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“Travel isn't always pretty. It isn't always comfortable.  

Sometimes it hurts, it even breaks your heart. But that's okay.  

The journey changes you; it should change you.  

It leaves marks on your memory, on your consciousness,  

on your heart, and on your body. You take something with you.  

Hopefully, you leave something good behind.” 
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Abstract 

 

Diffusion-weighted magnetic resonance imaging (dMRI) is a non-invasive imaging method which has 

been successfully applied to study white matter (WM) in order to determine physiological information 

and infer tissue microstructure. The human body is filled with barriers affecting the mobility of 

molecules and preventing it from being constant in different directions (anisotropic diffusion). In the 

brain, the sources for this anisotropy arise from dense packing axons and from the myelin sheath that 

surrounds them. Diffusion Tensor Imaging (DTI) is widely used to extract fibre directions from diffusion 

data, but it fails in regions containing multiple fibre orientations. The constrained spherical 

deconvolution technique had been proposed to address this limitation. It provides an estimate of the 

fibre orientation distribution that is robust to noise whilst preserving angular resolution. As a non-

invasive technique that generates a three-dimensional reconstruction of neuronal fibres, tractography is 

able to map in vivo the human WM based on the reconstruct of the fibre orientations from the diffusion 

profile. Most of the tractography studies use a “tract-averaged” approach to analysis, however it is well 

known that there is a prominent variation in diffusion metrics within WM tracts. In this study we address 

the challenge of defining a microstructural signature taking into account the potentially rich anatomical 

variation in diffusion metrics along the tracts. Therefore, a workflow to conduct along-tract analysis of 

WM tracts (namely, arcuate fasciculus, corticospinal and corpus callosum) and integrate not only DTI 

derived measures, but also more advanced parameters from Mean Apparent Propagator-Magnetic 

Resonance Imaging (MAP-MRI) and Neurite Orientation Dispersion and Density Imaging (NODDI) 

model, was developed across healthy controls and patients with Temporal Lobe Epilepsy (TLE). Beyond 

the true biological variation in diffusion properties along tracts, this technique was applied to show that 

it allows a more detailed analysis of small regions-of-interest extracted from the tract in order to avoid 

fibres from WM pathways in the neighbourhood, which might lead to equivocal biological 

interpretations of the microstructural parameters. Consequently, the along-tract streamline distribution 

from the centrum semiovale, which is known to be a complex fibre geometry with multiple fibres 

populations from arcuate fasciculus, corticospinal and corpus callosum, was investigated. Finally, to 

validate our approach and highlight the strength of this extensible framework, two other methods were 

implemented in order to support the conclusions derived from the along-tract analysis computed 

between-groups. Firstly, a tract-based spatial statistics (TBSS) analysis was performed to study the WM 

change patterns across the whole brain in patients with TLE, and explore the alteration of multiple 

diffusion metrics. This voxel-based technique provides a powerful and objective method to perform 

multi-subject comparison, based on voxel-wise statistics of diffusion metrics but simultaneous aiming 

to minimize the effects of misalignment using a conventional voxel-based analysis method. With this in 

mind, the results showed increased diffusivity and reduced diffusion anisotropy, suggesting a loss of 

structural organization and expansion of the extracellular space in the presence of neuropathological 

condition as TLE. Secondly, the fixel-based analysis (FBA) was performed allowing a comprehensive 

statistical analysis of WM quantitative measures in order to have access to changes that may result 

within WM tracts in the presence of TLE. The microstructural/macrostructural changes in WM tracts of 

TLE patients were observed in temporal and extratemporal regions of both hemispheres, which agrees 

with the concept that epilepsy is a network disorder. 

 

Keywords: Diffusion-weighted magnetic resonance imaging (dMRI); Tractography; Along-Tract 

Analysis; Tract-Based Spatial Statistics (TBSS); Fixel-Based Analysis (FBA). 
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Resumo 

 

Nos últimos anos, com o rápido avanço das técnicas imagiológicas, a oportunidade de mapear 

o cérebro humano in vivo com uma resolução sem precedentes tornou-se realidade, permanecendo ainda 

hoje como uma das áreas de maior interesse da neurociência.  

Sabendo que o movimento natural das moléculas de água nos tecidos biológicos é altamente 

influenciado pelo ambiente microestrutural envolvente, e que a anisotropia que este processo aleatório 

assume na matéria branca pode ser explorada com o intuito de inferir características importantes 

associadas ao tecido neuronal, a ressonância magnética ponderada por difusão (dMRI, do inglês 

“Diffusion-Weighted Magnetic Resonance Imaging") afirmou-se como a técnica de imagem mais 

amplamente utilizada para a investigação in vivo e não invasiva da conectividade cerebral. 

A primeira técnica padrão de dMRI foi a imagiologia por tensor de difusão (DTI, do inglês 

"Diffusion Tensor Imaging"). Implementada com a capacidade de fornecer sensibilidade à 

microestrutura do tecido, esta técnica permite extrair informação acerca da tridimensionalidade da 

distribuição da difusão de moléculas de água através da aplicação de seis gradientes de difusão não 

colineares entre si. Além da difusividade média (MD, do inglês "Mean Diffusivity"), é também possível 

extrair outros índices microestruturais, como a anisotropia fraccional (FA, do inglês "Fractional 

Anisotropy"), que fornece informação acerca da percentagem de difusão anisotrópica num determinado 

voxel. Ambas as métricas são amplamente utilizadas como medidas de alterações microestruturais, 

todavia, apesar da sua sensibilidade, estes marcadores não são específicos quanto às características 

individuais da microestrutura tecidual. Regiões com reduzida FA podem camuflar regiões de 

conformação de cruzamento de fibras, ou fibras muito anguladas, que a DTI não consegue resolver. A 

razão para esta limitação reside no número reduzido de diferentes direções de difusão que são 

exploradas, assim como no pressuposto de que a distribuição das moléculas de água é gaussiana, o que 

não é necessariamente verdade. 

De forma alternativa e com o intuito de tais limitações serem ultrapassadas, é possível 

implementar uma representação matemática do sinal adquirido de forma a explorar o propagador de 

difusão, da qual a imagiologia por ressonância magnética do propagador aparente médio (MAP-MRI, 

do inglês “Mean Apparent Propagator Magnetic Resonance Imaging”) é exemplo. Esta técnica analítica 

caracteriza-se pelo cálculo da função de densidade de probabilidade associada ao deslocamento de spin, 

o que permite descrever o caráter não-gaussiano do processo de difusão tridimensional e quantificar 

índices escalares inerentes ao processo de difusão, os quais sublinham as características complexas 

intrínsecas à microestrutura do tecido. Estes parâmetros incluem o deslocamento médio quadrático 

(MSD, em inglês “mean square displacement”), a probabilidade de retorno à origem (RTOP, do inglês 

“return-to-the origin probability”) e suas variantes de difusão em uma e duas dimensões - a 

probabilidade de retorno ao plano (RTPP, do inglês “return-to-the plane probability”) e a probabilidade 

de retorno ao eixo (RTAP, do inglês “return-to-the axis probability”), respetivamente.  

Em resposta às limitações da DTI associadas à falta de especificidade para distinguir 

características microestruturais dos tecidos, surgiu ainda o modelo de Dispersão de Orientação de 

Neurite e Imagem de Densidade (NODDI, do inglês “Neurite Orientation Dispersion and Density 

Imaging”), o qual utiliza o processo de difusão para estimar a morfologia das neurites. Tendo como 

premissa subjacente que o sinal de difusão pode ser definido pela soma da contribuição dos sinais de 

diferentes compartimentos, este modelo biofísico diferencia o espaço intra- e extracelular o que, por sua 

vez, permite quantificar a dispersão e densidade das neurites. Deste modo, dois parâmetros intrínsecos 

à microestrutura envolvente podem ser calculados: a densidade neurítica e o índice de dispersão da 

orientação das neurites. No entanto, de forma a garantir a viabilidade clínica do modelo, este pode ser 

aplicado por meio do método AMICO (do inglês “Accelerated Microstructure Imaging via Convex 
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Optimization”) através do seu ajuste linear, o que permite o cálculo do índice de dispersão da orientação 

das neurites (ODI, do inglês “Orientation Dispersion Index”), da fração de volume intracelular (ICVF 

do inglês, “Intracellular Volume Fraction”), e da fração de volume isotrópico (ISOVF, do inglês 

“Isotropic Volume Fraction”). 

O estudo da configuração arquitetural das estruturas cerebrais in vivo, por meio da dMRI 

associada aos métodos de tractografia, permitiu a reconstrução não invasiva das fibras neuronais e a 

exploração da informação direcional inerente às mesmas, sendo que o seu estudo tem revelado uma 

enorme expansão por meio do estabelecimento de marcadores biológicos perante a presença de diversas 

condições patológicas. 

O objetivo principal desta dissertação prende-se com existência de uma variação proeminente 

nas métricas de difusão ao longo dos tratos de matéria branca no cérebro humano. Atualmente, a maioria 

dos estudos de tractografia tem por base uma abordagem que se resume à análise do valor escalar médio 

da métrica de difusão para a estrutura cerebral em estudo, pelo que se tem verificado um crescente 

interesse na utilização de métodos que considerem a extensão da variabilidade nas métricas de difusão 

ao longo dos tratos de modo a providenciarem um maior nível de detalhe ao nível do processo de difusão, 

evitando interpretações erróneas dos parâmetros microestruturais. Desta forma, em primeiro lugar, foi 

desenvolvido uma análise ao longo dos tratos de matéria branca, tendo por base a variação dos valores 

assumidos pelos parâmetros microestruturais acima mencionados. 

No presente estudo foi possível demonstrar a eficácia de tal abordagem ao longo de três tratos 

de matéria de branca (fascículo arqueado, trato corticoespinhal, e corpo caloso), para além de permitir, 

através da variância assumida pelos diversos parâmetros microestruturais, o estudo detalhado de regiões 

anatómicas que assumem uma distribuição complexa de múltiplos conjuntos populacionais de fibras, 

como é o caso do centro semioval, o qual constitui uma região de cruzamento de fibras provenientes dos 

três tratos de matéria branca em estudo.  

De seguida, esta técnica foi utilizada com sucesso na identificação de diferenças 

microestruturais por meio do estudo dos diversos parâmetros de difusão em pacientes com diagnóstico 

prévio de epilepsia no lobo temporal (TLE, do inglês “Temporal Lobe Epilepsy”), com foco epilético 

localizado no hemisfério esquerdo, e controlos. O estudo do ambiente microestrutural por meio dos 

múltiplos mapas escalares permitiu averiguar a alteração do processo de difusão e/ou anisotropia, 

associadas ao efeito fisiopatológico da TLE na organização da matéria branca. Os resultados revelaram 

diferenças localizadas, as quais se traduziram num aumento da difusividade e redução da anisotropia do 

processo de difusão ao longo dos tratos em estudo dos pacientes com TLE, sugerindo deste modo uma 

perda na organização das diversas estruturas anatómicas e a expansão do espaço extracelular face aos 

controlos. Verificou-se ainda que pacientes com esta condição neurológica sofrem de alterações 

microestruturais que afetam redes cerebrais em grande escala, envolvendo regiões temporais e 

extratemporais de ambos os hemisférios. 

Adicionalmente, aplicada como técnica capaz de investigar padrões de mudança na matéria 

branca, procedeu-se à realização de um estudo assente na estatística espacial baseada no trato (TBSS, 

do inglês “Tract-Based Spatial Statistics”). Após a exploração das diversas métricas de difusão, os 

pacientes com TLE (com lateralização à esquerda) demonstraram alterações no processo de difusão, 

ilustradas pelos diversos padrões de mudança microestrutural de cada métrica em estudo, concordantes 

com os resultados anteriormente aferidos pela análise ao longo do trato. 

Por fim, uma análise baseada em fixel (FBA, do inglês “Fixel-Based Analysis”) foi realizada, a 

qual permitiu uma análise estatística abrangente de medidas quantitativas da matéria branca, com o 

intuito de detetar alterações no volume intra-axonal por variação na densidade intra-voxel e/ou 

reorganização da morfologia macroscópica. Para identificar tais diferenças entre pacientes e controlos, 

três parâmetros foram considerados: densidade das fibras (FD, do inglês “Fibre Density”), seção 

transversal do feixe de fibras (FC, do inglês “Fibre-bundle Cross-section”), e densidade de fibras e seção 
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transversal (FDC, do inglês “Fibre Density and Cross-section). Reduções na FD, FC e FDC foram 

identificadas em pacientes com TLE (com lateralização à esquerda) em comparação com os controlos, 

o que está de acordo com as mudanças microestruturais que resultam do processo de degeneração que 

afeta as estruturas de matéria branca com a perda de axónios na presença de uma condição 

neuropatológica como a TLE.  

Apesar do resultado final positivo, tendo em conta a meta previamente estabelecida, está aberto 

o caminho para o seu aperfeiçoamento, tendo em vista as direções futuras que emergem naturalmente 

desta dissertação. Como exemplo disso, poder-se-á recorrer ao estudo pormenorizado das metodologias 

técnicas associadas à abordagem apresentada que tem por base a análise das métricas de difusão ao 

longo dos tratos de matéria branca, uma vez que o desvio padrão associado a cada valor atribuído pelas 

diversas métricas foi significativo, o que de alguma forma poderá ter influenciado os resultados e, 

consequentemente, as conclusões deles extraídas, tendo em vista a sua viabilidade enquanto aplicação 

clínica. 

Como nota final, gostaria apenas de salientar que a imagiologia por difusão e, em particular, a 

tractografia têm ainda muito espaço para progredir. A veracidade desta afirmação traduz-se pela 

existência de uma grande variedade de modelos e algoritmos implementados, bem como de técnicas e 

metodologias de análise à informação microestrutural retida tendo por base o perfil de difusão que 

carateriza cada trato em estudo, sem que no entanto, exista consenso na comunidade científica acerca 

da melhor abordagem a seguir. 

 

Palavras-chave: Ressonância magnética ponderada por difusão; Tractografia; Análise ao longo dos 

tratos; Estatística espacial baseada no trato (TBSS); Análise baseada em fixel (FBA). 
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Figure 2.13 | (A) Pictorial representation of coherent white matter pathways, assumption used in the 

calculation of some propagator metrics. (B) Global propagator metrics, calculated directly from the 
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return to plane probability (RTPP). (C) MAP-MRI-derived parameter (cube-root of RTOP, square root 

of RTAP, and RTPP) coronal maps of marmoset brain. Adapted from [91]. ……………………...…. 21 
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Figure 2.15 | Visual representation of the differences between deterministic (A) and probabilistic (B) 

approaches to tractography. Probabilistic approaches are considerably more extensive and 

computationally demanding, as they track all orientations in all voxels adjacent to the seed point (grey 

square). Adapted from [107]. ……………………………….……………………….……………..…. 26 

Figure 4.1 | (A) Location of inclusion ROIs for the arcuate fasciculus. Colours on each eigenvector map 

represent the main direction of WM tracts (red: left–right, blue: superior-inferior, green: anterior-

posterior). (B, C) The first inclusion region is a one-slice thick volume coloured by red and positioned 

on the coronal view, and the second inclusion region was delineated on the axial plane using one-slice 

thick volume coloured by light-blue. See text for anatomical landmarks used. ………………………. 31 

Figure 4.2 | (A) Location of inclusion ROIs for the corticospinal tract. Colours on each eigenvector map 

represent the main direction of WM tracts (red: left–right, blue: superior-inferior, green: anterior-

posterior). The first region is a one-slice thick volume coloured by yellow and delineated on the inferior 

plane of the axial view, and following inclusion regions were also delineated on the axial plane along 

the inferior - superior direction using one-slice thick volume coloured by magenta and (B) light-blue. 

See text for anatomical landmarks used. …………………………………………………………….... 31 

Figure 4.3 | Location of inclusion ROI for the corpus callosum. (A) Colours on each eigenvector map 

represent the main direction of WM tracts (red: left–right, blue: superior-inferior, green: anterior-

posterior). (B) The inclusion region is a five-slice thick volume coloured by yellow and delineated on 

the entire sagittal cross section of the corpus callosum. ………………………………………………. 31 

Figure 5.1 | Representation generated using MATLAB of the left arcuate fasciculus (sagittal view) after 

the re-sampling of each streamline that is part of this WM pathway. Due to this step, all the streamlines 

have the same number of points distributed along itself. A closer look at the level of the classical arcuate 

fasciculus ‘‘bottleneck’’ allow us to confirm that the position of all the point were done uniformly 
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spaced. The streamlines are coloured in blue and the points were the scalar maps will be sampled are in 

yellow. ………………………………………………………………………………………………... 33 

Figure 5.2 | A comprehensive processing pipeline of the different methods applied throughout the 

Along-tract analysis. After performed the pre-processing methodologies, from the diffusion images were 

generated: (a) the 5TT images that were posteriorly used as inputs on the estimation of the response 

functions; (b) the BET masks, which were used to compute the FOD images and their respectively 

normalised images; and, (c) the microstructural scalar maps using DIPY and AMICO as frameworks, 

within the BET mask. (d) The ROIs were drawn in order to compute the WM tracts of interest, using 

the 5TT image to delineate the propagation and termination of streamlines. (e) From each WM pathway 

reconstructed, each streamline was resampled at equivalent points, which were positioned uniformly 

spaced along the tracts, and used to sample the scalar maps along the resampled streamlines of each 

tract. Using MATLAB tools, the along-tract analysis of each scalar map along the WM tracts of interest 

was computed. ………………………………………………………………………………………... 34 

Figure 5.3 | (A) Tractography of the left arcuate fasciculus (left, sagittal view), left corticospinal tract 

(middle, coronal view) and corpus callosum (right, coronal view); (B) Spherical ROI extracted from 

each WM pathway (left arcuate fasciculus (left, sagittal view), left corticospinal tract (middle, coronal 

view) and corpus callosum (right, coronal view) coloured by white and overlapped on (A); (C) 

MATLAB reconstruction: left arcuate fasciculus (left, sagittal view) coloured by blue and with the 

extracted spherical ROI coloured by yellow, left corticospinal tract (middle, coronal view) coloured by 

orange and with the extracted spherical ROI coloured by red, and corpus callosum - homologous 

connection between motor cortices (right, coronal view) coloured by light-blue and with the extracted 

spherical ROI coloured by grey. …………………………………………...…………………..……... 36 

Figure 5.4 | Along-tract analysis of the left arcuate fasciculus (AF), left corticospinal tract (CST), corpus 

callosum (CC) - homologous connection between motor cortices, and left centrum semiovale (from top 

to bottom) based on their tractograms (first column), from which it was possible to generate the 

reconstructions via MATLAB (second column). The following columns are divided in groups of three 

rows. The first row illustrate the variation of each microstructural parameter (fractional anisotropy (FA), 

mean diffusivity (MD), mean square displacement (MSD), (square-root of) return to axis probability 

(RTAP), (cube-root of) return to origin probability (RTOP), return to plane probability (RTPP), 

orientation dispersion index (ODI), intracellular volume fraction (ICVF) and isotropic volume fraction 

(ISOVF)) along each WM tracts of interest. In the second row, it was highlighted, from all the 

streamlines, the value of each diffusion metric assumed by each resampled point that is part of the 

extracted ROI from each WM pathway. The respective average variation of each scalar map along the 

extracted ROI is represented in the third row of graphs. The reconstruction of left AF was coloured by 
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Figure 5.5 | Along-tract analysis of the right arcuate fasciculus (AF), right corticospinal tract (CST), 

corpus callosum (CC) - homologous connection between motor cortices, and right centrum semiovale 

(from top to bottom) based on their tractograms (first column), from which it was possible to generate 

the reconstructions via MATLAB (second column). The following columns are divided in groups of 

three rows. The first row illustrate the variation of each microstructural parameter (fractional anisotropy 

(FA), mean diffusivity (MD), mean square displacement (MSD), (square-root of) return to axis 

probability (RTAP), (cube-root of) return to origin probability (RTOP), return to plane probability 

(RTPP), orientation dispersion index (ODI), intracellular volume fraction (ICVF) and isotropic volume 

fraction (ISOVF)) along each WM tracts of interest. In the second row, it was highlighted, from all the 

streamlines, the value of each diffusion metric assumed by each resampled point that is part of the 

extracted ROI from each WM pathway. The respective average variation of each scalar map along the 
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extracted ROI is represented in the third row of graphs. The reconstruction of right AF was coloured by 

blue and its analyses should follow the A-P direction, the right CST by orange and following the I-S 

direction, and the CC by light-blue and following the R-L direction, from which the extracted ROIs were 

coloured by yellow, red and grey, respectively. The centrum semiovale (right hemisphere) was coloured 

by black after merging the right AF (blue), right CST (orange) and CC (light-blue) and its analyses 

should follow the R-L direction. The units of MD and MSD are 𝑚𝑚2/𝑠, and RTAP, RTOP and RTPP 
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Figure 5.6 | Along-tract analysis of the fractional anisotropy (FA), mean diffusivity (MD) and mean 

square displacement (MSD) along (from left to right) the left / right arcuate fasciculus (AF), where (1) 
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The level of significance is represented by one star (*) where the p-value is lower than 0.01 (i.e. 

