponding point in

the domain.
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Figure 4.6. a) An ARR Cell Data Source, and b) the corresponding tree containing three 

different kinds of tree nodes.

More than one kind of tree can be used to construct ARR data. In addition to the 

region n-tree, the point n-tree and k-d tree can also be used to represent ARR data. As 

described in appendix B, the point n-tree differs from the region tree in that internal nodes 

can be split into unequal regions, according to a split point. The k-d tree divides divides 

internal nodes into two parts along one dimension only. The split dimension varies with 

each level of the tree. Modified versions of both n-tree varieties are able to merge adjacent 

regions of the same resolution into a single URCellBlock.

Lastly, we support the ability to mix different kinds of internal nodes in a single tree. 

Figure 4.6 shows a cell dataset along with the corresponding hybrid tree containing all 

three kinds o f internal nodes. Supporting these different node types in a single tree greatly 

increases the expressiveness of Granite’s ARR implementation.
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4.9.2 Out of Core Support for Cell Based Adaptive Resolution 
Rectilinear Data

ARR trees can be written to disk with the aid of three simple data structures stored 

on disk. First, the cell data is stored in a one dimensional file which we call the data array 

file. Next, a data array index file  stores contiguous sequences of indices into the data 

array file. Lastly, the ARR Tree File is a table stored on disk recording several pieces of 

information for each node in the tree, including node type, parent id, domain location, and 

size. It also stores an offset into the data array index file at which a contiguous sequence 

of indices will be found. These indices will be used to access the data array file when 

filling a URCellBlock with data.

4.10 Stencils

We have a prototype implementation of a stencil working in the datasource layer. As 

described earlier in this document, a stencil denotes locations in the domain that are of 

interest to the user, or for which some pre-defined property holds. At the datasource 

level, the domain in question is an index space.

Figure 4.7. An example of our prototype Stencil implementation. The shaded partitions 

belong to the stencil.
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Our implementation uses a partitioning to divide the index space into some number of 

partitions. The stencil itself is simply a list of the partitions that satisfy the stencil 

property. The stencil is constructed by repeated calls to the set() method, which adds a 

partition to the list. After construction, the stencil can be used with a Stencillterator.

This iterator takes on successive values equal to the bounds of each partition in the 

stencil. The user is then able to use this bounds as an argument for a datasource query.

We have tried the stencil on some test datasets, including CT and MRI data, and 

found it reasonably effective. Using a coarse partitioning can be advantageous for 

visualization because the data surrounding the location of interest provides context for the 

user. On the other hand, a finer partitioning more narrowly identifies the areas of interest, 

and may reduce the costs associated with loading and processing unnecessary data.

4.11 Encapsulation and Performance Issues

Since Granite is meant to be used with large datasets, maximizing performance is an 

important goal. Some issues are specific the Java language, but most are applicable in 

other environments. Unfortunately, we must sometimes make small compromises in 

design in order to achieve this performance. For example, several classes in Granite have 

constructors that may take arrays as arguments. It is much faster to use an argument 

array directly in the object, rather than copying its contents to a separate internal array. 

Unfortunately, using the argument directly breaks encapsulation, since it means that the 

environment outside of the object has a reference to an internal data member.

Another example involves the checking of arguments for correctness. Checking may 

include looking for “out of bounds” conditions, and that objects destined to receive data 

have adequate space. Since Granite methods are typically implemented using other

75

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Granite methods, it is unacceptably expensive to perform such checking with every 

method call.

As a compromise, we draw a distinction between public and package access methods. 

Public methods are visible to the Granite user, while package access methods are only 

visible to the package programmer. That is, they can only be called from inside their own 

package. This allows us to check arguments for correctness only when the public method 

is called. The public method then performs its task using only package access methods, 

which perform no checking. Similarly, objects that use references to external arrays and 

other argument types can only be called from within their package. This design results in 

a reduced level of safety within the Granite core, but the performance gains justify this 

cost.

Another implementation issue that has had a profound effect on performance is the 

difference between query methods that take a reference to a datablock or datum as an 

argument, and methods that return a new datablock or datum [JIANG02], Although the 

problem exists for both datum and datablock objects, we concentrate here on the 

datablock case because of the much greater memory requirements involved.

Early work on the datasource layer relied on methods that returned new datablocks, 

and this approach was found to be unacceptably slow. Returning a new datablock for 

each query puts considerable strain on the memory allocation and garbage collection 

mechanisms, adversely affecting performance. The problem becomes most acute with 

composite datasources, since each query is satisfied by further method calls to 

component datasources, each creating a new datablock.

To address this problem, we developed query methods that take a reference to a 

datablock object as an argument. This allows the user to easily reuse a datablock for
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successive queries without repeatedly allocating and discarding memory. It also allows 

composite datasources to pass the argument datablock to each component so that the 

appropriate data values can be written to it.

4.11 Multisource Performance

Performance evaluation studies [JIANG02] show that the implementation provides 

very good performance. In particular, we have shown that our multisource support 

features, attribute and block join, incur very minimal overhead compared to the cost of 

accessing data that has been combined into a single file prior to run time.

4.12 Datasource Metadata

The Granite system has an XML and SQL based mechanism for persistently 

representing the information required to construct a datasource or collection of 

datasources. A detailed discussion can be found in [Mitchell02], but we present a brief 

overview here.

The cornerstone of this mechanism is the File Descriptor Language (FDL) file. FDL 

files are XML based files that describe the contents and layout of a data file. For example, 

the file name, its n-dimensional shape, the attributes and their ordering, and the 

endianness of the data are all recorded in the FDL file. We provide a utility method in the 

DataSource class that allows the user to create a physical datasource from an FDL file.

Granite has a user extendable type mechanism, described in greater detail in appendix 

A. Like the FDL file, the Type Definition Language (TDL) file is written in XML, but 

describes user defined types. For example, a user might define a type called probability 

which has an underlying storage type of float, but adds the requirement that all values fall 

within the range [0,1].
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The Datasource Descriptor Language (DDL) file is also written in XML and describes 

a collection of datasources. Typically, this is used to define a tree consisting of one or 

more composite datasources (such as an AttributeJoinDS) that in turn refer to some 

number of physical data sources. By preserving this information on disk, Granite users 

can assemble the environment needed in order to support their research, and then recall 

that environment the next time it is needed.

For similar reasons, we are also able to store datasource metadata in a relational 

database like mySQL or Oracle. The database stores the same kind of information found 

in an FDL or DDL file, and adds the concept of a Workspace, which stores all the 

datasources, types, and lattices that define a Granite user’s working environment. Users 

can also import data objects from other Workspaces as well as make objects available to 

other users.
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CHAPTER 5

ITERATION AWARE PREFETCHING FOR 

LARGE MULTIDIMENSIONAL SCIENTIFIC DATASETS 

5 Introduction

Multidimensional data presents special challenges when designing efficient access 

methods because elements that are nearby in the data space may not be nearby in the 

underlying data file. This chapter begins with a discussion of an application called Slicer 

that allows interactive exploration of the 39GB Visible Woman dataset from the National 

Institutes o f Health [NIHVH], The problems presented by this large file serves as 

motivation for the spatial prefetching technique described in this chapter.

5.1 Problem

The Slicer application presents the user with an animated display showing progressive 

two dimensional slice planes of a three dimensional volume. The slice axis is orthogonal to 

the slice plane and defines the direction of progression through the dataset. Figure 5.1 

shows the three possible slice axes, which must be aligned with the principal axes. The 

user is able to select the slice axis and the subvolume to be visualized, similar in spirit to

82

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



the volume roaming described in [Bhanarimka02]. Slicer was used with the Visible 

Woman, a dataset with dimensions 5 1 8 6 x l2 1 6 x  2048 with RGB byte values for each 

location, giving a total size o f 39GB.

Figure 5.1. The Slicer application can view the Visible Woman dataset from the three principal 
directions by setting the slice axis equal to axis 0,1, or 2.

When the user chooses to view the volume through slice axis 0, the filesystem cache 

performs quite well, since this view produces accesses that are contiguous in the one 

dimensional file space. The filesystem performs less well with slice axis 1, and is almost 

violently unsuited for the access pattern resulting from a slice axis 2 view.

Figure 5.2 shows a closeup o f the circled comer in Figure 5.1. The numbers in the 

figure indicate the one dimensional file offset of the labeled element. The red region is the 

set of elements contained in the first slice plane for slice axis 2. If  we load only the 

elements in this slice plane, each element requires a separate read since none o f them are 

neighbors in the one dimensional file space, as can be seen by examining the offsets. In
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Figure 5.2. A closeup of the circled corner of figure 1. Numbers indicate offsets in the one 
dimensional file space. None of the elements in the red slice plane are contiguous, and are all 
greater than 4K apart from each other.

fact, even the elements that are closest to each other are about 6K apart, which is larger 

than the 4K page size typical on many systems. This means that if  we render a 

1024x1024 slice plane along slice axis 2, we must load 1024 x 1024 pages o f 4K each, for 

a total o f 4GB. Since very few commodity systems have this much memory available, 

none o f the pages loaded for the first slice plane will be resident when the second slice 

plane is rendered. Those reads will have to be repeated, which leads to a severe 

degradation in performance.

Filesystems also prefetch pages following an explicitly accessed page in the hope that

the prefetched pages will be accessed next and reads to disk will be reduced. In this

example, this just makes the situation worse since Sheer is not proceeding through the file

space in the way the filesystem expects. Prefetching just increases the number of

inappropriate pages loaded, which makes it even less likely that Slicer will benefit from
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resident pages when it loads the next slice plane.

To address this problem, we use knowledge of the future access pattern to load the 

data for many planes at once into a three dimensional array. Contiguous sequences of 

elements are loaded in a single readQ call. This method has several beneficial effects. First, 

it reads more data from each filesystem page, thereby reducing the number of redundant 

reads made to disk. Second, it reduces the number o f readQ calls made to the operating 

system. Third, since the array can be filled in any order, we choose to fill it in a way that 

most closely matches the ordering of the data in the file. This allows Slicer to sometimes 

take advantage of the filesystem prefetching that is otherwise a liability.

5.2 Caching and Prefetching Background

The filesystem cache is does not offer adequate support for Slicer, especially for slice 

axis 1 or 2. The caching and prefetching schemes present in most operating systems do 

not take into account the natural spatial relationships in the data, so they tend to cache, 

discard, or prefetch the wrong information.

Over the last fifteen years there has been a thousand-fold increase in processor speed, 

along with even larger gains in memory and disk capacity. During the same period, the 

size of scientific data sets increased even into the terabyte range. However, the average 

seek time of hard disk drives has improved only modestly over the same period 

[Coughlin, ChangOl]. The work described here is motivated by the need to hide or avoid 

paying the now comparatively high latency or stalling costs associated with modem disk 

drive media. Using our system, a researcher can take advantage of fast I/O performance 

without spending time on the minutiae of efficient file access.

To implement this abstraction while still maintaining efficiency, the researcher must be
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able to define the application’s data access pattern. We are developing a toolkit of 

iterators that succinctly describe the access pattern and also perform the iteration through 

the data space. This access pattern may be purely spatial, or may relate to the locales of 

interesting data values. For spatial access patterns, we can then generate a cache that 

provides a useful speedup to the application.

To the best of our knowledge, our cache design is unique in that its blocks have an n- 

dimensional shape, as opposed to the 1 dimensional pages of file system caches and 

similar methods. N-dimensional cache blocks can be given a shape which is tuned to a 

particular iteration and to the storage organization of the data. We choose a shape which 

minimizes the total number of disk accesses while reading data which is sure to be visited 

in the near future by the iteration. We call this method spatial prefetching, an example of 

iteration aware prefetching

Unlike other methods for achieving efficient I/O performance [Sarawagi94, MoreOO], 

our approach does not require any reorganization o f the data. That is, we can work with 

the original data file, rather than making a copy with a different storage organization. 

Much of the research in informed prefetching [Albers98, Cao96, Fomey02, Patterson95] 

has not directly addressed the special problems of multidimensional access, or taken 

advantage of the extremely regular access patterns common in scientific computation.

The datasource layer handles multidimensional data in which sample points are 

arranged in a regular and rectilinear fashion throughout the domain. As with many other 

scientific databases, the design of the Granite system assumes that update operations will 

be infrequent or entirely absent, so the work described here is aimed toward a read-only 

data environment.
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Figure 5.3. Elements nearby in the numbered iteration sequence are not contained in the same 
page.

5.3 Advantages of the Granite Approach To I/O

Chunking [ Sarawagi94] is the most effective existing general-purpose technique for 

improving access to multidimensional arrays stored as files. The major drawback to 

chunking, however, is that the data must be reorganized using some default chunk size and 

it is very possible that the application program may choose to access the data in an order 

that is not particularly compatible with the chunking that was done. The approach 

adopted by the Granite system works with the original data, and requires no such 

reorganization.

Systems that access the data in pages suffer from not taking into account the 

multidimensional nature of the data. In particular, elements that are nearby in n- 

dimensional space may be far apart in the one dimensional file space. Since paging is 

essentially a one dimensional method, it may be inefficient for an n-dimensional access 

pattern.

Figure 5.3 shows an example o f  a column-by-column iteration through a 2D dataset 

split into pages of 5 elements each. At step 0 of the iteration, the striped page in the 

upper left o f the diagram is loaded into memory. However, the second element in this
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page is not visited until the iteration has reached step 8. Worse, the last element in this 

page is not visited until step 32. This means that if  we are to use all the data read in the 

first page, we must keep this page in memory until much later in the iteration. The same 

argument holds for all the other pages that are loaded as the iteration proceeds down the 

first column. In a real system, the size of the dataset and the pages themselves prohibits 

all these pages being kept simultaneously in memory. Pages must be discarded before all 

the data has been used, and then reloaded at a future time. The problem is a result of the 

one dimensional nature of paging, but a similar argument can be made for chunking when 

the dataset organization is poorly suited to an unexpected access pattern. The work 

described in this paper addresses these issues by creating cache blocks that are n- 

dimensional and shaped according to the iteration.

Many of the caching and prefetching methods meant for the file system level must 

work with little or no explicit information about access pattern. Such algorithms risk 

prefetching the wrong data, or having to make room in a cache by discarding blocks that 

will eventually need to be reloaded. However, the approach described in this paper takes 

advantage of nearly complete information about the access pattern given by our iterators. 

We don’t have to guess which data to prefetch, and we don’t discard needed data before it 

is used. Because of this, the various caches we have developed require at most two cache 

blocks to be maintained in memory at a time, which can extend the reach of an application 

to much larger datasets than would otherwise be possible.

5.3 Iterators

Since our system aims to improve I/O performance based on the actual access pattern, 

we use iterators to represent access patterns, as well as to perform the actual iteration
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through the datasource index space. Iterators have a value that changes with each 

invocation of the iterator’s next() method. This value might denote a single location in the 

index space, or perhaps an entire region. In either case, the iterator value can be used 

directly in both datum and subblock queries.

The pattern of iteration is determined when the iterator is constructed. An axis 

ordering is used to help represent the behavior of iterators that proceed through the index 

space in rectilinear fashion. In this context, the innermost axis of the iteration is called the 

run axis. While the datasource is conceptually composed of rods, the space being 

traversed by a rectilinear iterator is conceptually composed of runs.

The iteration space is the space traversed by the iterator. It may be the entire index 

space o f a datasource, or some subset of that space. We also represent the starting point 

and the stride through the iteration space in cases where the iterator skips over some 

locations. Along with the axis ordering, all this information is useful and available when 

the system creates a prefetching cache tuned to the iteration.

5.4 Iterator Aware Prefetching

A lot of the literature in caching and prefetching aims to identify when to load new 

blocks from disk, and choosing blocks to be discarded. Because we have near complete 

information about the access pattern from the iterator, these problems are vastly 

simplified in our system. We call our approach Iterator Aware Prefetching.

Most caching and prefetching methods view files as one dimensional entities, but this 

view of the data is not adequate for scientific applications involving multidimensional 

datasets because it misses the neighborhood relationships inherent in the data. The
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problem becomes even more acute as the dimensionality of the dataset increases. To 

address this issue we have designed a multidimensional cache that preserves the iterator’s 

spatial data view. The iteration space is conceptually partitioned into an n-dimensional 

array of n-dimensional cache blocks. Data is read from disk one block at a time, and is 

retained in memory to quickly satisfy user queries.

Our system currently implements two different kinds of iterator aware prefetching. 

Threaded prefetching uses a separate I/O thread to fetch the next cache block while the 

current one is being processed. Unlike other systems using I/O threads, we don’t have to 

speculate which block should be read next, because that information is contained in the 

iterator. Currently, we have only implemented and tested threaded prefetching for a 

single disk, so we can achieve at most the doubling of performance that occurs when the 

I/O time perfectly matches the computation time for each block. Even the current 

approach can be very effective in avoiding stalling costs, although with a larger number of 

disks, we may be able to reach even greater improvements in performance, by performing 

several disk accesses concurrently.

5.5 Spatial Prefetching

The second kind of prefetching implemented in the Granite system increases 

performance by adjusting the shape of the cache blocks to minimize the number of 

separate reads made to disk. We refer to this method as spatial prefetching.

5.5.1 Well Formed Cache Blocks

Typically, when a cache needs to load data from disk to satisfy a request, it loads a

larger set o f data in the neighborhood of the original request. Hopefully, the nearby data

can be used to satisfy future requests without returning to the disk. If the pattern of
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future accesses is already known, however, we can choose a cache block shape that 

guarantees that all the needed contents will be used before being discarded. We say such a 

cache block is well formed with respect to the iteration. A more formal definition follows:

Definition D l:

Consider an axis ordering A = {  a„h a„.2, a„<, ...a,), a rectilinear index space region R o f shape B and a 

rectilinear iterator I  that performs the iteration described by A. We say B is well formed  with respect to 

ordering A i f  for all regions R o f  shape B, once iterator I  leaves R, it does not revisit R.

If we can construct a cache containing blocks that are well formed with respect to a 

given iterator, we can be assured that no cache block will need to be read more than once, 

and that once the iterator is done with a cache block, we can discard it. Most iterations 

only require a single cache block to be used at one time. Overlapping block iterators 

require at least two, as does threaded prefetching.

