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1 Introduction 

1.1 Diffusion-weighted imaging and diffusion tensor imaging 

Diffusion tensor imaging (DTI) is commonly used in neurosurgery and neuroscience 

because of its capability to reconstruct white matter fiber tracts in the brain. Visualization 

of these reconstructed tracts can help guide neurosurgical procedures in order to preserve 

neurological functions. White matter fibers can be divided into three groups – projection 

fibers, association fibers and commissural fibers – based on location and function. These 

groups are bunches of fiber tracts travelling along different pathways and connecting to 

different regions. Therefore, they can be more finely divided into smaller bundles that go 

in similar directions and serve similar functions. The study of specific tracts can lead to a 

deeper understanding of their functions.  

In 1827, Robert Brown discovered the motion of particles in liquid or gas, known as 

Brownian motion. In 1905 Einstein published ‘Investigations on the Theory of the 

Brownian Movement’ and proposed an equation to measure the diffusivity of molecules 

under free conditions. Diffusivity can be affected by such factors as temperature, the 

viscosity of the medium, and molecular size. Isotropic diffusion is found in a homogenous 

environment, which means that water molecules move randomly, and their displacement 

demonstrates a Gaussian distribution that always follows Einstein’s mathematical 

description of Brownian motion. However, free diffusion is hindered or restricted under 

heterogeneous circumstances, which means that water molecules no longer move in 

random directions, resulting in anisotropic diffusion.  

Due to tissue heterogeneity in the brain, such as myelinated axons as a major constraint, 

the diffusion of water molecules is unlikely to be isotropic. According to Douek (Douek 

et al., 1991), the diffusion of water molecules is faster in directions parallel to white matter 

fibers and slower in directions perpendicular to them, and therefore anisotropic. 

Diffusion-weighted imaging (DWI) allows for the measurement of diffusion and can be 

used as an indirect measurement of structural parameters. 
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In 1965, pulsed gradients were introduced into the basic spin echo sequence by Stejskal 

and Tanner. With the insertion of Stejskal–Tanner formula, an improved system that 

correlated the diffusion coefficient with the nuclear magnetic resonance (NMR) signal 

was established with a much higher sensitivity to accommodate the diffusion effect. This 

was the first time diffusion-weighted sequences were properly described. DWI works by 

using water molecules as a tracer and measuring its diffusion parameters in diffusion 

directions. With the development of echo-planar imaging (EPI) in the 1990s, which is 

faster and solves the problem of motion artifacts, DWI was established for clinical 

imaging.  

Diffusion is a three-dimensional phenomenon and can be influenced by many factors in 

a microstructural environment, thus behaving differently when parallel or perpendicular 

to fiber tracts. Therefore, the directionality and orientation of fiber tracts can be traced, 

and the visualization quantification of white matter fiber tracts are made possible based 

on this principle. 1994, Peter Basser first proposed the use of diffusion tensor imaging 

(DTI), which made the description of anisotropic diffusion of water molecules possible 

(Basser et al., 1994a).  

1.2 Diffusion models based on Gaussian distribution and 

limitations 

DWI allows the visualization of water diffusion in a particular direction. Prior to 

measuring anisotropic diffusion, determining the orientation of axons was essential. 

Therefore, a tensor formalism that depicted fiber tract orientation was needed. DTI is the 

most commonly used model that allows a description of the diffusion parameters based 

on a Gaussian distribution. It is a 3×3 covariance matrix. At least six diffusion measures 

are necessary to construct the tensor mathematically, and the diffusion parameters are 

defined as three eigenvectors and three eigenvalues. The three eigenvectors are 

orthogonal to each other, and eigenvalues represent diffusivity along these three 

eigenvectors. With three eigenvectors and three eigenvalues, an ellipsoidal model is 
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defined. The ellipsoid represents diffusion probability, and a three-dimensional tensor 

model is estimated in which the principal eigenvector is regarded as being along the axis 

of fiber tracts. This tensor illustrates anisotropic diffusion and is often interpreted as the 

presence of an axon along the tensor orientation. Information stored in DTI is usually 

represented as simpler scalar maps. The frequently used parameters of DTI are fractional 

anisotropy (FA) and mean diffusivity (MD). MD is a parameter that measures average 

diffusion properties, or in other words, the average of eigenvalues over three orthogonal 

directions. FA is calculated based on the equation described by Basser and Pierpaoli 

(Koay et al., 2006) as follows: . As FA and MD are well-

established diffusion-tensor-based metrics known to describe a Gaussian distribution of 

water molecules and represent diffusion capability, they are often used to evaluate 

asymmetry in microstructures (Basser et al., 1994b).  

Tractography can be performed based on DTI data to achieve the three-dimensional 

reconstruction of fiber tracts. The principal eigenvector suggests that the fiber tracts are 

heading in one particular direction, and by following the direction of the principal 

eigenvector successively, a long connection between one part of the brain and another is 

visualized. 

With its feasibility in probing microstructure, DTI is routinely applied in clinical practice 

as well as research. DTI has been implemented in numerous studies for its capability to 

detect abnormalities in white matter that might not be visible on conventional magnetic 

resonance imaging (MRI). This includes neurological diseases like multiple sclerosis 

(Inglese and Bester, 2010), lateralization (Barrick et al., 2007; Sreedharan et al., 2015), 

aging and development (Falangola et al., 2008), psychiatry diseases like autism (Kubicki 

et al., 2007), and others. 

Although a deeper, profound understanding of the brain has been achieved thanks to DTI 

– based as it is on the premise of Gaussian distribution – it is not without limitations 

(Chanraud et al., 2010). As Gaussian distribution is assumed in a homogeneous medium 

and describes the normative distribution of a given population, it can be problematic in 
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such a complex biological environment as the brain. Heterogeneity of the microstructural 

environment can cause deviation from a Gaussian distribution. Assuming there can only 

be one single fiber population within one voxel is an unavoidable limitation of DTI. In 

fact, about one third of the image voxels in the brain contain multiple fibers (Behrens et 

al., 2007). Based on this single fiber assumption, errors occur in voxels with multiple 

fiber populations, and false connections might be presented. 

But the diffusion tensor model is just one possible model to describe the diffusion in a 

given voxel. There are also other models. Le Bihan proposed the concept of intra-voxel 

incoherent motions, in which he illustrated the incapability of the monoexponential model 

to conclude various types of diffusions of components in the human body, such as 

perfusion and diffusion, and therefore established a biexponential model (Le Bihan et al., 

1986). In this model, he took a step forward and found that the quality of an image was 

more determined by perfusion when the b value was low, while the effect of true diffusion 

of water molecules was more significant when the b value was high (Le Bihan et al., 

1988). Because the components in the human body are so complex, even the 

biexponential model failed to meet the requirements. Consequently, Yablonskiy proposed 

another model, called the stretched exponential (Yablonskiy et al., 2003). These three 

models are all based on the same premise that diffusion in the human body follows 

Gaussian diffusion, thus the inability to resolve multiple diffusion directions is inherent 

to models based on Gaussian distribution. 

1.3 Diffusion Kurtosis and model-independent extensions of 

diffusion-weighted imaging 

There are other extensions of DWI that try to solve the problem of multidirectional 

diffusion.  

Diffusion spectrum imaging (DSI), or q-space imaging, is a model-independent method 

that attempts to solve the fiber crossing confoundment without the need to assume a single 

diffusion direction (Tuch et al., 2003). With this method, direct measurement of the three-
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dimensional diffusion function within each voxel becomes possible because the diffusion 

signal is converted into a diffusion function by Fourier transformation. But it cannot avoid 

two limitations. One is that Fourier transformation requires a very short duration time and 

high gradient amplitude – for the acquisition of an accurate Brownian displacement – of 

which many clinical MRI scanners are incapable. The other is that a large amount of data 

is needed for DSI, therefore considerably increasing acquisition time. 

Q-ball imaging (QBI) is more efficient than DSI and was designed to overcome the time-

consuming disadvantage of DSI while still maintaining the capability to probe 

microstructure without modelling. Compared to DSI sampling q-space on a complete 

three-dimensional q-space trajectory, QBI converts q-space to a sphere with sufficient 

diameter, which is termed a q-ball. These q-balls are models of diffusion density in many 

orientations, and their peaks are interpreted as the presence of fibers. This is also true for 

fiber crossings, where q-balls can adequately represent two or more preferential diffusion 

orientations. However, diffusion density models such as q-balls are inflated relative to 

underlying anatomical fiber tracts. The idea is that every voxel’s diffusion orientation 

density is comprised of signals originating from one or more fiber tract(s) at different 

orientations and scales. Problematically, these inflated models are poor at distinguishing 

fiber tracts crossing at close angles. This situation can cause errors when determining 

where axons are, for example, estimating two separate tracts into one single bundle. To 

improve this, fiber orientation density is measured, instead of diffusion orientation density, 

as it is less likely to suffer from inflated models.  

Due to the complexity of intracellular and extracellular environments such as myelin 

sheaths and organelles, brain tissue is far from an ideal example of homogenous liquid. 

Gaussian distribution is therefore not in accordance with realistic situations, indicating 

that a displacement of probability diffusions can appear, and diffusion can consequently 

deviate from a Gaussian form (Karger, 1985), whereas non-Gaussian distribution is more 

likely to occur in biological tissue (Tuch et al., 2003). 

Compared with the above techniques, the concept of diffusion kurtosis imaging (DKI) 
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was originally proposed by Jensen in 2005, which quantifies deviation from Gaussian 

behavior by applying a dimensionless metric called excess kurtosis (Jensen et al., 2005b). 

Kurtosis is used to show how peaky this distribution is, and it reflects heterogeneity in 

the tissue environment. The relationship between DTI and DKI is shown as 

, where Dapp and Kapp mean apparent diffusion 

coefficient and apparent diffusional kurtosis, respectively. It takes one step further based 

on the DTI model; it still does an adequate job even though DTI is unable to demonstrate 

finer connections. With an additional, modestly increased b value, the excess diffusional 

kurtosis can be approximately determined and thus enable convenient clinical use. 

Accordingly, about 2000 s/mm2 is needed for the maximum additional b value besides the 

normally used b values 0 s/mm2 and 1000 s/mm2 in DTI. Furthermore, the DKI model is 

found to be capable of resolving fiber crossings by calculating orientation distribution 

function (ODF) based on diffusion kurtosis approximation of the diffusion signal (Lazar 

et al., 2008). 

Instead of seeking to estimate the full diffusion displacement probability distribution, 

DKI estimates only the kurtosis in addition to other diffusion coefficients. DKI is not as 

demanding in scanning time and gradient strength as DSI and QBI, which enables the 

application of DKI to the clinical routine. 

1.4 Objectives of the study 

DTI has been widely used to study the integrity of white matter tracts of healthy brains 

as well as various neurological disorders. On the one hand, enormous studies on 

interhemispheric asymmetry using DTI have been reported on both healthy people 

(Buchel et al., 2004; Park et al., 2004; Wilde et al., 2009) and patients with neurological 

dysfunction (Park et al., 2004; Zhou et al., 2018). Various regions have been found to 

present interhemispheric asymmetry under physiological or pathological conditions. 

However, image voxels in these regions are likely to contain multiple fibers – and DTI is 

incapable of resolving crossing or kissing fibers within one voxel. As a result, regions 
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with dense fiber populations previously found to demonstrate interhemispheric 

asymmetry might not have actually done so. On the other hand, lesions of white matter 

in the brain can result in microscopic changes in structure as well as affect surrounding 

regions. Water molecules in these regions are inevitably affected by pathological changes. 

In order to probe heterogeneous microstructure, a technique with higher sensitivity than 

DTI is needed. DKI, as an extension of DTI, characterizes the non-Gaussian random 

motion of water molecules (Jensen and Helpern, 2010). It has been mostly used for glioma 

grading. Histograms based on DKI differed significantly between grade II and grade III 

glioma (Delgado et al., 2017), and DKI also demonstrated feasibility in differentiating 

low-grade (grade II) from high-grade (grade III and IV) gliomas (Van Cauter et al., 2012; 

Bai et al., 2016; Falk Delgado et al., 2018). Much less effort is invested in detecting the 

status of fiber tracts with important functions, such as corticospinal tract (CST) and 

arcuate fasciculus (AF), which are correlated with patients’ prognosis and quality of life. 

As DKI has proved its feasibility regarding glioma, it may also be effective in detecting 

changes in CST and AF on glioma patients.  

The application of DKI to either healthy volunteers or glioma patients has not been fully 

explored. To the best of our knowledge, DKI has not yet been utilized in detecting 

interhemispheric asymmetry using tract-based spatial statistics (TBSS), neither has its 

potential predictive value for outcomes of hemiparesis and aphasia in high-grade glioma 

patients been evaluated. With the advantage of increased sensitivity to microstructure as 

compared to DTI, DKI could also be implemented in research on the topics of white 

matter mentioned above.  

In order to explore the advanced application of DKI, our study is divided into two parts, 

the application of DKI in interhemispheric asymmetry and the application of DKI in high-

grade glioma, respectively. 

1.4.1 Application of DKI in interhemispheric asymmetry 

Even though both hemispheres of the brain share a similar appearance, they are actually 
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asymmetrical. But it was not until the 19th century that the direct evidence of this was 

found by Broca and Wernicke after noticing that speech deficits were more likely to occur 

with damage to the left hemisphere of the brain. In the 1960s, a group of patients 

underwent forebrain commissure resections in order to cure epilepsy, and this opened up 

the possibility for researchers to analyze functions of the cerebral hemispheres 

independently. More and more functions related to either the left or the right hemispheres 

were reported in unilateral brain injury cases. Afterwards, the split-brain operation was 

made possible with drugs and surgery in order to achieve a deeper understanding of 

cerebral asymmetry. 

With the development of technology, evidence for cerebral asymmetry is now more 

focused on brain imaging. To date, hemispheric dominance is reported by previous studies 

to correlate with various functions. For example, visual–spatial processing was dominated 

by the right hemisphere for most people (Vogel et al., 2003), and language processing 

dominated by the left hemisphere (Bethmann et al., 2007). Many regions that revealed 

so-called structural interhemispheric asymmetry have also been reported, mostly the left 

occipital (Chiu and Damasio, 1980), right frontal (LeMay, 1977), and left planum 

temporale regions (Shapleske et al., 1999). This problem was traditionally addressed by 

detecting volumes or shapes of specific regions the brain’s grey matter by researchers 

(Luders et al., 2004).  

By now, neuroanatomical asymmetry has long been reported to be associated with 

functional lateralization, not only in the grey matter (Amunts et al., 2000; Toga and 

Thompson, 2003) but also in the white matter that connects the hemispheres (Beaton, 

1997), especially based on the detection from DTI (Buchel et al., 2004; Park et al., 2004; 

Takao et al., 2011; Shu et al., 2015; Angstmann et al., 2016; Gomez-Gastiasoro et al., 

2019). 

About a decade ago, the correlation between asymmetry of white matter fibers and 

behavioral lateralization was less known, contrary to specific regions of the brain. It was 

not until 2007 that Barrick and his colleagues detected two asymmetric white matter 
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pathways based on DTI for the first time (Barrick et al., 2007). Since then, several studies 

have investigated the interaction between handedness and asymmetry in specific fiber 

tracts, such as the corticospinal tract (Westerhausen et al., 2007; Li et al., 2010; Seizeur 

et al., 2014) and cingulum bundle (Gong et al., 2005a). White matter asymmetry was not 

only found in healthy human brains (Cao et al., 2003; Glasser and Rilling, 2008; Thiebaut 

de Schotten et al., 2011), but also in brains burdened by neurological disorder (Kubicki 

et al., 2002; Wang et al., 2004). 

Some factors like aging and gender have also been reported to affect lateralization 

(Kansaku et al., 2000; Yu et al., 2014; Agcaoglu et al., 2015), but other studies showed 

these findings controversial (Gong et al., 2005b; Westerhausen et al., 2007; Takao et al., 

2011). 

Based on previous studies, the CST, cingulum bundle (CB), inferior fronto-occipital 

fasciculus (IFOF), inferior and superior longitudinal fasciculus (ILF and SLF), corpus 

callosum, and the uncinate fasciculus (UF) are the most popular targets for research on 

white matter asymmetry. Therefore, all these pathways were analyzed in the first part of 

this study in order to determine the asymmetric white matter regions in healthy subjects. 

The anterior thalamic radiation (ATR), as one of the largest fiber tracts in the white matter, 

was also analyzed because few studies have looked into asymmetry in this fiber bundle. 

The application of DKI to detecting interhemispheric asymmetry was performed using 

TBSS on both DTI- and DKI-based parametric maps. TBSS analysis allows DTI- and 

DKI-based parametric maps to be directly compared and their performances in detecting 

interhemispheric asymmetry to be evaluated. Factors like handedness and gender were 

also evaluated for their effect on interhemispheric asymmetry.  

1.4.2 Application of DKI in glioma 

Gliomas are the most frequent brain malignancies and account for 70% of malignant 

primary brain tumors in adults, of which the annual incidence is six cases per 100,000. 

Among them, grade III and IV gliomas are regarded as high-grade gliomas. Median 
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survival for patients with grade III astrocytoma was expected to be three years in one 

study (Keles et al., 2006) and 24 months in another (Dong et al., 2016), respectively, while 

that of glioblastoma was reported to be only 15 months with a combination of 

temozolomide and radiotherapy (Stupp et al., 2009). Neither of these components of high-

grade glioma has shown satisfactory overall survival. But in other studies, 416 patients 

with primary or recurrent glioblastoma were reported to benefit from the extent of 

resection (EOR), and overall survival was extended by 4.2 months (Yong and Lonser, 

2011). In another study, mean survival for 135 glioblastoma patients with EOR ≥ 98% 

was 14 months compared to 9 months with EOR < 98% (Kuhnt et al., 2011). EOR was 

found to be correlated with a better outcome in glioma patients (Pope and Brandal, 2018). 

The health-related quality of life for glioma patients can also be improved by surgery 

(Dirven et al., 2014).  

But EOR in areas involved with functional tracts like the CST and AF remains a great 

challenge to neurosurgeons in the uncertainty of predicting postoperative motor or 

language function. Though the use of a gadolinium-based contrast agent in T1 contrast-

enhanced imaging greatly assists in detecting the assumed boundaries of a tumor with a 

compromised blood–brain barrier, it does not aim at measuring tumor activity specifically. 

To make up for the limitation on conventional MRI techniques, such as T1 contrast-

enhanced images, more advanced MRI techniques are needed. For example, DWI is often 

applied as a complementary tool because changes in cellular density due to the presence 

of a tumor or neoplasm can also change the diffusion of water molecules, especially in 

patients with high-grade glioma (Dhermain et al., 2010; Pope and Brandal, 2018). In the 

microstructural environment, a tumor core with increased cellularity results in a more 

limited extra-cellular space that presents a lower apparent diffusion coefficient (ADC); 

consequently, ADC reflects cellularity indirectly.  

To lessen the tumor burden, as well as to preserve vital functions, is the goal of modern 

glioma surgery. Even grossly abnormal-appearing fibers in tumor masses were found to 

retain functionality to some extent through intraoperative subcortical mapping (Ojemann 
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et al., 1996; Bello et al., 2008). Preoperative visual assessment for predicting function 

preservation is far from reliable, yet a relatively convincing prognosis of motor and 

language deficits must still be made in order to decide on the best surgical strategy. 

