
University of New Hampshire
University of New Hampshire Scholars' Repository

Doctoral Dissertations Student Scholarship

Fall 2004

Granite: A scientific database model and
implementation
Philip J. Rhodes
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/dissertation

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has
been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more
information, please contact nicole.hentz@unh.edu.

Recommended Citation
Rhodes, Philip J., "Granite: A scientific database model and implementation" (2004). Doctoral Dissertations. 235.
https://scholars.unh.edu/dissertation/235

https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fdissertation%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fdissertation%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation/235?utm_source=scholars.unh.edu%2Fdissertation%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu

GRANITE: A SCIENTIFIC DATABASE MODEL AND IMPLEMENTATION

BY

Philip J. Rhodes

BA, University of Virginia, 1991

MS, University of Rhode Island, 1995

DISSERTATION

Submitted to the University o f New Hampshire

in Partial Fulfillment of

the Requirements for the Degree of

Doctor o f Philosophy

in

Computer Science

September, 2004

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

UMI Number: 3144753

Copyright 2004 by

Rhodes, Philip J.

All rights reserved.

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3144753

Copyright 2004 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

This dissertation has been examined andapproved.

• /
' ' ,Jf

/ / ? , . / ' - (.

Dissertation Director, R. Daniel Bergeron, Professor

Dissertation Director, fe d M. Sparr, Professor

Georges G.^rrinstein, Professor

Philip / . Hatcher, Professor

>1 -

_______■^kuLsLt'X . \ /X x h - L ______

Elizabeth Varki, Associate Professor

i ' / v j / t*y
Date

ii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

This dissertation has been examined and approved.

Dissertation Director, R. Daniel Bergeron, Professor

Dissertation Director, Ted M. Sparr, Professor

Georges G. Grinstein, Professor

Philip J. Hatcher, Professor

Elizabeth Varki, Associate Professor

Date

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

DEDICATION

To my parents, Christopher and Josephine, who have

always been supremely supportive and inspiring.

iv

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ACKNOWLEDGEMENTS

I must first thank my dissertation directors, Dr. R. Daniel Bergeron, and Dr. Ted M.

Sparr. They have dedicated an enormous amount of time and effort in guiding me through

this work, teaching me the value not only of hard work but also creative thought. My

gratitude for their work and time is profound.

My committee members, Dr. Georges Grinstein, Dr. Philip Hatcher, and Dr.

Elizabeth Varki have all offered valuable advice and suggestions. They have done a lot of

reading and editing on my behalf, and I very much appreciate their efforts.

I ’ve had the pleasure of working with a collection of very capable Master’s students

over the years, without whom the Granite system would not exist. My thanks to

Xionghui Chen, Loma Ellis, Joseph Hempfling, Feng Jiang, Wenhui Li, Gang Lu, Denise

Mitchell, Xuan Tang, and Li Ye.

I would also like to thank my friends from New Hampshire, Rhode Island, and

Babcock Hall, of which there are too many to list here. At the risk of leaving someone

important out, let me thank Maria Agorastou, Lexi Bamett, Nat Barnett, Cris Caruso,

Beth Demers, Genevieve Ellison, Susan Engel, Rada Filip, Lauren Howard, Zorana

Ivcevic, Deepak Jadhav, Mike Kem, Bob Laramee, Nina Laramee, Denise Liliedahl, Pete

Lisichenko, Kate McCafferty, Kate Oparowsky, Edin Pasic, Todd Patenaude, Renee

Percy, Khrystyna Pisareva, Lou Ramirez, Mark Randall, Lincoln Ross, Libby Ryan-

Kem, Sally, Lara Skinner, Mary Sytek, Mikkel Thrane, Anne Tocker, Nathan Vooge, and

Dale Wright. Some o f you have lent me particular support during tough times, and you

know that I will always be especially grateful for that. However, you are all mentioned

here not just because you have been a fun and enjoyable friend, but because I have felt

v

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

some connection with you that helped me through the labors that this document

represents.

My thanks also to Linda Spring Andrews, Andy Evans, Gerry Pregent, and Gina

Ross for providing a pleasant and efficient working environment. By clearing many little

obstacles out of my way, you have helped me accomplish my goal.

Lastly, I would like to thank the National Science Foundation, which supported my

work under grant IIS-0082577 and also the University of New Hampshire, which

supported me with a Summer Fellowship for Teaching Assistants. The work presented

here could not have been done without this funding.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

TABLE OF CONTENTS

DEDICATION iv

ACKNOWLEDGEMENTS V

LIST OF TABLES xii

LIST OF FIGURES xiii

ABSTRACT XV

CHAPTER PA

I INTRODUCTION AND OVERVIEW 1

Scientific Data Model 2

Lattice Overview 2

Multiresolution 4

DataSource Layer 5

Spatial Prefetching 6

Contributions 6

II BACKGROUND AND RELATED WORK 8

Scientific Data 9

Scientific Databases 10

The Multiresolution Representation 10

Adaptive Resolution 11

Multidimensional Access Methods 12

Access to Large Datasets 13

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

File Access 13

Prefetching and Caching 13

Conclusion 15

III THE LATTICE LAYER 16

Dimensional Data 16

Geometry and Topology 18

Periodic Tilings and Data 22

Neighborhood 23

A Model for Scientific Data 24

Multiresolution Representations for Data 30

Representing Domains 38

Representing Derived Data and Metadata 46

Operations on MR Data and Metadata' 53

Distributed and Parallel Computing 56

Lattice Implementation 59

IV. THE DATASOURCE LAYER 66

Mapping Lattices to Data 66

Datasource Model 67

Attribute Join Datasource 68

Blocked Datasource 69

Physical Datasources 69

The Rod Storage M odel 70

File Formats and the Rod Storage Model 72

Adaptive and Variable Resolution 74

viii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Stencils 77

Encapsulation and Performance Issues 78

Multisource Performance 80

Datasource Metadata 80

V. ITERATION AWARE PREFETCHING FOR LARGE MULTIDIMENSIONAL

SCIENTIFIC DATASETS 82

Introduction 82

Problem 82

Caching and Prefetching Background 85

Advantages of the Granite Approach to I/O 87

Iterators 88

Iterator Aware Prefetching 89

Spatial Prefetching 90

Examples 93

File Formats 94

Example Code 97

Results 98

Volume Slicing 103

CDF Performance Comparison 107

VI CONCLUSIONS AND FUTURE WORK 110

Contributions and Conclusions 110

Future Work 112

ix

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

APPENDICES

A GRANITE FOUNDATIONS 114

A. 1 Encapsulation and Performance 114

A.2 Representing Locations in Multidimensional Space 115

A. 3 Representing Regions in Multidimensional Space 115

A.4 Iterators 116

A.5 Types 117

A.6 The Datum Class 118

A.7 The DataBlock Class 119

B. SCIENTIFIC DATABASES 120

B.l Scientific Databases

B.2 Metadata 121

B.3 Discovering New Relationships: Data Mining and Knowledge Discovery 127

B.4 Scientific Data 135

C MULTIRESOLUTION 143

C .l MR Methods for Regular Data 143

C.2 Wavelets 144

C.3 MR Methods for Iregular Data 146

D. ARCHITECTURE AND SYSTEM ISSUES 152

D. 1 Architecture and System Issues

D.2 Error 152

D.3 MR Access 154

D.4 Search with MR 155

D.5 Parallel and Distributed Computing with MR 158

x

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

E. UNCERTAINTY VISUALIZATION METHODS IN ISOSURFACE VOLUME

RENDERING 162

E .l Introduction

E.2 Multiresolution Volume Data 164

E.3 Isosurface Rendering with Error 164

E.4 Experimental Results 166

E.5 Conclusions and Future Research 167

xi

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

LIST OF TABLES

TABLE PAGE

5.1 Execution times for datum iteration 100

5.2 Execution times for a 643 block iteration 100

5.3 Execution tiems for datum iteration over chunked files 101

5.4 Datum iteration over spatial prefetching on native files

compared with chunking 102

5.5 Execution times for a 643 block iteration over chunked files 103

5.6 Frames per second for the plain datasource, spatial prefetching,

and threaded prefetching caches. 105

xii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

LIST OF FIGURES

FIGURE PAGE

1.1 Example datasets 3

3.1 Uniform Geometries 18

3.2 Non-Uniform Data 19

3.3 Various Topologies 20

3.4 Rectilinear Topologies 21

3.5 Warping a Regular Grid to a Curvilinear Dataset 21

3.6 Fundamental Domains 22

3.7 A Possible Supercell Implementation 23

3.8 NAMR and AR Hierarchies, and an AR Reperesentation 33

3.9 Support and Influence 34

3.10 A Simple Stencil Union 43

3.11 Union of Stencils with Different Base Domains 44

3.12 A Subset Operation 45

3.13 Sideways Construction o f Derived Data 50

4.1 Blocked Datasource Example 69

4.2 Datasource Conceptual Diagram 70

4.3 Storage Ordering 71

4.4 Chunked File Format 73

4.5 ARR Cell DataSource and Region Quad Tree 75

4.6 ARR Cell DataSource and Heterogeneous Tree 76

4.7 Prototype Stencil Implementation 77

xiii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5.1 Slicer Application Illustration 83

5.2 Closeup of File Elements 84

5.3 Paged View of a Three Dimensional Dataset 87

5.4 Cache Shape Examples for {1,0} ordering 94

5.5 Cache Shape for a Chunked Datasource 96

5.6 Cache Code Example 97

5.7 Overview Slice of the Visible Woman Dataset 108

5.6 Several Example Images from Slicer 109

A .l GBoundsIterator Problem 116

B.l Two Rule Based Approaches to Data Mining 134

B.2 A Spline Based Approach to Data Mining 136

B.3 A Relational Database Table 138

B.4 A Dimensional View of Figure B.3 139

B.5 Voronoi Regions and Delaunay Triangulation 141

C.l A Two Level Hierarchy from DeBerg, et al. 148

D .l Gray Blocks for Resolutions 1 through 3 156

E l-E l 2 Example Images for Visualizing Error in Isosurfaces 167-170

xiv

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ABSTRACT

GRANITE: A SCIENTIFIC DATABASE MODEL AND IMPLEMENTATION

by

Philip J. Rhodes

University of New Hampshire, September, 2004

The principal goal of this research was to develop a formal comprehensive model for

representing highly complex scientific data. An effective model should provide a

conceptually uniform way to represent data and it should serve as a framework for the

implementation of an efficient and easy-to-use software environment that implements the

model. The dissertation work presented here describes such a model and its contributions

to the field of scientific databases. In particular, the Granite model encompasses a wide

variety of datatypes used across many disciplines of science and engineering today. It is

unique in that it defines dataset geometry and topology as separate conceptual

components of a scientific dataset. We provide a novel classification of geometries and

topologies that has important practical implications for a scientific database

implementation. The Granite model also offers integrated support for multiresolution and

adaptive resolution data. Many of these ideas have been addressed by others, but no one

has tried to bring them all together in a single comprehensive model.

The datasource portion of the Granite model offers several further contributions. In

addition to providing a convenient conceptual view of rectilinear data, it also supports

xv

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

multisource data. Data can be taken from various sources and combined into a unified

view.

The rod storage model is an abstraction for file storage that has proven an effective

platform upon which to develop efficient access to storage. Our spatial prefetching

technique is built upon the rod storage model, and demonstrates very significant

improvement in access to scientific datasets, and also allows machines to access data that

is far too large to fit in main memory. These improvements bring the extremely large

datasets now being generated in many scientific fields into the realm of tractability for the

ordinary researcher.

We validated the feasibility and viability of the model by implementing a significant

portion of it in the Granite system. Extensive performance evaluations of the

implementation indicate that the features of the model can be provided in a user-friendly

manner with an efficiency that is competitive with more ad hoc systems and more

specialized application specific solutions.

xvi

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 1

INTRODUCTION AND OVERVIEW

1.1 Introduction

Building effective tools for handling scientific data presents many challenges to

system designers. Scientific data is often extremely large, and comes in a variety of types

and formats. Traditional database systems simply do not effectively support large

scientific data. In particular, they cannot efficiently represent the structure that is

implicit in the geometric relationships between the data points. In contrast to traditional

databases where relationships among items are explicitly known, a scientific database

should assist the researcher in discovering the relationships hidden among the data.

The principal goal of this research is to develop a formal comprehensive model for

representing highly complex scientific data. An effective model should provide a

conceptually uniform way to represent different kinds of data and it should serve as a

framework for the implementation of an efficient and easy-to-use software environment

that supports the model. The dissertation work presented here describes such a model,

1

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

called the Granite Model. This model encompasses a wide variety of datatypes and data

organizations used across many disciplines of science and engineering today. We validated

the feasibility and viability of the model by implementing a significant portion of it in the

Granite System. Extensive performance evaluations of the implementation indicate that

the features of the model can be provided in a user-friendly manner with an efficiency that

is competitive with more ad hoc systems and more specialized application specific

solutions.

The Granite Model consists of the Lattice Model and Datasource Model, implemented

as separate layers in the Granite System. The rest of this chapter summarizes these major

components and the contributions of the research.

1.2 Scientific Data Model

We define scientific data as a collection of sample values that represents some natural

phenomenon [HIBB94]. We refer to the phenomenon being sampled as a function (|)

defined over a domain D. The dataset consists of a sampling of (|> taken at a finite set of

points A G D . Our model is specifically tailored to handle data defined over a continuous

n-dimensional domain. We use the term dimensional to identify such datasets.

1.3 Lattice Overview

The Lattice layer of the model is the most general, and supports both uniform and

unstructured data. An example of uniform data is rectilinear data. Uniform data is

uniformly distributed in the geometry and has neighbors to the north, south, east, west,

etc. Elements of unstructured data sets are placed arbitrarily throughout the dataset

domain, and have some arbitrary number of neighbors that must be explicitly specified.

Figures 1.1.a and 1.1.b show two and three dimensional rectilinear data, while figure 1.1.c
2

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

shows a small two dimensional unstructured dataset.

C

0 0~~0

A B

Figure 1.1. a) 2d Rectilinear data, b) 3d rectilinear data, c) 2d unstructured data

Our Lattice model is unique in that it separately represents geometry and topology.

Geometry refers to the placement o f sample points within a domain. Topology refers to

the neighborhood relationships between points, regardless of their placement. Cells, an

important topological concept, are often defined as regions bounded by arcs connecting

neighboring points. Through the combination of different kinds of geometries and

topologies, the lattice model can accommodate a wide variety of data formats within a

single conceptual framework.

The Lattice itself contains several components. In addition to the geometry and

topology, it also includes a value space, which specifies the set of values found in the

data, and an approximating function, which is used to provide values for lattice locations

that do not correspond to sample points.

The model allows users to access lattice data either geometrically or topologically.

With geometric access, the user specifies a location in the domain from which data is

returned. With topological access, the lattice provides an iterator that returns successive

points or cells for user processing.

The current Lattice implementation supports two dimensional unstructured data with

multiresolution, as well as n-dimensional rectilinear multiresolution data with the help of

the datasource layer, described below. The implementation is very general and is easily

3

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

extended to higher dimensionalities. However, Lattice development is sufficiently

advanced to validate the feasibility of our model for scientific data.

1.4 Multiresolution

The lattice model provides support for both multiresolution (MR) and adaptive

resolution (AR) data, in which a dataset is represented at several levels of detail, allowing

a lattice user to access only the most interesting data at the finest resolution. These

formats avoid storage or processing costs associated with uninteresting and unnecessary

data. Granite builds support for these formats directly into the model, while other

systems may require an experimenter to devise more ad hoc support.

A multiresolution hierarchy is a stack of lattices viewing the same n-dimensional

volume at different resolutions. Typically, we think of these lattices as ordered vertically

from the most detailed on the bottom to the least detailed on top. The spatial overlap of

these lattices facilitates the correlation of coarse and fine views of the same regions. We

use these spatial semantics to map a sub-volume vertically through the hierarchy using

support and influence. Each neighboring set of points or cells in a coarse view is related to

a (larger) set of neighboring points and/or cells in a finer view; this set forms the support

for the items in the coarser view. Each point or cell in the finer view participates in the

support for a set of items in the coarse view; this set in the coarse view is its influence.

An adaptive resolution representation allows resolution to vary within a single lattice.

The resolution near a point may depend on the behavior of the sampling function, on the

behavior o f the error function, or on the nature of the domain in the neighborhood of the

point. An AR representation is a coarse view with interesting regions replaced with data

often taken from more detailed views acquired by drilling down an MR hierarchy. The

4

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

AR representation approximates the functional accuracy of the finer view with the

memory cost of the coarser view.

It is possible to define a hierarchy of adaptive resolutions on the same data.

Typically, each coarser level of this hierarchy is created using successively relaxed error

tolerances. Because an AR hierarchy contains multiple resolutions within each level, it has

the potential to achieve a representation with the same accuracy as MR using less storage.

Alternatively, for a given amount o f memory, it can retain increased detail and accuracy in

important regions of the domain.

1.5 DataSource Layer

The DataSource Layer assists the Lattice layer in the handling of rectilinear data,

though it can also be used alone. Conceptually, the datasource model represents rectilinear

topologies using an array. The array axes form an index space, and each element of the

array contains a single datum, which has one or more fields or attributes. Physical

datasources may be directly associated with a file or network stream. A composite

datasource combines one or more component datasources. For example, the

AttributeJoinDataSource can join one or more attributes taken from each of several

component datasources to produce a single, unified representation of the several

component datasets. Similarly, the BlockJoinDataSource can form a single view of several

component datasources by joining their index spaces. These two datasources form the

core of our support for multisource data, in which data is combined from several different

sources.

The datasource model also supports adaptive resolution for cell oriented rectilinear

data. The ARRCellDataSource uses various tree data structures to present a single

5

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

representation of the data that contains different resolutions for different regions o f the

index space.

1.6 Spatial Prefetching

Physical datasources must address the problem of efficiently reading data from a one

dimensional file in order to populate an ^-dimensional index space. The rod storage model

has proven an effective platform for developing solutions to this problem. Coupled with

the development of several kinds of iterators, the rod storage model has also led to

significant research on caching and prefetching. This work culminated in the development

of the spatial prefetching technique, described in chapter 5. Spatial prefetching not only

greatly accelerates access to data on disk, it also brings very large datasets within reach of

the Granite system. For example, at the end of chapter 5 we describe an interactive

Granite application used with the 39GB Visible Female dataset, provided by the National

Institutes of Health.

1.7 Contributions

This document describes a collection of important contributions to the field of

scientific database systems. The Granite model is unique in that it defines dataset

geometry and topology as separate conceptual components of a scientific dataset. We

provide a novel classification of geometries and topologies that has important practical

implications for a scientific database implementation. Unlike the systems commonly in

use today, the Granite model also offers integrated support for multiresolution (MR) and

adaptive resolution (AR) data. AR and MR formats attempt to reduce the cost of

representing or processing data that has resolution higher than required for the task.

Many of these ideas have been addressed by others, but no one has tried to bring them all
6

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

together in a single comprehensive model.

The datasource portion of the Granite model offers several further contributions. In

addition to providing the user with a convenient conceptual view of rectilinear data, it also

offers support for multisource data. Data can be taken from various files or network

sources and combined using an attribute join or block join, still providing a unified view of

the combined data.

The Granite System is our implementation of the Granite model, and is not only a

working system that provides useful and novel functionality, but also serves to validate

the effectiveness and feasibility of the model. The system supports both unstructured

trimesh datasets and n-dimensional rectilinear datasets. With the help of the datasource

layer, the Granite system also handles adaptive resolution for rectilinear cell and point

based data.

The rod storage model is an abstraction for file storage that has proven an effective

platform upon which to develop efficient access to storage. Our spatial prefetching

technique is built upon the rod storage model, and demonstrates very significant

improvement in access to scientific datasets. It not only speeds access to datasets, it also

allows machines to access data that is far too large to fit in main memory. These

improvements bring the extremely large datasets now being generated in many scientific

fields into the realm of tractability for researchers using conventional machines.

The remainder of this document begins with an overview of background and related

work, followed by a description of the Lattice layer, both the model and implementation.

The next two chapters address the model and implementation o f the Datasource layer,

and spatial prefetching, respectively. We end with conclusions and a discussion of future

work.

7

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Introduction

Although traditional databases have been around for many years, they are not well

suited for scientific data. They do not handle the tremendous size of scientific datasets

well, and there is a fundamental mismatch between the design of traditional databases and

the operations scientists want to perform on scientific data. One important weakness is in

the role o f metadata. In traditional databases, metadata is mainly structural, describing the

types and relationships of the various attributes. In scientific databases, the relationships

within the data are initially unknown; it is these relationships that the scientist hopes to

discover through an exploration of potentially huge datasets. Appendix B contains a

discussion of metadata issues. For a discussion of the unique features of scientific data,

see [PFALTZ98],

8

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The process of exploring scientific data should be as interactive as possible, even

though large volumes of data can make this difficult. Recently, researchers have been

studying the advantages of multiresolution (MR) representations for scientific data

[CIGN094, CIGN097, DEBE98, HECK97,STOLL96, WONG95], MR representations

allow the same data to be examined different resolutions. Examining a coarse

representation of the data can provide enormous savings in processing and storage costs,

thereby enhancing interactivity. These advantages can be extended further by employing a

distributed and/or parallel processing system to increase the speed at which data is

retrieved, visualized, and manipulated. Appendices C and D contain further discussion

regarding both MR and distributed processing.

The remainder of this chapter reviews the field of scientific databases and scientific

data, providing the necessary background for the rest of this dissertation. The appendices

contain a much expanded discussion of these same issues as well as additional areas that

are not strictly necessary for understanding the remainder of this document.

2.2 Scientific Data

A scientific database should be able to represent or model scientific data gathered

either from the real world, or from simulation. In other words, a set of scientific data is a

collection o f sample values that represents some “natural” phenomenon [HIBB94].

We refer to the phenomenon being sampled as a function <j> defined over a domain D.

The dataset consists of a sampling of (j) taken at a finite set o f points A E D. A mesh

consisting of the points of A along with connecting edges generally spans the domain D.

Cignoni, et al. postulate a function/ which interpolates values of <j> for domain points not

in A [CIGN097], The mesh assists the approximating function, since edges of the mesh

9

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

connect points, and also form regions within which values can be approximated or

interpolated.

Notice that in order for this model to be useful, the domain D must be defined over 1

or more dimensions. For example, in 3D Cartesian space these dimensions would

correspond to the x, y, and z axes.

We focus our research on data that can be meaningfully represented in a continuous k-

dimensional data space. Practically speaking, if one or more independent attributes of the

data can be mapped to the set of real numbers 9t, then the data is dimensional for our

purposes. In the event that a researcher wishes to use non-metric data as a dimension in a

scientific database, Kao [KA097] has developed techniques for imposing a metric on data

that would otherwise be considered categorical or nominal.

2.3 Scientific Databases

It is the job of the scientific investigator to develop hypotheses that explain the

natural world. An important part of a scientist’s work is to collect data either from the

real world or from simulation, and compare this data with values predicted by the

hypothesis. Since it is important not to contaminate the collected data in any way,

scientific datasets are not usually modified once they have been loaded into the database

system. Data may be viewed in different ways, but the values themselves are not

changed, although new derived datasets are often created. In contrast, an important part of

traditional databases is the update operation, which changes existing values [PFALTZ98].

2.4 The Multiresolution Representation

A Multiresolution (MR) dataset contains several representations of the same data at

different resolutions. These different representations are referred to as levels. According
10

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

to Cignoni et a/.[CIGN097], the number of levels in a true MR dataset depends upon the

size of the original data. If the number o f levels is constant regardless of data size, we

have a Level o f Detail (LoD) representation [CIGN097]. Conceptually, there is a

correspondence between a value v at level i and one or more values { v o . .V i} at level i-1.

For this reason, authors sometimes use the term hierarchical to describe MR techniques.

The precise nature of this correspondence between levels depends upon the particular

MR method used.

2.5 Adaptive Resolution

MR techniques can be divided into two groups. In non-adaptive MR, the resolution

used to represent the dataset is constant throughout the domain for any one level.

Adaptive techniques, which are usually called Adaptive Resolution (AR) are able to vary

the resolution of an area of the domain depending on the behavior of the data within that

area [CIGN094, LARAMEE02], Local resolution may be reduced if this coarser

resolution still represents the area with an acceptable amount of error. Another important

application of AR is to reduce resolution in areas that are considered uninteresting in

some sense.

A multiresolution representation allows a researcher to view data using resolutions

ranging from low (very coarse) to high (the original data). Using a low resolution can

vastly reduce the size of the data that needs to be stored, manipulated, and displayed. It

also serves as an overview of the entire dataset, allowing the researcher to pick out regions

of interest without examining the original data directly. Once an interesting region has

been determined, the researcher may examine it at higher, more detailed resolutions,

perhaps even descending to the original data. Note that higher resolutions are thought of

11

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

as being below lower levels, with the original data on the very bottom. Descending

through this hierarchy is called "drilling down" [OLAP]. Drilling down allows the

researcher to examine only data of interest at high resolution, minimizing processing and

display costs.

By using Adaptive Resolution, we can save storage space as well as processing costs.

In this case, the hierarchy is much the same as before, except that a single level can

contain data at different resolutions where uninteresting areas are represented as coarsely

as possible.

2.6 Multidimensional Access Methods

When processing scientific data, it is important to consider inter-instance

relationships. While relational databases are good at representing relationships between

attributes, they are not well suited for representing relationships between instances of the

same attribute.

Spatial Data Models use a different approach. Here, data points are represented using

coordinates in a vector space [KA097]. If data is dimensional it can be represented using

a spatial data model. Because spatial data models are so different from the relational data

model, their use introduces a new set of problems and techniques.

Gaede et al. list several kinds of multidimensional (MD) queries [GAEDE98], Exact

Match, Intersection, Enclosure, Containment, Nearest Neighbor and Adjacency Queries all

take the spatial extent of an object o, and return the set of objects that properly answer

the query. For example, the containment query returns the set of objects contained in the

extent of o. The Point Query takes a single point as argument, and returns the objects that

intersect that point. The Window Query returns the set of objects that intersect with the

12

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

^-dimensional interval l d = [/ i ,w1] x [/2,m2] x ---x [/i ,m1]. Id should be aligned with the

domain axes, or iso-oriented. The Nearest Neighbors Query returns the set o f objects with

minimum distance from o.

2.7 Access to Large Datasets

Providing efficient access to huge scientific datasets is a challenging problem, and has

attracted a lot of attention from both operating system and scientific data management

communities. Work has focused on either providing comprehensive scientific data and

metadata management systems, or optimizing file systems using techniques like

prefetching, caching and parallel I/O.

2.7.1 File Access

Reorganizing datasets on disk to speed access has been explored by a number of

researchers. Sarawagi and Stonebraker [Sarawagi94] describe chunking, which groups

spatially adjacent data elements into n-dimensional chunks which are then used as a basic

I/O unit, making access to multidimensional data an order of magnitude faster. They also

arrange the storage order of these chunks to minimize seek distance during access.

Following this work, many other reorganization methods have been developed. More and

Choudary [MoreOO] reorganize their data according to the expected query type, and the

likelihood that data values will be accessed together. The Active Data Repository (ADR)

uses chunking to reduce overall access costs and to achieve balanced parallel I/O

[CChangOO, CChangADR],

13

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2.7.2 Prefetching and Caching

Software prefetching has been used by many researchers to hide or minimize the cost

of I/O stalling. In the file systems arena, approaches to this problem can be distinguished

by whether or not prefetching is guided by explicit information about the access pattern.

Albers et al. [Albers98] describe an algorithm that produces an optimal schedule for

prefetching and discarding cache blocks when the entire access pattern is given in advance.

Other researchers have explored the case where the access pattern is disclosed less

completely in the form of hints. Patterson et al. [Patterson95] developed a framework for

informed caching and prefetching based on a cost-benefit model. This model has been

extended to account for storage devices with very different performance characteristics

[Fomey02], Cao et al. have had success by letting applications have control o f data cache

replacement strategy in their share of cache blocks [Cao96],

When no explicit information about access pattern is available, the history of prior

accesses can be used to predict future accesses. Amer et al. group files together based on

historical file access patterns [Amer02], Other researchers have used probability trees or

graphs to represent the likelihood of future block accesses given past and current block

accesses [Vellanki99, Highley02, Highley03, Griffioen94]. Madhyastha et al. use a hidden

Markov model to automatically predict file access patterns over time; the file system

adaptively selects appropriate caching and prefetching policies according to the detected

pattern [Madhyastha96, Madhyastha97],

At the application level, Chang [ChangOl] adds a separate thread to the user program

that performs prefetching by mimicking the I/O behavior of the main thread and

preloading data. The VisTools [Nadeau] system is most similar to our approach. It

provides an application level data prefetching and caching service for huge

14

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

multidimensional datasets using the Paged-Array schema. It reads formatted pages of

elements from the underlying files when the first element in the page is requested. Then,

the formatted pages are stored in a page cache for fast future re-access. When the cache

size limit is reached, the paged-arrays are deleted or written to a swap file. Like our own

work, paged-arrays also support intelligent prefetching guided by iterators that have an n-

dimensional view of the dataset. However, the one dimensional nature of pages fails to

take into account the proximity of elements in N-dimensional space. By using pages as its

unit of cache storage, VisTools and other page based methods may make poor decisions

about what data to retain or discard.

2.8 Conclusion

We have presented a brief survey of the issues relevant to scientific databases, and to

the design and implementation of the Granite system. For a more in-depth examination of

these issues, the reader is invited to look at appendices B, C, and D at the end of the

document.

15

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 3

THE LATTICE LAYER

3 Introduction

Our formal scientific data model provides a conceptual framework for defining and

processing a wide range of scientific data. This chapter describes those aspects of the

model that are encapsulated in the Lattice layer of the model and summarizes the current

state of the lattice implementation in the Granite system.

3.1 Dimensional Data

A scientific database should be able to represent or model data gathered either from

the real world, or from simulation. We focus our research on data that can be meaningfully

represented in a continuous k-dimensional data space. If a dataset consists of some

attributes that are ordinal1, independent, and defined on a continuous value range, we can

1 An attribute is ordinal if its values have a complete ordering.
16

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

say that the dataset contains dimensional data, and that these attributes are dimensional.

It is not necessary for all attributes to be dimensional. If we view the data as a

function, some of the dimensional attributes define the domain of this function, and the

remaining attributes define the range. Our function therefore maps any point in the

domain defined by the dimensions to a particular range value. Choosing which attributes

should be used as dimensions is up to the researcher using the system, and can be an

important part of the data exploration process. We call each possible combination of

dimensions a view of the data: a notion similar to the “view” found in traditional

databases. So, for data with k dimensional attributes, there are 2k-l possible views. Each

view affords a different way of looking at the same data.

A natural example of dimensional data is spatial data such as satellite images and fluid

flow datasets. Here, the data represents an actual physical space. However, it is possible

for a dataset to be dimensional without being spatial. For example, data from a Greenland

ice core sample might contain readings for calcium, nitrogen, and carbon concentrations at

different times in the Earth’s history. Even though this data does not correspond to a real

space, it may be very beneficial to visualize the data as if it were spatial, since humans

find this representation familiar and easy to grasp. For this reason, we often use the word

“spatial” in this document, even when referring to data which does not represent a

physical space.

It may be convenient to treat a set of attributes as if they are dimensional attributes

even though they may not satisfy all the conditions for dimensional data. In particular, we

often don't know exactly which attributes are independent o f each other, but we might

want to assume they are independent for exploration purposes with the goal of either

validating or disproving that assumption.

17

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.2 Geometry and Topology

Granite’s scientific data is n-dimensional, and like most systems that manipulate such

data, we must develop efficient ways o f mapping between data that is fundamentally

multidimensional and a storage scheme such as a file or array that may not directly reflect

the dimensionality of the data.

With this in mind, it is useful to examine the complexity of the mapping between the

dataset and an n-dimensional array. We call the space formed by an array an index space,

a concept used extensively in the datasource layer, described in the next chapter. The

geometry of a dataset consists of the dataset spatial domain D, and the placement of the

set of sample points within that domain. Generally, if the sample points are distributed

throughout this geometry with uniform spacing, we say that the data is uniform. Figure

3.1 shows three uniform geometries in one, two, and three dimensions.

o • e • © „o °o °o °
® O O O O n n rP

O o o o .§*0*0°
@ o o o o • • •
A B C

Figure 3.1. Three uniform geometries in one, two and three dimensions

The mapping from index space to geometry can be defined as a function:

/ (/ , W) - > p G D

where I is the index space, D is the geometry domain, p is a location in D, and W is the

auxiliary information consisting of a set of numbers required to perform the mapping.

Geometries can be classified by examining the size of this set. For uniform geometries, the

only extra information needed is the spacing between the points for each dimension. In

this case, the size of W (i.e. |W |) is 0(d), where d is the dimensionality of an index space.

18

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 3.2. Two examples of non-uniform data. The left example is sometimes called a

perimeter lattice, while the one on the right is known as unstructured data.

If JW| is not 0(d), we say the geometry is non-uniform. Figure 3.2 shows two

examples of non-uniform geometry. However, important distinctions can still be made

between different kinds of non-uniform geometries. In figure 3.2a, the spacing between

the points is consistent between each row and column, so we can perform the mapping

using just two arrays, each storing the spacing between each row and column. The length

of these two arrays is related to n, the number of points. For example, if the dataset is

square, |Vf| will be o [^ n ^. In contrast, the geometry in figure 3.2b has no pattern

whatsoever, and requires that the position of each point be given explicitly. In this case,

where |VF | is O(n), we say the geometry is unstructured. Accordingly, the less difficult

situation shown in figure 2a is an example of a semi-uniform geometry, meaning |VF | is

greater than 0(d) but less than 0(«).