difference between groups with statistical relevance). The average variation of each microstructural 

parameter across the TLE patients is represented by the blue line and the associated standard deviation 

coloured by light-blue; and, the average variation of each microstructural parameter across the healthy 
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The units of MD and MSD are 𝑚𝑚2/𝑠. Abbreviations: A – anterior; P – posterior; S – superior; I – 
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sagittal plane and (9) the connections to left motor cortex. The level of significance is represented by 

one star (*) where the p-value is lower than 0.01 (i.e. difference between groups with statistical 
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Figure 11.1 | Along-tract analysis of the left arcuate fasciculus (AF), left corticospinal tract (CST), 

corpus callosum (CC) - homologous connection between motor cortices, and left centrum semiovale 

(from top to bottom) based on their tractograms, from which it was possible to generate the 

reconstructions via MATLAB (first column). The following columns are divided in groups of three 

rows. The first row illustrate the variation of fractional anisotropy (FA) and mean diffusivity (MD) along 

each WM tract of interest. In the second row, it was highlighted, from all the streamlines, the value of 

each diffusion metric assumed by each resampled point that is part of the extracted ROI from each WM 

pathway. The respective average variation of each scalar map along the extracted ROI is represented in 

the third row of graphs. The reconstruction of left AF was coloured by blue, the left CST by orange, and 

the CC by light-blue, from which the extracted ROIs were coloured by yellow, red and grey, 

respectively. The centrum semiovale (left hemisphere) was coloured by black after merging the left AF 
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1 Introduction 

It is commonly acknowledged that the human brain is the most complex system in nature. The 

presence of pathological conditions in its intricate structure may lead to a wide variety of neurological 

disorders, such as epilepsy. Epilepsy is a chronic neurological condition that is characterized by 

recurrent seizures, which are brief episodes of a sudden surge of electrical activity in the brain that result 

in a temporary disturbance of motor, sensory, or mental functions and may affect a part of the body 

(partial or focal seizures) or the entire body (generalized seizures). [1, 2]  

According to Epilepsy Society of the United Kingdom, this neurological disorder affects over 

500,000 people in this country, 160,000 of which require continuing hospital-based medical      

treatment. [3] Most patients respond completely to antiepileptic drugs and become seizure free. However, 

in 30% of patients with focal epilepsy, seizures are refractory to medication and surgery is potentially 

curative if an epileptic focus is localized, with up to 70% being rendered seizure free. The most common 

form of focal or location related epilepsy is temporal lobe epilepsy (TLE), accounting for approximately 

60% of all people living with epilepsy. [4, 5] 

In recent years, with the fast advance of imaging techniques, the opportunity of mapping the 

human brain pathways in vivo at unprecedented resolution became a reality, remaining today one of the 

most challenging tasks in neuroscience. In addition, pathophysiological models of brain disorders have 

shifted from an emphasis on understanding pathology in specific brain regions to characterizing 

disturbances of interconnected neural systems. Specifically, of importance for clinicians and researchers 

managing patients with epilepsy, new methods of brain imaging in search of the seizure-producing 

abnormalities have been implemented, looking also in detail to the information provided by the 

microstructure about the diffusion profile, derived from diffusion Magnetic Resonance Imaging (MRI), 

along specific white matter (WM) pathways that could be potentially affected by this neurological 

condition. 

With this in mind, the main goal of this project was the integration of microstructural 

information derived from multi-shell diffusion imaging (which involves acquiring a large number of 

gradient directions for the two or more spherical shells (i.e. several b-values)) with tractography, through 

the definition of a microstructural signature based on an along-tract analysis of each cerebral pathway 

in study, namely the arcuate fasciculus, the corticospinal tract and the corpus callosum. 

Additionally, in order to be able to distinguish each WM pathway within a complex region with 

multiple fibre populations (as the centrum semiovale), along-tract analysis considering the variation of 

different microstructural scalar maps along each tract was performed in a carefully delineated region. 

This analysis was repeated for a complex region and results compared with individual tract signatures. 

The same reasoning was applied to compare each WM tract of interest between a clinical population 

with TLE and a healthy control group. 

Two additional group level analyses were performed as well in order to support the conclusions 

derived from the along-tract analysis, namely the traditional voxel based tract-based spatial statistics 

(TBSS) and the more recent fixel-based analysis (FBA).  

This thesis is organized in twelve chapters described below, with the present Chapter 1 

introducing the context, motivation and general organization of the work. 

Chapter 2 introduces a comprehensive explanation of the relevant theoretical underpinnings of 

this work. This chapter is subdivided into six sections where the Neuroanatomy, Magnetic Resonance 

Imaging (MRI), Diffusion-Weighted Magnetic Resonance Imaging (dMRI), Diffusion Tensor Imaging 

(DTI), High angular resolution diffusion-weighted imaging (HARDI) and Tractography are introduced. 

The first section introduces a brief description of neuroanatomy, looking in detail to the arcuate 

fasciculus, corticospinal tract, corpus callosum and centrum semiovale. The second section describes 
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the MRI basic principles, followed by a description of the imaging principles and MR sequences. The 

third section explains the diffusion principles and the Pulsed Gradient Spin Echo (PGSE) sequence is 

introduced. Followed by the fourth section, where DTI is described as well as its limitations. In the fifth 

section, an overview of HARDI methodologies is given, on which the Simple Harmonic Oscillator based 

Reconstruction and Estimation (SHORE) and Mean Apparent Propagator (MAP) – MRI are presented, 

and the spherical deconvolution and Neurite orientation dispersion and density imaging (NODDI) 

explained, as well as the Accelerated Microstructure Imaging via Convex Optimization (AMICO) 

framework. Finally, in the last section, a brief introduction to tractography will be addressed with a 

focus on its achievements and associated limitations.  

In Chapter 3, subjects’ information, dMRI acquisition and processing methodology will be 

addressed.  

In Chapter 4, the methodology used for tractography reconstructions of each WM tract of 

interest will be described. It is also given a detailed description about how the different microstructural 

parameters in study were obtained. 

In Chapter 5, Chapter 6 and Chapter 7, the different analyses that were performed in order to 

evaluate the microstructural parameters will be introduced: Along-tract analysis, TBSS and FBA, 

respectively; with each one containing the results obtained from the associated methodologies 

previously explained. Each Chapter will also comprise a detailed discussion of the results from each 

analysis performed.  

Finally, in Chapter 8, the conclusion of the entire dissertation is presented, followed by the 

future perspectives of this work in Chapter 9. 

Additionally, the references used along this dissertation are enumerated in Chapter 10, and the 

most relevant scripts that were developed during this research project can be found in Chapter 11, as 

well as some complementary information important to the analyses carried out.  

Finally, in Chapter 12 it is shown an example of the abstracts submitted for the VII AEICBAS 

Biomedical Congress, which will take place in Porto (Portugal), and for the 2019 Annual Meeting of 

the Organization for Human Brain Mapping (OHBM), which will take place in Rome (Italy). 
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2 Background Theory 

 

2.1 Neuroanatomy 

In this first section, a brief description of human neuroanatomy is introduced and the basis of 

brain microstructural organization explained. Posteriorly, the neural connectivity of the arcuate 

fasciculus, corticospinal tract and corpus callosum, as well as the centrum semiovale, where there are 

crossing fibres from these three WM pathways, will be also described. 

 

2.1.1 A brief description of neuroanatomy 

The central nervous system (CNS) is responsible for controlling processes ranging from sensory 

perception to advanced cognitive functions. The functional unit of CNS is the neuron, which is 

responsible for the propagation of the electric activity and flux of information in the nervous system. A 

neuron can present a variety of shapes and sizes, all displaying, however a common structure made up 

of: the cellular body which contains the nucleus, dendrites responsible for receiving the stimulus, and 

axons, which transport the action potential and connect to other neurons via the synapses to transmit the 

electric impulse. Our nervous system is organized in such fashion that axons tend to run alongside each 

other, while cellular bodies and dendrites group together. [6, 7] 

At a larger scale, we can define grey matter (GM) as being composed of the cellular bodies of 

neurons and also unmyelinated axons. GM covers the surface of the cerebral hemispheres and builds up 

the cortex, displaying a pinkish-grey colour due to an abundant blood supply. [6] 

On the other hand, WM is the compartment of the nervous system comprised of axons, which 

are organized into fibre bundles, with long WM fibre bundles being called fasciculi or tracts. WM is 

mainly studied as the brain compartment of crossing paths that connect different functional regions. 

Long distance fibres, generally gathered into bundles, can be classified according to their connection 

patterns. Commissural fibres connect the two cerebral hemispheres; projection fibres are bidirectional 

fibres between the sub-cortical structures and the cortex, such as the thalamus, brainstem and spinal 

cord; and, associative fibres regroup cortico-cortical fibres between intra-hemispheric regions and fibres 

of the limbic system. [8, 9] 

Concurrently and subsequently to the organization of WM networks, fibre connections become 

progressively mature and functionally efficient through the myelination process (elaboration of myelin 

surrounding neuronal axons) that favours the conduction of the nervous impulse. [9] 

Interwoven between deep GM structures and the cortex there are cavities in the brain named 

ventricles, containing a plasma-like liquid named Cerebrospinal Fluid (CSF). The CSF is responsible 

for establishing the exchange of nutrients between the blood and nervous tissue, additionally acting as 

a cushion for impacts on the brain. [6] 

 

2.1.1.1 Neural connectivity of the arcuate fasciculus  

The arcuate fasciculus is a lateral associative bundle part of the superior longitudinal fasciculus 

(SLF) and composed of long and short fibres connecting the perisylvian cortex of the frontal, parietal, 

and temporal lobes. This frontotemporal fibre bundle consists of a longer, direct segment connecting 

Wernicke’s area to Broca’s area, and two indirect segments: an anterior part linking Broca’s area with 

the inferior parietal lobule and a posterior part linking inferior parietal lobule with the superior-temporal 

gyrus and sulcus (Wernicke’s area); whose separate functions correlate with traditional models of 

conductive and transcortical motor or sensory aphasia, respectively (see Figure 2.1). [10, 11, 12] 
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The arcuate fasciculus is considered a major WM tract traditionally implicated in language, and 

studies of healthy adults have demonstrated a relationship between its symmetry and performance on a 

word list recall task. [13] Like language function itself, the arcuate fasciculus is believed to be left-

lateralized in the majority of adults [14] and children [15]. The relationship between structural lateralisation 

of this WM pathway and functional lateralisation of language is not always transparent. [16, 17] However, 

it is evident that its structural properties are correlated with behavioural measures of language function, 

such as word learning [18], verbal recall [14] and the development of phonological awareness and      

reading [19].  

Previous studies also suggest that the arcuate fasciculus of the left hemisphere is involved in 

language [20] and praxis [21], while the arcuate fasciculus of the right hemisphere is involved in 

visuospatial processing [22] and some aspects of language such as prosody and semantic [14, 20]. 

Arcuate fasciculus abnormalities have been documented in paediatric populations that exhibit 

language impairments of varying severity, as part of a more globally affected profile including cognitive 

involvement, and in developmental populations with a primary or specific language impairment. [10] 

 

2.1.1.2 Neural connectivity of the corticospinal tract 

In humans the motor development is achieved by functional use of trunk and limb muscles. In 

detail, this motor development is generally divided into two different types of motor skills, gross motor 

skills, which mainly require the use of proximal and axial muscles for postural control and locomotion; 

and fine motor skills, responsible by precise movements. These motor functions are related to the 

descending motor pathways classified as the corticospinal tract (pyramidal tract) and the non- 

corticospinal tract (extra-pyramidal tract). [23, 24] 

However, in this section, the focus will be the corticospinal tract, which reveals to be primarily 

involved in fine motor skills, playing a major role in cortical control of spinal cord activity.  

The corticospinal tract, which starts at the cortex and terminates on motor neurons in the spinal 

cord (see Figure 2.2), is a complex system with multiple functions that share one characteristic, namely 

cortical control of spinal cord activity. These functions include the control of afferent inputs, spinal 

reflexes, and motor neuron activity. So, the corticospinal tract plays an important role in the motor 

system, as it mediates voluntary distal movements. Most corticospinal tract axons cross the anatomical 

Figure 2.1 | Tractography reconstruction of the arcuate fasciculus. Broca’s and Wernicke’ territories are connected through 

direct and indirect pathways in the average brain. The direct pathway (long segment shown in red) runs medially and 

corresponds to classical descriptions of the arcuate fasciculus. The indirect pathway runs laterally and is composed of an 
anterior segment (green) connecting the inferior parietal cortex and Broca’s territory, and a posterior segment (yellow) 

connecting Geschwind’s and Wernicke’s territories. Adapted from [12]. 
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midline at the junction between the brainstem and spinal cord, forming the pyramidal decussation. This 

is of critical importance for corticospinal tract functions, as it means the right side of the brain controls 

the left side of the body, and vice-versa. [25, 26] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This WM pathway is closely linked to the development of skilled voluntary movements through 

evolution. In maturity, motor skills depend on the corticospinal tract, as well as brainstem motor 

pathways. The motor output from the cortex descends into the brainstem and to the spinal cord to control 

the musculature through motor neurons. Descending signals to motor neurons and interneurons, in order 

to mediate the voluntary control, can be distinguished from muscle and joint sensory signals that provide 

feedback for movement control. While genetic mechanisms initially establish motor system connections, 

neural activity and associated processes refine these connections to enable motor skills to develop. [24,27] 

 

2.1.1.3 Neural connectivity of the corpus callosum 

The corpus callosum, which is the most important fibre pathway linking both hemispheres, plays 

a key role in information access, as well as the functional coordination and reorganization between 

hemispheres, ensuring the communication between sensory, motor, and higher-order brain regions. 

Consisting of over 190 million axons, the corpus callosum is the largest WM structure in the brain and 

the major commissural pathway connecting the hemispheres of the human brain, and it is involved in 

several motor, perceptual and cognitive functions. [28, 29] 

Based on previous histological findings [13, 30, 31, 32], from anterior to posterior, the corpus 

callosum could be anatomically divided into four parts: the rostrum, genu, body, and splenium, each 

responsible for connecting distinct areas of the cortex (see Figure 2.3). The connection of the orbital 

regions on the frontal lobes is mediated by the rostral fibres. The genu fibres are crossing over to 

contribute to the forceps minor (anterior forceps), connecting the homologous lateral and medial regions 

of the frontal cortices, whereas by following a posterior course the fibres of the splenium contribute to 

the forceps major (posterior forceps), providing a connection between the occipital lobes. Following a 

Corticospinal tracts 
Motor cortex 

Midbrain 

Pons 

Medulla oblongata  

Spinal cord 

 
Figure 2.2 | Virtual dissection of the corticospinal tract in the human brain. The corticospinal tract contains descending fibres 
projecting from the motor cortex to spinal cord, passing through the posterior limb of the internal capsule, the ventral midbrain, 

continuing through the pons, and passing through the medulla oblongata, where corticospinal fibres collect into a discrete 

bundle forming the pyramid. Adapted from [26].  

Brainstem 



6 
 

traversal direction towards to cerebral cortex, body fibres form the corona radiata along with other major 

WM pathways.  

 

 

 

 

 

 

 

The importance of corpus callosum has grown beyond interhemispheric communication, and 

recently several studies [33, 34] have determined changes in corpus callosum volumes associated with 

neurodegenerative or inflammatory diseases such as Alzheimer’s [35] and multiple sclerosis [36]. 

However, some neuroimaging studies have also revealed that the structure of the corpus callosum seem 

to be affected by a variety of CNS diseases, such as epilepsy [37] and autism [38].  

 

2.1.1.4 Neural connectivity of the centrum semiovale 

The centrum semiovale, which has particularly complex crossing-fibre characteristics, is 

defined as the common central mass of WM with a semi-oval shape, present in each of the cerebral 

hemispheres, and subjacent to the cerebral cortex just above the level of the lateral ventricles (see   

Figure 2.4). [39, 40, 41] 

Previous studies [39, 42, 43] have shown that this is a highly complex region of the WM. Within the 

centrum semiovale, the arrangement of the fibres reveals three-way intersection consisting of 

mediolaterally directed commissural fibres of the corpus callosum, vertically oriented projection fibres 

of the corticospinal tract, and anterior–posterior association fibres comprising part of the arcuate 

fasciculus.  

 

 

 

 

 

 

Genu 

Rostrum Splenium 

Body 

Figure 2.3 | Left lateral view of the tractography reconstruction of the corpus callosum segmented in four different parts: 

rostrum (blue), genu (green), body (red), and splenium (yellow). Adapted from [31] and [32]. 

Figure 2.4 | (A) Whole-brain probabilistic fibre-tracking generated using constrained spherical deconvolution (CSD) algorithm 

from a diffusion dataset. The region that corresponds to centrum semiovale is highlighted by a yellow square. Each track is 
coloured according to its direction of travel (red: left–right; green: anterior–posterior; blue: inferior–superior). (B) High-

definition fibre tractography at the level of the centrum semiovale revealing the complex architecture of this region. (C) Close-

up view of (B) highlighting the complex crossing-fibre characteristics of the centrum semiovale. Adapted from [39] and [41]. 

A B C 
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2.2 Magnetic Resonance Imaging 

In this section, the principal theoretical concepts required in order to understand the main 

content of the remaining sections of this dissertation are given, starting by an introduction to Magnetic 

Resonance Imaging (MRI).  

MRI is a nuclear medical imaging technique that allows imaging in vivo the human morphology, 

structure and dynamics with a high contrast and resolution at tissue level. This non-invasive 3D 

technique uses magnetic fields and electromagnetic energy to generate signals from the atomic nuclei, 

in particular, the hydrogen nuclei (proton of the nuclei), which can be translated into images. Other 

nuclei may be used in MRI but there is a preference for hydrogen due to its abundance in fat and in 

water ((Hinshaw & Lent, 1983) [44]; (Pope, 1999) [45]). MRI allows for a great variety of sequences to be 

obtained when different acquisition parameters are changed, depending on the specific objective of the 

study. In the followed subsections, the concepts related to MRI will be explained. 

 

2.2.1 Basic Principles 

In the absence of an external magnetic field, the protons assume random directions and 

orientations, and their individual magnetic fields tend to cancel out. Otherwise, in the presence of an 

external homogenous magnetic field (𝐵0), the spins preferentially align themselves with the direction of 

the field. They may align themselves either parallel (spin-up) or anti-parallel (spin-down) to the field, 

and this constitute two slightly different energy states, which are given by: 

𝐸 = 𝜇.𝐵0 = 𝛾ℏ𝐼. 𝐵0 with 𝜇 = 𝛾𝐽 = 𝛾ℏ𝐼  (2.1) 

where 𝜇 is the magnetic moment, 𝛾 the gyromagnetic ratio, 𝐽 the angular momentum, ℏ the Planck’s 

constant divided by 2π, 𝐼 the spin angular momentum that can be ± 1/2 for protons, and 𝐵0 the external 

magnetic field. [46] 

The spin-up (parallel) state has a slightly lower energy than the spin-down (anti-parallel) state. 

The energy difference between both levels is the energy needed for a proton to swap between the two 

states, which is associated with the electromagnetic frequency required. The energy difference is given 

by: 

∆𝐸 =  𝛾ℏ. 𝐵0  (2.2) 

Additionally, instead of a perfectly alignment with the external magnetic field 𝐵0, the spinning 

protons steadily precess about its direction, developing a precessional movement towards it with an 

angular frequency 𝜔 (𝑟𝑎𝑑/𝑠), which is directly proportional to 𝐵0, and mathematically defined as: 

𝜔 = 𝛾𝐵0  (2.3) 

In terms of frequency (𝐻𝑧) and knowing that 𝑓(𝐻𝑧) =
𝜔

2𝜋
, an associated expression can be 

derived 

𝑓 =
𝛾𝐵0

2𝜋
  (2.4) 

where 𝑓 is known as the Larmor Frequency. [45, 46] 
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2.2.1.1 Radio-Frequency Pulses 

Due to a predominance of magnetic moments oriented with the magnetic field, a component 

arises resulting of the vectorial sum of the magnetic moments oriented with the field. This component 

is called longitudinal magnetization 𝑀0, parallel to the main magnetic field. This, however, cannot be 

measured since it is parallel to the large externally applied field 𝐵0. 