It is not uncommon that both lesion size and lesion location were found to relate to 

impairment, and lesions on motor-related regions such as the primary motor areas, corona 

radiata, and internal capsule can affect the possibility of motor function recovery. But 

lesion load (tract–lesion overlap volume) on CST was a more direct predictor of motor 

deficit in chronic stroke (Zhu et al., 2010), and in another study, lesion load on CST was 

able to predict stroke patients’ motor outcomes at three months (Feng et al., 2015). 

Likewise, lesion load on the left AF was found to potentially predict language impairment 

and recovery outcomes to some extent (Marchina et al., 2011). Other methods, like motor-

evoked potentials (MEPs) (Catano et al., 1996) and functional magnetic resonance 

imaging (fMRI) (Ward et al., 2006), have also been tried. But MEPs showed a lack of 

specificity because their absence did not necessarily correlate with poor recovery (Arac 

et al., 1994), and fMRI was impractical because patients had to be able to follow 

instructions during scanning, which was not always feasible. But combing intraoperative 

fMRI and DTI can be of great help in achieving maximum resection while maintaining 

the neurological function of the brain, according to another study (Nimsky, 2011). DTI 

has been implemented to predict motor recovery and CST damage at the level of the 

posterior limb of the internal capsule (PLIC) and has significantly predicted unfavorable 

motor outcome (Puig et al., 2011). In glioma patients, the level of injury to the CST, 

quantified by measuring FA on PLIC bilaterally, has been reported to be able to assess 

lesion and tumor infiltration areas on CST (Gao et al., 2017). DTI has also been applied 

in detecting the level of intactness of white matter fiber tracts and visualizing their relative 

locations to brain lesions, especially in preoperative assessments intended to preserve 

vital functions of fiber tracts (Farshidfar et al., 2014; Caverzasi et al., 2016; Dubey et al., 

2018), because the spared functional regions improve the quality of life for patients. 

Several studies have applied DKI in glioma grading (Van Cauter et al., 2012; Jiang et al., 
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2015; Delgado et al., 2017), and high kurtosis was found to correlate with high cellularity, 

as well as high eccentricity (Szczepankiewicz et al., 2016). Others have also found that 

MK could serve as a biomarker for predicting outcomes of high-grade glioma patients in 

terms of survival (Wang et al., 2019). Analyses of histograms based on DKI have been 

performed to evaluate glioma cases preoperatively, due to its capability to reflect the 

complexity and heterogeneity of microstructures (Qi et al., 2018). But to the best of our 

knowledge, studies using DKI to evaluate the integrity of fiber tracts in glioma patients 

are rare, despite its feasibility. 

A deeper understanding of the relationships between lesions on both fiber tracts (CST and 

AF) and motor and language deficits is required. In the second part of the current study, 

templates of CST and AF were created based on parametric maps of DKI and DTI data 

from healthy volunteers in order to visualize abnormal locations of the CST and AF in 

patients not only in glioma-affected areas but also in regions that were distant from the 

tumor. This method thus reveals the potential prognostic value of DKI- and DTI-derived 

parameters in the recovery outcome for patients with high-grade glioma in a retrospective 

study and has expanded the advanced application of DKI. 
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2 Materials and Methods 

Part 1: DKI in Interhemispheric Asymmetry 

2.1 Subjects 

This retrospective project was approved by the ethics committee at the Philipps 

University of Marburg in Germany (study 9/13) based on the Declaration of Helsinki. 

Twenty healthy volunteers were recruited for this study, including 10 males and 10 

females (males: 23–32 years, mean age 25 ± 2.6 years; females: 22–26 years, mean age 

24 ± 1.2 years). Volunteers’ handedness measurements were obtained using the Edinburgh 

handedness scale (left-handed: 3; right-handed: 17). None of the healthy volunteers 

suffered from neurological diseases, psychiatric disorders, significant brain injuries, or 

other known diseases, and none of them were reported to suffer from alcohol dependence 

or take medication with known effects that would interfere with the study. 

2.2 MRI data acquisition 

Image acquisition was performed using a 3 Tesla Siemens MRI scanner (Trio, Siemens, 

Erlangen, Germany) using a 12-multichannel receiver head coil. Participants’ assumption 

of the supine position was required, and their heads were fixed with soft foam rubber pads 

to minimize head bulk motion. 

Diffusion-weighted images were acquired by applying single-shot echo-planar imaging 

sequences with the following settings: slice thickness 2 mm, field of view (FoV) 256×256 

mm²，matrix 128×128, 60 axial slices without slice gap, repetition time (TR) 8500 ms, 

echo time (TE) 101 ms, phase encoding direction anterior >> posterior, b-values 0, 1000, 

and 2000 s/mm² respectively, 30 non-collinear diffusion encoding directions, bandwidth 

1502 Hz, and phase partial Fourier 6/8. All image sets were visually inspected for severe 

artifacts and were excluded from the study if any occurred. No severe artifacts were seen. 
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2.3 Post-processing of MRI data 

DWI data was processed using FSL 6.01 (FMRIB Software Library, Oxford, United 

Kingdom, http://www.fmrib.ox.ac.jk/fsl), in which DWI images were corrected for head 

motion and eddy currents (Smith et al., 2004; Woolrich et al., 2009) using the 

‘eddy_openmp’ tool. Brain extraction was achieved using the ‘BET’ tool. 

After correction and brain extraction, DWI data were loaded as single 4D NifTI images 

with the gradient sampling files into the in-house software package Diffusion Kurtosis 

Estimator (http://nitrc.org/projects/dke), applying the standard protocol (Tabesh et al., 

2011). During this process, both DTI processing and DKI processing were selected with 

‘Advanced Function’ to enable the DTI model-fitting method and DKI model-fitting 

method. Maps of diffusion-tensor-based parameters (DTI_FA, DTI_MD) and maps of 

diffusion-kurtosis-based parameters (DKI_FA, DKI_MD, DKI_MK) were estimated, 

allowing for DTI and DKI analysis. 

2.4 Tract-based spatial statistics (TBSS) analysis 

2.4.1 TBSS for interhemispheric asymmetry on parametric maps 

Derived parametric maps (DTI_FA, DTI_MD, DKI_FA, DKI_MD, DKI_MK) were 

processed using TBSS in FSL (FMRIB Software Library 6.0, Oxford, United Kingdom, 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) (Smith et al., 2006).  

First, all DTI_FA data were aligned with FMRIB58_FA into the standard 1x1x1 mm3 

MNI152 space using non-linear registration. Second, mean DTI_FA data was created and 

skeletonized using a threshold of FA > 0.2 for the mean DTI_FA skeleton image. Finally, 

based on this original mean DTI_FA skeleton, a symmetric mean DTI_FA skeleton was 

derived using ‘tbss_sym’. In this step, the pre-aligned DTI_FA datasets were left–right 

flipped (DTI_FA_flipped), and the flipped DTI_FA data was subtracted from the original 

non-flipped DTI_FA images. After subtraction, the resulting image was divided into left 

and the right halves separated along the midsagittal plane. In order to test leftward 

http://www.fmrib.ox.ac.jk/fsl
http://nitrc.org/projects/dke
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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asymmetry (left > right), a generalized linear model (GLM) was set up using the ‘FSL 

Randomize’ tool. To test for rightward asymmetry (right > left), a GLM was likewise set 

up. 

DKI_FA data was processed using the same protocol. Other maps such as DTI_MD, 

DKI_MD, and DKI_MK were projected onto the corresponding FA skeleton. 

To test for interhemispheric differences in relation to handedness and gender, the GLM 

was adapted accordingly using the ‘FSL Randomize’ tool (Nichols and Holmes, 2002; 

Winkler et al., 2014). The number of permutations was set to 5,000, and threshold-free 

cluster enhancement was used for correction. The threshold for statistical significance 

was set to p < 0.05.  

 

Figure 1. Workflow of dataset preparation for interhemispheric asymmetries 

2.4.2 Comparison between DTI- and DKI-based parameters 

2.4.2.1 Comparison between DTI_FA and DKI_FA 

Both maps of DTI_FA and DKI_FA were loaded into FSL. First, both datasets were 

aligned with FMRIB58_FA into the standard 1x1x1 mm3 MNI152 space using non-linear 

registration. Second, mean FA data was created and skeletonized with a threshold of FA > 

0.2. Finally, all images from both groups were projected onto the mean FA skeleton. 
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Voxel-wise analysis was then carried out. The number of permutations was set to 5,000, 

and a threshold-free cluster enhancement was used for correction. The threshold for 

statistical significance was set to p < 0.05. 

2.4.2.2 Comparison between DTI_MD and DKI_MD 

In order to perform a comparison between DTI_MD and DKI_MD, maps of DTI_FA, 

DTI_MD, DKI_FA and DKI_MD were loaded into FSL. First, DTI_FA and DKI_FA were 

aligned with FMRIB58_FA into the standard 1x1x1 mm3 MNI152 space using non-linear 

registration. Second, mean FA data was created and skeletonized with a threshold of FA > 

0.2. In this step, the mean FA skeleton was created. Then, both DTI_MD and DKI_MD 

were projected onto the mean FA skeleton. Finally, voxel-wise analysis was carried out. 

The number of permutations was set to 5,000 and threshold-free cluster enhancement was 

used for correction. The threshold for statistical significance was set to p < 0.05. 

2.5 Asymmetry of fiber tracts and laterality 

In order to visualize asymmetry of the fiber tracts, statistically significant clusters from 

TBSS analysis were labelled on nine major fiber bundles (CST, Fmi, Fma, IFOF, ILF, 

SLF, CB, UF, and ATR) by using the Johns Hopkins University (JHU) white matter 

tractography atlas (Wakana et al., 2007; Hua et al., 2008) and thickened for better 

visualization using ‘tbss_fill’ in FSL.  

Laterality index (LI) was calculated to test whether all nine major fiber tracts in all right-

handed volunteers were leftward dominant, as well as to perform a direct comparison of 

significant clusters’ size of fiber tracts on both hemispheres that may contribute to 

lateralization. LI was calculated using (AL-AR)/( AL+AR) (Binder et al., 1996), where AL 

represents all statistically significant clusters of TBSS analysis in the left hemisphere and 

AR in the right hemisphere. A positive value obtained from this equation indicates 

leftward dominance, while a negative value suggests rightward dominance. 
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Part 2: DKI in Glioma Patients 

2.6 Subjects 

This retrospective project was approved by the ethics committee at the Philipps 

University of Marburg in Germany (study 9/13), based on the Declaration of Helsinki. 

Data of healthy volunteers was a subset of the data from Part 1, in which only the right-

handed volunteers were included, because 95% of the right-handers and 85% of left-

handers showed leftward language lateralization (Pujol et al., 1999; Lurito and Dzemidzic, 

2001). Patient data was obtained during the clinical routine. 

2.6.1 Healthy volunteers 

The current study included 17 healthy right-handed volunteers – nine males and eight 

females (males: 22–32 years, mean age 25 ± 2.8 years; females: 22–26 years, mean age 

24 ± 1.4 years). None of the healthy volunteers suffered from neurological disease, 

psychiatric disorder, significant brain injury, or other known diseases. None of the 

volunteers was reported to suffer from alcohol dependence or take medication with 

known effects that would interfere with our study. 

2.6.2 Patients with high-grade glioma 

Thirteen right-handed high-grade glioma patients, 12 males and one female (41–70 years, 

mean age 55 ± 10.7 years) diagnosed with anaplastic astrocytoma WHO III (n = 3), 

anaplastic oligodendroglioma WHO III (n = 2), anaplastic glial tumor WHO III (n = 1), 

glioblastoma WHO IV (n = 3), recurrent glioblastoma WHO IV (n = 4) were recruited for 

this study. Clinical symptoms (hemiparesis and aphasia) of patients preoperative (interval: 

0–1 day) and postoperative (interval: 93–1,540 days, mean 657 ± 487 days) were 

observed and recorded.  
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2.7 MRI data acquisition  

Image acquisition was performed using a 3 Tesla Siemens MRI scanner (Trio, Siemens, 

Erlangen, Germany) with a 12-multichannel receiver head coil. Patients were required to 

assume the supine position, and their heads were fixed with soft foam rubber pads to 

minimize head bulk motion. 

Diffusion-weighted images were acquired by applying single-shot echo-planar imaging 

sequence with the following settings: slice thickness 2 mm, FoV 256×256 mm²，matrix 

128×128, 60 axial slices without slice gap, TR 8500 ms, TE 101 ms, phase encoding 

direction anterior >> posterior, b-values 0, 1000, 2000 s/mm² respectively, 30 non‐

collinear diffusion encoding directions, bandwidth 1502 Hz, and phase partial Fourier 6/8.  

T1-weighted images were acquired by applying a rapid gradient echo sequence with 

following settings: slice thickness 1 mm, FoV 256×256 mm², matrix 128×128, 176 slices, 

TR 1900 ms, TE 2.26 ms, and bandwidth 199 Hz. 

T2 weighted images were acquired by applying single-shot echo-planar sequence with 

following settings: slice thickness 1 mm, FoV 256×256 mm², matrix 128×128, 176 slices, 

TR 3200 ms, TE 402 ms, and bandwidth 751 Hz. 

All image sets were visually inspected for severe artifacts and were excluded if any 

occurred. No severe artifacts were seen. 

2.8 Post-processing of MRI data 

DWI data was processed using FSL 6.01 (FMRIB Software Library, Oxford, United 

Kingdom, http://www.fmrib.ox.ac.jk/fsl) in which DWI images were corrected for head 

motion and eddy currents (Smith et al., 2004; Woolrich et al., 2009) using the 

‘eddy_openmp’ tool. Brain extraction was achieved using the ‘BET’ tool. 

After correction and brain extraction, DWI data was loaded as single 4D NifTI images 

with the gradient sampling files loaded into the in-house software package Diffusion 

Kurtosis Estimator (http://nitrc.org/projects/dke) applying standard protocol (Tabesh et 

al., 2011) in order to estimate the diffusion kurtosis and to calculate DKI-based parametric 

http://www.fmrib.ox.ac.jk/fsl
http://nitrc.org/projects/dke
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maps. 

In the meantime, DWI data was loaded as single 4D NifTI images and fed into the 

diffusion spectrum imaging studio (DSI studio; http://dsi-studio.labsolver.org) including 

b vectors and b values. After image loading, a brain mask was set up automatically to 

filter out the background region and guarantee efficacy (see Figure 2). Images loaded in 

DSI studio were automatically normalized in MNI space by the q-space diffeomorphic 

reconstruction (QSDR) (Yeh and Tseng, 2011). DTI_FA and DTI_MD maps were derived 

based on the DTI fitting method. T1-weighted images and DKI_MK maps were registered 

to the derived DTI_FA map using rigid-body registration.  

 

Figure 2. Brain mask for loaded image 

2.9 Fiber tractography of the CST and AF 

For fiber tractography of the CST and AF, the precentral gyrus, the cerebral peduncle, 

Broca’s area (Brodmann areas 44 and 45), and Wernicke’s area (Brodmann area 22) were 

assigned as regions of interest (ROI) based on atlases in DSI studio. ROIs were then 

adjusted manually and modified to suit anatomical positions in T1-weighted images for 

both healthy volunteers and patients. The input tract count was set to 10,000 to guarantee 

adequate targeting of tracts for analysis. Reconstructed tracts were then automatically 

recognized and clustered using the ‘recognizing and clustering’ function. Every derived 

trajectory was carefully inspected, compared with anatomical positions on the T1-

weighted images, and edited manually to achieve a more precise reconstruction.  
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2.10 Template creation 

DTI_FA, DTI_MD, and DKI_MK maps from both healthy volunteers and patients were 

projected onto the reconstructed CST and AF. As the reconstructed CST and AF 

trajectories were a series of three-dimensional coordinates, projected data of DTI_FA, 

DTI_MD and DKI_MK mapped onto the CST and AF of both healthy volunteers and 

patients was averaged along the x, y, and z axes using kernel density estimator, with 

bandwidth at voxel-sized scales. 

Statistics of CST and AF for every healthy volunteer were accumulated and averaged in 

MATLAB. Mean values and standard deviations (SD) of DTI_FA, DTI_MD, and 

DKI_MK of both CST and AF were calculated along the x, y, and z axes. In this way, 

templates of CST and AF on both hemispheres, based on datasets from healthy volunteers, 

were created for later comparison with patients’ datasets.  

Both template and patients’ datasets were plotted in MATLAB for visualization 

comparison between patients’ datasets and templates. Patient data within the space 

between the upper threshold (mean + SD) and lower threshold (mean − SD) of templates 

were considered normal. Patient data that exceeded the upper threshold or fell below the 

lower threshold of templates were considered increased or decreased, respectively (see 

Figure 3). 

 

Figure 3. Illustration of AF template based on DKI_MK along y direction.  

(Black arrow: value of this part of the curve is below zero, related to the portion of the 
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template where most variance occurred, red arrow: fiber tract begins at this point, with 

a sudden change from zero to a non-zero value, blue arrow: abnormal portion of AF 

because it is lower than mean – SD). 

2.11 Detection of the relationship between brain lesion and 

change on CST and AF 

2.11.1 Segmentation of tumor and peritumoral edema 

The T2 weighted images from patients were fed into 3D Slicer 4.8.1 for segmentation of 

the lesions (Kikinis and Pieper, 2011). The premier range of abnormal-appearing regions 

was roughly delineated and the ‘GrowCutEffect’ was used to fill the abnormal region. 

The outlined region was then erased by the ‘ChangeLabelEffect’, and the region for 

segmentation was prepared. In this way, the differentiation of normal-appearing brain 

tissue from possibly abnormal regions was enabled, and abnormal regions with high 

signal density that indicated tumor tissue and peritumoral edema were selected and 

segmented according to standard protocol (Kikinis and Pieper, 2011). This semi-

automatic segmentation of those regions of the brain possibly affected or infiltrated by 

glioma was performed in order to reveal their spatial information for analyzing its 

influence on the reconstructed CST and AF (see Figure 4). 

Figure 4. Segmentation procedure 



 

32 

 

2.11.2 Visualization of change on CST and AF in relation to brain lesion 

By comparing the healthy volunteers’ CST and AF templates on corresponding slices, the 

coordinates of changes were recorded and exported from MATLAB. In DSI studio, 

reconstructed trajectories were cut according to recorded coordinates to achieve 

visualization of changes on CST and AF. The absolute volumes of changes (FAV, MDV, 

MKV) on CST and AF, and their percentages of the whole tract (FAV%, MDV%, MKV%) 

based on DTI_FA, DTI_MD and DKI_MK, were also recorded. 

Segmented brain lesions from 3D slicer were loaded into DSI studio. In this way, the 

spatial relationships between brain lesions and CST and AF changes were inspected. 

2.12 Pattern for indication and prediction of motor and language 

deficits  

Potential combinations of change seen in DTI_FA, DTI_MD, and DKI_MK were 

inspected for all patients.  

As change on CST and AF can lead to motor and language dysfunction, combinations of 

changes of CST or AF were carefully analyzed for possible correlation with preoperative 

and postoperative persisting or emerging hemiparesis and aphasia. A pattern that matched 

best might be found by summarizing possible changes on DTI_FA, DTI_MD, and 

DKI_MK in patients presenting with hemiparesis or aphasia. 

In order to determine the predictive capability of the pattern, sensitivity and specificity 

were calculated for the pattern. 

2.13 Statistical analysis 

Statistical analysis was conducted using SPSS 22.0. Spearman correlation analysis was 

used for evaluating the relationship between FAV and MKV, MDV and MKV, FAV% and 

MKV%, and MDV% and MKV%, respectively. Pearson correlation analysis was used for 

calculating the correlation between FAV and MDV, and FAV% and MDV%, respectively. 