The topology of a dataset refers to the way that points are connected to each other. A

dataset’s topology is a graph, with data points as nodes and arcs between nodes

representing a neighbor or adjacency relationship. Often, the researcher wants to view the

data using the geometry, but the system most efficiently accesses the topology, since it is

the topology that gives a dataset its structure. Figure 3.3 gives examples of some different

19

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

topologies.

C

- Q — Q —'0 ~ ~ 0

Figure 3.3. Various topologies

As with geometries, we can also classify topologies according to an index space

mapping. Since the topology is a representation of the neighborhood relationship, this

mapping function should produce a set of neighbor nodes for any node represented by a

point in the index space. That is,

f (I , W) - * N

where W is defined as before, but N is a set of neighbor nodes. As before, a topology for

which |W| is 0(d) is uniform. If |W| is O(n), the topology is unstructured, and we use

semi-uniform for the cases in between. Figures 3.3.a and 3.3.b are both examples of

uniform topologies, while figure 3.3.C is an unstructured topology.

A particularly important kind of uniform topology is the rectilinear topology. In a

two dimensional rectilinear dataset, the topology of the data points is a rectangular grid.

For three dimensions, the topology is a hexahedral (e.g. cubic) mesh. Figure 3.4 shows

several rectilinear topologies. Notice that figures 3.4.d and 3.4.e do not have uniform

geometries. Various combinations of geometric and topological types are possible.

20

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

©— ©-©—©

©— ©-©—©

0 — ®

D EA B C

Figure 3.4. Some rectilinear topologies

Within an array, if two elements of an array have an index that differs by only one, we

consider the elements to be neighbors. Therefore, we can exploit the natural topology of

the array to represent the topology of rectilinear data.

In cases where both the topology and geometry is unstructured, the array

representation can offer only storage space. For two dimensional datasets of this kind a

mesh of triangles can be created such that the vertex of each triangle is a known data

point. These meshes are commonly called trimeshes. Figure 3.3.c shows a small trimesh

for a non-uniform dataset. This approach can also be used to handle three dimensional

surfaces, where the vertices now have three coordinates instead of two. For true three

dimensional volume data sets, the triangle is replaced with a tetrahedron. This process can

be extended to handle dimensions greater than three.

Warp w m

Regular Computational Geometry Curvilinear Physical Geometry

Figure 3.5. Warping a regular grid to a curvilinear dataset

It is sometimes possible to map a rectilinear grid to a set of points that is not

uniformly distributed in the geometry. For example, a fluid flow simulation of air

velocities over the top surface of an airplane wing might produce samples that lie in

21

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

concentric curves echoing the shape of the wing. We say this arrangement of points is

curvilinear. However, a rectilinear grid can be warped to the physical space to provide a

dataset that is regular in computational space. Figure 3.5 illustrates the warping

transformation.

3.3 Periodic Tilings and Data

The study of tilings (tessellations) has some relevance to our research since topologies

often define a tiling. A tiling is an arrangement of contiguous shapes that cover a domain.

A review of this field can be found in [Schatt97].

If a tiling is periodic, then it is possible to duplicate the tiling, translate it some

distance, and place it down again so that it matches exactly with the original copy. That

is, the tiling consists of a number of translated repetitions of some pattern of tiles. An

important and related property of periodic tilings is that there exists a subset of the space

S that can be repeatedly copied and translated throughout the space to complete the tiling.

A minimal subset of this kind is called a fundamental domain or generating region. A

regular tiling is a periodic tiling made up of identical regular polygons [Schatt97]. The

three tilings shown in figure 3.6 are the only regular tilings for 2D space. Other shapes do

not meet the mathematical constraints required for a single shape to tile the plane.

B ffl
a b c

Figure 3.6. The fundamental domains of the 2D regular tilings

22

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

/ (1 .1 .4)

Sam ple
Point Index Point

U8t

Sam ple
:— *V alue

Figure 3.7. A possible supercell implementation.

Although tilings are defined entirely in terms of geometry, the concepts can also be

applied to our notion of topology. We use the notion of the supercell to represent

periodic sampling topologies. As shown in figure 3.7, a supercell represents a generating

region for the topology, allowing the entire topology to be conceptually represented by a

grid of repeated supercells while only storing a single supercell definition. If we can find

where in the grid a point lies, we can very easily form a search key from the position in

the grid (i.e., supercell identifier), and the position of the point within the supercell (i.e.,

point identifier). Such a technique promises a quick way to access a point’s data given its

geometric position.

3.4 Neighborhood

Many scientific applications require access to the neighborhood of a point. Generally,

the neighborhood o f a point p is a contiguous set of points containing p and points that

are near p. Deciding which points are near p depends on whether we are computing a

geometric neighborhood or a topological neighborhood. A typical geometric

neighborhood might include all points that are within distance d o f p in the geometric

space. On the other hand, a topological neighborhood might include all points that are

within n arcs of p. Notice that these two kinds of neighborhood are not normally

23

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

equivalent. For example, if we map a geometric neighborhood to the dataset’s topology,

the result need not be a topological neighborhood. The corresponding fact is also true

when we map a topological neighborhood to the dataset’s geometry.

Despite this, the dataset topology may still be useful in generating a geometric

neighborhood. In order to retrieve sample points near p in geometric space, the system

may traverse the dataset topology and test the geometric location of sample points to see

if they should be included in the geometric neighborhood.

3.5 A Model for Scientific Data

In order to develop a multiresolution (MR) model of scientific data, we must first

define a model for scientific data. We define scientific data as a collection of sample values

that represents some natural phenomenon [HIBB94], We’ll view this phenomenon as a

function over a domain D, which might be time, space, radio frequency, etc. or some

multidimensional combination. In the next two sections, we describe our general

requirements for representing scientific data, followed by a description of the lattice

representation. First developed by Bergeron and Grinstein [BERG89], the lattice satisfies

our requirements for a data representation.

3.5.1 Data Representation

An investigator using a scientific database should be able to represent hypotheses in

the system, and determine whether the data supports the hypothesis. A hypothesis model

is represented as a function H:

H: D—

That is, the hypothesis model maps every point in the domain D to a point in a value

space V. The elements of a value space are defined on arbitrary n-tuples of values.
24

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The goal of the investigator is to find a hypothesis that describes the natural

phenomenon as closely as possible. Therefore, we need to represent the phenomenon

within the scientific database. This representation is called a data representation. Of

course, since the domain D is continuous, it contains an infinite number of points.

Therefore a data representation represents the phenomenon at a finite set of points within

the domain [HIBB95], This set of points, known as sample points, constitutes our

scientific data. We represent the sample points with a sampling function [KA097]. W e’ll

denote the finite set of domain points as A C D . A sampling function fA maps A to a

value space V :

fA: A-»V

Notice that in order to implement a sampling function, we only need A, the set o f sample

points, and a set of data values v, such that each Vt; £ V is the value measured at a

corresponding d,. £ A . We also require a localized error function EA, known as the

sampling error, that indicates the error for any sample point by mapping A to an error

space E:

Ea: A-*E

Together, fA and E a model the behavior of a measuring instrument as it gathers data from

the real world. They may also model a resampling from another dataset. In many cases,

the error (or accuracy) of the values is not known, so E a may default to zero. In other

cases, an instrument or dataset has a known accuracy and precision, so a better error

estimate can be made.

It is convenient to package the domain and data values into a single item. We define a

data representation as:

R = { D , V A f ,)

25

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

That is, a data representation consists of the domain and value space for the data, along

with the data values, and sampling function. Our definition of a data representation is

quite general. In the next section, we discuss the lattice, an elaboration on the

representation presented here.

So far, we can only give values and error for any point d E A . In order to generate

values for points that may not be sample points, we need an approximating function. An

approximating function is defined as:

f A:D-*V

The approximating function takes any point in the domain, and returns a value that

approximates the value of the phenomenon at that point, based on the sampling function.

An important class of approximating functions is the interpolation functions, which must

satisfy the following condition:

Vd G A , f A(d)=fA(d)

That is, for a point in the sample domain A, the interpolation function and the sampling

function must produce the same value. Usually, the approximating function is an

interpolation function. For any data set, a large number of approximating functions are

possible. Some are better for a selected task than others. Hypothesis development can be

viewed as the process of discovering increasingly better approximating functions.

We are now ready to define a data model. A data model consists of a data

representation and error functions E a and E d along with the approximating function / a.

M = { R , E A,ED, fA)

The error representation E d should be defined over the entire domain D. That is, for

every dED, Eo(d) provides an estimate of the data model error associated with the point

d. When a data model is first produced from the original data, we have EA, the error

2d

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

associated with the sampling function, which is defined only over A. One possible

definition of the initial E d could b e /£4, which uses the approximation function to find

values E d from the values of E a. Data models can also be derived from other data models

through a function that introduces additional error. W e’d like E d to record the total

cumulative error in the data model.

3.5.2 The Lattice Representation

The lattice model can be extended to meet our requirements for a data representation.

The lattice includes both topological and geometric views of the dataset. We can refer to

the dimensionality of a topology. Intuitively, this is the dimensionality of the space

required to contain the topology graph without having any arcs intersect. The first three

diagrams of figure 3.4 in section 3.2 illustrates one, two, and three dimensional topologies

of the simplest kind.

As described in [BERG89], a lattice Lkn has k dimensions that define a space, and n

attributes for a point located in that space. We say that k is the dimensionality of the

lattice. It is also the dimensionality of the lattice topology. So, a O-dimensional lattice is

simply an unordered set, while a 1-dimensional lattice is an ordered list, a 2-dimensional

lattice defines a plane, and so on. Notice that the lattice geometry does not need to have

the same dimensionality as the lattice topology. As an example, Kao points out that a 2D

lattice can be mapped to a surface that exists in three dimensional space [KA097].

Perhaps the simplest form of lattice is the rectilinear lattice, which has a rectilinear

topology, as described in section 2.2. O f course, such a lattice can easily be represented

using a rectangular array. Kao defines a lattice to be a function from an index space to a

value space [KA097]. Given indices into the array, we can easily retrieve the value stored

27

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

there. In addition, we need a way to map points in our geometric space to index space.

Kao calls this mapping a logical transformation. Although the logical transformation for a

regular lattice is trivial, it is not nearly so apparent for data that is non-uniform with

respect to geometry. W e’d like to extend the lattice model to handle a much wider variety

of data formats, and redefine a lattice to be a function that maps the geometric space to

the value space. That is, we’d like to include the logical transformations in the lattice

itself. More formally, a lattice is defined as:

L = (l), V, A ,t , /a)

where D is the geometric domain, V is the value space, A is the location of the data points

within D, r is the lattice topology, and f& is the sampling function, which produces points

in V. Note that the lattice meets the requirements for a data representation, and also

explicitly includes the lattice topology. For a lattice L, we denote a member of the lattice

using dot notation. For example, L.D refers to the domain of a lattice L, and L. V refers to

that lattice’s value space.

3.5.3 Lattice Transformations

We need to define transformations that can be applied to lattices. We can characterize

such transformations by noting their effect on the lattice value space, geometry, and

topology. These transformations normally do not change the lattice they are applied to.

Instead, a new lattice representing the result of the transformation is created.

We call transformations that change data value transformations, described as a

function Tv:

Tv: L -> L' where L ./A * Z/./A

For example, suppose a transformation simply normalizes values to the range [0... 1], We

28

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

create a new lattice L ’ and apply the normalization operation to the sample values o f the

old lattice, producing the new sample values for L ', contained in L ’/ a .

It is important to realize that a value transformation does not necessarily just map one

value space to another. A value transformation may use the location of a value in the

domain and its relationship with surrounding values. For example, consider a value

transformation that produces a value 1 if a domain location corresponds to a local

maximum for attribute A, and 0 otherwise. The value 5 may occur many times in a lattice,

but it may be a local maximum only once. Our transformation can’t just map the value 5

to a single value. Rather, it must map one occurrence of 5 to 1, and the others to 0, and

can only do so by looking at values surrounding an occurrence of 5. Therefore, this

transformation must examine values contained by subdomains of the lattice. On the other

hand, this is not true of all value transformations.

A transformation that changes the lattice geometry is really changing the lattice

domain, so we call such transformations domain transformations, described as a function

Td:

Td \L -» L' where L.D * L'.D

That is, the transformation acts upon a domain D and produces a new domain D ’.

Creating a new domain implies changes in L ’./a as well. Examples of domain

transformations include affine transformations like scaling, rotation, translation and shear.

Bergeron [BERG89] also describes extensions and restrictions. An extension is a mapping

to a higher dimensional space. Restrictions include projection to a lower dimensional

space, and also the generalized subset operation. The subset operation is normally

considered to be purely geometric. However, a subset can be computed either on the basis

of domain shape, or through an examination of data values. Computing a subset via data

29

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

values is an important tool for reducing the amount o f uninteresting data contained in a

lattice.

Lastly, a topological transformation is defined as

Tr:L -^ L' where Lx * L'.x

For example, extensions and restrictions can apply to the topology as well as geometry.

Also, any subset operation that removes points or arcs from the lattice can be

characterized as a topological transformation.

3.6 Multiresolution Representations for Data

This section presents our model of multiresolution (MR) data, and describes an

important subclass known as adaptive resolution.

3.6.1 The MR model

The key to our description of a multiresolution model is a reducing operator R:

R : M - h> { M , E r)

This function takes a data model M as an argument and returns a new data model M \

along with associated localized error E r that was introduced into M ’ by the operator.

Remember that any data model contains a data representation, error functions E a and E d ,

and an approximating function. It is important to note that the domains of M and M ’ are

both D, the domain of the natural phenomenon. M ’.E d is a composition of M .E d and E r ,

to reflect the error that R introduced. The data representation M ’.R and sampling error

M ’.E a must also differ from their counterparts in M since it is a requirement for any

reducing operator that:

|a | < | a |

30

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

In other words, M ’.R should contain fewer sample points than M.R. It is for this reason

that R is called a reducing operator. This change in A causes M ’./a to differ from M /a

since the reduction in data points is likely to change the approximating function.

An MR hierarchy "Tft is a pair of items:

^ = (A P)

where A is a sequence of levels {A o.. .A n} and P (rho) is a sequence of reducing functions

{Ro...Rn-i}. Each Ai in A is defined to be a pair containing a data model and associated

localized reduction error:

A , = (m \ e)

Each Rj in P is defined as:

That is, the reducing function Ri maps the finer level Ai to the coarser level Ai+i. The M R

hierarchy is formed by repeated applications of reducing operations. First, the original

data is stored in M° which is then stored in level Ao. Since no reduction has yet occurred,

Eo is assumed to be null. Next, a reducing operator is applied to M° to form M 1 and an

error E r which now becomes Ei. M 1 and Ei make up level A i. The process is repeated an

arbitrary number of times, typically depending on whether the size o f the data has been

reduced sufficiently, or further reductions would produce too much error.

3.6.2 Resolution

In some MR hierarchies, the reducing operator works uniformly over D. We call these

methods non-adaptive MR, since the reducing operator doesn’t change or adapt over the

domain. For example, if the points in A are uniformly distributed in D, R might discard

alternate data points so that A' is half the size of A. Such a reduction would affect the
31

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

accuracy of the new data model similarly over all of D. Of course, it is most appropriate

to use a uniform reducing operator if the original data is evenly distributed, and of equal

interest. On the other hand, if the data distribution is uneven, or some data is more

interesting to the researcher than the rest, another kind of reducing operator may be more

suitable.

3.6.3 Adaptive Resolution

A reducing operator that behaves differently over parts of D is a hallmark of a subset

o f MR known as adaptive resolution (AR). An AR hierarchy is a kind of MR hierarchy in

which an AR reducing operator is used. An AR reducing operator still needs to reduce the

size of A, but it is more sophisticated in how it chooses to do so. For example, an AR

reducing operator might examine the cumulative error for a data model, and attempt to

reduce resolution in areas with lowest error when forming the data model for the next

level. Alternatively, it might try to preserve resolution in areas of rapid value change, and

instead reduce resolution from less volatile areas. In general, an AR reducing operator’s

behavior over the domain is determined by the data and the requirements of system

designers or perhaps the experimenter.

3.6.3.1 AR Representations vs. AR Hierarchies

When an AR reducing function is used to produce a series of levels, the result is an

AR hierarchy. On the other hand, a representation of a domain with resolution that varies

in response to data values is known as an AR representation. The levels of an AR

hierarchy are actually AR representations. An AR representation is not a hierarchy; any

point or region of the domain is represented only once. In fact, an AR representation can

be formed by navigating a non-adaptive MR hierarchy, and choosing suitable non-

32

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

overlapping regions from different levels. These distinctions are shown in figure 3.8.

Non Adaptive MR Hierarchy AR Hierarchy AR Representation

Figure 3.8. Non-adaptive MR and AR hierarchies, and an AR representation

3.6.3.2 Locally Monotone Reductions

Consider two levels of a hierarchy Aa and Ab, where Aa is coarser than Ab. The only

restriction our model specifies is that Aa must contain fewer points than Ab. This leaves

open the possibility for some subdomain to be represented with more points in Aa than

Ab, even though Aa contains fewer total points. For example, there may be two regions

that have reduced resolution in Aa when compared to Ab, but one region where resolution

in Aa is higher. Overall, this still satisfies the model. However, we feel that most of the

time every region of the domain will be represented with either the same or less resolution

in Aa as in Ab. In this case, we’ll say that the reducing function that produced Aa from Ab

is locally monotone. A rigorous definition of locally monotone requires a rigorous

definition o f what locality means. One possible definition is based on a partitioning o f D.

That is, given a partitioning of the domain, a reducing function is locally monotone with

respect to the partitioning if it either reduces or preserves the number of points within

every partition, but never increases it.

33

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.6.4 Support and Influence

Our model for MR is very general. In practice, most MR hierarchies place further

restrictions on the reducing function. Recall that reducing functions relate a level Ai to

level Ai+i, where A;+i is a coarser representation of the same domain as Ai. Most MR

methods require that the reducing function be spatially coherent. That is, any contiguous

set of points in A; should map to a contiguous set o f points in Ai+i. More formally, we

could characterize a reducing function R as a collection of functions {ro.. .rn} such that

each n maps a contiguous set of points S, C A in level Ai to a contiguous set of points

S j C A in level Ai+i. We say that Si is the support for Sj. The union of all Si for any level

should equal A. Notice that this allows the domains of each n to overlap, meaning that a

pointp in Ai might belong to the support for several different points in Ai+i. We call the

set of these points the influence of p. Both support and influence are shown in figure 3.9.

A common example of this overlapping support is when the reducing function computes

weighted averages for several points of A;, to produce a new point for Ai+i.

Influence of C

Support for B

Figure 3.9. Support and Influence

Such overlapping support can introduce problems at the boundaries of the domain.

For example, consider a reducing function in which each point in Ai+i is supported by

overlapping sets of points in Ai, as seen in figure 3.9. Points like A , located at the edge of

Ai+i may be missing some support from Ai. For the same reason, points like D , located at

34

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

the edge of Ai will be under-represented in Ai+i because they influence only one or two

points in Ai+i instead of the expected three.

3.6.5 MR for Regular Data

A common implementation of non-adaptive M R uses an array of points to represent

the data set function S. Since Ao is the original data, we expect that A i represents the same

information at a coarser resolution, i.e. with fewer data points. A simple way to do this is

to have each point in Ai represent 2d points of A j-i, where d is the dimensionality of the

dataset. So, for a one dimensional dataset, the first point of A i should represent points 0

and 1 of Ao, the second point should represent points 2 and 3, and so on. So, A i is half

the size o f Ao, and A 2 half the size of A i, etc. This approach can be extended to any

number of dimensions. For example, in three dimensions, each point of Ai represents

eight points of Ao, which is analogous to the familiar octtree data structure used

commonly in computer graphics.

Another important issue is how to combine two or more points into a single point for

the next level. The method used depends upon the application. In the simplest case,

where each point represents one value, we might just average points together to get a

single value. However, it might be desirable for a point in Ai to keep track of attributes

like m inimum and maximum value, and standard deviation for all the points it represents

in Ai-i. Li et al. [LI98] store a probability density function for each point in their M R

hierarchy.

3.6.6 MR for Irregular Non-Rectilinear Data

With regular data, the reducing operator can easily do something simple like removing

35

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

every other point. Researchers [DEBE98] have also developed non-adaptive MR

techniques that work on triangular meshes. However, the implementation of non-adaptive

reducing functions for triangular meshes is not trivial. For this reason, we envision that

such data will more commonly be represented using AR, while uniform data may use

either AR or non-adaptive MR.

For example, Cignoni et al. [CIGN097] outline a method for three dimensional data

represented as a tetrahedral mesh. Their method produces a new, coarser level by

removing the tetrahedron from the current level that causes the least error. Since this

method looks at the data values (and their error) when deciding where to reduce

resolution, this is an example of adaptive resolution. Notice that each level differs from

the last by only one tetrahedron. This means that the number of levels will be large

compared to a non-adaptive technique that removes half the points with each level.

3.6.7 Advantages of MR for Scientific Data

The principal advantage of the MR model is that it allows a researcher to examine a

low resolution summary or overview of a dataset. Using this overview, the researcher can

decide which areas of the data require more detailed examination. Because MR provides

several levels of increasingly fine resolution, the area of interest can be progressively

refined at each level. This process is known as "drilling down". It's very possible that the

researcher's needs are met by a level of the MR hierarchy that is coarser than the original

data. If so, there is likely to be a significant savings in network and visualization costs,

since the coarser representation should be much smaller than the original data. If the

researcher's needs are always met by levels above the original data, then storage costs are

also saved, since there is no need to store the original data. Even if the researcher does

36

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

need to descend to the bottom level of the hierarchy, the refinement of the area of interest

as he or she descends means that less of the original data is required.

3.6.7.1 Noise Filtering with MR

Some kinds of M R hierarchies specify that each value of a level Ai+i is related to a

small set of neighboring values from Ai. Notice that our definition of a reducing function

allows this, but does not require it. However, if a reducing function averages values over

some area o f the domain, it may not only reduce the size of the next level’s data set, but

also eliminate noise. The reducing function is effectively working as a low-pass filter of

the sort used in image processing. If imprecise instruments generate high frequency noise

during data collection, a coarser level of the data might provide a better view than the

original data.

3.6.7.2 Advantages o f Adaptive Resolution fo r Scientific Data

Using an AR hierarchy yields all the advantages described in the previous paragraphs,

along with some others. An AR hierarchy uses reducing functions that respond to the

data, preferring to reduce resolution over uninteresting areas of the domain. In a way, this

is an automation of the process the researcher would go through when drilling down

through a non-adaptive MR hierarchy. If the researcher is allowed to choose the reducing

functions used, we can say that choice is communicating his or her idea of what

constitutes “interesting” data. Therefore, the AR hierarchy contains information about

which areas o f the domain are interesting to the researcher. Such information is very

useful when trying to distribute data over several machines, since good load balancing

should place a roughly equal amount of interesting data on each machine. Similarly, in a

parallel environment, this information can be used to help minimize communication

57

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

between processors.

3.7 Representing Domains

Our model requires a flexible representation for domains and subdomains, since they

play an integral role in the representation of domain relative data. Since we model

scientific data as dimensional data, we must represent the number and kind of dimensions

that make up the domain space. Often, a dataset is defined within an infinite space such

as 9ft3, which cannot be directly represented in the database. Therefore, we must represent

this information symbolically in a universal domain. A universal domain defines the

space that a dataset resides in by specifying the number and type of dimensions, along

with a distance metric. The universal domain can be considered structural metadata.

Notice that the domain of a dataset must be a finite subset or subdomain of this universal

domain.

We clearly need a way to represent the domain of a dataset, but there are other

applications that are less obvious, as we demonstrate in our discussion of semantic

metadata. In particular, we’d like to represent subdomains in a very expressive way.

3.7.1 Stencils

A subdomain is a subset of some larger domain. Domain relative semantic metadata,

described in section 6.3, lends support to the classification of regions and feature

identification within the data. To support this application, our subdomain representation

must be able to handle complex and irregularly shaped and perhaps disjoint subdomains,

and even subdomains with fuzzy boundaries. In our model, the stencil is the object used

to represent this wide variety o f subdomains. Like a cardboard stencil used in painting

letters and figures, our stencil represents the shape of a subdomain carved out of some
38

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

larger, enclosing domain. A stencil may be a subdomain of the universal domain, or of

another stencil. In either case, a stencil’s base domain is the domain from which the

stencil is taken. If the stencil is the result of a filter, described in section 5.4, the base

domain is the domain that was examined by the filter. Regardless of how it is produced, a

stencil is always a subset of this base domain. Historical metadata, described in section 6,

can be created that relates the stencil to its base and universal domains, including the

process through which it was selected from the base domain. The universal domain is

needed in order to make sure that certain stencil operations are sensible. Such operations

include the union, intersection, and subtraction operators, as well as transformations like

scaling and translation. If two stencils are defined on entirely different domains, it

probably isn't sensible to combine them with a union operation. Similarly, there should be

restrictions on translation and scaling. For example, if one dimension of a domain is a

probability, no subdomain should be translated along that axis so that it exceeds the range

[0 . . .1],

3.7.2 Stencil Representation

The stencil object must be able to represent a wide variety of different domain shapes.

It is unlikely that a single representation can give such flexibility, so several underlying

implementations are needed. In choosing an implementation, we must decide what kind of

queries a stencil object must answer. Certainly, any stencil must be able to answer a

query of the form:

Q . p e D ha„ - * [0...1]

That is, given a point p in the base domain of the stencil, return a value in the range [0... 1]

that indicates whether the point is outside (0) or inside (1) the subdomain represented by

39

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

the stencil. In the case of crisp stencils, only 0 or 1 is returned, meaning that a point’s

membership in the subdomain is either total or none. For fuzzy stencils, intermediate

values may be returned, indicating some uncertainty about a point’s membership. Such

uncertainty may be due to the criterion used to create the subdomain or to error in the

data to which the criterion was applied.

Representing crisp stencils can be done efficiently by using a multidimensional (MD)

access method, as discussed in [GAEDE98]. Since subdomains are essentially regions

within an enclosing domain, we want to use an MD access method designed to store

regions, rather than points. In order to answer the query above, a crisp stencil must

determine whether it holds a region that contains the point and return 1 if such a region is

found, and 0 otherwise. Regions can often be represented with dramatically less storage

than a collection of points with the same spatial extent. For example, rectangular regions

can be represented with just a pair o f coordinates. Even complex curved regions can be

represented with comparatively little storage using parametric curves or surfaces.

Fuzzy stencils may require more storage space, since they don’t have sharp borders.

One possibility is to use a representation similar to methods used for data. A lattice of

points accompanied by an approximation function would certainly be capable of

representing a fuzzy domain. Other methods may also have the advantage of saving

storage space. For example, we should be able to use an AR representation to store border

information in great detail, while saving storage space in more homogeneous areas.

3.7.3 MR Stencils

Imagine a researcher is developing a feature recognition algorithm. The researcher

might generate a stencil that identifies areas of the domain where the feature exists by

40

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

running the algorithm with low resolution data. This result could be compared with

another stencil that was generated via high resolution data to see how well the algorithm

performs with the low resolution information. In such a scenario, an MR stencil might be

useful, since it would demonstrate the difference that resolution makes to the recognition

algorithm’s performance. An MR stencil could be even more useful if the recognition

algorithm is trainable like a neural net. In this case the algorithm’s success at low

resolution could be enhanced by reward or punishment based on high resolution

information.

Clearly, there are times when it is beneficial to always store stencils using MR, and

therefore store domain information at different levels of resolution. For fuzzy stencils this

is especially true, since membership in the subdomain is represented in a continuous

fashion over the enclosing domain. For crisp stencils the domain can be stored very

efficiently as regions using an MD access method, so we would only use MR if the

application required it. In many cases, the researcher is interested in having the best

possible information at his or her disposal. In such situations, the stencil may have only a

single resolution that represents this best available information, perhaps taken from

several resolutions of the data. In other situations the researcher may want to store even

discrete stencils using MR for reasons having to do with the stencil’s application.

3.7.4 Making Stencils

Since representing domains is a fundamental task in a scientific database, we must

provide several ways of producing stencils. The simplest way of generating a domain is to

specify its extent within the universal domain. Note that stencils are fixed within their

base domain, although new stencils with a different placement can be created using the

41

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

operations described in the next section. For example, a simple rectangular stencil can be

made by specifying its comer points. O f course, a stencil is not restricted to rectangles,

and can be any polygon, polyhedron, or curved shape. Such stencils are called shaped

stencils. Shaped stencils are used to represent the domain of a dataset, and also for

selecting areas or volumes of data defined on a larger domain.

In contrast, other stencils are produced by examining data values in a dataset. This

examination is conducted by a filter which accepts or rejects areas of a domain depending

on the data values found there. The output of the filter is stored in a result stencil.

Normally we use historical metadata, described in section 6, to relate a stencil, filter, and

result stencil. Such information can also be used to support delayed evaluation. That is,

we don’t require that a stencil be fully materialized upon creation. Instead, we can define

the parameters of the stencil at creation time, and only compute the stencil’s domain

when it is actually needed. Delayed evaluation should be especially helpful with complex

queries involving several filters. For example, consider a query on a satellite data set that

asks for areas of land not covered by clouds that appear to contain urban development.

Let’s assume that filters are available to identify clouds, land, and urban development.

One way of answering the query is to create three stencils that each refer to a filter.

(Notice that the cloud stencil has to be negated.) The final result is formed by computing

the intersection of the three stencils. By delaying the evaluation of the stencils until the

entire query is answered we have an opportunity for optimization. Suppose the land

filter is the most selective, and eliminates 80% of its base domain. It makes sense to

evaluate this filter first, and feed the results to the cloud filter. By evaluating the most

selective filter first, we can prevent the cloud filter from being run on areas that turn out

to be ocean anyway.

42

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

There are two wrinkles with this sort of optimization. First, we must have at least an

estimate of how selective a filter is likely to be. This could be computed by running the

filter on a very low resolution version of the data to get a rough measure of how selective

it is. The other possibility is to get an estimate from the experimenter. In either case, the

estimate can be updated as the filter is used. The second wrinkle is that some filters may

require other filters to be run first. For example, if the land filter in the last example

performs very poorly if clouds are left in the data, we’d have to evaluate the query

differently.

3.7.5 Stencil Operations

In addition to representing domains, stencils play an important role in the

representation of domain relative information. For this reason, stencils must support a

variety of operations including set operators like union and intersection, transformations

like scaling, rotation, and translation, and also operations to allow domains to be

converted from one type to another.

Set operations include union, intersection, subtraction, and negation. For binary

operations, it is important to check that the two stencils have the same base domain. If

they share a base domain, the result is a new stencil with the expected value.

B ase Domain M l *
**» 5̂sm

u —
• imi

Stencil A Stencil B AUB

Figure 3.10. A simple stencil union

For example, the union of two stencils sharing a base domain should be a stencil with this

43

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

same base containing all regions contained in the operand domains. We may choose to

combine overlapping regions into a single region, but this is left up to the implementation.

• m l
AU B

Figure 3.11. Union of stencils with different base domains.

The situation grows more complicated if two stencils do not share a base domain. For

example, consider the union operation performed on two stencils with base domains that

overlap, but are not the same. The proper behavior really depends on what the stencils

represent, and what the user wants. In figure 3.11, let us assume that stencil A indicates

areas where property A is found within the base domain of stencil A. The lighter area of

the stencil denotes the region in which property A was found not to exist. The

corresponding statements can be made about stencil B and property B. For the result

stencil, the lighter area should denote places where neither property A nor B was found.

In order for this to work properly, we have to trim the base domain for the result stencil

so that it only contains the area that was examined for both property A and property B.

In other words, the base domain of the result should be the intersection of the base

domains of the operands. This example is only one way of handling different base

domains in set operations. If the stencils represent something besides presence of a

property, a different behavior may be required.

Base Domain

'J
U i f ’

" Base Domain

Stencil A Stencil B

44

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Original Data Object Stencil C

Subset
\.Operation

Subset Data Object

Figure 3.12. A subset operation

Consider a stencil C which identifies areas of a data object’s domain that meet some

criterion. As shown in figure 3.12, we can make a new data object that has a domain

formed by the intersection of the original object’s domain and the stencil C. We can say

that the new data object is a subset of the original data. This subset operation is very

useful, because it allows researchers to reduce the size of the data being manipulated and

allows them to focus only on data which they consider interesting.

Transformations like scaling, rotation, and translation are used to move a stencil

within the universal domain. This functionality is useful when a stencil is used to extract

data from different places in a dataset, or when a new dataset is constructed from two or

more existing datasets. As an example of extraction, consider a stencil which is meant to

indicate areas containing urban development. The stencil is originally defined with a

square base domain with sides of length 1 centered at the origin. As it stands, only areas

within this base domain will be examined for urban development. However, with a

translation operation, we can create a new stencil with a base domain of the same size, but

at a different location in the dataset’s domain. Similarly, we might want to scale the

45

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

stencil to a size that encompasses the entire dataset domain so the entire dataset can be

examined at once.

When constructing a new database from one or more existing databases, two issues

must be addressed. The first problem is the placement of the old domains within the new

domain. For projections, the new domain has fewer dimensions than the old. The

projection must therefore specify how the dimensionality of the space will be reduced.

Even if the dimensionality of domains is the same, several things must still be specified.