Algorithm A l:

Input:
Iterator Axis Ordering A. = { a„ a„h a„_:, ...a,,},
Iteration region extents S„ =  {So, s,, s,, . . .sj ,  
available memory M

Output:
A set o f  cache block dimensions B = {  b0, bh b2, . . .b j  that represent a cache block shape that is well formed 

with respect to the iterator ordering.

B = {1, 1, 1, ...1}
SB = size o f  B in bytes 
M = M -  SB

begin
for i =  0 to n 

axis = a
if  (SB  • (.s',,.,, - 1) <= M )  then

=  sm„
M = M -  S B '{ s „ „ - \ )
SB = SB • .v„„, 

else
Z>„,„ = M l SB + 1 
leave 

end 
end 

end

Algorithm A l generates a well formed cache block shape for a datum iterator that
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visits single elements in the index space. It must be given the iterator axis ordering, the 

space over which the iterator travels, and the amount o f memory that is available for 

constructing a cache block.

The algorithm works by marching through the iterator’s axis ordering from innermost 

to outermost axis, setting the corresponding dimension of the cache block shape to equal 

the extent of the iteration region along that axis. Below is a proof that algorithm A l 

produces a well formed cache block shape for a datum iterator.

Proof PI:

Claim: Algorithm A l produces a well formed shape B for the given iterator, iteration space, and available 
memory.

Base Case:
A shape with a single element is well formed with respect to A0 = {a,}.

Assumption:
Algorithm A l produces a shape that is well formed with respect to ordering Ak = {  a,, al h ai :, ...a,,}.

Induction Step:
From the iterator ordering, we know that after completing axes a„ through at, the iterator will next 
increment axis aM, and then repeat the iteration described by A,, doing so until the edge o f  the iteration 
space is reached on axis ak,,. From the assumption, we already have a shape that is well formed for A,, so we 
only have to concatenate some number o f  these block shapes along axis a,., to produce a new shape which 
is well formed for A,., = {  attl, ah a„.h The iterator will visit all elements in a region o f  this shape and

not revisit any portion o f it, so the new shape is well formed.

The algorithm and proof can be easily modified to account for block iterators rather 

than datum iterators. Since block iterators represent a sequence of block accesses, we can 

set the initial dimensions of the cache block shape to match a single iterator block. The 

algorithm then proceeds as before. The proof still holds for this case if  we consider an 

element to be a block instead of a single position in the index space. The block version of 

the algorithm can also be used to handle the case where an iterator has gaps or overlap 

between visited elements.
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5.5.2 Practicality

Whether the shape of a cache block is well formed is related only to a particular 

iteration. It is possible that a well formed cache block will not enhance performance with 

a certain dataset because of the way the data lies on disk. In order to guard against this 

possibility, we must check to see if a cache block shape is practical with respect to the 

storage model. We currently only consider the rod storage model, and our definition of 

practicality concerns the extent of the cache block shape along the rod axis.

Definition D2:

A cache block shape is practical  with respect to a rod storage model if it has extent greater than r  elements 

along the rod axis, where the value o f r  is determined by cache overhead and the performance 

characteristics o f the I/O subsystem, and must be at least 2.

This definition is motivated by the fact that in order to get any gain in performance, 

we must reduce the number of reads made to disk. It follows that we must therefore make 

each read longer than would be performed without the cache. The extent of the cache 

block shape along the rod axis determines the length of these reads, so this value must be 

sufficiently long to provide a performance gain, even in the face of cache overhead.

5.6 Examples

Three potential cache block shapes are shown in figure 5.2. The numbered sequence 

indicates a column-by-column iteration over a datasource stored in row-by-row fashion. 

The shaded shape in the upper left is not well formed, and would never be produced by 

our algorithm. This cache block shape is poorly suited to a single block cache because 

step 4 of the iteration will cause the block to be discarded, only to be reloaded at step 8.
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Algorithm A l would extend the block shape all the way down to the bottom of the space 

before attempting to extend it in the horizontal direction.

The middle shaded shape in figure 5.4 does not have this problem, since it extends 

over the full length of the vertical axis. However, this block is not practical and cannot 

reduce the number of read operations. Since the rod axis is the horizontal axis, to fill this 

cache block would require eight separate reads, which is the same number we would 

require with no cache at all.

The shaded shape on the right is much better, since it can be filled with 8 reads of 

length 3. The striped region represents a single rod subset for this block. Depending on 

the characteristics of the platform, this shape may produce a useful increase in 

performance.

Run
Axis

Figure 5.4. For a {1,0} iteration over a {0,1} datasource, the shape on the right is the only one 

which is both well formed and practical.

5.7 File Formats

When the rod storage model is used on top of the native file format, the rods consist 

of a series of datums stored sequentially on disk. We refer to this file format as “native”
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0 8 16 24 32 40 48 56

1 9 17 25 33 41 49 57

2 10 18 26 34 42 50 58

3 11 19 27 35 43 51 59

4 12 20 28 36 44 52 60

5 13 21 29 37 45 53 61

6 14 22 30 38 46 54 62

7 15 23 31 39 47 55 63
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because it requires no preprocessing— the file is handled “as is”. In this situation, using a 

well formed cache block also guarantees that no data is read from disk more than once. 

This is because the cache block is defined in terms o f the same units (datums) as the file 

format.

The rod storage model can also be used on top of chunked files. In this case, the rods 

consist o f a series of contiguous chunks that can be loaded with a single read operation. 

Here, the file format is defined in terms of units different from what was used to define 

the cache block. Because of this, data may be read more than once, even with well formed 

cache block shapes.

There are three possible approaches to this problem. First, we could implement an 

access method that allows data to be read from within a chunk without reading the entire 

chunk. This could save memory by allowing smaller cache blocks, but would greatly 

increase the number of reads necessary.

Secondly, we could allow chunks to be read more than once, making the assumption 

that useful speedups will still be obtained due to a total reduction in the number of reads.

A third approach is to only allow the creation of cache block shapes that will not 

result in any chunk being read more than once. In our current work, we have chosen this 

third avenue. Insuring this condition is straightforward. We only allow cache blocks with 

dimensions corresponding to an integral number of chunks, and for single block caches, we 

require the rod axis dimension to span the iteration space.
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Run Axis
0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 ia 19 20 21 22 23

24 25 26 27 2B 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 48 90 51 52-. 53 54 55

56 57 58 59 60.' 61 *

Figure 5.5. For a {1,0} iteration over a {1,0} chunked datasource, we use cache blocks shaped 

like the lower shaded region.

The heavy gridlines in figure 5.5 represent chunk boundaries, while the three shaded 

regions show potential cache shapes. The top cache shape would be well suited to the 

native file format, but will cause some avoidable reads in the chunked file format because 

it violates our first restriction. In particular, to fill that cache block, we must read the two 

chunks in the top left (containing elements 0,1,8,9 and 2,3,10,11 of the iteration) but then 

only store half of the data read, requiring it be reread when the iteration reaches the 

second row.

To see why the second restriction is necessary, consider the middle block shape in 

figure 5.5. When the iteration reaches step 16, the entire block is loaded and stored, but if 

only one cache block is retained, this block will be discarded at step 20, only to be 

reloaded at step 24. O f course, this situation can be addressed with multiple cache blocks, 

but this will increase the number of reads made to disk. When possible, it is desirable to 

use a single, larger cache block, as shown in the bottom shape of figure 5.5.
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5.8 Example Code

Figure 5.4 shows a small example of a datum iteration using the Granite system. We 

first create the datasource from an xml file that describes such properties as 

dimensionality, size along each axis, and the number of attributes at each location in the 

index space. Next, we define an axis ordering and iterator that will traverse the datasource. 

We are now able to create a cache which is tuned to the iteration we wish to use. Finally,

we create a datum object for retrieving data values, and perform the iteration.

/ /  Create  datasource  
Datasource

ds = Datasource.createDS(“8gig.xml”);

/ /  Create o rdering  fo r  i t e r a t o r  
AxisOrdering

i t e rO rd e r in g  = new AxisOrderingC
new in t [ J { 0 ,  1, 2}

);
/ /  Create an i t e r a t o r  t h a t  t r a v e r s e s  the  e n t i r e
/ /  da tasource
I S I t e r a t o r

i ter=new IS I te r a to r (d s .g e tB o u n d s O , 
i t e r O r d e r i n g

);
/ /  Create  a s p a t i a l  p re fe tch ing  cache for  the
/ /  given datasource  and i t e r a t o r
CacheDataSource

cds = CacheMaker. createCDS(ds, i t e r ,  freeMem);

/ /  Create a datum to  rece ive  data  values .
Datum d = new Datum(ds.getNumAttr ibutesO);

/ /  T raverse th e  e n t i r e  datasource  index space,
/ /  access ing  the  data  through th e  cache.
f o r (  i t e r . i n i t O ;  i t e r .  v a l i d O ;  i t e r . n e x t O  )
{

c d s . datum(d, i t e r ) ;
/ /  Process datum

j

Figure 5.4. Example code for a datum iteration over a cache.

This code is very flexible, and requires very minimal changes in order to work with 

different datasources and iterator orderings. To make the code above work on another file 

o f entirely different size and shape, we only need to change the name of the xml file given 

in the first line of code. The iteration order is just as easily changed, and an appropriate 

cache will be created without further thought from the programmer.

This flexibility is especially attractive in situations where a user wants to process a
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large file using several different traversals. With spatial prefetching, it is a simple matter 

to create caches that are tuned to each iteration. With preprocessing methods, some 

compromise must be made when deciding the chunked format, unless the user is willing to 

make a separate file for each iteration.

5.9 Results

We have run our tests on a variety of machines and found that machines with fast I/O 

show smaller performance improvement simply because the I/O is a smaller portion of 

the total execution time.

We present results from the machine with the fastest I/O available to us. This is a 

single processor Pentium 4 machine with a 2.4GHz CPU and 2GB of RAM running the 

Linux operating system, version 2.4. The disk on this machine is a fast SCSI disk with a 

3.8ms average read latency. Though we show here very substantial gains in performance, 

we got even greater gains on the other platforms.

Linux has a very effective filesystem cache that loads and stores 4k blocks of data 

from disk. O f course, if some or all of a file is already in this cache, stalling costs will be 

greatly reduced or eliminated. The filesystem also prefetches blocks stored following a 

requested block. Such prefetching is based upon a one dimensional view of the file, and 

can perform poorly with multidimensional datasets.

Since the file system cache is persistent across task execution, it is possible for a task 

to request an I/O block for the first time, but still get a cache hit if  another task had 

previously read that block. Although this is a good thing in general, it is problematic for 

our testing environment. In order to give valid and consistent performance statistics, we 

need each test to be independent of what happened previously. We developed a small
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program that effectively "empties" the cache by filling it with blocks from a dummy file 

that is not used in the tests. In addition to guaranteeing a consistent environment by 

always starting with an empty cache, this approach portrays a more realistic behavior 

that a researcher might expect when dealing with very large datasets.

In the following sections, we present results for both datum and block iteration over a 

three dimensional 8GB dataset. On our test machine, running the cp command with this 

dataset takes approximately 400 seconds. The dataset has dimensions 1024x1024x2048, 

where each datum is a single floating point value. Tests were run on both native and 

chunked file formats. In all cases, the files had a storage ordering of {0,1,2}.

5.9.1 Datum Iteration over Native Files

Our datum iteration tests ran code very similar to the example in section 5.8. Table

5.1 compares the execution times for a traversal using no cache with a traversal using a 

128MB cache. Three different iterator orderings are presented. In all cases, the cache 

provides a very substantial improvement in performance. Notice that the {0,1,2} ordering 

shows somewhat less improvement than the other orderings. This is because the 

filesystem prefetches blocks in the same order that the iterator requests them. Filesystem 

prefetching is much less effective for the other orderings, so our spatial prefetching offers 

more improvement. In fact, the non-cache test for {2,1,0} ordering did not complete 

within twelve hours. We determined that the test was making forward progress in a linear 

fashion, but very slowly, due to the awkward nature o f this access pattern. A very simple 

C program that mimicked the access pattern for this test but performed no type 

conversion or copying of data took over 37 hours to run, so we are confident that disk 

access is causing the excessive runtime. We estimate the completion time for the Java
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implementation to be about 100 hours.

Ordering Time without
Cache
(seconds)

Time with
Cache
(seconds)

Speedup

{0,1,2} 5518 777 7.1

{1,2, 0} 10041 1204 8.3

{2,1,0} 360000(est) 9286 38.8 (est)

Table 5.1. Execution times for datum iteration.

Ordering Time without
Cache
(seconds)

Time with
Cache
(seconds)

Speedup

{0,1,2} 556 227 2.4

{1,2, 0} 3518 280 12.5

{2,1 ,0} 10408 2284 4.6

Table 5.2. Execution times for a 643 block iteration.

5.9.2 Block Iteration over Native Files

Block iteration involves loading successive n-dimensional subsets of the data from 

disk. The rod storage model by itself facilitates this form of access, since it breaks blocks 

down into sets of rods. However, spatial prefetching is still able to provide a useful 

performance increase by reading data for many blocks at one time. Table 5.2 shows the 

execution times for a 643 block traversal over the same dataset used in the previous 

section, but with 512MB allocated for the cache. Once again, the {0,1,2} case shows the 

least speedup since the basic iteration order follows the file storage order.

5.9.3 Datum Iteration over Chunked Files

Chunking is a common method for speeding access to spatial data, so it is important
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to compare spatial prefetching alone with the performance of chunked file access. An 

important assumption of our work is that the user access pattern is not known until 

runtime. Although chunking is often done with a particular access pattern in mind, a 

generic chunked format divides the file into chunks equal to the filesystem page size. This 

method provides a substantial performance improvement for most access patterns 

without being tailored specifically to a particular one. We therefore chose to compare 

spatial prefetching with this form of chunking.

Chunking generally requires some kind of cache in order to be effective with datum 

access, so we implemented a simple LRU cache that holds a collection of chunks. We 

compared the performance of our spatial prefetching cache working on top of a chunked 

file against the performance of this LRU cache. In our tests, the memory used for both 

caches is always 512MB.

Ordering Time with 
LRU Cache 
(seconds)

Time with
Spatial
Prefetching
Cache
(seconds)

Speedup

{0,1,2} 3835 3513 1.09

{1,2, 0} 5798 3934 1.47

{2,1,0} 5929 4730 1.25

Table 5.3. Execution times for datum iteration over chunked files.

Table 3 shows the execution times for both caches. Comparing LRU performance

with the cacheless datum iteration described in section 5.9.1, it is clear that chunking is a

very effective technique. However, by applying spatial prefetching on top o f chunking,

we produce some small but useful performance gains, especially in the last two orderings

listed in the table. On machines with larger disk latency, speedup is substantial even in
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the first case.

O f even greater interest is the fact that the performance of spatial prefetching over a 

native file presented in section 5.9.1 is very competitive with the performance o f the 

LRU cache over a chunked file. Although we don’t do as well in the {2,1,0} ordering, our 

spatial prefetching is far superior to the chunked file performance for the other two cases. 

For convenience, we present this comparison in table 5.4. That such performance can be 

achieved without preprocessing or duplicating the file makes spatial prefetching a 

particularly attractive technique.

Ordering Spatial
Prefetching Time 
(seconds)

Chunked File 
Time (seconds)

{0,1,2} 777 3618

{1,2,0} 1204 5385

{2,1,0} 9286 5532

Table 5.4. Datum iteration over spatial prefetching on native files compared with chunking.

5.9.4 Block Traversal over Chunked Files

Our fourth group of tests compared the performance of our spatial prefetching cache 

over a chunked file with the LRU cache on the same file. Table 5.5 shows that spatial 

prefetching over chunked files provides much more meaningful speedup for block access 

than for datum access. Since datum access involves many more cache lookup operations, 

it is likely that in this case, cache overhead erodes gains in I/O efficiency.
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Ordering Time with 
LRU Cache 
(seconds)

Time with
Spatial
Prefetching
Cache
(seconds)

Speedup

{0,1 ,2} 1800 366 4.9

{1,2, 0} 1784 352 5.0

{2,1 ,0} 1900 1048 1.8

Table 5.5. Execution times for a 643 block iteration over chunked files.

5.10 Volume Slicing

We use a simple visualization application to demonstrate the effectiveness of our out- 

of-core data access system. Our application, called Slicer, presents the user with an 

animated display showing progressive two dimensional slice planes of a three dimensional 

volume. The slice axis is orthogonal to the slice plane, and defines the direction of 

progression through the dataset. The user is able to select the slice axis and the subvolume 

to be visualized, similar in spirit to the volume roaming described in [Bhaniramka02], The 

39GB Visible Woman dataset from the National Institute of Health was used in all tests 

described here.

5.10.1 Slicer Implementation

Slicer was implemented in Java 1.4.2 using the jog l OpenGL library. Each slice of the 

volume is rendered by issuing a subblock query to the datasource layer, and then sending 

the resulting data directly to OpenGL as a texture. OpenGL then applies the texture to a 

rectangular shape on screen. There is essentially no processing being done on the data 

itself, except that which is directly related to the I/O. Slicer was run on the same Pentium 

4 machine used for the previous tests. The filesystem cache was once again cleared 

between runs.
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Even with an empty file system cache, file system prefetching is still active. This 

effect is most obvious when the iteration pattern matches the file storage pattern. In this 

case, the file system prefetches the same blocks that our cache strategy identifies for 

prefetching, so we achieve only modest improvement (if any). On the other hand, for 

other iteration patterns we have no way of measuring the negative effect of unwarranted 

file system prefetching.

Slicer includes an optional governor mechanism to provide a maximum frame rate for 

the visualization. This is common with programs that use hardware rendering. The 

governor evens out any inconsistencies in the frame generation and frame rendering 

processes and generally provides smoother, more consistent visualizations when used 

with threaded prefetching. In addition to governor frame rate, Slicer provides user control 

over the type of cache, cache memory size and the slicing axis.

Because the Slicer application is I/O intensive and requires very little computation for 

the rendering, the performance overhead imposed by Java is not a significant factor in the 

total run time. This makes it an effective demonstration of the I/O performance 

improvements that our prefetching method can provide.

5.10.2 Slicer Results

The Visible Woman dataset has dimensions 5186 x 1216x 2048 with RGB byte 

values for each location, giving a total size of 39GB. We compared performance with no 

cache, with spatial prefetching, and with threaded prefetching. For each case, we tried all 

three principal view directions (slice axes). An overview of the dataset and sample images 

from each direction can be seen in Figures 5.7 and 5.8 at the end of this chapter. Figure 5.7 

shows a 4096x1024 overview slice, while figure 5.8 shows several closeup views along all
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three slice axes. Only views along axis 0 are “natural”, in that they correspond to 

photographs of body slices. All other views are synthesized by Slicer.