The level of significance was set to p < 0.05.  
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3 Results 

Part 1: DKI in interhemispheric asymmetry 

3.1 Interhemispheric asymmetry 

Voxel-wise comparison was performed on the entire brain white matter skeleton in order 

to acquire interhemispheric asymmetry. Results of both leftward and rightward 

asymmetries were masked in nine major fiber tracts (CST, Fmi, Fma, IFOF, ILF, SLF, CB, 

UF, and ATR) as shown in Table 1. 

 

Table 1. Voxel-wise statistical analysis of interhemispheric asymmetry 

  MAX t-Value 

  DTI_FA DTI_MD DKI_FA DKI_MD DKI_MK 

CST L > R 0.981 0.353 0.954 0.054 0 

 R > L 0.976 0.875 0.965 0.161 0.853 

Fmi L > R 0.974 0.470 0.958 0.115 0.134 

 R > L 0.948 0.786 0.920 0.993 0.464 

Fma L > R 0.982 0.000 0.966 0.000 0.001 

 R > L 0.978 0.860 0.929 0.000 0.000 

ILF L > R 0.979 0.591 0.933 0.384 0.414 

 R > L 0.978 0.980 0.959 0.555 0.652 

IFOF L > R 0.978 0.952 0.920 0.000 0.638 

 R > L 0.978 0.956 0.952 0.105 0.942 

SLF L > R 0.992 0.948 0.933 0.491 0.638 

 R > L 0.991 0.799 0.946 0.167 0.842 

UF L > R 0.978 0.948 0.920 0.043 0.638 

 R > L 0.957 0.888 0.945 0.000 0.009 

CB L > R 0.982 0.580 0.997 0.993 0.334 

 R > L 0.965 0.857 0.929 0.009 0.116 

ATR L > R 0.999 0.905 0.992 0.095 0.977 

 R >L 0.998 0.997 0.933 0.006 0.355 
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In DTI_FA, both leftward and rightward asymmetries were detected in CST (L > R: p < 

0.019; R > L: p < 0.024), Fma (L > R: p < 0.018; R > L: p < 0.022), ILF (L > R: p < 0.021; 

R > L: p < 0.022), IFOF (L > R: p < 0.022; R > L: p < 0.022), SLF (L > R: p < 0.009; R > 

L: p < 0.009), UF (L > R: p < 0.022; R > L: p < 0.043), CB (L > R: p < 0.018; R > L: p < 

0.035) and ATR (L > R: p < 0.001; R > L: p < 0.002); except for Fmi, only leftward 

asymmetry was found (L > R: p < 0.026) (see Figure 5). 

 

 

Figure 5. Distribution of statistically significant asymmetric regions (DTI_FA)  

(green: mean-FA skeleton of healthy volunteers, red: leftward asymmetry, blue: rightward 

asymmetry) 

 

In DTI_MD, leftward and rightward asymmetries were found in IFOF (L > R: p < 0.048; 

R > L: p < 0.044), rightward asymmetry was found in ILF (R > L: p < 0.020), and ATR 

(R > L: p < 0.003) (see Figure 6). 

 

In DKI_FA, leftward and rightward asymmetries were found in CST (L > R: p < 0.046; 

R > L: p < 0.035). Leftward asymmetry was found in Fmi (L > R: p < 0.042), Fma (L > 
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R: p < 0.034), CB (L > R: p < 0.003) and ATR (L > R: p < 0.008). Rightward asymmetry 

was found in ILF (R > L: p < 0.041) and IFOF (R > L: p < 0.048) (see Figure 7). 

 

 

Figure 6. Distribution of statistically significant asymmetric regions (DTI_MD)  

(green: mean-FA skeleton of healthy volunteers, red: leftward asymmetry, blue: rightward 

asymmetry) 

 

 

Figure 7. Distribution of statistically significant asymmetric regions (DKI_FA) 

(green: mean-FA skeleton of healthy volunteers, red: leftward asymmetry, blue: rightward 

asymmetry) 

 

In DKI_MD, only rightward asymmetry was found in Fmi (R > L: p < 0.007), and 

leftward asymmetry was found in CB (L > R: p < 0.007) (see Figure 8). 
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Figure 8. Distribution of statistically significant asymmetric regions (DKI_MD) 

(green: mean-FA skeleton of healthy volunteers, red: leftward asymmetry, blue: rightward 

asymmetry) 

 

In DKI_MK, only leftward asymmetry was found in ATR (L > R: p < 0.023) (see Figure 

9). 

 

Figure 9. Distribution of statistically significant asymmetric regions (DKI_MK) 

(green: mean-FA skeleton of healthy volunteers, red: leftward asymmetry) 

 

3.2 Effects of gender and handedness 

No significant effect was found for gender and handedness in DTI- and DKI-derived 

parameters (see Table 2). 
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Table 2. Voxel-wise statistical analysis for gender and handedness effects 

Note: LH: left-handed; RH: right-handed; L: left hemisphere; R: right hemisphere. 

  MAX t-Value 

  DTI_FA DTI_MD DKI_FA DKI_MD DKI_MK 

gender L > R 0.335 0.890 0.605 0.152 0.560 

 R > L 0.153 0.946 0.428 0.101 0.923 

handedness LH > RH 0.607 0.071 0.852 0.101 0.497 

 RH > LH 0.065 0.811 0.122 0.797 0.136 

 

3.3 Laterality of fiber tracts on DTI- and DTI-based parameters 

A LI was calculated for nine major fiber tracts in the DKI_FA and DTI_FA maps of the 

subgroup of all 17 right-handed volunteers (see Table 3). A LI above zero was considered 

representative of leftward dominance, which was found in Fmi, Fma, CB, and ATR in 

DKI_FA; but in DTI_FA, leftward dominance was found in CST, SLF, and CB. However, 

rightward dominance was found in CST, ILF, IFOF in DKI_FA, and Fmi, Fma, ILF, IFOF, 

UF, and ATR in DTI_FA. No dominance was found in SLF or UF in DKI_FA. Only 

dominance in ILF, IFOF, and CB was concurrent in DKI_FA and DTI_FA. Dominance in 

CST, Fmi, Fma and ATR of DKI_FA contradicted with that in DTI_FA.  

In DTI_MD, both leftward and rightward asymmetries found on IFOF were with a cluster 

size of 1 voxel, and no dominance was found on IFOF. Rightward dominance was found 

on ILF (3 voxels) and ATR (80 voxels). In DKI_MD, rightward dominance was found on 

Fmi with a cluster size of 1 voxel, and leftward dominance was found on CB with a cluster 

size of 4 voxels. In DKI_MK, leftward dominance was found on ATR with a cluster size 

of 3 voxels. 
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Table 3. Size of significant clusters and laterality index of fiber tracts based on DKI_FA 

and DTI_FA 
 

DKI_FA (#Voxels) LI DTI_FA (#Voxels) LI 
 

Leftward Rightward 

 

Leftward Rightward 

 

CST 5 7 −0.17 42 5 0.79 

Fmi 3 0 1.00 0 74 −1.00 

Fma 6 0 1.00 22 55 −0.43 

ILF 0 4 −1.00 26 81 −0.51 

IFOF 0 1 −1.00 18 55 −0.51 

SLF 0 0 0.00 196 18 0.83 

UF 0 0 0.00 15 22 −0.19 

CB 9 0 1.00 70 27 0.44 

ATR 10 0 1.00 98 112 −0.07 

 

3.4 Comparison between DTI- and DKI-based parametric maps 

Significant differences were found in 79.06% of the skeletons (p < 0.0002) comparing 

DTI_FA and DKI_FA. Fractional anisotropy was significantly higher in DKI_FA than in 

the corresponding DTI_FA. No significant cluster was found in which fractional 

anisotropy in DTI_FA was higher than in the corresponding DKI_FA (p < 0.331) (see 

Figure 10).  
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Figure 10. Distribution of significant differences according to DTI_FA and DKI_FA, 

shown in every 18 slices along the z-axis (p < 0.05, FWE-corrected). 

 

Significant differences were found in 79.06% of the skeletons (p < 0.0002) comparing 

DTI_MD and DKI_MD. Mean diffusivity was significantly higher in DKI_MD than in 

the corresponding DTI_MD. No significant cluster was found in which mean diffusivity 

in DTI_MD was higher than the corresponding DKI_MD (p < 0.331) (see Figure 11). 

 

Figure 11. Distribution of significant differences according to DTI_MD and DKI_MK, 

shown in every 18 slices along the z-axis (p < 0.05, FWE-corrected). 
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Part 2: DKI in Glioma Patients 

3.5 Patients’ clinical information 

Patients’ clinical information was obtained and is listed in Table 4 and 5 Two patients 

showed hemiparesis preoperatively. One of them was diagnosed with grade III anaplastic 

oligodendroglioma (patient #1), and the other with grade IV primary glioblastoma 

(patient#12).  

In follow-up records, hemiparesis in patient #1 persisted until the end of observation, and 

patients #3 and #6 – diagnosed with grade III anaplastic astrocytoma – presented with 

emerging hemiparesis in the follow-up. Hemiparesis in patients #12 was also persistent; 

patients #9 and #11 – diagnosed with grade IV primary glioblastoma – and patients #7and 

#8 – diagnosed with grade IV residual glioblastoma – presented with emerging 

hemiparesis in the follow-up. 

Six patients showed aphasia preoperatively. One of them was diagnosed with grade III 

anaplastic oligodendroglioma (patient #1), one of them was diagnosed with grade III 

anaplastic astrocytoma (patients #4) and one with grade III anaplastic glial tumor (patient 

#2), two of them (patients #7 and #8) were diagnosed with grade IV residual glioblastoma, 

and one with grade IV primary glioblastoma (patient #9). 

In follow-up records, aphasia persisted in patient #1, but gradually alleviated and finally 

vanished in the two patients with grade III anaplastic astrocytoma (patients #4 and #6) 

and one with grade III anaplastic glial tumor (patient #2), while aphasia persisted in three 

patients diagnosed with grade IV glioblastoma, either residual or primary (patients #7, #8, 

and #9). Another patient diagnosed with grade IV residual glioblastoma presented with 

emerging aphasia (patient #13) in the follow-up. 

The interval of observation ranged from 93 days to 1,540 days; the average interval of 

observation was thus 657 days. In follow-ups, three changes in clinical symptoms 

(hemiparesis or aphasia) were found. Hemiparesis or aphasia could be worsened or 

alleviated and vanished, and previous non-existing symptoms could emerge in the  
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follow-up.  

 

Table 4. Clinical characteristics of patients 

(R: right, L: left, LT: left temporal, LF: left frontal, RC/L: right central/lateral, LTB: left 

temporal-basal, RT: right temporal, RP: right parietal, RPO: right parietal-occipital, AO: 

anaplastic oligodendroglioma, AGT anaplastic glial tumor, AA: anaplastic astrocytoma, 

RG: recurrent glioblastoma, G: glioblastoma.) 

Patient Gender Age (years) Handedness Location Histopathology 

Grade III 

1 M 61 R LT AO, WHO III 

2 M 65 R LT AGT, WHO III 

3 M 70 R LT AA, WHO III 

4 F 53 R LT AA, WHO III 

5 M 38 R LF AO, WHO III 

6 M 45 R RC/L AA, WHO III 

Grade IV 

7 M 41 R LT RG, WHO IV 

8 M 41 R LTB RG, WHO IV 

9 M 54 R LT G, WHO IV 

10 M 62 R RT RG, WHO IV 

11 M 62 R RP G, WHO IV 

12 M 66 R RT G, WHO IV 

13 M 57 R RPO RG, WHO IV 
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Table 5. Neurological characteristics of patients 

(‘+’: persisting positive symptom until observation stopped, ‘−’: negative symptom when 

observation stopped, ‘±’: symptom once appeared but was gradually improved and 

vanished at the end of observation, ‘interval’: the interval of follow-up)  

Patient Hemiparesis Aphasia Interval 

(days) Pre-op Follow-up Pre-op Follow-up 

Grade III      

1 + + + + 1540 

2 − − + ± 1273 

3 − + − − 532 

4 − − + ± 470 

5 − − − − 1503 

6 − + − ± 763 

Grade IV      

7 − + + + 240 

8 − + + + 93 

9 − + + + 486 

10 − − − − 139 

11 − + − − 442 

12 + + − − 385 

13 − − − + 674 

 

3.6 Detection of change on patients’ CSTs and AFs 

The CST and the AF are most commonly investigated in studies of tractography because 

CST is correlated with voluntary motor function and AF is responsible for language 

function. Detection of changes on patients’ CSTs and AFs was performed by comparing 
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their datasets to corresponding templates of healthy volunteers along the x, y, and z axes. 

Templates of CST and AF along the x, y, and z axes based on DTI_FA, DTI_MD and 

DKI_MK were shown in Figure 12. Every template consisted of two curves that 

represented upper and lower thresholds in corresponding positions along the CST or AF. 

Templates of CST and AF were different between the left and right.  

By comparing patients’ datasets to corresponding templates, coordinates were recorded, 

and change was visualized on tracts as shown in Figure 13. A large portion of the dataset 

of left AF from patient #7 was under the lower threshold of the left AF template. 

Coordinates of change were reflected on left AF, and the abnormal portion of left AF was 

confirmed. Using this method, changes on bilateral CST and AF were confirmed on 

DTI_FA, DTI_MD, and DKI_MK for all 13 patients. 

Patient #1: For the left CST, an increased DTI_MD, and decreased DTI_FA and DKI_MK 

were found; for the right CST, an increased DTI_MD was found. For the left AF, an 

increased DTI_MD, and decreased DTI_FA and DKI_MK were found. 

Patient #2: For the left CST, increased DTI_FA and DKI_MK were found; for the right 

CST, an increased DTI_MD and a decreased DTI_FA were found. 

Patient #3: For the left CST, an increased DTI_MD was found; for the right CST, an 

increased DTI_MD was found. For the left AF, an increased DTI_MD, and decreased 

DTI_FA and DKI_MK were found.  

Patient #4: For the left CST, increased DTI_MD and DKI_MK were found; for the right 

CST, an increased DTI_FA was found. 

Patient #5: For the right CST, increased DTI_FA, DTI_MD, and DKI_MK were found. 

For the left AF, an increased DTI_MD was found; for the right AF, an increased DTI_FA 

was found. 

Patient #6: For the right CST, an increased DKI_MK was found. For the left AF, an 

increased DTI_MD was found; for the right AF, an increased DTI_MD was found. 

Patient #7: For the left CST, changes (increase and decrease) in DTI_MD, and an 

increased DKI_MK were found; for the right CST, increased DTI_FA and DKI_MK, and 
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a decreased DTI_MD were found. For the left AF, an increased DTI_MD, and decreased 

DTI_FA and DKI_MK were found; for the right AF, increased DTI_MD and DKI_MK 

were found. 

Patient #8: For the left CST, an increased DTI_MD, and changes (increase and decrease) 

in DTI_FA and DKI_MK were found; for the right CST, increased DTI_FA and DKI_MK, 

and a decreased DTI_MD were found. For the left AF, an increased DTI_MD, and 

decreased DTI_FA and DKI_MK were found; for the right AF, an increased DKI_MK, 

and a decreased DTI_MD were found. 

Patient #9: For the left CST, increased DTI_MD and DKI_MK were found; for the right 

CST, a decreased DTI_MD was found. For the left AF, a decreased DTI_MD was found. 

Patient #10: For the left CST, an increased DTI_FA was found; for the right CST, changes 

(increase and decrease) in DKI_MK, and a decreased DTI_MD were found. For the left 

AF, an increased DTI_MD was found; for the right AF, an increased DTI_MD, and 

decreased DTI_FA and DKI_MK were found. 

Patient #11: For the left CST, increased DTI_MD and DKI_MK were found; for the right 

CST, an increased DKI_MK was found. For the left AF, an increased DTI_FA was found; 

for the right AF, an increased DTI_MD and a decreased DKI_MK were found. 

Patient #12: For the left CST, increased DTI_MD and DKI_MK were found; for the right 

CST, an increased DTI_MD, and decreased DTI_FA and DKI_MK were found. For the 

left AF, an increased DTI_MD was found; for the right AF, an increased DTI_MD and a 

decreased DKI_MK were found. 

Patient #13: For the right CST, an increased DTI_MD and a decreased DKI_MK were 

found. For the left AF, an increased DTI_MD, and decreased DTI_FA and DKI_MK were 

found; for the right AF, an increased DTI_MD, and decreased DTI_FA and DKI_MK 

were found. 
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3.7 Combinations of change in DTI_FA, DTI_MD, and DKI_MK in 

relation to hemiparesis or aphasia 

Compared to templates derived from healthy volunteers, there were four possible changes: 

(1) no change, (2) an increased value compared to the corresponding template, (3) a 

decreased value compared to the corresponding template, and (4) changes with both 

increased and decreased value compared to the corresponding template. By combining 

DTI_FA, DTI_MD, and DKI_MK, all 64 possible changes could be analyzed for CST 

and AF. 

 

 

Figure 12. Template of bilateral CST and AF 

(red: upper threshold (mean + SD), blue: lower threshold (mean − SD))  
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Figure 13. Changes of left AF based on DKI_MK from patient #7 

(Datasets shown along x, y, and z axes (Figures A, B, and C, respectively) and their 

corresponding datasets extracted from fibers compared to templates of healthy volunteers. 

Data extracted from patient #7 is shown in blue, part of which is highlighted in red. The 

red portion of the curve was under the lower threshold of the templates, and coordinates 

were recorded accordingly. On the left, part of the purple fiber tracts were covered in pink, 

indicating regions of a decreased DKI_MK based on coordinates derived from the 

templates.) 

 

After comparison with templates, changes were found in CST and AF as listed in Table 

6. A total of 13 groups of changes were found in the tracts in relation to hemiparesis or 

aphasia. These were 9 groups of changes in CST, and 5 in AF. Some groups were common 

to both tracts. 1) decreased DTI_FA and DKI_MK, and an increased DTI_MD were found; 

2) increased DTI_FA and DKI_MK were found; 3) an increased DTI_MD was found; 4) 

increased DTI_MD and DKI_MK were found; 5) no change was found in parametric 

maps projected on fiber tracts, and patients’ datasets were within the templates’ thresholds; 
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6) an increased DKI_MK was found; 7) changes (increase and decrease) in DTI_MD, and 

an increased DKI_MK were found; 8) changes (increase and decrease) in DTI_FA and 

DKI_MK, and an increased DTI_MD were found; 9) a decreased DTI_MD, and changes 

(increase and decrease) in DKI_MK were found; 10) an increased DTI_MD and a 

decreased DKI_MK were found; 11) a decreased DKI_MK was found; 12) an increased 

DTI_FA was found; 13) a decreased DTI_MD and an increased DKI_MK were found.  

