3,188 research outputs found

    Characterising population variability in brain structure through models of whole-brain structural connectivity

    No full text
    Models of whole-brain connectivity are valuable for understanding neurological function. This thesis seeks to develop an optimal framework for extracting models of whole-brain connectivity from clinically acquired diffusion data. We propose new approaches for studying these models. The aim is to develop techniques which can take models of brain connectivity and use them to identify biomarkers or phenotypes of disease. The models of connectivity are extracted using a standard probabilistic tractography algorithm, modified to assess the structural integrity of tracts, through estimates of white matter anisotropy. Connections are traced between 77 regions of interest, automatically extracted by label propagation from multiple brain atlases followed by classifier fusion. The estimates of tissue integrity for each tract are input as indices in 77x77 ”connectivity” matrices, extracted for large populations of clinical data. These are compared in subsequent studies. To date, most whole-brain connectivity studies have characterised population differences using graph theory techniques. However these can be limited in their ability to pinpoint the locations of differences in the underlying neural anatomy. Therefore, this thesis proposes new techniques. These include a spectral clustering approach for comparing population differences in the clustering properties of weighted brain networks. In addition, machine learning approaches are suggested for the first time. These are particularly advantageous as they allow classification of subjects and extraction of features which best represent the differences between groups. One limitation of the proposed approach is that errors propagate from segmentation and registration steps prior to tractography. This can cumulate in the assignment of false positive connections, where the contribution of these factors may vary across populations, causing the appearance of population differences where there are none. The final contribution of this thesis is therefore to develop a common co-ordinate space approach. This combines probabilistic models of voxel-wise diffusion for each subject into a single probabilistic model of diffusion for the population. This allows tractography to be performed only once, ensuring that there is one model of connectivity. Cross-subject differences can then be identified by mapping individual subjects’ anisotropy data to this model. The approach is used to compare populations separated by age and gender

    Doctor of Philosophy

    Get PDF
    dissertationRecent developments in magnetic resonance imaging (MRI) provide an in vivo and noninvasive tool for studying the human brain. In particular, the detection of anisotropic diffusion in biological tissues provides the foundation for diffusion-weighted imaging (DWI), an MRI modality. This modality opens new opportunities for discoveries of the brain's structural connections. Clinically, DWI is often used to analyze white matter tracts to understand neuropsychiatric disorders and the connectivity of the central nervous system. However, due to imaging time required, DWI used in clinical studies has a low angular resolution. In this dissertation, we aim to accurately track and segment the white matter tracts and estimate more representative models from low angular DWI. We first present a novel geodesic approach to segmentation of white matter tracts from diffusion tensor imaging (DTI), estimated from DWI. Geodesic approaches treat the geometry of brain white matter as a manifold, often using the inverse tensor field as a Riemannian metric. The white matter pathways are then inferred from the resulting geodesics. A serious drawback of current geodesic methods is that geodesics tend to deviate from the major eigenvectors in high-curvature areas in order to achieve the shortest path. We propose a method for learning an adaptive Riemannian metric from the DTI data, where the resulting geodesics more closely follow the principal eigenvector of the diffusion tensors even in high-curvature regions. Using the computed geodesics, we develop an automatic way to compute binary segmentations of the white matter tracts. We demonstrate that our method is robust to noise and results in improved geodesics and segmentations. Then, based on binary segmentations, we present a novel Bayesian approach for fractional segmentation of white matter tracts and simultaneous estimation of a multitensor diffusion model. By incorporating a prior that assumes the tensor fields inside each tract are spatially correlated, we are able to reliably estimate multiple tensor compartments in fiber crossing regions, even with low angular diffusion-weighted imaging. This reduces the effects of partial voluming and achieves a more reliable analysis of diffusion measurements