The axes of the old domain may need to be aligned with axes of the new domain using

rotation. If the domains use different units of measurement or points of origin, a scaling

and translation operation may be required. Next, the universal domains of the existing

databases must be checked to see if they can be sensibly represented within the new

universal domain. We must verify that an old dimension can be represented by the

corresponding (aligned) dimension in the new domain.

3.8 Representing Derived Data and Metadata

Although the representation of data in a scientific database is of great importance, an

investigator needs an effective way of managing information about the data. This

information could come from the researcher’s pool of expert knowledge, from some

previous exploration, or it could be generated semi-automatically by the system itself.

Such information is commonly referred to as “metadata”. However, the term “metadata”

is vague. For example, if A is a set of facts about data, A is clearly metadata. But, if we

use A to generate B, a set of facts about A, then is A still metadata? Should we call B

meta-metadata? The problem is that classifying information as data or metadata depends

upon the context, which leads to confusion. We can use the very general term derived

46

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

data to refer to information that was somehow derived from another dataset. This term

can be used even when it is not clear whether “metadata” is an appropriate label.

The following sections describe our thoughts on how to represent derived data and

metadata. First we explain our terminology, and then describe how we represent these

different kinds of information, and how they interact within the database.

3.8.1 Terminology

Within our model, we have decided to make a distinction between semantic metadata,

structural metadata, and historical metadata. Semantic metadata represents information

that the user has extracted from raw data through the application of expert knowledge and

adds meaning to the data to which it refers. This metadata is directly available for the

researcher to use in the production of further information. Structural metadata represents,

among other things, information about the type, size, organization and source of a dataset,

as well as the domain upon which it is defined. Notice that it is possible for such

information to be specified before a dataset is populated with data. Structural metadata is

needed to determine what operations and applications of data are sensible. Historical

metadata keeps track of operations performed on data and how data is used. It primarily

describes how a dataset was formed from one or more datasets in the database. This

information establishes a chain that records the complete history o f a data object,

extending back to the original dataset it was derived from. Notice that historical metadata

does not by itself add meaning to the data, so it should not be considered semantic

metadata. Also, since it records the relationship between two or more data objects rather

than a single data object, it does not fit well as structural metadata.

Our model for scientific data is restricted to data that can be represented

47

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

dimensionally. That is, our data model Md is defined over a domain space D that consists

of an arbitrary number of dimensions. A data value at a location in D is an attribute of

that location in the domain. We therefore use the term domain relative to describe

information that refers to a point or region in a domain. Notice that this term can be

applied to data and either structural or semantic metadata. Since we model scientific data

as dimensional data, much of the data in the system is domain relative. We commonly

think of historical metadata as not being domain relative, but this need not always be so.

Semantic metadata may or may not be domain relative. However, we feel it is important

for a scientific database to support domain relative semantic metadata since this is the

kind of information used to represent identification of features or patterns within the

data, and the classification of regions of the domain.

3.8.2 Requirements for Domain Relative Derived Data

In the previous section, we mentioned that the term “derived data” can be used to

describe information when it is ambiguous whether the data should be considered

metadata. Generally, derived data is information that was produced through the

application of some operation on an initial data object. The value space of the derived

data may be different from the value space of the initial data. For example, if the initial

data has a value space [0.. .100], and we produce from it a new data object that is

normalized to the range [0... 1], we would say that the second data object is derived from

the first. By itself, derived data need not have any more semantic value than the data it is

derived from. However, it may be a component of a piece of semantic or historical

metadata.

We should use an MR hierarchy for derived data as well as data, and for similar

48

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

reasons. Derived data is distinguished only in how it is produced, so there is no need to

represent it differently from other data. In fact, all the advantages o f the MR model for

data apply to derived data as well. In addition, using the same representation makes the

association between different resolutions of data and derived data clear. It is convenient to

have levels of derived information that correspond easily to the data they were derived

from. Also, if we know how to distribute data between multiple machines or processors,

the same distribution can be used for the derived data.

A third requirement for derived data is that we be able to produce yet more derived

data from existing derived data. More specifically, the system should be able to take one

or more MR data objects and perform an operation upon them that results in a new MR

object. If we represent data and derived data in the same way, this ability follows

naturally.

It is important to realize that producing derived data is conceptually equivalent to

adding a new attribute to the domain. For example, suppose a domain is defined by three

dimensional attributes X, Y, and Z. A data object maintains attributes A,B, and C for points

within the domain. Now we produce a derived data object containing attribute D, defined

over the same domain. The points in the domain space now have four attributes A,B,C,

and D. Whether these four attributes are stored in a single data object or spread over two

objects does not make any difference to their meaning. One of the roles of historical

metadata is to allow the retrieval of attributes defined over a given domain.

Lastly, levels of derived MR data may be produced in either of two ways. The

derived levels can be produced directly from the lowest level o f the original data. W e call

this bottom-up construction. This yields the most accurate results, but it may be

expensive to access the original data because of its size, or because it is not stored locally.

49

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

In such situations, it may be desirable to construct the different levels of the derived data

object from the levels of the original data. That is, A; of the derived data is not constructed

from its own Am, but from Ai of the original data. We call this sideways construction. A

sideways construction yields considerable savings by reducing access to the original data,

but the results may not be as accurate, depending on the method used to generate the

derived data. We must also take care that the derived data still satisfies the resolution

constraints of an MR hierarchy. Figure 3.13 shows sideways construction.

—
Original MR Hierarchy Derived MR Hierarchy

Figure 3.13. Sideways construction of derived data.

3.8.3 Representing Domain Relative Semantic Metadata

There are two parts to the job of representing semantic metadata that is domain

relative. First, we must represent the semantic information, and secondly we must

represent the domain or domain relative data to which the semantic information refers.

The semantic information has some meaning to the experimenter, and may be as simple as

a label or short string of text. This could be stored in a standard relational database.

Although we allow semantic metadata to refer to MR derived data, we expect that it

will most commonly refer to a domain represented by a stencil. The combination of one

or more stencils and semantic metadata is known as a map. The metadata gives meaning to

the domains delineated by the stencils. Notice that the stencil may be formed from a

50

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

detailed representation of data without greatly affecting the storage size of the stencil.

This is particularly true for crisp stencils, because they can be represented with a

collection o f regions. It is usually much cheaper to store a region than to store the points

enclosed by it. Therefore, even if a researcher finds the size of high resolution data

prohibitive, he or she is still able to use metadata produced from a high resolution

representation.

Many of the operations supported by stencils will be very useful when the stencil is

part of a map. Certainly, all the set operations described in section 3.7.5 can be used to

support similar operations with maps. The only complication is that if two maps are

combined using a set operator, e.g. union or intersection, the semantic metadata of the

result map must also be computed somehow. One option is to use the historical metadata

to form the semantic metadata. For example, suppose a new map is formed from two

existing maps named "UV<0.5" and "IR>0.2" using an intersection operator. The resulting

map indicates areas where ultraviolet reflectivity is less than 0.5 and infrared reflectivity

is greater than 0.2. The historical metadata for the result would indicate that the new map

was formed by the application of the intersection operator to the two operands. So, if we

automatically generate semantic metadata for the result map, the name will probably be

similar to "UV<0.5niR>0.2". However, the expert researcher may know that the result

map corresponds to areas containing vegetation. Therefore, he or she may decide to name

or label the result map's domain to be "vegetation". In doing so, the researcher is encoding

expert knowledge into the database in the form of a map label.

Notice that a map may contain more than one stencil, each with a separate label. This

allows related domain relative metadata to be grouped together into a single object. The

stencils must all have the same base domain, since the map as a whole is required to refer

51

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

to a single domain. Also, the map must have a piece of metadata referring to each stencil.

As a metaphor, consider a loose-leaf binder filled with labeled transparencies. Each label

refers to a colored region drawn on a transparency. Let’s also have a piece of paper the

same size and shape as the transparencies that represents data values over a domain.

When one or more transparencies are laid over the paper, they classify or annotate areas

of the domain and the data values found there.

In addition to clarifying the functionality of maps, the preceding metaphor also

suggests a way of visualizing maps. The stencil domains could be used to tint the visual

representation of the underlying data values, giving a clear visualization of the domain

relative metadata. In fact, maps can play an important role in the user’s interaction with

the database because they can be so effectively visualized.

3.8.4 Access Maps

We mentioned earlier that historical metadata refers to information about operations

performed on data and how data is used. This metadata does not need to be domain

relative, but it certainly can be. The access map is an example of domain relative historical

metadata. It consists of a fuzzy stencil and fixed metadata that identifies it as an access

map referring to a particular data object. The access map keeps a record of what parts of

an MR data object have been most frequently accessed by the experimenter. The base

domain of an access map is the same as the base domain of the data object to which it

refers. When the map is created, its stencil domain is empty. When a subdomain of the

data object is accessed by the experimenter, the membership value of the corresponding

subdomain of the access map is adjusted to record the visit. Over time, the fuzzy domain

in the stencil indicates what areas of the domain are most frequently accessed. The most

52

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

frequently accessed areas would have a membership value near 1, while areas which were

only occasionally visited would have a value near 0.

This information can be used to help distribute data efficiently among several

machines or processors. Also, a subdomain’s frequency of access is a measure of how

interesting that area of the data is to the researcher. Such information could potentially be

transformed into a normal map, making it visible to the user.

3.9 Operations on MR Data and Metadata

We have already described how a researcher would explore an MR hierarchy by hand.

The process consists of scanning a coarse overview of a region, selecting interesting areas,

and then drilling down into a finer resolution representation of those areas. Even though

an MR hierarchy allows the researcher to work with large volumes of data in this manner,

it is still desirable to have tools that at least partially automate this process. That is, if the

researcher can define with some rigor what is “interesting”, the database system should be

able to find regions of the domain that match that definition. Also, the researcher may

want to apply an operation to every location in the domain. Therefore, traversing an MR

data object is an important operation for our model.

3.9.1 Traversing MR

Several things are necessary for traversal of an MR hierarchy. The traverse operator

controls which regions of a single level are visited, and in what order. Its implementation

depends partly on the format of the MR data, and partly on the purpose of the traversal.

The descend and ascend operators are given a region of the domain, and return the next

finer or coarser level, respectively. The implementation of descend and ascend operators

depends solely on the data format. It is possible to design an MR iterator consisting of a
53

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

traverse operator and a descend function. Next, some lattice transformation T, described

in section 3.3, must be applied to the subdomains visited during the traversal. Different

definitions o f T are used to implement the various MR operations.

The descend and ascend operators may use a predicate that examines the domain, and

decides, for example, whether descending is warranted based on the data. W e’ll call the

predicates used by the descend and ascend operators finer and coarser, respectively. The

behavior of these predicates is very specific to the purpose of the traversal. If the

transformation should be applied to all levels of a hierarchy, the finer predicate should

return true in all cases except for the bottom-most level. This is commonly the case when

the transformation being applied is a value transformation that produces a new derived

data object. In other cases, the finer predicate must decide whether an area is sufficiently

interesting to warrant being visited at finer resolution. For example, a domain subset

transformation may not need to descend to a finer level if a subdomain can be eliminated

based on a coarser representation. A filter can be implemented as an iterator that applies a

subset transformation to the domain of an MR hierarchy.

Similarly, the traverse operator may behave differently depending on the

circumstances. For example, the traversal could be depth-first, breadth-first, or best-first,

depending on the application. A best-first ordering implies that different subdomains can

be ranked by how likely they are to contain some feature or meet some other constraint.

3.9.2 Search

For any search, the researcher specifies the domain to be searched and the criteria for

the desired data, and in reply expects a subdomain containing values that meet the criteria.

The search criteria can be specified with a subset transformation, as described in section

54

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.5.3.

If suitable maps exist in the system, a search through a dataset can be greatly

accelerated in certain circumstances. For example, a researcher might ask, “Find a place

where the temperature is over 30°C and oxygen is less than 20%.” If a map has been built

which contains the maximum and minimum temperatures for regions of the domain, then

the search can avoid regions for which it is known that 30°C falls outside the indicated

range. We call this process pruning the search domain. If a similar map exists for oxygen

percentages, the search domain can be pruned even further.

3.9.2.1 “Find O ne” Searches

The easiest search to perform is one in which only a single example of an interesting

feature is required. After the pruning process, it may be possible to rank regions of the

search domain so that the most promising regions are searched first. Such a ranking may

use a simple heuristic, or may require expert knowledge of the experimenter's field.

We hope that ranking the search domain will improve search performance in cases

where data meeting the search criteria actually does exist. Note that if no such data exists,

the entire search domain will be examined, and the ranking won't have made any

difference. Even in this worst case, though, search domain pruning should still be

beneficial.

3.9.2.2 “Find All" Searches

If a researcher wants to find all instances of data meeting certain criteria, there’s no

point in ranking regions of the search domain. However, pruning the search domain is still

helpful, since there is no point in searching regions that cannot meet the search criteria. Of

course, whether pruning can be done at all depends on the metadata available. Pruning a

55

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

region from the search domain is only appropriate if it is impossible for that region to

contain data meeting the search criteria.

There are at least two different ways to represent the result of a fmd-all search. The

most obvious way is to use a discrete stencil with a domain containing only the data that

meets the search criteria. Such an approach is most useful when the distinction between

“matching” and “not matching” is sharp and discrete. However, some searches use criteria

that are fuzzier. In such cases it would be useful to assign a value to each region o f the

domain indicating how well that region matches the search criteria. The fuzzy stencil

provides just such a representation.

3.10 Distributed and Parallel Computing

Because of the enormous size of scientific data, it is very desirable to split the burden

of storing and manipulating data across several processors or machines. For our purposes,

distributed computing is the storage and manipulation of data on machines connected by a

network. These machines might all be in the same room, connected by a LAN, or might be

located on different continents, reachable through the Internet. In contrast, parallel

computing refers to computation on a single machine that has more than one processor. In

practice though, the line between distributed and parallel computing is not clear cut.

Many algorithms for parallel computation can be run on a collection of machines

connected via network, forming a distributed (virtual) parallel machine. For this reason,

many of the issues that arise in parallel computation also apply to a distributed

environment.

3.10.1 How MR Can Help With Load Balancing

Load balancing is an important part of using parallel machines effectively. One of the
56

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

problems with scientific data is that it may contain large areas of uninteresting

information. These areas are unlikely to require much processing by the database system,

whereas other areas may represent a very significant amount of work. It is important that

each processor in a parallel system get roughly the same amount o f work to do. We can

see at least three ways that our model might assist with balancing processor load.

AR hierarchies are clearly useful for our purposes, because their reducing functions

say something about what kind of data the user finds interesting. One possibility is to

examine the data at a coarse resolution and use it as a guide to aid in distribution o f lower

levels of the data object. (In this case it would be beneficial if all processors have copies

of the coarsest levels.)

Stencils should prove particularly useful, since they can explicitly eliminate areas of

the domain that are not considered interesting. If the remaining areas are evenly divided

among processors, reasonable load balancing should result. Since stencils are widely used

in our model, this represents a significant bonus.

Access maps should also be useful in this context. If a user has been working with a

particular region of the domain extensively, then the distribution of data can be adjusted

to reflect the user's focus. We can envision a system where a user's access map is saved

between sessions, so that when they log on again, data is distributed in the appropriate

way. If multiple users of the same data are likely to use the data differently, several

access maps can be saved, and a compromise distribution generated from this information.

3.10.2 Problems at Boundaries

In section 3.6.4, we mention that boundaries can cause difficulties for region based

data with overlapping support. Such problems are exacerbated with parallel computation

57

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

because the distribution of the domain among several processors creates many more

boundaries. If data is distributed naively, some of the data in Aj providing support for a

value in Ai+i may be located on another processor. Since we have seen that interprocessor

communication is expensive, we would like to either eliminate or at least minimize the

cost o f this communication. Since more than one processor is likely to need access to data

at the boundaries, it seems desirable to duplicate information at the edges. This could be

done either during the initial distribution of the data, or perhaps dynamically. If it is done

dynamically, a processor should try to send one large block of data to its neighbor, rather

than several small blocks so the fixed communications cost is incurred only once.

3.10.3 Distributing Data

Consider a system in which data is stored on several machines in a network, but

processing is always done on a local machine sitting in front of the user. The MR data

model is very well suited for such a system, since the highest resolution levels can be

stored on a large server somewhere on the Internet, while coarser levels are stored locally.

Deciding where to store a particular level of an MR object is a classic time-space

tradeoff. Clearly, it is not feasible for most users to store a terabyte of data on their local

workstation. Even if a user has the storage capacity, it is very likely that most of the data

is not interesting and will never be used. Instead, a low resolution version of the dataset is

stored locally, and the high resolution representation is stored on the remote server. As

the user drills down into the MR data, subsets of the higher resolution levels are

downloaded to their workstation for visualization and manipulation. O f course, the cost

of this storage efficiency is time, since it usually takes longer to transfer data over a LAN

or the Internet than it would to retrieve the data from a local disk. The users may want to

58

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

make some decisions about where data is stored, depending on what data they expect to

be most interesting, or perhaps a caching algorithm could be employed to manage the

space on the local machine automatically. Once again, since history maps indicate which

data the user has found interesting in the past, it might be possible to configure data in an

efficient manner based upon this history. That is, when a user logs on to the system in

the morning, data could be distributed in a pattern that supports what he or she was doing

the night before.

3.11 Lattice Implementation

The Lattice layer of the Granite system is responsible for providing the user with a

uniform view of a wide range of data formats. This is accomplished with the help of

various components that are tailored to a particular kind of data. By constructing a Lattice

object with the appropriate components, the Granite system is able to provide the user

with a convenient abstraction o f the underlying data, regardless of the format.

This section describes the implementation of the Lattice components and their role in

the Lattice layer and also addresses Granite’s way of handling multiresolution data.

3.11.1 Geometry

The implementation of the Geometry class is very straightforward. This class has two

main jobs. First, it must represent the extent of the Lattice domain, which is easily done

with the help of a GBounds data member. Secondly, the geometry class maintains a

spatial partitioning that is used to facilitate searching within the domain. In general it is

expected that a geometry will use a rectilinear partitioning because that is most likely to

provide the best search support. However, this is not required.

The value of the partitioning is most obvious when dealing with unstructured data. In
59

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

this case it is particularly difficult to map a point in the geometry to the sample points

and cells defined in the topology. It is easy, however, to map a point in the geometry to a

partition identifier, especially for a rectilinear partition. This partition identifier can then

be passed to the Topology class which uses the identifier to greatly accelerate the search

for relevant sample points. This implementation allows the geometric location of sample

points to be stored with their data values, which reduces the complexity and cost of

access to disk.

The mapping between geometric and index spaces is done with the help of the

Partitioning class. This class stores the dimensions of each partition, and uses these

values to perform the mapping with some simple arithmetic operations. For a uniform

rectilinear partitioning it is only necessary to store a single value for each axis o f the

space, since all partitions are the same shape. To represent partitionings with various

shapes, more information must be stored, but the mapping is still very straightforward.

3.11.2 Topology and Cells

The Lattice contains a Topology component which is responsible for retrieving data

values from disk. For rectilinear data, this can be done very easily by passing the index

space location produced by the geometry directly to a DataSource, which then retrieves

the data. For unstructured data, the topology uses a partitioning corresponding to the one

used in the geometry. The partition identifier computed by the geometry can then be

used to help navigate the topology. For both kinds of data, the topology can be viewed as

a contiguous collection of cells that span the Lattice domain. Cells are particularly useful

for computing approximated values for locations in the domain that do not correspond to

sample points.

60

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.11.3 Cell Implementation

The Cell class defined in the Lattice layer consists simply of two arrays containing

Point and Datum objects that correspond to the cell vertices. Important methods include

containment operations that indicate if a cell contains a Point, and the cell/GBounds

intersection operation, which indicates if a Cell intersects with a GBounds. This form of

intersection is used extensively during construction of unstructured topologies to

determine which partition to place a cell in. The containment operation is used to

determine which cell should be used when computing an approximate value for a point

that is not a sample point.

For rectilinear data, these operations are trivially implemented with a few

comparisons. For unstructured cells, these operations are more complex. Intersection with

GBounds is implemented with the help of outcodes, bit strings that help to eliminate line

intersection tests by identifying trivial cases. Containment is decided by drawing a line

through a point and counting the number of intersections between the line and the cell

boundary.

Currently, the Datasource and Lattice layers have their own separate implementations

of the Cell class. However, these implementations are extremely similar, so it is likely that

they will be merged and moved to the Common package at some future time, a location

where the class will be available to the rest of the system.

3.11.4 Out of Core Unstructured Topologies

The datasource layer, which handles rectilinear data, is an “out of core”

implementation, meaning that we do not have to load the entire dataset into memory at

once. However, with unstructured data the Lattice layer cannot simply depend upon the

61

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

datasource layer, so more work is required to achieve an out of core implementation.

The key feature of our out of core support for unstructured data is the partitioning

described earlier. If we can determine which cells lie in each partition and store those cells

together on disk, we can often greatly reduce the amount o f memory needed at one time

by only loading partitions that are actually being used.

The motivation for out of core methods is to be able to process data that is too large

to fit in memory at once. It would defeat this goal if the cell lists associated with each

partition were kept in memory until the end of processing. Instead, we write sections of

each list out to disk as it is being built. Writing the list in sections instead of directly to

disk reduces I/O operations, and also allows us to close partition files between

operations. If we did not close these files, the number of partitions would be limited by

the number of files the operating system allows us to keep open at one time

This partitioning process is reasonably efficient, mainly because we use the

partitioning to greatly reduce the number of intersection tests that must be performed.

Since partitions are meant to contain a fairly large number of cells, it is usually just a

single partition that needs to be tested for intersection. However, it is not at all unusual

for a cell to intersect several partitions. This situation could be handled by simply making

duplicate entries in the cell list of each partition that intersects the cell. This approach is

simple, but increases disk space usage, especially if the fineness of the partitioning is

increased. On the other hand, it is important that each partition have a complete list of the

cells that it intersects with. Otherwise, we would later be unable to answer queries for

domain locations that map to a partition, but for which no containing cell can be found.

Our solution to this problem is a compromise in which the point information for all

intersecting cells is stored in each partition’s cell list, but the data associated with the cell

<52

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

may be stored only in one partition. This partition is called the owner of the cell. All

cells have exactly one owner. Partitions that intersect with a cell that is owned by another

partition are borrowers with respect to that cell. A cell may have an arbitrary number of

borrowers, always one less than the number of partitions it intersects with. If a cell has

no borrowers, then it must be entirely contained within its owner partition. Borrowed

cells are represented on disk using only the vertex indices necessary for representing the

cell, and an identifier that denotes the owner partition and position in the owner cell list.

Since all cells have exactly one owner, the data associated with the cell need only be

stored once. Scientific datasets may contain a large number of attributes for each point, so

this can result in significant space savings over a duplication method.

3.11.5 Queries and Out of Core Topologies

The partitioning process described above only needs to be performed once, after

which it is ready for repeated use. When the lattice receives a user query for some

location d in the domain, the lattice geometry first maps d to a partition. This information

is passed to the topology, which can then check to see if this partition is already in

memory and load it if necessary2.

The relevant partition is now asked to retrieve the cell that contains d. This cell could

be either an owned or borrowed cell. If it is owned, then the data associated with the

vertices is available, and an approximation can be directly applied to produce a value

associated with d. If the cell is a borrowed cell, then the partition does not have the vertex

data. In this case, upon receiving the borrowed cell, the topology will check to see if the

owner is in-core, and load it if necessary. The vertex data for the borrowed cell is now

available, so a value for d can be computed.

2 The list o f in-core partitions is maintained in a simple LRU fashion.
63

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.11.6 Iteration over Unstructured Topologies

In addition to accessing data through the Lattice, the Granite user is allowed to access

the topology directly through a Celllterator. The Celllterator is itself a kind of Cell, with

a value equal to one of the cells in the topology. With each invocation of the nextQ

method, the Granite user causes the Celllterator to take on the value of the next cell,

making it available for processing or rendering. The topology is able to avoid duplicating

cells in the iteration by only iterating through the owned cells for each partition.

Currently, the Celllterator does not allow the user to specify any particular order for

the iteration, but the interface is general enough to allow future implementations which

perform variations such as depth or breadth first search, or perhaps iteration based on

data value.

3.11.7 Multiresolution Support

The Lattice layer supports multiresolution through the MRLattice class. This class is

essentially a list of lattice objects ordered with respect to level of resolution. MRLattice

maintains a current resolution level, which is used to select which of the component

lattice objects should be used to satisfy queries. The user can decide the appropriate level

of resolution based on application parameters and communicate that information to the

MRLattice.

MRLattice functionality should prove particularly useful for applications requiring

Level of Detail (LOD) functionality. For example, when visualizing a terrain, areas

distant from the camera point are rendered very coarsely to the screen. Retrieving fine

resolution data is wasteful in this case. Instead, the application should decide the

appropriate resolution for various regions of the terrain, and use MRLattice to choose the

64

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

resolution of the data to be rendered.

65

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

C H A P T E R 4

T H E D A T A S O U R C E L A Y E R

4.1 Datasources

Lattices provide the scientist with a conceptual view of his or her data that should be

consistent with the operations that need to be applied to the data. In principle, this

conceptual view is reflected in the organization of the physical data. In practice,

however, this is often not feasible. The scientist may need different views of the same

data and the data may be too large to replicate and reorganize to match each desired view.

In general, multisource data and distributed computing require sophisticated ways of

dividing large files into smaller pieces while maintaining a simple view of the distributed

data. The datasource layer helps the lattice perform these tasks, but also provides useful

functionality as a stand-alone tool.

4.2 Mapping Lattices to Data

A lattice is able to map locations in the geometry to locations in the topology. It

remains to map topological locations to offsets in file or network streams. A datasource

66

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

provides the lattice with a single, unified view of multisource data. This simplifies the

mapping from topological locations to file and network stream offsets.

Some datasources are directly associated with a local file or remote source, and are

known as physical datasources. Other datasources are composite, meaning they are made

up of more than one component datasource. For example, a datasource that performs an

attribute join would be composite. It is possible to perform very complex operations by

combining several datasources together in a tree structure, with the root datasource at the

top of the tree providing the lattice with an abstract, cohesive view of the data.

4.3 Datasource Model

A datasource can be modeled as an n-dimensional array containing a set of lattice

sample points A. We think of arrays as an index space I paired with a collection of

associated data values. An index space can be expressed as the cross product of several

indices, each defined as a finite subset of the integers:

/ = /1x / 2x.. . /„

where each Ik is an integer in the range [ak... bk]. When a datasource is used as a lattice

component it is necessary to define a mapping of the index space I to the lattice domain

D. It is not necessary for the dimensionalities of I and D to match. If these

dimensionalities do match, then the neighborhood relationships present in the lattice may

be reflected in the adjacencies present in the datasource index space. In other cases, there

may be no simple pattern in the distribution of A in D, so more effort is needed for the

lattice topology to map points between D and /.

Datasources must handle two basic kinds of queries. A datum query specifies a single

location in the index space, and is satisfied by the return of a single datum. A subblock

67

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

query specifies an n-dimensional rectangular region of the index space, and is satisfied by

the return of a data block, which is conceptually an array of datums with a dimensionality

matching the datasource.

The remainder of this chapter describes the various conceptual and design issues

relevant to physical and composite datasources. Finally, we examine Granite support for

rectilinear adaptive and variable resolution data at the datasource level.

4.4 Attribute Join Datasource

An attribute join datasource is a composite datasource for which each sample point is

composed of attributes taken from two or more component datasources. If A is the

attribute set o f an attribute join datasource, then we say:

where At are the attribute sets of the component datasources.

For example, suppose dsl is a datasource with attributes {salinity, pH, oxygen} and

ds2 is a datasource with attributes {temperature, depth). If these two datasources are

combined by an attribute join datasource ds3, each point in the index space of ds3 has

attributes {salinity, pH, oxygen, temperature, depth). Such an operation is particularly

useful when data has been organized into separate files, perhaps because it was gathered

by different instruments. However, an attribute join can only be applied if the component

datasources have compatible index spaces. For example, the index spaces of all

components may be identical. Alternatively, congruent subsets could be taken from each

component and used for the join.

68

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.5 Blocked Datasource

A blocked datasource is a composite datasource in which the index spaces o f the

component datasources are joined together to form a single index space. The components

must have compatible attributes. For example, consider four datasources dsl through ds4

that might represent several contiguous satellite image files, as shown in figure 4.1. Their

index spaces can be joined together in the fashion shown by ds5, a blocked datasource,

producing a single index space that can be manipulated as a single entity. O f course, a

blocked datasource can have an arbitrary number of component datasources, allowing

large amounts of data to be viewed as a single entity, but stored and accessed in a

distributed fashion.

ds5

Figure 4.1. Four datasources joined by a blocked datasource.

4.6 Physical Datasources

The Granite system employs an abstract model of storage for multidimensional data

that facilitates the development of efficient data access schemes. Researchers have been

working for years to reduce the costs associated with disk access, but the Granite model

allows the user to concentrate on the task at hand without worrying about the details o f

efficient data access. It is also the framework upon which spatial prefetching is built, as

described in the next chapter. Taken as a whole, the Granite approach to I/O allows a user

69

ds1

ds3

ds2

ds4

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

to access data according to the science being done, rather than the way it is stored on disk.

Figure 4.2 is a conceptual diagram of the relationship between the datasource data

model and the organization of the data file on disk. The datasource is the representation

seen by a Granite user, and uses a storage model to help translate the n-dimensional

Other Other

Other

Native

Chunked

Rod
Storage
Model

Physical
Data

Source

Datasource Data Model Storage Models File Formats

Figure 4.2. Granite users interact with the Datasource data model, which employs a storage

model to help map user operations to operations performed on the file residing on disk.

data space to the one dimensional file space. The storage model can work with more than

one file format. For example, the rod storage model discussed in the next section

represents both chunked data files and files that have been left in their native plane-row-

column order.

4.7 The Rod Storage Model

While the file is a one-dimensional entity, a datasource has an index space that is n-

dimensional. The datasource is responsible for satisfying queries expressed in its index

space by reading data from the file. It must therefore map its index space to file offsets. It

does this with the help of an axis ordering, which is simply a ranking of axes from

outermost to innermost. “Innermost” and “outermost” suggest positions in a set of nested

70

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

for loops. Axes are labeled with numbers, so an axis ordering is really just a list of

integers. The axis ordering associated with a physical datasource is called the storage

ordering. The innermost axis of a storage ordering changes most frequently and is called

the rod axis. For example, the storage ordering for figure 4.3 would be {1,0} if axis 0 is

vertical and axis 1 is horizontal. The rod axis is always the rightmost axis in the ordering,

so in this example, the rod axis is axis 0.

Axis 0
(Rod Axis)

0 8 1 6 . 2 4 3 2 ■ 4 0 4 8 5 6

1 9 1 7 2 5 3 3 4 1 4 9 5 7

2 1 0 1 8 2 6 . 3 4 ■ 4 2 5 0 5 8

3 1 1 1 9 2 7 3 5 5 1 5 9

4 1 2 * 2 0 i 2 8 ; 3 6 j 4 4 ~ 5 2 6 0

5 1 3 ' 2 1 2 9

—j----
' 3 7 . 4 5

I___ 5 3 6 1

6 1 4 1 22 3 0 3 8 4 6 5 4 6 2

7 1 5 2 3

j----
. 3 1 3 9 4 7 5 5 6 3

Axis 1

Figure 4.3 The numbers represent the offset of each element in the 1 dimensional file space.

For this two dimensional datasource, the storage ordering is {1, 0}, with axis 0 as the rod axis.

I/O performance depends on the number of separate read requests made to the storage

device. It is important to minimize the number of reads from disk when satisfying a

subblock query. Toward this end, the rod storage model views the datasource as being

conceptually composed of rods. A rod is a one dimensional sequence of elements that are

contiguous in the index space as well as the file space. Consequently, rods are always

aligned with the rod axis. Rods can be accessed in a single read operation. When a

subblock query is processed, the requested region of index space is decomposed into a

collection of the rod subsets contained entirely within the region. We then retrieve the

71

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

subblock data from disk in rod-by-rod fashion where each rod is read with a single I/O

operation. In the case where a set of rods is itself contiguous (or nearly so) in the file, we

issue only one read and retrieve many rods in one disk operation.

It is important to note that the rod storage model is a conceptual view of an n-

dimensional dataset stored in a one dimensional file. It does not require any reordering or

reformatting of the data on disk. The main function of this model is to provide a

conceptual foundation for the prefetching technique described in chapter 5.

In the case where this set of rods is itself contiguous (or nearly so) in the file, we issue

only one read and retrieve the entire set of rods in one disk operation. Although this may

mean that some unneeded data is read, the savings in disk latency costs outweighs the

cost of reading a surprising amount of extra data. On the other hand, a very long read

operation can monopolize the system bus for a long period, which can be inconvenient for

applications like animation. The point at which it becomes undesirable to read several

rods at once therefore depends upon a mix of system characteristics (e.g., average seek

time and bandwidth for the disk) and also the application that Granite is supporting. For

these reasons, the Granite system allows the user to control two system parameters.

First, the user may limit the maximum amount of unneeded data that can be read in order

to eliminate separate read operations. Second, the user may set the maximum amount of

data that will be read in a single operation. These parameters can be given default values

that are tuned to a particular installation.