 

Table 6. Combinations of changes for CST and AF 

CST  AF 

Grou

p 

DTI_F

A 

DTI_M

D 

DKI_M

K 

 Grou

p 

DTI_F

A 

DTI_M

D 

DKI_M

K 

1 ↓ ↑ ↓  1 ↓ ↑ ↓ 

2 ↑ - ↑  2 - - - 

3 - ↑ -  3 - ↑ - 

4 - ↑ ↑  4 - ↓ - 

5 - - -  5 ↑ - - 

6 - - ↑  6 - ↑ ↑ 

7 - ↑+↓ ↑  7 - ↓ ↑ 

8 ↑+↓ ↑ ↑+↓  8 - ↑ ↓ 

9 - ↓ ↑+↓      

10 - ↑ ↓      

 

As shown in Tables 7 and 8, a decreased DTI_FA was always found concurrent with an 

increased DTI_MD and a decreased DKI_MK. When changes (increase or decrease) were 

found in DTI_FA, changes (increase or decrease) were also found in DKI_MK. There 

was a strong correlation between the FAV and MKV (r = 0.815, p = 0.004). Correlation 

between FAV% and MKV% was also significant (r = 0.794, p = 0.006). No significant 

correlation was found between the FAV of a decreased DTI_FA and MDV of an increased 
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DTI_MD (r = 0.619, p = 0.102), but correlation between FAV% of a decreased DTI_FA 

and MDV% of an increased DTI_MD was found to be significant (r = 0.854, p = 0.007). 

There was a strong correlation between MDV of an increased DTI_MD and MKV of 

changes (increase or decrease) in DKI_MK (r = 0.808, p = 0.001). Correlation between 

MDV% of an increased DTI_MD and MKV% of changes (increase or decrease) in 

DKI_MK was also significant (r = 0.824, p = 0.001).  

 

Table 7. Volume and percentage of change on CSTs in relation to hemiparesis 

(‘H’: higher value than the upper threshold of templates in the corresponding position, 

‘L’: lower value than the lower threshold of templates in the corresponding position; ‘-’: 

no change was found (i.e. within the range of the templates’ thresholds)) 

 FAV 

(mm³) 

FAV 

% 

MDV 

(mm³) 

MDV 

% 

MKV 

(mm³) 

MKV 

% 

 H L H L H L H L H L H L 

1 - 5392  53.2 4920 - 48.5 - - 3056  30.1 

2 624 - 10.1  - - - - 432 - 7.0 - 

3 - - - - 24 - 0.3 - - - - - 

4 - - - - 16 - 0.2 - 48 - 0.5 - 

5 - - - - - - - - - - - - 

6 - - - - - - - - 32 - 0.3 - 

7 - - - - 392 160 5.0 2.0 352  4.5  

8 2376 16 25.3 0.2 2632 - 28.1  408 456 4.4 4.8 

9 - - - - 144 - 1.6  480 - 5.4  

10 - - - - - 608 - 5.9 264 984 2.6 9.5 

11 - - - - - - - - 72 - 0.6 - 

12 - 424  5.6 2512 - 33.0 - - 976 - 12.8 

13 -  -  440 - 5.0 - - 512 - 5.8 
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Table 8. Volume and percentage of change on left AFs in relation to aphasia 

(‘H’: higher value than the upper threshold of templates in the corresponding position, 

‘L’: lower value than the lower threshold of templates in the corresponding position; ‘-’: 

no change was found (i.e. within the range of the templates’ thresholds)) 

 FAV 

(mm³) 

FAV 

% 

MDV 

(mm³) 

MDV 

% 

MKV 

(mm³) 

MKV 

% 

 H L H L H L H L H L H L 

1 - 4824 - 49.7 5656 - 58.3 - - 3992  41.2 

2 -  -  - - - - -  -  

3 - 1896 - 10.4 11072 - 60.9 - - 2744  15.1 

4 - - -  - - - - - - - - 

5 - - -  1240 - 11.7 - - - - - 

6 - - -  32 - 0.2 - - - - - 

7 - 9176 - 59.7 11152 - 72.6 - - 9200  59.9 

8 - 7704 - 85.1 8296 - 91.6   6656  73.5 

9 - - - - - 248  1.8 - - - - 

10 - - - - 4239  27.8 - - - - - 

11 80 - 0.5 - -  - - - - - - 

12 - - - - 1576  8.0 - - - - - 

13 - 16 0.1 - 4352  38.2 - 72 - 0.6 - 

 

3.8 Relationship between brain lesion and change of fiber tracts 

The spatial relationships between brain lesions (tumor and peritumoral edema) and the 

change of fiber tracts (shown in Figures 13 and 14) can be divided into three groups: 1) 

the fiber tract completely or partially covered by lesion, 2) the fiber tract partially ‘kissing’ 

lesion, and 3) change in fiber tracts distant from lesion. For the left CST, patients #1, # 3, 
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#4, #7, and #8 belonged to group 1, and patients #9 and #11 belonged to group 3. For the 

right CST, patient #12 belonged to group 1, patient # 13 belonged to group 2, and patients 

#6 and #10 belonged to group 3. For the left AF, patients #1, #4, #7, #8, and #9 belonged 

to group 1, patient #2 belonged to group 2, and patients #6 and #13 belonged to group 3. 

For the right AF, patient #13 belonged to group 1, patient #6 belonged to group 2, and 

patients #1, #2, #4, #7, #8, and #9 belonged to group 3. 

 

 

Figure 14. Spatial relationships between brain lesion and AF in patients #2 and #4 
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Figure 15. The spatial relationships between brain lesions and changes on dysfunctional 

fiber tracts 

(A: fiber tracts completely or partially covered by lesion, B: part of the fiber tract ‘kissing’ 

the boundary of lesion, C: fiber tract distant from the lesion, yellow: an increased value, 

pink: a decreased value) 
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3.9 Pattern for indication and prediction of dysfunction in 

relation to CST and AF 

Combining clinical symptoms such as hemiparesis and aphasia of patients and changes 

found, on both CST and AF, a pattern based on 13 groups of change combinations.  

In the left CST, patients who presented with either persisting or emerging right 

hemiparesis in the follow-up are listed in Table 9. A decreased DTI_FA and an increased 

DTI_MD concurrent with a decreased DKI_MK were found in two of the three patients 

who presented with preoperative right hemiparesis (patients #1 and #8); changes (increase 

and decrease) in DTI_MD, and an increased DKI_MK, were found in the other (patient 

#7). In all five patients who presented with right hemiparesis in the follow-up, an 

increased DTI_MD concurrent with changes (increase or decrease) in DKI_MK were 

found, except for in one (patient #3). Among them, increased DTI_MD and DKI_MK 

was found in one patient (patients #9) who presented with emerging right hemiparesis. 

In the right CST, patients who presented with either persisting or emerging left 

hemiparesis in the follow-up are listed in Table 10. A decreased DTI_FA and an increased 

DTI_MD concurrent with a decreased DKI_MK were found in the one patient who 

presented with preoperative left hemiparesis (patient #12). Left hemiparesis was 

persisting in this patient. In the follow-up, an increased DTI_MD concurrent with a 

decreased DKI_MK was found in one of the three patients who presented with left 

hemiparesis (patients #12). In the other two patients (patient #6 and #11), an increased 

DTI_MD were found. 
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Table 9. Change on left CST and right hemiparesis of patients 

(‘+’: positive symptom, ‘−’: negative symptom, ‘±’: symptom once appeared but vanished 

at the end of observation, ‘H’: an increased value, ‘L’: a decreased value; ‘−’: no change 

was found (i.e. within the range of templates’ thresholds)) 

 Relationship between 

CST and lesion 

Hemiparesis DTI_FA DTI_MD DKI_MK 

Pre- 

op 

Follow- 

up 

1 superior endpoint covered + + L H L 

3 partially covered − + − H − 

7 partially covered + + − H+L H 

8 partially covered + + L+H H L+H 

9 distant − + − H H 

 

Table 10. Change on right CST and left hemiparesis of patients 

(‘+’: positive symptom, ‘−’: negative symptom, ‘±’: symptom once appeared but vanished 

at the end of observation, ‘H’: an increased value, ‘L’: a decreased value; ‘−’: no change 

was found (i.e. within the range of templates’ thresholds)) 

 Relationship between 

CST and lesion 

Hemiparesis DTI_FA DTI_MD DKI_MK 

Pre- 

op 

Follow-

up 

6 distant − + − H − 

11 distant − + − H − 

12 partially covered + + L H L 
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In the left AF, patients who presented with persisting, emerging, or alleviating aphasia are 

listed in Table 11. A decreased DTI_FA and an increased DTI_MD concurrent with a 

decreased DKI_MK were found in three of the six patients with preoperative aphasia 

(patients #1, #7 and #8). No change was found in two of those seven patients (patients #2 

and #4), a decreased DTI_MD in another (patient #9). In the follow-up, a decreased 

DTI_FA and an increased DTI_MD concurrent with a decreased DKI_MK were found in 

one patient who presented with emerging aphasia (patient #13). Of the three patients who 

presented with alleviating aphasia, no change was found in DTI_FA, DTI_MD, or 

DKI_MK in two (patients #2 and #4); an increased DTI_MD was found in the other 

patient (patient #6) who presented with emerging aphasia in the follow-up but alleviated 

and cured at the end of the follow-up.  

 

Table 11. change on left AF and aphasia of patients 

(‘+’: positive symptom, ‘−’: negative symptom, ‘±’: symptom once appeared but vanished 

at the end of observation, ‘H’: an increased value, ‘L’: a decreased value; ‘−’: no change 

was found (i.e. within the range of templates’ thresholds)) 

 

 

 

Relationship between 

AF and lesion 

Aphasia DTI_FA DTI_MD DKI_MK 

Pre- 

op 

Follow-

up 

1 both endpoints covered + + L H L 

2 kissing + ± − − − 

4 posterior endpoint covered + ± − − − 

6 distant − ± − H − 

7 completely covered + + L H L 

8 both endpoints covered + + L H L 

9 anterior endpoint covered + + − L − 

13 distant − + L H L 
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In the right AF, patients who presented with persisting, emerging, or alleviating aphasia 

are listed in Table 12. A decreased DTI_FA and an increased DTI_MD concurrent with a 

decreased DKI_MK was found in one patient who presented with emerging aphasia in 

the follow-up (patient #13) and an increased DTI_MD in another (patient #6). Either an 

increased DTI_MD (patient #6) or no change in DTI_FA, DTI_MD, or DKI_MK was 

found in patients who presented with alleviating aphasia (patients #2 and #4). 

 

Table 12. Change on right AF and aphasia of patients 

(‘+’: positive symptom, ‘−’: negative symptom, ‘±’: symptom once appeared but vanished 

at the end of observation, ‘H’: an increased value, ‘L’: a decreased value; ‘−’: no change 

was found (i.e. within the range of templates’ thresholds)) 

 Relationship between 

AF and lesion 

Aphasia DTI_FA DTI_MD DKI_MK 

Pre-

op 

Follow-

up 

1 distant + + − − − 

2 distant + ± − − − 

4 distant + ± − − − 

6 kissing − ± − H − 

7 distant + + − H H 

8 distant + + − L H 

9 distant + + − − − 

13 posterior endpoint covered − + L H L 
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The pattern found in patients with persisting hemiparesis and aphasia, ‘an increased 

DTI_MD and changes (increase or decrease) in DKI_MK’, summarizes the relationship 

between changes found on CSTs with hemiparesis and left AFs with aphasia. The 

relationship between changes found on right AFs and aphasia did not follow this pattern.  

When relating this pattern to hemiparesis and aphasia in the follow-up, it seemed to 

present with 75.0% sensitivity and 87.5% specificity. 

False negative predictions of aphasia based on the pattern were found in four patients 

(aphasia in patients #2, #4, #6, and #9, respectively). However, aphasia in three of them 

(patients #2, #4, and #6) was gradually improved, vanishing by the end of observation. 

Aphasia was persistent in one patient (patient # 9), and the anterior endpoint of his left 

AF was found covered in lesions. False negative predictions of hemiparesis were found 

in three patients (patients #3 and #6), who began to show early signs of hemiparesis by 

the end of observation, and one of these two died (patient #6); therefore, not enough 

follow-up information was acquired to explain the hemiparesis that did not match the 

pattern.  

False positive predictions of hemiparesis were found in three patients (patients #3, #12 

and #13), and a false positive prediction of aphasia was found in one patient (patient #3). 

It is worth noting that patient #3, aged 70 years, was the eldest among all recruited patients, 

and patient #12, aged 66 years, was the second eldest. There was an enormous age 

discrepancy between these two patients and healthy volunteers. And patient #13 was 

unable to walk or stand at the end of the follow-up with a KPS (Karnofsky Performance 

Status) 20%, yet ‘hemiparesis’ is not mentioned. 
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4 Discussion 

Part 1: DKI in Interhemispheric Asymmetry 

By using TBSS analysis in DTI- and DKI-based parametric maps, interhemispheric 

asymmetry was found. Both leftward and rightward asymmetries were found in CST, Fma, 

ILF, IFOF, SLF, UF, CB, and ATR. Leftward asymmetry was found in Fmi according to 

DTI_FA, while according to DKI_FA, concurrent leftward and rightward asymmetries 

were found only in CST. Leftward asymmetry was found in Fmi, CB, and ATR, and 

rightward asymmetry was found in ILF. According to other maps, such as DTI_MD, 

DKI_MD, and DKI_MK, fewer significant clusters were found compared to DTI_FA and 

DKI_FA. 

Significant differences were found by directly comparing DTI- and DKI-derived 

parametric maps. Both fractional anisotropy and mean diffusivity were found to be 

significantly higher in DKI-derived parametric maps than in DTI-derived parametric 

maps, both occupying 79.06% of the skeleton. No significant effect was found for 

handedness or gender. 

4.1 Asymmetry of fiber tracts 

In our study, either leftward or rightward asymmetry was found in nine major fiber tracts 

(CST, Fmi, Fma, ILF, IFOF, SLF, CB, and ATR), although DTI- and DKI-based 

parametric maps differed. Instead of comparing tracts on several chosen levels, such as 

PLIC of the CST as in many other studies, TBSS analysis has enabled comparison of all 

image voxels between bilateral tracts. Of note, almost all nine fiber tracts demonstrated 

both leftward and rightward asymmetries on DTI_FA except Fmi, while the unilateral 

asymmetry of the fiber tracts was more likely based on DKI_FA. Tracts detected with 

leftward or rightward asymmetry were fewer on DTI_MD, DKI_MD, and DKI_MK. 

DTI_FA and DKI_FA seemed to be more sensitive in detecting hemispheric asymmetry 

than other parametric maps. 
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The anatomical locations of asymmetry in the brain, based on the DTI_FA map, 

corresponded to previous studies, especially with regard to the asymmetry observed in 

the cingulum bundle and other fibers (Buchel et al., 2004; Gong et al., 2005b; 

Westerhausen et al., 2007; O'Donnell et al., 2009). Leftward asymmetry was found in 

cingulum bundle in both DTI_FA and DKI_FA, which is similar to previous studies based 

on DTI (Gong et al., 2005b; Huster et al., 2009; O'Donnell et al., 2009). Most segments 

of the cingulum were found to be left-dominant except for the posterior part, which was 

detected by comparing the FA value, which were corresponded with the distributions of 

asymmetric regions in our findings (Gong et al., 2005b). Leftward asymmetry was also 

frequently reported in SLF based on DTI studies (Buchel et al., 2004; Powell et al., 2006; 

Catani et al., 2007), which is consistent with our findings based on DTI_FA. A much 

larger cluster size was found on leftward asymmetry than rightward asymmetry on SLF 

based on DTI_FA, but no asymmetry was found on SLF based on DKI_FA. Leftward 

asymmetry was found in Fmi and Fma (Jahanshad et al., 2010), which is in accordance 

with findings on DKI_FA, but inconsistent with findings on DTI_FA. Both leftward and 

rightward asymmetries were found in CST based on DTI_FA and DKI_FA, similar to the 

findings of previous studies. Some studies have report leftward asymmetry on CST 

(Westerhausen et al., 2007), while others reported rightward asymmetry at the same level 

(Imfeld et al., 2009), both using FA value for comparison. These findings indicate that 

asymmetry in the CST is inconsistent. Both leftward and rightward asymmetries were 

also reported in IFOF (Rodrigo et al., 2007; Thiebaut de Schotten et al., 2011), ILF (Hasan 

et al., 2010; Thiebaut de Schotten et al., 2011) and UF (Hasan et al., 2009; Yasmin et al., 

2009). Interestingly, these tracts have been found to possibly play a role in neurological 

disorders such as autism and schizophrenia (Kubicki et al., 2002; Thomas et al., 2011). 

Rightward asymmetry in ATR was less studied but was reported to correlate with 

cognitive dysfunction (Mamah et al., 2010). 
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4.2 Asymmetry and laterality 

Interhemispheric asymmetry has been revealed with functional lateralization (Toga and 

Thompson, 2003). According to previous studies, regions with leftward asymmetries 

were assumed to correlate with voluntary motor function and language, while regions 

with rightward asymmetries are mainly related to the function of spatial attention, facial 

recognition, emotion, and memory (Shu et al., 2015).  

A larger cluster was found on regions related to language and auditory processing on the 

left hemisphere (Steinmetz, 1996; Foundas et al., 1998). Nonetheless, in asymmetry 

studies based on DTI, a higher FA value was found in the precentral gyrus, which is 

contralateral to the dominant hand – either statistically significant or shown by a trend 

corresponding with it – while a higher MD value was observed for the unilateral 

hemisphere (Buchel et al., 2004; Ardekani et al., 2007; Westerhausen et al., 2007). 

However, asymmetry not only exists in the cortical and subcortical regions but has also 

been reported in white matter. Asymmetry in fiber tracts may contribute to a better 

understanding of functional lateralization.  

The CST is one of the most common fiber tracts for studying asymmetry, and it has indeed 

been found on the CST (Westerhausen et al., 2007; Imfeld et al., 2009; Thiebaut de 

Schotten et al., 2011). These studies have revealed leftward asymmetry on the CST 

between hemispheres. Whether the difference in CST (voxels, regional values of 

parametric maps, or volumes) is directly related to lateralization or dexterity is still not 

clear. Language function has long been proven to be lateralized by Broca and Wernicke, 

with which the AF is related (Sreedharan et al., 2015; Silva and Citterio, 2017). Besides, 

the AF is considered as the fourth part of SLF that connects the frontal and superior 

temporal gyrus (Makris et al., 2005; Dick and Tremblay, 2012). Similar to our findings in 

DTI_FA, SLF was also found to be leftward dominant. However, the anterior segment of 

the AF is rightward lateralized (Buchel et al., 2004; O'Donnell et al., 2009; Thiebaut de 

Schotten et al., 2011), while the long segment of the AF was frequently reported to be 

leftward lateralized (Catani et al., 2007; Hasan et al., 2010; Thiebaut de Schotten et al., 
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2011), suggesting that asymmetry might be region-dependent and various parts of a fiber 

tract present heterogeneous asymmetry. ILF in the left dominant brain could have played 

a role in the language pathway, especially for semantic language processing, but its 

function could be compensated (Mandonnet et al., 2007). However, ILF was found to be 

rightward dominant in DTI_FA, DTI_MD, and DKI_FA in our study. 

There is still no conclusion as to whether the relationship between asymmetry and 

laterality is more a phenomenon of grey matter or white matter fibers. Multiples factors 

like genetics, environmental factors, developmental phase, aging, etc. might also 

contribute to hemispheric asymmetry.  

4.3 Comparison between model-dependent parametric maps 

DTI_FA, DTI_MD, DKI_FA, and DKI_MD are all model- and algorithm-dependent 

parametric maps. As both DTI- and DKI-based parametric maps were derived using the 

same algorithm, noticeable differences between parametric maps were derived from the 

differences between the DKI-fitting model and DTI-fitting model. A comparison was 

done in a voxel-wise manner, and fractional anisotropy was higher in DKI_FA than in 

DTI_FA, and mean diffusivity was higher in DKI_MD than in DTI_MD, respectively, 

which was concordant with previous studies applying the same method (Lanzafame et al., 

2016). Significant clusters found in the comparison between these maps revealed a 

significant model-dependent effect. 