Since we can only measure magnetic field disturbances, to detect the precession of spins it is 

necessary to divert them from the main orientation of magnetic field and to do so, another magnetic field 

𝐵1, namely a radiofrequency (RF) pulse with the Larmor frequency is applied perpendicularly to 𝑀0, in 

order to resonate with the spin system. In this framework, 𝑀0 will appear stationary, and the application 

of another magnetic field 𝐵1 tips 𝑀0 into the 𝑥𝑦 plane, creating a transverse magnetization 𝑀𝑥𝑦 

(perpendicular to their spinning axis), which now precesses around 𝐵1. The extent and intensity of the 

RF pulse allows one to control the tip/flip angle of the longitudinal magnetization to the 𝑥𝑦 plane. [46, 47]  

The flip-angle (𝛼) depends on the amplitude of 𝐵1 and duration 𝑡𝑝  of the RF field and can be 

calculated by: 

𝛼 =  𝛾 ∫ 𝐵1(𝑡) 𝑑𝑡
𝑡𝑝
0

  (2.5) 

 

2.2.1.2 Relaxation 

When the RF pulse stops, the magnetization gradually returns to equilibrium and, consequently, 

its evolution over time is dominated by relaxation mechanisms, induced by the loss of energy to the 

surrounding environment (Spin-Lattice interaction) and the interaction between spins (Spin-Spin 

interaction) ((Hashemi et al., 2012) [47]; (Plewes & Kucharczyk, 2012) [48]). 

The spin-lattice interaction (also known as 𝑇1 relaxation) results in the recovery of the 

longitudinal magnetization along 𝑧 axis (𝑀𝑧) after applying a RF pulse. This mechanism reflects the 

time necessary to realign the protons with 𝐵0 by transferring protons energy to surrounding molecules. 

So, 𝑇1 relaxation could be defined as the time taken for 63% of longitudinal magnetization to recover 

along 𝑧 axis, after 90°RF pulse application, leading to the passage of the spins from the anti-parallel 

level to parallel level, with energy devolution to the lattice (see Figure 2.5). This change in spins state 

happens mainly due to an interaction with magnetic fluctuations of the lattice, and the time it takes 

depends on the mobility of protons in different molecules. Mathematically, 𝑇1 relaxation is explained 

by an exponential behaviour according to: 

𝑀𝑧(𝑡)  =  𝑀0 (1 − 𝑒
−𝑡

𝑇1)  (2.6) 

Otherwise, spin-spin interaction (or 𝑇2 relaxation) is the mechanism that results in a decrease of 

𝑀𝑥𝑦 after applying a RF pulse. For a 90° flip-angle, 𝑇2 relaxation corresponds to the time it takes for 

37% of 𝑀𝑥𝑦 to be obtained due to relaxation of transverse magnetization, from a certain value, which is 

determined from the RF pulse duration/intensity (see Figure 2.5). Mathematically this process is 

explained through the equation 2.7: 

𝑀𝑥𝑦(𝑡) = 𝑀0 𝑒
−𝑡

𝑇2  (2.7) 
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Furthermore, 𝑇2 is also influenced by the inherent field inhomogeneities. In this case, the 

relaxation will occur at a rate of 𝑇2
∗
, which is shorter than 𝑇2 because it leads to faster dephasing. 𝑇2

∗
 is 

given by:  

1

𝑇2
∗ =

1

𝑇2
+

1

𝑇𝑖𝑛ℎ𝑜𝑚
=

1

𝑇2
+ 𝛾∆𝐵  (2.8) 

where 𝛾 is the gyromagnetic ratio and ∆𝐵 the relaxation rate contribution attributable to field 

inhomogeneities across a voxel.  

 

2.2.2 Image Principles 

 

2.2.2.1 Slice Selection / Image Acquisition and Reconstruction 

If a coil is placed perpendicularly to the precessing 𝑀𝑥𝑦, a voltage will be induced accordingly 

to Faraday’s law of induction (𝜀 = − 𝑑𝜙𝐵 𝑑𝑡⁄ , where 𝜙𝐵 is the magnetic flux). The measured signal 

consists in an oscillating voltage according to the Larmor frequency which is exponentially decaying 

with time and is generally called Free Induction Decay (FID), since the spins are “freely” precessing.  

The FID is detected from the sample without any spatial discrimination and, in order to get that, 

magnetic field gradients can be used. [49] Spins affected by a magnetic field gradient will have a slightly 

different precessional frequency according to their position (𝑧), and the intensity of the measured signal 

will then reflect the anatomical structure at different positions. 

Firstly, a gradient 𝐺𝑧 is applied (conventionally in the same direction as static magnetic field – 

z direction) in order to select a region of interest (ROI), in a process known as Slice-selection. The RF 

pulse is set up with a certain bandwidth (∆𝜔) in order to stimulate a region (i.e. a 2D slice). The thickness 

of the excited slice (∆𝑧) depends on the ∆𝜔 of the RF pulse and the steepness of the gradient (see     

Figure 2.6). [44, 45, 46] 

∆𝑧 =
∆𝜔

𝛾 𝐺𝑧
  (2.9) 

 

 

Figure 2.5 | 𝑇1and 𝑇2 relaxation times. Although they happen simultaneously, 𝑇2 is much quicker than 𝑇1 for a certain tissue. 

This fact cannot be visible in other tissues because the relation between both curves can be different. Adapted from [46]. 
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After the slice has been selected, extra steps are required to get individual information from each 

voxel. Once again, a gradient is applied in order to encode the spins in the slice, because the Slice-

selection method does not differentiate between protons within each slice. As a result, protons precess 

with slightly different speeds, originating phase differences proportional to their positions (Phase-

Encoding Gradient, 𝐺𝑦, conventionally applied along 𝑦). Finally, during the echo readout (i.e. while 

sampling the signal) and the application of the Frequency-Encoding gradient, 𝐺𝑥, in the 𝑥 direction, the 

spins precess at a different rate along this axis, yielding a 3D encoding of the spin ensemble. By applying 

these gradients we linearly vary the frequency with spatial position. [46, 50]  

Therefore, to achieve a full description of the sample, this procedure must be repeated several 

times, which is determined by the Repetition Time (𝑇𝑅) - the time from the application of an excitation 

pulse to the application of the next pulse. The sampled signals are stored as spatial frequencies that vary 

with position, in what is called k-space, whose axes correspond to the integral of the applied gradients 

over time. In practice k-space is sampled over a grid and the separation between each sample is 

determined by the Field of View (FOV) of the desired image. [47] In the simplest type of k-space 

encoding, each repetition of the spin-echo experiment corresponds to a spatially encoding step, and one 

line in k-space. Since the data stored in k-space are spatial frequencies of the image (where the central 

ones contribute with image contrast and most part of the signal of tissues, while peripheral frequencies 

provide high detail about the image itself, but little information about contrast), by performing the 

inverse Fourier transform (FT), the reconstruction of an image from the spatial frequency space (k-

space) can be computed. For 2D imaging, a 2D FT is applied, yielding a function that describes the 

distribution of spatial frequencies 𝑘𝑥 and 𝑘𝑦, which are related to the time on gradient variables. While 

for 3D images, one more spatial frequency (𝑘𝑧) and coordinate (𝑧) should be considered. Consequently, 

3D FT is applied for 3D imaging. [51] 

 

2.2.2.2 Imaging Sequences 

MRI pulses sequences are widely important allowing the acquisition of images with different 

kinds of contrast. There is a great variety of sequences in MRI, however I will only focus on Spin-Echo 

(SE), Gradient-Echo (GE), and Echo-planar Imaging (EPI), attending to their importance to understand 

further concepts along this dissertation.  

 

 

𝝎 

𝒛 
∆𝒛 

∆𝝎 

Figure 2.6 | Principle of slice selection. By applying a Radio-Frequency (RF) pulse with a finite bandwidth (∆𝜔), only the 

spins in a slice thickness (∆𝑧) are excited. Adapted from [46]. 
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2.2.2.2.1 Spin-Echo (SE) 

In this MRI imaging sequence, after the application of a 90º RF excitation pulse, which is 

followed by a time span 𝑡 where a gradient field 𝐺𝑦 is applied to spatially encode the spins, a 180º RF 

pulse is applied in order to obtain the refocusing of the spins along with the same slice selective gradient. 

Consequently, by changing the orientation of spin precession, the ones that were precessing faster are 

now behind those that precessed at a lower frequency, which will lead to a regain of coherence after the 

same amount of time 𝑡, and to the emission of a spin echo, since phase differences will cancel out. The 

amount of time that goes between the application of 90º RF excitation pulse and the peak of the signal 

induced in the coil (maximum of the echo) is called Echo Time (𝑇𝐸), when is also acquired the signal 

(echo). [46, 47] 

A schematic overview of a SE sequence and respective sampled k-space is illustrated in Figure 

2.7. As shown and according to the concepts introduced by Section 2.2.2.1, after the application of the 

90º RF excitation pulse simultaneously with a slice selection gradient, 𝐺𝑦 is applied. The amplitude of 

this gradient determines the coordinate 𝑘𝑦  of the line that will be sampled in k-space (orange line in 

Figure 2.7). Then, the 180º RF pulse is applied with the same slice selection gradient in order to flip the 

spins and make them rotate back towards coherence. Followed by the acquisition of the signal around 

𝑇𝐸, while the 𝑘𝑥 direction of the k-space (blue line in Figure 2.7) is scanned after the 𝐺𝑥 along the 𝑥-

axis has been switched on. Usually,  𝐺𝑥  with the same polarity is applied during 𝐺𝑦 in order to move 

the k-vector towards the beginning of the line that is to be acquired (negative  𝑘𝑥). Furthermore, to 

acquire the others k-space lines, the process has to be repeated according to a determined 𝑇𝑅. 

 

 

 

 

 

 

 

 

2.2.2.2.2 Gradient-Echo (GE) 

When compared to SE sequence this technique allows reduced acquisition times, which could 

be accomplished by choosing a nutation angle (𝛼) below 90º, in order to allow a more rapid longitudinal 

magnetization recovery.   

The application of the GE sequence is characterized by the use of gradients to diphase and 

rephase the spins, instead of the 180º RF pulse. This sequence starts with the application of an initial 

90º RF excitation pulse, simultaneously with the slice selection gradient. Then, by turning off the 

excitation pulse, the spin population gradually starts to precess with different frequencies (spins 

diphase), and 𝐺𝑦 is applied along the y-axis. Simultaneously, a negative 𝐺𝑥 is applied along the 𝑥 

direction in order to induce a faster dephasing of the spins. Thereafter, a positive 𝐺𝑥 (gradient with 

Figure 2.7 | Spin-Echo (SE) sequence: diagram of a 2D SE sequence (right) and the k-space trajectory in the 𝑘𝑥  and 𝑘𝑦 

plane (left). The data is acquired, while scanning the blue line in k-space. Adapted from [46]. 

𝑹𝑭 
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inverse polarity and same intensity) is applied to rephase the spins at the same time as the echo is 

measured ( 𝑇𝐸) (see Figure 2.8, left). [46] The amplitude of the gradient determines the 𝑘𝑥 and 

 𝑘𝑦  coordinates of the line, which will be sampled in k-space (see Figure 2.8, right), as well as in the 

SE sequence. 

Furthermore, since the refocusing of spins is purely based on gradients, and not on a 180° pulse, 

local field inhomogeneities arise due to susceptibility effects which are not compensated by the echo. 

Thereby, the signal is dependent of 𝑇2
∗

 rather than 𝑇2, resulting in the acquisition of 𝑇2
∗
 - weighted 

images instead of 𝑇2 - weighted images 

 

 

 

 

 

 

 

 

 

2.2.2.2.3 Echo-planar Imaging (EPI) 

EPI is one the fastest methods for data collection, generating images in the order of tens of 

milliseconds. This imaging sequence uses multiple GE with different phase steps in order to sample the 

k-space, with multiple lines being acquired after a single 90º RF excitation. [52, 53] 

Thereby, as a conventional SE sequence, an SE EPI sequence begins with 90° and 180° RF 

pulses. However, after the 180° RF pulse, the frequency-encoding gradient 𝐺𝑥 oscillates rapidly from a 

positive to a negative amplitude, which consequently generates a train of gradient-echoes with same 

intensities; while simultaneously is applied blips in the phase-encoding gradient 𝐺𝑦 which act as 

individual phase encoding steps. Further, each echo is phase encoded differently by phase-encoding 

blips on the phase-encoding axis. Each oscillation of 𝐺𝑥 corresponds to one line of imaging data in k-

space, and each blip corresponds to a transition from one line to the next in k-space. In GE EPI 

sequences, after a single 90º RF excitation pulse, the acquisition of the image is performed, using the 

gradient to generate the echoes following the same process explained before. [54, 55] A schematic 

representation of a 2D SE and GE EPI sequence is illustrated in Figure 2.9.  

Allied to this strategy there are however some essential requirements that should be followed in 

terms of how fast gradients can change and the maximum intensity they can achieve. Furthermore, the 

rapid switching of the gradients, produces an electric field at any closed conducting surface, which may 

lead to the generation of eddy currents. The field generated by the eddy currents combines with the 

intended gradient field to create waveforms distortions, which can result in images artefacts and signal 

loss. In particularly, it changes the nominal diffusion weighting by biasing the expected gradient 

intensity and leads to geometrical distortions in the acquired images. Additionally to eddy-current 

𝒌𝒚 

𝒌𝒙 

𝑹𝑭 

𝑮𝒛 

𝑮𝒚 

𝑮𝒙 

𝑺𝒊𝒈𝒏𝒂𝒍 

𝜶 < 𝟗𝟎° 

Figure 2.8 | Gradient-Echo (GE) sequence: diagram of a 2D GE sequence (left) and the k-space trajectory the 𝑘𝑥 and 𝑘𝑦 plane 

(right). Adapted from [46]. 
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distortions, we can also have susceptibility artefacts when the local magnetic properties of the object are 

different, producing additional gradients that distort the acquired images. [56]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 Diffusion-Weighted Magnetic Resonance Imaging 

Throughout this section, the concept of diffusion is introduced with the methods that have been 

developed to study it. The details discussed below are essential to understand the behaviour of how 

water molecules interact with biological tissues, and how the measures, that are reconstructed with 

diffusion imaging, are influenced by those interactions. 

Diffusion-Weighted Magnetic Resonance Imaging (dMRI) is a neuroimaging method capable 

of mapping the diffusion of water molecules across biological tissues. Water molecules interact with 

many obstacles, such as cell membranes and axonal fibres, and by studying their diffusional process we 

can recover patterns that can reveal microscopic details about brain tissue architecture, such as axonal 

orientation. Hence, water diffusion patterns have been useful to reflect the underlying microstructural 

organization of the brain. 
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Figure 2.9 | 2D Echo-planar Imaging (EPI) sequence and respective k-space trajectory: (A) diagram of 2D Spin-Echo (SE) 

and k-space trajectory, and (B) diagram of  2D Gradient-Echo (GE) and k-space trajectory. Adapted from [55]. 
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2.3.1 Diffusion Principles 

Diffusion is a physical phenomenon that was mathematically described by Fick, based on the 

random displacement of molecules in a fluid. This phenomenon is explained by Fick's first law by 

attributing the generation of a flux J from a particular substance to a gradient of concentration (∇𝐶) at a 

particular position r and time instance t: 

 

𝐽(𝑟, 𝑡) = −𝐷∇𝐶(𝑟, 𝑡)  (2.10) 

 

where D is a constant of proportionality, called the diffusion coefficient (𝑚𝑚2/𝑠) given by the diffusion 

coefficient of the substance under study. This law takes into account that the direction of displacement 

takes place from areas of high to low concentration (Fick, 1855) [57]. 

Based on the principle of conservation of mass and supported by the idea the evolution of the 

concentration of particles can be derived at any particular point in time from the difference between the 

influx and efflux at a specific position (Price, 1997) [58], Fick’s second law was postulated: 

 
𝜕𝑐(𝑟,𝑡)

𝜕𝑡
= 𝐷∇2𝑐(𝑟, 𝑡)  (2.11) 

 

However, the gap between the effect described by Fick and the initial microscopic observations 

was only filled out several years later by Albert Einstein (1905), who was responsible for quantifying 

diffusion as the random thermal motion of molecules in the absence of any external forces. More 

specifically, a relationship was drawn by introducing an explicit relationship between the mean-squared 

displacement (𝑥) of molecules undergoing diffusion during a particular time interval (∆𝜏), the diffusion 

coefficient (D) and the dimensions across which they spread (𝑛): 

 

⟨𝑥2⟩  = 2 𝑛 𝐷∆𝜏  (2.12) 

 

  It should also be stated that diffusion depends on the temperature, molecular weight and 

viscosity of the medium (Le Bihan, 1995) [59]. The laws described above shed light on the behaviour of 

molecules in unbound diffusion, where there is no preferential direction of displacement, a process also 

known as isotropic diffusion (Philibert, 2006) [60]. 

However, there are numerous restrictions to the diffusion of molecules in the human body, 

contributing to a displacement profile of water molecules that is no longer uniform. In particular, there 

are barriers such as cell membranes and axon fibres, amongst others, which lead to an anisotropic 

diffusion that is not constant across directions (Moseley et al., 1990) [61]. Particularly for axonal fibres, 

diffusion occurs preferentially along the axon’s major axis and is lower in the transverse direction(s) 

((Mori & Barker, 1999) [62]; (D. C. Alexander, 2006) [63]). Even though the main sources of anisotropy 

are still under debate, the dense packing of axons and the myelin sheath that surrounds them, has been 

shown to play a very important role in restricting diffusion in the transverse direction (Beaulieu,       

2002) [64]. Currently, the recovery of the full information about water molecules displacement - given 

by the diffusion probability density function (PDF) or diffusion propagator – in biological tissues has 

been an active topic of research.  

The propagator gives the probability of a particular molecule having moved from an initial 

position 𝑟0 to a final position 𝑟 within a specific time interval 𝑡, with a corresponding displacement 

given by 𝑅 = 𝑟 − 𝑟0. [65] The averaged propagator could be obtained through the integration of 𝑃(𝑟0, 𝑟 +

𝑅, 𝑡) for a particle over all possible initial positions: 
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𝑃̅(𝑅, 𝑡) = ∫𝜌(𝑟0) 𝑃(𝑟0, 𝑟 + 𝑅, 𝑡) 𝑑𝑟0  (2.13) 

 

where 𝜌(𝑟0) is the molecular density. An analogous relationship between the probability of finding a 

particle with a specific displacement after a particular time interval and the evolution of concentration 

of particles [66] could be established by rewriting Fick’s second law: 

 
𝜕𝑃(𝑟0,𝑟,𝑡)

𝜕𝑡
= 𝐷∇2𝑃(𝑟0, 𝑟, 𝑡)  (2.14) 

 

Since the architecture of the tissue microstructure can indirectly be probed by looking at the 

behaviour of water molecules’ displacement, the characterization of the diffusion propagator (and in 

particular the use of diffusion MRI) is of great importance.  

 

In the next section the techniques used to characterize diffusion will be described, as well as the 

considerations that must keep in mind to fully take advantage of the power of diffusion imaging to probe 

microstructure. 

 

 

2.3.2 Pulsed Gradient Spin Echo (PGSE) Sequence 

Diffusion-weighted magnetic resonance imaging (dMRI) was designed to sensitize the MRI 

signal intensity to the amount of water diffusion, as was firstly described by Le Bihan et al. (1986) [67]. 

This technique allows the in vivo and non-invasive imaging of the diffusion process of the water in the 

brain tissue.  

The most common sequence used for dMRI is the pulsed gradient spin echo (PGSE) [68], first 

introduced by Stejskal and Tanner (1965) [69]. This imaging sequence consists of a 90ᵒ RF dephasing 

pulse followed by a 180ᵒ refocussing pulse. Equal diffusion-encoding gradients are applied on either 

side of the 180ᵒ pulse in each of the x, y and z directions. Therefore as water molecules move in the 

direction of the gradient, their spins acquire phase shifts, proportional to their displacement, and there 

is a loss of signal. Stationary spins do not acquire a phase shift so there would be no loss of signal, which 

will provide contrast in dMRI.  

For the PGSE sequence, the amount of diffusion and therefore dephasing of the signal is 

influenced by parameters that can be codified in term of q-values and diffusion times, or with an index 

denoted the b-value. The b-value reflects the degree of diffusion weighting applied, which could be 

conceptualize by the equation 

𝑞 =
1

2𝜋
𝛾𝛿𝐺  (2.15) 

𝑏 = 𝛾2𝐺2𝛿2(∆ − 𝛿/3)  (2.16) 

where 𝛾 is a physical constant known as the gyromagnetic ratio, 𝐺 is the amplitude of the diffusion 

gradient typically measured in 𝑚𝑇/𝑚, 𝛿 is the duration of each diffusion gradient in 𝑚𝑠. The diffusion 

time ∆ is the interval between the onset of the diffusion gradient before the refocusing pulse and that 

after the refocusing pulse, measured in 𝑚𝑠 (see Figure 2.10), i.e. the time during which water molecules 

are “free” to explore tissue microstructure, corrected by a small factor (𝛿/3) that accounts for the fact 

of the gradients having a finite duration. The units of b-value are 𝑠/𝑚𝑚2. [69,70] 
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dMRI is an MRI technique where the signal intensity in a voxel is determined by the amount of 

diffusion in it, described mathematically by an apparent diffusion coefficient (ADC) which is a scalar 

value that reflects the interaction of molecules with the microstructure. To quantify diffusion, a 

minimum of two signal measurements (with different b-value) are needed: one with diffusion weighting 

(𝑆) and one without diffusion weighting (𝑆0), which are related according to: 

𝑆 = 𝑆0𝑒
(−𝑏𝐷)  (2.17) 

where 𝑏 is the diffusion weighting factor (defined above), and 𝐷 is the ADC which values could be 

calculated using the equation: 

𝐴𝐷𝐶 = −
𝑙𝑛(𝑆1/𝑆0)

𝑏1−𝑏0
  (2.18) 

where 𝑆0 and 𝑆1 are signal intensities obtained with 𝑏0 = 0 𝑠/𝑚𝑚2 and 𝑏1 = 1000 𝑠/𝑚𝑚2, 

respectively. An ADC of a tissue is expressed in units of 𝑚𝑚2/𝑠. [69, 71, 72] 

Overall the magnitude of the diffusion-weighted signal depends on two factors: (1) the three-

dimensional angular orientation in which the diffusion gradients are applied during image acquisition, 

and (2) the strength of diffusion weighting applied, as parameterized by the b-value for the       

acquisition. [73] According to Jones (2009) [74], it could be also concluded that, in tissues where diffusion 

is isotropic (such as CSF) there will be phase shifts in each of the three gradient directions resulting in 

signal loss, so they will appear dark on dMRI. The diffusion in each voxel can therefore be sufficiently 

described by a large ADC. In voxels containing WM, where diffusion is anisotropic, there will not be 

equal phase shifts in all directions, so the ADC (and appearance on dMRI) will depend on the direction 

in which it is measured. 