    Modeling Structural Brain Connectivity

    Get PDF

    Advanced Application of Diffusion Kurtosis Imaging

    Get PDF
    Diffusion tensor imaging (DTI) has become a standard procedure in clinical routine as well as research as it enables the reconstruction and visualization of fiber tracts in the human brain. Due to the simplified assumption the tensor model – a Gaussian distribution of the diffusion – it typically fails to provide neither accurate spatial mapping nor quantification of crossing or kissing fibers. A clinically feasible development might be diffusion kurtosis imaging (DKI), an extension of DTI also integrating non-Gaussian distribution diffusion processes and thereby shall overcome some of its limitations. The potential DKI will be evaluated in case of the detection of the interhemispheric asymmetry of the white matter in healthy volunteers (n = 20), as well as the analysis of tumor-related impairments of fiber tracts and their correlation with neurological deficits in patients (n = 13) diagnosed with glioma. In order to analyze interhemispheric asymmetry across the whole brain, especially of nine large fiber tracts, tract-based spatial statistics (TBSS) analysis was performed using DTI- and DKI-based parameters, a laterality index was calculated for asymmetries and DTI- and DKI-based results were compared. With regard to fractional anisotropy as marker of integrity, asymmetry was found for all nine fiber tracts based on DTI and seven tracts based on DKI. For mean diffusivity, asymmetries were found for three (DTI) and two (DKI) fiber tracts. Regarding mean kurtosis, asymmetry was found in one tract. The interhemispheric asymmetry thereby varied in anatomical location as well as in cluster size. Only small parts of the tracts were affected. A comparison of DTI and DKI showed significantly higher fractional anisotropy and mean diffusivity based on DKI compared to DTI. Gender and handedness did not seem to have any influence. For the assessment of tumor-related changes of fiber tracts in patients diagnosed with glioma, especially in relation to pre-existing and postoperative neurological deficits (hemiparesis, aphasia), templates for the corticospinal tract and the arcuate fasciculus were created based on DTI- and DKI-derived parameters, respectively. The corticospinal tract and the arcuate fasciculus were reconstructed for each patient and the associated parametric maps were projected onto the templates. Based on this, alterations along the tracts could be identified and quantified. Alterations were found on fiber tracts regardless of the spatial proximity to the lesion. There was a correlation between alterations based on fractional anisotropy, mean diffusivity and mean kurtosis. Increased mean diffusivity was associated with alteration in mean kurtosis, a decreased fractional anisotropy was found concurrent with a likewise decreased mean kurtosis. In the case of pre-existing neurological deficits (hemiparesis, aphasia) with regard to the changes along the fiber tracts (corticospinal tract, left arcuate fasciculus), most often increased mean diffusivity and altered mean kurtosis was found. Applying this pattern for prediction of corresponding postoperative neurological deficits a sensitivity of 75.0% and a specificity of 87.5% was achieved. DKI seems to more precisely estimated and depict the underlying microstructure in comparison to DTI. Thereby, in pathological cases especially the mean kurtosis seems to be of special interest. A combination of DTI- and DKI based parameters, particularly with regard to its clinical usability and value, offers great potential in clinical routine

    Multimodal population brain imaging in the UK Biobank prospective epidemiological study

    Get PDF
    Medical imaging has enormous potential for early disease prediction, but is impeded by the difficulty and expense of acquiring data sets before symptom onset. UK Biobank aims to address this problem directly by acquiring high-quality, consistently acquired imaging data from 100,000 predominantly healthy participants, with health outcomes being tracked over the coming decades. The brain imaging includes structural, diffusion and functional modalities. Along with body and cardiac imaging, genetics, lifestyle measures, biological phenotyping and health records, this imaging is expected to enable discovery of imaging markers of a broad range of diseases at their earliest stages, as well as provide unique insight into disease mechanisms. We describe UK Biobank brain imaging and present results derived from the first 5,000 participants' data release. Although this covers just 5% of the ultimate cohort, it has already yielded a rich range of associations between brain imaging and other measures collected by UK Biobank

    Integration of multi-shell diffusion imaging derived metrics in tractography reconstructions of clinical data