Table 5.6 shows the maximum frame rates for each of the cases. For these tests, the 

frame rate governor was turned off, and a stable average frame rate recorded. Slicer is able 

to “wrap around” when it finishes an iteration, but we only recorded frame rates from the 

first pass, to minimize the effect of the file system cache.

Slice Axis 
0 1 2

Slice dimensions 
and Cache Size

No Cache

Spatial

Threaded

15.9 1.8 1.6 256 x 256 

32 Slices
14.3 11.9 12.0

20.3 10.0 10.2

No Cache 

Spatial 

Threaded

10.6 0.89 0.04 512x512  

128 Slices
11.2 10.3 2.4

12.4 8.8 2.2

Table 5.6. Frames per second for the plain datasource, spatial prefetching, and threaded 

prefetching caches.

For the first set of tests, the slice had dimensions 256x256, with the remaining 

dimension set to the extent of the entire data volume. Caches were given enough memory 

to store 32 slices. The second set of tests displayed slices of dimensions 512x512, with 

memory for 128 slices given to the multidimensional caches. For axis 0, the performance 

without our caching is quite good, since file system prefetching is very effective for this 

access pattern. It is even slightly better than plain spatial prefetching, since it avoids 

cache overhead costs. However, with the addition of the threaded prefetching we are able 

to show a small but noticeable improvement.

For the other two orderings, the file system cache is unable to match the performance 

of either o f our two multidimensional caches, which are 5 to 7 times greater than the file 

system cache alone.
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When the slice plane includes the rod axis, as with slice axes 0 and 1, each slice can be 

read as a series of long rod reads. However, for slice axis 2, each datum in a slice is in a 

separate rod, which dramatically increases the number of reads. However, our 

multidimensional caches are able to extend the rod length along the slice axis, resulting in 

the performance improvements shown. The threaded cache performs slightly worse here, 

because it has two cache blocks of half the size of the cache doing spatial prefetching 

alone. For axis 2, this means that the rods in the threaded cache are half the size of those 

used with spatial prefetching which entails twice as many disk reads. Using a monitoring 

tool to view CPU load, we noticed that CPU load rises to 100% during disk activity for 

the axis 2 tests, but not for the other directions. This heavy load is likely due to the 

processing required for each read to disk. This makes it much more difficult for our 

threaded cache to show an advantage over plain spatial prefetching in this situation, since 

the application is essentially CPU bound. However, this problem can be overcome if 

enough memory is available. Using a 512 slice cache with axis 2, we got frame rates of 3.6 

for spatial prefetching alone and 4.0 with threaded prefetching.

With the frame rate governor turned off, there is a pause whenever a cache block is 

exhausted and a new block has to be fetched from disk. The pause is lessened but not 

entirely avoided with the threaded slice cache, since the rendering process is able to run 

through a block much faster than the next block can be loaded.

The viewer of an animation is distracted by stops and starts in the motion. With 

threaded prefetching, setting the frame rate governor to the average frame rate results in 

smooth animation. This slows the rate at which the renderer runs through a block, so that 

the next block is ready when it is needed. This situation simulates expected behavior 

when the Granite system is used with a more heavyweight renderer, such as a splatting
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based volume renderer [Westover90]. In the optimal situation, a renderer that takes as 

much time to exhaust a cache block as it takes to load the block will show twice the 

performance with the threaded cache compared to spatial prefetching alone. Since the next 

block is ready just when it is needed, performance should be similar to the case where 

enough RAM is available to hold the entire dataset, even with very large datasets like the 

Visible Woman.

5.11 CDF Performance Comparison

The Common Data Format (CDF) system has been used to store and access scientific 

data for many years [CDF]. Despite the name, CDF is not only a format, but also a 

library for accessing multidimensional scientific data. Like the Granite system, it is 

designed to help researchers concentrate on their science by handling the details of 

efficient access to scientific data.

We have compared the performance of Granite against CDF for several different 

dataset and query sizes. Tests consisted of iterated queries over some or all of a three 

dimensional dataset, similar in nature to those described in section 5.9. Three different 

iteration orderings were used. In almost all cases, Granite substantially outperforms CDF, 

especially when spatial prefetching is used. Although CDF does outperform Granite for 

{0,1,2} traversals with small datasets, Granite shows better performance for large 

datasets, which is the case most important for today’s scientific researcher. Granite’s 

advantages are particularly apparent with {1,2,0} and {2,1,0} traversals over large 

datasets, in which performance is 10-100 times faster than CDF. For a more detailed 

description of these tests and the issues involved, see [ELLIS04].
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Figure 5.7. An overview slice of the Visible Woman Dataset viewed along
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a) a close up view of the waist viewed through b) A view of the right hip joint viewed through 

axis 1. axis 0.

'4

c) The hip joint region viewed through axis 1. d) The hip joint region viewed through axis 2.

Figure 5.8. Several example images taken from the Visible Woman dataset. All images were 

produced using a 512x512 slice size. Only 4b is a “natural” image, the other views are 

synthesized by Slicer.
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK

6.1 Contributions and Conclusions

This document describes a collection of important contributions to the field of 

scientific databases. The formal Granite scientific data model provides a novel, 

comprehensive, and conceptual view of a wide range of very complex scientific data. That 

model served as the basis for the implementation of the Granite scientific database system 

which has validated the practicality and feasibility of the model.

The Granite model is unique in that it defines dataset geometry and topology as 

separate conceptual components of a scientific dataset. We provide a novel classification 

o f  geometries and topologies that has important practical implications for a scientific 

database implementation. Unlike the systems commonly in use today, the Granite model 

also offers integrated support for multiresolution and adaptive resolution data as well as
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both point and cell based data views.

The datasource portion of the Granite model offers several further contributions. In 

addition to providing the user with a convenient conceptual view of rectilinear data, it also 

offers support for multisource data. Data from various files or network sources can be 

combined using an attribute join  or block join, thus providing an alternative view of the 

data without physically copying or moving the data. The rod storage model is an 

abstraction for file storage that has proven an effective platform upon which to develop 

efficient access to storage.

The Granite System is our implementation of the Granite model, and is not only a 

working system that provides useful and novel functionality, but also serves to validate 

the effectiveness and feasibility of the model. The system supports both unstructured 

trimesh datasets and n-dimensional rectilinear datasets. With the help of the datasource 

layer, the Granite system also handles adaptive resolution for rectilinear cell and point 

based data.

Our spatial prefetching technique is built upon the rod storage model, and 

demonstrates very significant improvement in access to scientific datasets. Together with 

a set o f convenient iterators, it not only speeds access to datasets, it also allows machines 

to access data that is far too large to fit in main memory. These improvements, which 

apply to both chunked and native data files, bring the extremely large datasets now being 

generated in many scientific fields into the realm of tractability for researchers using 

conventional equipment.

Our implementation of the Datasource layer shows remarkable performance in several 

common situations, and demonstrates the effectiveness of our ideas. Datasource support 

for multisource data allows the scientist to work with separate datasets as a single entity.
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Adaptive resolution support can greatly reduce required storage space and I/O costs by 

reducing the resolution of regions that are not of interest to the experimenter. We also 

allow both point and cell based views of rectilinear datasets.

Datasource performance has been verified with both artificial data and with real world 

data such as the 39GB Visible Woman dataset, providing effective out-of-core access to 

data that is far too large to fit in main memory. We have demonstrated the datasource 

layer’s speed advantages, especially when spatial and threaded prefetching are used.

Using the Datasource layer also allows an experimenter to access data in the way that is 

most convenient for doing the science, secure in the knowledge that disk access is being 

performed efficiently.

We have validated many of the ideas presented in our model of scientific data with our 

implementation of the Lattice layer . The Lattice supports rectilinear data via the 

Datasource layer, and adds support for unstructured data represented as meshes of 

triangles. It allows the user to access the data through a geometry, providing 

approximated data values for locations that are not sample points. It also allows the user 

to iterate directly over the topology, retrieving successive cells for use in rendering or 

further analysis.

6.2 Future Work

The Granite system provides many exciting opportunities for future work. Many of 

the lessons learned in the Datasource layer can be applied to the Lattice layer, enhancing 

performance for unstructured data. In particular, the partitions already employed by the 

Lattice topology can be made to fit the rod storage model. This should allow us to apply 

spatial prefetching to unstructured data, including tetrahedral cell data when support for
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that format is completed.

We are currently implementing a remote datasource, a new datasource that allows 

transmission of data over a network. Since spatial prefetching achieves its performance 

improvements through reducing latency costs, we believe this technique will be 

particularly fruitful for distributed data, due to the high latencies encountered in a 

networked environment. In fact, the addition of the remote datasource, coupled with 

spatial prefetching, should allow us to make contributions in the emerging field of grid 

computing.

Another promising area is the expansion of our toolkit of iterators. We currently have 

the rectilinear iterators described in this document, and a RayCastinglterator for rendering 

volumetric data. In the near future, we would like to add a slice iterator in which slices 

need not only be aligned to the primary axes, but can be defined for any orientation.

Taken together, these various projects will expand the scope of Granite considerably, 

adding support for more types o f data and access patterns, as well as distributed 

computing. Granite has already enabled us to contribute to the field of scientific 

databases, and it promises to be a solid platform on which to base future research.

113

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



APPENDIX A

G R A N I T E  F O U N D A T I O N S

The Granite System uses a collection of supporting classes that are used throughout 
the system to perform certain basic tasks. Many of these classes are defined in the 
common package, a Java package containing classes that are used by both the Lattice and 
DataSource layers of Granite. Some classes in the common package are parent classes 
refined by child classes inside the Lattice and DataSource packages, while others are used 
directly.

A .l Encapsulation and Performance

Since Granite is meant to be used with large datasets, maximizing performance is an 
important goal. Unfortunately, we must sometimes make small compromises in design in 
order to achieve this performance. For example, several classes in Granite have 
constructors that may take arrays as arguments. It is much faster to use an argument 
array directly in the object, rather than copying its contents to a separate internal array. 
Unfortunately, using the argument directly breaks encapsulation, since it means that the 
environment outside of the object has a reference to an internal data member.

Another example involves the checking of arguments for correctness. Checking may 
include looking for “out of bounds” conditions, and that objects destined to receive data 
have adequate space. Since Granite methods are typically implemented using other 
Granite methods, it is unacceptably expensive to perform such checking with every 
method call.

As a compromise, we draw a distinction between public and package access methods. 
Public methods are visible to the Granite user, while package access methods are only 
visible to the package programmer. That is, they can only be called from inside of their 
own package. This allows us to check arguments for correctness only when the public 
method is called. The public method then performs its task using only package access 
methods, which perform no checking. Similarly, objects that use references to external 
arrays and other argument types can only be called from within their package. This design
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results in a reduced level of safety within the Granite core, but this problem can be largely 
addressed with the assert construct, recently introduced in Java 1.4.

A.2 Representing Locations in Multidimensional Space

Both the Lattice and DataSource layers use a conceptual data model in which data 
populates an n-dimensional space. However, the Lattice space is continuous, and is 
typically represented using Java’s float primitive type. The DataSource space is discrete, 
and is typically represented using Java’s int type. In either case, we require objects that 
specify a single location in this n-dimensional space. The common package contains a 
SpacelD class that serves as a parent class for both the DataSource IndexSpacelD and 
Lattice Point classes. As of Java 1.4.2, there is nothing resembling the template 
mechanism of C++, so the difference in primitive types means that relatively few 
methods can be specified in this base class. However, the upcoming Java 1.5 specification 
includes generics which allow the declaration of parameterized types. With this addition, 
the code which is essentially duplicated in the Point and IndexSpacelD classes can be 
moved down into the common package, yielding a design which is both cleaner and easier 
to maintain.

Currently, the SpacelD class contains methods for setting axis values, returning the 
dimensionality of the space, and cloning the object. Methods for setting axis values and 
performing arithmetic operations on them must be specified in the Point and 
IndexSpacelD classes, defined in the Lattice and DataSource packages. In the DataSource 
package, the IndexSpacelD class adds abstract methods for getting coordinate values, and 
several implemented methods for simple arithmetic operations like addition, negation, and 
comparison. There is also an assign() method that is available only from inside the 
DataSource package. This method can take a reference to an array of integers as an 
argument, and use the array directly in the IndexSpacelD, avoiding the cost o f copying 
into a separate array. In the Lattice package, the Point class has functionality essentially 
identical to IndexSpaceld, but the axis values are represented using an array o f floats 
instead of ints.

A.3 Representing Regions in Multidimensional Space

In addition to single locations in the index space, Granite also needs an efficient 
representation of hypercubic subregions of the index space. We call such regions bounds. 
The Bounds class in the common package serves as a parent class for the GBounds class 
in the Lattice layer and the ISBounds class in the DataSource layer. As with SpacelD, 
very few methods can be specified in this base class because of type conflicts. ISBounds 
is conceptually a pair o f IndexSpacelDs denoting the lower and upper comers of the 
rectangular region. The class is actually implemented using two arrays of integers, which 
increases performance by reducing internal method calls. The GBounds class in the
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Lattice package is similar to ISBounds, except that it uses an array of floats to represent 
the comers of the region.

The ISBounds and GBounds classes have a large number o f methods handling 
operations such as assignment, volume, intersection, scaling, translation , splitting, slicing, 
and projection. They also have boolean predicates for equality and containment, and more 
esoteric concepts. For example, the Granite user can ask if a shape is a “slice” of an 
ISBounds object. This predicate returns true if the shape is the same as the ISBounds in 
all dimensions except one. In that remaining dimension, the shape must have smaller 
extent than the ISBounds.

Lastly, stencils are yet another representation of n-dimensional space. As described in 
our model, stencils are a way of denoting a disjoint set of regions within a 
multidimensional space that are of interest to the user. Granite currently has a simple 
stencil implementation in the DataSource package that works for regular rectilinear data. 
This implementation consists of a list of ISBounds denoting regions of interest. The 
stencil class allows ISBounds objects to be added to the list as new regions of interest are 
discovered. Later, the list can be iterated over, returning each region in turn.

A.4 Iterators

Iterators play a crucial role in the Granite system. They are not only an important 
part of the user interface, but they are used extensively in the Granite core. The two kinds 
of iterators used most extensively in the DataSource implementation are ISIterator and 
ISBoundsIterator. The value of an ISIterator object is always an IndexSpacelD denoting a 
single location in the index space, while an ISBoundsIterator has an ISBounds value that 
denotes a rectilinear subregion of the index space. In either case, it is possible to specify 
an iteration that contains gaps between the iterator elements, and for ISBoundsIterator, 
the bounds produced may overlap. Currently, both forms of iterator always proceed from 
lowest index to highest index for any dimension. Variations such as a “zig-zag” iteration 
or backwards iteration are perfectly possible, but have not yet been implemented.

In the Lattice package, GIterator and GBoundsIterator correspond closely to 
ISIterator and ISBoundsIterator, yet work in the continuous geometry space. 
GBoundsIterator presents some special implementation problems caused by floating 
point error. Figure A .l demonstrates one possible consequence of floating point error in a 
naive implementation.

Figure A.1. A GBoundsIterator problem caused by floating point error. The last shaded square 
should not actually be in the iteration.

In this figure, there should only be six squares spanning the upper row of the 
iteration, but because of floating point error, each square is slightly to the left of its 
proper position. This error accumulates as the iteration proceeds. By the time the end of
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the row is reached, an extra (shaded) square is necessary to span the space. For some 
applications, this can be very undesirable behavior.

The solution to this problem is to implement the iterator so that error does not 
accumulate. In addition, there are two kinds of Boundslterators in the Lattice package. 
GBoundsGaplterator is meant for iterations with gaps between the blocks. In this 
implementation, an integer index is computed, and then multiplied by the appropriate 
dimensions to produce the correct bounds value. Since the iterator value does not depend 
on a previous floating point value, accumulation of error is no longer a problem. The plain 
GBoundsIterator handles iterations with no gaps between bounds. Here, the 
implementation is similar, except that the upper axis value for a bounds is simply 
assigned to the lower axis value for the next bounds. This ensures that there is no 
possibility of a gap between bounds when none is desired, and still avoids the problem of 
accumulated error.

A.5 Types

Representation of data types is an important part of working with diverse kinds of 
scientific data. The Granite system supports the 10 primitive types defined in the Java 
language, as well as a record type that allows the definition of compound types, 
analogous to a struct in C. Users can give names to types for their own convenience, and 
can specify a range of allowable values.

Perhaps the most important class in the Granite type system is the RecordDescriptor 
class. This class is used in two different ways. First, it is used to describe the structure of 
a compound type, denoting the names and types of fields. Second, it is used to describe 
the field structure of a Datum or DataBlock object. Each field described by the 
RecordDescriptor is represented by an AttributeDescriptor, which contains a field name 
and type. An important part of the type specification is the storage type required. That 
is, even when a type is user defined, there must be some underlying Java primitive type 
that is used to represent the information both in memory and on disk.

Using its collection of AttributeDescriptors, a RecordDescriptor object can support a 
large number o f methods, many of them extremely important to Granite system 
performance. For example, the methods getStorageTypesQ and getByteOffsetsQ return 
arrays representing the storage type and locations for fields inside a datum, and are used 
when data is read from disk. These methods increase performance by taking advantage of 
information precomputed in the RecordDescriptor constructor.

When handling user defined types, both the RecordDescriptor and 
AttributeDescriptor classes require the assistance of the TypeTable class. This class 
stores the definitions of all user defined types. When a user type is inserted, the 
TypeTable object checks to see if the type name is already in use. If so, it verifies that 
the old and new type definitions are structurally equivalent, issuing an error if  they are 
not. Once a type has been inserted into the table, it can be looked up by name, or by a
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type code, which is essentially an index into the table. The TypeTable class is part o f a 
larger scheme which allows a Granite user to maintain a Workspace representing a 
persistent metadata environment that can be saved to disk or to a relational database such 
as MySQL or PostGres.

Two remaining classes help to specify which fields are required to satisfy a query 
made to a DataSource or DataBlock object. The FieldlDMapper class represents a 
mapping of fields between two datums. Fields are specified using simple integers 
indicating their order in the datum. Internally, the mapping is represented using two 
parallel arrays of integers.