 

2.4 Diffusion Tensor Imaging 

While in a single direction diffusion may be simply explained using a scalar parameter 𝐷, in 

order to characterize anisotropy, and in particular to describe molecular mobility along different 

directions, a tensor should be used. Diffusion Tensor Imaging (DTI) was able to overcome this 

limitation, by providing estimation for the average diffusion or the degree of anisotropy in each voxel, 

as well as the main direction of diffusivities in each voxel and the diffusion values associated with these 

directions (Basser et al., 1994) [75]. The expression for the obtained signal is given by: 

𝑙𝑛 
𝑆

𝑆0
= −∑ ∑ 𝑏𝑖𝑗𝐷𝑖𝑗

3
𝑗

3
𝑖   (2.19) 

𝜹 ∆ 

𝑹𝑭 

𝑮𝒛 

𝟏𝟖𝟎° 

𝑮 

𝟗𝟎° 𝒆𝒄𝒉𝒐 

Figure 2.10 | Pulse sequence diagram for a diffusion-weighted acquisition shows that two diffusion sensitizing gradients (blue) 

are added to a spin-echo sequence, one before and one after the 180° refocusing pulse. The diffusion-weighting factor b depends 

on the amplitude of the diffusion gradient (𝐺), the duration of each diffusion gradient (𝛿), and the interval between the onset 

of the diffusion gradient before the refocusing pulse and that following the refocusing pulse (∆). RF indicates radio-frequency 

pulses; 𝐺𝑧, gradient pulses. Adapted from [70]. 
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where 𝑏𝑖𝑗 is the b-matrix and 𝐷𝑖𝑗 is the Diffusion Tensor (DT), which is a 3x3 symmetrical matrix 

applied to dMRI data allowing the direction of greatest diffusivity to be described in 3D. The b-matrix 

is calculated from the combination of the applied gradient vectors and the defined b-value, and it requires 

only 6 non-colinear different gradient directions to compute the diffusion tensor, along with the non-

diffusion (𝑆0) image. [75, 76] 

This DT is commonly used to characterize diffusion in brain tissue, where water displacement 

per unit is unlikely to be equal in all directions. It can be conceptualised as an ellipsoid of which the 

long axis represents the direction with the highest diffusivity. As it can be obtained from the Single 

Value Decomposition (SVD) of DT matrix, the magnitude of its direction is called the major eigenvalue 

(𝜆1) and its direction called the major eigenvector. Perpendicular to the major eigenvector are the two 

short axes: the median and minimum eigenvectors, with their eigenvalues 𝜆2 and 𝜆3 (see Figure       

2.11). [62] 

 

 

 

 

 

 

 

From the DT, several useful parameters can be extracted (Basser, 1995) [77]. In particular, various 

measures of the anisotropic or orientation dependence of diffusion have been proposed, such as 

fractional anisotropy (FA) and mean diffusivity (MD).  

Fractional anisotropy is a quantitative measure that describes the degree of anisotropic diffusion. 

FA ranges from 0 to 1, with a value of 0 indicating perfectly isotropic diffusion and a value approaching 

1 indicating pure anisotropic diffusion. Low values of FA are typically observed within CSF, whereas 

high values of FA are found in highly organized WM. 

𝐹𝐴 = √
1

2
√
(𝜆1+𝜆2)2+(𝜆2+𝜆3)2+(𝜆3+𝜆1)2

𝜆1
2+𝜆2

2+𝜆3
2   (2.20) 

Mean diffusivity, on the other hand, describes the overall diffusion in units of 𝑚𝑚2/𝑠. In 

contrast to FA, the values of MD are high in regions of unrestricted diffusion (such as CSF) and lower 

in regions of restricted diffusion (such as WM). 

𝑀𝐷 =
𝜆1+𝜆2+𝜆3

3
  (2.21) 

Therefore, many previous studies such as the ones performed by Feldman et al. (2010) [8], 

Pannek et al. (2013) [78] or Yoshida et al. (2013) [79], allowed to conclude that increased FA and decreased 

MD are typically associated with higher organization, (pre-) myelination and decreased water content 

Figure 2.11 | Relationship between diffusion ellipsoid (first row) and diffusion tensor (second row). (A) In an isotropic 

medium, the diffusion is equal in all directions. The diffusion ellipsoid of this system is spherical and can be depicted by one 

diffusion constant 𝐷. (B, C) In an anisotropic medium the diffusion along one direction, termed the principal eigenvalue (𝜆1), 

is greater than the other two eigenvalues (𝜆2 and 𝜆3). To fully characterize such a system, 3 × 3 tensor is needed and the values 

of the nine elements depend on the orientation and the principal axes. Adapted from [62]. 

A B C 
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(see Figure 2.12). FA is highly sensitive to microstructural changes but it is less specific to the type of 

change, whereas MD is sensitive to cellularity, oedema and necrosis. 

 

 

 

 

 

 

 

In recent years, DTI, based on DT model, has emerged as a method to noninvasively measure 

WM microstructure in vivo throughout the life span, beyond structural size assessed using 𝑇1- and 𝑇2 -

weighted MRI. It has been widely used to investigate changes in WM at different stages of brain 

development as well as their relationship to different pathological conditions. [67]  

The measurement of MRI signal in a diffusion experiment is not related to a single spin, but 

rather to a spin population, which leads us to measure the PDF of water molecules’ displacement or 

diffusion propagator (Callaghan et al., 1990) [80]. In the regime of large displacements and short q-values, 

the propagator may be described using a Gaussian distribution (Basser, 2002) [81]. Nevertheless, in the 

presence of cell barriers or restrictions such as regions with crossing fibres, DTI is no longer capable of 

reflecting the index of anisotropic diffusion and fibre orientation, since the behaviour of water molecules 

is no longer Gaussian for high q-values. 

In the next section, moving beyond the DTI model, High-Angular-Resolution Diffusion Imaging 

techniques will be introduced and the reconstruction methods associated discussed, as well as metrics 

that can be extracted and related with microstructural properties. 

 

2.5 High Angular Resolution Diffusion Imaging 

Given the acquired diffusion signal, deciding how to translate it to biophysical information is 

based on the choice of reconstruction method of the diffusion propagator. There are different approaches 

to reconstruct the propagator, each one having advantages and disadvantages, but most of them rely on 

high angular resolution diffusion imaging (HARDI) acquisitions ((Frank, 2001) [82]; (Tuch et al.,      

2002) [83]; (Tuch, Reese et al., 2002) [84]). 

Addressing the limitation of DT model, HARDI is capable of discriminating multiple fibre 

populations crossing within the same voxel, through the exploration of the anisotropy of the diffusion 

signal by employing many directions on a sphere with a single (single shell) or multiple diffusion 

weightings (multi-shell). As procedures provided through the natural extension of the single-fibre case, 

they require the acquisition of data with a large number of different gradient directions applied on a 

Figure 2.12 | Sagittal (top) and axial (bottom) slices from a healthy 12-year-old girl. (A) Conventional 𝑇1 weighted anatomical 

image. (B) Mean Diffusivity (MD) map calculated from Diffusion Tensor Imaging (DTI) data. High signal (white areas) 

represents high diffusion; low signal (gradations of dark areas) represents reduced diffusion. (C) Fractional Anisotropy (FA) 
map calculated from DTI data. High signal (white areas) represents high FA; low signal (dark areas) represents reduced 

anisotropy. (D) Red-Green-Blue map calculated from DTI data. Voxels displayed as red represent tracts with primarily left-

right orientation (x-axis); voxels displayed as green represent tracts with primarily anterior-posterior orientation (y-axis); 
voxels displayed as blue represent tracts with primarily superior-inferior orientation (z-axis). The superior longitudinal 

fasciculus, a tract containing fibres projecting along the y-axis (outlined in white) is represented in green. The corpus callosum, 

a tract containing fibres projecting along the x-axis, is represented in red. From [8]. 
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sphere, but with a much larger angular resolution (Le Bihan et al., 2001) [85]. The generated shape of the 

surface (for a single voxel) is composed with different measured diffusion directions, which can be 

divided into small components (tessellations), similar to icosahedrons. The possibility of explicitly 

defining this spacing is achieved, and consequently the number of directions, which corresponded to the 

vertices of the tessellations, could be also defined. This idea leads to a very simple and practical method 

for the identification of diffusion anisotropy without the necessity of invoking the DT formalism and 

storing large files. 

Numerous methods exist to reconstruct the architecture of brain tissue from HARDI data. All 

methods have in common the ability to provide the orientation of multiple WM tracts within each voxel. 

HARDI methods allow the estimation of more than one fibre population within a voxel, whereas DTI 

not because it assumes a Gaussian distribution for the behaviour of the displacement of water   

molecules. [84, 83] 

With this in mind, over the next subsections there will be discussed two types of HARDI 

methods: model-free approaches, if we try to get a three dimensional displacement probability profile 

from data directly, collecting an Orientation Density Function (ODF); or, on the other hand, model-

based approaches, if we try to apply a model to our data and extract a Fibre Orientation Distribution 

(FOD). 

 

2.5.1 Model free approaches  

 With the rapid evolution of dMRI methods, the literature now contains a wide variety of model-

free based techniques, which allow to provide a more precise and efficient description of complex tissue 

structures. Based on the achievements accomplished by Callaghan et al. (1988) [86], as tissue 

microstructure influences water particles mobility, it is possible to determine the PDF, which in its turn 

tells information about the material microstructure. Since the PDF gives us information about the 

distribution of water molecules displacement, it will peak in the preferential direction of fibres, 

elucidating us regarding their orientation.  

By using model free approaches we are able to retrieve the diffusion propagator either by 

transforming the diffusion signal directly or by extracting a set of coefficients that better fit a 

mathematical representation of choice. 

 In this section, we do not attempt to provide a complete review of the existing techniques, but 

rather aim to introduce the basic concepts behind one of the most recent mathematical representations 

that could be computed based on the principles defined by this approaches, establishing its benefits and 

limitations. 

 

2.5.1.1 Mathematical representations  

Some descriptors of the underlying diffusion propagator can be defined using the transformation 

of the diffusion signal. However, the same could be achieved through its representation using some 

mathematical functions, which can yield a continuous description of the signal. In this kind of 

approaches, the diffusion signal is fitted to a linear combination of continuous functions from a set of 

discrete measures and, consequently, analytical relations can be drawn to explore the diffusion 

propagator (Merlet et al., 2011) [87]. The main idea behind this is that for each direction the signal can 

approximated described by a series expansion of an orthonormal basis that simultaneously characterises 

the angular profile of the signal and its radial decay. It was also proved that the angular profile of the 

diffusion signal can be modelled using the Spherical Harmonic basis, as it enables a characterization of 

any spherical function analogous to a Fourier decomposition on the sphere (Frank, 2002) [88]. The signal 

𝐸(𝑞) can be then represented as: 
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𝐸(𝑞) = ∑ ∑ ∑ 𝑐𝑛𝑙𝑚𝑅𝑛(‖𝑞‖)𝑌𝑙
𝑚(𝑢)𝑙

𝑚=−𝑙
𝐿
𝑙=0

𝑁
𝑛=0   (2.22) 

where 𝑐𝑛𝑙𝑚  are the coefficients, and  𝑅𝑛 the basis functions of 𝑛 radial order that we want to fit to the 

diffusion decay, and 𝑌𝑙
𝑚 the spherical harmonics of 𝑙 and 𝑚 angular order and degree, respectively. In 

order to just attend to the modulus of the complex diffusion MR signal, real and even Spherical 

harmonics could be used, which are given by the following mathematical expression: 

𝑌𝑙
𝑚(𝜃, 𝜙)

{
 
 

 
 √

2(2𝑙+1)(𝑙−𝑚)!

(𝑙−𝑚)!
𝑃𝑙
𝑚(cos𝜃) cos(𝑚𝜙)          ,   𝑚 < 0

√(2𝑙 + 1)𝑃𝑙
𝑚(cos𝜃)                                  ,   𝑚 = 0

√
2(2𝑙+1)(𝑙−𝑚)!

(𝑙−𝑚)!
𝑃𝑙
𝑚(cos𝜃) sin(𝑚𝜙)           ,   𝑚 > 0

  (2.23) 

where 𝑃𝑙
𝑚 are the associated Legendre polynomials. The radial and angular orders are usually truncated 

at a maximum value of 𝑁 and 𝐿 respectively, and they are related to the number of samples acquired. 

These orders are chosen so that the resulting number of coefficients are at least half of the number of 

measurements, with the choice of 𝑁 and 𝐿 depending on what aims to be observed (Assemlal et al., 

2009) [89]. 

The description of the radial decay of the diffusion signal is still an open field of research, but 

in essence it depends on using a 𝑅𝑛 basis functions that incorporate particular mathematical functions 

capable of characterizing the signal decay. 

 

2.5.1.1.1 Simple Harmonic Oscillation based Reconstruction and Estimation 

This approach defined by Özarslan et al. (2008) [90] and named Simple Harmonic Oscillation 

based Reconstruction and Estimation (SHORE) was applied to characterize the diffusion signal decay 

in 1D, where a decomposition based on a complete orthogonal basis was achieved; with the diffusion 

signal, obtained from a 1D acquisition, described by: 

𝑅𝑛(‖𝑞‖) = 𝑖
𝑛(2𝑛 𝑛!)−

1

2 𝑒−2𝜋
2𝑞2𝑢2𝐻𝑛(2𝜋𝑞)  (2.24) 

where 𝐻𝑛 are the n-th order Hermite polynomial and 𝑢 is the scaling function to be determined. This 

basis has an adequate behaviour as 𝑞 approaches infinity and also enables to characterize the non-

monotonical radial decay as it is the case for the signature signal coming from restriction. 

In order to represent the measured diffusion signal in 3D, this approach was later expanded 

using the Spherical Harmonics basis and Laguerre polynomials, through the application of a scale 

parameter 𝜁, defined as 𝜁 =
1

8𝜋2∆𝐷
, to adapt to different diffusivity profiles, where ∆ and 𝐷 represent the 

diffusion time and the diffusivity, respectively. 

Depending if the scale parameter is applied isotropically or anisotropically in all directions, the 

technique is named 3D-SHORE or Mean Apparent Propagator (MAP) – MRI (Özarslan et al.,            

2013) [91]. 

Based on a more general description of 3D-SHORE using a tensorial scale parameter, MAP-

MRI is a powerful analytical framework that efficiently measures the PDF of spin displacement and 

quantifies useful metrics of this PDF indicative of diffusion in complex microstructure (e.g., restrictions, 

multiple compartments), allowing the characterization of novel features of diffusion anisotropy and the 

non-Gaussian character of the three-dimensional diffusion process. Consequently, from MAP-MRI we 

can extract some of the most traditionally used metrics to describe the propagator which were originally 

developed from q-space imaging analysis. These q-space indices are scalar quantities estimated as 

analytic integrals of the diffusion signal and Ensemble Average Propagator (EAP), which values can be 
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linked to tissue microstructure such as the axonal diameter, but only when we assume that the diffusion 

signal originates from inside an ensemble of parallel cylinders with no extra-axonal space (see         

Figure 2.13). [92, 93] 

One of these metrics is the Mean Squared Displacement (MSD) of the molecules in each voxel, 

which is related to the full width half maximum of the PDF. Consequently, MSD is defined as a sensitive 

biomarker to detect pathologic changes in WM, with the ability of characterize the cell mobility. Another 

metric probes the restriction of the specific microstructure environment by quantifying the maximum 

probability of water molecules undergoing zero displacement (P0). 

The zero displacement probability metric has also been referred to return to origin probability 

(RTOP); it is calculated as the integral of the signal attenuation function over the entire q-space or the 

EAP in zero, and can be seen as a reciprocal value of the mean pore volume. [91] So, this metric is par 

excellence used to characterize cellularity and restrictions in diffusion. Directions in which diffusion is 

mostly restricted will be associated with lower diffusivity values; in these regions, considering 

coherently organized WM, a return to axis probability (RTAP) can be defined as the integral of the 

signal in the plane passing through the origin and perpendicular to the main diffusion direction. This 

metric shows the contrast between single-fibre WM and regions with crossing fibres. [92] Additionally, 

RTAP can also be defined as reciprocal mean cross sectional area, from which certain studies have tried 

to infer axon diameters. [94] Complementary to RTAP, a return to plane probability (RTPP) can also be 

defined, in this case as the integral of the signal when the q-vector is parallel to the expected fibre 

orientation. [91] RTPP provides information about the complexity of WM, presenting higher values in 

regions containing several fibre orientations as opposed to regions with coherent fibre pathways.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13 | (A) Pictorial representation of coherent white matter pathways, assumption used in the calculation of some 
propagator metrics. (B) Global propagator metrics, calculated directly from the diffusion signal, namely return to origin 

probability (RTOP), a return to axis probability (RTAP), and return to plane probability (RTPP). (C) MAP-MRI-derived 

parameter (cube-root of RTOP, square root of RTAP, and RTPP) coronal maps of marmoset brain. Adapted from [91].  
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2.5.2 Model based approaches 

In the previous subsection, HARDI techniques were based on extracting the orientation 

distribution function from the data rather than providing insight about the actual fibre orientations.  

On the other hand, model based approaches assume particular biological features of the tissue 

being imaged and reconstruct the diffusion propagator having that in mind, providing more directly 

interpretable measures of the contents and organization of microstructure, without capturing the full 

complexity of the microstructure underpinning the generation of the diffusion signal. [95, 96, 97] Therefore, 

and as described by Frank (2002) [88], model-based approaches could be based on the assumption of 

looking for multiple fibres per voxel as a mixture of diffusion tensors. This assumption affirms that the 

signal that came from a single voxel could be extended from a concept of single fibre. Furthermore, it 

was considered that there was no exchange between fibres yielding independent signals per fibres, and 

summing all contributions together to get the final intensity. 

 Some specific cases of model-based approaches will be explored in the next two subsections, 

namely Spherical Deconvolution and Neurite Orientation Dispersion and Density Imaging (NODDI). 

 

2.5.2.1 Spherical Deconvolution 

 As seen in the previous section, one limitation of DTI is that it only describes one principal 

direction of fibres for each voxel so it does not take into account voxels that contain crossing fibres. 

There have been many techniques developed attempting to overcome this problem as has been seen, 

however one of the most successful has been spherical deconvolution. This method can be used to 

estimate the distribution of fibre orientations present within each imaging voxel (Tournier et al.,       

2004) [98]. 

 With this technique, the diffusion-weighted signal attenuation that would be measured from a 

single coherently oriented fibre population, during a HARDI session, can be represented by an axially 

symmetric response function 𝑅(𝜃), where 𝜃 is the elevation angle in spherical coordinates. The signal 

𝑆(𝜃, 𝜙) can be expressed as the convolution over the unit sphere of the response function 𝑅(𝜃) with a 

fibre ODF 𝐹(𝜃, 𝜙), where 𝜙 is the azimuthal angle in spherical coordinates: 

𝑆(𝜃, 𝜙) = 𝐹(𝜃, 𝜙) ⊗ 𝑅(𝜃)  (2.25) 

 The fibre ODF gives the fraction of fibres within the sample that are aligned along the direction 

(𝜃, 𝜙), expressed in spherical coordinates. Mathematically, the fibre ODF represents the probability 

distribution on the sphere, as each point on the sphere corresponds to a unique orientation.  

 If the response function 𝑅(𝜃) is known a priori, then the fibre ODF 𝐹(𝜃, 𝜙) can be obtained by 

performing the spherical deconvolution of 𝑅(𝜃) from 𝑆(𝜃, 𝜙).  