    Get PDF
    Tese de mestrado integrado Engenharia Biomédica e Biofísica (Engenharia Clínica e Instrumentação Médica), Universidade de Lisboa, Faculdade de Ciências, 2019Nos últimos anos, com o rápido avanço das técnicas imagiológicas, a oportunidade de mapear o cérebro humano in vivo com uma resolução sem precedentes tornou-se realidade, permanecendo ainda hoje como uma das áreas de maior interesse da neurociência. Sabendo que o movimento natural das moléculas de água nos tecidos biológicos é altamente influenciado pelo ambiente microestrutural envolvente, e que a anisotropia que este processo aleatório assume na matéria branca pode ser explorada com o intuito de inferir características importantes associadas ao tecido neuronal, a ressonância magnética ponderada por difusão (dMRI, do inglês “Diffusion-Weighted Magnetic Resonance Imaging") afirmou-se como a técnica de imagem mais amplamente utilizada para a investigação in vivo e não invasiva da conectividade cerebral. A primeira técnica padrão de dMRI foi a imagiologia por tensor de difusão (DTI, do inglês "Diffusion Tensor Imaging"). Implementada com a capacidade de fornecer sensibilidade à microestrutura do tecido, esta técnica permite extrair informação acerca da tridimensionalidade da distribuição da difusão de moléculas de água através da aplicação de seis gradientes de difusão não colineares entre si. Além da difusividade média (MD, do inglês "Mean Diffusivity"), é também possível extrair outros índices microestruturais, como a anisotropia fraccional (FA, do inglês "Fractional Anisotropy"), que fornece informação acerca da percentagem de difusão anisotrópica num determinado voxel. Ambas as métricas são amplamente utilizadas como medidas de alterações microestruturais, todavia, apesar da sua sensibilidade, estes marcadores não são específicos quanto às características individuais da microestrutura tecidual. Regiões com reduzida FA podem camuflar regiões de conformação de cruzamento de fibras, ou fibras muito anguladas, que a DTI não consegue resolver. A razão para esta limitação reside no número reduzido de diferentes direções de difusão que são exploradas, assim como no pressuposto de que a distribuição das moléculas de água é gaussiana, o que não é necessariamente verdade. De forma alternativa e com o intuito de tais limitações serem ultrapassadas, é possível implementar uma representação matemática do sinal adquirido de forma a explorar o propagador de difusão, da qual a imagiologia por ressonância magnética do propagador aparente médio (MAP-MRI, do inglês “Mean Apparent Propagator Magnetic Resonance Imaging”) é exemplo. Esta técnica analítica caracteriza-se pelo cálculo da função de densidade de probabilidade associada ao deslocamento de spin, o que permite descrever o caráter não-gaussiano do processo de difusão tridimensional e quantificar índices escalares inerentes ao processo de difusão, os quais sublinham as características complexas intrínsecas à microestrutura do tecido. Estes parâmetros incluem o deslocamento médio quadrático (MSD, em inglês “mean square displacement”), a probabilidade de retorno à origem (RTOP, do inglês “return-to-the origin probability”) e suas variantes de difusão em uma e duas dimensões – a probabilidade de retorno ao plano (RTPP, do inglês “return-to-the plane probability”) e a probabilidade de retorno ao eixo (RTAP, do inglês “return-to-the axis probability”), respetivamente. Em resposta às limitações da DTI associadas à falta de especificidade para distinguir características microestruturais dos tecidos, surgiu ainda o modelo de Dispersão de Orientação de Neurite e Imagem de Densidade (NODDI, do inglês “Neurite Orientation Dispersion and Density Imaging”), o qual utiliza o processo de difusão para estimar a morfologia das neurites. Tendo como premissa subjacente que o sinal de difusão pode ser definido pela soma da contribuição dos sinais de diferentes compartimentos, este modelo biofísico diferencia o espaço intra e extracelular o que, por sua vez, permite quantificar a dispersão e densidade das neurites. Deste modo, dois parâmetros intrínsecos à microestrutura envolvente podem ser calculados: a densidade neurítica e o índice de dispersão da orientação das neurites. No entanto, de forma a garantir a viabilidade clínica do modelo, este pode ser aplicado por meio do método AMICO (do inglês “Accelerated Microstructure Imaging via Convex Optimization”) através do seu ajuste linear, o que permite o cálculo do índice de dispersão da orientação das neurites (ODI, do inglês “Orientation Dispersion Index”), da fração de volume intracelular (ICVF do inglês, “Intracellular Volume Fraction”), e da fração de volume isotrópico (ISOVF, do inglês “Isotropic Volume Fraction”). O estudo da configuração arquitetural das