4.8 File Formats and the Rod Storage Model

The rod storage model can be applied to more than one file format, as long as certain

basic requirements are met. Consider a rectilinear partitioning of the n-dimensional index

72

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

space. The rod storage model can be applied if partitions that are adjacent in some axis

can be read from disk with a single read. Files which are stored on disk in simple plane-

row-column format trivially satisfy this condition if we consider a partitioning in which

each partition contains only a single datum. We call this the native file format, because the

file has probably not been preprocessed in any way to increase access efficiency.

The other file format that satisfies the conditions for the rod storage model is the

chunked file format. Chunked files are preprocessed using a partitioning so that each

partition is stored as a contiguous chunk of data in the file, as shown in figure 4.4.

Chunked files are widely used in the scientific computing community because they

significantly accelerate block access to the data file, especially when the chunk shape

matches the shape of the block query. The chunked format also greatly reduces the

performance penalty associated with accessing the file with different orderings.

0 , 1 4 5 8 9 1 2 1 3

2 • 3 6 7 1 0 1 1 1 4 1 5

1 6 1 7 2 0 2 1 2 4 2 5 2 8 2 9

1 8 1 9 2 2 2 3 2 6 2 7 3 0 3 1

3 2 3 3 3 6 3 7 4 0 4 1 4 4 4 5

3 4 3 5 3 8 3 9 4 2 4 3 4 6 4 7

4 8 4 9 5 2 5 3 5 6 5 7 6 0 6 1

5 0 5 1 5 4 5 5 5 8 5 9 6 2 6 3

Figure 4.4 The numbers are file offsets for a 2D file organized into 2x2 chunks.

A brief examination of Figure 4.4 shows how the rod storage model can be applied on

top o f the chunked file format. The shaded top row of chunks can be read from disk using

a single read operation that loads elements at offsets 0 through 15. We can therefore

regard this row of chunks, and others like it, as a rod suitable for use within the rod

75

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

storage model.

4.9 Adaptive and Variable Resolution

The datasource layer supports rectilinear adaptive resolution data, and also supports

the ability to view uniform resolution data at a different, but still uniform resolution.

Although this functionality could be handled at the Lattice level, handling the rectilinear

case at the datasource level produces increased performance and ease of implementation.

The VRDataSource allows the user to specify the resolution at which datum or

subblock queries will be satisfied. If the resolution is finer than what is available on disk,

an approximation technique is applied to generate intermediate points. Approximation

may be as straightforward as a simple duplication of existing points, or could involve

averaging or linear interpolation. When the requested resolution is coarser than the original

resolution, we support the request by resampling. This may be just decimation, in which

some points are simply left out of the query result, or possibly a more complex

approximation method.

Support for point based rectilinear adaptive resolution is provided by the combination

of BlockedDataSource and VRDataSource. For each component o f the

BlockedDataSource, a VRDataSource is placed on top, ensuring that the resolution seen

by the BlockedDataSource is uniform across all components.

4.9.1 In Core Support for Cell Based Adaptive Resolution Rectilinear
Data

The Datasource layer also provides support for cell and point based adaptive

resolution rectilinear (ARR) data through the ARRCellDataSource, ARRCell,

URCellDataSource, URCellBlock, and ARRCelIB lock classes [Ye04]. Support for in core

74

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

adaptive resolution data is implemented as a tree with leaf nodes containing blocks of

uniform resolution cell data contained in a URCellBlock object. URCellBlock internally

maintains the cell data using a plain “point based” DataBlock, and is responsible for

mapping the cell index space to the point based index space o f the DataBlock.

Figure 4.5 shows an ARRCellDataSource and the corresponding region n-tree used to

access the various blocks of uniform data. The root node A corresponds to the point

'
1 2 9

11
*

12

13 14

3 4 10 15

5 6
16 17 18 19

20 21 22 23

7

•-------- 1

8
24 25 26 27
28 29 30 31

1 2

3 4

11 12
13 14

16 17 18 19

20 21 22 23
24 25 26 27
28 29 30 31

Figure 4.5. a) An ARR Cell Data Source, and b) the corresponding region quad tree,

in the middle of the space which divides the entire domain into four equal quadrants.

Three of these quadrants contain data of uniform resolution, and are represented with leaf

nodes containing URCellBlocks. The remaining quadrant contains data of two different

resolutions, so it is divided again using the internal node B and the corresponding point in

the domain.

75

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

region n-tree
node

' m

l

— i

2
t '

3

4 5

6

7
8

9 I

iT'

20

*

10 11 12 19
13 14 15

16 17 18 21 *
J
22

point n-tree
node

1 k-d tre e y v 2 3
node / \ 4 5

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21 22

a b

Figure 4.6. a) An ARR Cell Data Source, and b) the corresponding tree containing three

different kinds of tree nodes.

More than one kind of tree can be used to construct ARR data. In addition to the

region n-tree, the point n-tree and k-d tree can also be used to represent ARR data. As

described in appendix B, the point n-tree differs from the region tree in that internal nodes

can be split into unequal regions, according to a split point. The k-d tree divides divides

internal nodes into two parts along one dimension only. The split dimension varies with

each level of the tree. Modified versions of both n-tree varieties are able to merge adjacent

regions of the same resolution into a single URCellBlock.

Lastly, we support the ability to mix different kinds of internal nodes in a single tree.

Figure 4.6 shows a cell dataset along with the corresponding hybrid tree containing all

three kinds o f internal nodes. Supporting these different node types in a single tree greatly

increases the expressiveness of Granite’s ARR implementation.

76

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.9.2 Out of Core Support for Cell Based Adaptive Resolution
Rectilinear Data

ARR trees can be written to disk with the aid of three simple data structures stored

on disk. First, the cell data is stored in a one dimensional file which we call the data array

file. Next, a data array index file stores contiguous sequences of indices into the data

array file. Lastly, the ARR Tree File is a table stored on disk recording several pieces of

information for each node in the tree, including node type, parent id, domain location, and

size. It also stores an offset into the data array index file at which a contiguous sequence

of indices will be found. These indices will be used to access the data array file when

filling a URCellBlock with data.

4.10 Stencils

We have a prototype implementation of a stencil working in the datasource layer. As

described earlier in this document, a stencil denotes locations in the domain that are of

interest to the user, or for which some pre-defined property holds. At the datasource

level, the domain in question is an index space.

Figure 4.7. An example of our prototype Stencil implementation. The shaded partitions

belong to the stencil.

77

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Our implementation uses a partitioning to divide the index space into some number of

partitions. The stencil itself is simply a list of the partitions that satisfy the stencil

property. The stencil is constructed by repeated calls to the set() method, which adds a

partition to the list. After construction, the stencil can be used with a Stencillterator.

This iterator takes on successive values equal to the bounds of each partition in the

stencil. The user is then able to use this bounds as an argument for a datasource query.

We have tried the stencil on some test datasets, including CT and MRI data, and

found it reasonably effective. Using a coarse partitioning can be advantageous for

visualization because the data surrounding the location of interest provides context for the

user. On the other hand, a finer partitioning more narrowly identifies the areas of interest,

and may reduce the costs associated with loading and processing unnecessary data.

4.11 Encapsulation and Performance Issues

Since Granite is meant to be used with large datasets, maximizing performance is an

important goal. Some issues are specific the Java language, but most are applicable in

other environments. Unfortunately, we must sometimes make small compromises in

design in order to achieve this performance. For example, several classes in Granite have

constructors that may take arrays as arguments. It is much faster to use an argument

array directly in the object, rather than copying its contents to a separate internal array.

Unfortunately, using the argument directly breaks encapsulation, since it means that the

environment outside of the object has a reference to an internal data member.

Another example involves the checking of arguments for correctness. Checking may

include looking for “out of bounds” conditions, and that objects destined to receive data

have adequate space. Since Granite methods are typically implemented using other

75

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Granite methods, it is unacceptably expensive to perform such checking with every

method call.

As a compromise, we draw a distinction between public and package access methods.

Public methods are visible to the Granite user, while package access methods are only

visible to the package programmer. That is, they can only be called from inside their own

package. This allows us to check arguments for correctness only when the public method

is called. The public method then performs its task using only package access methods,

which perform no checking. Similarly, objects that use references to external arrays and

other argument types can only be called from within their package. This design results in

a reduced level of safety within the Granite core, but the performance gains justify this

cost.

Another implementation issue that has had a profound effect on performance is the

difference between query methods that take a reference to a datablock or datum as an

argument, and methods that return a new datablock or datum [JIANG02], Although the

problem exists for both datum and datablock objects, we concentrate here on the

datablock case because of the much greater memory requirements involved.

Early work on the datasource layer relied on methods that returned new datablocks,

and this approach was found to be unacceptably slow. Returning a new datablock for

each query puts considerable strain on the memory allocation and garbage collection

mechanisms, adversely affecting performance. The problem becomes most acute with

composite datasources, since each query is satisfied by further method calls to

component datasources, each creating a new datablock.

To address this problem, we developed query methods that take a reference to a

datablock object as an argument. This allows the user to easily reuse a datablock for

79

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

successive queries without repeatedly allocating and discarding memory. It also allows

composite datasources to pass the argument datablock to each component so that the

appropriate data values can be written to it.

4.11 Multisource Performance

Performance evaluation studies [JIANG02] show that the implementation provides

very good performance. In particular, we have shown that our multisource support

features, attribute and block join, incur very minimal overhead compared to the cost of

accessing data that has been combined into a single file prior to run time.

4.12 Datasource Metadata

The Granite system has an XML and SQL based mechanism for persistently

representing the information required to construct a datasource or collection of

datasources. A detailed discussion can be found in [Mitchell02], but we present a brief

overview here.

The cornerstone of this mechanism is the File Descriptor Language (FDL) file. FDL

files are XML based files that describe the contents and layout of a data file. For example,

the file name, its n-dimensional shape, the attributes and their ordering, and the

endianness of the data are all recorded in the FDL file. We provide a utility method in the

DataSource class that allows the user to create a physical datasource from an FDL file.

Granite has a user extendable type mechanism, described in greater detail in appendix

A. Like the FDL file, the Type Definition Language (TDL) file is written in XML, but

describes user defined types. For example, a user might define a type called probability

which has an underlying storage type of float, but adds the requirement that all values fall

within the range [0,1].
80

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The Datasource Descriptor Language (DDL) file is also written in XML and describes

a collection of datasources. Typically, this is used to define a tree consisting of one or

more composite datasources (such as an AttributeJoinDS) that in turn refer to some

number of physical data sources. By preserving this information on disk, Granite users

can assemble the environment needed in order to support their research, and then recall

that environment the next time it is needed.

For similar reasons, we are also able to store datasource metadata in a relational

database like mySQL or Oracle. The database stores the same kind of information found

in an FDL or DDL file, and adds the concept of a Workspace, which stores all the

datasources, types, and lattices that define a Granite user’s working environment. Users

can also import data objects from other Workspaces as well as make objects available to

other users.

81

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 5

ITERATION AWARE PREFETCHING FOR

LARGE MULTIDIMENSIONAL SCIENTIFIC DATASETS

5 Introduction

Multidimensional data presents special challenges when designing efficient access

methods because elements that are nearby in the data space may not be nearby in the

underlying data file. This chapter begins with a discussion of an application called Slicer

that allows interactive exploration of the 39GB Visible Woman dataset from the National

Institutes o f Health [NIHVH], The problems presented by this large file serves as

motivation for the spatial prefetching technique described in this chapter.

5.1 Problem

The Slicer application presents the user with an animated display showing progressive

two dimensional slice planes of a three dimensional volume. The slice axis is orthogonal to

the slice plane and defines the direction of progression through the dataset. Figure 5.1

shows the three possible slice axes, which must be aligned with the principal axes. The

user is able to select the slice axis and the subvolume to be visualized, similar in spirit to

82

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

the volume roaming described in [Bhanarimka02]. Slicer was used with the Visible

Woman, a dataset with dimensions 5 1 8 6 x l2 1 6 x 2048 with RGB byte values for each

location, giving a total size o f 39GB.

Figure 5.1. The Slicer application can view the Visible Woman dataset from the three principal
directions by setting the slice axis equal to axis 0,1, or 2.

When the user chooses to view the volume through slice axis 0, the filesystem cache

performs quite well, since this view produces accesses that are contiguous in the one

dimensional file space. The filesystem performs less well with slice axis 1, and is almost

violently unsuited for the access pattern resulting from a slice axis 2 view.

Figure 5.2 shows a closeup o f the circled comer in Figure 5.1. The numbers in the

figure indicate the one dimensional file offset of the labeled element. The red region is the

set of elements contained in the first slice plane for slice axis 2. If we load only the

elements in this slice plane, each element requires a separate read since none o f them are

neighbors in the one dimensional file space, as can be seen by examining the offsets. In

83

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 5.2. A closeup of the circled corner of figure 1. Numbers indicate offsets in the one
dimensional file space. None of the elements in the red slice plane are contiguous, and are all
greater than 4K apart from each other.

fact, even the elements that are closest to each other are about 6K apart, which is larger

than the 4K page size typical on many systems. This means that if we render a

1024x1024 slice plane along slice axis 2, we must load 1024 x 1024 pages o f 4K each, for

a total o f 4GB. Since very few commodity systems have this much memory available,

none o f the pages loaded for the first slice plane will be resident when the second slice

plane is rendered. Those reads will have to be repeated, which leads to a severe

degradation in performance.

Filesystems also prefetch pages following an explicitly accessed page in the hope that

the prefetched pages will be accessed next and reads to disk will be reduced. In this

example, this just makes the situation worse since Sheer is not proceeding through the file

space in the way the filesystem expects. Prefetching just increases the number of

inappropriate pages loaded, which makes it even less likely that Slicer will benefit from

84

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

resident pages when it loads the next slice plane.

To address this problem, we use knowledge of the future access pattern to load the

data for many planes at once into a three dimensional array. Contiguous sequences of

elements are loaded in a single readQ call. This method has several beneficial effects. First,

it reads more data from each filesystem page, thereby reducing the number of redundant

reads made to disk. Second, it reduces the number o f readQ calls made to the operating

system. Third, since the array can be filled in any order, we choose to fill it in a way that

most closely matches the ordering of the data in the file. This allows Slicer to sometimes

take advantage of the filesystem prefetching that is otherwise a liability.

5.2 Caching and Prefetching Background

The filesystem cache is does not offer adequate support for Slicer, especially for slice

axis 1 or 2. The caching and prefetching schemes present in most operating systems do

not take into account the natural spatial relationships in the data, so they tend to cache,

discard, or prefetch the wrong information.

Over the last fifteen years there has been a thousand-fold increase in processor speed,

along with even larger gains in memory and disk capacity. During the same period, the

size of scientific data sets increased even into the terabyte range. However, the average

seek time of hard disk drives has improved only modestly over the same period

[Coughlin, ChangOl]. The work described here is motivated by the need to hide or avoid

paying the now comparatively high latency or stalling costs associated with modem disk

drive media. Using our system, a researcher can take advantage of fast I/O performance

without spending time on the minutiae of efficient file access.

To implement this abstraction while still maintaining efficiency, the researcher must be

85

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

able to define the application’s data access pattern. We are developing a toolkit of

iterators that succinctly describe the access pattern and also perform the iteration through

the data space. This access pattern may be purely spatial, or may relate to the locales of

interesting data values. For spatial access patterns, we can then generate a cache that

provides a useful speedup to the application.

To the best of our knowledge, our cache design is unique in that its blocks have an n-

dimensional shape, as opposed to the 1 dimensional pages of file system caches and

similar methods. N-dimensional cache blocks can be given a shape which is tuned to a

particular iteration and to the storage organization of the data. We choose a shape which

minimizes the total number of disk accesses while reading data which is sure to be visited

in the near future by the iteration. We call this method spatial prefetching, an example of

iteration aware prefetching

Unlike other methods for achieving efficient I/O performance [Sarawagi94, MoreOO],

our approach does not require any reorganization o f the data. That is, we can work with

the original data file, rather than making a copy with a different storage organization.

Much of the research in informed prefetching [Albers98, Cao96, Fomey02, Patterson95]

has not directly addressed the special problems of multidimensional access, or taken

advantage of the extremely regular access patterns common in scientific computation.

The datasource layer handles multidimensional data in which sample points are

arranged in a regular and rectilinear fashion throughout the domain. As with many other

scientific databases, the design of the Granite system assumes that update operations will

be infrequent or entirely absent, so the work described here is aimed toward a read-only

data environment.

86

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

* - m ' A £ 4 0 4 8 5 6

1 9 17 2 5 3 3 4 1 4 9 5 7

2 1 0 1 8 2 6 34 4 2 5 0 5 8

3 1 1 1 9 i 2 7 3 5 4 3 5 1 5 9

"A:" 1 2 2 0 2B 3 6 4 4 5 2 6 0

1 3 2 1 2 9 3 7 4 5 5 3 6 1-
6 1A 2 2 3 0 3 8 4 6 5 4 ■ 8 2 '

7 1 5 23- 3 1 3 9 4 7 5 5 6 3

Figure 5.3. Elements nearby in the numbered iteration sequence are not contained in the same
page.

5.3 Advantages of the Granite Approach To I/O

Chunking [Sarawagi94] is the most effective existing general-purpose technique for

improving access to multidimensional arrays stored as files. The major drawback to

chunking, however, is that the data must be reorganized using some default chunk size and

it is very possible that the application program may choose to access the data in an order

that is not particularly compatible with the chunking that was done. The approach

adopted by the Granite system works with the original data, and requires no such

reorganization.

Systems that access the data in pages suffer from not taking into account the

multidimensional nature of the data. In particular, elements that are nearby in n-

dimensional space may be far apart in the one dimensional file space. Since paging is

essentially a one dimensional method, it may be inefficient for an n-dimensional access

pattern.

Figure 5.3 shows an example o f a column-by-column iteration through a 2D dataset

split into pages of 5 elements each. At step 0 of the iteration, the striped page in the

upper left o f the diagram is loaded into memory. However, the second element in this

87

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

page is not visited until the iteration has reached step 8. Worse, the last element in this

page is not visited until step 32. This means that if we are to use all the data read in the

first page, we must keep this page in memory until much later in the iteration. The same

argument holds for all the other pages that are loaded as the iteration proceeds down the

first column. In a real system, the size of the dataset and the pages themselves prohibits

all these pages being kept simultaneously in memory. Pages must be discarded before all

the data has been used, and then reloaded at a future time. The problem is a result of the

one dimensional nature of paging, but a similar argument can be made for chunking when

the dataset organization is poorly suited to an unexpected access pattern. The work

described in this paper addresses these issues by creating cache blocks that are n-

dimensional and shaped according to the iteration.

Many of the caching and prefetching methods meant for the file system level must

work with little or no explicit information about access pattern. Such algorithms risk

prefetching the wrong data, or having to make room in a cache by discarding blocks that

will eventually need to be reloaded. However, the approach described in this paper takes

advantage of nearly complete information about the access pattern given by our iterators.

We don’t have to guess which data to prefetch, and we don’t discard needed data before it

is used. Because of this, the various caches we have developed require at most two cache

blocks to be maintained in memory at a time, which can extend the reach of an application

to much larger datasets than would otherwise be possible.

5.3 Iterators

Since our system aims to improve I/O performance based on the actual access pattern,

we use iterators to represent access patterns, as well as to perform the actual iteration

88

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

through the datasource index space. Iterators have a value that changes with each

invocation of the iterator’s next() method. This value might denote a single location in the

index space, or perhaps an entire region. In either case, the iterator value can be used

directly in both datum and subblock queries.

The pattern of iteration is determined when the iterator is constructed. An axis

ordering is used to help represent the behavior of iterators that proceed through the index

space in rectilinear fashion. In this context, the innermost axis of the iteration is called the

run axis. While the datasource is conceptually composed of rods, the space being

traversed by a rectilinear iterator is conceptually composed of runs.

The iteration space is the space traversed by the iterator. It may be the entire index

space o f a datasource, or some subset of that space. We also represent the starting point

and the stride through the iteration space in cases where the iterator skips over some

locations. Along with the axis ordering, all this information is useful and available when

the system creates a prefetching cache tuned to the iteration.

5.4 Iterator Aware Prefetching

A lot of the literature in caching and prefetching aims to identify when to load new

blocks from disk, and choosing blocks to be discarded. Because we have near complete

information about the access pattern from the iterator, these problems are vastly

simplified in our system. We call our approach Iterator Aware Prefetching.

Most caching and prefetching methods view files as one dimensional entities, but this

view of the data is not adequate for scientific applications involving multidimensional

datasets because it misses the neighborhood relationships inherent in the data. The

89

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

problem becomes even more acute as the dimensionality of the dataset increases. To

address this issue we have designed a multidimensional cache that preserves the iterator’s

spatial data view. The iteration space is conceptually partitioned into an n-dimensional

array of n-dimensional cache blocks. Data is read from disk one block at a time, and is

retained in memory to quickly satisfy user queries.

Our system currently implements two different kinds of iterator aware prefetching.

Threaded prefetching uses a separate I/O thread to fetch the next cache block while the

current one is being processed. Unlike other systems using I/O threads, we don’t have to

speculate which block should be read next, because that information is contained in the

iterator. Currently, we have only implemented and tested threaded prefetching for a

single disk, so we can achieve at most the doubling of performance that occurs when the

I/O time perfectly matches the computation time for each block. Even the current

approach can be very effective in avoiding stalling costs, although with a larger number of

disks, we may be able to reach even greater improvements in performance, by performing

several disk accesses concurrently.

5.5 Spatial Prefetching

The second kind of prefetching implemented in the Granite system increases

performance by adjusting the shape of the cache blocks to minimize the number of

separate reads made to disk. We refer to this method as spatial prefetching.

5.5.1 Well Formed Cache Blocks

Typically, when a cache needs to load data from disk to satisfy a request, it loads a

larger set o f data in the neighborhood of the original request. Hopefully, the nearby data

can be used to satisfy future requests without returning to the disk. If the pattern of
90

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

future accesses is already known, however, we can choose a cache block shape that

guarantees that all the needed contents will be used before being discarded. We say such a

cache block is well formed with respect to the iteration. A more formal definition follows:

Definition D l:

Consider an axis ordering A = { a„h a„.2, a„<, ...a,), a rectilinear index space region R o f shape B and a

rectilinear iterator I that performs the iteration described by A. We say B is well formed with respect to

ordering A i f for all regions R o f shape B, once iterator I leaves R, it does not revisit R.

If we can construct a cache containing blocks that are well formed with respect to a

given iterator, we can be assured that no cache block will need to be read more than once,

and that once the iterator is done with a cache block, we can discard it. Most iterations

only require a single cache block to be used at one time. Overlapping block iterators

require at least two, as does threaded prefetching.

Algorithm A l:

Input:
Iterator Axis Ordering A. = { a„ a„h a„_:, ...a,,},
Iteration region extents S„ = {So, s,, s,, . . .sj ,
available memory M

Output:
A set o f cache block dimensions B = { b0, bh b2, . . .b j that represent a cache block shape that is well formed

with respect to the iterator ordering.

B = {1, 1, 1, ...1}
SB = size o f B in bytes
M = M - SB

begin
for i = 0 to n

axis = a
if (SB • (.s',,.,, - 1) <= M) then

= sm„
M = M - S B '{ s „ „ - \)
SB = SB • .v„„,

else
Z>„,„ = M l SB + 1
leave

end
end

end

Algorithm A l generates a well formed cache block shape for a datum iterator that

91

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

visits single elements in the index space. It must be given the iterator axis ordering, the

space over which the iterator travels, and the amount o f memory that is available for

constructing a cache block.

The algorithm works by marching through the iterator’s axis ordering from innermost

to outermost axis, setting the corresponding dimension of the cache block shape to equal

the extent of the iteration region along that axis. Below is a proof that algorithm A l

produces a well formed cache block shape for a datum iterator.

Proof PI:

Claim: Algorithm A l produces a well formed shape B for the given iterator, iteration space, and available
memory.

Base Case:
A shape with a single element is well formed with respect to A0 = {a,}.

Assumption:
Algorithm A l produces a shape that is well formed with respect to ordering Ak = { a,, al h ai :, ...a,,}.

Induction Step:
From the iterator ordering, we know that after completing axes a„ through at, the iterator will next
increment axis aM, and then repeat the iteration described by A,, doing so until the edge o f the iteration
space is reached on axis ak,,. From the assumption, we already have a shape that is well formed for A,, so we
only have to concatenate some number o f these block shapes along axis a,., to produce a new shape which
is well formed for A,., = { attl, ah a„.h The iterator will visit all elements in a region o f this shape and

not revisit any portion o f it, so the new shape is well formed.

The algorithm and proof can be easily modified to account for block iterators rather

than datum iterators. Since block iterators represent a sequence of block accesses, we can

set the initial dimensions of the cache block shape to match a single iterator block. The

algorithm then proceeds as before. The proof still holds for this case if we consider an

element to be a block instead of a single position in the index space. The block version of

the algorithm can also be used to handle the case where an iterator has gaps or overlap

between visited elements.

92

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5.5.2 Practicality

Whether the shape of a cache block is well formed is related only to a particular

iteration. It is possible that a well formed cache block will not enhance performance with

a certain dataset because of the way the data lies on disk. In order to guard against this

possibility, we must check to see if a cache block shape is practical with respect to the

storage model. We currently only consider the rod storage model, and our definition of

practicality concerns the extent of the cache block shape along the rod axis.

Definition D2:

A cache block shape is practical with respect to a rod storage model if it has extent greater than r elements

along the rod axis, where the value o f r is determined by cache overhead and the performance

characteristics o f the I/O subsystem, and must be at least 2.

This definition is motivated by the fact that in order to get any gain in performance,

we must reduce the number of reads made to disk. It follows that we must therefore make

each read longer than would be performed without the cache. The extent of the cache

block shape along the rod axis determines the length of these reads, so this value must be

sufficiently long to provide a performance gain, even in the face of cache overhead.

5.6 Examples

Three potential cache block shapes are shown in figure 5.2. The numbered sequence

indicates a column-by-column iteration over a datasource stored in row-by-row fashion.

The shaded shape in the upper left is not well formed, and would never be produced by

our algorithm. This cache block shape is poorly suited to a single block cache because

step 4 of the iteration will cause the block to be discarded, only to be reloaded at step 8.

93

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Algorithm A l would extend the block shape all the way down to the bottom of the space

before attempting to extend it in the horizontal direction.

The middle shaded shape in figure 5.4 does not have this problem, since it extends

over the full length of the vertical axis. However, this block is not practical and cannot

reduce the number of read operations. Since the rod axis is the horizontal axis, to fill this

cache block would require eight separate reads, which is the same number we would

require with no cache at all.

The shaded shape on the right is much better, since it can be filled with 8 reads of

length 3. The striped region represents a single rod subset for this block. Depending on

the characteristics of the platform, this shape may produce a useful increase in

performance.

Run
Axis

Figure 5.4. For a {1,0} iteration over a {0,1} datasource, the shape on the right is the only one

which is both well formed and practical.

5.7 File Formats

When the rod storage model is used on top of the native file format, the rods consist

of a series of datums stored sequentially on disk. We refer to this file format as “native”

94

0 8 16 24 32 40 48 56

1 9 17 25 33 41 49 57

2 10 18 26 34 42 50 58

3 11 19 27 35 43 51 59

4 12 20 28 36 44 52 60

5 13 21 29 37 45 53 61

6 14 22 30 38 46 54 62

7 15 23 31 39 47 55 63

Rod Axis

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

because it requires no preprocessing— the file is handled “as is”. In this situation, using a

well formed cache block also guarantees that no data is read from disk more than once.

This is because the cache block is defined in terms o f the same units (datums) as the file

format.

The rod storage model can also be used on top of chunked files. In this case, the rods

consist o f a series of contiguous chunks that can be loaded with a single read operation.

Here, the file format is defined in terms of units different from what was used to define

the cache block. Because of this, data may be read more than once, even with well formed

cache block shapes.

There are three possible approaches to this problem. First, we could implement an

access method that allows data to be read from within a chunk without reading the entire

chunk. This could save memory by allowing smaller cache blocks, but would greatly

increase the number of reads necessary.

Secondly, we could allow chunks to be read more than once, making the assumption

that useful speedups will still be obtained due to a total reduction in the number of reads.

A third approach is to only allow the creation of cache block shapes that will not

result in any chunk being read more than once. In our current work, we have chosen this

third avenue. Insuring this condition is straightforward. We only allow cache blocks with

dimensions corresponding to an integral number of chunks, and for single block caches, we

require the rod axis dimension to span the iteration space.

95

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Run Axis
0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 ia 19 20 21 22 23

24 25 26 27 2B 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 48 90 51 52-. 53 54 55

56 57 58 59 60.' 61 *

Figure 5.5. For a {1,0} iteration over a {1,0} chunked datasource, we use cache blocks shaped

like the lower shaded region.

The heavy gridlines in figure 5.5 represent chunk boundaries, while the three shaded

regions show potential cache shapes. The top cache shape would be well suited to the

native file format, but will cause some avoidable reads in the chunked file format because

it violates our first restriction. In particular, to fill that cache block, we must read the two

chunks in the top left (containing elements 0,1,8,9 and 2,3,10,11 of the iteration) but then

only store half of the data read, requiring it be reread when the iteration reaches the

second row.

To see why the second restriction is necessary, consider the middle block shape in

figure 5.5. When the iteration reaches step 16, the entire block is loaded and stored, but if

only one cache block is retained, this block will be discarded at step 20, only to be

reloaded at step 24. O f course, this situation can be addressed with multiple cache blocks,

but this will increase the number of reads made to disk. When possible, it is desirable to

use a single, larger cache block, as shown in the bottom shape of figure 5.5.

96

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5.8 Example Code

Figure 5.4 shows a small example of a datum iteration using the Granite system. We

first create the datasource from an xml file that describes such properties as

dimensionality, size along each axis, and the number of attributes at each location in the

index space. Next, we define an axis ordering and iterator that will traverse the datasource.

We are now able to create a cache which is tuned to the iteration we wish to use. Finally,

we create a datum object for retrieving data values, and perform the iteration.

/ / Create datasource
Datasource

ds = Datasource.createDS(“8gig.xml”);

/ / Create o rdering fo r i t e r a t o r
AxisOrdering

i t e rO rd e r in g = new AxisOrderingC
new in t [J { 0 , 1, 2}

);
/ / Create an i t e r a t o r t h a t t r a v e r s e s the e n t i r e
/ / da tasource
I S I t e r a t o r

i ter=new IS I te r a to r (d s .g e tB o u n d s O ,
i t e r O r d e r i n g

);
/ / Create a s p a t i a l p re fe tch ing cache for the
/ / given datasource and i t e r a t o r
CacheDataSource

cds = CacheMaker. createCDS(ds, i t e r , freeMem);

/ / Create a datum to rece ive data values .
Datum d = new Datum(ds.getNumAttr ibutesO);

/ / T raverse th e e n t i r e datasource index space,
/ / access ing the data through th e cache.
f o r (i t e r . i n i t O ; i t e r . v a l i d O ; i t e r . n e x t O)
{

c d s . datum(d, i t e r) ;
/ / Process datum

j

Figure 5.4. Example code for a datum iteration over a cache.

This code is very flexible, and requires very minimal changes in order to work with

different datasources and iterator orderings. To make the code above work on another file

o f entirely different size and shape, we only need to change the name of the xml file given

in the first line of code. The iteration order is just as easily changed, and an appropriate

cache will be created without further thought from the programmer.

This flexibility is especially attractive in situations where a user wants to process a

97

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

large file using several different traversals. With spatial prefetching, it is a simple matter

to create caches that are tuned to each iteration. With preprocessing methods, some

compromise must be made when deciding the chunked format, unless the user is willing to

make a separate file for each iteration.

5.9 Results

We have run our tests on a variety of machines and found that machines with fast I/O

show smaller performance improvement simply because the I/O is a smaller portion of

the total execution time.

We present results from the machine with the fastest I/O available to us. This is a

single processor Pentium 4 machine with a 2.4GHz CPU and 2GB of RAM running the

Linux operating system, version 2.4. The disk on this machine is a fast SCSI disk with a

3.8ms average read latency. Though we show here very substantial gains in performance,

we got even greater gains on the other platforms.

Linux has a very effective filesystem cache that loads and stores 4k blocks of data

from disk. O f course, if some or all of a file is already in this cache, stalling costs will be

greatly reduced or eliminated. The filesystem also prefetches blocks stored following a

requested block. Such prefetching is based upon a one dimensional view of the file, and

can perform poorly with multidimensional datasets.

Since the file system cache is persistent across task execution, it is possible for a task

to request an I/O block for the first time, but still get a cache hit if another task had

previously read that block. Although this is a good thing in general, it is problematic for

our testing environment. In order to give valid and consistent performance statistics, we

need each test to be independent of what happened previously. We developed a small

98

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

program that effectively "empties" the cache by filling it with blocks from a dummy file

that is not used in the tests. In addition to guaranteeing a consistent environment by

always starting with an empty cache, this approach portrays a more realistic behavior

that a researcher might expect when dealing with very large datasets.

In the following sections, we present results for both datum and block iteration over a

three dimensional 8GB dataset. On our test machine, running the cp command with this

dataset takes approximately 400 seconds. The dataset has dimensions 1024x1024x2048,

where each datum is a single floating point value. Tests were run on both native and

chunked file formats. In all cases, the files had a storage ordering of {0,1,2}.