The spherical deconvolution method can reconstruct the original fibre ODF adequately, without 

the need to impose any a priori information about the likely number of fibre populations present.  

 With this methodology, different levels of anisotropy can be interpreted not only as the presence 

of different mixture of fibre orientations, but more physically also as partial volume from isotropic 

components. This means that in the presence of isotropic components the algorithm leads to physically 

meaningless spurious spikes. Consequently, it can be used a threshold on FA maps to exclude GM or 

CSF voxels (isotropic partial volume), however this is not viable when considering regions with low 

anisotropy due to highly complicated fibre orientations. [99] Nonetheless, it is important to highlight that 

this limitation could be overcome through the knowledge of information regarding the microstructure, 

which could be extremely useful in order to characterize multiple WM pathways based on the values 

assumed by specific diffusion metrics, as well as to be able to analyse global metrics either at voxel 

level or along each fibre´s trajectory. 
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On the other hand, deconvolution methods are very sensitive to noise effects, but the robustness 

of the operation can be greatly enhanced by a non-negativity constraint. This technique is known as 

constrained spherical deconvolution (CSD). CSD provides an estimate of FOD that is robust to noise 

while being able to resolve multiple orientations of fibres in a voxel. This is possible by assuming the 

signal from a WM fibre can be described by a single response function (Tournier et al., 2007) [100]. The 

response function can be estimated directly from the data by measuring the diffusion-weighted signal 

profile in regions likely to contain a single coherently oriented fibre population.  

 It is important to note that, although the DT model could be used to estimate the response 

function, one advantage of the present method is that it does not rely on any particular model of 

diffusion. CSD may prove most useful in the field of tractography, where the improved characterization 

of the fibre orientations is likely to make tracking through regions contaminated with partial volume 

effects much more reliable.  

 

2.5.2.2 Neurite Orientation Dispersion and Density Imaging 

 Neurite orientation dispersion and density imaging (NODDI) is a practical diffusion MRI 

technique for estimating the microstructural complexity of WM in vivo on clinical MRI scanners (Zhang 

et al., 2012) [97]. Quantifying neurite morphology in terms of its density and orientation distribution 

provides a window into the structural basis of brain function both in normal populations and in 

populations with brain disorders. An increase in the dispersion of neurite orientation distribution is 

associated with brain development, whereas a reduction in the dendritic density is linked with the aging 

of the brain.  

 NODDI adopts a tissue model that distinguishes three types of microstructural environments. 

Hence, the normalised signal 𝐴 can be written as: 

𝐴 = (1 − 𝜈𝑖𝑠𝑜)(𝜈𝑖𝑐 𝐴𝑖𝑐 + (1 − 𝜈𝑖𝑐)𝐴𝑒𝑐) + 𝜈𝑖𝑠𝑜 𝐴𝑖𝑠𝑜  (2.26) 

where 𝐴𝑖𝑐 and 𝜈𝑖𝑐  are the normalized signal and volume fraction of the intra-cellular compartment 

(refers to the space bounded by the membrane of neurites); 𝐴𝑒𝑐 is the normalized signal of the 

extracellular compartment (refers to the space around the neurites, which is occupied by various types 

of glial cells and, additionally in GM, cell bodies); and, 𝐴𝑖𝑠𝑜 and 𝜈𝑖𝑠𝑜 are the normalized signal and 

volume fraction of the free diffusion compartments (the space occupied by fluid). Each affects water 

diffusion within the environment in a unique way. 

Based on its multi-compartment biophysical model of brain microstructure, NODDI can 

estimate properties of WM, such as orientation dispersion index (ODI) and neurite density index (NDI), 

corresponding to the degree of incoherence in fibre orientations and to the intracellular volume fraction, 

respectively, within each imaging voxel (Tournier et al., 2007) [100].  

 The ODI is defined to characterize angular variation of neurites, such as: 

𝑂𝐷𝐼 =
2

𝜋
 𝑎𝑟𝑐𝑡𝑎𝑛 (

1

𝜅
)       , 0 ≤ 𝑂𝐷𝐼 ≤ 1  (2.27) 

where 𝜅 is the concentration parameter of Watson distribution. The Watson distribution is the simplest 

orientation distribution that can capture the dispersion in orientations.  

 The parameter maps from the NODDI model exhibit a spatial pattern of tissue distribution that 

is in concordance with the known brain anatomy. The map of NDI shows the expected pattern of neurite 

density by assuming the lower values in GM than in WM, with the highest values being taken in the 

major WM tracts, such as the corpus callosum. On the other hand and as expected, ODI demonstrates 

to be higher in GM than in WM, which justifies that the lowest values are reached in the corpus callosum. 

The sensitivity of FA to ODI can be seen most clearly from examining the WM, where FA shows a 
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strong negative correlation to ODI and it exhibits a weaker positive correlation to NDI. To visualize the 

specific dependency of FA on NDI and ODI, Figure 2.14 illustrates the relationship between ODI and 

NDI among the voxels with similar FA values. The figure confirms that a particular value of FA in tissue 

can be achieved by different combinations of NDI and ODI. Furthermore, it reveals a sensible positive 

correlation between the two microstructural parameters, i.e., two voxels can have the same FA value as 

long as the one with the larger value of NDI also has the larger ODI. Moreover, a small change in ODI 

needs to be compensated with a much larger change in NDI. [97] 

 

 

 

 

 

 

 

 

 

 However, despite its rapid adoption in neuroimaging, it is extremely important to be aware of 

NODDI’s limitations [97, 101]. First, the NODDI tissue model currently parametrizes the neurite 

orientation distribution with Watson distribution. This has limited accuracy in modeling orientation 

distributions that are not cylindrically symmetric (such as in the regions with fanning or crossing axons), 

since the orientation distribution of neurites is modelled by constraining the dispersion about the 

dominant orientation as isotropic. Second, NODDI relies on a representation with a single WM fascicle 

while fascicles with various microstructures have been observed, such as in the body of the corpus 

callosum. Consequently, this model ignores the intra-axonal radial diffusivity and, similarly to the DTI 

model, considers only a single fascicle compartment per voxel while fascicles crossings occur a lot in 

the human brain. NODDI may capture crossing fascicles as increased dispersion but cannot characterize 

each of them separately. Furthermore, due to its much more complex mathematical formulation 

compared to DTI, the computational time is higher even if it has a relatively low number of parameters 

to estimate.  

 

2.5.2.2.1 Accelerated Microstructure Imaging via Convex Optimization 

With the aim of improve the burdensome fitting time required by the existing microstructure 

imaging techniques in diffusion, Accelerated Microstructure Imaging via Convex Optimization 

(AMICO) framework (Daducci et al., 2015) [102] was introduced based on the reformulation of these 

models as simple linear systems that can be solved very efficiently using convex optimization, which 

thus enable a drastic reduction in the computation time by orders of magnitude, while still preserving 

the accuracy and robustness of the estimated parameters. 

According to the principles of AMICO, the microstructural properties of the tissue can be 

expressed as a system of linear equations: 

Figure 2.14 | Scatterplots of neurite density index (NDI) vs orientation dispersion index (ODI) for white matter. To assess the 

relationship between NDI and ODI for the voxels with similar FA values, we stratify the voxels into smaller groups each of 

which has their fractional anisotropy (FA) values falling between a narrow ranges specified in the legend. Adapted from [97]. 
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𝑦 = Φ𝑁 𝑥 + 𝜂  (2.28) 

where 𝑦 is the vector containing the dMRI signal acquired at each voxel, 𝜂 accounts for the acquisition 

noise, Φ𝑁 is the linear operator, also called dictionary, that relates the microstructure properties in study 

(fibre density and orientation dispersion) with the measurements, and 𝑥 represents the microstructure 

properties contributions. 

In order to linearize the NODDI model, defined by Zhang et al. (2012) [97], the dictionary is 

divided into the following two blocks: 

Φ𝑁 = [Φ𝑁
𝑡  | Φ𝑁

𝑖 ]  (2.29) 

in which the signal attenuation that arises from a micro-environment characterized by specific axon 

density and dispersion is represented by Φ𝑁
𝑡 , and Φ𝑁

𝑖  comprises the isotropic contributions. 

In order to know how much each micro-environment contributes to 𝑦, AMICO uses DTI to 

obtain the main direction of the fibres at each voxel, and calculate the values of fibre density and 

orientation dispersion that compose the dictionary. Then, the contributions given by each combination 

for a specific density and dispersion are computed in order to minimise 𝑦 − Φ𝑁 𝑥.  

The parameters generated by the NODDI model are the intracellular volume fraction (ICVF), 

the isotropic volume fraction (ISOVF) and the orientation dispersion (OD); which can be computed for 

each voxel as: 

𝜈𝑖𝑐 =
∑ 𝑓𝑗 𝑥𝑗

𝑡𝑁𝑡
𝑗=1

∑ 𝑥𝑗
𝑡𝑁𝑡

𝑗=1

  (2.30) 

𝜈𝑖𝑠𝑜 = ∑ 𝑥𝑗
𝑖𝑁𝑡

𝑗=1   (2.31) 

𝜅 =
∑ 𝑘𝑗 𝑥𝑗

𝑡𝑁𝑡
𝑗=1

∑ 𝑥𝑗
𝑡𝑁𝑡

𝑗=1

  (2.32) 

where, for 𝑗 ∈ {1,… ,𝑁𝑡}, 𝑓𝑗  represents the ICVF, and 𝑘𝑗  the concentration parameter of Watson 

distribution (𝜅) at the j-th position of Φ𝑁
𝑡 . 

Although this is still an open field of research, AMICO has already proved its availability as an 

ultrafast framework that by fitting specific models as NODDI will help to accelerate the spread of 

microstructure imaging to larger cohorts of patients and to study a wider spectrum of neurological 

disorders. 

 

2.6 Tractography 

In dMRI we are interested in studying tissue microstructure and infer about the underlying 

cytoarchitecture. Knowledge of the anatomy of WM connections is crucial to the understanding of 

normal and abnormal brain function. By reconstructing the fibre orientations from the diffusion profile 

(by any diffusion weighting technique that allows us a voxel estimation of the diffusion profile) it is 

possible to generate a three-dimensional image that follows trajectory of fibres throughout the brain – 

tractography (Mori et al., 1999) [103]. Tractography is the only tool we currently have that allows us to 

visualise WM trajectories in vivo and noninvasively. This technique is used to identify and visualize a 

continuous three-dimensional trajectory by sequentially piecing together the estimates of fibre 

orientation from the directionality of individual voxels. Mathematically, the set of local fibre 

orientations can be considered as a three‐dimensional vector field and the global fibre trajectories as its 
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streamlines. A streamline is designed to any curve that along its trajectory is tangent to the vector field 

and that can be represented as a three‐dimensional space curve. [70, 104] 

There are also several tractography algorithms that can be used, which can be split into two 

major classes: deterministic and probabilistic tractography algorithms. 

The general principle of deterministic tractography algorithms (see Figure 2.15 (A)) is to use 

the directional information described by the DT from voxel to voxel. The most common directional 

assignment corresponds to the major eigenvector of the DT. By assuming a unique fibre orientation 

estimated in each voxel, a deterministic tractogram is generated by starting from one or more “seed” 

locations, typically within WM, and propagating the trajectories according to the tractography algorithm 

until the tracts are terminated. Specific constraints may be placed on the tractography algorithm to 

determine whether or not the result is consistent with predicted connectivity patterns. A significant 

limitation of deterministic tractography methods is the lack of information they provide regarding the 

error in the tracking procedure in any given experiment. Without this knowledge, it is not possible to 

know how much confidence we should have in the observed results. [105, 106, 107]  

Probabilistic tractography methods (see Figure 2.15 (B)) attempt to overcome this limitation by 

explicit characterization of the confidence with which connections may be established through the 

diffusion MRI dataset. In this order, for probabilistic tractography, the tensor is visualized as a 

mathematical representation of the probabilistic distribution of fibre directions. Consequently, the next 

water molecule’s direction is obtained by running a stochastic procedure which will draw a sample 

direction from this distribution. For each direction, the chance of it being selected is in proportion to its 

magnitude in the probabilistic distribution, and this direction is accepted if it satisfies the condition of 

shape constraints. [105, 106, 107] 

 

 

 

 

 

 

 

 

However, it is worth reminding that both of these tractography algorithms share common points 

while generating the tracks: the reconstruction is terminated if the front of a streamline enters a region 

where the FA is below the established threshold; and, the same happens if the maximum angle that is 

taken between voxels is higher than the predefined angle. [105] 

In general, the streamline approaches described previously are the prime example of local 

tractography algorithms. Tracking is performed in small successive integration steps by following the 

local fibre orientations that have previously been extracted. Although these type of methods could be 

characterized by its fastness, being therefore widely used, they have important drawbacks. The most 

apparent is associated to minor errors in the local fibre orientations, which can accumulate and 

significantly affect the final result. Another is related to the fact that resulting fibre tracks have little to 

no quantitative or biological meaning, since the streamline tractograms are typically a very poor 

predictor of the dMRI data that was actually measured. [70, 104] 

A B 

Figure 2.15 | Visual representation of the differences between deterministic (A) and probabilistic (B) approaches to 
tractography. Probabilistic approaches are considerably more extensive and computationally demanding, as they track all 

orientations in all voxels adjacent to the seed point (grey square). Adapted from [107]. 
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On the other hand, global methods try to reconstruct all tracks simultaneously by finding the 

configuration that best describes the measured dMRI data. In general, global tracking promises a better 

stability with respect to noise and imaging artefacts and a better agreement with the actual dMRI data 

that was acquired. The main problem related to these methods is that they rely on stochastic optimization 

procedures, which consequently do not guarantee the convergence to a globally optimal solution. 

Furthermore, the application of these tracking approaches requires prior knowledge about the expected 

properties of the trajectories. However, the arbitrariness associated to the process of defining prior 

knowledge is a problem, which can leads to inconsistencies with the actual data, potentially resulting in 

non‐existent fibre trajectories, or on the other hand, fibre tracks that perfectly match the underlying data, 

but that make little sense anatomically. [104, 108] 

In summary, throughout the years we have seem incredible developments in tractography, which 

has become the method of choice to investigate quantitative MRI parameters in specific bundles of WM, 

however we are still far from knowing everything about the human brain and how this technique can 

help. Despite its unique abilities and exciting applications, fibre tracking is not without controversy, in 

particular when it comes to interpretation of its results. The only possible certainty that we have about 

tractography is that it is an extremely useful technique not only to localize tracts on an individual but 

also to register them into an atlas, to understanding, or perhaps even predicting, dysfunction caused by 

(structural) disconnections in specific locations (Catani et al., 2007) [14] or even to study structural 

connectivity (Dell’acqua & Catani, 2012) [109]. Furthermore, there are still several problems that can be 

addressed such as finding the exact termination to connections in the boundary between WM and GM 

(causing false negatives, in which tracking can terminate prematurely, or false positives, in which 

tracking can switch to an unrelated adjacent tract), tracking the horizontal intra-cortical connections, or 

detecting synapses. [104, 110] 
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3 Subjects & Data Acquisition 

This chapter begins with a description of the data that was used during the project, followed by 

a discussion on how the data was obtained and processed. 

According to the principles settled in the Research Governance Framework for Health and 

Social Care, an approval has been issued on behalf of Great Ormond Street Hospital (GOSH) for 

Children National Health Service (NHS) Trust for this study. The inclusion criteria for this study were 

images acquired in subjects with or less than nineteen years old. Eighteen controls and eighteen subjects 

with a diagnosis of TLE (pre-surgical images) with a broad range in age (see Table 3.1) were chosen 

from a larger initial sample of subjects. 

 

Table 3.1 | Control group and patients with Temporal Lobe Epilepsy (TLE) characterisation according to gender. Age is given 

in years old (y.o.) with mean ± standard deviation and with the respective range. 

 Control group Patients with TLE 

N 18 18 

Gender 10 M / 8 F 12 M / 6 F 

Age (y.o.) by gender 
[12 ± 3] / [12 ± 2] 

[8 - 18] / [8 - 15] 

[12 ± 5] / [13 ± 5] 

[3 - 19] / [5 - 19] 

Age (y.o.) group total 
12 ± 3 

[8 – 18] 

12 ± 5 

[3 – 19] 

 

All imaging data were collected as part of the clinical imaging protocol at Great Ormond Street 

Hospital (London, UK), acquired on a Siemens 3.0 T Prisma scanner (Siemens, Erlangen, Germany), 

equipped with a 20 channel head receive coil. The protocol included a multi-shell diffusion sequence 

employing a diffusion-weighted spin-echo single shot 2D EPI acquisition, with multi-band radio 

frequency pulses to accelerate volume coverage along the slice direction. [111, 112] A multi-band factor of 

2 was used to image 66 slices of 2 𝑚𝑚 thickness with 0.2 𝑚𝑚 slice gap. Diffusion gradients were 

applied over two ‘shells’: b = 1000 𝑠/𝑚𝑚2 and b = 2200 𝑠/𝑚𝑚2, with 60 non-co-linear diffusion 

directions per shell, in addition to 13 interleaved b = 0 𝑠/𝑚𝑚2 (non-diffusion weighted) images. Other 

imaging parameters were: TR = 3050 𝑚𝑠, TE = 60 𝑚𝑠, FOV = 220×220 𝑚𝑚2, matrix size = 110 × 110, 

in-plane voxel resolution = 2.0 𝑚𝑚, GRAPPA (GeneRalized Autocalibrating Partial Parallel 

Acquisition, which is a parallel imaging technique, based on k-space that can be used to shorten the 

acquisition time or increase the spatial resolution in the same examination time) factor 2, phase-encoding 

(PE) partial Fourier = 6/8. An additional b = 0 𝑠/𝑚𝑚2 acquisition was performed, with identical readout 

to the diffusion-weighted scan, but with the phase encode direction flipped by 180° (in the anterior-

posterior direction), for correction of susceptibility-related artefacts. The total scan time for the multi-

shell diffusion sequence (including the b = 0 𝑠/𝑚𝑚2 acquisition with flipped PE) was 7 𝑚𝑖𝑛 50 𝑠. In 

addition, a T1-weighted 3D FLASH (Fast Low Angle SHot, which is a GE MRI-sequence that uses RF 

excitation pulses with a low flip angle (less than 90°) and subsequent reading gradient reversal for 

producing the signal) structural image was acquired using 176 contiguous sagittal slices, FOV = 

256×240 𝑚𝑚2 and 1×1×1 𝑚𝑚3 image resolution; TE = 4.9 𝑚𝑠 and TR = 11 𝑚𝑠. 

Along the next four chapters, presented in a chronological order of the executed tasks, each of 

the analyses carried out will be depicted, beginning with a brief description about the methodologies 

regarding the tractography reconstructions and the extraction of multiple microstructural parameters of 

interest in this study.  The outcome of the analyses described will be also summarized, followed by the 

discussion of the results obtained, putting them into context and highlighting their importance in light 

of other scientific studies. 
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With this in mind and knowing that the natural motion of water molecules in biological tissues 

is highly influenced by the microstructural environment, and the anisotropy of this random process in 

WM can be exploited to probe important features of the neuronal tissue, with three independent analyses 

of the diffusion dataset, we aim to: 

 use the information about the diffusion process, based on diffusion tensor derived 

parameters and more advanced features from MAP-MRI and NODDI model, in order to gather 

information about the whole-brain architecture, or the microstructure of some specific WM pathways 

(as the arcuate fasciculus, the corticospinal tract, and the corpus callosum) reconstructed with 

tractography; 

 analyse regions comprised by multiple fibre populations, which results in complex 

architecture configurations, in order to improve their characterization through the study of different 

components / WM tracts that cross it;  

 use the information regarding the diffusion process to create signatures / models of 

specific WM tracts; 

 study the microstructural and macrostructural changes in WM tracts of TLE patients in 

temporal and extratemporal WM tracts of both hemispheres; 

 be able to apply the findings provide by the previous bullet points to identify 

pathological changes between groups. 
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4 Tractography Reconstructions & Microstructural Parameters Extraction 

The data analysis of all thirty six subjects was performed on diffusion images that have been 

acquired previously to this study (see Chapter 3 for more details) and pre-processed. Briefly, regarding 

the pre-processing methodology, the diffusion MRI data were denoised using MRtrix [113] (which 

provides a large suite of tools for image processing, analysis and visualisation, with a focus on the 

analysis of WM using diffusion-weighted MRI), followed by TOPUP and EDDY from FSL          

software [114] (which is a comprehensive library of analysis tools for dMRI brain imaging data), that 

were used to correct for susceptibility distortions and to perform motion and eddy current correction. 

For bias field corrections and skull stripping of structural scans, Freesurfer [115, 116] (which is a software 

package for the analysis and visualization of structural and functional neuroimaging data) was used to 

provide parcellation of cortical and subcortical structures based on a standard atlas. 