estruturas cerebrais in vivo, por meio da dMRI associada aos métodos de tractografia, permitiu a reconstrução não invasiva das fibras neuronais e a exploração da informação direcional inerente às mesmas, sendo que o seu estudo tem revelado uma enorme expansão por meio do estabelecimento de marcadores biológicos perante a presença de diversas condições patológicas. O objetivo principal desta dissertação prende-se com existência de uma variação proeminentenas métricas de difusão ao longo dos tratos de matéria branca no cérebro humano. Atualmente, a maioriados estudos de tractografia tem por base uma abordagem que se resume à análise do valor escalar médio da métrica de difusão para a estrutura cerebral em estudo, pelo que se tem verificado um crescente interesse na utilização de métodos que considerem a extensão da variabilidade nas métricas de difusão ao longo dos tratos de modo a providenciarem um maior nível de detalhe ao nível do processo de difusão, evitando interpretações erróneas dos parâmetros microestruturais. Desta forma, em primeiro lugar, foi desenvolvido uma análise ao longo dos tratos de matéria branca, tendo por base a variação dos valores assumidos pelos parâmetros microestruturais acima mencionados. No presente estudo foi possível demonstrar a eficácia de tal abordagem ao longo de três tratos de matéria de branca (fascículo arqueado, trato corticoespinhal, e corpo caloso), para além de permitir, através da variância assumida pelos diversos parâmetros microestruturais, o estudo detalhado de regiões anatómicas que assumem uma distribuição complexa de múltiplos conjuntos populacionais de fibras, como é o caso do centro semioval, o qual constitui uma região de cruzamento de fibras provenientes dos três tratos de matéria branca em estudo. De seguida, esta técnica foi utilizada com sucesso na identificação de diferenças microestruturais por meio do estudo dos diversos parâmetros de difusão em pacientes com diagnóstico prévio de epilepsia no lobo temporal (TLE, do inglês “Temporal Lobe Epilepsy”), com foco epiléptico localizado no hemisfério esquerdo, e controlos. O estudo do ambiente microestrutural por meio dos múltiplos mapas escalares permitiu averiguar a alteração do processo de difusão e/ou anisotropia, associadas ao efeito fisiopatológico da TLE na organização da matéria branca. Os resultados revelaram diferenças localizadas, as quais se traduziram num aumento da difusividade e redução da anisotropia do processo de difusão ao longo dos tratos em estudo dos pacientes com TLE, sugerindo deste modo uma perda na organização das diversas estruturas anatómicas e a expansão do espaço extracelular face aos controlos. Verificou-se ainda que pacientes com esta condição neurológica sofrem de alterações microestruturais que afetam redes cerebrais em grande escala, envolvendo regiões temporais e extratemporais de ambos os hemisférios. Adicionalmente, aplicada como técnica capaz de investigar padrões de mudança na matéria branca, procedeu-se à realização de um estudo assente na estatística espacial baseada no trato (TBSS, do inglês “Tract-Based Spatial Statistics”). Após a exploração das diversas métricas de difusão, os pacientes com TLE (com lateralização à esquerda) demonstraram alterações no processo de difusão, ilustradas pelos diversos padrões de mudança microestrutural de cada métrica em estudo, concordantes com os resultados anteriormente aferidos pela análise ao longo do trato. Por fim, uma análise baseada em fixel (FBA, do inglês “Fixel-Based Analysis”) foi realizada, a qual permitiu uma análise estatística abrangente de medidas quantitativas da matéria branca, com o intuito de detetar alterações no volume intra-axonal por variação na densidade intra-voxel e/ou reorganização da morfologia macroscópica. Para identificar tais diferenças entre pacientes e controlos, três parâmetros foram considerados: densidade das fibras (FD, do inglês “Fibre Density”), seção transversal do feixe de fibras (FC, do inglês “Fibre-bundle Cross-section”), e densidade de fibras e seção transversal (FDC, do inglês “Fibre Density and Cross-section). Reduções na FD, FC e FDC foram identificadas em pacientes com TLE (com lateralização à esquerda) em comparação com os controlos, o que está de acordo com as mudanças microestruturais que resultam do processo de degeneração que afeta as estruturas de matéria branca com a perda de axónios na presença de uma condição neuropatológica como a TLE. Apesar do resultado final positivo, tendo em conta a meta previamente estabelecida, está aberto o caminho para o seu aperfeiçoamento, tendo em vista as direções futuras que emergem naturalmente desta dissertação. Como exemplo disso, poder-se-á recorrer ao estudo pormenorizado das metodologias técnicas associadas à abordagem