FieldlDMapper allows queries in which only a subset o f the available fields are 
retrieved, and then mapped to an arbitrary location in the datum receiving the values. Of 
course, with subblock queries, the datum is purely conceptual, and this mapping is 
applied to an entire DataBlock.

The RecordSpec class is used in very much the same way as a FieldlDMapper, but is 
somewhat more convenient, though less expressive. This class also expresses a mapping 
between two datums, but here the mapping is expressed using only a single list of 
integers, denoting the fields that should be extracted. These fields are then placed in the 
receiving datum in the order in which they appear in the RecordSpec.

A.6 The Datum Class

Objects o f the Datum class are used to represent values at a single location in the 
index space. A Datum object is implemented as an array of some primitive type such as 
short, int, or float, where each element of the array represents a field  of the datum. In the 
common case where the fields of the datum are all of the same type, this implementation 
is very efficient. If the fields are conceptually o f different types, a collection of access 
methods allow values to be cast to the proper conceptual type. This is effective in many 
instances, but may cause trouble when a conceptual field type cannot be represented with 
complete accuracy by the Datum array. For example, the ShortDatum class internally 
represents the fields as an array o f the Java short type, but also provides a getFloatQ 
access method that returns a field as a float. Clearly, only a small subset of the values 
representable by float are properly representable by short.

Although not yet implemented, a proposed ByteDatum class would allow any 
primitive type to be extracted from an array of raw bytes. This approach solves the 
problem outlined above, but introduces new costs associated with the extraction. With 
data of uniform type, type conversion is done in bulk when the data is read from disk, 
which greatly improves performance. With ByteDatum, conversion is performed when 
data is accessed, and on vastly smaller units. For this reason, we have so far concentrated 
our research on the more common uniform case.

118

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



A.7 The DataBlock Class

The DataBlock classes are used to represent a collection of data values corresponding 
to some rectilinear region of index space. DataBlocks store data in arrays of some 
primitive type, and allow the user to access data either by retrieving it using a Datum 
object, or by returning a reference to the storage arrays themselves. The first method is 
conceptually easier, but the second method is generally much faster. There are two 
important kinds of DataBlock. A BasicBlock contains a single array o f a primitive type. 
This alone is enough to handle datasets that consist of one type, even if there are multiple 
fields to the data. The CompositeBlock is used when a dataset consists of multiple 
primitive types. A CompositeBlock actually contains references to two or more 
BasicBlocks, one for each unique primitive type in the dataset. When asked for data, the 
CompositeBlock is responsible for determining which of its component BasicBlocks are 
relevant, and then translating the query appropriately for each component.

DataBlock queries fall into two types. The datum query takes a IndexSpacelD as an 
argument, and is satisfied by the return of the single datum found at the corresponding 
location in the DataBlock’s index space. The Datum itself is usually passed by reference 
and the proper values filled in, but there is also a form of the datum query that will return 
a new datum. The pass by reference form is preferred, since it can be used repeatedly 
without additional load due to memory allocation and garbage collection.

The subblock query takes an ISBounds as an argument, and is satisfied by the return 
of a DataBlock filled with the data found at the specified region of the index space. As 
with the datum query, it is better to use the form which takes a DataBlock as an 
argument rather than the form which returns a newly constructed data block. For both 
subblock and datum queries, it is also possible to specify that a subset of the available 
datum fields should be returned, using either the RecordSpec or FieldlDMapper classes 
described in section A.5.
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APPENDIX B

SCIENTIFIC DATABASES

B .l Scientific Databases

It is the job of the scientific investigator to develop hypotheses that explain the 
natural world. An important part of a scientist’s work is to collect data either from the 
real world or from simulation, and compare this data with values predicted by the 
hypothesis. Since it is important not to contaminate the collected data in any way, 
scientific datasets are not usually modified once they have been loaded into the database 
system. Data may be viewed in different ways, but the values themselves are not 
changed, although new derived datasets are often created. In contrast, an important part of 
traditional databases is the update operation, which changes existing values.

Defining scientific data, and therefore scientific databases, is not straightforward. It is 
perhaps wisest to say that whether a given dataset is “scientific” depends upon how it is 
being used. For example, information on student grades maintained by a university 
registrar is not scientific data. However, if  that same information is used as part of a 
sociological study of the effect of family income on academic performance, then it may 
be. Perhaps we can say that whenever data is being used to support or refute a 
hypothesis, the data is being used scientifically. This can’t be the whole story, though, 
since a scientist may not always have a particular hypothesis in mind when examining a 
dataset. Forming a hypothesis may be the very reason for the examination. However,
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something does distinguish the ways a registrar and sociologist use data. The registrar 
already knows all relevant relationships between items in the database. In contrast, the 
point o f the sociologist’s inquiry is to find new relationships within the data. Therefore, 
perhaps we can say that data is scientific when not all the relevant relationships within 
the data are known.

This view of scientific data resonates well with the opinions of other researchers. For 
example, Pfaltz et al. [PFALTZ98] list three features of scientific data, in addition to large 
size:

1. In the scientific database both the entities and the relationships between them 

are more complex than those found in traditional databases.

2. Scientific databases are not usually transaction oriented, since observations are 

almost never updated.

3. Retrieval of data is often “volumetric”.

To point one, we would add that the relationships are not only complex, they are 
often initially unknown. The database should assist the researcher in their discovery. As 
new relationships are discovered they are stored in the database as metadata, the topic of 
the next few sections. Pfaltz’s third point is addressed beginning with section 2.4, where 
we discuss the notion of dimensional data.

B.2 Metadata

While users of traditional databases are interested in updating and adding to existing 
data, the scientist is often more interested in adding metadata to the system. Defining 
metadata is not a simple task, and the meaning of the term tends to vary from field to 
field. Very generally, metadata is information about data. Cathro [CATHR097] comes 
from the field of library science, and is particularly concerned with online retrieval of 
information. He claims that “an element of metadata describes an information resource, or 
helps provide access to an information resource.” This definition is clearly geared toward 
locating material on the World Wide Web, or perhaps an online library catalog. However, 
he points out that metadata can also be considered data in its own right. He gives the 
example of a film review, which on one level is a description of an information resource 
(the film), and on another level is a resource in itself with an author and perhaps even a 
copyright. Even though Cathro is writing about library science, he points out the central 
problem with any definition of metadata: whether a piece of information is data or 
metadata is not a property o f the information itself, rather, it depends upon how we are 
using or viewing that information at the time.
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B.2.1 Kinds of Metadata

Within the metadata category, there are still further distinctions to be made. Structural 
or syntactic metadata describes the types and layout of information in a database, 
whereas semantic metadata describes meaning and relationships within the data 
[BERG93,KA093], Since all structural metadata is known even before the database is 
populated with data, we say it can be known a priori. Database designers refer to 
structural metadata as a schema. In traditional databases, the semantic metadata is also 
known a priori. However, the same cannot be said of a scientific database. Indeed, as part 
of the process of hypothesis justification, the relationships between different elements of 
the database must be discovered.

Depending on their application, different researchers have slightly different ideas 
about what constitutes metadata and how a system should use it. This section reviews 
several researchers thoughts on the metadata in different areas. W e’ve chosen to discuss 
metadata issues in data mining, scientific data analysis, and Geographical Information 
Systems (GIS) since these areas all have some relevance to scientific databases.

B..2.1.1 Metadata fo r  Database Mining

Cleary et al. [CLEARY96] discuss their ideas on metadata within the context of 
database mining. They divide metadata into three main groups. Data type information, 
relational metadata, and statistical metadata.

Data type information indicates whether an attribute is real, integer, string, data, etc. 
For continuous data (represented with a real), the data type information must also 
indicate whether the type contains a zero point, is linear, and any other information that 
defines the type. Cleary claims that continuous data types are always ordinal and 
numeric. Such factors determine what kinds of operations can be performed on the type, 
and what metadata can be collected for data of that type. For example, if  a type does not 
have a zero point, the absolute value operation is meaningless. If a type is not linear, it is 
difficult to meaningfully compute averages and standard deviations. Relational operators 
like less than or greater than can only be used on ordinal data.

As an example of continuous data type information, consider an attribute of type 
radians. Such an attribute has a zero point, but is circular in structure, rather than linear.
It could be argued that describing a value as being in radians is metadata, and describing 
radians as being circular is meta-metadata. Common usage just lumps everything except 
the data value into the metadata category, however.

Discrete data types are even more complicated to describe because we can not assume 
very much about them. Such data may or may not be ordered, linear, or have a zero point. 
It may be numeric, alphabetic, or enumerated. Cleary points out that a discrete type 
allows us to group data according to that type. For example, since age (in years) is 
discrete, we could group vegetarians by age. Grouping according to a continuous attribute 
is not likely to be useful, since very few entities have exactly the same value for that
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attribute.
Cleary warns that enumerated data types are very easy to mishandle, especially in an 

automated system. Enumerated data is represented with integers, but is not really ordinal 
or numeric. For example, he encodes three colors as {red=l,blue=2,green=3}. It would be 
inappropriate to say that red+ blue=green, or that red<blue. The underlying reason is that 
the information is categorical, i.e., it identifies a category. The integer codes are used only 
for internal representation, and are not meant to be treated as numeric data.

The second type of metadata Cleary considers is relational metadata, which specifies 
a relationship between two or more attributes. These relationships are divided into three 
kinds: the meaning, causal, and functional relationships.

A meaning relationship between two attributes x and y indicates that the relationship 
only makes sense when applied to both x and y. Cleary uses the example of Milk 
Production, an attribute which measures how much milk a cow produces. This attribute 
has a meaning relationship with cow-identifier, herd-identifier, and farmer-identifier, and 
no other attributes.

A causal relationship indicates that some x causes y. Such relationships are especially 
important for Cleary, since he is concerned with automated rule generation. Such a 
relationship could also be important for a scientific database.

A functional relationship exists between two attributes if  one attribute determines the 
other. For example, in an employee database, id_number implies name, since if we know 
an employee’s identification number, we know his or her name. It is important for 
automated systems to be aware of functional relationships so that they do not waste time 
generating relationships that are already known, or are redundant.

The third kind of metadata that Cleary describes, statistical metadata is used to help 
“massage” data for analysis. For example, information that is used to identify and remove 
outliers from a dataset is statistical metadata. Also, it is common to classify data according 
to some attribute. A typical example would be the division o f homeowners into low- 
income, middle-income, and high-income classes. Many systems require the attribute 
used for this classification to be discrete. If the classification attribute is actually 
continuous, it must be discretized using statistical distribution and standard deviation 
information to put values into different “bins”. If the statistical information can be stored 
as metadata, the process of discretization can be accelerated.

B..2.1.2 Metadata fo r  Scientific Data Analysis

Kapetanios et al. [KAPET95] describe the use of metadata in a system meant to 
analyze scientific data. They are particularly interested in using scientific databases to 
support the scientific experimental process, and have developed a taxonomy of scientific 
metadata. Like other researchers, they lament the difficulty of rigorously defining 
metadata, but quote from Tsichritzis [TSICH77]:

It’s important to realize the distinction between data and information. Data are facts
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collected from observations or measurements. Information is the meaningful 

interpretation and correlation o f data that allows one to make decisions.

Kapetanios et al. conclude that metadata therefore lies somewhere between data and 
information. More specifically, they consider metadata to be “data or information that is 
used to provide information going beyond data or to address information related to source 
data.”

Some metadata is already known at the time the data is gathered. For example, 
Cleary’s data type information can be known a priori, before an experiment is conducted. 
Other metadata is actually derived from an analysis of the data. This kind of metadata is 
particularly important in scientific applications, since it represents new knowledge. 
Kapetanios divides metadata for scientific applications into nine groups. The first four are 
a priori definable and are listed below:

• M e a s u r e m e n t s  a n d  o b s e r v a t io n s —  refer to instances of observed data;

• T r a n s fo r m a t io n  p r o c e s s e s —  describe processes that transform data in some 

way;

• G e n e r a t io n  h is to r ie s —  describes how data was derived, specifying the 

original data and the transformations used; and

• B a c k g r o u n d  k n o w le d g e —  a set of beliefs or knowledge about the scientific 

environment, other than those under study.

The next two are not a priori definable, and must be generated during exploration; they 

represent new scientific knowledge.

• E x p e r im e n t a l  L a w s—  despite the name, these are the relationships between 

observed variables inferred from the experimental data; and

• A n o m a l ie s —  these are experimental laws that appear to contradict a theory 

or hypothesis.

Lastly, the following three are partly definable a priori. That is, unlike the previous two, 

it’s possible to partly or even fully specify them before the experiment begins, depending
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upon the particular circumstances. However, they may be updated or modified after 

experimental results are obtained.

• T a x o n o m ie s —  used to organize concepts into a hierarchy or some other 

partial ordering. This information is used to guide the extraction of new 

knowledge.

• T h e o r ie s /h y p o t h e s e s —  A scientist’s hypothesis regarding the phenomenon 

under study. This differs from experimental laws because a hypothesis may refer 

to entities or concepts not contained in the database.

• E x p e r im e n t  M o d e l—  The conditions that each run of an experiment is 

conducted under. Weather, temperature or humidity are all examples of this kind 

of data.

Kapetanios et al. see metadata as performing three functions: data management, 
access, and analysis. Since a scientific database should have strong support for data access 
and analysis functions, Kapetanios advocates the use of a “metadata database”—  a 
database designed specifically for the storage and use of metadata. Such a database should 
provide management facilities appropriate for the metadata (knowledge structures) and 
knowledge representation formalisms. It must aid data access through support of 
metadata queries using extracted knowledge to help find relevant datasets. Data analysis is 
a crucial part of using extracted knowledge in this way.

This metadata database is organized as a network of metadata servers and processors. 
Each database server holds one or more of the metadata types listed above. Any pair of 
servers is connected through at least one knowledge processor. Correspondingly, the 
knowledge processors provide a conduit for metadata between servers, and may also 
modify metadata in certain cases.

The Measurements and Observations Server (MOS) is used to store a time-series 
representation of data. The authors feel that an ordinary Relational DataBase 
Management System (RDBMS) is sufficient for this fairly straightforward task, so the 
server represents knowledge as relations.

The other servers are not quite so simple, and must use a more complicated 
underlying database. The EXPER and PETRI servers both use an Object Oriented 
DataBase (OODB) to represent their information. The EXPER server stores
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transformation processes and taxonomies, both of which would be difficult in an 
RDBMS. Taxonomies are used to categorize data, and must also be updated in response 
to new knowledge. PETRI stores generation histories as an extendedPredicate-Transition 
Network, a method related to Petri nets. In this network data objects are the nodes and 
transformation process objects form the transitions or arcs.

The EXTERN server stores information which is external to the experiment itself, but 
is still relevant to it. In particular, it stores background knowledge and the experimental 
model information. The PHEN (phenomenon) server stores experimental law metadata, 
along with anomalies and hypotheses. The information on this server is crucial to the 
scientific process, since it is the researcher’s goal to justify a hypothesis with the 
relationships established by the experiment (experimental laws). Anomalies are 
relationships that appear to contradict a hypothesis, so they play an important role in 
confirming or disproving an hypothesis or theory. Kapetanios et a l  have chosen to use a 
semantic network to represent the complex interactions between experimental law, 
anomalies and hypotheses. Semantic networks are commonly used in natural language 
processing, and have an expressive richness that is lacking in more straightforward logic 
based methods.

The authors define this justification process as a narrative that connects a particular 
hypothesis to experimental laws by a chain of appropriate inferences. They also connect 
experimental laws to observations from which high level data have been derived. If an 
anomaly appears to contradict a hypothesis, it must be explained through external 
information like the experimental model or background information, or the hypothesis 
itself must be discarded in favor of one that is not disproved by the anomaly.

B..2.1.3 Spatial Data and Its Metadata

Bicking et al. [BICK96] present a model for dynamically integrating spatial data with 
its metadata. They are particularly concerned with geographical information, which they 
refer to as geodata. Geographical information systems (GIS) is an area where the 
management of spatial data and metadata is of paramount importance, so it is valuable to 
examine ideas in the field

The model is geared toward preparing information about geodata for interactive use on 
the Internet. Toward this end, their model attempts to integrate information about geodata 
into a spatial data model and dynamically manage both data and metadata with the same 
database. Their approach allows browsing and searching with either textual or spatial 
information. Text searching is valuable for locating a site with relevant data, while spatial 
browsing is useful for refining the area o f interest (AOI), and for giving an easy and 
intuitive indication of how relevant the geodata really is for the user’s purposes.

The centerpiece of the authors’ design is the metadata catalog, which describes the 
collections of geodata held by an organization. They use the Open Geodata 
Interoperability Specification (OGIS) Services Specification Model, a standard developed 
by the GIS community. In addition to recording the geographical location that a dataset
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refers to, the catalog stores summary information like the name and size of a dataset, its 
scale, and the projection used. The catalog also contains indices, which facilitate searching 
by mapping a user view to the catalog content. For example, such an index could be a 
table of contents (TOC), subject/author index, keyword index, or a combination. The 
authors decided on a keyword index, spatial index and a TOC. Their TOC presents 
information hierarchically in several ways. The authors give three examples:

• A subject oriented view with broad top-level categories such as transportation, 

hydrography, vegetation, etc., which are further divided into subcategories. The 

geodata content is organized by this hierarchy of subjects.

• A structure oriented view where a database is viewed as a container for 

datasets. Datasets are viewed as a collection of features along with their attributes 

and properties.

• An Organization oriented view that reflects the hierarchical structure of an 

organization or company. That is, the various departments o f a company would 

have relevant data attached to them.

Accessing data through the catalog can be done both spatially and textually, with 
feedback between the two methods. For example, the TOC might be searched using 
keywords to get a list of matching map URLs. The user then selects a particular map, and 
is able to narrow the AOI by selecting a region with the mouse. As a region is selected, 
the TOC data is updated to display the metadata for that region. It is here that the 
authors’ view of spatial metadata becomes apparent. For Bicking et al. the distinction 
between spatial and ordinary metadata is that spatial metadata refers to a point or region 
on the earth’s surface. It is interesting to note that this information is displayed textually, 
rather than spatially.