With regard to the tractography protocols, a compulsory step in spherical deconvolution is 

deriving the response function, which is used as the kernel during the deconvolution step. Using MRtrix, 

this function was inferred directly from the image data by averaging the diffusion signal from a set of 

empirically-determined ‘single-fibre’ voxels in different tissues, such as WM, GM and CSF. In order to 

estimate that, the dwi2response command was applied using the msmt_5tt algorithm. By providing the 

tissue-segmented anatomical image (in the five-tissue-type (5TT) format) of each subject, which were 

previously generated using the 5ttgen command, this response function’s estimation algorithm was able 

to identify single-tissue voxels in the diffusion image based on the high-resolution tissue     

segmentations. [117] Briefly, this algorithm starts by resampling the 5TT segmented image to the diffusion 

image space. Then, for each of the three tissues (WM, GM, CSF), voxels with tissue partial volume 

fraction higher than 0.95 (default value) are selected, and GM and CSF are further constrained by an 

(upper) 0.2 (default value) FA threshold. This step allows us to derive a mask based on which will be 

selected single-fibre voxels for WM. Finally, the multi-shell response for each tissue type was derived 

since the diffusion images of this study were acquired as multi-shell data. 

The output response functions will be the inputs for the dwi2fod command that estimates the 

FOD for each tissue, within a specified binary mask created using the BET tool from FSL software. This 

output mask is generated based on the deletion of non-brain tissue from an image of the whole head, 

using a fractional intensity threshold of 0.3. After this, to estimate the FODs, the multi-tissue CSD 

algorithm was used. This choice was based on its superior ability to reliably track fibres in areas 

containing crossing fibres. [100] After this, the mtnormalise command was applied, which was responsible 

for the multi-tissue informed log-domain intensity normalisation by performing the bias field correction 

via a third order polynomial. 

MRtrix protocols, based on HARDI tractography, were designed to extract the arcuate 

fasciculus, corticospinal tract and corpus callosum. These WM pathways were chosen having in mind a 

complex region such as the centrum semiovale which contains fibre structures belonging to the arcuate 

fasciculus, corticospinal tract and corpus callosum. Our aim was to explore how different 

microstructural parameters change along these specific WM tracts and investigate the values assumed 

by each scalar map in the chosen region. 

In order to reconstruct the WM tracts, ROIs were manually defined on each subjects' image. In 

this study, the accuracy of the ROI location is based on anatomical knowledge, and the width and height 

of the regions were chosen so they could take into account inter-subject variability. 

Briefly, for the arcuate fasciculus, the first inclusion region was a one-slice thick volume 

delineated on the coronal view, at the level of the classical arcuate fasciculus ‘‘bottleneck’’. [118] This 

region is coded green on the eigenvector map (see Figure 4.1) – indicating an anterior-posterior 

orientation. The second inclusion region was delineated in the axial plane in the superior temporal gyrus, 

coded blue on the eigenvector maps (left-right direction). [10] 
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To identify the corticospinal tract bundle, three one-slice ROIs were drawn on the axial view 

(see Figure 4.2) along this WM pathway (blue on the eigenvector map) at different levels following the 

inferior – superior direction, for left and right hemispheres. The first inclusion ROI was placed on the 

corticospinal tract portion of the pontomedullary junction (yellow square), and the following inclusion 

ROIs, on the corticospinal tract portion of the anterior mid-pons (magenta square) and on the posterior 

limbs of the internal capsules (light-blue square). [23, 119] 

 
 

 

 

 

 

 

 

 

 

The corpus callosum was tracked using a single inclusion ROI (see Figure 4.3) from a manually 

delineated entire sagittal cross section (five slices thick, red on the eigenvector map). [10] 

 

 

 

 

 

 

 

 

 

Figure 4.1 | (A) Location of inclusion ROIs for the arcuate fasciculus. Colours on each eigenvector map represent the main 
direction of WM tracts (red: left–right, blue: superior-inferior, green: anterior-posterior). (B, C) The first inclusion region is a 

one-slice thick volume coloured by red and positioned on the coronal view, and the second inclusion region was delineated on 

the axial plane using one-slice thick volume coloured by light-blue. See text for anatomical landmarks used. 

Figure 4.2 | (A) Location of inclusion ROIs for the corticospinal tract. Colours on each eigenvector map represent the main 
direction of WM tracts (red: left–right, blue: superior-inferior, green: anterior-posterior). The first region is a one-slice thick 

volume coloured by yellow and delineated on the inferior plane of the axial view, and following inclusion regions were also 

delineated on the axial plane along the inferior - superior direction using one-slice thick volume coloured by magenta and (B) 
light-blue. See text for anatomical landmarks used. 

A B C 

Figure 4.3 | Location of inclusion ROI for the corpus callosum. (A) Colours on each eigenvector map represent the main 
direction of WM tracts (red: left–right, blue: superior-inferior, green: anterior-posterior). (B) The inclusion region is a five-

slice thick volume coloured by yellow and delineated on the entire sagittal cross section of the corpus callosum. 

A B 
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Exclusion masks were also created in order to avoid streamlines from other WM pathways, and 

according to the previously knowledge about the expected anatomy of each tract that was aiming to be 

reconstructed. It is also important to say that tailoring the ROI sizes to encompass the distinguishing 

anatomical features of the three tracts examined enabled immediate and reliable tract identification, 

without the need for post hoc exclusion ROIs. 

The next step was the tracking using the tckgen command of MRtrix. Specifically, a probabilistic 

Anatomically-Constrained Tractography (ACT) algorithm [120] was performed on the resulting FODs, 

with seeds on the WM-GM boundary. This whole-brain tractography was restricted to reconstruct just 

the tracts of interest by providing the respective inclusion and exclusion ROIs, forming their 

tractograms. Those tracts were filtered using a spherical deconvolution-informed filtering of 

tractograms (SIFT) [121] algorithm, to obtain just the streamlines per subject that best match the apparent 

fibre densities in the reconstructed FODs. The tractography of each WM pathway was performed using 

auxiliary scripts, and the final result visualized with mrview (MRTrix viewer).  

Additionally, with the aim of having just the homologous connection of the corpus callosum 

between motor cortices, it was developed an auxiliary MATLAB function (Appendix 11.1) that uses as 

inputs the numbers of the correspondent labels (which are representations of different parcellations) 

from the lookup table of FreeSurfer (in this study: left – 1022 ctx-lh-postcentral / 1024 ctx-lh-precentral; 

right – 2022 ctx-rh-postcentral / 2024 ctx-rh-precentral). As output, this script returns the ROIs related 

to the precentral and postcentral regions of each hemisphere, which were consequently used to select 

the fibres from the corpus callosum between those regions by running the tckedit command. 

Then, regarding the extraction of the microstructural parameters derived from DTI, DIPY [122] 

was used to reconstruct the diffusion tensor in each voxel. Knowing that the diffusion tensor model is a 

model that describes the diffusion from a highly-oriented single fibre population within a voxel, it is 

still very commonly used in demonstrating the utility of diffusion MRI in characterizing the micro-

structure of WM tissue and of the biophysical properties of tissue, inferred from local diffusion 

properties. So, a python script using the commands of this library was implemented to reconstruct the 

diffusion tensor and extract associated FA and MD maps (Appendix 11.2).  

Prior to reconstruction, to decrease computational time, the data was masked and cropped in 

order to remove the non-brain tissue from each subject´s diffusion image of the whole head. To achieve 

the expected result, the diffusion image was multiplied by the mask provided by the BET tool. 

By calling fractional_anisotropy module function, it was possible to generate the FA images 

from the eigen-values of the tensor; and, the MD images were generated by calling the mean_diffusivity 

module function on the eigen-values.  

The next step was also about the generation of microstructural scalar maps. Using DIPY, a script 

was developed to achieve the MAP-MRI based scalar maps: MSD, RTOP, RTAP, and RTPP (Appendix 

11.3).  

After this, the AMICO toolbox [102] was used to fit the NODDI model to the sample dataset in 

study (Appendix 11.4). In a python shell, the AMICO library, which is based on the fact that the 

microstructural properties of the tissue can be expressed as a system of linear equations, was imported 

and the framework was initialized. By loading the data (using as inputs the diffusion image, the gradient 

scheme and the brain mask computed with BET tool) and setting the model for NODDI, the response 

functions for all the compartments were generated. Finally, after the NODDI model fitting, the maps of 

estimated parameters (ODI, ICVF, and ISOVF) were obtained. 
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5 Along-Tract Analysis 

 

5.1  Methods 

With all microstructural features for each subject computed, using MATLAB and through the 

function read_mrtrix_tracks (which was developed by the MRtrix team), a structure containing the 

header information and subject´s data for each MRtrix format track file was determined. Based on the 

outputs of this function, it was possible to have access to a list with all the positions automatically 

generated along each streamline that are part of the reconstruction obtained for each WM pathway using 

tractography. Then, an auxiliary script was written with the aim to calculate the maximum number of 

points that were positioned along each subject´s tract in study. Having a list with this maximum number 

of points along a streamline in each WM pathway (left/right arcuate fasciculus, left/right corticospinal 

tract, and corpus callosum) per subject, the mode of those values was calculated.  

Prior to sampling the values of the microstructural parameters along the reconstructed WM 

tracts, each streamline in each track file was resampled to a fixed number of points (using the 

tckresample command of MRtrix with -num_points as option) in order to ensure that every streamline 

in each WM tract had the same number of points. This methodology consists of first perform the re-

sample of the streamlines at equivalent locations along the tract of interest, by using the “fixed number 

of points” equal to the value obtained on the previous step through the mode of the maximum number 

of points initially positioned along each streamline for each subject´s WM pathway. With this step, the 

streamlines from the arcuate fasciculus had the same number of samples uniformly spaced (see Figure 

5.1), as well as the streamlines from the corticospinal tract and corpus callosum, across all subjects from 

the dataset in study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

This step was followed by the sample of the values of each scalar map along each WM pathway 

using the tcksample command. This produced a text file with independent information on an equal 

number of sampled values of the scalar map for each streamline of the specified track file. The results 

were organized in an excel file, in order to assess the variation of each microstructural parameter (FA, 

MD, MSD, RTAP, RTOP, RTPP, ODI, ICVF and ISOVF) along the WM tracts, across patients with 

TLE and healthy controls. All values were plotted along each streamline of the tract and averaged along 

the whole tract.  

Figure 5.1 | Representation generated using MATLAB of the left arcuate fasciculus (sagittal view) after the re-sampling of 

each streamline that is part of this WM pathway. Due to this step, all the streamlines have the same number of points distributed 

along itself. A closer look at the level of the classical arcuate fasciculus ‘‘bottleneck’’ allow us to confirm that the position of 

all the point were done uniformly spaced. The streamlines are coloured in blue and the points were the scalar maps will be 

sampled are in yellow. 
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This along-tract analysis (summarized in Figure 5.2) was a valuable tool to have access to the 

variance of the microstructural parameters between subjects with TLE and a group of healthy controls. 

With this purpose in mind, the average graphs of each scalar map were also delineated having in 

consideration the microstructural information from patients and controls, aiming to compare and 

describe the differences between these two groups regarding the diffusion properties associated to each 

one. 

 

 

 

 

 

 

 

 

 
 

Additionally, with the purpose of having a more specific analysis of the variation of each scalar 

map along the WM tracts (left/right arcuate fasciculus, left/right corticospinal tract, and corpus callosum 

- homologous connection between motor cortices), even in a region as the centrum semiovale where 

there are crossing fibres from the tracts in study, sphere regions were extracted (using the tckedit 

command from MRtrix) from each of the tracts and from the centrum semiovale after merging the 

tractograms of the three tracts in one track file, for the left and right hemispheres. 

Then, the same methodology of resample/sample of the streamlines that was applied to each 

WM tract was repeated, but now just using these small regions extracted. So, through the calculation of 

the mode of the maximum number of points initially sampled along each streamline, which positions 

were listed using read_mrtrix_tracks function, it was possible to do the re-sample of each streamline of 

the extracted regions with points uniformly spaced. After this, the sample of the different scalar maps 

was performed and the results were plotted using the facilities of MATLAB. 

Figure 5.2 | A comprehensive processing pipeline of the different methods applied throughout the Along-tract analysis. After 

performing the pre-processing methodologies, from the diffusion images were generated: (a) the 5TT images that were 

posteriorly used as inputs on the estimation of the response functions; (b) the BET masks, which were used to compute the 

FOD images and their respectively normalised images; and, (c) the microstructural scalar maps using DIPY and AMICO as 

frameworks, within the BET mask. (d) The ROIs were drawn in order to compute the WM tracts of interest, using the 5TT 

image to delineate the propagation and termination of streamlines. (e) From each WM pathway reconstructed, each streamline 

was resampled at equivalent points, which were positioned uniformly spaced along the tracts, and used to sample the scalar 
maps along the resampled streamlines of each tract. Using MATLAB tools, the along-tract analysis of each scalar map along 

the WM tracts of interest was computed. 
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With this step, the main goal was to characterise and describe the microstructural variations 

taking into account the potentially rich anatomical variation in each diffusion metric not only along the 

WM pathways of interest in this study (and to do this it was imperative to use a region just with 

streamlines from the tract of interest), but also along a complex region with multiple crossing fibres 

from the WM tracts, as the centrum semiovale. In addition, this analysis contributed to obtain a more 

complete description in terms of the diffusion properties that characterize the neuropathological group 

in study based on the identification of microstructural changes between patients with TLE and healthy 

controls. 

 

5.2  Results 

Standard tractography methods collapse tract groups and yield only a single mean 

microstructural metric, by ignoring the potentially rich anatomical variation in diffusion imaging metrics 

along the tracts and reducing the effectiveness of this technique. With this analysis, we aim to provide 

a more complete microstructural analysis of the WM tracts of interest, having in mind that along the 

WM pathways the variation of some diffusion parameters should consider the anatomical features of the 

tracts: geometric properties of the tract, such as curvature; partial volume effects with neighbouring 

structures; and the admixing of crossing, branching, merging or kissing fibres from other fibre tracts. 

This section is focused on the developing tools that could allow to extract information regarding 

how microstructural information can be used to guide and improve tractography algorithm. With this 

aim, it was developed a workflow to conduct along-tract analysis of WM pathways of interest and 

integrate not only diffusion tensor measures, since their biological interpretation is often equivocal, but 

also more advanced parameters from MAP-MRI and NODDI, having also in consideration just a small 

extracted region from the whole tract, and a complex region with crossing fibres as the centrum 

semiovale. And secondly, it was investigated each diffusion profile drawn by each microstructural 

parameter along the reconstructed WM tracts between TLE patients and healthy controls in order to 

identify microstructural changes between these two groups. 

 

5.2.1 Single-subject analysis: normal region versus complex region 

Note that in this section, tractography of each WM pathway and associated microstructural 

scalar maps are illustrated for a subject with 17 years old who posteriorly had undergone an extended 

left temporal lobectomy. 

Firstly, the tractography of each WM pathway in study (arcuate fasciculus, corticospinal tract 

and corpus callosum – homologous connection between motor cortices) was performed (see Figure 5.3 

(A)), which allowed us to merge each resulted tractogram in just one track file, from where it was 

extracted a complex region, the centrum semiovale. In each WM pathway reconstructed was also 

highlighted, using a white sphere, a small spherical region considered to be a good representation of the 

whole tract avoiding potential fibres from other WM pathways in the neighbourhood (see Figure 5.3 

(B)). Following the sequential steps described along the previous section, Figure 5.3 (C) represents a 

reconstruction obtained with MATLAB for each subject´s WM tract in the study, after every streamline 

has been resampled to a fixed number of points uniformly spaced along the tract of interest. It is also 

imperative to highlight that this “number of points” was calculate using the mode of the maximum 

number of positions automatically generated along each streamline from each WM pathway 

reconstructed using tractography. This “number” was then specific for each WM tract, which 

quantitatively means that the arcuate fasciculus’ streamlines were resampled using 182 points, the 

corticospinal tract’s streamlines were resampled using 201 points, the corpus callosum’s streamlines 
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were resampled using 163 points, and the merging tractograms were resampled using 243 points. Before 

sampling the metrics values, it was also necessary to resample each extracted streamline of the WM 

tracts within the masking ROI at points uniformly spaced, following the same methodology that was 

applied before to the whole tract. The “number of points” was again calculate using the mode of the 

maximum number of positions automatically generated along each extracted streamline from the WM 

pathways, with the arcuate fasciculus’ streamlines resampled using 39 points, the corticospinal tract’s 

streamlines resampled using 29 points, the corpus callosum’s streamlines resampled using 27 points, 

and the streamlines part of the centrum semiovale resampled using 74 points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on the DT and its reconstruction in each voxel achieved by DIPY, MD and FA scalar 

maps were obtained along the WM tracts and the respective extracted region, for all subjects. The MAP-

MRI based scalar maps (MSD, RTAP, RTOP, and RTPP) were generated using also the facilities of 

DIPY, and the NODDI model was fitted using the AMICO toolbox, and as result, ODI, ICVF and 

ISOVF volumes were mapped. 

The sample of the values of each scalar map along each WM tract in study and each extracted 

region is shown by Figure 5.4 (left hemisphere) and Figure 5.5 (right hemisphere). It is also shown 

how each microstructural parameter change even in a complex region as the centrum semiovale. Each 

coloured line of the following graphs represents a streamline that is part of the tract for which we aim 

to delineate a specific microstructural signature, on the other hand the thick line represents the average 

variation of each microstructural parameter along the tract. In order to ensure a better analysis of these 

results, in Appendix 11.6 (Figure 11.1 – 11.6) we can find the next two figures in a larger scale.  

Figure 5.3 | (A) Tractography of the left arcuate fasciculus (left, sagittal view), left corticospinal tract (middle, coronal view) 

and corpus callosum (right, coronal view); (B) Spherical ROI extracted from each WM pathway (left arcuate fasciculus (left, 

sagittal view), left corticospinal tract (middle, coronal view) and corpus callosum (right, coronal view) coloured by white and 
overlapped on (A); (C) MATLAB reconstruction: left arcuate fasciculus (left, sagittal view) coloured by blue and with the 

extracted spherical ROI coloured by yellow, left corticospinal tract (middle, coronal view) coloured by orange and with the 

extracted spherical ROI coloured by red, and corpus callosum - homologous connection between motor cortices (right, coronal 

view) coloured by light-blue and with the extracted spherical ROI coloured by grey.  

A 

B 

C 
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Figure 5.4 | Along-tract analysis of the left arcuate fasciculus (AF), left corticospinal tract (CST), corpus callosum (CC) - homologous connection between motor cortices, and left centrum 

semiovale (from top to bottom) based on their tractograms (first column), from which it was possible to generate the reconstructions via MATLAB (second column). The following columns are 

divided in groups of three rows. The first row illustrate the variation of each microstructural parameter (fractional anisotropy (FA), mean diffusivity (MD), mean square displacement (MSD), 
(square-root of) return to axis probability (RTAP), (cube-root of) return to origin probability (RTOP), return to plane probability (RTPP), orientation dispersion index (ODI), intracellular volume 

fraction (ICVF) and isotropic volume fraction (ISOVF)) along each WM tract of interest. In the second row, it was highlighted, from all the streamlines, the value of each diffusion metric assumed 

by each resampled point that is part of the extracted ROI from each WM pathway. The respective average variation of each scalar map along the extracted ROI is represented in the third row of 

graphs. The reconstruction of left AF was coloured by blue and its analyses should follow the A-P direction, the left CST by orange and following the I-S direction, and the CC by light-blue and 
following the R-L direction, from which the extracted ROIs were coloured by yellow, red and grey, respectively. The centrum semiovale (left hemisphere) was coloured by black after merging the 

left AF (blue), left CST (orange) and CC (light-blue) and its analyses should follow the R-L direction. The units of MD and MSD are 𝑚𝑚2/𝑠, and RTAP, RTOP and RTPP are given by 𝑚𝑚−1. 

Abbreviations: A – anterior; P – posterior; S – superior; I – inferior; L – left; R – right. 
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Figure 5.5 | Along-tract analysis of the right arcuate fasciculus (AF), right corticospinal tract (CST), corpus callosum (CC) - homologous connection between motor cortices, and right centrum 
semiovale (from top to bottom) based on their tractograms (first column), from which it was possible to generate the reconstructions via MATLAB (second column). The following columns are 

divided in groups of three rows. The first row illustrate the variation of each microstructural parameter (fractional anisotropy (FA), mean diffusivity (MD), mean square displacement (MSD), 

(square-root of) return to axis probability (RTAP), (cube-root of) return to origin probability (RTOP), return to plane probability (RTPP), orientation dispersion index (ODI), intracellular volume 
fraction (ICVF) and isotropic volume fraction (ISOVF)) along each WM tract of interest. In the second row, it was highlighted, from all the streamlines, the value of each diffusion metric assumed 

by each resampled point that is part of the extracted ROI from each WM pathway. The respective average variation of each scalar map along the extracted ROI is represented in the third row of 

graphs. The reconstruction of right AF was coloured by blue and its analyses should follow the A-P direction, the right CST by orange and following the I-S direction, and the CC by light-blue 

and following the R-L direction, from which the extracted ROIs were coloured by yellow, red and grey, respectively. The centrum semiovale (right hemisphere) was coloured by black after 

merging the right AF (blue), right CST (orange) and CC (light-blue) and its analyses should follow the R-L direction. The units of MD and MSD are 𝑚𝑚2/𝑠, and RTAP, RTOP and RTPP are 

given by 𝑚𝑚−1. Abbreviations: A – anterior; P – posterior; S – superior; I – inferior; L – left; R – right. 
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In order to be able to quantitative describe the variation of each scalar map along the WM 

pathways of interest, the values assumed (as “reference values”) by the microstructural parameters at 

three different sections (start, middle, end) of each tract, across the TLE patient in study, were 

summarized in Table 5.1 – 5.3. Furthermore, Table 5.4 illustrates the minimum and maximum values 

of the averaged variation of each diffusion metric along the centrum semiovale, for each hemispheric 

side. 