apresentada que tem por base a análise das métricas de difusão ao longo dos tratos de matéria branca, uma vez que o desvio padrão associado a cada valor atribuído pelas diversas métricas foi significativo, o que de alguma forma poderá ter influenciado os resultados e, consequentemente, as conclusões deles extraídas, tendo em vista a sua viabilidade enquanto aplicação clínica. Como nota final, gostaria apenas de salientar que a imagiologia por difusão e, em particular, a tractografia têm ainda muito espaço para progredir. A veracidade desta afirmação traduz-se pela existência de uma grande variedade de modelos e algoritmos implementados, bem como de técnicas e metodologias de análise à informação microestrutural retida tendo por base o perfil de difusão que carateriza cada trato em estudo, sem que no entanto, exista consenso na comunidade científica acerca da melhor abordagem a seguir.Diffusion-weighted magnetic resonance imaging (dMRI) is a non-invasive imaging method which has been successfully applied to study white matter (WM) in order to determine physiological information and infer tissue microstructure. The human body is filled with barriers affecting the mobility of molecules and preventing it from being constant in different directions (anisotropic diffusion). In the brain, the sources for this anisotropy arise from dense packing axons and from the myelin sheath that surrounds them. Diffusion Tensor Imaging (DTI) is widely used to extract fibre directions from diffusion data, but it fails in regions containing multiple fibre orientations. The constrained spherical deconvolution technique had been proposed to address this limitation. It provides an estimate of the fibre orientation distribution that is robust to noise whilst preserving angular resolution. As a noninvasive technique that generates a three-dimensional reconstruction of neuronal fibres, tractography is able to map in vivo the human WM based on the reconstruct of the fibre orientations from the diffusion profile. Most of the tractography studies use a “tract-averaged” approach to analysis, however it is well known that there is a prominent variation in diffusion metrics within WM tracts. In this study we address the challenge of defining a microstructural signature taking into account the potentially rich anatomical variation in diffusion metrics along the tracts. Therefore, a workflow to conduct along-tract analysis of WM tracts (namely, arcuate fasciculus, corticospinal and corpus callosum) and integrate not only DTI derived measures, but also more advanced parameters from Mean Apparent Propagator-Magnetic Resonance Imaging (MAP-MRI) and Neurite Orientation Dispersion and Density Imaging (NODDI) model, was developed across healthy controls and patients with Temporal Lobe Epilepsy (TLE). Beyond the true biological variation in diffusion properties along tracts, this technique was applied to show that it allows a more detailed analysis of small regions-of-interest extracted from the tract in order to avoid fibres from WM pathways in the neighbourhood, which might lead to equivocal biological interpretations of the microstructural parameters. Consequently, the along-tract streamline distribution from the centrum semiovale, which is known to be a complex fibre geometry with multiple fibres populations from arcuate fasciculus, corticospinal and corpus callosum, was investigated. Finally, to validate our approach and highlight the strength of this extensible framework, two other methods were implemented in order to support the conclusions derived from the along-tract analysis computed between-groups. Firstly, a tract-based spatial statistics (TBSS) analysis was performed to study the WM change patterns across the whole brain in patients with TLE, and explore the alteration of multiple diffusion metrics. This voxel-based technique provides a powerful and objective method to perform multi-subject comparison, based on voxel-wise statistics of diffusion metrics but simultaneous aiming to minimize the effects of misalignment using a conventional voxel-based analysis method. With this in mind, the results showed increased diffusivity and reduced diffusion anisotropy, suggesting a loss of structural organization and expansion of the extracellular space in the presence of neuropathological condition as TLE. Secondly, the fixel-based analysis (FBA) was performed allowing a comprehensive statistical analysis of WM quantitative measures in order to have access to changes that may result within WM tracts in the presence of TLE. The microstructural/macrostructural changes in WM tracts of TLE patients were observed in temporal and extratemporal regions of both hemispheres, which agrees with the concept that epilepsy is a network disorder
    corecore