5.9.1 Datum Iteration over Native Files

Our datum iteration tests ran code very similar to the example in section 5.8. Table

5.1 compares the execution times for a traversal using no cache with a traversal using a

128MB cache. Three different iterator orderings are presented. In all cases, the cache

provides a very substantial improvement in performance. Notice that the {0,1,2} ordering

shows somewhat less improvement than the other orderings. This is because the

filesystem prefetches blocks in the same order that the iterator requests them. Filesystem

prefetching is much less effective for the other orderings, so our spatial prefetching offers

more improvement. In fact, the non-cache test for {2,1,0} ordering did not complete

within twelve hours. We determined that the test was making forward progress in a linear

fashion, but very slowly, due to the awkward nature o f this access pattern. A very simple

C program that mimicked the access pattern for this test but performed no type

conversion or copying of data took over 37 hours to run, so we are confident that disk

access is causing the excessive runtime. We estimate the completion time for the Java

99

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

implementation to be about 100 hours.

Ordering Time without
Cache
(seconds)

Time with
Cache
(seconds)

Speedup

{0,1,2} 5518 777 7.1

{1,2, 0} 10041 1204 8.3

{2,1,0} 360000(est) 9286 38.8 (est)

Table 5.1. Execution times for datum iteration.

Ordering Time without
Cache
(seconds)

Time with
Cache
(seconds)

Speedup

{0,1,2} 556 227 2.4

{1,2, 0} 3518 280 12.5

{2,1 ,0} 10408 2284 4.6

Table 5.2. Execution times for a 643 block iteration.

5.9.2 Block Iteration over Native Files

Block iteration involves loading successive n-dimensional subsets of the data from

disk. The rod storage model by itself facilitates this form of access, since it breaks blocks

down into sets of rods. However, spatial prefetching is still able to provide a useful

performance increase by reading data for many blocks at one time. Table 5.2 shows the

execution times for a 643 block traversal over the same dataset used in the previous

section, but with 512MB allocated for the cache. Once again, the {0,1,2} case shows the

least speedup since the basic iteration order follows the file storage order.

5.9.3 Datum Iteration over Chunked Files

Chunking is a common method for speeding access to spatial data, so it is important

100

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

to compare spatial prefetching alone with the performance of chunked file access. An

important assumption of our work is that the user access pattern is not known until

runtime. Although chunking is often done with a particular access pattern in mind, a

generic chunked format divides the file into chunks equal to the filesystem page size. This

method provides a substantial performance improvement for most access patterns

without being tailored specifically to a particular one. We therefore chose to compare

spatial prefetching with this form of chunking.

Chunking generally requires some kind of cache in order to be effective with datum

access, so we implemented a simple LRU cache that holds a collection of chunks. We

compared the performance of our spatial prefetching cache working on top of a chunked

file against the performance of this LRU cache. In our tests, the memory used for both

caches is always 512MB.

Ordering Time with
LRU Cache
(seconds)

Time with
Spatial
Prefetching
Cache
(seconds)

Speedup

{0,1,2} 3835 3513 1.09

{1,2, 0} 5798 3934 1.47

{2,1,0} 5929 4730 1.25

Table 5.3. Execution times for datum iteration over chunked files.

Table 3 shows the execution times for both caches. Comparing LRU performance

with the cacheless datum iteration described in section 5.9.1, it is clear that chunking is a

very effective technique. However, by applying spatial prefetching on top o f chunking,

we produce some small but useful performance gains, especially in the last two orderings

listed in the table. On machines with larger disk latency, speedup is substantial even in

101

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

the first case.

O f even greater interest is the fact that the performance of spatial prefetching over a

native file presented in section 5.9.1 is very competitive with the performance o f the

LRU cache over a chunked file. Although we don’t do as well in the {2,1,0} ordering, our

spatial prefetching is far superior to the chunked file performance for the other two cases.

For convenience, we present this comparison in table 5.4. That such performance can be

achieved without preprocessing or duplicating the file makes spatial prefetching a

particularly attractive technique.

Ordering Spatial
Prefetching Time
(seconds)

Chunked File
Time (seconds)

{0,1,2} 777 3618

{1,2,0} 1204 5385

{2,1,0} 9286 5532

Table 5.4. Datum iteration over spatial prefetching on native files compared with chunking.

5.9.4 Block Traversal over Chunked Files

Our fourth group of tests compared the performance of our spatial prefetching cache

over a chunked file with the LRU cache on the same file. Table 5.5 shows that spatial

prefetching over chunked files provides much more meaningful speedup for block access

than for datum access. Since datum access involves many more cache lookup operations,

it is likely that in this case, cache overhead erodes gains in I/O efficiency.

102

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Ordering Time with
LRU Cache
(seconds)

Time with
Spatial
Prefetching
Cache
(seconds)

Speedup

{0,1 ,2} 1800 366 4.9

{1,2, 0} 1784 352 5.0

{2,1 ,0} 1900 1048 1.8

Table 5.5. Execution times for a 643 block iteration over chunked files.

5.10 Volume Slicing

We use a simple visualization application to demonstrate the effectiveness of our out-

of-core data access system. Our application, called Slicer, presents the user with an

animated display showing progressive two dimensional slice planes of a three dimensional

volume. The slice axis is orthogonal to the slice plane, and defines the direction of

progression through the dataset. The user is able to select the slice axis and the subvolume

to be visualized, similar in spirit to the volume roaming described in [Bhaniramka02], The

39GB Visible Woman dataset from the National Institute of Health was used in all tests

described here.

5.10.1 Slicer Implementation

Slicer was implemented in Java 1.4.2 using the jog l OpenGL library. Each slice of the

volume is rendered by issuing a subblock query to the datasource layer, and then sending

the resulting data directly to OpenGL as a texture. OpenGL then applies the texture to a

rectangular shape on screen. There is essentially no processing being done on the data

itself, except that which is directly related to the I/O. Slicer was run on the same Pentium

4 machine used for the previous tests. The filesystem cache was once again cleared

between runs.
103

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Even with an empty file system cache, file system prefetching is still active. This

effect is most obvious when the iteration pattern matches the file storage pattern. In this

case, the file system prefetches the same blocks that our cache strategy identifies for

prefetching, so we achieve only modest improvement (if any). On the other hand, for

other iteration patterns we have no way of measuring the negative effect of unwarranted

file system prefetching.

Slicer includes an optional governor mechanism to provide a maximum frame rate for

the visualization. This is common with programs that use hardware rendering. The

governor evens out any inconsistencies in the frame generation and frame rendering

processes and generally provides smoother, more consistent visualizations when used

with threaded prefetching. In addition to governor frame rate, Slicer provides user control

over the type of cache, cache memory size and the slicing axis.

Because the Slicer application is I/O intensive and requires very little computation for

the rendering, the performance overhead imposed by Java is not a significant factor in the

total run time. This makes it an effective demonstration of the I/O performance

improvements that our prefetching method can provide.

5.10.2 Slicer Results

The Visible Woman dataset has dimensions 5186 x 1216x 2048 with RGB byte

values for each location, giving a total size of 39GB. We compared performance with no

cache, with spatial prefetching, and with threaded prefetching. For each case, we tried all

three principal view directions (slice axes). An overview of the dataset and sample images

from each direction can be seen in Figures 5.7 and 5.8 at the end of this chapter. Figure 5.7

shows a 4096x1024 overview slice, while figure 5.8 shows several closeup views along all

104

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

three slice axes. Only views along axis 0 are “natural”, in that they correspond to

photographs of body slices. All other views are synthesized by Slicer.

Table 5.6 shows the maximum frame rates for each of the cases. For these tests, the

frame rate governor was turned off, and a stable average frame rate recorded. Slicer is able

to “wrap around” when it finishes an iteration, but we only recorded frame rates from the

first pass, to minimize the effect of the file system cache.

Slice Axis
0 1 2

Slice dimensions
and Cache Size

No Cache

Spatial

Threaded

15.9 1.8 1.6 256 x 256

32 Slices
14.3 11.9 12.0

20.3 10.0 10.2

No Cache

Spatial

Threaded

10.6 0.89 0.04 512x512

128 Slices
11.2 10.3 2.4

12.4 8.8 2.2

Table 5.6. Frames per second for the plain datasource, spatial prefetching, and threaded

prefetching caches.

For the first set of tests, the slice had dimensions 256x256, with the remaining

dimension set to the extent of the entire data volume. Caches were given enough memory

to store 32 slices. The second set of tests displayed slices of dimensions 512x512, with

memory for 128 slices given to the multidimensional caches. For axis 0, the performance

without our caching is quite good, since file system prefetching is very effective for this

access pattern. It is even slightly better than plain spatial prefetching, since it avoids

cache overhead costs. However, with the addition of the threaded prefetching we are able

to show a small but noticeable improvement.

For the other two orderings, the file system cache is unable to match the performance

of either o f our two multidimensional caches, which are 5 to 7 times greater than the file

system cache alone.
105

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

When the slice plane includes the rod axis, as with slice axes 0 and 1, each slice can be

read as a series of long rod reads. However, for slice axis 2, each datum in a slice is in a

separate rod, which dramatically increases the number of reads. However, our

multidimensional caches are able to extend the rod length along the slice axis, resulting in

the performance improvements shown. The threaded cache performs slightly worse here,

because it has two cache blocks of half the size of the cache doing spatial prefetching

alone. For axis 2, this means that the rods in the threaded cache are half the size of those

used with spatial prefetching which entails twice as many disk reads. Using a monitoring

tool to view CPU load, we noticed that CPU load rises to 100% during disk activity for

the axis 2 tests, but not for the other directions. This heavy load is likely due to the

processing required for each read to disk. This makes it much more difficult for our

threaded cache to show an advantage over plain spatial prefetching in this situation, since

the application is essentially CPU bound. However, this problem can be overcome if

enough memory is available. Using a 512 slice cache with axis 2, we got frame rates of 3.6

for spatial prefetching alone and 4.0 with threaded prefetching.

With the frame rate governor turned off, there is a pause whenever a cache block is

exhausted and a new block has to be fetched from disk. The pause is lessened but not

entirely avoided with the threaded slice cache, since the rendering process is able to run

through a block much faster than the next block can be loaded.

The viewer of an animation is distracted by stops and starts in the motion. With

threaded prefetching, setting the frame rate governor to the average frame rate results in

smooth animation. This slows the rate at which the renderer runs through a block, so that

the next block is ready when it is needed. This situation simulates expected behavior

when the Granite system is used with a more heavyweight renderer, such as a splatting

106

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

based volume renderer [Westover90]. In the optimal situation, a renderer that takes as

much time to exhaust a cache block as it takes to load the block will show twice the

performance with the threaded cache compared to spatial prefetching alone. Since the next

block is ready just when it is needed, performance should be similar to the case where

enough RAM is available to hold the entire dataset, even with very large datasets like the

Visible Woman.

5.11 CDF Performance Comparison

The Common Data Format (CDF) system has been used to store and access scientific

data for many years [CDF]. Despite the name, CDF is not only a format, but also a

library for accessing multidimensional scientific data. Like the Granite system, it is

designed to help researchers concentrate on their science by handling the details of

efficient access to scientific data.

We have compared the performance of Granite against CDF for several different

dataset and query sizes. Tests consisted of iterated queries over some or all of a three

dimensional dataset, similar in nature to those described in section 5.9. Three different

iteration orderings were used. In almost all cases, Granite substantially outperforms CDF,

especially when spatial prefetching is used. Although CDF does outperform Granite for

{0,1,2} traversals with small datasets, Granite shows better performance for large

datasets, which is the case most important for today’s scientific researcher. Granite’s

advantages are particularly apparent with {1,2,0} and {2,1,0} traversals over large

datasets, in which performance is 10-100 times faster than CDF. For a more detailed

description of these tests and the issues involved, see [ELLIS04].

107

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 5.7. An overview slice of the Visible Woman Dataset viewed along

108

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

a) a close up view of the waist viewed through b) A view of the right hip joint viewed through

axis 1. axis 0.

'4

c) The hip joint region viewed through axis 1. d) The hip joint region viewed through axis 2.

Figure 5.8. Several example images taken from the Visible Woman dataset. All images were

produced using a 512x512 slice size. Only 4b is a “natural” image, the other views are

synthesized by Slicer.

109

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Contributions and Conclusions

This document describes a collection of important contributions to the field of

scientific databases. The formal Granite scientific data model provides a novel,

comprehensive, and conceptual view of a wide range of very complex scientific data. That

model served as the basis for the implementation of the Granite scientific database system

which has validated the practicality and feasibility of the model.

The Granite model is unique in that it defines dataset geometry and topology as

separate conceptual components of a scientific dataset. We provide a novel classification

o f geometries and topologies that has important practical implications for a scientific

database implementation. Unlike the systems commonly in use today, the Granite model

also offers integrated support for multiresolution and adaptive resolution data as well as

110

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

both point and cell based data views.

The datasource portion of the Granite model offers several further contributions. In

addition to providing the user with a convenient conceptual view of rectilinear data, it also

offers support for multisource data. Data from various files or network sources can be

combined using an attribute join or block join, thus providing an alternative view of the

data without physically copying or moving the data. The rod storage model is an

abstraction for file storage that has proven an effective platform upon which to develop

efficient access to storage.

The Granite System is our implementation of the Granite model, and is not only a

working system that provides useful and novel functionality, but also serves to validate

the effectiveness and feasibility of the model. The system supports both unstructured

trimesh datasets and n-dimensional rectilinear datasets. With the help of the datasource

layer, the Granite system also handles adaptive resolution for rectilinear cell and point

based data.

Our spatial prefetching technique is built upon the rod storage model, and

demonstrates very significant improvement in access to scientific datasets. Together with

a set o f convenient iterators, it not only speeds access to datasets, it also allows machines

to access data that is far too large to fit in main memory. These improvements, which

apply to both chunked and native data files, bring the extremely large datasets now being

generated in many scientific fields into the realm of tractability for researchers using

conventional equipment.

Our implementation of the Datasource layer shows remarkable performance in several

common situations, and demonstrates the effectiveness of our ideas. Datasource support

for multisource data allows the scientist to work with separate datasets as a single entity.

I l l

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Adaptive resolution support can greatly reduce required storage space and I/O costs by

reducing the resolution of regions that are not of interest to the experimenter. We also

allow both point and cell based views of rectilinear datasets.

Datasource performance has been verified with both artificial data and with real world

data such as the 39GB Visible Woman dataset, providing effective out-of-core access to

data that is far too large to fit in main memory. We have demonstrated the datasource

layer’s speed advantages, especially when spatial and threaded prefetching are used.

Using the Datasource layer also allows an experimenter to access data in the way that is

most convenient for doing the science, secure in the knowledge that disk access is being

performed efficiently.

We have validated many of the ideas presented in our model of scientific data with our

implementation of the Lattice layer . The Lattice supports rectilinear data via the

Datasource layer, and adds support for unstructured data represented as meshes of

triangles. It allows the user to access the data through a geometry, providing

approximated data values for locations that are not sample points. It also allows the user

to iterate directly over the topology, retrieving successive cells for use in rendering or

further analysis.

6.2 Future Work

The Granite system provides many exciting opportunities for future work. Many of

the lessons learned in the Datasource layer can be applied to the Lattice layer, enhancing

performance for unstructured data. In particular, the partitions already employed by the

Lattice topology can be made to fit the rod storage model. This should allow us to apply

spatial prefetching to unstructured data, including tetrahedral cell data when support for

112

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

that format is completed.

We are currently implementing a remote datasource, a new datasource that allows

transmission of data over a network. Since spatial prefetching achieves its performance

improvements through reducing latency costs, we believe this technique will be

particularly fruitful for distributed data, due to the high latencies encountered in a

networked environment. In fact, the addition of the remote datasource, coupled with

spatial prefetching, should allow us to make contributions in the emerging field of grid

computing.

Another promising area is the expansion of our toolkit of iterators. We currently have

the rectilinear iterators described in this document, and a RayCastinglterator for rendering

volumetric data. In the near future, we would like to add a slice iterator in which slices

need not only be aligned to the primary axes, but can be defined for any orientation.

Taken together, these various projects will expand the scope of Granite considerably,

adding support for more types o f data and access patterns, as well as distributed

computing. Granite has already enabled us to contribute to the field of scientific

databases, and it promises to be a solid platform on which to base future research.

113

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

APPENDIX A

G R A N I T E F O U N D A T I O N S

The Granite System uses a collection of supporting classes that are used throughout
the system to perform certain basic tasks. Many of these classes are defined in the
common package, a Java package containing classes that are used by both the Lattice and
DataSource layers of Granite. Some classes in the common package are parent classes
refined by child classes inside the Lattice and DataSource packages, while others are used
directly.

A .l Encapsulation and Performance

Since Granite is meant to be used with large datasets, maximizing performance is an
important goal. Unfortunately, we must sometimes make small compromises in design in
order to achieve this performance. For example, several classes in Granite have
constructors that may take arrays as arguments. It is much faster to use an argument
array directly in the object, rather than copying its contents to a separate internal array.
Unfortunately, using the argument directly breaks encapsulation, since it means that the
environment outside of the object has a reference to an internal data member.

Another example involves the checking of arguments for correctness. Checking may
include looking for “out of bounds” conditions, and that objects destined to receive data
have adequate space. Since Granite methods are typically implemented using other
Granite methods, it is unacceptably expensive to perform such checking with every
method call.

As a compromise, we draw a distinction between public and package access methods.
Public methods are visible to the Granite user, while package access methods are only
visible to the package programmer. That is, they can only be called from inside of their
own package. This allows us to check arguments for correctness only when the public
method is called. The public method then performs its task using only package access
methods, which perform no checking. Similarly, objects that use references to external
arrays and other argument types can only be called from within their package. This design

114

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

results in a reduced level of safety within the Granite core, but this problem can be largely
addressed with the assert construct, recently introduced in Java 1.4.

A.2 Representing Locations in Multidimensional Space

Both the Lattice and DataSource layers use a conceptual data model in which data
populates an n-dimensional space. However, the Lattice space is continuous, and is
typically represented using Java’s float primitive type. The DataSource space is discrete,
and is typically represented using Java’s int type. In either case, we require objects that
specify a single location in this n-dimensional space. The common package contains a
SpacelD class that serves as a parent class for both the DataSource IndexSpacelD and
Lattice Point classes. As of Java 1.4.2, there is nothing resembling the template
mechanism of C++, so the difference in primitive types means that relatively few
methods can be specified in this base class. However, the upcoming Java 1.5 specification
includes generics which allow the declaration of parameterized types. With this addition,
the code which is essentially duplicated in the Point and IndexSpacelD classes can be
moved down into the common package, yielding a design which is both cleaner and easier
to maintain.

Currently, the SpacelD class contains methods for setting axis values, returning the
dimensionality of the space, and cloning the object. Methods for setting axis values and
performing arithmetic operations on them must be specified in the Point and
IndexSpacelD classes, defined in the Lattice and DataSource packages. In the DataSource
package, the IndexSpacelD class adds abstract methods for getting coordinate values, and
several implemented methods for simple arithmetic operations like addition, negation, and
comparison. There is also an assign() method that is available only from inside the
DataSource package. This method can take a reference to an array of integers as an
argument, and use the array directly in the IndexSpacelD, avoiding the cost o f copying
into a separate array. In the Lattice package, the Point class has functionality essentially
identical to IndexSpaceld, but the axis values are represented using an array o f floats
instead of ints.

A.3 Representing Regions in Multidimensional Space

In addition to single locations in the index space, Granite also needs an efficient
representation of hypercubic subregions of the index space. We call such regions bounds.
The Bounds class in the common package serves as a parent class for the GBounds class
in the Lattice layer and the ISBounds class in the DataSource layer. As with SpacelD,
very few methods can be specified in this base class because of type conflicts. ISBounds
is conceptually a pair o f IndexSpacelDs denoting the lower and upper comers of the
rectangular region. The class is actually implemented using two arrays of integers, which
increases performance by reducing internal method calls. The GBounds class in the

115

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Lattice package is similar to ISBounds, except that it uses an array of floats to represent
the comers of the region.

The ISBounds and GBounds classes have a large number o f methods handling
operations such as assignment, volume, intersection, scaling, translation , splitting, slicing,
and projection. They also have boolean predicates for equality and containment, and more
esoteric concepts. For example, the Granite user can ask if a shape is a “slice” of an
ISBounds object. This predicate returns true if the shape is the same as the ISBounds in
all dimensions except one. In that remaining dimension, the shape must have smaller
extent than the ISBounds.

Lastly, stencils are yet another representation of n-dimensional space. As described in
our model, stencils are a way of denoting a disjoint set of regions within a
multidimensional space that are of interest to the user. Granite currently has a simple
stencil implementation in the DataSource package that works for regular rectilinear data.
This implementation consists of a list of ISBounds denoting regions of interest. The
stencil class allows ISBounds objects to be added to the list as new regions of interest are
discovered. Later, the list can be iterated over, returning each region in turn.

A.4 Iterators

Iterators play a crucial role in the Granite system. They are not only an important
part of the user interface, but they are used extensively in the Granite core. The two kinds
of iterators used most extensively in the DataSource implementation are ISIterator and
ISBoundsIterator. The value of an ISIterator object is always an IndexSpacelD denoting a
single location in the index space, while an ISBoundsIterator has an ISBounds value that
denotes a rectilinear subregion of the index space. In either case, it is possible to specify
an iteration that contains gaps between the iterator elements, and for ISBoundsIterator,
the bounds produced may overlap. Currently, both forms of iterator always proceed from
lowest index to highest index for any dimension. Variations such as a “zig-zag” iteration
or backwards iteration are perfectly possible, but have not yet been implemented.

In the Lattice package, GIterator and GBoundsIterator correspond closely to
ISIterator and ISBoundsIterator, yet work in the continuous geometry space.
GBoundsIterator presents some special implementation problems caused by floating
point error. Figure A .l demonstrates one possible consequence of floating point error in a
naive implementation.

Figure A.1. A GBoundsIterator problem caused by floating point error. The last shaded square
should not actually be in the iteration.

In this figure, there should only be six squares spanning the upper row of the
iteration, but because of floating point error, each square is slightly to the left of its
proper position. This error accumulates as the iteration proceeds. By the time the end of

116

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

the row is reached, an extra (shaded) square is necessary to span the space. For some
applications, this can be very undesirable behavior.

The solution to this problem is to implement the iterator so that error does not
accumulate. In addition, there are two kinds of Boundslterators in the Lattice package.
GBoundsGaplterator is meant for iterations with gaps between the blocks. In this
implementation, an integer index is computed, and then multiplied by the appropriate
dimensions to produce the correct bounds value. Since the iterator value does not depend
on a previous floating point value, accumulation of error is no longer a problem. The plain
GBoundsIterator handles iterations with no gaps between bounds. Here, the
implementation is similar, except that the upper axis value for a bounds is simply
assigned to the lower axis value for the next bounds. This ensures that there is no
possibility of a gap between bounds when none is desired, and still avoids the problem of
accumulated error.

A.5 Types

Representation of data types is an important part of working with diverse kinds of
scientific data. The Granite system supports the 10 primitive types defined in the Java
language, as well as a record type that allows the definition of compound types,
analogous to a struct in C. Users can give names to types for their own convenience, and
can specify a range of allowable values.

Perhaps the most important class in the Granite type system is the RecordDescriptor
class. This class is used in two different ways. First, it is used to describe the structure of
a compound type, denoting the names and types of fields. Second, it is used to describe
the field structure of a Datum or DataBlock object. Each field described by the
RecordDescriptor is represented by an AttributeDescriptor, which contains a field name
and type. An important part of the type specification is the storage type required. That
is, even when a type is user defined, there must be some underlying Java primitive type
that is used to represent the information both in memory and on disk.

Using its collection of AttributeDescriptors, a RecordDescriptor object can support a
large number o f methods, many of them extremely important to Granite system
performance. For example, the methods getStorageTypesQ and getByteOffsetsQ return
arrays representing the storage type and locations for fields inside a datum, and are used
when data is read from disk. These methods increase performance by taking advantage of
information precomputed in the RecordDescriptor constructor.

When handling user defined types, both the RecordDescriptor and
AttributeDescriptor classes require the assistance of the TypeTable class. This class
stores the definitions of all user defined types. When a user type is inserted, the
TypeTable object checks to see if the type name is already in use. If so, it verifies that
the old and new type definitions are structurally equivalent, issuing an error if they are
not. Once a type has been inserted into the table, it can be looked up by name, or by a

117

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

type code, which is essentially an index into the table. The TypeTable class is part o f a
larger scheme which allows a Granite user to maintain a Workspace representing a
persistent metadata environment that can be saved to disk or to a relational database such
as MySQL or PostGres.

Two remaining classes help to specify which fields are required to satisfy a query
made to a DataSource or DataBlock object. The FieldlDMapper class represents a
mapping of fields between two datums. Fields are specified using simple integers
indicating their order in the datum. Internally, the mapping is represented using two
parallel arrays of integers.

FieldlDMapper allows queries in which only a subset o f the available fields are
retrieved, and then mapped to an arbitrary location in the datum receiving the values. Of
course, with subblock queries, the datum is purely conceptual, and this mapping is
applied to an entire DataBlock.

The RecordSpec class is used in very much the same way as a FieldlDMapper, but is
somewhat more convenient, though less expressive. This class also expresses a mapping
between two datums, but here the mapping is expressed using only a single list of
integers, denoting the fields that should be extracted. These fields are then placed in the
receiving datum in the order in which they appear in the RecordSpec.

A.6 The Datum Class

Objects o f the Datum class are used to represent values at a single location in the
index space. A Datum object is implemented as an array of some primitive type such as
short, int, or float, where each element of the array represents a field of the datum. In the
common case where the fields of the datum are all of the same type, this implementation
is very efficient. If the fields are conceptually o f different types, a collection of access
methods allow values to be cast to the proper conceptual type. This is effective in many
instances, but may cause trouble when a conceptual field type cannot be represented with
complete accuracy by the Datum array. For example, the ShortDatum class internally
represents the fields as an array o f the Java short type, but also provides a getFloatQ
access method that returns a field as a float. Clearly, only a small subset of the values
representable by float are properly representable by short.

Although not yet implemented, a proposed ByteDatum class would allow any
primitive type to be extracted from an array of raw bytes. This approach solves the
problem outlined above, but introduces new costs associated with the extraction. With
data of uniform type, type conversion is done in bulk when the data is read from disk,
which greatly improves performance. With ByteDatum, conversion is performed when
data is accessed, and on vastly smaller units. For this reason, we have so far concentrated
our research on the more common uniform case.

118

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

A.7 The DataBlock Class

The DataBlock classes are used to represent a collection of data values corresponding
to some rectilinear region of index space. DataBlocks store data in arrays of some
primitive type, and allow the user to access data either by retrieving it using a Datum
object, or by returning a reference to the storage arrays themselves. The first method is
conceptually easier, but the second method is generally much faster. There are two
important kinds of DataBlock. A BasicBlock contains a single array o f a primitive type.
This alone is enough to handle datasets that consist of one type, even if there are multiple
fields to the data. The CompositeBlock is used when a dataset consists of multiple
primitive types. A CompositeBlock actually contains references to two or more
BasicBlocks, one for each unique primitive type in the dataset. When asked for data, the
CompositeBlock is responsible for determining which of its component BasicBlocks are
relevant, and then translating the query appropriately for each component.

DataBlock queries fall into two types. The datum query takes a IndexSpacelD as an
argument, and is satisfied by the return of the single datum found at the corresponding
location in the DataBlock’s index space. The Datum itself is usually passed by reference
and the proper values filled in, but there is also a form of the datum query that will return
a new datum. The pass by reference form is preferred, since it can be used repeatedly
without additional load due to memory allocation and garbage collection.

The subblock query takes an ISBounds as an argument, and is satisfied by the return
of a DataBlock filled with the data found at the specified region of the index space. As
with the datum query, it is better to use the form which takes a DataBlock as an
argument rather than the form which returns a newly constructed data block. For both
subblock and datum queries, it is also possible to specify that a subset of the available
datum fields should be returned, using either the RecordSpec or FieldlDMapper classes
described in section A.5.

119

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

APPENDIX B

SCIENTIFIC DATABASES

B .l Scientific Databases

It is the job of the scientific investigator to develop hypotheses that explain the
natural world. An important part of a scientist’s work is to collect data either from the
real world or from simulation, and compare this data with values predicted by the
hypothesis. Since it is important not to contaminate the collected data in any way,
scientific datasets are not usually modified once they have been loaded into the database
system. Data may be viewed in different ways, but the values themselves are not
changed, although new derived datasets are often created. In contrast, an important part of
traditional databases is the update operation, which changes existing values.

Defining scientific data, and therefore scientific databases, is not straightforward. It is
perhaps wisest to say that whether a given dataset is “scientific” depends upon how it is
being used. For example, information on student grades maintained by a university
registrar is not scientific data. However, if that same information is used as part of a
sociological study of the effect of family income on academic performance, then it may
be. Perhaps we can say that whenever data is being used to support or refute a
hypothesis, the data is being used scientifically. This can’t be the whole story, though,
since a scientist may not always have a particular hypothesis in mind when examining a
dataset. Forming a hypothesis may be the very reason for the examination. However,

120

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

something does distinguish the ways a registrar and sociologist use data. The registrar
already knows all relevant relationships between items in the database. In contrast, the
point o f the sociologist’s inquiry is to find new relationships within the data. Therefore,
perhaps we can say that data is scientific when not all the relevant relationships within
the data are known.

This view of scientific data resonates well with the opinions of other researchers. For
example, Pfaltz et al. [PFALTZ98] list three features of scientific data, in addition to large
size:

1. In the scientific database both the entities and the relationships between them

are more complex than those found in traditional databases.

2. Scientific databases are not usually transaction oriented, since observations are

almost never updated.

3. Retrieval of data is often “volumetric”.

To point one, we would add that the relationships are not only complex, they are
often initially unknown. The database should assist the researcher in their discovery. As
new relationships are discovered they are stored in the database as metadata, the topic of
the next few sections. Pfaltz’s third point is addressed beginning with section 2.4, where
we discuss the notion of dimensional data.

B.2 Metadata

While users of traditional databases are interested in updating and adding to existing
data, the scientist is often more interested in adding metadata to the system. Defining
metadata is not a simple task, and the meaning of the term tends to vary from field to
field. Very generally, metadata is information about data. Cathro [CATHR097] comes
from the field of library science, and is particularly concerned with online retrieval of
information. He claims that “an element of metadata describes an information resource, or
helps provide access to an information resource.” This definition is clearly geared toward
locating material on the World Wide Web, or perhaps an online library catalog. However,
he points out that metadata can also be considered data in its own right. He gives the
example of a film review, which on one level is a description of an information resource
(the film), and on another level is a resource in itself with an author and perhaps even a
copyright. Even though Cathro is writing about library science, he points out the central
problem with any definition of metadata: whether a piece of information is data or
metadata is not a property o f the information itself, rather, it depends upon how we are
using or viewing that information at the time.

121

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

B.2.1 Kinds of Metadata

Within the metadata category, there are still further distinctions to be made. Structural
or syntactic metadata describes the types and layout of information in a database,
whereas semantic metadata describes meaning and relationships within the data
[BERG93,KA093], Since all structural metadata is known even before the database is
populated with data, we say it can be known a priori. Database designers refer to
structural metadata as a schema. In traditional databases, the semantic metadata is also
known a priori. However, the same cannot be said of a scientific database. Indeed, as part
of the process of hypothesis justification, the relationships between different elements of
the database must be discovered.

Depending on their application, different researchers have slightly different ideas
about what constitutes metadata and how a system should use it. This section reviews
several researchers thoughts on the metadata in different areas. W e’ve chosen to discuss
metadata issues in data mining, scientific data analysis, and Geographical Information
Systems (GIS) since these areas all have some relevance to scientific databases.

B..2.1.1 Metadata fo r Database Mining

Cleary et al. [CLEARY96] discuss their ideas on metadata within the context of
database mining. They divide metadata into three main groups. Data type information,
relational metadata, and statistical metadata.

Data type information indicates whether an attribute is real, integer, string, data, etc.
For continuous data (represented with a real), the data type information must also
indicate whether the type contains a zero point, is linear, and any other information that
defines the type. Cleary claims that continuous data types are always ordinal and
numeric. Such factors determine what kinds of operations can be performed on the type,
and what metadata can be collected for data of that type. For example, if a type does not
have a zero point, the absolute value operation is meaningless. If a type is not linear, it is
difficult to meaningfully compute averages and standard deviations. Relational operators
like less than or greater than can only be used on ordinal data.

As an example of continuous data type information, consider an attribute of type
radians. Such an attribute has a zero point, but is circular in structure, rather than linear.
It could be argued that describing a value as being in radians is metadata, and describing
radians as being circular is meta-metadata. Common usage just lumps everything except
the data value into the metadata category, however.

Discrete data types are even more complicated to describe because we can not assume
very much about them. Such data may or may not be ordered, linear, or have a zero point.
It may be numeric, alphabetic, or enumerated. Cleary points out that a discrete type
allows us to group data according to that type. For example, since age (in years) is
discrete, we could group vegetarians by age. Grouping according to a continuous attribute
is not likely to be useful, since very few entities have exactly the same value for that

122

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

attribute.
Cleary warns that enumerated data types are very easy to mishandle, especially in an

automated system. Enumerated data is represented with integers, but is not really ordinal
or numeric. For example, he encodes three colors as {red=l,blue=2,green=3}. It would be
inappropriate to say that red+ blue=green, or that red<blue. The underlying reason is that
the information is categorical, i.e., it identifies a category. The integer codes are used only
for internal representation, and are not meant to be treated as numeric data.

The second type of metadata Cleary considers is relational metadata, which specifies
a relationship between two or more attributes. These relationships are divided into three
kinds: the meaning, causal, and functional relationships.