B.3 Discovering New Relationships: Data Mining and Knowledge 
Discovery

In recent years, the need to extract knowledge automatically from very large databases 
has grown increasingly acute. In response, the closely related fields of knowledge 
discovery in databases (KDD) and data mining have developed processes and algorithms 
that attempt to intelligently extract interesting and useful information, i.e. knowledge, 
from vast amounts of raw data. Such techniques are used in various application domains, 
ranging from department stores to catalogs of stellar objects. KDD and data mining are
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closely related to scientific databases since they are concerned with analyzing raw data to 
extract new knowledge. The principle difference between them is that scientific databases 
are geared toward justifying an hypothesis, which is not necessarily true for KDD. For 
example, Wal-Mart has one of the world’s largest databases of customer transactions, 
with over 20 million transactions being handled per day [BABC94], Wal-Mart just wants 
to know to whom they should mail their next advertising circular; they aren’t trying to 
prove an hypothesis. On the other hand the SKICAT system, a catalog o f stars and 
galaxies, is used by astronomers who presumably are testing new theories and hypotheses 
[FDW96], Yet, both systems rely heavily on the techniques found in KDD. Fayyad et al. 
[FAYYA96] give an overview of the fields of data mining and KDD. The next several 
subsections summarize this overview.

There are a number of other fields related to or overlapping with KDD. Machine 
learning and pattern recognition also attempt to extract patterns from data, but with 
much less human interaction than KDD. Machine discovery is closer to scientific 
databases since it attempts to discover empirical laws or relationships from experimental 
observations [SHRAG90]. Data warehousing refers to a technique used in MIS in which 
records of customer transactions are collected and processed for online access. On-line 
Analytical Processing (OLAP) is often used in conjunction with data warehouses to 
provide multidimensional summaries of transaction data.

B.3.1 KDD vs. Data Mining

There is potential for confusion about the distinction between KDD and data mining. 
Fayyad et al., claim that KDD is the process of discovering useful knowledge within data, 
while data mining is simply the application of algorithms for extracting patterns from 
data. Data mining is a class o f methods used by the KDD process. KDD requires that the 
patterns found during data mining be “valid, novel, potentially useful, and ultimately 
understandable.” Fayyad et al. define these several terms in detail, leading toward a 
definition of interestingness:

• Data: a set o f facts F.

• Pattern: An expression E in some language L describing facts in a subset Fe of 

F. E is called a pattern if it is simpler than the enumeration of all facts in Fe.

• Validity: The certainty that a pattern is valid when applied to new data. 

Certainty is defined as a function C(E,F) that maps a pattern E in dataset F to a 

fully or partially ordered measurement space called Me.
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• Novelty: Refers to whether a pattern represents new information. For example, 

if  a pattern is just a rephrasing of existing patterns, it is not novel. The authors 

assume that novelty can be represented as a function N(E,F) that returns either a 

boolean or perhaps a continuous value.

• Utility. If  a pattern is useful, then it can be acted upon in some way. Utility is 

measured by a function U(E,F) that maps a pattern E in dataset F to a fully or 

partially ordered measurement space called Mu.

• Understandability: Patterns should be understandable by humans. The authors 

point out that this property is difficult to measure. (Presumably, it varies 

according to the human.) However, the authors suggest that the simplicity of a 

pattern is an indication of its understandability. Accordingly, they propose a 

simplicity function S(E,F) that maps a pattern E in dataset F to a fully or partially 

ordered measurement space called Ms.

The very important concept of interestingness is defined by the authors to be a 

combination of validity, novelty, utility, and simplicity. Some KDD systems use a value 

i=I(E,F,C,N,U,S) as a metric of a pattern’s value. Other systems implicitly define 

interestingness by ranking the discovered patterns in some order. In either case, the notion 

of interestingness ultimately requires human judgment since several of its constituent 

functions cannot be objectively defined. Despite its subjective nature, interestingness is 

important because it plays a prime role in the definition of knowledge proposed by 

Fayyad, et al.:

Knowledge: A pattern EL is called knowledge if  for some user-specified threshold 

iGMi, I(E,F,C,N,U,S)>/.

In light of these new concepts, Fayyad et al. offer the following definition:
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KDD Process is the process o f using data mining methods (algorithms) to extract 

(identify) what is deemed knowledge according to the specifications of measures and 

thresholds, using the database F along with any required preprocessing, subsampling, 

and transformations o f F.

They also give a list of the basic steps involved in this process, emphasizing the 

interactive nature of KDD when compared to other more Al-oriented techniques like 

machine learning:

1. Developing a pool of expert knowledge and end-user goals.

2. Choosing the data for which KDD is to be performed.

3. Data cleaning and preprocessing: e.g. handling noise and missing data.

4. Data reduction and projection: reducing the number of attributes to the 

minimum necessary to meet the end-user goals.

5. Choosing the data mining task: deciding whether the end-user goals can be met 

by classification, regression, clustering, etc.

6. Choosing the data mining algorithms: selecting one or more methods to be used 

to implement the task chosen in step 5.

7. Data Mining: searching for patterns or rules within the data. Performing steps 

1-6 well can very positively affect the success of this step.

8. Pattern interpretation. The user examines the results of the preceding steps, 

and may decide to repeat them if necessary.

9. Consolidating discovered knowledge: incorporating new knowledge into the 

database. This includes accounting for conflicts with previously acquired 

knowledge.

Note that the KDD process may contain loops between any two of these steps, and may 

involve several iterations of any subset o f this list. Most KDD research has been
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concerned with step 7, data mining, but Fayyad et al. are firm in their conviction that all 

nine steps must be carefully addressed in order for KDD to succeed in practice.

B.3.2 Data Mining

Data mining involves fitting models to, or determining patterns from observed data. A 
pattern is an instantiation of a model. In other words, a model can be viewed as a sort of 
template for a model. For example, the expression y=3x+5 might be a pattern fitting the 
model y=Ax+B. Fayyad et al. give a definition of data mining:

Data Mining is a step in the KDD process consisting of particular data mining 

algorithms that, under some acceptable computational efficiency limitations, produces a 

particular enumeration of patterns Ej over F.

There are two kinds of models commonly used. A statistical model allows for some 

nondeterminism in the data, i.e. it allows a little “slack”. So, for the model y=Ax+B, a 

statistical model might say that B is a random variable, with stated mean and standard 

deviation. In contrast, the logical approach to model specification allows no such 

uncertainty. However, notice that in either case, the language L that a model is expressed 

in may contain relational operators like < and >, allowing greater flexibility in fitting 

models to data. The flexibility of the statistical approach should be very helpful in dealing 

with error. For example, error introduced by measuring instruments or a data 

representation could be modeled as a random variable so that an appropriate pattern can 

still be found.

B.3.2.1 Goals o f  Data Mining

The primary goals of data mining are to describe the existing data and to predict the 
behavior or characteristics of future data of the same kind. Description entails finding 
patterns within the data that are human understandable. For example, in a bank loan 
dataset, a clearly understandable pattern might be: “If an individual’s income is less than 
$20,000, then they will default on the loan.” The goal of prediction can be met by 
discovering patterns with a high degree of certainty, as measured by the function
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c=C(E,F). If existing data matches the pattern with few exceptions, it is more likely that 
future data will also behave in the same manner.

The authors provide a list of the tasks used to meet the primary goals provided above:

• Classification is the process of assigning categories to features or trends within 

the data. Identification of interesting features within the data is a form of 

classification.

• Regression is the development of a function that approximates the 

mathematical relationship between two numerical attributes. For example, 

regression could be used to determine the relationship between the infrared 

reflectivity of a forest from satellite images to the percentage of deciduous trees.

• Clustering attempts to discern groupings within the data. For example, in a 

financial database, we might notice that various groups of stocks tend to behave 

similarly. We might divide securities into three groups, depending on which group 

they most closely resemble. Notice that clustering is not the same as classification, 

where categories are usually defined by the investigator. Clustering attempts to 

extract categories from the data itself.

• Summarization is the process of finding a compact representation for data. 

This may include simple statistics like mean and standard deviation, or may 

employ more complex methods like regression, described above. Summarization 

often plays an important role in the visualization and interactive exploration of a 

dataset.

• Dependency Modeling is the process o f modeling dependencies between 

variables. The model may consist of a graph G=(V,E) in which each node 

represents a variable, and each edge represents a dependency. The edges may be
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weighted to represent the strength of the dependency.

• Change and Deviation Detection looks for significant changes in the data from 

previous values, or for data that falls outside of some normal range.

We should point out that several of these processes are important in scientific 
databases. Classification is closely related to feature identification, an important tool in 
GIS and other scientific systems. Clustering and regression both have clear scientific 
applications, and summarization is one of the goals of multiresolution data sets. O f 
course, finding relationships through processes like dependency modeling is an important 
part o f exploratory scientific data analysis.

B.3.2.2 Data Mining Algorithms

Fayyad et al. give three components for any data mining algorithm: model 
representation, model evaluation, and search. The authors do not claim that this division 
is perfect, but rather offer it as a convenient way to understand the basic components of 
data mining algorithms.

A model is represented in some language L used to describe potential patterns. If this 
language is too limited, no amount of training data or processing will produce an accurate 
model for the data. For example, consider a model consisting only of rules like “if A.x>n 
then Q”, where Q is some claim about the data. Such rules can only model patterns that 
consist o f a threshold value along a dimension, in this case the x axis. If the dividing line 
between Q and not Q were y=x, this model would be unable to express this relationship.

The danger in making a model language too expressive and powerful is that the training 
data will be overfitted. This means that the model parameters will be too specifically 
tailored to the training example, so that new data fits the model poorly. If the model isn’t 
too expressive, it will always be a somewhat loose fit making this problem much less 
severe.

Model evaluation measures how well a pattern, consisting of a model and its 
parameters, meets the requirements of the KDD process. Since validity is a metric of how 
well a pattern will match (and therefore predict) future data, it is an important evaluation 
criterion. The descriptive power of the model must also be evaluated, using a combination 
o f certainty, novelty, utility, and understandability, among others.

Search methods can be broken into two levels. Model search looks for the model that 
best fits the data. Once a model has been chosen, parameter search looks for the model 
parameter values that provide the best fit for the data. Essentially, the model search 
process iterates over models and then invokes the parameter search process for each 
model. Since the space of possible models and parameters is infinite, exhaustive search is
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not possible, so various heuristics must be used.

B.3.2.3 Data Mining Methods

Perhaps the simplest data mining method uses decision trees and rules with single 
variable splits. Each rule is of the form “if A.x>n then Q”, where x is an attribute of the 

data, and Q is some statement about the data. Such rules divide the data domain into
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Figure B.1. Two rule based approaches 
two parts using a plane that is parallel to an axis. This method is easily understood by 
humans, but is rather limited in power, as we saw before. An example of this approach is 
shown in figure B .l.a. A rule for accepting or rejecting students applying to a university 
is based on whether students with similar SAT scores and GPAs were able to graduate. 
Extending the model, as in figure B.l.b, to allow planes of arbitrary orientation increases 
the expressive power at the expense of understandability.

There is a family of nonlinear methods which attempt to match the data using linear 
and nonlinear combinations of a set of basis functions. This allows distinctions to be 
made which do not fall along straight lines. For example, a classification of the data into 
two or more groups might be done using a spline or other polynomial which describes an 
elaborate curve through the data domain. Also in this family are feedforward neural 
network methods, which use neural networks to choose the parameters of the model, 
which could be the coefficients for a spline. An example is shown in figure B.2.
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Figure B.2 A spline based approach
Example based methods are fairly simple in concept. The idea is to use existing data 

points to help classify and predict the properties of new data. That is, the properties of a 
new datapoint are taken to be the same as the properties of its nearest neighbor in the 
existing dataset. Finding the nearest neighbor requires the existence of a distance measure, 
which is not always easy especially with nominal or categorical data.

Probabilistic Graphical Dependency Models use a graph structure to represent the 
probability of a dependency between any two variates. The method arose out of AI work 
with expert systems in which experts set the probabilities according to their knowledge of 
the field. KDD researchers have focused on extracting values for these probabilities 
directly from the data during the model search process. Although this work is still 
experimental, its graphical structure should allow for clear visualization and 
understandability.

Relational learning models use first-order logic instead of the propositional logic of 
decision trees. Since first-order logic (e.g., Horn Clauses) is more expressive, relational 
learning models are able to succeed in situations where decision trees fail. For example, we 
have seen that a relation like y=x  can cause trouble for decision trees, but it is easily 
handled by relational learning models. On the other hand, such models incur a considerable 
cost during search, and it can be difficult for humans to specify effective models. Shen et 
al. [SHEN96] describe a system that automatically develops models (they use the term 
metapatterns) without requiring the user to specify whether particular data items are 
positive or negative examples of the pattern.

B.4 Scientific Data

At the beginning of section two, we claim that in order to determine whether data is 
scientific, we must examine the way in which the data is used. Specifically, if the data is 
used to develop and test a hypothesis, we say the data is scientific data. Although this 
definition makes some useful implications about what kinds of operations a scientific
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database should support, we still require a more precise model o f scientific data. The 
remainder of this subsection presents a useful model of scientific data, and then continue 
by offering some useful classifications.

B.4.1 Data As a Function

A scientific database should be able to represent or model scientific data gathered 
either from the real world, or from simulation. In other words, a set of scientific data is a 
collection of sample values that represents some “natural” phenomenon [HIBB94], 
Hibbard and Kao [HIBB95] point out that when the phenomenon is measured in a 
continuous value space, the computer can never represent a data value without some 
error. One solution to this problem is to model the sample points as sets of points 
consisting of all real values within the error bound of the sample value.

We refer to the function (phenomenon) being sampled as a function (j) defined over a 
domain D. Note that D can be of arbitrary shape, although it is often a polytope 
[CIGN097], The dataset consists of a sampling of (|) taken at a finite set of points A E  D. 
A mesh consisting of the points of A along with connecting edges generally spans the 
domain D. After Cignoni et al. [CIGN097], we refer to this mesh as T. Cignoni also 
postulates a function/ which interpolates values of (j) for domain points not in A. 
Characterizing/as an interpolating function may be too strict, since there may be useful 
approximating functions that do not interpolate. In any case, the mesh assists the 
approximating function, since edges of the mesh connect points, and also form regions 
within which values can be approximated or interpolated.

Notice that in order for this model to be useful, the domain D must be defined over 1 
or more dimensions. For example, in 3D Cartesian space these dimensions would 
correspond to the x, y, and z axes.

B.4.2 Dimensional Data

As with metadata, opinions on what constitutes a dimension, and therefore 
dimensional data, varies from field to field. The OLAP community has a fairly 
specialized view. The OLAP Glossary offers the following definition [OLAP]:

A dimension is a structural attribute o f a cube that is a list o f members, all o f  which 

are o f a similar type in the user's perception of the data. For example, all months, 

quarters, years, etc., make up a time dimension; likewise all cities, regions, countries, 

etc., make up a geography dimension. ...Dimensions offer a very concise, intuitive way 

o f organizing and selecting data for retrieval, exploration and analysis.

The same source defines a cube as being synonymous with a multidimensional array,
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which they essentially define as “a group of data cells arranged by the dimensions o f the 

data.“ Notice that such a cube could actually have many more than three dimensions.

That is, it could be a hypercube of arbitrary dimension, where each dimension is 

(presumably) orthogonal to the others.

The feature that really distinguishes the OLAP idea of dimension from other 
definitions is the way they divide a dimension into a hierarchy, as they demonstrate 
above with time and geography. Also, there is considerable freedom in the kinds of 
information that can be used for a dimension. Categorical or nominal attributes are often 
used as dimensions in OLAP. In contrast, the dimensions of a scientific database require 
ordinal information at the very least; most systems assume the dimensions are metric and 
continuous. To be precise, if  an attribute is metric its value space must have a distance 
measure that meets the following conditions [KA097]:

Let d be a distance function on X (the value space) and V p,q,r EX:

1. </(p ,p )=o

2. d(p,q)<d(p,r)+d(r,q)

3. d(p,q)=d(q,p)

4. J(p>q)=o => p=q

We focus our research on data that can be meaningfully represented in a continuous k- 
dimensional data space. Practically speaking, if one or more independent attributes of the 
data can be mapped to the set of real numbers, then the data is dimensional for our 
purposes. Note that attributes that are essentially integers can still be represented in 9L 
Using a continuous representation allows interpolation even with integral attributes. In 
the event that a researcher wishes to use non-metric data as a dimension in a scientific 
database, Kao [KA097] has developed techniques for imposing a metric on data that 
would otherwise be considered categorical or nominal.

It is not necessary for all attributes to be dimensional. If we view the data as a 
function, some of the dimensional attributes define the domain o f this function, and the 
remaining attributes define the range. Our function therefore maps any point in the 
domain defined by the dimensions to a particular range value. Choosing which attributes 
should be used as dimensions is up to the researcher using the system, and can be an 
important part of the data exploration process. We call each possible combination of 
dimensions a view of the data, a notion similar to the “view” found in traditional 
databases. So, for data with m attributes, k of which are dimensional, there are 2k-l
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possible views. Each view affords a different way of looking at the same data.
A natural example of dimensional data is spatial data such as satellite images and fluid 

flow datasets. Here, the data represents an actual space. However, it is possible for a 
dataset to be dimensional without being spatial. For example, data from a Greenland ice 
core sample might contain readings for calcium, nitrogen, and carbon concentrations at 
different times in the Earth’s history. We can represent this data dimensionally, but as it 
does not correspond to a real space, it is not spatial. However, it may be very beneficial 
to visualize the data as if  it were spatial, since humans find this representation familiar 
and easy to grasp. For this reason, we often use the word “spatial” in this document, even 
when referring to data which does not represent a physical space. Furthermore, it may be 
convenient to treat a set of attributes as if  they are dimensional attributes even though 
they may not satisfy all the conditions for dimensional data. In particular, we often don't 
know exactly which attributes are independent of each other, but we might want to 
assume they are independent for exploration purposes with the goal of either validating or 
disproving that assumption.

An example

In a relational database, data is stored in tables, which are essentially lists of tuples. 
Each tuple may consist of one or more attributes or fields. For example, each tuple of a 
table for employees might contain values for the fields name, id number, salary, total 
sales, and travel expenses. We can view this table as a kind of function that relates the 
different field values. For this reason, tables like the one shown in figure B.3 are 
sometimes called relations.