 
 

 

 

Table 5.1 | Values provided by the along-tract analysis of fractional anisotropy (FA), mean diffusivity (MD), mean square 

displacement (MSD), (square-root of) return to axis probability (RTAP), (cube-root of) return to origin probability (RTOP), 

return to plane probability (RTPP), orientation dispersion index (ODI), intracellular volume fraction (ICVF) and isotropic 
volume fraction (ISOVF) along the arcuate fasciculus (left and right), taking into account three different sections (start, middle, 

end) of this white matter tract. Each value represents the average value of each microstructural parameter ± the standard 

deviation associated, across the TLE patient in study. The units of MD and MSD are 𝑚𝑚2/𝑠, and RTAP, RTOP and RTPP are 

given by 𝑚𝑚−1. 

Table 5.2 | Values provided by the along-tract analysis of fractional anisotropy (FA), mean diffusivity (MD), mean square 

displacement (MSD), (square-root of) return to axis probability (RTAP), (cube-root of) return to origin probability (RTOP), 

return to plane probability (RTPP), orientation dispersion index (ODI), intracellular volume fraction (ICVF) and isotropic 
volume fraction (ISOVF) along the corticospinal tract (left and right), taking into account three different sections (start, middle, 

end) of this white matter tract. Each value represents the average value of each microstructural parameter ± the standard 

deviation associated, across the TLE patient in study. The units of MD and MSD are 𝑚𝑚2/𝑠, and RTAP, RTOP and RTPP are 

given by 𝑚𝑚−1. 
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The results suggested by the previous example will be discussed in detail along the Section 

5.3.1. It will be taken into account how each microstructural parameter change along each WM tract of 

interest, as well as the diffusion profile assumed by each scalar map at the centrum semiovale, having 

also in mind the contribution of each tract individually to achieve that specific values along this complex 

region. 

 

 

Table 5.4 | Values provided by the along-tract analysis of fractional anisotropy (FA), mean diffusivity (MD), mean square 

displacement (MSD), (square-root of) return to axis probability (RTAP), (cube-root of) return to origin probability (RTOP), 
return to plane probability (RTPP), orientation dispersion index (ODI), intracellular volume fraction (ICVF) and isotropic 

volume fraction (ISOVF) along the centrum semiovale (left and right hemisphere), taking into account the minimum and 

maximum values of the averaged variation along this complex region with multiple fibre populations from the arcuate 

fasciculus, corticospinal tract and corpus callosum. Each value represents the average value of each microstructural parameter 

± the standard deviation associated, across the TLE patient in study. The units of MD and MSD are 𝑚𝑚2/𝑠, and RTAP, RTOP 

and RTPP are given by 𝑚𝑚−1. 

Table 5.3 | Values provided by the along-tract analysis of fractional anisotropy (FA), mean diffusivity (MD), mean square 

displacement (MSD), (square-root of) return to axis probability (RTAP), (cube-root of) return to origin probability (RTOP), 

return to plane probability (RTPP), orientation dispersion index (ODI), intracellular volume fraction (ICVF) and isotropic 

volume fraction (ISOVF) along the corpus callosum - homologous connection between motor cortices, taking into account 
three different sections (start, middle, end) of this white matter tract. Each value represents the average value of each 

microstructural parameter ± the standard deviation associated, across the TLE patient in study. The units of MD and MSD are 

𝑚𝑚2/𝑠, and RTAP, RTOP and RTPP are given by 𝑚𝑚−1. 
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5.2.2 Between-group analysis: TLE patients versus healthy controls 

Aiming to better describe the microstructural changes between patients with TLE and healthy 

controls, the following figures (Figure 5.6 and Figure 5.7) show the average results of each 

microstructural feature along the left and right arcuate fasciculus, the left and right corticospinal tract, 

and the corpus callosum - homologous connection between motor cortices. The focus of this along-tract 

analysis was TLE patients with left epileptic focus (9 patients, 5 male, mean age 12 years, range 5 – 19 

years), which were selected from our initial population in study, and compared to healthy controls (9 

subjects, 5 male, mean age 12 years, range age 8 – 18 years); allowing us to distinguish the different 

diffusion properties associated to each group and discuss the relationship between them and the 

neurological condition present in the patients against the controls. Additionally, a Kruskal-Wallis test 

was also executed in order to verify that the groups are statically different, taking into account three 

sections (start, middle, end) of each tract with equivalent number of resampled points. A 1% significance 

value was considered.  

 

 

 

 

 

 

 

 

Figure 5.6 | Along-tract analysis of the fractional anisotropy (FA), mean diffusivity (MD) and mean square displacement 
(MSD) along (from left to right) the left / right arcuate fasciculus (AF), where (1) represents the Broca's area, (2) the 

Geschwind’s area  and (3) the Wernicke's area; the left / right corticospinal tract (CST), where (4) represents the region near 

the brainstem, (5) the region at the level of the internal capsule and (6) the region near the motor cortex; and the corpus callosum 
(CC) - homologous connection between motor cortices, where (7) represents the connections to right motor cortex, (8) the 

colossal fibres near the mid-sagittal plane and (9) the connections to left motor cortex. The level of significance is represented 

by one star (*) where the p-value is lower than 0.01 (i.e. difference between groups with statistical relevance). The average 

variation of each microstructural parameter across the TLE patients is represented by the blue line and the associated standard 
deviation coloured by light-blue; and, the average variation of each microstructural parameter across the healthy controls is 

represented by the orange line and the associated standard deviation coloured by light-orange. The units of MD and MSD are 

𝑚𝑚2/𝑠. Abbreviations: A – anterior; P – posterior; L – left; R – right.  
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Figure 5.7 | Along-tract analysis of the (square-root of) return-to-the-axis probability (RTAP), (cube-root of) return-to-the-
origin probability (RTOP), return-to-the plane probability (RTPP), orientation dispersion index (ODI), intracellular volume 

fraction (ICVF), and isotropic volume fraction (ISOVF) along (from left to right) the left / right arcuate fasciculus (AF), where 

(1) represents the Broca's area, (2) the Geschwind’s area  and (3) the Wernicke's area; the left / right corticospinal tract (CST), 

where (4) represents the region near the brainstem, (5) the region at the level of the internal capsule and (6) the region near the 
motor cortex; and the corpus callosum (CC) - homologous connection between motor cortices, where (7) represents the 

connections to right motor cortex, (8) the colossal fibres near the mid-sagittal plane and (9) the connections to left motor cortex. 

The level of significance is represented by one star (*) where the p-value is lower than 0.01 (i.e. difference between groups 

with statistical relevance). The average variation of each microstructural parameter across the TLE patients is represented by 
the blue line and the associated standard deviation coloured by light-blue; and, the average variation of each microstructural 

parameter across the healthy controls is represented by the orange line and the associated standard deviation coloured by light-

orange. The units of RTAP, RTOP and RTPP are 𝑚𝑚−1. Abbreviations: A – anterior; P – posterior; L – left; R – right.  
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In order to be able to perform a comparison analysis between the groups with high specificity, 

the quantitative findings regarding the variation of each scalar map along the WM pathways of interest 

were summarized in Table 5.5 – 5.7, which illustrate the values assumed (as “reference values”) by the 

microstructural parameters at three different sections (start, middle, end) of each WM tract, across the 

TLE patients and healthy controls. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.5 | Values provided by the along-tract analysis of fractional anisotropy (FA), mean diffusivity (MD), mean square 

displacement (MSD), (square-root of) return to axis probability (RTAP), (cube-root of) return to origin probability (RTOP), 

return to plane probability (RTPP), orientation dispersion index (ODI), intracellular volume fraction (ICVF) and isotropic 
volume fraction (ISOVF) along the arcuate fasciculus (left and right), taking into account three different sections (start, middle, 

end) of this white matter tract. Each value represents the average value of each microstructural parameter ± the standard 

deviation associated, across the TLE patients and healthy controls. The level of significance is represented by one star (*) where 

the p-value is lower than 0.01 (i.e. difference between groups with statistical relevance). The units of MD and MSD are 𝑚𝑚2/𝑠, 
and RTAP, RTOP and RTPP are given by 𝑚𝑚−1. 
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Table 5.6 | Values provided by the along-tract analysis of fractional anisotropy (FA), mean diffusivity (MD), mean square 

displacement (MSD), (square-root of) return to axis probability (RTAP), (cube-root of) return to origin probability (RTOP), 

return to plane probability (RTPP), orientation dispersion index (ODI), intracellular volume fraction (ICVF) and isotropic 

volume fraction (ISOVF) along the corticospinal tract (CST, left and right), taking into account three different sections (start, 

middle, end) of this white matter tract. Each value represents the average value of each microstructural parameter ± the standard 

deviation associated, across the TLE patients and healthy controls. The level of significance is represented by one star (*) where 

the p-value is lower than 0.01 (i.e. difference between groups with statistical relevance). The units of MD and MSD are 𝑚𝑚2/𝑠, 
and RTAP, RTOP and RTPP are given by 𝑚𝑚−1. 

Table 5.7 | Values provided by the along-tract analysis of fractional anisotropy (FA), mean diffusivity (MD), mean square 

displacement (MSD), (square-root of) return to axis probability (RTAP), (cube-root of) return to origin probability (RTOP), 
return to plane probability (RTPP), orientation dispersion index (ODI), intracellular volume fraction (ICVF) and isotropic 

volume fraction (ISOVF) along the and corpus callosum (CC) - homologous connection between motor cortices, taking into 

account three different sections (start, middle, end) of this white matter tract. Each value represents the average value of each 

microstructural parameter ± the standard deviation associated, across the TLE patients and healthy controls. The level of 
significance is represented by one star (*) where the p-value is lower than 0.01 (i.e. difference between groups with statistical 

relevance). The units of MD and MSD are 𝑚𝑚2/𝑠, and RTAP, RTOP and RTPP are given by 𝑚𝑚−1. 
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5.3 Discussion  

Diffusion imaging tractography is a valuable tool for neuroscience researchers because it allows 

the generation of individualized virtual dissections of major WM tracts in the human brain. With most 

of the tractography studies using a “tract-averaged” approach to analyse by averaging the scalar values 

from the many streamline vertices in a tract dissection into a single point-spread estimate for each tract, 

there is a growing interest in methods that can provide greater within-tract detail since it is well known 

that there is a prominent variation in diffusion imaging metrics within tracts. 

In this study, a complete workflow used to conduct an along-tract analysis of WM pathways 

and integrate multiple microstructural scalar maps is described, based on the technical facilities of 

MRtrix and the visualization tools available through MATLAB for graphic computing.  

 

5.3.1 Single-subject analysis: normal region versus complex region 

Figure 5.4, Figure 5.5 and Table 5.1 – 5.3 demonstrate the effectiveness of such an along-tract 

approach in an example analysis of three major WM tracts (arcuate fasciculus, corticospinal tract and 

corpus callosum - homologous connection between motor cortices) in a single subject with TLE. By 

having into account the potentially rich anatomical variation in diffusion imaging metrics along the 

tracts, this approach allows to see the extent of within-tract variability of each scalar map without 

compressing all the microstructural information in one averaged diffusion metric for the WM tract in 

study.  

Beyond the true biological variation in diffusion properties along tracts, we show that this 

technique allows a more detailed analysis of small ROIs extracted from the whole tract in order to avoid 

fibres from the WM pathways in the neighbourhood, which might lead to equivocal biological 

interpretations of the microstructural parameters. Consequently, such type of analysis can be also used 

to address some types of partial volume effects by checking the along-tract streamline distribution from 

complex fibre geometries with multiple fibres populations as the centrum semiovale (a region with 

crossing fibres from the arcuate fasciculus, corticospinal tract and corpus callosum) where 

microstructure properties may be also altered due to methodological issues. Therefore, the application 

of this along-tract technique can be used to highlight crossing fibres areas that are not resolved by the 

single tensor model of diffusion.  

Looking at the results it was also verified that this method shows to reveal significant along-

tract variations in each microstructural parameter for all of the major WM tracts studied, as would be 

expected based on previous voxel-based studies of the WM ((Schmithorst & Yuan, 2010) [123]; (Wozniak 

& Lim, 2006) [124]), and other tract-based approaches ((Concha et al., 2010) [125]; (Davis et al.,         2009) 
[126]; (Sullivan & Pfefferbaum, 2006) [127]; (Xue et al., 1999) [128]; (Yushkevich et al., 2008) [129]).  

In order to evaluate the structural changes that could be caused in the brain, one must have in 

mind is the pathophysiological effect of TLE in WM organization, since this neuropathological 

condition changes the microstructural environment (e.g., neuronal swelling or shrinkage, increased or 

decreased extracellular space and loss of tissue organization), which consequently result in altered 

diffusion and/or anisotropy along the WM pathways (graphic results illustrated by Figure 5.4 and 

Figure 5.5). Patients with TLE suffer from dysfunctions affecting large-scale brain networks, which 

involves temporal and extratemporal regions of both hemispheres (Fahoum et al., 2012) [130], rather than 

a single focal region (Laufs, 2012) [131]. Therefore, evaluation of WM tracts connecting these various 

affected regions may provide useful information as to pinpoint the origin of these diffuse changes in the 

brain that accompany TLE. 

As a unique source of information about the underlying tissue structure of brain WM in vivo, 

DTI provides information regarding the geometry of major fibre bundles as well as quantitative 
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information about tissue properties represented by derived tensor measures, such as MD (used to 

measure the orientationally averaged diffusivity) and FA (which tells the degree of diffusion 

anisotropy). In fact, studies using DTI have consistently revealed bilateral patterns of microstructural 

damage to multiple long-range association tracts, with greater compromise to fibre tracts ipsilateral and 

proximal to the seizure focus ((Ahmadi et al., 2009) [132]; (Otte et al., 2012) [133]; (Concha et al.,          

2012) [134]). This is typically demonstrated by decreases in FA and/or increases in MD along entire fibre 

tracts or within subsections of a tract, which are interpreted as reflecting axonal loss and demyelination 

of WM within the affected regions. 

Despite the unique insights obtained from DTI, it is increasingly appreciated that FA and MD 

are nonspecific measures of cerebral pathology that are influenced by a number of tissue-related factors. 

For example, in addition to axonal loss and demyelination, decreases in FA may reflect the presence of 

crossing fibres or increases in extracellular diffusion due to oedema or inflammation ((Pasternak et al., 

2012) [135]; (McDonald et al., 2013) [136]). Recent studies suggest that inflammation may play a role in 

the pathogenesis of TLE, which allows to better understand the neurobiology of decreased FA in 

temporal and extratemporal regions, helping to improve the treatments in patients with TLE (French et 

al., 2016) [137]. 

However, the assumption of a Gaussian spin displacement distribution underlying DTI often 

renders the pathophysiological interpretation of changes in FA and MD problematic. Consequently, and 

aiming to assess brain tissue microstructure through microanatomical parameters that have higher 

sensitivity and specificity than DTI-derived parameters, a quantitative physical and mathematical 

framework was recently proposed, the MAP-MRI, which is able to compute some associated 

microstructural parameters: MSD, RTAP, RTOP and RTPP. 

The mean square displacement travelled by a particle following a random walk is represented 

by MSD, which is proportional to the average amount of diffusion. Used to characterize cell mobility, 

MSD can be related to MD via the Einstein equation. Regarding the family of zero displacement 

probability measures, the contrast between single-fibre WM and regions with crossing fibres can be 

described by RTAP, which is in theory the integrated probability that a spin diffuses along the axis of 

the axons. RTOP gives the value of the propagator in the origin, which is considered to be proportional 

to the level of restricted diffusion, reflecting the cellularity and restrictions in diffusion. Lastly, as a 

directional index, RTPP quantifies the probability that a proton will be on the plane perpendicular to the 

main eigenvector of the diffusion tensor during both gradient pulses.  

Additionally, as the DTI model also fails to account for the dispersion of axonal orientation, by 

assuming a single orientation within each voxel, NODDI aims to introduce a model sufficient to capture 

the morphology of neurites in vivo whilst ensuring that it remains simple enough to be acquired in a 

clinically feasible duration. This multi-compartment diffusion model is able to provide specific indices 

of tissue microstructure such as ODI, ICVF and ISOVF, which were obtained via the AMICO 

framework. 

The dispersion of the neurite structures is further characterised by ODI which reflects the spatial 

configuration of the neurite structures, with small values of ODI corresponding to highly aligned axons 

(e.g. WM tracts). On the other hand, ICVF represents the space bound within the neuronal membrane, 

acting as a marker of neuronal density and taking its highest values in the major WM tracts, such as the 

corpus callosum. Through the ISOVF maps it is possible to highlight the ventricles and surrounding 

CSF that have a very high isotropic diffusivity. One previous study done by Loi et al. (2016) [138] 

revealed that reduced FA in the temporal lobes was primarily driven by reductions in intracellular 

diffusion, commensurate with neurite loss (i.e., cell and axonal or myelin loss), whereas reduced FA in 

extratemporal regions was also driven by fibre orientation changes (i.e., high ODI), potentially reflecting 

disorganized fibre orientation and packing.  
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Anatomically, the arcuate fasciculus is designed as a bundle of axons that connects caudal 

temporal cortex and inferior parietal cortex to locations in the frontal lobe. Across the TLE population 

in study and following the posterior – anterior direction, this WM pathway shows lower FA values (left: 

0.3326 ± 0.1342; right: 0.3414 ± 0.1068) at the level of the Broca's area in the frontal lobe, with a small 

increase (left: 0.4756 ± 0.1059; right: 0.4964 ± 0.1119) as this tract goes into the parietal lobe, until a 

subtle decrease (left: 0.3943 ± 0.1192; right: 0.3832 ± 0.1206) occur at the Wernicke's Area. On the 

other hand, a slightly initial decrease of MD values was observed along the WM fibres of the arcuate 

fasciculus with the lower values (left: (5.939 ± 0.326) × 10−4; right: (5.964 ± 0.353) × 10−4) being 

reached at the level of the Geschwind’s territory (due to a reduction in diffusivity perpendicular to the 

direction of the WM tract, which may indicate changes associated to the axonal width and/or the 

myelination process as Hüppi and Dubois (2006) [139] made reference), followed by an increase of MD 

values. Regarding the q-space indices, minimal changes were registered for MSD along the arcuate 

fasciculus, with the values varying around approximately (1.355 ± 0.072) × 10−4 (left) / (1.327 ± 

0.056) × 10−4 (right). By analysing the graphic results for RTAP, RTOP and RTPP, the values changed 

according to what was expected, since the highest values (left: 672.7215 ± 17.3365, 76.7700 ± 1.3247, 

and 61.2225 ± 4.1840, respectively; right: 672.5108 ± 18.9524, 76.7529 ± 1.4441, and 60.1803 ± 4.5375, 

respectively) correspond to the Gesehwind’s territory, region with a higher level of restricted diffusion 

and comprised by complex fibres orientations distributions due to the proximity to the centrum 

semiovale, known as crossing region with multiple fibres population. From Figure 5.4, Figure 5.5 and 

Table 5.1, it also can clearly be seen that ODI values started around 0.3288 ± 0.1312 (left) / 0.3137 ± 

0.1012 (right), followed by a decrease and a minimal increase at the level of the Geschwind’s territory 

(left: 0.2132 ± 0.1061; right: 0.1976 ± 0.1034), which can be explained by the presence of fibre crossings 

and fanning fibres, or might be a result from the high tract curvature in this region. Then the ODI values 

decrease again and near the Wernicke's area they achieved higher values (left: 0.2718 ± 0.1046; right: 

0.2872 ± 0.1043) similar to the starting values. The results for ICVF and ISOVF suggest that the higher 

values (left: 0.6149 ± 0.0452, and 0.0488 ± 0.0232, respectively; right: 0.6182 ± 0.0500, and 0.0538 ± 

0.0231, respectively) also correspond to the Geschwind’s territory. However, due to the complexity of 

fibres architecture that it is present in this region, the result regarding ICVF was unexpected since higher 

values are achieved in regions with highly anisotropic coherent single fibres, which does not occur in 

the Geschwind’s territory. Particularly and although this TLE patient has being diagnosed with a left 

focused TLE, the variation of all the microstructural parameters along the arcuate fasciculus in study 

was similar between both hemispheres, which could be explained by the bilateral patterns of 

microstructural damage usually observed in previously studied cases. 