DTI uses a Gaussian approximation of the probability diffusion function through 

estimation of the rank-2 diffusion tensor D, which allows a directional diffusion profile 

to be captured by a 3×3 tensor, while DKI is based on non-Gaussian diffusion with an 

estimation of a rank-4 apparent kurtosis tensor W that allows directional kurtosis to be 

characterized by a 3×3×3×3 tensor matrix (Steven et al., 2014; Lanzafame et al., 2016).  

Furthermore, targeted asymmetric regions in DTI_FA were mostly found in the areas 

where two or more fiber tracts probably cross. The assumption of single fiber orientation 

in DTI leads to a reduced number of tracts being detected in areas of fiber crossing and 
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might bias the calculations of structural asymmetry (Lee et al., 2014). This was also 

proven by a reduced number of asymmetric regions in DTI_MD and DKI_MD, while 

they are the average of eigenvector (Le Bihan et al., 2001). Many studies have claimed 

that FA values are considered to reflect the integrity of white matter fibers, axonal density, 

degree of axonal alignment, myelination, and organization and fiber coherence within a 

given voxel, and as a result regarded them as an index that reflects structural connectivity 

and integrity (Angstmann et al., 2016). MD, on the other hand, is a parameter that 

measures the physicochemical properties of the nervous system (Di Paola et al., 2010). 

While water diffusion in brain tissue is sensitive to microstructures like myelin sheaths 

and cell membranes, variability in FA is greatly reduced in areas of single fiber population 

because much of the variation is caused by crossing fiber tracts, suggesting that FA as a 

marker for white matter integrity is unprecise – as many studies have claimed (Alexander 

et al., 2007). 

As a result, DTI_FA and DTI_MD based on Gaussian distribution may not be capable of 

measuring the exact movement of water molecules because the brain’s microstructures 

are not an ideally homogenous liquid for Gaussian distribution (Tuch et al., 2003). And 

based on the monoexponential model, DTI-based parameters are highly dependent on the 

selection of b values (Veraart et al., 2011). Neither DTI_FA nor DTI_MD can correctly 

deal with multiple fibers within one voxel. 

As DKI is based on a second-order polynomial model, estimation of diffusion (Veraart et 

al., 2011) and kurtosis (Jensen and Helpern, 2010) parameters were independent of b 

values. DKI_MD measuring mean diffusivity in a given voxel based on the DKI model 

also presents limited capability in detecting crossing fibers, but DKI_FA measuring 

directional anisotropy is capable of resolving coherent fibers within one voxel (Zhu et al., 

2015). DKI_MK characterizes the mean deviation from Gaussian distribution, providing 

relatively more accurate information in brain tissue (Jensen and Helpern, 2010), 

especially in regions with crossing fibers (Lazar et al., 2008), which makes it useful for 

evaluating complex brain microstructures (Jensen et al., 2005a; Lazar et al., 2008).  
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Significant clusters found in DTI-based parametric maps might not fully characterize 

asymmetric fiber tracts. In order to access the advantages of DKI, both DTI-fitting and 

DKI-fitting methods should be applied to DWI data separately. Even though DKI is an 

extension of DTI, and they can both be structured into a linear regression form based on 

the natural logarithm of diffusion-weighted MR signals (Veraart et al., 2013). DTI-based 

parametric maps such as DTI_FA and DTI_MD were not equivalent to DKI_FA and 

DKI_MD theoretically, because estimations of these diffusion parameters were based on 

different models, and our direct comparison also demonstrated the model-dependent 

discrepancy between DTI- and DKI-based diffusion parameters. 

4.4 Handedness and gender related to interhemispheric 

asymmetry 

Consistent with our findings, gender was found to have little effect on interhemispheric 

asymmetry in many other studies (Gong et al., 2005b; Westerhausen et al., 2007; Huster 

et al., 2009; Lebel and Beaulieu, 2009; Hasan et al., 2010; Takao et al., 2011). In another 

study, a gender-by-hemisphere effect was shown significant only on ILF in children and 

adolescents (Hasan et al., 2010). It is noteworthy that neither handedness was found to 

affect interhemispheric asymmetry. Previous studies have revealed that no significant 

correlation was found between the asymmetry of the CST at the level of internal capsule 

and handedness (Westerhausen et al., 2007). Regions where right-handed people were 

reported to have higher values than the contralateral side were found to be statistically 

significant by comparing FA values in various levels of the CST based on diffusion tensor 

tractography (Westerhausen et al., 2007; Seizeur et al., 2014), but not necessarily 

correlated with dexterity (Westerhausen et al., 2007). On the contrary, voxel-based 

morphometry (VBM) of T1-weighed images has revealed a significant relationship 

between interhemispheric asymmetry and handedness (Good et al., 2001), and other 

macrostructural studies have also shown signs, like a deeper central sulcus in the 

dominant hemisphere (Amunts et al., 2000) or a more dorsal shape of the human hand 
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knob in the left hemisphere of right-handed people as compared to left-handed people 

(Sun et al., 2012). However, in another study, no handedness-related asymmetry was 

reported in the bilateral primary motor cortex (Ciccarelli et al., 2003).  

The relationship between asymmetry in the fiber tract and lateralization is still not fully 

understood. On the one hand, asymmetry differs in various parts of the fiber tract. On the 

other hand, asymmetry in the fiber tracts does not necessarily equal anatomical 

asymmetry in the human brain. Besides, the possibility that asymmetry in a functional 

cortex rather than the fiber tract might be decisive in lateralization should also be taken 

into consideration for understanding asymmetry in the fiber tracts more deeply.  

Part 2: DKI in glioma patients 

In this part of the study, a new application of DKI has been revealed by detecting changes 

of the CST and AF that might correlate with prognosis in relation to neurological deficits 

in high-grade glioma patients. To achieve this, templates of CSTs and AFs derived from 

healthy volunteers were successfully created, which allowed changes of the tracts to be 

visualized. Changes could occur on CSTs and AFs that were encased by the tumor, kissing 

the tumor, or distant from the tumor. Changes on tracts were quantified, and strong 

correlations were found between DTI- and DKI-based parameters. This indicated changes 

relating to hemiparesis and aphasia were consistent on both DTI and DKI parametric 

maps. These findings support our hypothesis that change on the CST and AF might be 

potentially predictive of outcomes of motor and language deficit with 75% sensitivity and 

87.5% specificity. It seemed that the pattern of an increased DTI_MD and changes 

(increase or decrease) in DKI_MK was concurrent in CST or AF, indicating that fiber 

tracts were severely affected either by infiltration, edema, or Wallerian degradation.  

4.5 Infiltration of glioma as the main cause 

One theory about the infiltration of glioma is that tumor cells migrate along fiber tracts 

(Scherer, 1940). Based on this theory, previous studies have shown that DTI-related 
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parameters were capable of assessing the extent of the infiltrated area on the CST (Bello 

et al., 2008; Gao et al., 2017). Significantly higher MD and lower FA were found to 

indicate infiltration caused by tumor growth as opposed to edema compared to 

contralateral CST (Delgado et al., 2016). In accordance with our findings, decreased FA 

was also reported in white matter proximal to high-grade gliomas (Field et al., 2004; Price 

et al., 2004), which could be explained by Wallerian degradation (Thomalla et al., 2004). 

Between high- and low-grade glioma, FA was found to be higher and MD was lower in 

high-grade glioma (Inoue et al., 2005). Both FA and MK were significantly lower in 

perilesional white matter and tumor centers than that of contralateral normal-appearing 

white matter (NAWM), not only in grade II and grade III gliomas (Delgado et al., 2017) 

but also in grade IV glioblastoma, as reported by other studies (Van Cauter et al., 2012; 

Qi et al., 2017).  

An increased MK is related to higher malignancy (Raab et al., 2010) because of higher 

tumor cellularity, higher heterogeneity, and higher microstructural complexity (Van 

Cauter et al., 2012; Jiang et al., 2015; Bai et al., 2016), while a low kurtosis found in 

peritumoral regions suggested a microstructural rearrangement due to tumor infiltration 

(Delgado et al., 2017). It is noteworthy that all of the comparisons mentioned in previous 

studies were made between targeted lesions and contralateral white matter, assuming that 

the contralateral side was ‘normal’. Increased MD and FA in CST have been correlated 

with postoperative motor dysfunction (Rosenstock et al., 2017). Damage to AF could be 

predictive of persisting language dysfunction in high-grade glioma patients, to which the 

percentage of affected fiber tracts is of great importance (Caverzasi et al., 2016).  

4.6 Peritumoral edema as a complementary contributor 

Either an increased or a decreased DKI_MK was found in regions on fiber tracts in 

relation to dysfunction in this study. Peritumoral edema might indeed be one of the 

contributors to the change detected on fiber tracts. MK showed a higher value in 

peritumoral edema in patients with high-grade glioma than with low-grade glioma (Tan 
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et al., 2016) because high-grade glioma is characterized by more of a diffusion barrier 

and a higher microstructural complexity (Kleihues et al., 1995). But overlap in the range 

of MK values has also been reported in healthy brains compared to brains harboring 

glioma (Latt et al., 2013).  

Besides, there is a possibility that DTI parameters might be normal even in cytotoxic 

edema when the blood–brain barrier remains intact (Ho et al., 2012). Both FA and MD 

could be altered by vasogenic edema. A decreased FA and an increased MD were 

observed compared to contralateral normal-appearing white matter (Holly et al., 2017). A 

common assumption for this phenomenon is increased extracellular water accumulation 

due to breakdown of the blood–brain barrier (Lu et al., 2003; Ho et al., 2012). On the 

other hand, no significant difference was observed in FA and MD of a peritumoral edema 

area between high- and low-grade glioma (Jiang et al., 2017).  

4.7 Timeframe of occurrence 

Mean kurtosis was found to be distinctively decreased with age, which might indicate 

degenerative changes (Falangola et al., 2008; Van Cauter et al., 2012), which allows early 

detection of Parkinson’s disease and differentiates patients of early and advanced stages, 

which FA and MD failed to reveal (Guan et al., 2019). In an animal model of transient 

focal ischemia, MK was capable of detecting hyper-acute and acute stroke and showed 

consistent results, while MD based on DTI tended to change dramatically with time or 

reperfusion (Cheung et al., 2012; Hui et al., 2012).  

Our findings revealed that decreased DTI_FA and DKI_MK concurrent with an increased 

DTI_MD tended to correlate with long-lasting preoperative motor and language deficits 

that were prone to persist even after treatment (surgery, radiotherapy, and chemotherapy). 

In addition, an increased DTI_MD concurrent with changes (either increase or decrease) 

in DKI_MK were proven to correlate with emerging hemiparesis or aphasia. Whether 

there is also such a timeframe in the occurrence of DKI_MK, DTI_MD and DTI_FA in 

fiber tracts infiltrated by glioma, as it is shown in neurodegenerative disease or ischemia, 
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is still unknown. 

4.8 Correlation between DTI- and DKI-based parameters and 

clinical findings 

The pattern of an increased DTI_MD with changes (increase or decrease) in DKI_MK 

may be caused by a reduction of axonal number or density, infiltration of tumor cells, or 

degradation of individual fibers, but further study is required. This is because fiber 

reconstruction was mostly performed by using known anatomical landmarks to seed 

regions or ROIs (Clark et al., 2003; Yamada et al., 2003; Morita et al., 2011), either 

manually (Wakana et al., 2004; Wakana et al., 2007) or automatically (Yendiki et al., 2011; 

Yeatman et al., 2012). The choice for the placement of ROIs might result in variability of 

fiber reconstruction (Wakana et al., 2007) with utilization of different tracking methods, 

and the number and volume of fiber changes. Fiber tracts involved in tumor or edema 

tend to be misdirected because misleading eigenvectors may inaccurately present the 

orientation of axonal bundles (Berman et al., 2004). It is uncertain from mere visual 

assessment whether the reconstructed fiber tract is still intact or already disrupted by 

tumor. This approach provided a possibility for quantitative assessment by comparing 

fiber tracts of patients to templates derived from healthy volunteers in which slices 

occupied by fiber tracts were depicted along the x, y, and z axes. When compared to 

templates, tested fiber tracts exceeding the boundary were found to be displaced. In this 

way, the detection of tract displacement, as well as direct comparison in corresponding 

spatial location, were enabled. This method avoids the ambiguity caused by averaging 

parameters along tracts that are not equally distributed, as previous research suggested 

that FA varied substantially within a tract (Yeatman et al., 2012). Besides, not every 

individual tract of a specific trajectory is the same length, and lower FA is unavoidable at 

crossing fibers, assuming there can only be one single fiber population (Alexander et al., 

2007). 

Thus, affected white matter fiber tracts were more directly demonstrated in this method 
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than the commonly used morphological T1 contrast-enhanced fluid-attenuated inversion 

recovery (FLAIR) and T2-weighted images, thereby this method is capable of predicting 

vital functions of fiber tracts more accurately. The pattern revealed that regions with an 

increased DTI_MD and changes (increase or decrease) in DKI_MK could be a result of 

a combination of various factors such as infiltration, vasogenic edema, Wallerian 

degradation, and age. Change detected on the CST or AF in accordance with the revealed 

pattern tended to correlate with persisting hemiparesis or aphasia, while change 

mismatched with this pattern was found to be potentially connected to a better chance of 

recovering, especially in grade III glioma patients. Change (either increase or decrease) 

in DKI_MK, along with an increased DTI_MD was likely to be connected with infiltrated 

fiber tracts. Change found on the CST or AF distant from tumor might be explained by 

Wallerian degradation (Thomalla et al., 2004). Based on this method, the overall impact 

of the tumor was considered instead of focusing on specific parts of the tumor such as the 

tumor center or peritumoral edema. 

Part 3: Interpretation of DTI- and DKI-based parameters 

Considerable attention has been given to the application of DKI in recent years due to its 

feasibility in clinical use. In our study, satisfying results have been revealed by the 

performance of DKI compared to DTI. Both DKI and DTI were employed in healthy 

volunteers for detecting interhemispheric asymmetry, as well as in high-grade glioma 

patients for detecting changes of the CST and AF. As a result, the descriptive and 

discriminative potential of DTI- and DKI-based parameters were sufficiently explored.  

On the one hand, the hindrance of water molecules’ movement is due to small 

compartments like organelles and membranes in the brain’s microstructures. With b < 

1000 s/mm2, these small compartments are difficult to detect in DTI. Under this 

circumstance, the diffusion of water molecules deviates from Gaussian diffusion. 

However, in DKI with an additional b 2000 s/mm2, recognition of these small 

compartments becomes possible. DKI, as a three-dimensional generalization of the 



 

68 

 

second-order cumulant expansion proposed by Jensen (Jensen et al., 2005a), can indeed 

be used to reveal both Gaussian and non-Gaussian distribution. Therefore, higher 

sensitivity to microstructural changes is inherited in the DKI model. Furthermore, DKI is 

capable of resolving two and three intersecting fibers within one voxel (Lazar et al., 2008). 

On the other hand, the DKI model is dependent on 21 parameters compared to DTI’s six, 

so high variability is expected to occur in DKI when a short imaging protocol is applied. 

Variability has also been reported to differ in brain regions, which can lead to a lack of 

significance (Steven et al., 2014). 

MD and FA are the most commonly used DTI-based parameters. MD is calculated by the 

mean of three eigenvectors and regarded as a molecular diffusion rate, whereas FA is 

measured by a normalized method of fraction of tensor’s magnitude and considered as 

the directional preference of diffusion (Soares et al., 2013). Basically, MD increases in 

areas with increased free diffusion, while FA decreases in areas with loss of coherence 

against the main preferred diffusion orientation. An increased MD and a decreased FA 

suggested that fiber integrity was damaged or impaired since an increased MD is related 

to increased diffusion, and a decreased FA is related to loss of coherence (Soares et al., 

2013). However, increased FA does not necessarily translate to an intactness of fiber tracts, 

because increased FA values were reported to correlate with poor outcomes in Williams 

syndrome (Hoeft et al., 2007). 

The most commonly used DKI-based parameter is MK. As the average of deviation from 

Gaussian diffusion, MK is proportional to the heterogeneity and complexity of brain 

tissue. Generally, an increased MK is correlated with higher cellularity and 

microstructural complexity, while a decreased MK indicates a loss of cellular structure 

(Steven et al., 2014). In other studies, an increased MK could also be interpreted as 

increased glial activity or severe astrogliosis in brain trauma study (Zhuo et al., 2015), or 

it served as a biomarker for discriminating high- and low-grade glioma. Additionally, a 

decreased MK has also been found to correlate with neurodegenerative diseases like 

Parkinson’s (Wang et al., 2011) and Alzheimer’s (Falangola et al., 2013), in which a 
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decreased MK was interpreted as loss of neuron cell bodies, synapses, and dendrites.  

That higher fractional anisotropy was found in corresponding voxels in DKI_FA than in 

DTI_FA can be explained by the finding that crossing fibers are more problematic for FA 

than for MD (Tournier et al., 2011).  

Thus, FA, MD, and MK are scalar maps estimated from mathematical models that cannot 

directly show pathological or physiological processes. The interpretation of FA, MD, and 

MK should be done with caution. Firstly, structural differences exist in the different 

anatomical levels of fiber tracts. Differences in various anatomical locations of the CST 

were already detected by higher anisotropy in the cerebral peduncle and lower anisotropy 

in the pons and medulla, to which a highly ordered arrangement of fiber was decisive in 

a healthy human brain (Virta et al., 1999). With structural complexity, subdivision of the 

cingulum was achieved by DTI, and little overlap was detected between them (Jones et 

al., 2013). Different segments of the AF also differed from each other in asymmetry 

(Buchel et al., 2004; Catani et al., 2007; O'Donnell et al., 2009; Hasan et al., 2010; 

Thiebaut de Schotten et al., 2011). Secondly, not only tract volume and tract length, but 

also DTI-based parameters were affected by different tract delineation methods (Sydnor 

et al., 2018). Thirdly, various factors such as demyelination, inflammation, axonal loss, 

and gliosis are influences in the white matter fiber tracts that compete against each other. 

It might be an exaggeration to suggest that increased or decreased measurements certainly 

mean the brain tissue is going through only one process, ignoring that it may actually the 

result of a combination of multiple process. Because of the variability presented by both 

DTI- and DKI-based parameters, higher and lower values can correlate with disease or 

physiological changes, or even both.  

With additional microstructural information adding to DTI, DKI has proved its feasibility 

in both healthy volunteers and high-grade glioma patients. But the interpretation of DKI 

characterization has not yet been fully explored. More studies are needed in order to 

deepen the understanding of DKI and expand its advanced application in clinical practice. 
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4.9 Limitations 

This study, however, is not without limitations. Firstly, the number of healthy volunteers 

and patients who participated in this study was sufficient, but certainly not large. Secondly, 

there was a moderate age discrepancy between healthy volunteers and high-grade glioma 

patients. As age does play a role in changes in white matter, using templates based on 

younger healthy volunteers might lead to changes detected on patients’ CSTs or AFs that 

were caused by physiological changes. This might explain why some lesions on tracts 

were detected contralaterally to the tumors but caused no motor or language deficits. 

Thirdly, the same reconstruction method was applied to DTI and DKI data. Although the 

application of the reconstruction method to DTI data has been proven to be both practical 

and feasible, it was not designed specifically for DKI. Different reconstruction protocols 

should be applied to exploit diffusion kurtosis tractography, such as isolating various 

tracts from whole-brain tractography yielded by seeding from a particular anatomical 

position. 