A meaning relationship between two attributes x and y indicates that the relationship
only makes sense when applied to both x and y. Cleary uses the example of Milk
Production, an attribute which measures how much milk a cow produces. This attribute
has a meaning relationship with cow-identifier, herd-identifier, and farmer-identifier, and
no other attributes.

A causal relationship indicates that some x causes y. Such relationships are especially
important for Cleary, since he is concerned with automated rule generation. Such a
relationship could also be important for a scientific database.

A functional relationship exists between two attributes if one attribute determines the
other. For example, in an employee database, id_number implies name, since if we know
an employee’s identification number, we know his or her name. It is important for
automated systems to be aware of functional relationships so that they do not waste time
generating relationships that are already known, or are redundant.

The third kind of metadata that Cleary describes, statistical metadata is used to help
“massage” data for analysis. For example, information that is used to identify and remove
outliers from a dataset is statistical metadata. Also, it is common to classify data according
to some attribute. A typical example would be the division o f homeowners into low-
income, middle-income, and high-income classes. Many systems require the attribute
used for this classification to be discrete. If the classification attribute is actually
continuous, it must be discretized using statistical distribution and standard deviation
information to put values into different “bins”. If the statistical information can be stored
as metadata, the process of discretization can be accelerated.

B..2.1.2 Metadata fo r Scientific Data Analysis

Kapetanios et al. [KAPET95] describe the use of metadata in a system meant to
analyze scientific data. They are particularly interested in using scientific databases to
support the scientific experimental process, and have developed a taxonomy of scientific
metadata. Like other researchers, they lament the difficulty of rigorously defining
metadata, but quote from Tsichritzis [TSICH77]:

It’s important to realize the distinction between data and information. Data are facts

123

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

collected from observations or measurements. Information is the meaningful

interpretation and correlation o f data that allows one to make decisions.

Kapetanios et al. conclude that metadata therefore lies somewhere between data and
information. More specifically, they consider metadata to be “data or information that is
used to provide information going beyond data or to address information related to source
data.”

Some metadata is already known at the time the data is gathered. For example,
Cleary’s data type information can be known a priori, before an experiment is conducted.
Other metadata is actually derived from an analysis of the data. This kind of metadata is
particularly important in scientific applications, since it represents new knowledge.
Kapetanios divides metadata for scientific applications into nine groups. The first four are
a priori definable and are listed below:

• M e a s u r e m e n t s a n d o b s e r v a t io n s — refer to instances of observed data;

• T r a n s fo r m a t io n p r o c e s s e s — describe processes that transform data in some

way;

• G e n e r a t io n h is to r ie s — describes how data was derived, specifying the

original data and the transformations used; and

• B a c k g r o u n d k n o w le d g e — a set of beliefs or knowledge about the scientific

environment, other than those under study.

The next two are not a priori definable, and must be generated during exploration; they

represent new scientific knowledge.

• E x p e r im e n t a l L a w s— despite the name, these are the relationships between

observed variables inferred from the experimental data; and

• A n o m a l ie s — these are experimental laws that appear to contradict a theory

or hypothesis.

Lastly, the following three are partly definable a priori. That is, unlike the previous two,

it’s possible to partly or even fully specify them before the experiment begins, depending

124

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

upon the particular circumstances. However, they may be updated or modified after

experimental results are obtained.

• T a x o n o m ie s — used to organize concepts into a hierarchy or some other

partial ordering. This information is used to guide the extraction of new

knowledge.

• T h e o r ie s /h y p o t h e s e s — A scientist’s hypothesis regarding the phenomenon

under study. This differs from experimental laws because a hypothesis may refer

to entities or concepts not contained in the database.

• E x p e r im e n t M o d e l— The conditions that each run of an experiment is

conducted under. Weather, temperature or humidity are all examples of this kind

of data.

Kapetanios et al. see metadata as performing three functions: data management,
access, and analysis. Since a scientific database should have strong support for data access
and analysis functions, Kapetanios advocates the use of a “metadata database”— a
database designed specifically for the storage and use of metadata. Such a database should
provide management facilities appropriate for the metadata (knowledge structures) and
knowledge representation formalisms. It must aid data access through support of
metadata queries using extracted knowledge to help find relevant datasets. Data analysis is
a crucial part of using extracted knowledge in this way.

This metadata database is organized as a network of metadata servers and processors.
Each database server holds one or more of the metadata types listed above. Any pair of
servers is connected through at least one knowledge processor. Correspondingly, the
knowledge processors provide a conduit for metadata between servers, and may also
modify metadata in certain cases.

The Measurements and Observations Server (MOS) is used to store a time-series
representation of data. The authors feel that an ordinary Relational DataBase
Management System (RDBMS) is sufficient for this fairly straightforward task, so the
server represents knowledge as relations.

The other servers are not quite so simple, and must use a more complicated
underlying database. The EXPER and PETRI servers both use an Object Oriented
DataBase (OODB) to represent their information. The EXPER server stores

125

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

transformation processes and taxonomies, both of which would be difficult in an
RDBMS. Taxonomies are used to categorize data, and must also be updated in response
to new knowledge. PETRI stores generation histories as an extendedPredicate-Transition
Network, a method related to Petri nets. In this network data objects are the nodes and
transformation process objects form the transitions or arcs.

The EXTERN server stores information which is external to the experiment itself, but
is still relevant to it. In particular, it stores background knowledge and the experimental
model information. The PHEN (phenomenon) server stores experimental law metadata,
along with anomalies and hypotheses. The information on this server is crucial to the
scientific process, since it is the researcher’s goal to justify a hypothesis with the
relationships established by the experiment (experimental laws). Anomalies are
relationships that appear to contradict a hypothesis, so they play an important role in
confirming or disproving an hypothesis or theory. Kapetanios et a l have chosen to use a
semantic network to represent the complex interactions between experimental law,
anomalies and hypotheses. Semantic networks are commonly used in natural language
processing, and have an expressive richness that is lacking in more straightforward logic
based methods.

The authors define this justification process as a narrative that connects a particular
hypothesis to experimental laws by a chain of appropriate inferences. They also connect
experimental laws to observations from which high level data have been derived. If an
anomaly appears to contradict a hypothesis, it must be explained through external
information like the experimental model or background information, or the hypothesis
itself must be discarded in favor of one that is not disproved by the anomaly.

B..2.1.3 Spatial Data and Its Metadata

Bicking et al. [BICK96] present a model for dynamically integrating spatial data with
its metadata. They are particularly concerned with geographical information, which they
refer to as geodata. Geographical information systems (GIS) is an area where the
management of spatial data and metadata is of paramount importance, so it is valuable to
examine ideas in the field

The model is geared toward preparing information about geodata for interactive use on
the Internet. Toward this end, their model attempts to integrate information about geodata
into a spatial data model and dynamically manage both data and metadata with the same
database. Their approach allows browsing and searching with either textual or spatial
information. Text searching is valuable for locating a site with relevant data, while spatial
browsing is useful for refining the area o f interest (AOI), and for giving an easy and
intuitive indication of how relevant the geodata really is for the user’s purposes.

The centerpiece of the authors’ design is the metadata catalog, which describes the
collections of geodata held by an organization. They use the Open Geodata
Interoperability Specification (OGIS) Services Specification Model, a standard developed
by the GIS community. In addition to recording the geographical location that a dataset

126

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

refers to, the catalog stores summary information like the name and size of a dataset, its
scale, and the projection used. The catalog also contains indices, which facilitate searching
by mapping a user view to the catalog content. For example, such an index could be a
table of contents (TOC), subject/author index, keyword index, or a combination. The
authors decided on a keyword index, spatial index and a TOC. Their TOC presents
information hierarchically in several ways. The authors give three examples:

• A subject oriented view with broad top-level categories such as transportation,

hydrography, vegetation, etc., which are further divided into subcategories. The

geodata content is organized by this hierarchy of subjects.

• A structure oriented view where a database is viewed as a container for

datasets. Datasets are viewed as a collection of features along with their attributes

and properties.

• An Organization oriented view that reflects the hierarchical structure of an

organization or company. That is, the various departments o f a company would

have relevant data attached to them.

Accessing data through the catalog can be done both spatially and textually, with
feedback between the two methods. For example, the TOC might be searched using
keywords to get a list of matching map URLs. The user then selects a particular map, and
is able to narrow the AOI by selecting a region with the mouse. As a region is selected,
the TOC data is updated to display the metadata for that region. It is here that the
authors’ view of spatial metadata becomes apparent. For Bicking et al. the distinction
between spatial and ordinary metadata is that spatial metadata refers to a point or region
on the earth’s surface. It is interesting to note that this information is displayed textually,
rather than spatially.

B.3 Discovering New Relationships: Data Mining and Knowledge
Discovery

In recent years, the need to extract knowledge automatically from very large databases
has grown increasingly acute. In response, the closely related fields of knowledge
discovery in databases (KDD) and data mining have developed processes and algorithms
that attempt to intelligently extract interesting and useful information, i.e. knowledge,
from vast amounts of raw data. Such techniques are used in various application domains,
ranging from department stores to catalogs of stellar objects. KDD and data mining are

127

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

closely related to scientific databases since they are concerned with analyzing raw data to
extract new knowledge. The principle difference between them is that scientific databases
are geared toward justifying an hypothesis, which is not necessarily true for KDD. For
example, Wal-Mart has one of the world’s largest databases of customer transactions,
with over 20 million transactions being handled per day [BABC94], Wal-Mart just wants
to know to whom they should mail their next advertising circular; they aren’t trying to
prove an hypothesis. On the other hand the SKICAT system, a catalog o f stars and
galaxies, is used by astronomers who presumably are testing new theories and hypotheses
[FDW96], Yet, both systems rely heavily on the techniques found in KDD. Fayyad et al.
[FAYYA96] give an overview of the fields of data mining and KDD. The next several
subsections summarize this overview.

There are a number of other fields related to or overlapping with KDD. Machine
learning and pattern recognition also attempt to extract patterns from data, but with
much less human interaction than KDD. Machine discovery is closer to scientific
databases since it attempts to discover empirical laws or relationships from experimental
observations [SHRAG90]. Data warehousing refers to a technique used in MIS in which
records of customer transactions are collected and processed for online access. On-line
Analytical Processing (OLAP) is often used in conjunction with data warehouses to
provide multidimensional summaries of transaction data.

B.3.1 KDD vs. Data Mining

There is potential for confusion about the distinction between KDD and data mining.
Fayyad et al., claim that KDD is the process of discovering useful knowledge within data,
while data mining is simply the application of algorithms for extracting patterns from
data. Data mining is a class o f methods used by the KDD process. KDD requires that the
patterns found during data mining be “valid, novel, potentially useful, and ultimately
understandable.” Fayyad et al. define these several terms in detail, leading toward a
definition of interestingness:

• Data: a set o f facts F.

• Pattern: An expression E in some language L describing facts in a subset Fe of

F. E is called a pattern if it is simpler than the enumeration of all facts in Fe.

• Validity: The certainty that a pattern is valid when applied to new data.

Certainty is defined as a function C(E,F) that maps a pattern E in dataset F to a

fully or partially ordered measurement space called Me.

128

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

• Novelty: Refers to whether a pattern represents new information. For example,

if a pattern is just a rephrasing of existing patterns, it is not novel. The authors

assume that novelty can be represented as a function N(E,F) that returns either a

boolean or perhaps a continuous value.

• Utility. If a pattern is useful, then it can be acted upon in some way. Utility is

measured by a function U(E,F) that maps a pattern E in dataset F to a fully or

partially ordered measurement space called Mu.

• Understandability: Patterns should be understandable by humans. The authors

point out that this property is difficult to measure. (Presumably, it varies

according to the human.) However, the authors suggest that the simplicity of a

pattern is an indication of its understandability. Accordingly, they propose a

simplicity function S(E,F) that maps a pattern E in dataset F to a fully or partially

ordered measurement space called Ms.

The very important concept of interestingness is defined by the authors to be a

combination of validity, novelty, utility, and simplicity. Some KDD systems use a value

i=I(E,F,C,N,U,S) as a metric of a pattern’s value. Other systems implicitly define

interestingness by ranking the discovered patterns in some order. In either case, the notion

of interestingness ultimately requires human judgment since several of its constituent

functions cannot be objectively defined. Despite its subjective nature, interestingness is

important because it plays a prime role in the definition of knowledge proposed by

Fayyad, et al.:

Knowledge: A pattern EL is called knowledge if for some user-specified threshold

iGMi, I(E,F,C,N,U,S)>/.

In light of these new concepts, Fayyad et al. offer the following definition:

129

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

KDD Process is the process o f using data mining methods (algorithms) to extract

(identify) what is deemed knowledge according to the specifications of measures and

thresholds, using the database F along with any required preprocessing, subsampling,

and transformations o f F.

They also give a list of the basic steps involved in this process, emphasizing the

interactive nature of KDD when compared to other more Al-oriented techniques like

machine learning:

1. Developing a pool of expert knowledge and end-user goals.

2. Choosing the data for which KDD is to be performed.

3. Data cleaning and preprocessing: e.g. handling noise and missing data.

4. Data reduction and projection: reducing the number of attributes to the

minimum necessary to meet the end-user goals.

5. Choosing the data mining task: deciding whether the end-user goals can be met

by classification, regression, clustering, etc.

6. Choosing the data mining algorithms: selecting one or more methods to be used

to implement the task chosen in step 5.

7. Data Mining: searching for patterns or rules within the data. Performing steps

1-6 well can very positively affect the success of this step.

8. Pattern interpretation. The user examines the results of the preceding steps,

and may decide to repeat them if necessary.

9. Consolidating discovered knowledge: incorporating new knowledge into the

database. This includes accounting for conflicts with previously acquired

knowledge.

Note that the KDD process may contain loops between any two of these steps, and may

involve several iterations of any subset o f this list. Most KDD research has been

130

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

concerned with step 7, data mining, but Fayyad et al. are firm in their conviction that all

nine steps must be carefully addressed in order for KDD to succeed in practice.

B.3.2 Data Mining

Data mining involves fitting models to, or determining patterns from observed data. A
pattern is an instantiation of a model. In other words, a model can be viewed as a sort of
template for a model. For example, the expression y=3x+5 might be a pattern fitting the
model y=Ax+B. Fayyad et al. give a definition of data mining:

Data Mining is a step in the KDD process consisting of particular data mining

algorithms that, under some acceptable computational efficiency limitations, produces a

particular enumeration of patterns Ej over F.

There are two kinds of models commonly used. A statistical model allows for some

nondeterminism in the data, i.e. it allows a little “slack”. So, for the model y=Ax+B, a

statistical model might say that B is a random variable, with stated mean and standard

deviation. In contrast, the logical approach to model specification allows no such

uncertainty. However, notice that in either case, the language L that a model is expressed

in may contain relational operators like < and >, allowing greater flexibility in fitting

models to data. The flexibility of the statistical approach should be very helpful in dealing

with error. For example, error introduced by measuring instruments or a data

representation could be modeled as a random variable so that an appropriate pattern can

still be found.

B.3.2.1 Goals o f Data Mining

The primary goals of data mining are to describe the existing data and to predict the
behavior or characteristics of future data of the same kind. Description entails finding
patterns within the data that are human understandable. For example, in a bank loan
dataset, a clearly understandable pattern might be: “If an individual’s income is less than
$20,000, then they will default on the loan.” The goal of prediction can be met by
discovering patterns with a high degree of certainty, as measured by the function

131

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

c=C(E,F). If existing data matches the pattern with few exceptions, it is more likely that
future data will also behave in the same manner.

The authors provide a list of the tasks used to meet the primary goals provided above:

• Classification is the process of assigning categories to features or trends within

the data. Identification of interesting features within the data is a form of

classification.

• Regression is the development of a function that approximates the

mathematical relationship between two numerical attributes. For example,

regression could be used to determine the relationship between the infrared

reflectivity of a forest from satellite images to the percentage of deciduous trees.

• Clustering attempts to discern groupings within the data. For example, in a

financial database, we might notice that various groups of stocks tend to behave

similarly. We might divide securities into three groups, depending on which group

they most closely resemble. Notice that clustering is not the same as classification,

where categories are usually defined by the investigator. Clustering attempts to

extract categories from the data itself.

• Summarization is the process of finding a compact representation for data.

This may include simple statistics like mean and standard deviation, or may

employ more complex methods like regression, described above. Summarization

often plays an important role in the visualization and interactive exploration of a

dataset.

• Dependency Modeling is the process o f modeling dependencies between

variables. The model may consist of a graph G=(V,E) in which each node

represents a variable, and each edge represents a dependency. The edges may be

132

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

weighted to represent the strength of the dependency.

• Change and Deviation Detection looks for significant changes in the data from

previous values, or for data that falls outside of some normal range.

We should point out that several of these processes are important in scientific
databases. Classification is closely related to feature identification, an important tool in
GIS and other scientific systems. Clustering and regression both have clear scientific
applications, and summarization is one of the goals of multiresolution data sets. O f
course, finding relationships through processes like dependency modeling is an important
part o f exploratory scientific data analysis.

B.3.2.2 Data Mining Algorithms

Fayyad et al. give three components for any data mining algorithm: model
representation, model evaluation, and search. The authors do not claim that this division
is perfect, but rather offer it as a convenient way to understand the basic components of
data mining algorithms.

A model is represented in some language L used to describe potential patterns. If this
language is too limited, no amount of training data or processing will produce an accurate
model for the data. For example, consider a model consisting only of rules like “if A.x>n
then Q”, where Q is some claim about the data. Such rules can only model patterns that
consist o f a threshold value along a dimension, in this case the x axis. If the dividing line
between Q and not Q were y=x, this model would be unable to express this relationship.

The danger in making a model language too expressive and powerful is that the training
data will be overfitted. This means that the model parameters will be too specifically
tailored to the training example, so that new data fits the model poorly. If the model isn’t
too expressive, it will always be a somewhat loose fit making this problem much less
severe.

Model evaluation measures how well a pattern, consisting of a model and its
parameters, meets the requirements of the KDD process. Since validity is a metric of how
well a pattern will match (and therefore predict) future data, it is an important evaluation
criterion. The descriptive power of the model must also be evaluated, using a combination
o f certainty, novelty, utility, and understandability, among others.

Search methods can be broken into two levels. Model search looks for the model that
best fits the data. Once a model has been chosen, parameter search looks for the model
parameter values that provide the best fit for the data. Essentially, the model search
process iterates over models and then invokes the parameter search process for each
model. Since the space of possible models and parameters is infinite, exhaustive search is

133

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

not possible, so various heuristics must be used.

B.3.2.3 Data Mining Methods

Perhaps the simplest data mining method uses decision trees and rules with single
variable splits. Each rule is of the form “if A.x>n then Q”, where x is an attribute of the

data, and Q is some statement about the data. Such rules divide the data domain into

1600 160Q

Accept Accep

SAT
Score

SAT
Score

20 ^ "
• aracMated
» didn’t graduate

20 £ -
icftiated

2'0
GPA

4.0 2.0
GPA

4.0

didn’t
graduate

Figure B.1. Two rule based approaches
two parts using a plane that is parallel to an axis. This method is easily understood by
humans, but is rather limited in power, as we saw before. An example of this approach is
shown in figure B .l.a. A rule for accepting or rejecting students applying to a university
is based on whether students with similar SAT scores and GPAs were able to graduate.
Extending the model, as in figure B.l.b, to allow planes of arbitrary orientation increases
the expressive power at the expense of understandability.

There is a family of nonlinear methods which attempt to match the data using linear
and nonlinear combinations of a set of basis functions. This allows distinctions to be
made which do not fall along straight lines. For example, a classification of the data into
two or more groups might be done using a spline or other polynomial which describes an
elaborate curve through the data domain. Also in this family are feedforward neural
network methods, which use neural networks to choose the parameters of the model,
which could be the coefficients for a spline. An example is shown in figure B.2.

134

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 DUU
;! O ;

::; i •: j : ;<? j :'

Accept
• ■

SAT Score
: : : f : : : :6: :; ■.

■ ■

• -
6 ■! • . o •

•

2° j
■ qradJcitec
» didn’t grac

----Ay.............

■.w
Q

v.tSv

............• ...

' 2.'c
uate

) 1 4.0
\

Figure B.2 A spline based approach
Example based methods are fairly simple in concept. The idea is to use existing data

points to help classify and predict the properties of new data. That is, the properties of a
new datapoint are taken to be the same as the properties of its nearest neighbor in the
existing dataset. Finding the nearest neighbor requires the existence of a distance measure,
which is not always easy especially with nominal or categorical data.

Probabilistic Graphical Dependency Models use a graph structure to represent the
probability of a dependency between any two variates. The method arose out of AI work
with expert systems in which experts set the probabilities according to their knowledge of
the field. KDD researchers have focused on extracting values for these probabilities
directly from the data during the model search process. Although this work is still
experimental, its graphical structure should allow for clear visualization and
understandability.

Relational learning models use first-order logic instead of the propositional logic of
decision trees. Since first-order logic (e.g., Horn Clauses) is more expressive, relational
learning models are able to succeed in situations where decision trees fail. For example, we
have seen that a relation like y=x can cause trouble for decision trees, but it is easily
handled by relational learning models. On the other hand, such models incur a considerable
cost during search, and it can be difficult for humans to specify effective models. Shen et
al. [SHEN96] describe a system that automatically develops models (they use the term
metapatterns) without requiring the user to specify whether particular data items are
positive or negative examples of the pattern.

B.4 Scientific Data

At the beginning of section two, we claim that in order to determine whether data is
scientific, we must examine the way in which the data is used. Specifically, if the data is
used to develop and test a hypothesis, we say the data is scientific data. Although this
definition makes some useful implications about what kinds of operations a scientific

135

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

database should support, we still require a more precise model o f scientific data. The
remainder of this subsection presents a useful model of scientific data, and then continue
by offering some useful classifications.

B.4.1 Data As a Function

A scientific database should be able to represent or model scientific data gathered
either from the real world, or from simulation. In other words, a set of scientific data is a
collection of sample values that represents some “natural” phenomenon [HIBB94],
Hibbard and Kao [HIBB95] point out that when the phenomenon is measured in a
continuous value space, the computer can never represent a data value without some
error. One solution to this problem is to model the sample points as sets of points
consisting of all real values within the error bound of the sample value.

We refer to the function (phenomenon) being sampled as a function (j) defined over a
domain D. Note that D can be of arbitrary shape, although it is often a polytope
[CIGN097], The dataset consists of a sampling of (|) taken at a finite set of points A E D.
A mesh consisting of the points of A along with connecting edges generally spans the
domain D. After Cignoni et al. [CIGN097], we refer to this mesh as T. Cignoni also
postulates a function/ which interpolates values of (j) for domain points not in A.
Characterizing/as an interpolating function may be too strict, since there may be useful
approximating functions that do not interpolate. In any case, the mesh assists the
approximating function, since edges of the mesh connect points, and also form regions
within which values can be approximated or interpolated.

Notice that in order for this model to be useful, the domain D must be defined over 1
or more dimensions. For example, in 3D Cartesian space these dimensions would
correspond to the x, y, and z axes.

B.4.2 Dimensional Data

As with metadata, opinions on what constitutes a dimension, and therefore
dimensional data, varies from field to field. The OLAP community has a fairly
specialized view. The OLAP Glossary offers the following definition [OLAP]:

A dimension is a structural attribute o f a cube that is a list o f members, all o f which

are o f a similar type in the user's perception of the data. For example, all months,

quarters, years, etc., make up a time dimension; likewise all cities, regions, countries,

etc., make up a geography dimension. ...Dimensions offer a very concise, intuitive way

o f organizing and selecting data for retrieval, exploration and analysis.

The same source defines a cube as being synonymous with a multidimensional array,

136

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

which they essentially define as “a group of data cells arranged by the dimensions o f the

data.“ Notice that such a cube could actually have many more than three dimensions.

That is, it could be a hypercube of arbitrary dimension, where each dimension is

(presumably) orthogonal to the others.

The feature that really distinguishes the OLAP idea of dimension from other
definitions is the way they divide a dimension into a hierarchy, as they demonstrate
above with time and geography. Also, there is considerable freedom in the kinds of
information that can be used for a dimension. Categorical or nominal attributes are often
used as dimensions in OLAP. In contrast, the dimensions of a scientific database require
ordinal information at the very least; most systems assume the dimensions are metric and
continuous. To be precise, if an attribute is metric its value space must have a distance
measure that meets the following conditions [KA097]:

Let d be a distance function on X (the value space) and V p,q,r EX:

1. </(p ,p)=o

2. d(p,q)<d(p,r)+d(r,q)

3. d(p,q)=d(q,p)

4. J(p>q)=o => p=q

We focus our research on data that can be meaningfully represented in a continuous k-
dimensional data space. Practically speaking, if one or more independent attributes of the
data can be mapped to the set of real numbers, then the data is dimensional for our
purposes. Note that attributes that are essentially integers can still be represented in 9L
Using a continuous representation allows interpolation even with integral attributes. In
the event that a researcher wishes to use non-metric data as a dimension in a scientific
database, Kao [KA097] has developed techniques for imposing a metric on data that
would otherwise be considered categorical or nominal.

It is not necessary for all attributes to be dimensional. If we view the data as a
function, some of the dimensional attributes define the domain o f this function, and the
remaining attributes define the range. Our function therefore maps any point in the
domain defined by the dimensions to a particular range value. Choosing which attributes
should be used as dimensions is up to the researcher using the system, and can be an
important part of the data exploration process. We call each possible combination of
dimensions a view of the data, a notion similar to the “view” found in traditional
databases. So, for data with m attributes, k of which are dimensional, there are 2k-l

137

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

possible views. Each view affords a different way of looking at the same data.
A natural example of dimensional data is spatial data such as satellite images and fluid

flow datasets. Here, the data represents an actual space. However, it is possible for a
dataset to be dimensional without being spatial. For example, data from a Greenland ice
core sample might contain readings for calcium, nitrogen, and carbon concentrations at
different times in the Earth’s history. We can represent this data dimensionally, but as it
does not correspond to a real space, it is not spatial. However, it may be very beneficial
to visualize the data as if it were spatial, since humans find this representation familiar
and easy to grasp. For this reason, we often use the word “spatial” in this document, even
when referring to data which does not represent a physical space. Furthermore, it may be
convenient to treat a set of attributes as if they are dimensional attributes even though
they may not satisfy all the conditions for dimensional data. In particular, we often don't
know exactly which attributes are independent of each other, but we might want to
assume they are independent for exploration purposes with the goal of either validating or
disproving that assumption.

An example

In a relational database, data is stored in tables, which are essentially lists of tuples.
Each tuple may consist of one or more attributes or fields. For example, each tuple of a
table for employees might contain values for the fields name, id number, salary, total
sales, and travel expenses. We can view this table as a kind of function that relates the
different field values. For this reason, tables like the one shown in figure B.3 are
sometimes called relations.

Name
Bill
Bob

ID number
123
567

S a lary
30000
50000

Total Sales
200000
157000

Travel Expenses
2000
4000

Jane 876 60000 259000 3000

Figure B.3

It is possible to take this notion of treating data as a function even further by
designating axes as in a Cartesian plot. For example, if total sales and salary are chosen as
axes, each tuple would correspond to a point in the plane defined by the axes.

138

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3000
00 ■

JaneBill
123 876

00
Total
Sales

2000 $200
0

$300
,0

ii Bob
567

1000
00

$400
0

0
50,00
Salary

Figure B.4. A dimensional view of Figure B.3

These points should each have attributes name, id number, and travel expenses, as seen in
figure B.4. We can say that the data in figure B.4 has been represented dimensionally,
where salary and total sales are the dimensions. O f course, we are not restricted to just
two dimensions. We could make a three dimensional graph by using travel expenses as the
third dimension. Alternatively, total sales could take the role a dimension instead of
salary, yielding a different two dimensional graph. However, it would not be sensible to
use name or id number as dimensions, since these are nominal attributes. That is, these
attributes just serve as names, and their value sets do not have orderings associated with
them. In contrast, the other attributes are metric, since they have an associated distance
measure and fulfill the conditions listed previously. Here, the distance measure is just the
difference in the dollar amounts. Since their value sets have an implicit ordering, these
attributes are also ordinal.

B.4.3 Regular and Irregular Data

In a two dimensional regular dataset, the points lie at regular intervals within the
dimensional space, defining rectangles (2D) or hexahedrons (3D) of equal size and shape.
This kind of data can be easily represented with a straightforward array, so many
algorithms for the manipulation of regular data exist. If we allow the spacing of steps
along the axes to vary, we have a perimeter lattice[SCVT], In addition to the array holding
the data, perimeter lattices require an array for each dimension holding the steps along the
axis.

In addition to the placement of points in physical or geometric space, it is also
important to know the topology of the data [KA097], The topology is usually described
as a graph containing nodes and edges, for which nodes represent data points and edges
between them represent an adjacency relationship. Some authors use the term mesh or
grid to describe this graph [CIGNO97,SPER90].

Sometimes the arrangement of sample points in physical space is not regular, but

139

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

curvilinear. For example, a fluid flow simulation of air velocities over the top surface of
an airplane wing might produce samples that lie in concentric curves echoing the shape of
the wing. However a regular grid can be lifted (mapped) to the physical space to provide a
dataset that is regular in computational space [CIGN097],

On the other hand, irregular datasets consist o f data points that are not distributed in
a regular fashion. Cignoni [CIGN097], claims that the term irregular applies only to data
that is not regular and has a mesh that is known in advance. He uses the term scattered
dataset to refer to data that has no mesh, so that one must be constructed from the data.
In either case, an array based representation is very unlikely to be effective. However, a
mesh of triangles (trimesh) can be constructed that covers the dataset using a process
called Delaunay Triangulation. This method relies on two other concepts, Dirichlet
Tessellation and Voronoi Diagrams [LATTU95]. In 1850, Dirichlet devised a way to
divide the plane populated with a set of points P={pi...pk} into regions such that each
region Ri contains only points that are closest to pi. These regions, known as Voronoi
Regions,are convex polygons covering the plane. If we take every pair of points that lie in
adjacent regions and connect them with an edge, the resulting graph is the Delaunay
triangulation: a mesh of triangles spanning the entire set of points. Figure B.5 shows the
relationship between Voronoi regions and the Delaunay triangulation. Notice that the
same technique can be extended into three dimensions by using planes instead of lines to
define the Voronoi regions (polyhedra), yielding a Delaunay tetrahedrization in which
tetrahedra instead of triangles span the dataset. This method is very useful for irregular
volumetric datasets. Indeed, there is no theoretical reason why the technique couldn’t be
extended to an arbitrary number of dimensions.

B.4.4 Point and Region Based Data

Another important distinction is between point and region based data. In region based
data, each data value represents a measurable subset of the domain. For example, if a
regular dataset represents 1 square mile, and contains 100 data values, each value should
represent .01 square miles. In contrast the values o f point based data have no extent; they
represent an infinitesimal point of the domain.

An important kind of region based data is cell based data. For two-dimensional cell
data, each cell is made up of four points, forming the comers of a rectangle. Any value

140

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Voronoi Regions

 Delaunay Triangulation

Figure B.5

within the rectangle can be interpolated from the comers. Naturally, this technique can be
extended to an arbitrary number of dimensions.

A similar interpolation method is used with Delaunay triangulations. Recall that a
dataset’s mesh makes interpolation easier when finding a value for a point that is not a
sample point. Such a point must lie within some triangle of the mesh, so a value can be
interpolated from the three vertices of the triangle. If a region based representation for
irregular data is desired, the Voronoi regions are convenient since each region contains the
points that are closest to a particular data point. It follows that this region contains the
set of points that are best represented by the single data point value.

B.4.5 Neighborhood Operations

A major advantage of storing data in an array is that the data is arranged in a spatially
coherent manner, meaning that values that are conceptually nearby in the dataset are also
nearby (in some sense) in the representation of that dataset. Once a datapoint p has been
found, it should be inexpensive to find points that are near p. With arrays this is clearly
the case, since adjusting an index leads to a neighboring value. The same cannot be said of
a common relational database system or even a triangulated mesh, unless special data
structures are used.

Ester et al. [ESTE97] describe a graph based method for representing the
neighborhood relationship. If two data items are neighbors, the graph has an edge between
two nodes corresponding to the items. This representation allows them to support

141

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

operations like getjigraphs (item, relation) which returns the graph of all items in the
neighborhood of item, as determined by one of the following neighborhood relations:

• Topological relations such as meet, overlap, covers, contains, inside, equal

• M etric relations such as distance<d

• D irection relations like north, south, east, west

The neighborhood of an item is not restricted to immediate neighbors. The authors define

a neighborhood path to be a path in which each edge satisfies a specific neighborhood

relation. A neighborhood graph may contain many such neighborhood paths. Once a

neighborhood graph has been computed, the get_neighborhood(ngraph, item, predicate)

returns the set of all items directly connect to the item argument by some edge satisfying

the predicate. Other operations include create jiPaths, which essentially computes a

spanning tree for a neighborhood graph, and extend, which extends such a tree by a

specified length. The authors claim that these operations comprise a set o f operations that

are basic to any spatial data mining application. They go on to explain the use of these

operations in such tasks as discovering spatial trends and clusters, and classification of

spatial data.

142

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Appendix C

MULTIRESOLUTION

C.l MR Methods for Regular Data

A common implementation of non-adaptive MR uses an array of points to represent
the data set function S. Since Lo is the original data, we expect that L i represents the same
information at a coarser resolution, i.e., with fewer data points. A simple way to do this
is to have each point in Li represent 2a points of Li-i, where d is the dimensionality of the
dataset. So, for a one dimensional dataset, the first point of L i should represent points 0
and 1 of Lo, the second point should represent points 2 and 3 , and so on. So, L i is half the
size of Lo, and Li half the size of L i, etc. This approach can be extended to any number of
dimensions. For example, in three dimensions, each point of L i represents eight points of
Lo, which is the familiar octree data structure used commonly in computer graphics.