Name
Bill
Bob

ID number
123
567

S a lary
30000
50000

Total Sales
200000
157000

Travel Expenses
2000
4000

Jane 876 60000 259000 3000

Figure B.3

It is possible to take this notion of treating data as a function even further by 
designating axes as in a Cartesian plot. For example, if  total sales and salary are chosen as 
axes, each tuple would correspond to a point in the plane defined by the axes.
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$400
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0
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Figure B.4. A dimensional view of Figure B.3

These points should each have attributes name, id number, and travel expenses, as seen in 
figure B.4. We can say that the data in figure B.4 has been represented dimensionally, 
where salary and total sales are the dimensions. O f course, we are not restricted to just 
two dimensions. We could make a three dimensional graph by using travel expenses as the 
third dimension. Alternatively, total sales could take the role a dimension instead of 
salary, yielding a different two dimensional graph. However, it would not be sensible to 
use name or id number as dimensions, since these are nominal attributes. That is, these 
attributes just serve as names, and their value sets do not have orderings associated with 
them. In contrast, the other attributes are metric, since they have an associated distance 
measure and fulfill the conditions listed previously. Here, the distance measure is just the 
difference in the dollar amounts. Since their value sets have an implicit ordering, these 
attributes are also ordinal.

B.4.3 Regular and Irregular Data

In a two dimensional regular dataset, the points lie at regular intervals within the 
dimensional space, defining rectangles (2D) or hexahedrons (3D) of equal size and shape. 
This kind of data can be easily represented with a straightforward array, so many 
algorithms for the manipulation of regular data exist. If we allow the spacing of steps 
along the axes to vary, we have a perimeter lattice[SCVT], In addition to the array holding 
the data, perimeter lattices require an array for each dimension holding the steps along the 
axis.

In addition to the placement of points in physical or geometric space, it is also 
important to know the topology of the data [KA097], The topology is usually described 
as a graph containing nodes and edges, for which nodes represent data points and edges 
between them represent an adjacency relationship. Some authors use the term mesh or 
grid  to describe this graph [CIGNO97,SPER90].

Sometimes the arrangement of sample points in physical space is not regular, but
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curvilinear. For example, a fluid flow simulation of air velocities over the top surface of 
an airplane wing might produce samples that lie in concentric curves echoing the shape of 
the wing. However a regular grid can be lifted (mapped) to the physical space to provide a 
dataset that is regular in computational space [CIGN097],

On the other hand, irregular datasets consist o f data points that are not distributed in 
a regular fashion. Cignoni [CIGN097], claims that the term irregular applies only to data 
that is not regular and has a mesh that is known in advance. He uses the term scattered 
dataset to refer to data that has no mesh, so that one must be constructed from the data.
In either case, an array based representation is very unlikely to be effective. However, a 
mesh of triangles (trimesh) can be constructed that covers the dataset using a process 
called Delaunay Triangulation. This method relies on two other concepts, Dirichlet 
Tessellation and Voronoi Diagrams [LATTU95]. In 1850, Dirichlet devised a way to 
divide the plane populated with a set of points P={pi...pk} into regions such that each 
region Ri contains only points that are closest to pi. These regions, known as Voronoi 
Regions,are convex polygons covering the plane. If we take every pair of points that lie in 
adjacent regions and connect them with an edge, the resulting graph is the Delaunay 
triangulation: a mesh of triangles spanning the entire set of points. Figure B.5 shows the 
relationship between Voronoi regions and the Delaunay triangulation. Notice that the 
same technique can be extended into three dimensions by using planes instead of lines to 
define the Voronoi regions (polyhedra), yielding a Delaunay tetrahedrization in which 
tetrahedra instead of triangles span the dataset. This method is very useful for irregular 
volumetric datasets. Indeed, there is no theoretical reason why the technique couldn’t be 
extended to an arbitrary number of dimensions.

B.4.4 Point and Region Based Data

Another important distinction is between point and region based data. In region based 
data, each data value represents a measurable subset of the domain. For example, if a 
regular dataset represents 1 square mile, and contains 100 data values, each value should 
represent .01 square miles. In contrast the values o f point based data have no extent; they 
represent an infinitesimal point of the domain.

An important kind of region based data is cell based data. For two-dimensional cell 
data, each cell is made up of four points, forming the comers of a rectangle. Any value
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Voronoi Regions

 Delaunay Triangulation

Figure B.5

within the rectangle can be interpolated from the comers. Naturally, this technique can be 
extended to an arbitrary number of dimensions.

A similar interpolation method is used with Delaunay triangulations. Recall that a 
dataset’s mesh makes interpolation easier when finding a value for a point that is not a 
sample point. Such a point must lie within some triangle of the mesh, so a value can be 
interpolated from the three vertices of the triangle. If a region based representation for 
irregular data is desired, the Voronoi regions are convenient since each region contains the 
points that are closest to a particular data point. It follows that this region contains the 
set of points that are best represented by the single data point value.

B.4.5 Neighborhood Operations

A major advantage of storing data in an array is that the data is arranged in a spatially 
coherent manner, meaning that values that are conceptually nearby in the dataset are also 
nearby (in some sense) in the representation of that dataset. Once a datapoint p  has been 
found, it should be inexpensive to find points that are near p. With arrays this is clearly 
the case, since adjusting an index leads to a neighboring value. The same cannot be said of 
a common relational database system or even a triangulated mesh, unless special data 
structures are used.

Ester et al. [ESTE97] describe a graph based method for representing the 
neighborhood relationship. If two data items are neighbors, the graph has an edge between 
two nodes corresponding to the items. This representation allows them to support
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operations like getjigraphs (item, relation) which returns the graph of all items in the 
neighborhood of item, as determined by one of the following neighborhood relations:

• Topological relations such as meet, overlap, covers, contains, inside, equal

• M etric relations such as distance<d

• D irection relations like north, south, east, west

The neighborhood of an item is not restricted to immediate neighbors. The authors define 

a neighborhood path to be a path in which each edge satisfies a specific neighborhood 

relation. A neighborhood graph may contain many such neighborhood paths. Once a 

neighborhood graph has been computed, the get_neighborhood(ngraph, item, predicate) 

returns the set of all items directly connect to the item argument by some edge satisfying 

the predicate. Other operations include create jiPaths, which essentially computes a 

spanning tree for a neighborhood graph, and extend, which extends such a tree by a 

specified length. The authors claim that these operations comprise a set o f operations that 

are basic to any spatial data mining application. They go on to explain the use of these 

operations in such tasks as discovering spatial trends and clusters, and classification of 

spatial data.
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Appendix C

MULTIRESOLUTION

C.l MR Methods for Regular Data

A common implementation of non-adaptive MR uses an array of points to represent 
the data set function S. Since Lo is the original data, we expect that L i represents the same 
information at a coarser resolution, i.e., with fewer data points. A simple way to do this 
is to have each point in Li represent 2a points of Li-i, where d is the dimensionality of the 
dataset. So, for a one dimensional dataset, the first point of L i should represent points 0 
and 1 of Lo, the second point should represent points 2  and 3 , and so on. So, L i is half the 
size of Lo, and Li half the size of L i, etc. This approach can be extended to any number of 
dimensions. For example, in three dimensions, each point of L i represents eight points of 
Lo, which is the familiar octree data structure used commonly in computer graphics.

C.1.2 An Octree Method

Chamberlain [CHAM96] describes just such a method for use in a computer graphics
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rendering system. He is concerned with the efficient rendering of a scene consisting of 
some number o f polygons. He notes that in many systems, considerable effort is wasted 
by painstakingly rendering polygons that only occupy a single pixel in the final image.
His solution is to divide the scene space using an octree hierarchy of color cubes, which 
are essentially just cubic areas of the scene space with a special property: the faces o f the 
cubes have a color and opacity matching the overall color and opacity o f the polygons 
inside when seen from that direction. These color and opacity values are precomputed so 
they are readily available at rendering time. This preprocessing is done in bottom-up 
fashion, so that the color and opacity for a non-leaf color cube can be computed by a 
composition o f color and opacity for its eight child cubes. For leaves, the color and 
opacity values must be directly computed from the polygons themselves.

For a given viewpoint, there is a set of color cubes that are so far down in the 
hierarchy (and therefore so small) that the space they contain maps to a single pixel in the 
image. Instead of wasting time rendering the polygons contained in these regions, 
Chamberlain uses the color cube values for a much faster rendering. In fact, the overall 
time complexity of the algorithm for n polygons is 0(log n) compared to O(ti) for more 
traditional methods. The amount of data required to render a scene is also 0(log n).

Chamberlain’s paper is a nice example of a simple MR representation, and the 
advantages of using a coarse representation of data when appropriate to save time and 
space. Lounsbery et al. [LOUNS97] describe a more complex technique for computing 
approximations for distant objects that depends on wavelets.

C.1.3 Combining Data Values

Another important issue is how to combine two or more points into a single point for 
the next level. The method used depends upon the application. In the simplest case, 
where each point has only one attribute, we might just average points together to get a 
single value. However, it might be desirable for a point in Li to keep track of attributes 
like minimum, maximum, and standard deviation for all the points it represents in Lm. Li 
et al. [LI98] store a probability density function for each point in their MR 
representation.

C.2 Wavelets

Wavelets are a very popular class of multiresolution representation. A wavelet 
representation of data includes two parts: the summary and the detail. As the names 
imply, the summary is an approximation of the original data, while the detail can provide 
a more refined representation when combined with the summary. Perhaps the simplest 
wavelet is the Haar wavelet, a system of compactly supported orthonormal functions 
[STOLL96], Before discussing the Haar basis, we should examine a simple example of the 
Haar wavelet applied to a one dimensional dataset. Consider this series:
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{6 8 11 7 4 2  3 7}
To compute the summary for this dataset, we simply average each distinct pair o f the 

series. More formally, we compute:

C c
21 21+1 ,for i=0... y  ,where m=8, the size of the series

Similarly, for the detail, we compute the difference of pairs of values:

^ 2  i — ^2 i + l j? • r\ ftl
—  ^ ^ fo r  i=0... t

2 2
Our result is the summary and detail coefficients:

Summary={7 9 3 5}, Detail={-1 2 1 -2}
Notice that if  we add the first detail coefficient to the first summary coefficient, we 

get back the first element of the original dataset. That is, 7+(-l)=6. Similarly, if  we 
subtract the first detail coefficient from the first summary coefficient, we get back the 
second element o f the original data. We can retrieve the third and fourth elements of the 
original data using the second summary and detail coefficients in the same fashion. 
Clearly, the entire original dataset can be recovered from the summary and detail, with no 
loss of information.

To complete the multiresolution representation, we repeat the process above, using 
the summary coefficients in place of the original data. This yields another summary and 
detail set, each with two elements. This new summary set can be collapsed further into a 
single summary value, and a single detail coefficient. The complete process is shown 
below:

Original data={6 8 11 7 4 2 3 7}

Summary={7 9 3 5}, Detail={-1 2 1 -2}

Summary={8 4}, Detail={-1 -1}

Summary={6}, Detail={2}

The detail coefficients can be used to reconstruct the complete MR representation, 
including the original data. That is, the original data can be reconstructed with no loss of 
information from the last summary coefficient, and all the detail coefficients listed in 
bottom-up order. In the example above, this would be:

{6 2-1  - 1 - 1 2  1 - 2 }

This sequence is known as the wavelet decomposition of the original data. The wavelet 

decomposition can be used to store or transmit the entire MR representation without
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incurring costs above the storage or transmission costs of the original data. On the other 

hand, rendering times for wavelet representations are generally higher than times for 

octree-like representations [CIGN097].

The other important property o f wavelets is that they can be used to construct a 
variety of MR and AR representations. In particular, the detail component of a wavelet 
can be used as an error measure for the accuracy of the summary component at each level 
[WONG95]. This is equivalent to using only the summary component at one level to 
reconstruct the data at the next finer level. Other techniques discard low magnitude 
coefficients of both the summary and detail coefficients, replacing them with zero upon 
reconstruction [STOLL96]. Finally, it is possible to make local decisions about whether 
to go to the next finer resolution of the wavelet representation, yielding an AR 
representation.

Simhadri et al. [SIMHAD98] use the MR properties of wavelets to detect edges and 
motion in cloud formations. Cloud formations are difficult for traditional rigid-body 
motion techniques, because there is movement in different directions at different spatial 
scales. For example, a cold front might be moving east to west at a large scale, but if the 
edge of the front is examined, may will be shearing and turbulent movement at this 
boundary in various directions. Using satellite images represented as regular arrays of 
pixels, the authors use a wavelet representation to perform edge detection at different 
resolutions. This allows them to capture both the large scale east-west motion of the 
example cold front, as well as much smaller, finer movements.

C.3 MR Methods for Irregular Data

Heckbert [HECK97] offers a taxonomy of techniques for surface simplification 
algorithms. Since surfaces are often represented using an irregular set of points, much of 
this work can be applied to irregular scientific data. If a simplification algorithm is applied 
repeatedly, we can generate an MR representation of the data.

C.3.1 Classifying Methods

The first area to examine when classifying such algorithms is the characteristics o f the 
problem they are meant to solve. The most important such characteristic is the nature of 
the input. Input data can vary by topology and geometry, and also in the number and 
kind o f  attributes o f  the data points. For example, the input curve or surface might be 
described by a mathematical function or a set of points. A set of points may be either 
regularly or irregularly distributed. The points themselves may have a variety of 
attributes, especially in scientific applications. We are particularly interested in exploring 
the surface simplification domain to find methods applicable to irregular scientific data.
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An issue of importance is whether the output of a simplification method contains only 
original data points or is allowed to construct interpolated values. Either method may be 
appropriate in a scientific setting, but the scientist should be provided with a way to 
distinguish manufactured values from original values.

Another point of classification is the characteristics of the algorithms themselves. For 
example, refinement algorithms start with a coarse representation of the surface and add 
points to build an increasingly accurate representation of the data. Decimation methods 
start with the original data and successively remove data values to construct a coarser and 
more compact representation. Note that with surface simplification, only a single 
representation of the domain may be required. However, most decimation or refinement 
algorithms should be easily adaptable to MR by saving the results of intermediate steps 
in the levels of an MR representation. In the context of MR, decimation methods can be 
thought of as the bottom-up approach, and refinement methods as top-down.

One more characteristic of algorithms is the tradeoff with regard to speed versus 
quality. Algorithms that produce representations with maximal quality or minimal size 
tend to be slow. Faster algorithms must sacrifice either quality or size, or both.

As discussed in section 2.4.2, irregular data is often represented using a mesh of 
triangles, or trimesh, and this mesh can be generated for an arbitrary set of points using 
Delaunay triangulation. A great deal o f research has been conducted on the multiresolution 
representation of trimesh surfaces because of their application in both computer graphics 
and GIS. In both fields, trimeshes are often used to represent terrains with mountainous 
or hilly features.

C.3.2 2D Irregular data

De Berg and Dobrindt [DEBE98] have developed a multiresolution method for 
terrains that is specifically geared towards computer graphics. Their motivation is similar 
to Chamberlain’s (sec. C.1.2), in that they also want to eliminate the unnecessary 
rendering of detailed polygons in the distance. Chamberlain’s method fully renders 
polygons that subtend more than one pixel, while de Berg and Dobrindt’s algorithm 
allows resolution to slowly decrease as the terrain recedes into the distance. An important 
feature of the algorithm is that it seamlessly blends these different resolutions into a single 
mesh. De Berg and Dobrindt’s method could therefore be classified as a kind of adaptive 
resolution representation.

The algorithm begins by describing a simpler tree-based MR method for trimeshes, in 
which each triangle of a coarse level is broken into three or more triangles in the next level. 
That is, given a triangle t of level Li+u we construct corresponding triangles in Li by adding 
one or more data points to the interior of t, and retriangulating the interior with the new 
points. The process is repeated until all the data points have been added, giving the 
original data, Lo. Notice that this subdivision process results in a tree relationship in 
which each non-leaf triangle is the parent of some number of child triangles, and each non-
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root triangle has exactly one parent. The problem with this approach is that it results in 
very slender triangles as the triangles are subdivided because edges are never removed as 
new points and edges are added (Figure C .l). The authors point out that such triangles 
may cause “robustness and aliasing problems.”

Figure C.1. A two level hierarchy with corresponding tree structure. From [DEBE98]

It is an important property o f Delaunay triangulations that the minimum angle o f any 
triangle is maximized. In other words, the Delaunay method avoids problematic slender 
triangles. De Berg and Dobrindt describe another hierarchy in which Li is formed by 
adding points from Li+i and then doing a global Delaunay triangulation on the remaining 
points. This method does indeed avoid slender triangles, but has a drawback for the 
intended application. Namely, there is no clean relationship between triangles in Li and 
Li+i. A  triangle in Li may have more than one parent in Lj+i, and there may be no triangle 
or set of triangles in Li that occupies the same region as a triangle in Li+i. This means that 
triangles from different levels won’t fit together, and cannot be used to create a seamless 
representation of the terrain with different resolutions. However for scientific data, this 
technique should still be useful.

The authors build their MR representation in a bottom-up fashion rather than top- 
down construction of the tree method. The original data (Lo) is first triangulated using the 
Delaunay method. In forming each level, they remove a set o f points from the previous 
level and then retriangulate in the area of each removed point using Delaunay. It is 
important to note that doing this local retriangulation globally preserves the Delaunay 
property. That is, each level of the MR representation is a Delaunay triangulation, which 
minimizes the occurrence of slender triangles. In order for this to work, some constraints 
must be applied to the set o f points Ii removed from each Li. The set Ii is defined to be a 
maximal independent subset o f the vertices of Li. That is, no pair of vertices in Ii is 
adjacent in Li. In addition, the vertices of Ii must have degree d  no larger than 12 (this 
value was determined by experimentation). The authors also allow the user to specify a 
set o f  fixed points that are considered so important that their removal is never allowed. 
This importance might be due to error introduced when the point is removed. For 
example, if  removing a point makes a mountain disappear, it may well be better to leave 
it. Alternatively, points could be considered so interesting that the user wishes to keep 
these points regardless of the resolution. Note that this makes the algorithm dependent on
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the data via the (perhaps hypothetical) interestingness function, so that de Berg and 
Dobrindt’s algorithm can be classified as adaptive resolution.

The authors refer to the union of all triangles that contain a point p £  Ii, as a polygon. 
They show that the edges of this polygon belong to the Delaunay triangulation of Li+i.