4.10 Future Work 

As an extension of this study, more right-handed healthy subjects will be recruited in 

different age groups to minimize the potential influence of age when comparing to 

templates. Additionally, patients with low-grade glioma will be included in order to test 

the usefulness of the pattern revealed by DKI for low-grade glioma. For further 

investigation, follow-up DWI data of patients will be carefully examined in order to see 

whether the pattern found in our study is connected with persisting or transient symptoms 

that could be alleviated or healed, and whether there is a time frame between the 

occurrence of change in DTI_MD and DKI_MK and then DTI_FA. Automatic 

reconstruction of fiber tracts in both volunteers and patients will also be applied to lessen 

the possible error caused by manual reconstruction. 
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To the best of our knowledge, this study is the first to apply DKI on interhemispheric 

asymmetry based on TBSS analysis. Data has been extracted from CST and AF along 

three-dimensional directions instead of along tracts to avoid ambiguity. The predictive 

value of DKI was therefore exploited for the outcome of hemiparesis and aphasia in high-

grade glioma patients. Differences and correlation between DTI- and DKI-based 

parameters have been revealed. In conclusion, application of DKI deepens the 

understanding of white matter under physiological as well as pathological conditions. 
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5 Summary 

Diffusion tensor imaging (DTI) has become a standard procedure in clinical routine as 

well as research as it enables the reconstruction and visualization of fiber tracts in the 

human brain. Due to the simplified assumption the tensor model – a Gaussian distribution 

of the diffusion – it typically fails to provide neither accurate spatial mapping nor 

quantification of crossing or kissing fibers. A clinically feasible development might be 

diffusion kurtosis imaging (DKI), an extension of DTI also integrating non-Gaussian 

distribution diffusion processes and thereby shall overcome some of its limitations. 

The potential DKI will be evaluated in case of the detection of the interhemispheric 

asymmetry of the white matter in healthy volunteers (n = 20), as well as the analysis of 

tumor-related impairments of fiber tracts and their correlation with neurological deficits 

in patients (n = 13) diagnosed with glioma.  

In order to analyze interhemispheric asymmetry across the whole brain, especially of nine 

large fiber tracts, tract-based spatial statistics (TBSS) analysis was performed using DTI- 

and DKI-based parameters, a laterality index was calculated for asymmetries and DTI- 

and DKI-based results were compared.  

With regard to fractional anisotropy as marker of integrity, asymmetry was found for all 

nine fiber tracts based on DTI and seven tracts based on DKI. For mean diffusivity, 

asymmetries were found for three (DTI) and two (DKI) fiber tracts. Regarding mean 

kurtosis, asymmetry was found in one tract. The interhemispheric asymmetry thereby 

varied in anatomical location as well as in cluster size. Only small parts of the tracts were 

affected. A comparison of DTI and DKI showed significantly higher fractional anisotropy 

and mean diffusivity based on DKI compared to DTI. Gender and handedness did not 

seem to have any influence.  

For the assessment of tumor-related changes of fiber tracts in patients diagnosed with 

glioma, especially in relation to pre-existing and postoperative neurological deficits 

(hemiparesis, aphasia), templates for the corticospinal tract and the arcuate fasciculus 

were created based on DTI- and DKI-derived parameters, respectively. The corticospinal 
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tract and the arcuate fasciculus were reconstructed for each patient and the associated 

parametric maps were projected onto the templates. Based on this, alterations along the 

tracts could be identified and quantified. Alterations were found on fiber tracts regardless 

of the spatial proximity to the lesion. There was a correlation between alterations based 

on fractional anisotropy, mean diffusivity and mean kurtosis. Increased mean diffusivity 

was associated with alteration in mean kurtosis, a decreased fractional anisotropy was 

found concurrent with a likewise decreased mean kurtosis. In the case of pre-existing 

neurological deficits (hemiparesis, aphasia) with regard to the changes along the fiber 

tracts (corticospinal tract, left arcuate fasciculus), most often increased mean diffusivity 

and altered mean kurtosis was found. Applying this pattern for prediction of 

corresponding postoperative neurological deficits a sensitivity of 75.0% and a specificity 

of 87.5% was achieved. 

DKI seems to more precisely estimated and depict the underlying microstructure in 

comparison to DTI. Thereby, in pathological cases especially the mean kurtosis seems to 

be of special interest. A combination of DTI- and DKI based parameters, particularly with 

regard to its clinical usability and value, offers great potential in clinical routine. 
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6 Zusammenfassung  

Die Diffusions-Tensor-Bildgebung (DTI) zur Rekonstruktion und Visualisierung von 

Fasertrakten im Gehirn zählt mittlerweile zu den Standardverfahren in der klinischen 

Routine und der neurowissenschaftlichen Forschung. Aufgrund der vereinfachenden 

Annahme des zugrundliegenden Tensormodells - einer Gaußschen Verteilung der 

Diffusion - ist eine räumlich genaue Abbildung und Quantifizierung z.B. sich kreuzender 

oder tangierender Faserbahnen nicht gegeben. Eine klinisch praktikable 

Weiterentwicklung stellt die Diffusions-Kurtosis-Bildgebung (DKI) dar, die das DTI 

Modell um die Modellierung der nicht-Gaußschen Verteilung der Diffusion erweitert und 

so den Limitationen entgegen wirken soll. 

Das Potential dieser erweiterten Modellierung soll hier nun in Bezug auf die Detektion 

der interhemispärischen Asymmetrie der weißen Substanz gesunder Probanden (n = 20) 

evaluiert werden, sowie zur Analyse tumorbedingter Veränderungen von Faserbahnen bei 

Patienten (n = 13) mit Gliomen und deren Zusammenhang mit neurologischen Defiziten 

herangezogen werden.  

Zur Analyse der Interhemispähren-Asymmetrie wurde sowohl mittels DTI- als auch DKI-

basierten Parametern eine Fasertrakt-basierte Analyse der weißen Substanz, insbesondere 

von neun großen Fasertrakten durchgeführt, bei Asymmetrien ein Lateralitätsindex 

bestimmt, sowie DTI- und DKI-basierte Ergebnisse verglichen. 

Bezüglich der fraktionellen Anisotropie als Marker für die Integrität von Faserbahnen 

zeigten sich für DTI für alle, basierend auf DKI nur für sieben der neun Trakte 

Asymmetrien. Für die mittlere Diffusivität fanden sich Asymmetrien für drei (DTI) bzw. 

zwei (DKI) komplementäre Trakte, für die mittlere Kurtosis nur für einen Trakt. Die 

interhemisphärische Asymmetrie variierte dabei insgesamt bzgl. der anatomischen 

Lokalisation als auch in ihrer Ausprägung, nur geringe Anteile der Trakte waren betroffen. 

Im direkten Vergleich der beiden Modelle zeigte sich eine signifikant höhere fraktionelle 

Anisotropie und mittlere Diffusivität basierend auf DKI im Vergleich zu DTI. Geschlecht 

und Händigkeit schienen keinen Einfluss zu nehmen.  
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Für die Beurteilung tumorassoziierter Veränderungen in den Faserbahnen bei Patienten 

mit Gliomen insbesondere in Relation zu vorbestehenden und postoperativen 

neurologischen motorischen und sprachassoziierten Defiziten wurden auf Basis der DTI- 

und DKI-basierten Parameterkarten Referenzkarten für die Pyramidenbahn sowie den 

Fasciculus arcuatus erstellt. Für jeden Patienten wurden im Anschluss die Pyramidenbahn 

und der Fasciculus arcuatus rekonstruiert und die zugehörigen Parameterkarten auf die 

Schablonen projiziert. Anhand derer konnten für die Patienten Veränderungen entlang der 

Trakte identifiziert und quantifiziert werden.  

Bei Patienten traten dabei im Vergleich zu Gesundprobanden Veränderungen der 

Diffusionparameter entlang der Trakte auf, egal ob distant oder nähe der Läsion. Es zeigte 

sich eine Korrelation zwischen der räumlichen Ausdehnung der Veränderungen für die 

fraktionelle Anisotropie und die mittlere Kurtosis. Eine gesteigerte mittlere Diffusivität 

stand im Zusammenhang mit einer Veränderung der mittleren Kurtosis, eine verringerte 

fraktionelle Anisotropie zeigte sich korrelierend zu einer ebenfalls verringerten mittleren 

Kurtosis. Bei vorbestehenden neurologischen Defiziten (Hemiparese, Aphasie) fand sich 

in Bezug auf die Veränderungen entlang der Fasertrakte (Pyramidenbahn, Fasciculus 

arcuatus links) vornehmlich eine gesteigerte mittlere Diffusivtät sowie eine Veränderung 

der mittleren Kurtosis im Vergleich zum Referenzmodell. Die Anwendung dieser 

Relation ließ dabei die Vorhersage entsprechender postoperativer neurologischer Defizite 

mit einer Sensitivität von 75,0 % und einer Spezifität von 87,5 % im Rahmen des 

Patientenkollektivs zu. 

DKI scheint gegenüber dem vereinfachten Modell der DTI eine zum Teil spezifischere 

Abbildung der zugrundliegenden Mikrostruktur zu ermöglichen. Gerade die mittlere 

Kurtosis erscheint bei pathologischen Veränderungen dabei eine besondere Rolle zu 

spielen, so dass die Kombination von DTI- und DKI-basierten Informationen, 

insbesondere unter dem Aspekt der klinischen Umsetzbarkeit und Nutzbarkeit, Potential 

für die klinische Routine bietet. 



 

76 

 

References and Bibliography 

Agcaoglu, O., Miller, R., Mayer, A.R., Hugdahl, K., and Calhoun, V.D. (2015). 

Lateralization of resting state networks and relationship to age and gender. 

Neuroimage 104, 310-325. doi: 10.1016/j.neuroimage.2014.09.001. 

Alexander, A.L., Lee, J.E., Lazar, M., and Field, A.S. (2007). Diffusion tensor imaging 

of the brain. Neurotherapeutics 4(3), 316-329. doi: 10.1016/j.nurt.2007.05.011. 

Amunts, K., Jancke, L., Mohlberg, H., Steinmetz, H., and Zilles, K. (2000). 

Interhemispheric asymmetry of the human motor cortex related to handedness and 

gender. Neuropsychologia 38(3), 304-312. doi: 10.1016/s0028-3932(99)00075-5. 

Angstmann, S., Madsen, K.S., Skimminge, A., Jernigan, T.L., Baare, W.F., and Siebner, 

H.R. (2016). Microstructural asymmetry of the corticospinal tracts predicts right-left 

differences in circle drawing skill in right-handed adolescents. Brain Struct Funct 

221(9), 4475-4489. doi: 10.1007/s00429-015-1178-5. 

Arac, N., Sagduyu, A., Binai, S., and Ertekin, C. (1994). Prognostic value of transcranial 

magnetic stimulation in acute stroke. Stroke 25(11), 2183-2186. doi: 

10.1161/01.str.25.11.2183. 

Ardekani, S., Kumar, A., Bartzokis, G., and Sinha, U. (2007). Exploratory voxel-based 

analysis of diffusion indices and hemispheric asymmetry in normal aging. Magn 

Reson Imaging 25(2), 154-167. doi: 10.1016/j.mri.2006.09.045. 

Bai, Y., Lin, Y., Tian, J., Shi, D., Cheng, J., Haacke, E.M., et al. (2016). Grading of 

Gliomas by Using Monoexponential, Biexponential, and Stretched Exponential 

Diffusion-weighted MR Imaging and Diffusion Kurtosis MR Imaging. Radiology 

278(2), 496-504. doi: 10.1148/radiol.2015142173. 

Barrick, T.R., Lawes, I.N., Mackay, C.E., and Clark, C.A. (2007). White matter pathway 

asymmetry underlies functional lateralization. Cereb Cortex 17(3), 591-598. doi: 

10.1093/cercor/bhk004. 

Basser, P.J., Mattiello, J., and LeBihan, D. (1994a). Estimation of the effective self-

diffusion tensor from the NMR spin echo. J Magn Reson B 103(3), 247-254. doi: 



 

77 

 

10.1006/jmrb.1994.1037. 

Basser, P.J., Mattiello, J., and LeBihan, D. (1994b). MR diffusion tensor spectroscopy 

and imaging. Biophys J 66(1), 259-267. doi: 10.1016/S0006-3495(94)80775-1. 

Beaton, A.A. (1997). The relation of planum temporale asymmetry and morphology of 

the corpus callosum to handedness, gender, and dyslexia: a review of the evidence. 

Brain Lang 60(2), 255-322. doi: 10.1006/brln.1997.1825. 

Behrens, T.E., Berg, H.J., Jbabdi, S., Rushworth, M.F., and Woolrich, M.W. (2007). 

Probabilistic diffusion tractography with multiple fibre orientations: What can we 

gain? Neuroimage 34(1), 144-155. doi: 10.1016/j.neuroimage.2006.09.018. 

Bello, L., Gambini, A., Castellano, A., Carrabba, G., Acerbi, F., Fava, E., et al. (2008). 

Motor and language DTI Fiber Tracking combined with intraoperative subcortical 

mapping for surgical removal of gliomas. Neuroimage 39(1), 369-382. doi: 

10.1016/j.neuroimage.2007.08.031. 

Berman, J.I., Berger, M.S., Mukherjee, P., and Henry, R.G. (2004). Diffusion-tensor 

imaging-guided tracking of fibers of the pyramidal tract combined with 

intraoperative cortical stimulation mapping in patients with gliomas. J Neurosurg 

101(1), 66-72. doi: 10.3171/jns.2004.101.1.0066. 

Bethmann, A., Tempelmann, C., De Bleser, R., Scheich, H., and Brechmann, A. (2007). 

Determining language laterality by fMRI and dichotic listening. Brain Res 1133(1), 

145-157. doi: 10.1016/j.brainres.2006.11.057. 

Binder, J.R., Swanson, S.J., Hammeke, T.A., Morris, G.L., Mueller, W.M., Fischer, M., 

et al. (1996). Determination of language dominance using functional MRI: a 

comparison with the Wada test. Neurology 46(4), 978-984. doi: 

10.1212/wnl.46.4.978. 

Buchel, C., Raedler, T., Sommer, M., Sach, M., Weiller, C., and Koch, M.A. (2004). White 

matter asymmetry in the human brain: a diffusion tensor MRI study. Cereb Cortex 

14(9), 945-951. doi: 10.1093/cercor/bhh055. 

Cao, Y., Whalen, S., Huang, J., Berger, K.L., and DeLano, M.C. (2003). Asymmetry of 



 

78 

 

subinsular anisotropy by in vivo diffusion tensor imaging. Hum Brain Mapp 20(2), 

82-90. doi: 10.1002/hbm.10130. 

Catani, M., Allin, M.P., Husain, M., Pugliese, L., Mesulam, M.M., Murray, R.M., et al. 

(2007). Symmetries in human brain language pathways correlate with verbal recall. 

Proc Natl Acad Sci U S A 104(43), 17163-17168. doi: 10.1073/pnas.0702116104. 

Catano, A., Houa, M., Caroyer, J.M., Ducarne, H., and Noel, P. (1996). Magnetic 

transcranial stimulation in acute stroke: early excitation threshold and functional 

prognosis. Electroencephalogr Clin Neurophysiol 101(3), 233-239. doi: 

10.1016/0924-980x(96)95656-8. 

Caverzasi, E., Hervey-Jumper, S.L., Jordan, K.M., Lobach, I.V., Li, J., Panara, V., et al. 

(2016). Identifying preoperative language tracts and predicting postoperative 

functional recovery using HARDI q-ball fiber tractography in patients with gliomas. 

J Neurosurg 125(1), 33-45. doi: 10.3171/2015.6.JNS142203. 

Chanraud, S., Zahr, N., Sullivan, E.V., and Pfefferbaum, A. (2010). MR diffusion tensor 

imaging: a window into white matter integrity of the working brain. Neuropsychol 

Rev 20(2), 209-225. doi: 10.1007/s11065-010-9129-7. 

Cheung, J.S., Wang, E., Lo, E.H., and Sun, P.Z. (2012). Stratification of heterogeneous 

diffusion MRI ischemic lesion with kurtosis imaging: evaluation of mean diffusion 

and kurtosis MRI mismatch in an animal model of transient focal ischemia. Stroke 

43(8), 2252-2254. doi: 10.1161/STROKEAHA.112.661926. 

Chiu, H.C., and Damasio, A.R. (1980). Human cerebral asymmetries evaluated by 

computed tomography. J Neurol Neurosurg Psychiatry 43(10), 873-878. doi: 

10.1136/jnnp.43.10.873. 

Ciccarelli, O., Toosy, A.T., Parker, G.J., Wheeler-Kingshott, C.A., Barker, G.J., Miller, 

D.H., et al. (2003). Diffusion tractography based group mapping of major white-

matter pathways in the human brain. Neuroimage 19(4), 1545-1555. doi: 

10.1016/s1053-8119(03)00190-3. 

Clark, C.A., Barrick, T.R., Murphy, M.M., and Bell, B.A. (2003). White matter fiber 



 

79 

 

tracking in patients with space-occupying lesions of the brain: a new technique for 

neurosurgical planning? Neuroimage 20(3), 1601-1608. 

Delgado, A.F., Fahlstrom, M., Nilsson, M., Berntsson, S.G., Zetterling, M., Libard, S., et 

al. (2017). Diffusion Kurtosis Imaging of Gliomas Grades II and III - A Study of 

Perilesional Tumor Infiltration, Tumor Grades and Subtypes at Clinical Presentation. 

Radiol Oncol 51(2), 121-129. doi: 10.1515/raon-2017-0010. 

Delgado, A.F., Nilsson, M., Latini, F., Martensson, J., Zetterling, M., Berntsson, S.G., et 

al. (2016). Preoperative Quantitative MR Tractography Compared with Visual Tract 

Evaluation in Patients with Neuropathologically Confirmed Gliomas Grades II and 

III: A Prospective Cohort Study. Radiol Res Pract 2016, 7671854. doi: 

10.1155/2016/7671854. 

Dhermain, F.G., Hau, P., Lanfermann, H., Jacobs, A.H., and van den Bent, M.J. (2010). 

Advanced MRI and PET imaging for assessment of treatment response in patients 

with gliomas. Lancet Neurol 9(9), 906-920. doi: 10.1016/S1474-4422(10)70181-2. 

Di Paola, M., Spalletta, G., and Caltagirone, C. (2010). In vivo structural neuroanatomy 

of corpus callosum in Alzheimer's disease and mild cognitive impairment using 

different MRI techniques: a review. J Alzheimers Dis 20(1), 67-95. doi: 

10.3233/JAD-2010-1370. 

Dick, A.S., and Tremblay, P. (2012). Beyond the arcuate fasciculus: consensus and 

controversy in the connectional anatomy of language. Brain 135(Pt 12), 3529-3550. 

doi: 10.1093/brain/aws222. 

Dirven, L., Aaronson, N.K., Heimans, J.J., and Taphoorn, M.J. (2014). Health-related 

quality of life in high-grade glioma patients. Chin J Cancer 33(1), 40-45. doi: 

10.5732/cjc.013.10214. 

Dong, X., Noorbakhsh, A., Hirshman, B.R., Zhou, T., Tang, J.A., Chang, D.C., et al. 

(2016). Survival trends of grade I, II, and III astrocytoma patients and associated 

clinical practice patterns between 1999 and 2010: A SEER-based analysis. 

Neurooncol Pract 3(1), 29-38. doi: 10.1093/nop/npv016. 