C.1.2 An Octree Method

Chamberlain [CHAM96] describes just such a method for use in a computer graphics

143

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

rendering system. He is concerned with the efficient rendering of a scene consisting of
some number o f polygons. He notes that in many systems, considerable effort is wasted
by painstakingly rendering polygons that only occupy a single pixel in the final image.
His solution is to divide the scene space using an octree hierarchy of color cubes, which
are essentially just cubic areas of the scene space with a special property: the faces o f the
cubes have a color and opacity matching the overall color and opacity o f the polygons
inside when seen from that direction. These color and opacity values are precomputed so
they are readily available at rendering time. This preprocessing is done in bottom-up
fashion, so that the color and opacity for a non-leaf color cube can be computed by a
composition o f color and opacity for its eight child cubes. For leaves, the color and
opacity values must be directly computed from the polygons themselves.

For a given viewpoint, there is a set of color cubes that are so far down in the
hierarchy (and therefore so small) that the space they contain maps to a single pixel in the
image. Instead of wasting time rendering the polygons contained in these regions,
Chamberlain uses the color cube values for a much faster rendering. In fact, the overall
time complexity of the algorithm for n polygons is 0(log n) compared to O(ti) for more
traditional methods. The amount of data required to render a scene is also 0(log n).

Chamberlain’s paper is a nice example of a simple MR representation, and the
advantages of using a coarse representation of data when appropriate to save time and
space. Lounsbery et al. [LOUNS97] describe a more complex technique for computing
approximations for distant objects that depends on wavelets.

C.1.3 Combining Data Values

Another important issue is how to combine two or more points into a single point for
the next level. The method used depends upon the application. In the simplest case,
where each point has only one attribute, we might just average points together to get a
single value. However, it might be desirable for a point in Li to keep track of attributes
like minimum, maximum, and standard deviation for all the points it represents in Lm. Li
et al. [LI98] store a probability density function for each point in their MR
representation.

C.2 Wavelets

Wavelets are a very popular class of multiresolution representation. A wavelet
representation of data includes two parts: the summary and the detail. As the names
imply, the summary is an approximation of the original data, while the detail can provide
a more refined representation when combined with the summary. Perhaps the simplest
wavelet is the Haar wavelet, a system of compactly supported orthonormal functions
[STOLL96], Before discussing the Haar basis, we should examine a simple example of the
Haar wavelet applied to a one dimensional dataset. Consider this series:

144

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

{6 8 11 7 4 2 3 7}
To compute the summary for this dataset, we simply average each distinct pair o f the

series. More formally, we compute:

C c
21 21+1 ,for i=0... y ,where m=8, the size of the series

Similarly, for the detail, we compute the difference of pairs of values:

^ 2 i — ^2 i + l j? • r\ ftl
— ^ ^ fo r i=0... t

2 2
Our result is the summary and detail coefficients:

Summary={7 9 3 5}, Detail={-1 2 1 -2}
Notice that if we add the first detail coefficient to the first summary coefficient, we

get back the first element of the original dataset. That is, 7+(-l)=6. Similarly, if we
subtract the first detail coefficient from the first summary coefficient, we get back the
second element o f the original data. We can retrieve the third and fourth elements of the
original data using the second summary and detail coefficients in the same fashion.
Clearly, the entire original dataset can be recovered from the summary and detail, with no
loss of information.

To complete the multiresolution representation, we repeat the process above, using
the summary coefficients in place of the original data. This yields another summary and
detail set, each with two elements. This new summary set can be collapsed further into a
single summary value, and a single detail coefficient. The complete process is shown
below:

Original data={6 8 11 7 4 2 3 7}

Summary={7 9 3 5}, Detail={-1 2 1 -2}

Summary={8 4}, Detail={-1 -1}

Summary={6}, Detail={2}

The detail coefficients can be used to reconstruct the complete MR representation,
including the original data. That is, the original data can be reconstructed with no loss of
information from the last summary coefficient, and all the detail coefficients listed in
bottom-up order. In the example above, this would be:

{6 2-1 - 1 - 1 2 1 - 2 }

This sequence is known as the wavelet decomposition of the original data. The wavelet

decomposition can be used to store or transmit the entire MR representation without

145

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

incurring costs above the storage or transmission costs of the original data. On the other

hand, rendering times for wavelet representations are generally higher than times for

octree-like representations [CIGN097].

The other important property o f wavelets is that they can be used to construct a
variety of MR and AR representations. In particular, the detail component of a wavelet
can be used as an error measure for the accuracy of the summary component at each level
[WONG95]. This is equivalent to using only the summary component at one level to
reconstruct the data at the next finer level. Other techniques discard low magnitude
coefficients of both the summary and detail coefficients, replacing them with zero upon
reconstruction [STOLL96]. Finally, it is possible to make local decisions about whether
to go to the next finer resolution of the wavelet representation, yielding an AR
representation.

Simhadri et al. [SIMHAD98] use the MR properties of wavelets to detect edges and
motion in cloud formations. Cloud formations are difficult for traditional rigid-body
motion techniques, because there is movement in different directions at different spatial
scales. For example, a cold front might be moving east to west at a large scale, but if the
edge of the front is examined, may will be shearing and turbulent movement at this
boundary in various directions. Using satellite images represented as regular arrays of
pixels, the authors use a wavelet representation to perform edge detection at different
resolutions. This allows them to capture both the large scale east-west motion of the
example cold front, as well as much smaller, finer movements.

C.3 MR Methods for Irregular Data

Heckbert [HECK97] offers a taxonomy of techniques for surface simplification
algorithms. Since surfaces are often represented using an irregular set of points, much of
this work can be applied to irregular scientific data. If a simplification algorithm is applied
repeatedly, we can generate an MR representation of the data.

C.3.1 Classifying Methods

The first area to examine when classifying such algorithms is the characteristics o f the
problem they are meant to solve. The most important such characteristic is the nature of
the input. Input data can vary by topology and geometry, and also in the number and
kind o f attributes o f the data points. For example, the input curve or surface might be
described by a mathematical function or a set of points. A set of points may be either
regularly or irregularly distributed. The points themselves may have a variety of
attributes, especially in scientific applications. We are particularly interested in exploring
the surface simplification domain to find methods applicable to irregular scientific data.

146

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

An issue of importance is whether the output of a simplification method contains only
original data points or is allowed to construct interpolated values. Either method may be
appropriate in a scientific setting, but the scientist should be provided with a way to
distinguish manufactured values from original values.

Another point of classification is the characteristics of the algorithms themselves. For
example, refinement algorithms start with a coarse representation of the surface and add
points to build an increasingly accurate representation of the data. Decimation methods
start with the original data and successively remove data values to construct a coarser and
more compact representation. Note that with surface simplification, only a single
representation of the domain may be required. However, most decimation or refinement
algorithms should be easily adaptable to MR by saving the results of intermediate steps
in the levels of an MR representation. In the context of MR, decimation methods can be
thought of as the bottom-up approach, and refinement methods as top-down.

One more characteristic of algorithms is the tradeoff with regard to speed versus
quality. Algorithms that produce representations with maximal quality or minimal size
tend to be slow. Faster algorithms must sacrifice either quality or size, or both.

As discussed in section 2.4.2, irregular data is often represented using a mesh of
triangles, or trimesh, and this mesh can be generated for an arbitrary set of points using
Delaunay triangulation. A great deal o f research has been conducted on the multiresolution
representation of trimesh surfaces because of their application in both computer graphics
and GIS. In both fields, trimeshes are often used to represent terrains with mountainous
or hilly features.

C.3.2 2D Irregular data

De Berg and Dobrindt [DEBE98] have developed a multiresolution method for
terrains that is specifically geared towards computer graphics. Their motivation is similar
to Chamberlain’s (sec. C.1.2), in that they also want to eliminate the unnecessary
rendering of detailed polygons in the distance. Chamberlain’s method fully renders
polygons that subtend more than one pixel, while de Berg and Dobrindt’s algorithm
allows resolution to slowly decrease as the terrain recedes into the distance. An important
feature of the algorithm is that it seamlessly blends these different resolutions into a single
mesh. De Berg and Dobrindt’s method could therefore be classified as a kind of adaptive
resolution representation.

The algorithm begins by describing a simpler tree-based MR method for trimeshes, in
which each triangle of a coarse level is broken into three or more triangles in the next level.
That is, given a triangle t of level Li+u we construct corresponding triangles in Li by adding
one or more data points to the interior of t, and retriangulating the interior with the new
points. The process is repeated until all the data points have been added, giving the
original data, Lo. Notice that this subdivision process results in a tree relationship in
which each non-leaf triangle is the parent of some number of child triangles, and each non-

147

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

root triangle has exactly one parent. The problem with this approach is that it results in
very slender triangles as the triangles are subdivided because edges are never removed as
new points and edges are added (Figure C .l). The authors point out that such triangles
may cause “robustness and aliasing problems.”

Figure C.1. A two level hierarchy with corresponding tree structure. From [DEBE98]

It is an important property o f Delaunay triangulations that the minimum angle o f any
triangle is maximized. In other words, the Delaunay method avoids problematic slender
triangles. De Berg and Dobrindt describe another hierarchy in which Li is formed by
adding points from Li+i and then doing a global Delaunay triangulation on the remaining
points. This method does indeed avoid slender triangles, but has a drawback for the
intended application. Namely, there is no clean relationship between triangles in Li and
Li+i. A triangle in Li may have more than one parent in Lj+i, and there may be no triangle
or set of triangles in Li that occupies the same region as a triangle in Li+i. This means that
triangles from different levels won’t fit together, and cannot be used to create a seamless
representation of the terrain with different resolutions. However for scientific data, this
technique should still be useful.

The authors build their MR representation in a bottom-up fashion rather than top-
down construction of the tree method. The original data (Lo) is first triangulated using the
Delaunay method. In forming each level, they remove a set o f points from the previous
level and then retriangulate in the area of each removed point using Delaunay. It is
important to note that doing this local retriangulation globally preserves the Delaunay
property. That is, each level of the MR representation is a Delaunay triangulation, which
minimizes the occurrence of slender triangles. In order for this to work, some constraints
must be applied to the set o f points Ii removed from each Li. The set Ii is defined to be a
maximal independent subset o f the vertices of Li. That is, no pair of vertices in Ii is
adjacent in Li. In addition, the vertices of Ii must have degree d no larger than 12 (this
value was determined by experimentation). The authors also allow the user to specify a
set o f fixed points that are considered so important that their removal is never allowed.
This importance might be due to error introduced when the point is removed. For
example, if removing a point makes a mountain disappear, it may well be better to leave
it. Alternatively, points could be considered so interesting that the user wishes to keep
these points regardless of the resolution. Note that this makes the algorithm dependent on

148

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

the data via the (perhaps hypothetical) interestingness function, so that de Berg and
Dobrindt’s algorithm can be classified as adaptive resolution.

The authors refer to the union of all triangles that contain a point p £ Ii, as a polygon.
They show that the edges of this polygon belong to the Delaunay triangulation of Li+i.

So, once the point p is removed from the interior of this polygon, the polygon vertices are
retriangulated to form a collection of triangles that make up the polygon for Li+i. Notice
that the polygons in the two levels cover exactly the same area of the domain. This is the
property that allows a smooth blending of different levels to form a seamless
representation o f the surface with different resolutions.

The algorithm continues forming new levels in bottom-up fashion through the process
described until the number of points in a level is some constant multiple c of the number
of fixed points. The value of c depends on d, the maximum degree of removable vertices.
For d= 12, the authors found that c=2 worked well. Notice that the number of levels
therefore depends on the size of the original data, which makes the algorithm true MR
rather than LoD, according to the definitions of Cignoni et al.

C.3.3 3D Irregular data

In addition to providing valuable background information about visualization of
scientific data, Cignoni et al. present two methods for representing irregular volume (3D)
datasets [CIGN097], The first method is a refinement (top-down) technique, and extends
work first presented in [CIGN094]. It uses Delaunay tetrahedrization, the three
dimensional extension of Delaunay triangulation in which the domain is covered with a
mesh of tetrahedra. The domain is assumed to be a convex polyhedron. Any such
polyhedron has a tetrahedrization that uses only the vertices of the polyhedron, without
requiring the addition of extra vertices. In the case of non-convex polyhedra, such a
tetrahedrization may not exist. Furthermore, deciding on its existence is an NP-complete
problem. Cignoni’s algorithm begins with a tetrahedrization of the domain using only
domain vertices, so he rules out the problematic case of non-convex domains.

Problems also occur when a mesh defined in a rectilinear computational domain is
lifted to a curvilinear physical domain. If a mesh is constructed in the rectilinear space, it
will be projected into the curvilinear physical space. The projection process affects only
the vertices of the mesh, and not the edges. Edges therefore remain straight lines after
projection onto the physical domain even though they should really be curved to avoid
error. Such error is called warp and cannot be eliminated entirely, but can be reduced by
minimizing the length o f edges. Another source o f error is the interpolation that is done
between mesh vertices. This interpolation is usually linear, but the function being
approximated often isn’t. Cignoni et al. use 6 and s to represent warp and error,
respectively, and combine these into a single threshold pair p=(6,e). They compute p
values both for individual points and also for entire meshes. Finding the maximum p value

149

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

for any point is a useful characterization o f the mesh.
The overall structure of Cignoni’s refinement algorithm is fairly straightforward. They

start with a tetrahedrization of the domain, as described above, and add points to this
mesh one at a time until the mesh satisfies a bound for p. This process involves three
major steps:

1. Check to make sure that the mesh does not already satisfy the desired p. This

process is accelerated by using a list for each tetrahedron that keeps track of all

data points inside it. The warp and error for each of these points is then used to

find the maximum p for the mesh. If the desired p is satisfied, then stop.

2. Find the vertex not already in the mesh with maximum p. Along with the lists

mentioned in step 1, a priority queue is maintained, organized according to p

value.

3. Update the mesh by inserting the vertex found in step 2 using the Delaunay

method. Go back to step 1.

With curvilinear datasets, there is yet another hazard. A mesh defined in the
computational space might become inconsistent when the mesh is lifted to the physical
space. In particular, the bending action of the lifting process may cause one or more
tetrahedra to essentially turn inside out. The solution is to use a larger number of
tetrahedra (with shorter edges) in that region. So, if an inconsistent tetrahedron is
detected, a point contained in that tetrahedron is assigned an infinite warp value. This
ensures that the point is chosen in step 2 above, and the offending tetrahedron replaced.

Cignoni et al. offer a variation of the above algorithm that divides the domain into
some number of separate blocks that are each processed separately. The motivation is
apparently to accommodate a parallel or distributed implementation of the refinement
algorithm. In such cases it is important that the boundary faces of adjoining blocks be
triangulated in the same way. They are able to show that this is indeed the case, and that
the blocks would fit together when reassembled. However, they point out that the
resulting tetrahedrization is not the same as one produced without splitting the domain.

Cignoni et al. also describe a decimation (bottom-up) method that is better suited for
nonconvex datasets, since it begins with the original mesh and successively deletes
vertices until the p value for the mesh becomes too large. Once again, we can characterize
the algorithm with three steps:

1. Check to see that the mesh satisfies the maximum acceptable p. If not, then

stop.

150

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2. Select a vertex to be removed from the mesh.

3. Update the mesh by removing the vertex found in step 2. Go back to step 1.

The first step is simpler here than in the refinement algorithm, since any change in
error or warping is local to the vertex last removed. Therefore, this local p value can
replace the global p value for the mesh if it is larger. Unfortunately, step 2 is much more
complicated. The algorithm must choose the vertex that increases the mesh p value the
least. It would be prohibitively expensive to simulate deletion o f all mesh vertices, so
heuristics must be used. The heuristic finds the edge v,w with minimum AVv,w, the change
in field gradient from point v to point w. A small change in field gradient implies low
curvature in the function that the dataset represents, so linear interpolation along edge v,w
has minimum error. Therefore, the vertex with smallest AVv,w is a candidate for removal.
Warp for a vertex v is estimated by examining the distance between v and the plane
containing the points adjacent to v. A large distance suggests a large warp value.

Once a suitable vertex has been chosen, it must be determined whether it can be safely
removed from the mesh. Because tetrahedrizations of nonconvex polyhedra do not always
exist, removal may not be possible. Since deciding this issue is an NP-complete problem,
heuristics must once again be used. The heuristic attempts to remove a vertex v by
collapsing an edge incident on v. That is, for some neighbor of w o f v, the edges of v are
connected to w. If this process results in an inconsistent tetrahedron, the deletion is not
performed and the mesh remains unchanged. The error and warp of v is set to infinity so
this vertex is not chosen in future iterations.

151

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Appendix D

ARCHITECTURE AND SYSTEM ISSUES

D .l Architecture and System Issues

There are a number of issues relevant to a multiresolution scientific database that
require further examination. A comprehensive treatment of error is a necessary part of
any system dealing with scientific data. This includes both error introduced by reducing
resolution, and also error inherent in the data collection method. In addition, we must
examine methods for accessing both multidimensional and multiresolution data structures,
as well as ways to support search in a multiresolution environment. Lastly, we look at
the issues involved in distributed and parallel computing using MR data.

D.2 Error

All scientific data contains some amount of error from the moment it is generated. If
data is gathered from the real world, the instruments used cannot give perfect results.
Values from simulation also have some uncertainty associated with them. After the initial
data gathering phase, operations on the data may introduce further error. It is therefore

152

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

important for a model of scientific data to account for error in any piece of data.
There are various ways to represent uncertainty in a data value. Absolute error is a

value that does not vary with the magnitude of the measurement. For example, if an
instrument has an absolute error of ±5 Volts, and we measure a value of 100 Volts, the
true value lies somewhere between 95 and 105 volts. In contrast, Relative Error varies
with the measurement’s magnitude, and is usually expressed as a percentage. If we
measure 1000 Volts on a second instrument with relative error of 5%, the true value lies
somewhere between 950 and 1050 volts. Note that if 1000 Volts is measured on our first
instrument, the true value would lie between 995 and 1005 volts.

Another important issue is the difference between accuracy and precision. Accuracy
refers to how close a measurement is to the true value. Precision refers to how widely
distributed a set of measurements are. So, if a set of measurements are closely grouped
they are precise, but they could still be inaccurate if they are grouped around a value that
is far from the true value. Knowing that a dataset is precise but not accurate has
ramifications for the kind of conclusions that can be drawn from it. If a curve is plotted
from this data, the shape of the curve would be correct, but it would be displaced by
some amount from the proper position. For a discussion of precision and accuracy in the
GIS community, see [FOOTE95].

Relative and absolute error are only two of many ways of representing error. For
example, error could be described using a probability distribution function. Or, the
precision and accuracy of the data set could be explicitly recorded as a pair o f numbers.
Ultimately a domain expert must decide what representation is appropriate and
necessary.

In addition to the error representation, some kind of error metric must be chosen.
Heckbert describes two very common metrics [HECK97]. hi error between two vectors u
and v of length n is defined as:

|u -v |L = [| (, - v,)2j

Squared Error is defined to be the square of the hi error, and root mean square (RMS)

error is the hi error divided by Jn . Loo error, which is also called maximum error, is

defined as:

| u - v |L = max;=1̂ ,. - v j

Our model of scientific data requires localized error, meaning error is assigned to
every point within the domain of the data. Ideally, each domain point would have an exact
error value associated with it, but this is not always the case. However, it should always
be possible to at least estimate the error of a given point. Instruments and simulations
typically specify an error tolerance, so it should be easy to associate an error with data

153

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

values gathered from these sources. For data values that are interpolated, perhaps only an
interpolated estimate can be made. Cignoni et al. describe a way to generate localized error
estimates for irregular data using a scan line technique [CIGN098]. They evaluate surface
values using a regular grid of sample points, and compare the values given by a simplified
surface with those given by the original surface.

Our other requirement is that it should be possible to accumulate error. If data begins
with error Ei, and an operation is performed that introduces additional error E2, then the
error Er o f the resulting data should reflect both Ei and E2. That is, Er=Ei©E2, where © is
an error accumulation operator. This operator may be as simple as addition, but it need
not have all the arithmetic properties o f an addition operator.

D.3 MR Access

In addition to the spatial access methods outlined in the previous section, MR access
methods must also provide a way to select the desired resolution of the query result. The
most obvious way to select resolution is to ask for a particular level from an MR
hierarchy. However, this is not an efficient method for all kinds of MR representations.
For MR methods like those described in [CIGN097], it is much more efficient to specify
an error bound that must be met by the query result.

D.3.1 Error Based Access

To facilitate error-based access, Cignoni, et al. introduce the notion of an historical
sequence [CIGN097], Each tetrahedron in the dataset is tagged with “birth” and “death”
accuracies gb and gd- A tetrahedron is said to be ju-alive if gb <g<gd. The points and
tetrahedra making up the dataset are stored in two separate files sorted by birth accuracy
in non-decreasing order. To satisfy a request for a given accuracy, the tetrahedron file is
sequentially scanned for all tetrahedra that are g-alive. This search terminates once a
tetrahedron with gb better than g is found. Once the tetrahedra are retrieved, the vertices
are obtained by scanning the list of points up to and including the index of the “greatest”
point referenced by the tetrahedra set. This works because in the refinement algorithm
described in section 3.4.2, points are never removed once they are introduced. Therefore,
the set o f vertices required by the tetrahedra set is a prefix of the sequence of vertices in
the point file. Notice that if a query asks only for a subset of the domain using one of the
MD query methods outlined in the previous section, modifications have to be made to the
algorithms discussed here.

D.3.2 The FED Method

Resnick, Ward, and Rundensteiner have developed a method for specifying queries on
dimensional data [RESN98]. Their work does not specify a data structure, but rather

154

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

provides a user-level query model. Under this model, a user query consists of three parts:

• Focus ((F) describes the point in the domain that is the center of attention. (F

is specified as a single point or ^-vector, where k is the number of dimensions in

the dataset.

• E x t e n t (IE) specifies the bounding hyperbox for the region of interest. (E is

usually specified as two ^-vectors delimiting opposite comers of the bounding

hyperbox.

• D e n s i t y (D) specifies the amount and distribution of data relative to the

focus. The authors initially specify density using a single ^-vector of values on the

range 0... 1, where 1 means “all data” and 0 means “no data” for the corresponding

dimension. Values greater than one might request interpolation.

Since density and resolution are closely related, the specification of density makes
this model potentially useful for MR access. For rectilinear data, we can specify different
behavior in each dimension. For example, the k-vector (1.0, 0.5, 0.25) specifies that along
the x axis, all data should be displayed, but only every other row on the y axis, and every
fourth plane on the z axis. The authors have other ideas, however. They mention that a
variable density might be specified using a polynomial function such that the density is
greatest at the focus, but falls off sharply toward the edges. This could easily be
accommodated by selecting from different levels of an MR hierarchy. Detailed data at the
focus is taken from lower levels, while the periphery provides context with points from
higher levels.

D.4 Search with MR

We have already seen that a distinguishing feature of scientific data is that we don’t
know what patterns and relationships are contained in the data beforehand. Therefore, the
techniques described in section 4.2.2 are not adequate, since they only help to retrieve
known data. We need methods that aid the investigator in discovering new knowledge. As
described in section 2.3, pattern detection techniques are important tools for knowledge
discovery, so we should look for ways to apply them to multiresolution data.

155

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Seale et al. [SEAL98] point out that performing object recognition on a compressed
image data stream saves the work of transforming the data into pixels, and also reduces
the volume of data that must be examined. Their work used the JPEG compression
format, which is not really a multiresolution representation. However, their work hinges
on the fact that certain key compression steps in the JPEG standard still retain spatial
correspondence with the original image. This property is also a major feature o f wavelets
and multiresolution methods in general.

D.4.1 MR Feature Extraction Methods

Notice that both k-d trees and quadtree based techniques described in section 4.2.2
involve a hierarchy to help locate points in space. Since any multiresolution
representation implies a hierarchy, we should be able to use this hierarchy to help locate
features in MR data. The following two methods take advantage of the MR hierarchy to
perform recognition and feature extraction.

Juffs et al. [JUFFS98] have developed a distance measure for images that is well
suited for use with MR data, especially the Haar wavelet. Their measure is called a Gray
Block Distance or GBD. Consider two images I and I ’ such that their average gray levels
are g and g ’ respectively. A gray level of zero signifies black, while a level of one
corresponds to white.

r=1

gl 12 ■
§212

r= 2 r=3

Figure D.1. Gray blocks for resolutions 1 through 3. Subscripts are in i,j,r order. From
[JUFFS98],

In order to compute the GBD for a pair of images, the gray levels are compared at
different resolutions. In figure D .l, it can be seen that the gray level for resolution one is
the gray level for the entire image. For resolution two, four gray levels are computed— one
for each quarter of the image. This sequence may continue for an arbitrary number of
levels. So, given that we have gray levels for all required resolutions, we can compute the
average difference in grayness for any level r:

, j = 2r~i i = 2r~l

2 2 k -, 2 c - 2

^ j - 1 i=l

If the maximum difference between any two gray levels is one, then the maximum
average difference for any level r is also one. However, in the full GBD given below, the

average difference for each resolution is given a weight —j :

156

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

j i=r~l i=r A
r \ 2 r - 2
L j - 1 i - 1

x ̂ j = 2 r~[i = 2r_1

^ 2 3 r -2 s s Stfr “ 4>l
This means that as resolution increases, the differences between images become less

and less significant. The authors claim that this mimics the human visual system in that
we de-emphasize difference in detail in favor of overall similarity. In addition, this
decreasing weight guarantees that the complete GBD is a number defined on the range
0 . . . 1.

The authors point out that there is a close relationship between this distance metric
and the Haar wavelet. In particular, we should be able to use the summary coefficients
from the Haar decomposition in place of the g values. This suggests a potentially valuable
search method for wavelet data. First, the wavelet decomposition of a template must be
computed. This template must be an example of the kind o f target we are searching for.
Next, a low resolution representation of the template is compared against the
corresponding resolution of the data. The locations with the smallest average difference
are recorded, and the next level of the template is compared against the next data level in
these locations. The process may continue until we have found target regions in the data
that match the template closely enough for the experimenter’s needs. The chief advantage
of this technique is that it avoids an expensive examination of the original data by taking
advantage of the MR hierarchy. Areas that are found to be a poor match at the lowest
resolutions are not examined in greater detail. This should provide an efficient way to
locate features of interest for patterns that can be represented using a simple template.

Simhadri et a/.[SIMHAD98] have developed an algorithm for feature extraction that is
especially useful for motion detection in oceanographic images. They point out that
detecting motion of ocean currents is fundamentally different from solid body motion
detection because the motion occurs at different scales. Although a current may have a
general direction at a large scale, the edges of the current may be moving in an orthogonal
direction, with many swirls and eddies. Because of the multi-scaled nature of ocean
features, the authors developed a multiresolution approach based on wavelets.

Their algorithm consists of the following steps:
1. Apply a wavelet transform to the image.

2. Truncate all summary coefficients below a user-defined threshold to zero.

3. Reconstruct the image at some resolution j.

4. Apply an edge detection algorithm using another user-defined threshold T

5. If the result is not satisfactory, then descend to the next level j+ 1 , reduce the

threshold T, and return to step 4.

157

G B D (I , n = 2 i

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The edge detection method used in step 4 is extremely simple. It involves applying a 3x3
window to every possible position in the image, and finding the difference between the
maximum and minimum values contained in the window. If this difference is less than the
threshold T, then the central pixel is replaced with a zero. Otherwise, the window is
moved to the next location.

Notice that the threshold T is reduced when the algorithm descends to a finer
resolution. The authors point out that the contrast o f an edge is inversely related to the
resolution of the image. If we have more pixels with which to represent a transition, then
the difference between nearby pixels will be less. Notice also that the number of detected
edges increases with increased resolution, also due to the larger number of pixels. When
enough edges have been detected, the algorithm halts.

This process o f edge detection is repeated on images taken at different times, so that
motion can be inferred from the changes in the edges. The authors note that their
technique is better than traditional edge detection techniques at handling faint edges and
small details. Traditional methods have more difficulty distinguishing between less
prominent features and noise. Here, the multiresolution technique has clear benefits.

D.5 Parallel and Distributed Computing with MR

The large size of scientific datasets suggests that there are benefits to applying more
than one processor to the problems found in scientific databases. Certainly, many
researchers have looked at how best to divide datasets among several processors. Parallel
database systems are often implemented on a cluster of workstations connected by a high
speed network. A distinct but related idea is distributed computing. Distributed
computing is conducted over a network, but unlike parallel systems a distributed system
does not necessarily divide the dataset among processors. For example, it may instead
divide different stages of a process among several machines.

D.5.1 Distributed Computing

Charles Hansen and Stephen Tenbrink [HANS93] explain that imaging and
visualization were major motivations for developing a new network protocol at the Los
Alamos National Laboratory (LANL). Scientists at LANL run very processor intensive
simulations, and need a convenient way to view and steer their progress. The authors
report that the scientists were very reluctant to walk down the hall to a special
laboratory, and instead wanted the convenience of working in their own offices. Since the
office machines were inadequate for running the simulation itself, the visualization task
was separated from the simulation.

The idea of distributing tasks among several machines can be taken much further,
especially with large scientific databases. For example, the data itself may be stored on
one set of machines, while the processing is done on another, and the visualization and

158

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

user interaction is done on a researcher’s personal workstation. Such schemes require that
data be transmitted from machine to machine over a network.

Methods for transmitting MR data over a network often use progressive
transmission. That is, a coarse representation of the data is transmitted first, followed by
more detailed information that allows the data to be refined progressively. Notice that the
wavelet decomposition, described in section 3.3, works naturally with progressive
transmission. Wavelet coefficients are transmitted in order of magnitude, sending the
largest first [STOLL96], The representation on the receiving end is refined as the more
detailed information arrives. This means that the researcher may view the data as it is
updated, rather than wait until the entire representation has been transmitted. They may
also decide that some intermediate degree of refinement is adequate for their purposes,
and decline to download all of the data. Progressive transmission can be used with other
multiresolution techniques besides wavelets. Descriptions of such methods can be found
in [CIGN097, HOPPE96]. Cignoni et al. couple progressive transmission with the
decimation method described in section 3.4.2. Recall that the decimation method begins
with the original mesh and selectively deletes vertices until the representation becomes
sufficiently coarse. Progressive transmission reverses this process by sending the coarse
representation to the remote machine first, and then sending the vertices in an order
opposite from their deletion order. That is, the vertex that was deleted last is transmitted
first. In order for this method to work, the vertices must be reinserted into the tetrahedral
mesh. This requires an operation that is the inverse of edge collapse, namely vertex
splitting. To perform vertex splitting, the transmitting machine must indicate which
previously transmitted vertex the new vertex was collapsed from. With this information
the collapsed edge can be reconstructed.

D.5.2 Parallel Computing

Parallel computing involves breaking up a single task among multiple processors.
These processors may be part of a single machine, or may be in separate machines
connected through a network. The principle advantage of parallel computing is
performance.

If we use eight processors to attack a problem, we might (optimistically) expect the
time to reach a solution to be one eighth the time required for one processor. That is, we
expect the speedup to be 8.0, where speedup is defined as [LEIGH92]:

time for one processor
speedup = —------------------------------

time for n processors

Furthermore, the efficiency is defined to be

. 100 • speedup
E ffic ien cy ----------------------

n

159

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

In practice, an efficiency of 100% is very difficult to achieve for reasons outlined below.
Still, reducing computation time is the principle reason to use multiple processors for
exploring scientific data.

Load balancing plays an important part in optimizing parallel computation. Since the
completion time for a parallel program is the time within which the last processor finishes
its work, it is desirable to distribute workload evenly among the processors. Ahrens and
Hansen [AHRE95] point out that load balancing must be done carefully. In some cases,
the costs of distributing the load outweigh the benefits of balanced computation. In such
cases, load balancing actually degrades performance.

Load balancing methods can be divided into two classes—static and dynamic. Static
load balancing is done before the beginning of computation, and is not performed while
the program is running. Lin and Li [LIN95] point out that many problems have
unpredictable behavior, making it difficult for static load balancing to yield good
performance. It is not known where the bulk of the workload lies until after computation
has begun. To address this problem, dynamic load balancing is performed repeatedly
while computation is in progress. Both static and dynamic load balancing can be done
either locally or through global control. Load balancing through global control tends to
yield better distribution because decisions can be made based on a large amount of
accurate information. If load balancing is performed locally, each processor gathers
information from processors in its immediate neighborhood. This may degrade the quality
of the distribution somewhat, but also requires less communication than the global
approach.

Nakano et a/.[NAKAN097] have developed a dynamic load balancing technique that
works with multiresolution physical chemistry data. Their system updates the
distribution of data after every 60 iterations of their program. Specifically, they notice
when an atom has moved from one processor’s physical space to another, and
subsequently adjust both the data and boundaries to compensate. In contrast, Pfaltz et al.
[PFALTZ98] distribute data in their ADAMS scientific database by oid (object id). The
ADAMS system emphasizes queries on large, usually dimensional datasets using boolean
conditions and set operations. Their system uses 64 bit oids to uniquely identify each
data object in the database. Data objects are distributed among n=2d processors using the
d least significant bits of the oid. Although their system is static, they claim good
performance for the kinds o f operations their system supports, especially with larger
datasets.