So, once the point p is removed from the interior of this polygon, the polygon vertices are 
retriangulated to form a collection of triangles that make up the polygon for Li+i. Notice 
that the polygons in the two levels cover exactly the same area of the domain. This is the 
property that allows a smooth blending of different levels to form a seamless 
representation o f the surface with different resolutions.

The algorithm continues forming new levels in bottom-up fashion through the process 
described until the number of points in a level is some constant multiple c of the number 
of fixed points. The value of c depends on d, the maximum degree of removable vertices. 
For d= 12, the authors found that c=2 worked well. Notice that the number of levels 
therefore depends on the size of the original data, which makes the algorithm true MR 
rather than LoD, according to the definitions of Cignoni et al.

C.3.3 3D Irregular data

In addition to providing valuable background information about visualization of 
scientific data, Cignoni et al. present two methods for representing irregular volume (3D) 
datasets [CIGN097], The first method is a refinement (top-down) technique, and extends 
work first presented in [CIGN094]. It uses Delaunay tetrahedrization, the three 
dimensional extension of Delaunay triangulation in which the domain is covered with a 
mesh of tetrahedra. The domain is assumed to be a convex polyhedron. Any such 
polyhedron has a tetrahedrization that uses only the vertices of the polyhedron, without 
requiring the addition of extra vertices. In the case of non-convex polyhedra, such a 
tetrahedrization may not exist. Furthermore, deciding on its existence is an NP-complete 
problem. Cignoni’s algorithm begins with a tetrahedrization of the domain using only 
domain vertices, so he rules out the problematic case of non-convex domains.

Problems also occur when a mesh defined in a rectilinear computational domain is 
lifted to a curvilinear physical domain. If a mesh is constructed in the rectilinear space, it 
will be projected  into the curvilinear physical space. The projection process affects only 
the vertices of the mesh, and not the edges. Edges therefore remain straight lines after 
projection onto the physical domain even though they should really be curved to avoid 
error. Such error is called warp and cannot be eliminated entirely, but can be reduced by 
minimizing the length o f  edges. Another source o f  error is the interpolation that is done 
between mesh vertices. This interpolation is usually linear, but the function being 
approximated often isn’t. Cignoni et al. use 6 and s to represent warp and error, 
respectively, and combine these into a single threshold pair p=(6,e). They compute p 
values both for individual points and also for entire meshes. Finding the maximum p value
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for any point is a useful characterization o f the mesh.
The overall structure of Cignoni’s refinement algorithm is fairly straightforward. They 

start with a tetrahedrization of the domain, as described above, and add points to this 
mesh one at a time until the mesh satisfies a bound for p. This process involves three 
major steps:

1. Check to make sure that the mesh does not already satisfy the desired p. This 

process is accelerated by using a list for each tetrahedron that keeps track of all 

data points inside it. The warp and error for each of these points is then used to 

find the maximum p for the mesh. If the desired p is satisfied, then stop.

2. Find the vertex not already in the mesh with maximum p. Along with the lists 

mentioned in step 1, a priority queue is maintained, organized according to p 

value.

3. Update the mesh by inserting the vertex found in step 2 using the Delaunay 

method. Go back to step 1.

With curvilinear datasets, there is yet another hazard. A mesh defined in the 
computational space might become inconsistent when the mesh is lifted to the physical 
space. In particular, the bending action of the lifting process may cause one or more 
tetrahedra to essentially turn inside out. The solution is to use a larger number of 
tetrahedra (with shorter edges) in that region. So, if an inconsistent tetrahedron is 
detected, a point contained in that tetrahedron is assigned an infinite warp value. This 
ensures that the point is chosen in step 2 above, and the offending tetrahedron replaced.

Cignoni et al. offer a variation of the above algorithm that divides the domain into 
some number of separate blocks that are each processed separately. The motivation is 
apparently to accommodate a parallel or distributed implementation of the refinement 
algorithm. In such cases it is important that the boundary faces of adjoining blocks be 
triangulated in the same way. They are able to show that this is indeed the case, and that 
the blocks would fit together when reassembled. However, they point out that the 
resulting tetrahedrization is not the same as one produced without splitting the domain.

Cignoni et al. also describe a decimation (bottom-up) method that is better suited for 
nonconvex datasets, since it begins with the original mesh and successively deletes 
vertices until the p value for the mesh becomes too large. Once again, we can characterize 
the algorithm with three steps:

1. Check to see that the mesh satisfies the maximum acceptable p. If  not, then

stop.
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2. Select a vertex to be removed from the mesh.

3. Update the mesh by removing the vertex found in step 2. Go back to step 1.

The first step is simpler here than in the refinement algorithm, since any change in 
error or warping is local to the vertex last removed. Therefore, this local p value can 
replace the global p value for the mesh if it is larger. Unfortunately, step 2 is much more 
complicated. The algorithm must choose the vertex that increases the mesh p value the 
least. It would be prohibitively expensive to simulate deletion o f all mesh vertices, so 
heuristics must be used. The heuristic finds the edge v,w with minimum AVv,w, the change 
in field gradient from point v to point w. A small change in field gradient implies low 
curvature in the function that the dataset represents, so linear interpolation along edge v,w 
has minimum error. Therefore, the vertex with smallest AVv,w is a candidate for removal. 
Warp for a vertex v is estimated by examining the distance between v and the plane 
containing the points adjacent to v. A large distance suggests a large warp value.

Once a suitable vertex has been chosen, it must be determined whether it can be safely 
removed from the mesh. Because tetrahedrizations of nonconvex polyhedra do not always 
exist, removal may not be possible. Since deciding this issue is an NP-complete problem, 
heuristics must once again be used. The heuristic attempts to remove a vertex v by 
collapsing an edge incident on v. That is, for some neighbor of w o f v, the edges of v are 
connected to w. If this process results in an inconsistent tetrahedron, the deletion is not 
performed and the mesh remains unchanged. The error and warp of v is set to infinity so 
this vertex is not chosen in future iterations.
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Appendix D

ARCHITECTURE AND SYSTEM ISSUES

D .l Architecture and System Issues

There are a number of issues relevant to a multiresolution scientific database that 
require further examination. A comprehensive treatment of error is a necessary part of 
any system dealing with scientific data. This includes both error introduced by reducing 
resolution, and also error inherent in the data collection method. In addition, we must 
examine methods for accessing both multidimensional and multiresolution data structures, 
as well as ways to support search in a multiresolution environment. Lastly, we look at 
the issues involved in distributed and parallel computing using MR data.

D.2 Error

All scientific data contains some amount of error from the moment it is generated. If 
data is gathered from the real world, the instruments used cannot give perfect results. 
Values from simulation also have some uncertainty associated with them. After the initial 
data gathering phase, operations on the data may introduce further error. It is therefore
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important for a model of scientific data to account for error in any piece of data.
There are various ways to represent uncertainty in a data value. Absolute error is a 

value that does not vary with the magnitude of the measurement. For example, if  an 
instrument has an absolute error of ±5 Volts, and we measure a value of 100 Volts, the 
true value lies somewhere between 95 and 105 volts. In contrast, Relative Error varies 
with the measurement’s magnitude, and is usually expressed as a percentage. If we 
measure 1000 Volts on a second instrument with relative error of 5%, the true value lies 
somewhere between 950 and 1050 volts. Note that if  1000 Volts is measured on our first 
instrument, the true value would lie between 995 and 1005 volts.

Another important issue is the difference between accuracy and precision. Accuracy 
refers to how close a measurement is to the true value. Precision refers to how widely 
distributed a set of measurements are. So, if  a set of measurements are closely grouped 
they are precise, but they could still be inaccurate if they are grouped around a value that 
is far from the true value. Knowing that a dataset is precise but not accurate has 
ramifications for the kind of conclusions that can be drawn from it. If  a curve is plotted 
from this data, the shape of the curve would be correct, but it would be displaced by 
some amount from the proper position. For a discussion of precision and accuracy in the 
GIS community, see [FOOTE95].

Relative and absolute error are only two of many ways of representing error. For 
example, error could be described using a probability distribution function. Or, the 
precision and accuracy of the data set could be explicitly recorded as a pair o f numbers. 
Ultimately a domain expert must decide what representation is appropriate and 
necessary.

In addition to the error representation, some kind of error metric must be chosen. 
Heckbert describes two very common metrics [HECK97]. hi error between two vectors u  
and v of length n is defined as:

|u -v |L  = [ | ( , - v,)2j

Squared Error is defined to be the square of the hi error, and root mean square (RMS) 

error is the hi error divided by Jn . Loo error, which is also called maximum error, is 

defined as:

| u - v |L  = max;=1̂ ,. - v j

Our model of scientific data requires localized error, meaning error is assigned to 
every point within the domain of the data. Ideally, each domain point would have an exact 
error value associated with it, but this is not always the case. However, it should always 
be possible to at least estimate the error of a given point. Instruments and simulations 
typically specify an error tolerance, so it should be easy to associate an error with data
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values gathered from these sources. For data values that are interpolated, perhaps only an 
interpolated estimate can be made. Cignoni et al. describe a way to generate localized error 
estimates for irregular data using a scan line technique [CIGN098]. They evaluate surface 
values using a regular grid of sample points, and compare the values given by a simplified 
surface with those given by the original surface.

Our other requirement is that it should be possible to accumulate error. If data begins 
with error Ei, and an operation is performed that introduces additional error E2, then the 
error Er o f the resulting data should reflect both Ei and E2. That is, Er=Ei©E2, where © is 
an error accumulation operator. This operator may be as simple as addition, but it need 
not have all the arithmetic properties o f an addition operator.

D.3 MR Access

In addition to the spatial access methods outlined in the previous section, MR access 
methods must also provide a way to select the desired resolution of the query result. The 
most obvious way to select resolution is to ask for a particular level from an MR 
hierarchy. However, this is not an efficient method for all kinds of MR representations. 
For MR methods like those described in [CIGN097], it is much more efficient to specify 
an error bound that must be met by the query result.

D.3.1 Error Based Access

To facilitate error-based access, Cignoni, et al. introduce the notion of an historical 
sequence [CIGN097], Each tetrahedron in the dataset is tagged with “birth” and “death” 
accuracies gb and gd- A tetrahedron is said to be ju-alive if gb <g<gd. The points and 
tetrahedra making up the dataset are stored in two separate files sorted by birth accuracy 
in non-decreasing order. To satisfy a request for a given accuracy, the tetrahedron file is 
sequentially scanned for all tetrahedra that are g-alive. This search terminates once a 
tetrahedron with gb better than g is found. Once the tetrahedra are retrieved, the vertices 
are obtained by scanning the list of points up to and including the index of the “greatest” 
point referenced by the tetrahedra set. This works because in the refinement algorithm 
described in section 3.4.2, points are never removed once they are introduced. Therefore, 
the set o f vertices required by the tetrahedra set is a prefix of the sequence of vertices in 
the point file. Notice that if  a query asks only for a subset of the domain using one of the 
MD query methods outlined in the previous section, modifications have to be made to the 
algorithms discussed here.

D.3.2 The FED Method

Resnick, Ward, and Rundensteiner have developed a method for specifying queries on 
dimensional data [RESN98]. Their work does not specify a data structure, but rather

154

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



provides a user-level query model. Under this model, a user query consists of three parts:

• Focus ((F) describes the point in the domain that is the center of attention. (F

is specified as a single point or ^-vector, where k is the number of dimensions in 

the dataset.

• E x t e n t  (IE) specifies the bounding hyperbox for the region of interest. (E is

usually specified as two ^-vectors delimiting opposite comers of the bounding 

hyperbox.

• D e n s i t y  ( D )  specifies the amount and distribution of data relative to the

focus. The authors initially specify density using a single ^-vector of values on the 

range 0... 1, where 1 means “all data” and 0 means “no data” for the corresponding 

dimension. Values greater than one might request interpolation.

Since density and resolution are closely related, the specification of density makes 
this model potentially useful for MR access. For rectilinear data, we can specify different 
behavior in each dimension. For example, the k-vector (1.0, 0.5, 0.25) specifies that along 
the x axis, all data should be displayed, but only every other row on the y axis, and every 
fourth plane on the z axis. The authors have other ideas, however. They mention that a 
variable density might be specified using a polynomial function such that the density is 
greatest at the focus, but falls off sharply toward the edges. This could easily be 
accommodated by selecting from different levels of an MR hierarchy. Detailed data at the 
focus is taken from lower levels, while the periphery provides context with points from 
higher levels.

D.4 Search with MR

We have already seen that a distinguishing feature of scientific data is that we don’t 
know what patterns and relationships are contained in the data beforehand. Therefore, the 
techniques described in section 4.2.2 are not adequate, since they only help to retrieve 
known data. We need methods that aid the investigator in discovering new knowledge. As 
described in section 2.3, pattern detection techniques are important tools for knowledge 
discovery, so we should look for ways to apply them to multiresolution data.
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Seale et al. [SEAL98] point out that performing object recognition on a compressed 
image data stream saves the work of transforming the data into pixels, and also reduces 
the volume of data that must be examined. Their work used the JPEG compression 
format, which is not really a multiresolution representation. However, their work hinges 
on the fact that certain key compression steps in the JPEG standard still retain spatial 
correspondence with the original image. This property is also a major feature o f wavelets 
and multiresolution methods in general.

D.4.1 MR Feature Extraction Methods

Notice that both k-d trees and quadtree based techniques described in section 4.2.2 
involve a hierarchy to help locate points in space. Since any multiresolution 
representation implies a hierarchy, we should be able to use this hierarchy to help locate 
features in MR data. The following two methods take advantage of the MR hierarchy to 
perform recognition and feature extraction.

Juffs et al. [JUFFS98] have developed a distance measure for images that is well 
suited for use with MR data, especially the Haar wavelet. Their measure is called a Gray 
Block Distance or GBD. Consider two images I and I ’ such that their average gray levels 
are g  and g  ’ respectively. A gray level of zero signifies black, while a level of one 
corresponds to white.

r=1

gl 12 ■
§212

r= 2 r=3

Figure D.1. Gray blocks for resolutions 1 through 3. Subscripts are in i,j,r order. From
[JUFFS98],

In order to compute the GBD for a pair of images, the gray levels are compared at 
different resolutions. In figure D .l, it can be seen that the gray level for resolution one is 
the gray level for the entire image. For resolution two, four gray levels are computed— one 
for each quarter of the image. This sequence may continue for an arbitrary number of 
levels. So, given that we have gray levels for all required resolutions, we can compute the 
average difference in grayness for any level r:

,  j  = 2r~i i = 2r~l

2  2  k  -, 2 c - 2

^  j - 1 i=l

If the maximum difference between any two gray levels is one, then the maximum 
average difference for any level r is also one. However, in the full GBD given below, the

average difference for each resolution is given a weight —j :
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j  i=r~l i=r A
r \ 2 r - 2
L  j - 1 i - 1

x  ̂ j = 2 r~[ i = 2r_1

^  2 3 r -2  s s  Stfr “ 4>l
This means that as resolution increases, the differences between images become less 

and less significant. The authors claim that this mimics the human visual system in that 
we de-emphasize difference in detail in favor of overall similarity. In addition, this 
decreasing weight guarantees that the complete GBD is a number defined on the range 
0 . . . 1.

The authors point out that there is a close relationship between this distance metric 
and the Haar wavelet. In particular, we should be able to use the summary coefficients 
from the Haar decomposition in place of the g  values. This suggests a potentially valuable 
search method for wavelet data. First, the wavelet decomposition of a template must be 
computed. This template must be an example of the kind o f target we are searching for. 
Next, a low resolution representation of the template is compared against the 
corresponding resolution of the data. The locations with the smallest average difference 
are recorded, and the next level of the template is compared against the next data level in 
these locations. The process may continue until we have found target regions in the data 
that match the template closely enough for the experimenter’s needs. The chief advantage 
of this technique is that it avoids an expensive examination of the original data by taking 
advantage of the MR hierarchy. Areas that are found to be a poor match at the lowest 
resolutions are not examined in greater detail. This should provide an efficient way to 
locate features of interest for patterns that can be represented using a simple template.

Simhadri et a/.[SIMHAD98] have developed an algorithm for feature extraction that is 
especially useful for motion detection in oceanographic images. They point out that 
detecting motion of ocean currents is fundamentally different from solid body motion 
detection because the motion occurs at different scales. Although a current may have a 
general direction at a large scale, the edges of the current may be moving in an orthogonal 
direction, with many swirls and eddies. Because of the multi-scaled nature of ocean 
features, the authors developed a multiresolution approach based on wavelets.

Their algorithm consists of the following steps:
1. Apply a wavelet transform to the image.

2. Truncate all summary coefficients below a user-defined threshold to zero.

3. Reconstruct the image at some resolution j.

4. Apply an edge detection algorithm using another user-defined threshold T

5. If the result is not satisfactory, then descend to the next level j+ 1 , reduce the 

threshold T, and return to step 4.
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The edge detection method used in step 4 is extremely simple. It involves applying a 3x3 
window to every possible position in the image, and finding the difference between the 
maximum and minimum values contained in the window. If this difference is less than the 
threshold T, then the central pixel is replaced with a zero. Otherwise, the window is 
moved to the next location.

Notice that the threshold T is reduced when the algorithm descends to a finer 
resolution. The authors point out that the contrast o f an edge is inversely related to the 
resolution of the image. If we have more pixels with which to represent a transition, then 
the difference between nearby pixels will be less. Notice also that the number of detected 
edges increases with increased resolution, also due to the larger number of pixels. When 
enough edges have been detected, the algorithm halts.

This process o f edge detection is repeated on images taken at different times, so that 
motion can be inferred from the changes in the edges. The authors note that their 
technique is better than traditional edge detection techniques at handling faint edges and 
small details. Traditional methods have more difficulty distinguishing between less 
prominent features and noise. Here, the multiresolution technique has clear benefits.

D.5 Parallel and Distributed Computing with MR

The large size of scientific datasets suggests that there are benefits to applying more 
than one processor to the problems found in scientific databases. Certainly, many 
researchers have looked at how best to divide datasets among several processors. Parallel 
database systems are often implemented on a cluster of workstations connected by a high 
speed network. A distinct but related idea is distributed computing. Distributed 
computing is conducted over a network, but unlike parallel systems a distributed system 
does not necessarily divide the dataset among processors. For example, it may instead 
divide different stages of a process among several machines.