 

80 

 

Douek, P., Turner, R., Pekar, J., Patronas, N., and Le Bihan, D. (1991). MR color mapping 

of myelin fiber orientation. J Comput Assist Tomogr 15(6), 923-929. doi: 

10.1097/00004728-199111000-00003. 

Dubey, A., Kataria, R., and Sinha, V.D. (2018). Role of Diffusion Tensor Imaging in Brain 

Tumor Surgery. Asian J Neurosurg 13(2), 302-306. doi: 10.4103/ajns.AJNS_226_16. 

Falangola, M.F., Jensen, J.H., Babb, J.S., Hu, C., Castellanos, F.X., Di Martino, A., et al. 

(2008). Age-related non-Gaussian diffusion patterns in the prefrontal brain. J Magn 

Reson Imaging 28(6), 1345-1350. doi: 10.1002/jmri.21604. 

Falangola, M.F., Jensen, J.H., Tabesh, A., Hu, C., Deardorff, R.L., Babb, J.S., et al. (2013). 

Non-Gaussian diffusion MRI assessment of brain microstructure in mild cognitive 

impairment and Alzheimer's disease. Magn Reson Imaging 31(6), 840-846. doi: 

10.1016/j.mri.2013.02.008. 

Falk Delgado, A., Nilsson, M., van Westen, D., and Falk Delgado, A. (2018). Glioma 

Grade Discrimination with MR Diffusion Kurtosis Imaging: A Meta-Analysis of 

Diagnostic Accuracy. Radiology 287(1), 119-127. doi: 10.1148/radiol.2017171315. 

Farshidfar, Z., Faeghi, F., Mohseni, M., Seddighi, A., Kharrazi, H.H., and 

Abdolmohammadi, J. (2014). Diffusion tensor tractography in the presurgical 

assessment of cerebral gliomas. Neuroradiol J 27(1), 75-84. doi: 10.15274/NRJ-

2014-10008. 

Feng, W., Wang, J., Chhatbar, P.Y., Doughty, C., Landsittel, D., Lioutas, V.A., et al. (2015). 

Corticospinal tract lesion load: An imaging biomarker for stroke motor outcomes. 

Ann Neurol 78(6), 860-870. doi: 10.1002/ana.24510. 

Field, A.S., Alexander, A.L., Wu, Y.C., Hasan, K.M., Witwer, B., and Badie, B. (2004). 

Diffusion tensor eigenvector directional color imaging patterns in the evaluation of 

cerebral white matter tracts altered by tumor. J Magn Reson Imaging 20(4), 555-562. 

doi: 10.1002/jmri.20169. 

Foundas, A.L., Eure, K.F., Luevano, L.F., and Weinberger, D.R. (1998). MRI 

asymmetries of Broca's area: the pars triangularis and pars opercularis. Brain Lang 



 

81 

 

64(3), 282-296. doi: 10.1006/brln.1998.1974. 

Gao, B., Shen, X., Shiroishi, M.S., Pang, M., Li, Z., Yu, B., et al. (2017). A pilot study of 

pre-operative motor dysfunction from gliomas in the region of corticospinal tract: 

Evaluation with diffusion tensor imaging. PLoS One 12(8), e0182795. doi: 

10.1371/journal.pone.0182795. 

Glasser, M.F., and Rilling, J.K. (2008). DTI tractography of the human brain's language 

pathways. Cereb Cortex 18(11), 2471-2482. doi: 10.1093/cercor/bhn011. 

Gomez-Gastiasoro, A., Zubiaurre-Elorza, L., Pena, J., Ibarretxe-Bilbao, N., Rilo, O., 

Schretlen, D.J., et al. (2019). Altered frontal white matter asymmetry and its 

implications for cognition in schizophrenia: A tractography study. Neuroimage Clin 

22, 101781. doi: 10.1016/j.nicl.2019.101781. 

Gong, G., Jiang, T., Zhu, C., Zang, Y., He, Y., Xie, S., et al. (2005a). Side and handedness 

effects on the cingulum from diffusion tensor imaging. Neuroreport 16(15), 1701-

1705. 

Gong, G., Jiang, T., Zhu, C., Zang, Y., Wang, F., Xie, S., et al. (2005b). Asymmetry 

analysis of cingulum based on scale-invariant parameterization by diffusion tensor 

imaging. Hum Brain Mapp 24(2), 92-98. doi: 10.1002/hbm.20072. 

Good, C.D., Johnsrude, I., Ashburner, J., Henson, R.N., Friston, K.J., and Frackowiak, 

R.S. (2001). Cerebral asymmetry and the effects of sex and handedness on brain 

structure: a voxel-based morphometric analysis of 465 normal adult human brains. 

Neuroimage 14(3), 685-700. doi: 10.1006/nimg.2001.0857. 

Guan, J., Ma, X., Geng, Y., Qi, D., Shen, Y., Shen, Z., et al. (2019). Diffusion Kurtosis 

Imaging for Detection of Early Brain Changes in Parkinson's Disease. Front Neurol 

10, 1285. doi: 10.3389/fneur.2019.01285. 

Hasan, K.M., Iftikhar, A., Kamali, A., Kramer, L.A., Ashtari, M., Cirino, P.T., et al. (2009). 

Development and aging of the healthy human brain uncinate fasciculus across the 

lifespan using diffusion tensor tractography. Brain Res 1276, 67-76. doi: 

10.1016/j.brainres.2009.04.025. 



 

82 

 

Hasan, K.M., Kamali, A., Abid, H., Kramer, L.A., Fletcher, J.M., and Ewing-Cobbs, L. 

(2010). Quantification of the spatiotemporal microstructural organization of the 

human brain association, projection and commissural pathways across the lifespan 

using diffusion tensor tractography. Brain Struct Funct 214(4), 361-373. doi: 

10.1007/s00429-009-0238-0. 

Ho, M.L., Rojas, R., and Eisenberg, R.L. (2012). Cerebral edema. AJR Am J Roentgenol 

199(3), W258-273. doi: 10.2214/AJR.11.8081. 

Hoeft, F., Barnea-Goraly, N., Haas, B.W., Golarai, G., Ng, D., Mills, D., et al. (2007). 

More is not always better: increased fractional anisotropy of superior longitudinal 

fasciculus associated with poor visuospatial abilities in Williams syndrome. J 

Neurosci 27(44), 11960-11965. doi: 10.1523/JNEUROSCI.3591-07.2007. 

Holly, K.S., Barker, B.J., Murcia, D., Bennett, R., Kalakoti, P., Ledbetter, C., et al. (2017). 

High-grade Gliomas Exhibit Higher Peritumoral Fractional Anisotropy and Lower 

Mean Diffusivity than Intracranial Metastases. Front Surg 4, 18. doi: 

10.3389/fsurg.2017.00018. 

Hua, K., Zhang, J., Wakana, S., Jiang, H., Li, X., Reich, D.S., et al. (2008). Tract 

probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-

specific quantification. Neuroimage 39(1), 336-347. doi: 

10.1016/j.neuroimage.2007.07.053. 

Hui, E.S., Du, F., Huang, S., Shen, Q., and Duong, T.Q. (2012). Spatiotemporal dynamics 

of diffusional kurtosis, mean diffusivity and perfusion changes in experimental stroke. 

Brain Res 1451, 100-109. doi: 10.1016/j.brainres.2012.02.044. 

Huster, R.J., Westerhausen, R., Kreuder, F., Schweiger, E., and Wittling, W. (2009). 

Hemispheric and gender related differences in the midcingulum bundle: a DTI study. 

Hum Brain Mapp 30(2), 383-391. doi: 10.1002/hbm.20509. 

Imfeld, A., Oechslin, M.S., Meyer, M., Loenneker, T., and Jancke, L. (2009). White 

matter plasticity in the corticospinal tract of musicians: a diffusion tensor imaging 

study. Neuroimage 46(3), 600-607. doi: 10.1016/j.neuroimage.2009.02.025. 



 

83 

 

Inglese, M., and Bester, M. (2010). Diffusion imaging in multiple sclerosis: research and 

clinical implications. NMR Biomed 23(7), 865-872. doi: 10.1002/nbm.1515. 

Inoue, T., Ogasawara, K., Beppu, T., Ogawa, A., and Kabasawa, H. (2005). Diffusion 

tensor imaging for preoperative evaluation of tumor grade in gliomas. Clin Neurol 

Neurosurg 107(3), 174-180. doi: 10.1016/j.clineuro.2004.06.011. 

Jahanshad, N., Lee, A.D., Barysheva, M., McMahon, K.L., de Zubicaray, G.I., Martin, 

N.G., et al. (2010). Genetic influences on brain asymmetry: a DTI study of 374 twins 

and siblings. Neuroimage 52(2), 455-469. doi: 10.1016/j.neuroimage.2010.04.236. 

Jensen, J.H., and Helpern, J.A. (2010). MRI quantification of non-Gaussian water 

diffusion by kurtosis analysis. NMR Biomed 23(7), 698-710. doi: 10.1002/nbm.1518. 

Jensen, J.H., Helpern, J.A., Ramani, A., Lu, H., and Kaczynski, K. (2005a). Diffusional 

kurtosis imaging: the quantification of non-gaussian water diffusion by means of 

magnetic resonance imaging. Magn Reson Med 53(6), 1432-1440. doi: 

10.1002/mrm.20508. 

Jensen, J.H., Helpern, J.A., Ramani, A., Lu, H.Z., and Kaczynski, K. (2005b). Diffusional 

kurtosis imaging: The quantification of non-Gaussian water diffusion by means of 

magnetic resonance imaging. Magnetic Resonance in Medicine 53(6), 1432-1440. 

doi: 10.1002/mrm.20508. 

Jiang, L., Xiao, C.Y., Xu, Q., Sun, J., Chen, H., Chen, Y.C., et al. (2017). Analysis of DTI-

Derived Tensor Metrics in Differential Diagnosis between Low-grade and High-

grade Gliomas. Front Aging Neurosci 9, 271. doi: 10.3389/fnagi.2017.00271. 

Jiang, R., Jiang, J., Zhao, L., Zhang, J., Zhang, S., Yao, Y., et al. (2015). Diffusion kurtosis 

imaging can efficiently assess the glioma grade and cellular proliferation. Oncotarget 

6(39), 42380-42393. doi: 10.18632/oncotarget.5675. 

Jones, D.K., Christiansen, K.F., Chapman, R.J., and Aggleton, J.P. (2013). Distinct 

subdivisions of the cingulum bundle revealed by diffusion MRI fibre tracking: 

implications for neuropsychological investigations. Neuropsychologia 51(1), 67-78. 

doi: 10.1016/j.neuropsychologia.2012.11.018. 



 

84 

 

Kansaku, K., Yamaura, A., and Kitazawa, S. (2000). Sex differences in lateralization 

revealed in the posterior language areas. Cereb Cortex 10(9), 866-872. doi: 

10.1093/cercor/10.9.866. 

Karger, J. (1985). Nmr Self-Diffusion Studies in Heterogeneous Systems. Advances in 

Colloid and Interface Science 23(1-4), 129-148. doi: Doi 10.1016/0001-

8686(85)80018-X. 

Keles, G.E., Chang, E.F., Lamborn, K.R., Tihan, T., Chang, C.J., Chang, S.M., et al. 

(2006). Volumetric extent of resection and residual contrast enhancement on initial 

surgery as predictors of outcome in adult patients with hemispheric anaplastic 

astrocytoma. J Neurosurg 105(1), 34-40. doi: 10.3171/jns.2006.105.1.34. 

Kikinis, R., and Pieper, S. (2011). 3D Slicer as a tool for interactive brain tumor 

segmentation. Conf Proc IEEE Eng Med Biol Soc 2011, 6982-6984. doi: 

10.1109/IEMBS.2011.6091765. 

Kleihues, P., Soylemezoglu, F., Schauble, B., Scheithauer, B.W., and Burger, P.C. (1995). 

Histopathology, classification, and grading of gliomas. Glia 15(3), 211-221. doi: 

10.1002/glia.440150303. 

Koay, C.G., Chang, L.C., Carew, J.D., Pierpaoli, C., and Basser, P.J. (2006). A unifying 

theoretical and algorithmic framework for least squares methods of estimation in 

diffusion tensor imaging. J Magn Reson 182(1), 115-125. doi: 

10.1016/j.jmr.2006.06.020. 

Kubicki, M., McCarley, R., Westin, C.F., Park, H.J., Maier, S., Kikinis, R., et al. (2007). 

A review of diffusion tensor imaging studies in schizophrenia. J Psychiatr Res 41(1-

2), 15-30. doi: 10.1016/j.jpsychires.2005.05.005. 

Kubicki, M., Westin, C.F., Maier, S.E., Frumin, M., Nestor, P.G., Salisbury, D.F., et al. 

(2002). Uncinate fasciculus findings in schizophrenia: a magnetic resonance 

diffusion tensor imaging study. Am J Psychiatry 159(5), 813-820. doi: 

10.1176/appi.ajp.159.5.813. 

Kuhnt, D., Becker, A., Ganslandt, O., Bauer, M., Buchfelder, M., and Nimsky, C. (2011). 



 

85 

 

Correlation of the extent of tumor volume resection and patient survival in surgery 

of glioblastoma multiforme with high-field intraoperative MRI guidance. Neuro 

Oncol 13(12), 1339-1348. doi: 10.1093/neuonc/nor133. 

Lanzafame, S., Giannelli, M., Garaci, F., Floris, R., Duggento, A., Guerrisi, M., et al. 

(2016). Differences in Gaussian diffusion tensor imaging and non-Gaussian diffusion 

kurtosis imaging model-based estimates of diffusion tensor invariants in the human 

brain. Med Phys 43(5), 2464. doi: 10.1118/1.4946819. 

Latt, J., Nilsson, M., Wirestam, R., Stahlberg, F., Karlsson, N., Johansson, M., et al. 

(2013). Regional values of diffusional kurtosis estimates in the healthy brain. J Magn 

Reson Imaging 37(3), 610-618. doi: 10.1002/jmri.23857. 

Lazar, M., Jensen, J.H., Xuan, L., and Helpern, J.A. (2008). Estimation of the orientation 

distribution function from diffusional kurtosis imaging. Magn Reson Med 60(4), 774-

781. doi: 10.1002/mrm.21725. 

Le Bihan, D., Breton, E., Lallemand, D., Aubin, M.L., Vignaud, J., and Laval-Jeantet, M. 

(1988). Separation of diffusion and perfusion in intravoxel incoherent motion MR 

imaging. Radiology 168(2), 497-505. doi: 10.1148/radiology.168.2.3393671. 

Le Bihan, D., Breton, E., Lallemand, D., Grenier, P., Cabanis, E., and Laval-Jeantet, M. 

(1986). MR imaging of intravoxel incoherent motions: application to diffusion and 

perfusion in neurologic disorders. Radiology 161(2), 401-407. doi: 

10.1148/radiology.161.2.3763909. 

Le Bihan, D., Mangin, J.F., Poupon, C., Clark, C.A., Pappata, S., Molko, N., et al. (2001). 

Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13(4), 

534-546. doi: 10.1002/jmri.1076. 

Lebel, C., and Beaulieu, C. (2009). Lateralization of the arcuate fasciculus from 

childhood to adulthood and its relation to cognitive abilities in children. Hum Brain 

Mapp 30(11), 3563-3573. doi: 10.1002/hbm.20779. 

Lee, C.Y., Tabesh, A., Nesland, T., Jensen, J.H., Helpern, J.A., Spampinato, M.V., et al. 

(2014). Human brain asymmetry in microstructural connectivity demonstrated by 



 

86 

 

diffusional kurtosis imaging. Brain Res 1588, 73-80. doi: 

10.1016/j.brainres.2014.09.002. 

LeMay, M. (1977). Asymmetries of the skull and handedness. Phrenology revisited. J 

Neurol Sci 32(2), 243-253. doi: 10.1016/0022-510x(77)90239-8. 

Li, L., Preuss, T.M., Rilling, J.K., Hopkins, W.D., Glasser, M.F., Kumar, B., et al. (2010). 

Chimpanzee (Pan troglodytes) precentral corticospinal system asymmetry and 

handedness: a diffusion magnetic resonance imaging study. PLoS One 5(9), e12886. 

doi: 10.1371/journal.pone.0012886. 

Lu, S., Ahn, D., Johnson, G., and Cha, S. (2003). Peritumoral diffusion tensor imaging of 

high-grade gliomas and metastatic brain tumors. AJNR Am J Neuroradiol 24(5), 937-

941. 

Luders, E., Gaser, C., Jancke, L., and Schlaug, G. (2004). A voxel-based approach to gray 

matter asymmetries. Neuroimage 22(2), 656-664. doi: 

10.1016/j.neuroimage.2004.01.032. 

Lurito, J.T., and Dzemidzic, M. (2001). Determination of cerebral hemisphere language 

dominance with functional magnetic resonance imaging. Neuroimaging Clin N Am 

11(2), 355-363, x. 

Makris, N., Kennedy, D.N., McInerney, S., Sorensen, A.G., Wang, R., Caviness, V.S., Jr., 

et al. (2005). Segmentation of subcomponents within the superior longitudinal 

fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex 15(6), 854-

869. doi: 10.1093/cercor/bhh186. 

Mamah, D., Conturo, T.E., Harms, M.P., Akbudak, E., Wang, L., McMichael, A.R., et al. 

(2010). Anterior thalamic radiation integrity in schizophrenia: a diffusion-tensor 

imaging study. Psychiatry Res 183(2), 144-150. doi: 

10.1016/j.pscychresns.2010.04.013. 

Mandonnet, E., Nouet, A., Gatignol, P., Capelle, L., and Duffau, H. (2007). Does the left 

inferior longitudinal fasciculus play a role in language? A brain stimulation study. 

Brain 130(Pt 3), 623-629. doi: 10.1093/brain/awl361. 



 

87 

 

Marchina, S., Zhu, L.L., Norton, A., Zipse, L., Wan, C.Y., and Schlaug, G. (2011). 

Impairment of speech production predicted by lesion load of the left arcuate 

fasciculus. Stroke 42(8), 2251-2256. doi: 10.1161/STROKEAHA.110.606103. 

Morita, N., Wang, S., Kadakia, P., Chawla, S., Poptani, H., and Melhem, E.R. (2011). 

Diffusion tensor imaging of the corticospinal tract in patients with brain neoplasms. 

Magn Reson Med Sci 10(4), 239-243. doi: 10.2463/mrms.10.239. 

Nichols, T.E., and Holmes, A.P. (2002). Nonparametric permutation tests for functional 

neuroimaging: a primer with examples. Hum Brain Mapp 15(1), 1-25. doi: 

10.1002/hbm.1058. 

Nimsky, C. (2011). Intraoperative acquisition of fMRI and DTI. Neurosurg Clin N Am 

22(2), 269-277, ix. doi: 10.1016/j.nec.2010.11.005. 

O'Donnell, L.J., Westin, C.F., and Golby, A.J. (2009). Tract-based morphometry for white 

matter group analysis. Neuroimage 45(3), 832-844. doi: 

10.1016/j.neuroimage.2008.12.023. 

Ojemann, J.G., Miller, J.W., and Silbergeld, D.L. (1996). Preserved function in brain 

invaded by tumor. Neurosurgery 39(2), 253-258; discussion 258-259. doi: 

10.1097/00006123-199608000-00003. 

Park, H.J., Westin, C.F., Kubicki, M., Maier, S.E., Niznikiewicz, M., Baer, A., et al. 