One difficulty with the ADAMS approach is that it seems to discard geometric
locality when dealing with dimensional or spatial data. If a researcher wants to conduct an
operation that applies to some neighborhood of points, then the ADAMS approach to
load balancing results in excessive communication. Points that are geometrically in the
same neighborhood are scattered over several processors. On the other hand, Nakano’s
work divides the geometric space over the processors so that each processor gets a
roughly cubic contiguous chuck of the space. This means that many operations can be
conducted locally on each processor with no need for external data. To handle other cases

160

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

where data from other processors is needed, Nakano simply duplicates the data. Each
cube sends the coordinates of atoms near its boundaries to the six neighboring processors.

161

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

APPENDIX E

UNCERTAINTY VISUALIZATION M ETHODS IN
ISOSURFACE VOLUM E RENDERING

E.l Introduction

We describe two techniques for rendering isosurfaces in multiresolution volume data
so that the uncertainty (error) in the data is shown in the visualization. In general the
visualization of uncertainty in data is extremely difficult, but the nature of isosurface
rendering makes it amenable to an effective solution. In addition to showing the error in
the data used to generate the isosurface, we can also show the value of an additional data
variate on the isosurface .

E.1.1 Visualizing uncertainty

With the exception of geographic information systems (see, for example, Hunter et al.
[Hunt93]), there has not been much research into identifying and visualizing the
uncertainty in data. Recently, however, researchers in other fields have begun to address
this issue. For example, Lodha and Pang have experimented with visualizing uncertainty
in vector fields [Pang94, Lodh96a, Lodh96b, Witt96, Shen98] and Cignoni et al. [Cigno98]
have developed a tool, Metro, for visualizing mesh surface approximation error. In
addition to the very difficult problem of identifying and maintaining the error itself, it is
also very difficult to present that error to the user in an effective and meaningful form.

162

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Incorporating uncertainty into any visualization requires rendering at least one more
variate (actually we need to add one new variate for each variate that has its own error
measure). Although many innovative multivariate visualization techniques have been
developed in recent years and some have proven useful in some situations, this is an
extremely difficult problem which is exacerbated by the enormous size of modem
scientific data.

In principal, we would like to incorporate the uncertainty information into the data
visualization. When the error information is locally defined (i.e., it has about the same
resolution as the data), this approach usually results in some form of degradation in the
display of the data itself. Wittenbrink et al. [Witt96] call these overloading techniques (as
opposed to their glyph-based technique which they call verity visualization). Cedilnik and
Rheingans [CediOO] use annotations on a visualization in order to reduce the distraction
caused by the error visualization. In order to be most effective, it is important that the
user have the ability to turn the uncertainty visualization on and off interactively. With
uncertainty visualization disabled, the user is likely to have the best chance of
understanding the fundamental nature of the data. After enabling the uncertainty
visualization, the user can now get an understanding of the error in the data.

E.1.2 Multiresolution data

One major reason for the relatively low emphasis placed on uncertainty visualization
in the past is that uncertainty information is seldom available except in very abstract
forms. With the growing interest in the generation of coarse resolution approximations to
a large dataset, this particular limitation can often be overcome. Creating multiresolution
data certainly introduces additional error into the data, but it is often relatively easy to
measure this new error and it is usually significantly greater than the error in the original
data. Consequently, we can expect to be able to create and access error information about
coarse resolutions of a multiresolution data hierarchy. Furthermore, it is particularly
important to incorporate error into the visualization o f data that is only a coarse
approximation to the “real” data. A scientist needs to know what portions o f a coarse
resolution visualization have relatively low error (and therefore are an authentic
representation of the data in that area) and which have a relatively high error. The
representation of the low error regions is likely to be reasonably authentic, but the
scientist is likely to want to visualize areas of high error at a higher resolution.

E.1.3 Isosurface rendering

Isosurface volume rendering is a very good candidate for adding uncertainty
visualization. Rendering an isosurface within a volume of univariate data is a very
effective technique for many applications. Since all the data being visualized has the same
data value, the particular value does not need to be incorporated into the visualization.

163

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Conventional isosurface rendering assigns a constant color to the vertices of the triangles
that define the isosurface, and uses standard lighting models and Gouraud interpolation to
give a sense of the shape of the isosurface. Consequently the color parameter is actually
available for visualizing the uncertainty. It’s important to realize that this approach
allows us to visualize the error of the data used to generate the isosurface rather than the
error between the low resolution isosurface and its corresponding high resolution
isosurface.

E.1.4 Research overview

In this paper we describe some experiments with incorporating an uncertainty variate
into isosurface rendering. Our visualization tool is part of a broader research effort to
develop a formal model and a support environment for dealing with large multiresolution
and adaptive resolution data sets [Spar94, RhodesOl]. A fundamental aspect o f this
model is the incorporation of local error measures into the data representation.

Although our uncertainty visualization does not depend on any particular technique
for generating the volume data, we start by describing our wavelet-based multiresolution
volume data which does incorporate a meaningful error component. We conclude with
some specific examples of the visual results of the approach.

E.2 Multiresolution volume data

Our motivation for developing a tool for incorporating uncertainty into isosurface
rendering arose from our interest in using multiresolution data representation for large
scientific data sets [Wong95, WongOO]. We are particularly interested in generating coarse
approximations to a large dataset that are more tractable in terms of size but still retain
sufficient authenticity to be useful. For this approach to be viable, it is critical that we
provide an estimate of the error that is introduced into the coarse data on a local basis. In
principle, every data point in each level of a multiresolution data hierarchy includes both
data and an error measure associated with that data - its uncertainty. In other words, we
want to identify the regions of the data where the coarse representation is not an
authentic representation of the original data.

E.3 Isosurface rendering with error

E.3.1 Overview

We have extended the standard Marching Cubes algorithm to incorporate a measure of
the error of the data. Volume data points contain both data values and the error associated
with each data point. During the Marching Cubes algorithm, we compute an error

164

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

associated with each triangle vertex by interpolating between the error values of the
associated cube vertex error values. We use the error value for each triangle vertex to
modify the appearance of that vertex.

E.3.2 Uncertainty rendering using color

The vertices of the triangles that define the isosurface are assigned a color based on
hue, saturation and brightness and the triangles are then rendered using an external light
source and Gouraud shading. For basic isosurface rendering (without uncertainty enabled),
all triangle vertices have the same color. The user may choose to map the uncertainty to
any of the three color parameters (hue, saturation and brightness), while leaving the other
two parameters fixed. In addition, the user can interactively select what constant values
should be used for the other two color parameters. Since hue is specified as an angle
between 0 and 360, it is clearly not desirable that the full range be used - if it were, the
largest and smallest error values would have the same hue. Consequently, we allow the
user to select the range of hues that should be used for the uncertainty.

Although we allow users to assign the uncertainty rendering to any of the three color
parameters (hue, saturation, brightness), we recognize that the only reasonable mapping
for this particular problem is to map the error to the hue. The brightness component is
needed in order to effectively represent the shape of the isosurface and it is well-known
that we are far more sensitive to hue changes than saturation changes. In general, the
perceptual issues associated with color usage are orthogonal to the goals (and scope) of
this paper.

E.3.3 Uncertainty rendering using texture

We have developed a second error visualization method that uses texture to show
regions of the isosurface with high uncertainty. Textures and texture hardware have been
used by various researchers as an aid to data visualization [BoadaOl, Cigno98, Cabral94,
Guan94, LaMar99]. These approaches either use texture hardware to accelerate
visualization, or rely heavily on the color component of the textures for their visual
effects. Our approach, on the other hand, does not use hue as part of the texture, so that
it is available for visualizing another variate on the isosurface.

Our implementation uses a second texture surface which envelops the original
isosurface, but is slightly offset from it. A stipple texture is mapped to this surface, and
the opacity is varied according to the uncertainty of the data. That is, the texture will be
most visible in areas with high uncertainty, but absent or faint where uncertainty is low.

Figure E.10 shows the interaction between color and texture visualization. The
topmost row simply shows a set of typical hues. The second row shows a texture
imposed over a green surface. The texture becomes increasingly visible as the tiles
progress to the right. Notice that the underlying green can still be seen, even in the

165

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

rightmost tile.
In the third and fourth rows, the hue of each tile varies as in the first row, but now we

have imposed the texture as well. For the third row, the texture becomes increasingly
visible as we progress to the right, but the opposite occurs in the final row. In either case,
both the texture and underlying hue are suitable for visualizing distinct variates. For
example, with fluid flow data, we might use the pressure variate to compute the
isosurface, map the error o f the pressure to the texture surface and render the temperature
variate to the surface hue.

E.4 Experimental results

Our isosurface software is implemented in Java and is built on the VisAD system
[VisAd, Hibb92] which uses Java3D for rendering. Figures E.l through E.9 were rendered
directly in this system. The remaining figures were rendered in a separate program using
gMjava [G14java], since we needed a lower-level API to implement the texture based error
visualization.

For these tests we used a CAT scan of a cadaver head provided via ftp courtesy of
North Carolina Memorial Hospital and Siemens Medical Systems, Inc., Iselin, NJ. The
original data is 113x256x256. For the convenience of the wavelet transform, we appended
15 slices of zeros to get a 128x256x256 dataset. We then applied a 2D Haar wavelet to
each slice and three successive 3D Haar wavelets to get a 4 level hierarchy. Figure E.l
shows an isosurface rendering of the 1283 dataset for the isovalue 0.185 (a skin value).
The next two coarser resolutions of the skin isosurface are shown in Figure E.2 (643) and
Figure E.3 (323). It is clear that the surface shown in Figure E.2 is coarser than that shown
in Figure E .l, but the overall impressions of the two surfaces are very similar. Figure E.3,
however, shows a substantial loss of accuracy of the surface.

E.4.1 Uncertainty mapped to hue

Figure E.4 shows the skin value isosurface of the 1283 resolution data with constant
saturation and brightness and uncertainty mapped to the range of hue from 144 degrees
(green) down to 0 degrees (red). In other words, green represents low uncertainty and red
high uncertainty. The error associated with the 1283 dataset is very low and this is
reflected in the visualization. At normal scale no high error areas are visible although at
very high magnification it is possible to see some very light pink areas around the mouth
region. Figure E.5 shows the uncertainty visualization of the 643 dataset using the same
visualization parameters as Figure E.4. Here more error is readily discernible as reddish
areas around the mouth, eyes, forehead and other places. Figure E.6 shows the 323
resolution data with the same visualization parameters. As we would expect, there is
obviously increased error in many areas of the visualization.

It is not clear what range of error might be expected for different kinds of input data

166

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

and so it is also unlikely that there is a single ideal mapping o f error to color. Figures E.7
and E.8 show the 643 and 323 data sets with a narrower hue range (108 to 0) intended to
accentuate the error while maintaining red as the color of the highest error.

The last two figures show our texture based error visualization method. Figure E .l 1
shows the skull data with error mapped to texture transparency. Regions o f high error can
be seen above the ear and proceeding left towards the forehead. Figure E .l2 demonstrates
the use o f texture visualization of error while hue is mapped to another variate. For this
example, we generated a synthetic variate based on polygon normals to demonstrate the
technique. The texture visualized error can be clearly seen even though it interferes
minimally with the accurate visualization o f the synthetic variate.

E.5 Conclusions and future research

Isosurface rendering of multiresolution data is an ideal candidate for including
uncertainty visualization. The incorporation of the uncertainty into the visualization
using color is relatively easy and provides effective feedback about where the
visualization is unreliable without detracting significantly from the data visualization,
especially in areas o f low uncertainty. Texture based visualization o f uncertainty has the
additional benefit o f making the surface color available for the visualization of another
variate. In addition to the MR isosurface renderer we have shown here, we have
incorporated this technique into a system for creating and rendering adaptive resolution
volumes [Laramee02]. Figure E.9 shows a rendering from that system. We intend to
incorporate uncertainty into more complex visualization techniques, such as direct volume
rendering (DVR) and flow visualization.

Figures

Figure E.1. 1283 data; skin isovalue
(0.185);uncertainty disabled

Figure E.2. 643 data; skin isovalue (0.185);
uncertainty disabled

167

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure E.3. 32s data; skin isovalue (0.185);
uncertainty disabled

Figure E.5. 643 data; skin isovalue (0.185);
uncertainty mapped to hue with range (144,0)

Figure E.7. 643 data; skin isovalue (0.185);
uncertainty mapped to hue with range (108,0)

Figure E.4.1283 data; skin isovalue (0.185);
uncertainty mapped to hue with range (144,0)

Figure E.6. 32a data; skin isovalue (0.185);
uncertainty mapped to hue with range (144,0)

s*. <-r

.ifc

Figure E.8. 323 data; skin isovalue (0.185);
uncertainty mapped to hue with range (108,0)

168

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure E.9. 5% AR Data; bone isovalue
(0.378); uncertainty mapped to hue with range
(144,0)

Figure E.11. Error mapped to texture opacity
over a constant hue.

169

Figure E.10.
a) Varying hue only..
b)Texture ofincreasing opacity over
constant hue.
c) Texture of increasing opacity over
varying hue

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure E .12. Error m apped to opacity over a h ue m apped to a synthetic

170

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission

BIBLIOGRAPHY

[AHRE95] James P. Ahrens, Charles D. Hansen, "Cost-Effective Data-Parallel Load
Balancing", Technical Report TR-95-04-02, University of Washington, Seattle,
1995

[Albers98] S. Albers, N. Garg and S. Leonardi, Minimizing Stall Time in Single and
Parallel Disk Systems, Proceedings o f the 30th Annual ACM Symposium on
Theory o f Computing, pp. 454-462, 1998

[Amer02] A. Amer, D. Long, and R. Bums. Group-Based Management of
Distributed File Caches. In Proceedings o f the 17th International Conference on
Distributed Computing Systems, 2002

[BABC94] C. Babcock, "Parallel Processing Mines Retail Data", Computer World,
1994

[Bhaniramka02] P. Bhaniramka, Y. Demange, OpenGL Volumizer: A Toolkit for High
Quality Volume Rendering of Large Data Sets, Proc. Volume Visualization and
Graphics Symposium 2002.

[BERG89] R. Daniel Bergeron, Georges G. Grinstein, A Reference Model for the
Visualization of Multi-Dimensional Data, Eurographics ‘89, Elsevier Science
Publishers, North Holland, 1989

[BERG93] R. Daniel Bergeron, William Cody, William Hibbard, David T. Kao,
Kristina D. Miceli, Lloyd A. Treinish, Sandra Walther, "Database Issues for Data
Visualization: Developing a Data Model", Database Issues for Data Visualization,
Proceedings o f the IEEE Visualization ‘93 Workshop (LNCS 871), Springer,
Berlin, 1993

[Bhanarimka02], P. Bhaniramka, Y. Demange, OpenGL Volumizer: A Toolkit for High
Quality Volume Rendering of Large Data Sets, Proc. Volume Visualization and
Graphics Symposium 2002.

171

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[BICK96] Barbara Bicking, Russell East, "Towards Dynamically Integrating Spatial
Data And Its Metadata", First IEEE Metadata Conference, IEEE, Los Alamitos,
CA, 1996

[BoadaOlJBoada, I., I. Navazo, and R. Scopigno, “Multiresolution Volume Visualization
with a texture-based octree”, The Visual Computer (2001), 17:185-197, Springer-
Verlag2001

[Cabral94] Cabral, B., N. Cam, and J. Foran, “Accelerated Volume Rendering and
Tomographic Reconstruction Using Texture Mapping Hardware”, Proceedings o f
the 1994 Symposium on Volume Visualization, pp. 91-98

[Cao96] P. Cao and E. Felten, Implementation and Performance of Integrated
Application-Controlled File Caching, Prefetching, and Disk Scheduling, ACM
Transactions on Computer Systems, vol. 14, No. 4, 1996

[CATHR097] Warwick Cathro, "Metadata: An Overview", Standards Australia
Seminar, National Library of Australia, 1997

[CediOO] Cedilnik, A. and P. Rheingans, "Procedure Annotation of Uncertain
Information", Proceedings o f IEEE Visualization ‘2000, October 2000, pp. 77-83.

[CHAM96] Bradford Chamberlain, Tony DeRose, Dani Lischinski, David Salesin,
John Snyder, "Fast Rendering of Complex Environments Using a Spatial
Hierarchy", Proceedings o f Graphics Interface '96, Toronto, 1996

[CChangOO] Chialin Chang, Tahsin Kmc, Alan Sussman, Joel Saltz, Optimizing
Retrieval and Processing of Multi-dimensional Scientific Datasets, In Proceedings
o f the Third Merged IPPS/SPDP Symposiums. IEEE Computer Society Press,
May 2000

[CChangADR] Chialin Chang, Tahsin Kurc, Alan Sussman, Joel Saltz, Active Data
Repository Software User Manual, http://www.cs.umd.edu/
projects/hpsl/ResearchAreas/ADR-dist/ADR.htm

[CDF] The CDF Webpage: http://nssdc.gsfc.nasa.gov/cdf/cdf_home.html

[ChangOl] F. Chang, Using Speculative Execution to Automatically Hide I/O Latency, Ph.
D. Dissertation, Carnegie Mellon University, 2001

172

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.cs.umd.edu/
http://nssdc.gsfc.nasa.gov/cdf/cdf_home.html

[CIGN094] Paolo Cignoni, Leila De Floriani, Claudio Montani, Enrico Puppo, and
Roberto Scopigno, "Multiresolution Modeling and Visualization of Volume Data
Based on Simplicial Complexes", Proceedings ACM Symposium on Volume
Visualization'94, ACM, Washington, DC, 1994

[CIGN097] Paolo Cignoni, Claudio Montani, Enrico Puppo, Roberto Scopigno,
"Multiresolution Representation and Visualization of Volume Data", IEEE
Transactions on Visualization and Computer Graphics, Volume 3, No. 4, IEEE,
Los Alamitos, CA, 1997

[CIGN098] P. Cignoni, C. Rocchini and R. Scopigno, "Metro: Measuring Error on
Simplified Surfaces", Computer Graphics Forum, Vol. 17, No. 2, Blackwell
Publishers, Oxford, UK, 1998

[CLEARY96] John Cleary, Geoffrey Holmes, Sally Jo Cunningham , and Ian H. Witten,
"MetaData for Database Mining",
http://www.computer.org/conferen/meta96/holmes/DataBaseMining.html, IEEE,
Los Alamitos, CA, 1996

[Coughlin] Coughlin, Thomas, High Density Hard Disk Drive Trends in the USA, tech
report at http://www.tomcoughlin.com /techpapers.htm

[DEBE98] Mark de Berg, Katrin T. G. Dobrindt, "On Levels of Detail in Terrains",
Graphical Models and Image Processing 60:1—12, Academic Press, San Diego,
CA, 1998

[Ellis04] Ellis, Loma, CDF and Granite: A Comparison, Technical Report, Department of
Computer Science, University of New Hampshire, 2004

[ESTE97] Martin Ester, Hans-Peter Kriegel, Jorg Sander, "Spatial Data Mining: A
Database Approach", Advances in Spatial Databases, Proceedings o f 5th Int 7
Symposium SSD LNCS1262, Springer, Berlin, 1997

[FAYYA96] Usama M. Fayyad, Gregory Pietetsky-Shapiro, Padhraic Smyth, "From
Data Mining to Knowledge Discovery: An Overview (Chapter 1)", Advances in
Knowledge Discovery and Data Mining (book), AAAI Press/MIT Press, Menlo
Park, 1996

[FDW96] Usama M. Fayyad, S. George Djorgovski, and Nicholas Weir,
"Automating the Analysis and Cataloging of Sky Surveys", Advances in
Knowledge Discovery and Data Mining (book), AAAI Press/MIT Press, Menlo
Park, 1996

173

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.computer.org/conferen/meta96/holmes/DataBaseMining.html
http://www.tomcoughlin.com

[FOOTE95] Kenneth E. Foote, Donald J. Huebner, "Error, Accuracy, and Precision",
http://wwwhost. cc. utexas. edu/ftp/pub/grg/gcraft/notes/error/error. html, University
o f Texas, Austin, 1995

[Fomey02] Brian C. Forney, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,
Storage-Aware Caching: Revisiting Caching for Heterogeneous Storage Systems,
First USENIX Conference on File and Storage Technologies (FAST'02),
Monterey, CA, USA, January 2002.

[GAEDE98] Volker Gaede, Oliver Gunther, "Multidimensional Access Methods", ACM
Computing Surveys, Vol. 30, No. 2, ACM, New York, 1998

[G14java] gl4java home page,
http: //www.j ausoft. com/gl4j ava.html

[Griffioen94] J. Griffioen and R. Appleton, Reducing File System Latency Using A
Predictive Approach, University o f Kentucky Technical Report #CS247-94

[Guan94] Guan, S., R. Lipes, “Innovative Volume Rendering Using 3D Texture
Mapping”, Proceedings Medical Imaging, vol. 2164, 1994, pp. 382-392

[HANS93] Charles Hansen, Stephen Tenbrink, "The Impact of Gigabit Network
Research on Scientific Visualization", The Visual Computer, Vol. 9, No. 6, 1993

[HART94] Ami Harten, "Multiresolution Representation and Numerical Algorithms:
A Brief Review", NASA Contractor Report 194949, ICASE, Hampton, VA, 1994

[HECK97] Paul S. Heckbert, Michael Garland, "Survey of Polygonal Surface
Simplification Algorithms", Technical Report at http://www.cs.cmu.edu/~ph,
Carnegie Mellon University, Pittsburgh, 1997

[Hibb92] Hibbard, W.L., C.R. Dyer, and B.E.Paul, “Display of Scientific Data
Structures for Algorithm Visualization”, Proc. o f IEEE Visualization ‘92, October
1992, IEEE Computer Society Press

[HIBB94] W.L. Hibbard, C.R. Dyer, and B.E.Paul, "A Lattice Model for Data
Display", Proceedings of IEEE Visualization ‘94, IEEE, Washington, DC, 1994

[HIBB95] W.L. Hibbard, D.T. Kao, and A. Wierse, "Database Issues for Data
Visualization: Scientific Data Modeling", Database Issues for Data Visualization,
Proc. IEEE Visualization ‘95 Workshop, LNCS 1183, Springer, Berlin, 1995

174

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://wwwhost
http://www.j
http://www.cs.cmu.edu/~ph

[Highley02] T. Highley, P. Reynolds and V. Vellanki, Absolute Cost-Benefit Analysis for
Predictive File Prefetching, University o f Virginia Technical Report #CS200211

[Highley03] T. Highley and P. Reynolds, Marginal Cost-Benefit Analysis for Predictive
File Prefetching, Proceedings o f the 41stAnuual ACM Southeast Conference
(ACMSE 2003), Savannah, GA

[HOPPE96] H. Hoppe, "Progressive Meshes", ACM Computer Graphics
Proceedings, Annual Conference Series, (S1GGRAPH ‘96), IEEE, Los Alamitos,
CA, 1996

[Hunt93] Hunter, G. and M. Goodchild, “Managing Uncertainty in Spatial
Databases: Putting Theory into Practice”, UR1SA J., v. 5, no. 2 (1993), pp. 55-62.

[Jiang02] Jiang, Feng, Implementation and Performance Evaluation of Block-Oriented
Adaptive Resolution for Multisource Scientific Datasets, M aster’s Thesis,
Department o f Computer Science, University of New Hamphsire, 2002

[JUFFS98] Philip Juffs, Edwin Beggs, Farzin Deravi, "A Multiresolution Distance
Measure for Images", IEEE Signal Processing Letters, Volume 5, No. 6, IEEE
Computer Society Press, Los Alamitos, CA, 1998

[KA093] David T. Kao, R. Daniel Bergeron, Ted M. Sparr, "An Extended Schema
Model for Scientific Data", Database Issues for Data Visualization, Proceedings
o f the IEEE Visualization ‘93 Workshop (LNCS 871), Springer, Berlin, 1993

[KA097] David T. Kao, A Metric-Based Scientific Data Model for Knowledge
Discovery, Ph.D. Thesis, University of New Hampshire, Durham, 1997

[KAPET95] Epaminondas Kapetanios, Ralf Kramer, "A Knowledge-Based System
Approach for Scientific Data Analysis and the Notion of Metadata", Proceedings
o f the 14th IEEE Symposium on Mass Storage Systems, IEEE Computer Society
Press, Los Alamitos, CA, 1995

[LaMar99] La Mar, Eric., Bemdt. Hamann, Kenneth. Joy, “Multiresolution
Techniques for Interactive Texture-Based Volume Visualization”, Proceedings
IEEE Visualization, 1999, pp. 355-362

[Laramee02] R.S. Laramee and R. D.Bergeron. “An IsoSurface Continuity Algorithm
for Super Adaptive Resolution Data”, Advances in Modelling, Animation, and
Rendering: Computer Graphics International (CGI) 2002 Conference Proc., John
Vince and Rae Eamshaw editors, pages 215-237, 3-5 July 2002, Bradford, UK

175

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

[LATTU95] Roberto Lattuada, Jonathan Raper, "Applications o f 3D Delaunay
Triangulation Algorithms in Geoscientific Modelling", Presented at GISRUK ‘95
(http://www. iah. bbsrc. ac. uk/gis/gisruk.95 .ps), 1995

[LEIGH92] F. Thomson Leighton, Introduction to Parallel Algorithms and
Architectures: Arrays, Trees, Hypercubes, Morgan Kaufmann, San Mateo, CA,
1992

[LI98] Zuotao Li, Sean Wang, Menas Kafatos, Ruixin Yang, "A Pyramid Data Model for
Supporting Content-based Browsing and Knowledge Discovery", Proceedings o f
Tenth International Conference on Scientific and Statistical Databases, IEEE
Computer Society Press, Los Alamitos, CA, 1998

[LIN95] Chengjiang Lin, Sanli Li, "Strategy and Simulation of Adaptive RID for
Distributed Dynamic Load Balancing in Parallel Systems", Chinese Journal o f
Computers, Vol.18, No.10, 1995

[Lodh96a]Lodha, S.K., C.M. Wilson and R.E. Sheehan, “LISTEN: Sounding Uncertainty
Visualization”, Proc. IEEE Visualization ’96, 1996, pp. 189-195.

[Lodh96b] Lodha, S.K., A. Pang, R.E. Sheehan and C.M. Wittenbrink, “UFLOW:
Visualizing Uncertainty in Fluid Flow”, Proc. IEEE Visualization ’96, IEEE
Computer Society Press, 1996, pp. 249-254.

[LOUNS97] Michael Lounsbery, Tony DeRose, Joe Warren, "Multiresolution
Analysis for Surfaces o f Arbitrary Topological Type", ACM Transactions on
Graphics, Volume 16, No. 1, ACM, New York, 1997

[Madhyastha96] Madhyastha, T. M., Elford, C. L., and Reed, D. A, Optimizing
Input/Output Using Adaptive File System Policies, In Fifth NASA Goddard
Conference on Mass Storage Systems and Technologies, September 1996

[Madhyastha97] Madhyastha, T. M., and Reed, D. A, Input/Output Access Pattern
Classification Using Hidden Markov Models, In Workshop on Input/Output in
Parallel and Distributed Systems, November 1997, pp. 57-67.

[Mitchell02] Design and Prototype of a Metadata Model for Multsource Scientific
Datasources, Master’s Thesis, Department of Computer Science, University o f
New Hamphsire, 2002

176

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

http://www

[MoreOO] Sachin More, Alok Choudhary, Tertiary Storage Organization for Large
Multidimensional Datasets, 8th NASA Goddard Space Flight Center Conference
on Mass Storage Systems and Technologies and 17th IEEE Symposium on Mass
Storage Systems, 2000

[Nadeau] David R. Nadeau, An Architecture for Large Multi-Dimensional Data
Management, Scalable Visualization Tools White Paper, http://vistools.npaci.edu/

[NAKAN097] Aiichiro Nakano, Timothy Campbell, "An adaptive curvilinear-coordinate
approach to dynamic load balancing of parallel multiresolution molecular
dynamics", Parallel Computing, Vol. 23, pp. 1461-1478, Elsevier, North Holland,
1997

[NIHVH] Website at http://www.nlm.nih.gov/research/visible/visible_human.html

[OLAP] "OLAP Glossary", http://www.olapcouncil.org/research/glossaryly.htm, The
OLAP Council

[Pang94] Pang, A., J. Furman and W. Nuss, “Data Quality Issues in Visualization”, SPIE
Vol. 2178: Visual Data Exploration and Analysis, Feb. 1994

[Patterson95] Patterson, R.H., Gibson, G. A., Ginting, E., Stodolsky, D., and Zelenka, J.,

Informed Prefetching and Caching. In Proceedings o f the / J th ACM Symposium
on Operating Systems Principles, December 1995, PP. 79-95.

[PFALTZ98] John L. Pfaltz, Russell F. Haddleton, James C. French, "Scalable, Parallel,
Scientific Databases", Proceedings 10th International Conference on Scientific and
Statistical Database Management, IEEE, Los Alamitos, CA, 1998

[RESN98] Richard J. Resnick, Matthew O. Ward, and Elke A. Rundensteiner,
"FED—A Framework for Iterative Data Selection in Exploratory Visualization",
Proceedings o f Tenth International Conference on Scientific and Statistical
Databases, IEEE Computer Society Press, Los Alamitos, CA, 1998

[Sarawagi94] S. Sarawagi, M. Stonebraker, Efficient Organizations of Large
Multidimensional Arrays, Proceedings o f the Tenth International Conference
on Data Engineering, February 1994

[SCVT] Introduction to Scientfic Visualization Tools",
http://scv.bu.edu/SCV/Tutorials/SciVis/input_data.html, Boston University
Scientific Computing and Visualization Group, Boston, 1998

177

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://vistools.npaci.edu/
http://www.nlm.nih.gov/research/visible/visible_human.html
http://www.olapcouncil.org/research/glossaryly.htm
http://scv.bu.edu/SCV/Tutorials/SciVis/input_data.html

[SEAL98] W. Brent Seales, Cheng J. Yuan, Wei Hu, Matthew D. Cutts, "Object
Recognition in Compressed Imagery", Image and Vision Computing 16(1998),
Elsevier, North-Holland, 1998

[SHEN96] Wei-Min Shen, Bing Leng, "A Metapattem-Based Automated Discovery
Loop for Integrated Data Mining— Unsupervised Learning of Relational Patterns",
IEEE Transactions on Knowledge and Data Engineering, Volume 8, No. 6, IEEE
Computer Society Press, Los Alamitos, CA, 1996

[Shen98] Shen, Q. and A.Pang, “Data Level Comparison of Wind Tunnel and
Computational Fluid Dynamics Data”, Proc. IEEE Visualization ’98, IEEE
Computer Society Press, 1998, pp. 415-418.

[SHRAG90] J. Shrager, P. Langley (eds.), Computational Models o f Scientific Discovery
and Theory Formation, Morgan Kaufmann, San Francisco, 1990

[SIMHAD98] Kiran K. Simhadri, S.S. Iyengar, Ronald J. Holyer, Matthew
Lybanon, John M. Zachary, "Wavelet-Based Feature Extraction from
Oceanographic Images", IEEE Transactions on Geoscience and Remote Sensing,
Voume 36, No. 3, IEEE Computer Society Press, Los Alamitos, CA, 1998

[Spar94] Sparr, T. M., R. Daniel Bergeron, L. D. Meeker, “A Visualization-
Based Model for a Scientific Database System”, Focus on Scientific Visualization,
Hagen, Muller and Nielson (eds.), Springer, 1994.

[SPER90] D. Speray, S. Kennon, "Volume Probes: Interactive Data Exploration on
Arbitrary Grids", Computer Graphics, Vol. 24, No. 5, ACM, 1990

[STOLL96] Eric J. Stollnitz, Tony D. DeRose, David H. Salesin, Wavelets for
Computer Graphics: Theory and Applications, Morgan Kaufmann Publishers,
In c ., San Francisco, CA, 1996

[TSICH77] D.C. Tsichritzis, F.H. Lochovsky, Data Base Management Systems,
Academic Press, 1977

[Vellanki99] V. Vellanki and A. Chervenak, A Cost-Benefit Scheme for High Performance
Predictive Prefetching, Proceedings o f Supercomputing ‘99, November 1999

[VisAD] VisAD home page, http://www.ssec.wisc.edu/~billh/visad.html.

[Westover90] K. Westover, Footprint Evaluation for Volume Rendering, Computer
Graphics, vol. 24, 1990, pp. 367-376

178

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.ssec.wisc.edu/~billh/visad.html

[Witt96] Wittenbrink, C.M., A.T. Pang, and S.K. Lodha, “Glyphs for
visualizing uncertainty in vector fields”, IEEE Trans. Vis. Comp. Gr., v. 2, no. 3
(Sep 1996), pp. 266-279.

[WONG95] Pak Chung Wong, R. Daniel Bergeron, "Authenticity Analysis of Wavelet
Approximations in Visualization", Proceedings o f IEEE Visualization ‘95, IEEE
Computer Society Press, Los Alamitos, CA, 1995

[WongOO] Wong, P.C. and R.D. Bergeron, “Performance Evaluation of
Multiresolution Isosurface Rendering”, Proc. Dagstuhl '97 Scientific
Visualization, IEEE Computer Society Press, pp. 332-341, 2000.

[Ye04] Ye, Li, Representation of Adaptive Resolution Rectilinear Cell Data, Master’s
Thesis, Department o f Computer Science, University of New Hamphsire, 2004

179

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Fall 2004

	Granite: A scientific database model and implementation
	Philip J. Rhodes
	Recommended Citation

	tmp.1521741622.pdf.zOQi5