D.5.1 Distributed Computing

Charles Hansen and Stephen Tenbrink [HANS93] explain that imaging and 
visualization were major motivations for developing a new network protocol at the Los 
Alamos National Laboratory (LANL). Scientists at LANL run very processor intensive 
simulations, and need a convenient way to view and steer their progress. The authors 
report that the scientists were very reluctant to walk down the hall to a special 
laboratory, and instead wanted the convenience of working in their own offices. Since the 
office machines were inadequate for running the simulation itself, the visualization task 
was separated from the simulation.

The idea of distributing tasks among several machines can be taken much further, 
especially with large scientific databases. For example, the data itself may be stored on 
one set of machines, while the processing is done on another, and the visualization and
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user interaction is done on a researcher’s personal workstation. Such schemes require that 
data be transmitted from machine to machine over a network.

Methods for transmitting MR data over a network often use progressive 
transmission. That is, a coarse representation of the data is transmitted first, followed by 
more detailed information that allows the data to be refined progressively. Notice that the 
wavelet decomposition, described in section 3.3, works naturally with progressive 
transmission. Wavelet coefficients are transmitted in order of magnitude, sending the 
largest first [STOLL96], The representation on the receiving end is refined as the more 
detailed information arrives. This means that the researcher may view the data as it is 
updated, rather than wait until the entire representation has been transmitted. They may 
also decide that some intermediate degree of refinement is adequate for their purposes, 
and decline to download all of the data. Progressive transmission can be used with other 
multiresolution techniques besides wavelets. Descriptions of such methods can be found 
in [CIGN097, HOPPE96]. Cignoni et al. couple progressive transmission with the 
decimation method described in section 3.4.2. Recall that the decimation method begins 
with the original mesh and selectively deletes vertices until the representation becomes 
sufficiently coarse. Progressive transmission reverses this process by sending the coarse 
representation to the remote machine first, and then sending the vertices in an order 
opposite from their deletion order. That is, the vertex that was deleted last is transmitted 
first. In order for this method to work, the vertices must be reinserted into the tetrahedral 
mesh. This requires an operation that is the inverse of edge collapse, namely vertex 
splitting. To perform vertex splitting, the transmitting machine must indicate which 
previously transmitted vertex the new vertex was collapsed from. With this information 
the collapsed edge can be reconstructed.

D.5.2 Parallel Computing

Parallel computing involves breaking up a single task among multiple processors. 
These processors may be part of a single machine, or may be in separate machines 
connected through a network. The principle advantage of parallel computing is 
performance.

If we use eight processors to attack a problem, we might (optimistically) expect the 
time to reach a solution to be one eighth the time required for one processor. That is, we 
expect the speedup to be 8.0, where speedup is defined as [LEIGH92]:

time for one processor
speedup = —------------------------------

time for n processors

Furthermore, the efficiency is defined to be

. 100 • speedup
E ffic ien cy   ----------------------

n
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In practice, an efficiency of 100% is very difficult to achieve for reasons outlined below. 
Still, reducing computation time is the principle reason to use multiple processors for 
exploring scientific data.

Load balancing plays an important part in optimizing parallel computation. Since the 
completion time for a parallel program is the time within which the last processor finishes 
its work, it is desirable to distribute workload evenly among the processors. Ahrens and 
Hansen [AHRE95] point out that load balancing must be done carefully. In some cases, 
the costs of distributing the load outweigh the benefits of balanced computation. In such 
cases, load balancing actually degrades performance.

Load balancing methods can be divided into two classes—static and dynamic. Static 
load balancing is done before the beginning of computation, and is not performed while 
the program is running. Lin and Li [LIN95] point out that many problems have 
unpredictable behavior, making it difficult for static load balancing to yield good 
performance. It is not known where the bulk of the workload lies until after computation 
has begun. To address this problem, dynamic load balancing is performed repeatedly 
while computation is in progress. Both static and dynamic load balancing can be done 
either locally or through global control. Load balancing through global control tends to 
yield better distribution because decisions can be made based on a large amount of 
accurate information. If load balancing is performed locally, each processor gathers 
information from processors in its immediate neighborhood. This may degrade the quality 
of the distribution somewhat, but also requires less communication than the global 
approach.

Nakano et a/.[NAKAN097] have developed a dynamic load balancing technique that 
works with multiresolution physical chemistry data. Their system updates the 
distribution of data after every 60 iterations of their program. Specifically, they notice 
when an atom has moved from one processor’s physical space to another, and 
subsequently adjust both the data and boundaries to compensate. In contrast, Pfaltz et al. 
[PFALTZ98] distribute data in their ADAMS scientific database by oid  (object id). The 
ADAMS system emphasizes queries on large, usually dimensional datasets using boolean 
conditions and set operations. Their system uses 64 bit oids to uniquely identify each 
data object in the database. Data objects are distributed among n=2d processors using the 
d  least significant bits of the oid. Although their system is static, they claim good 
performance for the kinds o f operations their system supports, especially with larger 
datasets.

One difficulty with the ADAMS approach is that it seems to discard geometric 
locality when dealing with dimensional or spatial data. If a researcher wants to conduct an 
operation that applies to some neighborhood of points, then the ADAMS approach to 
load balancing results in excessive communication. Points that are geometrically in the 
same neighborhood are scattered over several processors. On the other hand, Nakano’s 
work divides the geometric space over the processors so that each processor gets a 
roughly cubic contiguous chuck of the space. This means that many operations can be 
conducted locally on each processor with no need for external data. To handle other cases
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where data from other processors is needed, Nakano simply duplicates the data. Each 
cube sends the coordinates of atoms near its boundaries to the six neighboring processors.
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APPENDIX E

UNCERTAINTY VISUALIZATION M ETHODS IN  
ISOSURFACE VOLUM E RENDERING

E.l Introduction

We describe two techniques for rendering isosurfaces in multiresolution volume data 
so that the uncertainty (error) in the data is shown in the visualization. In general the 
visualization of uncertainty in data is extremely difficult, but the nature of isosurface 
rendering makes it amenable to an effective solution. In addition to showing the error in 
the data used to generate the isosurface, we can also show the value of an additional data 
variate on the isosurface .

E.1.1 Visualizing uncertainty

With the exception of geographic information systems (see, for example, Hunter et al. 
[Hunt93]), there has not been much research into identifying and visualizing the 
uncertainty in data. Recently, however, researchers in other fields have begun to address 
this issue. For example, Lodha and Pang have experimented with visualizing uncertainty 
in vector fields [Pang94, Lodh96a, Lodh96b, Witt96, Shen98] and Cignoni et al. [Cigno98] 
have developed a tool, Metro, for visualizing mesh surface approximation error. In 
addition to the very difficult problem of identifying and maintaining the error itself, it is 
also very difficult to present that error to the user in an effective and meaningful form.
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Incorporating uncertainty into any visualization requires rendering at least one more 
variate (actually we need to add one new variate for each variate that has its own error 
measure). Although many innovative multivariate visualization techniques have been 
developed in recent years and some have proven useful in some situations, this is an 
extremely difficult problem which is exacerbated by the enormous size of modem 
scientific data.

In principal, we would like to incorporate the uncertainty information into the data 
visualization. When the error information is locally defined (i.e., it has about the same 
resolution as the data), this approach usually results in some form of degradation in the 
display of the data itself. Wittenbrink et al. [Witt96] call these overloading techniques (as 
opposed to their glyph-based technique which they call verity visualization). Cedilnik and 
Rheingans [CediOO] use annotations on a visualization in order to reduce the distraction 
caused by the error visualization. In order to be most effective, it is important that the 
user have the ability to turn the uncertainty visualization on and off interactively. With 
uncertainty visualization disabled, the user is likely to have the best chance of 
understanding the fundamental nature of the data. After enabling the uncertainty 
visualization, the user can now get an understanding of the error in the data.

E.1.2 Multiresolution data

One major reason for the relatively low emphasis placed on uncertainty visualization 
in the past is that uncertainty information is seldom available except in very abstract 
forms. With the growing interest in the generation of coarse resolution approximations to 
a large dataset, this particular limitation can often be overcome. Creating multiresolution 
data certainly introduces additional error into the data, but it is often relatively easy to 
measure this new error and it is usually significantly greater than the error in the original 
data. Consequently, we can expect to be able to create and access error information about 
coarse resolutions of a multiresolution data hierarchy. Furthermore, it is particularly 
important to incorporate error into the visualization o f data that is only a coarse 
approximation to the “real” data. A scientist needs to know what portions o f a coarse 
resolution visualization have relatively low error (and therefore are an authentic 
representation of the data in that area) and which have a relatively high error. The 
representation of the low error regions is likely to be reasonably authentic, but the 
scientist is likely to want to visualize areas of high error at a higher resolution.

E.1.3 Isosurface rendering

Isosurface volume rendering is a very good candidate for adding uncertainty 
visualization. Rendering an isosurface within a volume of univariate data is a very 
effective technique for many applications. Since all the data being visualized has the same 
data value, the particular value does not need to be incorporated into the visualization.
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Conventional isosurface rendering assigns a constant color to the vertices of the triangles 
that define the isosurface, and uses standard lighting models and Gouraud interpolation to 
give a sense of the shape of the isosurface. Consequently the color parameter is actually 
available for visualizing the uncertainty. It’s important to realize that this approach 
allows us to visualize the error of the data used to generate the isosurface rather than the 
error between the low resolution isosurface and its corresponding high resolution 
isosurface.

E.1.4 Research overview

In this paper we describe some experiments with incorporating an uncertainty variate 
into isosurface rendering. Our visualization tool is part of a broader research effort to 
develop a formal model and a support environment for dealing with large multiresolution 
and adaptive resolution data sets [Spar94, RhodesOl]. A fundamental aspect o f this 
model is the incorporation of local error measures into the data representation.

Although our uncertainty visualization does not depend on any particular technique 
for generating the volume data, we start by describing our wavelet-based multiresolution 
volume data which does incorporate a meaningful error component. We conclude with 
some specific examples of the visual results of the approach.

E.2 Multiresolution volume data

Our motivation for developing a tool for incorporating uncertainty into isosurface 
rendering arose from our interest in using multiresolution data representation for large 
scientific data sets [Wong95, WongOO]. We are particularly interested in generating coarse 
approximations to a large dataset that are more tractable in terms of size but still retain 
sufficient authenticity to be useful. For this approach to be viable, it is critical that we 
provide an estimate of the error that is introduced into the coarse data on a local basis. In 
principle, every data point in each level of a multiresolution data hierarchy includes both 
data and an error measure associated with that data -  its uncertainty. In other words, we 
want to identify the regions of the data where the coarse representation is not an 
authentic representation of the original data.

E.3 Isosurface rendering with error

E.3.1 Overview

We have extended the standard Marching Cubes algorithm to incorporate a measure of 
the error of the data. Volume data points contain both data values and the error associated 
with each data point. During the Marching Cubes algorithm, we compute an error
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associated with each triangle vertex by interpolating between the error values of the 
associated cube vertex error values. We use the error value for each triangle vertex to 
modify the appearance of that vertex.

E.3.2 Uncertainty rendering using color

The vertices of the triangles that define the isosurface are assigned a color based on 
hue, saturation and brightness and the triangles are then rendered using an external light 
source and Gouraud shading. For basic isosurface rendering (without uncertainty enabled), 
all triangle vertices have the same color. The user may choose to map the uncertainty to 
any of the three color parameters (hue, saturation and brightness), while leaving the other 
two parameters fixed. In addition, the user can interactively select what constant values 
should be used for the other two color parameters. Since hue is specified as an angle 
between 0 and 360, it is clearly not desirable that the full range be used -  if  it were, the 
largest and smallest error values would have the same hue. Consequently, we allow the 
user to select the range of hues that should be used for the uncertainty.

Although we allow users to assign the uncertainty rendering to any of the three color 
parameters (hue, saturation, brightness), we recognize that the only reasonable mapping 
for this particular problem is to map the error to the hue. The brightness component is 
needed in order to effectively represent the shape of the isosurface and it is well-known 
that we are far more sensitive to hue changes than saturation changes. In general, the 
perceptual issues associated with color usage are orthogonal to the goals (and scope) of 
this paper.

E.3.3 Uncertainty rendering using texture

We have developed a second error visualization method that uses texture to show 
regions of the isosurface with high uncertainty. Textures and texture hardware have been 
used by various researchers as an aid to data visualization [BoadaOl, Cigno98, Cabral94, 
Guan94, LaMar99]. These approaches either use texture hardware to accelerate 
visualization, or rely heavily on the color component of the textures for their visual 
effects. Our approach, on the other hand, does not use hue as part of the texture, so that 
it is available for visualizing another variate on the isosurface.

Our implementation uses a second texture surface which envelops the original 
isosurface, but is slightly offset from it. A stipple texture is mapped to this surface, and 
the opacity is varied according to the uncertainty of the data. That is, the texture will be 
most visible in areas with high uncertainty, but absent or faint where uncertainty is low.

Figure E.10 shows the interaction between color and texture visualization. The 
topmost row simply shows a set of typical hues. The second row shows a texture 
imposed over a green surface. The texture becomes increasingly visible as the tiles 
progress to the right. Notice that the underlying green can still be seen, even in the
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rightmost tile.
In the third and fourth rows, the hue of each tile varies as in the first row, but now we 

have imposed the texture as well. For the third row, the texture becomes increasingly 
visible as we progress to the right, but the opposite occurs in the final row. In either case, 
both the texture and underlying hue are suitable for visualizing distinct variates. For 
example, with fluid flow data, we might use the pressure variate to compute the 
isosurface, map the error o f the pressure to the texture surface and render the temperature 
variate to the surface hue.

E.4 Experimental results

Our isosurface software is implemented in Java and is built on the VisAD system 
[VisAd, Hibb92] which uses Java3D for rendering. Figures E.l through E.9 were rendered 
directly in this system. The remaining figures were rendered in a separate program using 
gMjava [G14java], since we needed a lower-level API to implement the texture based error 
visualization.

For these tests we used a CAT scan of a cadaver head provided via ftp  courtesy of 
North Carolina Memorial Hospital and Siemens Medical Systems, Inc., Iselin, NJ. The 
original data is 113x256x256. For the convenience of the wavelet transform, we appended 
15 slices of zeros to get a 128x256x256 dataset. We then applied a 2D Haar wavelet to 
each slice and three successive 3D Haar wavelets to get a 4 level hierarchy. Figure E.l 
shows an isosurface rendering of the 1283 dataset for the isovalue 0.185 (a skin value).
The next two coarser resolutions of the skin isosurface are shown in Figure E.2 (643) and 
Figure E.3 (323). It is clear that the surface shown in Figure E.2 is coarser than that shown 
in Figure E .l, but the overall impressions of the two surfaces are very similar. Figure E.3, 
however, shows a substantial loss of accuracy of the surface.

E.4.1 Uncertainty mapped to hue

Figure E.4 shows the skin value isosurface of the 1283 resolution data with constant 
saturation and brightness and uncertainty mapped to the range of hue from 144 degrees 
(green) down to 0 degrees (red). In other words, green represents low uncertainty and red 
high uncertainty. The error associated with the 1283 dataset is very low and this is 
reflected in the visualization. At normal scale no high error areas are visible although at 
very high magnification it is possible to see some very light pink areas around the mouth 
region. Figure E.5 shows the uncertainty visualization of the 643 dataset using the same 
visualization parameters as Figure E.4. Here more error is readily discernible as reddish 
areas around the mouth, eyes, forehead and other places. Figure E.6 shows the 323 
resolution data with the same visualization parameters. As we would expect, there is 
obviously increased error in many areas of the visualization.

It is not clear what range of error might be expected for different kinds of input data
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and so it is also unlikely that there is a single ideal mapping o f error to color. Figures E.7 
and E.8 show the 643 and 323 data sets with a narrower hue range (108 to 0) intended to 
accentuate the error while maintaining red as the color of the highest error.

The last two figures show our texture based error visualization method. Figure E .l 1 
shows the skull data with error mapped to texture transparency. Regions o f high error can 
be seen above the ear and proceeding left towards the forehead. Figure E .l2 demonstrates 
the use o f texture visualization of error while hue is mapped to another variate. For this 
example, we generated a synthetic variate based on polygon normals to demonstrate the 
technique. The texture visualized error can be clearly seen even though it interferes 
minimally with the accurate visualization o f the synthetic variate.

E.5 Conclusions and future research

Isosurface rendering of multiresolution data is an ideal candidate for including 
uncertainty visualization. The incorporation of the uncertainty into the visualization 
using color is relatively easy and provides effective feedback about where the 
visualization is unreliable without detracting significantly from the data visualization, 
especially in areas o f low uncertainty. Texture based visualization o f uncertainty has the 
additional benefit o f making the surface color available for the visualization of another 
variate. In addition to the MR isosurface renderer we have shown here, we have 
incorporated this technique into a system for creating and rendering adaptive resolution 
volumes [Laramee02]. Figure E.9 shows a rendering from that system. We intend to 
incorporate uncertainty into more complex visualization techniques, such as direct volume 
rendering (DVR) and flow visualization.

Figures

Figure E.1. 1283 data; skin isovalue 
(0.185);uncertainty disabled

Figure E.2. 643 data; skin isovalue (0.185); 
uncertainty disabled
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Figure E.3. 32s data; skin isovalue (0.185); 
uncertainty disabled

Figure E.5. 643 data; skin isovalue (0.185); 
uncertainty mapped to hue with range (144,0)

Figure E.7. 643 data; skin isovalue (0.185); 
uncertainty mapped to hue with range (108,0)

Figure E.4.1283 data; skin isovalue (0.185); 
uncertainty mapped to hue with range (144,0)

Figure E.6. 32a data; skin isovalue (0.185); 
uncertainty mapped to hue with range (144,0)

s*. <-r

.ifc

Figure E.8. 323 data; skin isovalue (0.185); 
uncertainty mapped to hue with range (108,0)
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Figure E.9. 5% AR Data; bone isovalue 
(0.378); uncertainty mapped to hue with range 
(144,0)

Figure E.11. Error mapped to texture opacity 
over a constant hue.
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Figure E.10.
a) Varying hue only..
b)Texture ofincreasing opacity over 
constant hue.
c) Texture of increasing opacity over 
varying hue
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Figure E .12. Error m apped to opacity over a  h ue m apped to a  synthetic
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