(2004). White matter hemisphere asymmetries in healthy subjects and in 

schizophrenia: a diffusion tensor MRI study. Neuroimage 23(1), 213-223. doi: 

10.1016/j.neuroimage.2004.04.036. 

Pope, W.B., and Brandal, G. (2018). Conventional and advanced magnetic resonance 

imaging in patients with high-grade glioma. Q J Nucl Med Mol Imaging 62(3), 239-

253. doi: 10.23736/S1824-4785.18.03086-8. 

Powell, H.W., Parker, G.J., Alexander, D.C., Symms, M.R., Boulby, P.A., Wheeler-

Kingshott, C.A., et al. (2006). Hemispheric asymmetries in language-related 

pathways: a combined functional MRI and tractography study. Neuroimage 32(1), 

388-399. doi: 10.1016/j.neuroimage.2006.03.011. 



 

88 

 

Price, S.J., Pena, A., Burnet, N.G., Jena, R., Green, H.A., Carpenter, T.A., et al. (2004). 

Tissue signature characterisation of diffusion tensor abnormalities in cerebral 

gliomas. Eur Radiol 14(10), 1909-1917. doi: 10.1007/s00330-004-2381-6. 

Puig, J., Pedraza, S., Blasco, G., Daunis, I.E.J., Prados, F., Remollo, S., et al. (2011). 

Acute damage to the posterior limb of the internal capsule on diffusion tensor 

tractography as an early imaging predictor of motor outcome after stroke. AJNR Am 

J Neuroradiol 32(5), 857-863. doi: 10.3174/ajnr.A2400. 

Pujol, J., Deus, J., Losilla, J.M., and Capdevila, A. (1999). Cerebral lateralization of 

language in normal left-handed people studied by functional MRI. Neurology 52(5), 

1038-1043. doi: 10.1212/wnl.52.5.1038. 

Qi, C., Yang, S., Meng, L., Chen, H., Li, Z., Wang, S., et al. (2017). Evaluation of cerebral 

glioma using 3T diffusion kurtosis tensor imaging and the relationship between 

diffusion kurtosis metrics and tumor cellularity. J Int Med Res 45(4), 1347-1358. doi: 

10.1177/0300060517712654. 

Qi, X.X., Shi, D.F., Ren, S.X., Zhang, S.Y., Li, L., Li, Q.C., et al. (2018). Histogram 

analysis of diffusion kurtosis imaging derived maps may distinguish between low 

and high grade gliomas before surgery. Eur Radiol 28(4), 1748-1755. doi: 

10.1007/s00330-017-5108-1. 

Raab, P., Hattingen, E., Franz, K., Zanella, F.E., and Lanfermann, H. (2010). Cerebral 

gliomas: diffusional kurtosis imaging analysis of microstructural differences. 

Radiology 254(3), 876-881. doi: 10.1148/radiol.09090819. 

Rodrigo, S., Naggara, O., Oppenheim, C., Golestani, N., Poupon, C., Cointepas, Y., et al. 

(2007). Human subinsular asymmetry studied by diffusion tensor imaging and fiber 

tracking. AJNR Am J Neuroradiol 28(8), 1526-1531. doi: 10.3174/ajnr.A0584. 

Rosenstock, T., Giampiccolo, D., Schneider, H., Runge, S.J., Bahrend, I., Vajkoczy, P., et 

al. (2017). Specific DTI seeding and diffusivity-analysis improve the quality and 

prognostic value of TMS-based deterministic DTI of the pyramidal tract. 

Neuroimage Clin 16, 276-285. doi: 10.1016/j.nicl.2017.08.010. 



 

89 

 

Scherer, H.J. (1940). The forms of growth in gliomas and their practical significance. 

Brain 63, 1-35. doi: DOI 10.1093/brain/63.1.1. 

Seizeur, R., Magro, E., Prima, S., Wiest-Daessle, N., Maumet, C., and Morandi, X. (2014). 

Corticospinal tract asymmetry and handedness in right- and left-handers by diffusion 

tensor tractography. Surg Radiol Anat 36(2), 111-124. doi: 10.1007/s00276-013-

1156-7. 

Shapleske, J., Rossell, S.L., Woodruff, P.W., and David, A.S. (1999). The planum 

temporale: a systematic, quantitative review of its structural, functional and clinical 

significance. Brain Res Brain Res Rev 29(1), 26-49. doi: 10.1016/s0165-

0173(98)00047-2. 

Shu, N., Liu, Y., Duan, Y., and Li, K. (2015). Hemispheric Asymmetry of Human Brain 

Anatomical Network Revealed by Diffusion Tensor Tractography. Biomed Res Int 

2015, 908917. doi: 10.1155/2015/908917. 

Silva, G., and Citterio, A. (2017). Hemispheric asymmetries in dorsal language pathway 

white-matter tracts: A magnetic resonance imaging tractography and functional 

magnetic resonance imaging study. Neuroradiol J 30(5), 470-476. doi: 

10.1177/1971400917720829. 

Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, 

C.E., et al. (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject 

diffusion data. Neuroimage 31(4), 1487-1505. doi: 

10.1016/j.neuroimage.2006.02.024. 

Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E., Johansen-

Berg, H., et al. (2004). Advances in functional and structural MR image analysis and 

implementation as FSL. Neuroimage 23 Suppl 1, S208-219. doi: 

10.1016/j.neuroimage.2004.07.051. 

Soares, J.M., Marques, P., Alves, V., and Sousa, N. (2013). A hitchhiker's guide to 

diffusion tensor imaging. Front Neurosci 7, 31. doi: 10.3389/fnins.2013.00031. 

Sreedharan, R.M., Menon, A.C., James, J.S., Kesavadas, C., and Thomas, S.V. (2015). 



 

90 

 

Arcuate fasciculus laterality by diffusion tensor imaging correlates with language 

laterality by functional MRI in preadolescent children. Neuroradiology 57(3), 291-

297. doi: 10.1007/s00234-014-1469-1. 

Steinmetz, H. (1996). Structure, functional and cerebral asymmetry: in vivo morphometry 

of the planum temporale. Neurosci Biobehav Rev 20(4), 587-591. doi: 10.1016/0149-

7634(95)00071-2. 

Steven, A.J., Zhuo, J., and Melhem, E.R. (2014). Diffusion kurtosis imaging: an emerging 

technique for evaluating the microstructural environment of the brain. AJR Am J 

Roentgenol 202(1), W26-33. doi: 10.2214/AJR.13.11365. 

Stupp, R., Hegi, M.E., Mason, W.P., van den Bent, M.J., Taphoorn, M.J., Janzer, R.C., et 

al. (2009). Effects of radiotherapy with concomitant and adjuvant temozolomide 

versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 

5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5), 459-466. doi: 

10.1016/S1470-2045(09)70025-7. 

Sun, Z.Y., Kloppel, S., Riviere, D., Perrot, M., Frackowiak, R., Siebner, H., et al. (2012). 

The effect of handedness on the shape of the central sulcus. Neuroimage 60(1), 332-

339. doi: 10.1016/j.neuroimage.2011.12.050. 

Sydnor, V.J., Rivas-Grajales, A.M., Lyall, A.E., Zhang, F., Bouix, S., Karmacharya, S., et 

al. (2018). A comparison of three fiber tract delineation methods and their impact on 

white matter analysis. Neuroimage 178, 318-331. doi: 

10.1016/j.neuroimage.2018.05.044. 

Szczepankiewicz, F., van Westen, D., Englund, E., Westin, C.F., Stahlberg, F., Latt, J., et 

al. (2016). The link between diffusion MRI and tumor heterogeneity: Mapping cell 

eccentricity and density by diffusional variance decomposition (DIVIDE). 

Neuroimage 142, 522-532. doi: 10.1016/j.neuroimage.2016.07.038. 

Tabesh, A., Jensen, J.H., Ardekani, B.A., and Helpern, J.A. (2011). Estimation of tensors 

and tensor-derived measures in diffusional kurtosis imaging. Magn Reson Med 65(3), 

823-836. doi: 10.1002/mrm.22655. 



 

91 

 

Takao, H., Hayashi, N., and Ohtomo, K. (2011). White matter asymmetry in healthy 

individuals: a diffusion tensor imaging study using tract-based spatial statistics. 

Neuroscience 193, 291-299. doi: 10.1016/j.neuroscience.2011.07.041. 

Tan, Y., Zhang, H., Zhao, R.F., Wang, X.C., Qin, J.B., and Wu, X.F. (2016). Comparison 

of the values of MRI diffusion kurtosis imaging and diffusion tensor imaging in 

cerebral astrocytoma grading and their association with aquaporin-4. Neurol India 

64(2), 265-272. doi: 10.4103/0028-3886.177621. 

Thiebaut de Schotten, M., Ffytche, D.H., Bizzi, A., Dell'Acqua, F., Allin, M., Walshe, M., 

et al. (2011). Atlasing location, asymmetry and inter-subject variability of white 

matter tracts in the human brain with MR diffusion tractography. Neuroimage 54(1), 

49-59. doi: 10.1016/j.neuroimage.2010.07.055. 

Thomalla, G., Glauche, V., Koch, M.A., Beaulieu, C., Weiller, C., and Rother, J. (2004). 

Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract 

after ischemic stroke. Neuroimage 22(4), 1767-1774. doi: 

10.1016/j.neuroimage.2004.03.041. 

Thomas, C., Humphreys, K., Jung, K.J., Minshew, N., and Behrmann, M. (2011). The 

anatomy of the callosal and visual-association pathways in high-functioning autism: 

a DTI tractography study. Cortex 47(7), 863-873. doi: 10.1016/j.cortex.2010.07.006. 

Toga, A.W., and Thompson, P.M. (2003). Mapping brain asymmetry. Nat Rev Neurosci 

4(1), 37-48. doi: 10.1038/nrn1009. 

Tournier, J.D., Mori, S., and Leemans, A. (2011). Diffusion tensor imaging and beyond. 

Magn Reson Med 65(6), 1532-1556. doi: 10.1002/mrm.22924. 

Tuch, D.S., Reese, T.G., Wiegell, M.R., and Wedeen, V.J. (2003). Diffusion MRI of 

complex neural architecture. Neuron 40(5), 885-895. doi: 10.1016/s0896-

6273(03)00758-x. 

Van Cauter, S., Veraart, J., Sijbers, J., Peeters, R.R., Himmelreich, U., De Keyzer, F., et 

al. (2012). Gliomas: diffusion kurtosis MR imaging in grading. Radiology 263(2), 

492-501. doi: 10.1148/radiol.12110927. 



 

92 

 

Veraart, J., Poot, D.H., Van Hecke, W., Blockx, I., Van der Linden, A., Verhoye, M., et al. 

(2011). More accurate estimation of diffusion tensor parameters using diffusion 

Kurtosis imaging. Magn Reson Med 65(1), 138-145. doi: 10.1002/mrm.22603. 

Veraart, J., Sijbers, J., Sunaert, S., Leemans, A., and Jeurissen, B. (2013). Weighted linear 

least squares estimation of diffusion MRI parameters: strengths, limitations, and 

pitfalls. Neuroimage 81, 335-346. doi: 10.1016/j.neuroimage.2013.05.028. 

Virta, A., Barnett, A., and Pierpaoli, C. (1999). Visualizing and characterizing white 

matter fiber structure and architecture in the human pyramidal tract using diffusion 

tensor MRI. Magn Reson Imaging 17(8), 1121-1133. doi: 10.1016/s0730-

725x(99)00048-x. 

Vogel, J.J., Bowers, C.A., and Vogel, D.S. (2003). Cerebral lateralization of spatial 

abilities: a meta-analysis. Brain Cogn 52(2), 197-204. doi: 10.1016/s0278-

2626(03)00056-3. 

Wakana, S., Caprihan, A., Panzenboeck, M.M., Fallon, J.H., Perry, M., Gollub, R.L., et 

al. (2007). Reproducibility of quantitative tractography methods applied to cerebral 

white matter. Neuroimage 36(3), 630-644. doi: 10.1016/j.neuroimage.2007.02.049. 

Wakana, S., Jiang, H., Nagae-Poetscher, L.M., van Zijl, P.C., and Mori, S. (2004). Fiber 

tract-based atlas of human white matter anatomy. Radiology 230(1), 77-87. doi: 

10.1148/radiol.2301021640. 

Wang, F., Sun, Z., Cui, L., Du, X., Wang, X., Zhang, H., et al. (2004). Anterior cingulum 

abnormalities in male patients with schizophrenia determined through diffusion 

tensor imaging. Am J Psychiatry 161(3), 573-575. doi: 10.1176/appi.ajp.161.3.573. 

Wang, J.J., Lin, W.Y., Lu, C.S., Weng, Y.H., Ng, S.H., Wang, C.H., et al. (2011). 

Parkinson disease: diagnostic utility of diffusion kurtosis imaging. Radiology 261(1), 

210-217. doi: 10.1148/radiol.11102277. 

Wang, X., Gao, W., Li, F., Shi, W., Li, H., and Zeng, Q. (2019). Diffusion kurtosis imaging 

as an imaging biomarker for predicting prognosis of the patients with high-grade 

gliomas. Magn Reson Imaging 63, 131-136. doi: 10.1016/j.mri.2019.08.001. 



 

93 

 

Ward, N.S., Newton, J.M., Swayne, O.B., Lee, L., Thompson, A.J., Greenwood, R.J., et 

al. (2006). Motor system activation after subcortical stroke depends on corticospinal 

system integrity. Brain 129(Pt 3), 809-819. doi: 10.1093/brain/awl002. 

Westerhausen, R., Huster, R.J., Kreuder, F., Wittling, W., and Schweiger, E. (2007). 

Corticospinal tract asymmetries at the level of the internal capsule: is there an 

association with handedness? Neuroimage 37(2), 379-386. doi: 

10.1016/j.neuroimage.2007.05.047. 

Wilde, E.A., McCauley, S.R., Chu, Z., Hunter, J.V., Bigler, E.D., Yallampalli, R., et al. 

(2009). Diffusion tensor imaging of hemispheric asymmetries in the developing brain. 

J Clin Exp Neuropsychol 31(2), 205-218. doi: 10.1080/13803390802098118. 

Winkler, A.M., Ridgway, G.R., Webster, M.A., Smith, S.M., and Nichols, T.E. (2014). 

Permutation inference for the general linear model. Neuroimage 92, 381-397. doi: 

10.1016/j.neuroimage.2014.01.060. 

Woolrich, M.W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., et al. 

(2009). Bayesian analysis of neuroimaging data in FSL. Neuroimage 45(1 Suppl), 

S173-186. doi: 10.1016/j.neuroimage.2008.10.055. 

Yablonskiy, D.A., Bretthorst, G.L., and Ackerman, J.J. (2003). Statistical model for 

diffusion attenuated MR signal. Magn Reson Med 50(4), 664-669. doi: 

10.1002/mrm.10578. 

Yamada, K., Kizu, O., Mori, S., Ito, H., Nakamura, H., Yuen, S., et al. (2003). Brain fiber 

tracking with clinically feasible diffusion-tensor MR imaging: initial experience. 

Radiology 227(1), 295-301. doi: 10.1148/radiol.2271020313. 

Yasmin, H., Aoki, S., Abe, O., Nakata, Y., Hayashi, N., Masutani, Y., et al. (2009). Tract-

specific analysis of white matter pathways in healthy subjects: a pilot study using 

diffusion tensor MRI. Neuroradiology 51(12), 831-840. doi: 10.1007/s00234-009-

0580-1. 

Yeatman, J.D., Dougherty, R.F., Myall, N.J., Wandell, B.A., and Feldman, H.M. (2012). 

Tract profiles of white matter properties: automating fiber-tract quantification. PLoS 



 

94 

 

One 7(11), e49790. doi: 10.1371/journal.pone.0049790. 

Yeh, F.C., and Tseng, W.Y. (2011). NTU-90: a high angular resolution brain atlas 

constructed by q-space diffeomorphic reconstruction. Neuroimage 58(1), 91-99. doi: 

10.1016/j.neuroimage.2011.06.021. 

Yendiki, A., Panneck, P., Srinivasan, P., Stevens, A., Zollei, L., Augustinack, J., et al. 

(2011). Automated probabilistic reconstruction of white-matter pathways in health 

and disease using an atlas of the underlying anatomy. Front Neuroinform 5, 23. doi: 

10.3389/fninf.2011.00023. 

Yong, R.L., and Lonser, R.R. (2011). Surgery for glioblastoma multiforme: striking a 

balance. World Neurosurg 76(6), 528-530. doi: 10.1016/j.wneu.2011.06.053. 

Yu, V.Y., MacDonald, M.J., Oh, A., Hua, G.N., De Nil, L.F., and Pang, E.W. (2014). Age-

related sex differences in language lateralization: A magnetoencephalography study 

in children. Dev Psychol 50(9), 2276-2284. doi: 10.1037/a0037470. 

Zhou, X.X., Li, X.H., Chen, D.B., Wu, C., Feng, L., Chu, J.P., et al. (2018). The 

asymmetry of neural symptoms in Wilson's disease patients detecting by diffusion 

tensor imaging, resting-state functional MRI, and susceptibility-weighted imaging. 

Brain Behav 8(5), e00930. doi: 10.1002/brb3.930. 

Zhu, J., Zhuo, C., Qin, W., Wang, D., Ma, X., Zhou, Y., et al. (2015). Performances of 

diffusion kurtosis imaging and diffusion tensor imaging in detecting white matter 

abnormality in schizophrenia. Neuroimage Clin 7, 170-176. doi: 

10.1016/j.nicl.2014.12.008. 

Zhu, L.L., Lindenberg, R., Alexander, M.P., and Schlaug, G. (2010). Lesion load of the 

corticospinal tract predicts motor impairment in chronic stroke. Stroke 41(5), 910-

915. doi: 10.1161/STROKEAHA.109.577023. 

Zhuo, J., Keledjian, K., Xu, S., Pampori, A., Gerzanich, V., Simard, J.M., et al. (2015). 

Changes in Diffusion Kurtosis Imaging and Magnetic Resonance Spectroscopy in a 

Direct Cranial Blast Traumatic Brain Injury (dc-bTBI) Model. PLoS One 10(8), 

e0136151. doi: 10.1371/journal.pone.0136151. 



 

95 

 

 

List of Academic Teachers 

 

My academic teachers in Marburg were: 

 

Prof. Dr. Christopher Nimsky, Dr. Miriam Bopp 

 

Astrid Burmester, Katrin Diewock, Michaela Dürwald, Sabine Ferber, Akkiko Sawatari-

Elter 

 

 

 

  



 

96 

 

Note of Thanks 

At the end of the dissertation, I want to express my thanks to those who supported me 

during my study in Marburg. 

 

I would like to thank Prof. Dr. Ch. Nimsky for kindly offering me the chance to study in 

Marburg and join in the morning conference and learn by observation in the OR. Those 

cases inspired me to research the topics of my dissertation. 

 

Also, I want to thank Dr. M. Bopp, who always tried her best to help me whenever I came 

across problems in my research. She sparked my interest in the field of multi-modal 

imaging analysis and introduced a great deal of software to me that would be of great 

help. 

 

Furthermore, I want to thank Prof. Dr. J. W. Bartsch for helping me revise the language 

of my dissertation and who was always ready to help and to share knowledge. 

 

Moreover, I want to thank my best friend Lixian Liu, who always listens and talks to me 

when I’m upset.  

 

Last but not the least, I want to thank my parents for their mental support even if they are 

not by my side. Without them, I could not have endured all the loneliness and pain during 

my stay in a foreign country, neither could I have finished writing my dissertation. 

 

 

 

 