The corticospinal tract ascends from the brainstem, paralleling the ventricles to the cortex. 

Analysing the results (Figure 5.4, Figure 5.5 and Table 5.2), FA starts off relatively low (left: 0.4126 

± 0.1644; right: 0.4212 ± 0.1579) due to partial voluming in the brainstem, then FA peaks roughly half 

way (left: 0.6999 ± 0.1072; right: 0.7228 ± 0.1042) and MD assumes its lower values (left: 0.0005862 

± 0.0000475; right: 0.0006072 ± 0.0000714) at the level of the internal capsule, where the fibres are 

coherently oriented inferior-superior; followed by a briefly decrease of FA at the level of the centrum 

semiovale, a location where colossal fibres cross medial to lateral through the corticospinal tract and 

SLF fibres cross posterior to anterior through the corticospinal tract. Before arriving at the motor cortex, 

FA assumes low values (left: 0.4315 ± 0.1605; right: 0.4381 ± 0.1529), which were similar to the values 

initially taken at the level of the brainstem. Additionally, no major differences were registered for MSD 

along the corticospinal tract, with the values oscillating around approximately (1.495 ± 0.286) × 10−4 

(left) / (1.438 ± 0.246) × 10−4 (right). For RTAP and RTOP, the higher values (left: 708.4938 ± 

21.8747, and 79.4652 ± 1.6516, respectively; right: 706.0574 ± 30.3871, and 79.2746 ± 2.3057, 

respectively) were found at the level of the internal capsule, where the fibres are coherently oriented 

inferior-superior and, consequently, a huge level of restricted diffusion is observed. Based on this and 
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as expected, RTPP starts off relatively low (left: 52.7403 ± 7.6897; right: 54.1549 ± 7.2574) due to 

partial voluming that exists in the brainstem, then after a brief increase, RTTP values decrease (left: 

53.5081 ± 5.3737; right: 52.1260 ± 5.9923) at the level of the internal capsule, where the fibre bundles 

are coherently oriented. Due to the approximation to the centrum semiovale, the configuration of the 

neurite structures tend to disperse. Consequently, RTPP values increase, followed by a reduction (left: 

52.5388 ± 7.5503; right: 54.1482 ± 6.5715) just before the motor cortex bas been reached. Regarding 

the NODDI parameters, ODI values were around 0.2655 ± 0.1655 (left) / 0.2389 ± 0.1686 (right) in the 

brainstem, followed by a brief decrease, which was immediately followed by a slightly increase until 

the lowest values (left: 0.1034 ± 0.0566; right: 0.0947 ± 0.0516) being reached at the level of the internal 

capsule, where the fibres are highly aligned. Then, close to centrum semiovale, ODI increases due to 

the highly dispersed spatial configuration assumed by regional neurites, value that tend to decrease (left: 

0.2477 ± 0.1630; right: 0.2217 ± 0.1492) again at the level of the motor cortex. The results for ICVF 

suggest that the highest values (left: 0.7339 ± 0.0684; right: 0.7166 ± 0.0822) correspond to the internal 

capsule, where the fibres are highly aligned, so the neuronal density is elevated. According to the 

changes observed with ISOVF, no major differences were registered, maintaining a value of 

approximately 0.1198 ± 0.1460 (left) / 0.0779 ± 0.1098 (right) constant along the whole tract. This WM 

pathway also showed microstructural change patterns without major differences across the TLE 

population in study, with similar variations at equivalent locations in all individuals, achieving at those 

points similar levels in each subject’s hemisphere. 

The corpus callosum (Figure 5.4, Figure 5.5 and Table 5.3) shows a twofold decrease in FA 

as the fibres traverse away from the mid-sagittal plane. This symmetric parasagittal dips in FA along the 

corpus callosum likely result from partial volume averaging with CSF in the adjacent lateral ventricles 

(Jones et al., 2005) [140], which leads to maximum values of MD ((8.155 ± 1.455) × 10−4) registered in 

this region. Along the colossal segments FA takes high values near the mid-sagittal plane, where colossal 

fibres are tightly bundled together and coherently organized in the medial-lateral direction; 

consequently, a reduction of MD values is observed. Then, FA decreases substantially (right: 0.2964 ± 

0.1277; left: 0.2489 ± 0.1159) and MD slightly increases (right: (6.869 ± 0.674) × 10−4; left: (7.427 ± 

1.453) × 10−4) as fibres start diverging toward their specific cortical destinations, along the homologous 

regions of left and right hemisphere. Associated to MD, the MAP-MRI parameter MSD registered a 

slight increase of its values ((1.575 ± 0.230) ) × 10−4) on the mid-sagittal plane due to the partial volume 

effect derived from the presence of CSF on the lateral ventricles, which justifies the fact that here, RTAP, 

RTOP and RTPP assume lower values (635.0490 ± 43.1766, 73.8430 ± 3.3880, and 45.1417 ± 4.8397, 

respectively), since this is a WM region where the level of restricted diffusion is attenuated and the 

spatial configuration of the fibres assume an architecture similar to a highly anisotropy coherent single 

fibre. Consequently, as expected, near the mid-sagittal plane it also can clearly be seen that the lowest 

ODI values (0.0844 ± 0.0735) were registered, as well as the higher values of ICVF and ISOVF (0.6232 

± 0.0844, and 0.1766 ± 0.1165, respectively), due to an increase of the neuronal density and from the 

possible CSF contamination, respectively. As was verified on arcuate fasciculus and corticospinal tract, 

the variation of all the microstructural parameters along the corpus callosum was similar across all the 

TLE patients in study, despite they have been diagnosed with different neurological conditions derived 

from TLE. 

Having in mind the magnitude of the recorded values along the ROIs extracted from each of the 

WM tracts of interest and looking in detail to the along-tract analysis performed on the centrum 

semiovale (Figure 5.4, Figure 5.5 and Table 5.4), it was determined that the application of multiple 

diffusion approaches was proven feasible and its derived microstructural parameters demonstrated to be 

in general sensitive biomarkers with increased pathophysiological specificity. 

The centrum semiovale, as a region containing complex WM configuration, showed lower FA 

values (right: 0.4159 ± 0.1060 - 0.4640 ± 0.0994; left: 0.4368 ± 0.1183 - 0.5145 ± 0.1097) and relatively 
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higher MD values (right: (5.700 ± 0.181 - 5.852 ± 0.328) × 10−4; left: (5.983 ± 0.338 - 6.191 ± 0.571) 

× 10−4). However, when interpreting diffusion parameters provided by DTI, the dispersion of fibre 

orientations is known to be a critical factor, limiting the interpretation of the derived parameters for fibre 

integrity in crossing fibre regions ((Jones, 2010) [141]; (Wheeler-Kingshott et al., 2009) [142]; (Grinberg 

et al., 2016) [143]). Nevertheless, these results are in line with previous diffusion studies, which showed 

low anisotropy at the level of the centrum semiovale ((Groeschel et al., 2014) [144]; (Hervé et al.,         

2011) [145]; (Reich et al., 2006) [146]). Related to MD, an average amount of diffusion represented by 

MSD was registered, achieving higher values (right: (1.341 ± 0.036 - 1.349 ± 0.049) × 10−4; left: (1.356 

± 0.046 - 1.377 ± 0.080) × 10−4) and without significant variations along this WM region characterized 

by a complex fibre architecture, which consequently is correlated to the highest values that were 

observed for RTAP (right: 675.4714 ± 20.1501 - 681.6977 ± 10.7638; left: 661.9629 ± 30.0824 - 

667.8986 ± 17.9269), RTOP (right: 76.9771 ± 1.5357 - 77.4550 ± 0.8153; left: 75.9371 ± 2.3198 - 

76.4021 ± 1.3714) and RTPP (right: 61.9657 ± 4.2052 - 63.6928 ± 4.1299; left: 61.7158 ± 4.2187 - 

58.4471 ± 3.6543). Regarding quantitative measures derived from NODDI, where FA is low, ODI shows 

higher values (right: 0.2208 ± 0.1072 - 0.2692 ± 0.1073; left: 0.1759 ± 0.0836 - 0.2391 ± 0.1068), 

reflecting the crossing of many axons, whereas ICVF remains high throughout (right: 0.6283 ± 0.0525 

- 0.6463 ± 0.0301; left: 0.5929 ± 0.0695 - 0.6084 ± 0.0432) and ISOVF relatively low (right: 0.0575 ± 

0.0234 - 0.0681 ± 0.0265; left: 0.0559 ± 0.0233 - 0.0626 ± 0.0226). Additionally, we can also say that 

the ICVF parameter was less influenced by the spread of fibre orientation, better reflecting the integrity 

of WM pathways in crossing fibre regions, as was recently shown by others studies and underlined by 

histology (Sepehrband et al., 2015) [147]. 

 

5.3.2 Between-group analysis: TLE patients versus healthy controls 

This technique was easily extended to between-group analysis (Figure 5.6, Figure 5.7 and 

Table 5.5 – 5.7) which is typically used in neuroscience applications, by conducting an along-tract 

analysis of differences in multiple microstructural parameters between 9 patients with TLE and 9 healthy 

controls. This analysis aims to reveal localized differences between TLE and control group that possibly 

were not evident using a tract-averaged method.  

Diffusion can be characterized using scalar quantities such as MD and FA, which have 

demonstrated high sensitivity to pathological changes. In epilepsy, increased diffusivity and reduced 

diffusion anisotropy were associated to the diagnosis of this neuropathological condition, suggesting a 

loss of structural organization and expansion of the extracellular space (Wieshmann et al., 1999) [148]. 

As expected, the results suggest a significant decrease of FA on the left and right arcuate 

fasciculus in the TLE patients compared to the controls. Also a slight decrease of FA values were 

detected in the brainstem and close to the motor cortex along the corticospinal tract in both hemispheres 

of the TLE patients, with a brief decrease also being verified near the mid-sagittal plane of the corpus 

callosum. This result is in concordance with the literature findings, since with a lower degree of 

anisotropy diffusion due to the destruction of axons associated to a diagnosis of TLE, which may lead 

to a disorganization of the fibres orientation, FA tends to decrease. However, it is also important to 

highlight the fact that these achievements were quantified in WM pathways involved in different human 

capacities such as language, motor, sensory or cognitive functions, which allow us to conclude that these 

WM tracts, as extratemporal WM tracts, can also be affected. Associated to the neuronal loss, which is 

the most common histologic finding in patients with TLE, a significant increase in MD within the WM 

in the arcuate fasciculus (both hemispheres) was demonstrated compared to the control group. Along 

the left/right corticospinal tract and the corpus callosum, the same was verified, however with less 

difference between the two groups. 
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Additionally, the q-space indices were calculated in order to describe the properties of the brain 

tissue microstructure using MAP-MRI. With this in mind, the MSD values, which are used to 

characterize cell mobility, showed the expected variation, with TLE patients being characterized by 

higher values when compared to healthy controls along the WM pathways in study. However, it can be 

observed that the major difference between the two groups was verified on the left and right arcuate 

fasciculus. The contrast between single-fibre WM and regions with crossing fibres is described by 

RTAP. Based on this and since with this neuropathological condition the level of restricted diffusion 

tend to reduce with the neuronal destruction, lower RTAP values were observed in TLE patients along 

all the WM pathways of interest. Although, along the left and right corticospinal tract the differences 

were almost insignificant between the TLE patients and the control group. With the loss of axons and 

as a microstructural parameter proportional to the level of restricted diffusion, RTOP proved to take the 

lowest values along the WM tracts of the TLE patients’ brain as the diffusion tends to become less 

anisotropic. It was also verified that this diffusion parameter shows a spatial variation of its values along 

the WM tracts very similar to RTAP. The results also suggest that minimal differences were found for 

RTPP along the WM pathways of the TLE patients compared to healthy controls, which might be 

associated to a reduction on the complexity of the FODs. Despite RTPP assume lower values along the 

left/right arcuate fasciculus and left/right corticospinal tract of TLE patients, a smaller variation was 

displayed across the corpus callosum between the two groups, with no statistically significance being 

observed.  

Nevertheless, a more detailed tissue characterization based on MAP-MRI parameters was 

obtained, reflecting the physically meaningfulness of these microstructural features with greater 

neuroanatomical specificity along the tracts. For example, we show that the arcuate fasciculus is 

microstructurally abnormal bilaterally despite the unilateral TLE diagnosed in these patients. And, 

RTAP and RTOP showed an increased difference within the corpus callosum between the two groups 

compared to the along-tract behaviour drawn by the FA profile, which highlights the biologically 

specificity of these tissue markers in pathologies characterized by neuronal reduction as TLE.  

Then, as explained before, we used NODDI in order to provide more specific indices of tissue 

microstructure. In Figure 5.7 and based on the along-tract variation of the ODI values, it can clearly be 

seen that major differences with statistical relevance between the two groups were not detected, except 

for the left arcuate fasciculus. However as index associated to the spatial configuration of the neurite 

structures, larger values of ODI were expected to be registered for TLE patients characterized by an 

increase of dispersed neurites, against the healthy controls. Through the graphic results we can also 

observe that the TLE patients showed significant lower values of ICVF when compared to healthy 

controls. Knowing that ICVF acts as a marker of neuronal density, we can affirm that the results illustrate 

the expected difference in the presence of neurological condition as TLE. Focusing on the results about 

ISOVF no major differences were found between the two groups, with the values assumed by this 

microstructural parameter being similar for TLE patients and healthy controls. However and as an 

exception, the results for left and right corticospinal tract showed a minimal difference with statically 

significance between the two groups. Higher values were observed along the WM fibres of this WM 

pathway in both hemispheres of the neuropathological group when compared to the control group. 

Nevertheless, higher ISOVF values were expected to be verified along all the WM pathways of the TLE 

patients when compared to the healthy controls, which was just observed with statistical relevance along 

the left and right corticospinal tracts. 

In summary, the results showed increased diffusivity and reduced anisotropy, suggesting a loss 

of structural organization and expansion of the extracellular space with TLE, both locally and in 

extratemporal tracts despite the left epileptic focus, which agrees with the concept that epilepsy is a 

network disorder. 
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5.3.3 Final remarks 

With this study interesting results about the along-tract analysis of WM pathways were 

achieved, focusing on the within-tract variability of the microstructural parameters that exists along 

tracts and highlighting its feasibility and potential benefits for clinical purposes based on the increased 

pathophysiological specificity. Specifically, by doing this analysis we also show that a more detailed 

tissue characterization could be obtained through the study of more advanced microstructural parameters 

derived from MAP-MRI and NODDI along the WM tracts, which reflect the greater neuroanatomical 

specificity of these microstructural features along the tracts and reveal to be a powerful outcome to 

overcome the well-known limitations of tensor derived metrics regarding their interpretation.  

Alternatively, we showed that this analysis could also be limited to more specific portions of 

the tract(s), which could be performed by extracting a spherical subsection of the tract(s), allowing a 

restricted along-tract analysis to only the high confidence central portion from a tract, or to a complex 

region with multiple fibre populations, where the averaged-tract approaches tend to outcome critical 

conclusions about the diffusion process. Nevertheless, it is important to recognize that this along-tract 

technique had some limitations.  

This analysis is based on the reconstruction of WM pathways generated by tractography. Even 

though as a technique that can circumvent some of the issues of traditional voxelwise registration (since 

the tract groups are individualized dissections based on the WM anatomy of each subject), tractography 

suffers from some limitations, as it is indirect, inaccurate, and difficult to quantify (Jbabdi & Johansen-

Berg, 2011) [110]. Discrepancies between the scale of the axonal diameter and the imaging voxel size 

(i.e., low spatial resolution), the noise contained in the diffusion data, and image artefacts comprise most 

of the limitations associated with tractography. Other limitations include the inability to distinguish 

afferent from efferent connections, to detect the presence of synapses, or to determine whether a pathway 

is functional ((Campbell & Pike, 2014) [149]; (Ciccarelli et al., 2008) [150]; (Johansen-Berg & Behrens, 

2006) [151]). Several tractography algorithms have been described but there is no consensus on which is 

the most effective since this is a technique sensitive to a large array of user-definable or algorithm-

specific parameters (Lazar & Alexander, 2003) [152]. Thresholds and other parameters of tractography 

need to be optimised, which is likely to lead to disagreements among researchers. Despite this, diffusion 

MRI tractography can contribute significantly to basic and clinical neuroscience research but its 

limitations must be clearly understood and considered when interpreting results. 

On the other hand, as it is referred in Tariq et al. (2012) [153], although both NODDI and DTI 

probe microstructure from the diffusion of the water molecules within the brain, DTI is limited in its 

ability to provide information about the specific changes in microstructure; the indices obtained are 

affected simultaneously by a number of microstructural changes (e.g. demyelination, inflammation, 

axonal loss, gliosis), which give rise to the same alterations of their values. In order to overcome this 

limitation, higher-order models of diffusion have been developed. NODDI estimates the microstructure 

directly, using an analytical model relating these parameters to the diffusion MRI signal. However, as 

parametric diffusion model, NODDI relies on a priori assumptions about the tissue microstructure. In 

contrast, the non-parametric framework of MAP-MRI can efficiently measure the PDF of spin 

displacements and it is able to quantify useful metrics of this PDF indicative of diffusion in complex 

microstructure (e.g., restrictions, multiple compartments), as Avram et al. (2016) [92] made reference. In 

particular, the along-tract analysis of MAP-MRI parameters show significant microstructural brain 

tissue changes and are a useful adjunct to conventional DTI parameters. 

Finally, it was used a “constant number of points” approach to resample streamlines because it 

is simple and allows the straightforward between-group analysis since every subject's tract data will 

have a one-to-one mapping along the streamlines. However, each streamline has a different length, and 

despite the requirements indicated for the tracking regarding the minimal length for a streamline to be 

included in the reconstruction of the WM tract of interest, the control of the inter-subject variation 
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regarding the tract length, as well as between streamlines of one tract, is not possible. Consequently, 

even with the same number of points resampled along each streamline for a WM pathway in study, the 

spatial match cannot be guaranteed. So, it is clear that this decision could be more appropriate for some 

tract geometries than others, and suggests that this method will be best suited for WM tracts that are 

comprised by relatively long fibres and restricted to relatively tube-like point-to-point trajectories 

between functional or anatomical regions, against short WM tracts or those where there is little 

directional changes along its length. 

Despite all the limitations associated to this analysis, which were previously mentioned, with 

this study we have shown that by implementing a relatively simple along-tract analysis workflow, we 

might be able to answer questions in regard to fibre integrity or fibre disruption, associated to diffusion 

changes of WM tracts in the presence of pathology, and its effect on brain connectivity, which has 

proved to be an extremely important topic for clinical research over the last few years.  
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6 Tract-Based Spatial Statistics (TBSS) 

 

6.1 Methods 

TBSS [154, 155, 156], which uses non-linear image transformation, is a technique that combines the 

strength of both voxelwise and tractography-based analyses. Posteriorly, the TBSS method is explained, 

with a block diagram of this method being shown in Figure 6.1. 

 

As a specific example of this analysis and its results, the TBSS analysis was applied to patients 

with a diagnosis of TLE with left epileptic focus (9 patients, 5 male, mean age 12 years, range 5 – 19 

years), which were selected from our initial population in study, and compared to healthy controls (9 

subjects, 5 male, mean age 12 years, range age 8 – 18 years).  

With the FA data for the eighteen subjects generated since the first analysis, the first TBSS script 

(tbss_1_preproc command) was ran, which removed the brain-edge artefacts from the FA images and 

turned to zero the end slices (in order to remove outliers from the diffusion tensor fitting). 

By running the next TBSS script (tbss_2_reg command using the -n flag option), a common 

registration target was identified as the “most representative” FA volume (i.e. the single individual target 

that minimises the amount of warping required for all other subjects to be aligned to it) [154] and, 

consequently all subjects’ FA images were aligned to this target using nonlinear registration. So, this 

target image was then affine-aligned into MNI152 standard space, and every image was transformed 

into 1x1x1𝑚𝑚 MNI152 space by combining the nonlinear transform to the target FA image with the 

affine transform from that target to MNI152 space.  

The next step was running the tbss_3_postreg script, which applied those registrations to take 

all subjects into 1x1x1𝑚𝑚 standard space. Afterward, all subjects' standard space nonlinearly aligned 

images were merged into a single 4D image file. As output, the mean of all aligned FA images was 

created, and by applying ‘‘thinning’’ methods (non-maximum-suppression perpendicular to the local 

tract structure), a skeletonised mean FA image (see Figure 6.2) was estimated, which represents the 

centres of all fibre bundles that are generally common to the subjects involved in the study. Regarding 

this mean FA skeleton, such is computed from the mean FA volume, by first estimate the local surface 

perpendicular to the tract directions and then by computing the centre of the tract using non-maximum-

suppression. [154] 

 

 

 

 

 

 

 

 

Figure 6.2 | Representation of the skeletonisation stage: original mean FA image with final skeleton at sagittal view (A), axial 
view (B) and coronal view (C). 

A B C 

Figure 6.1 | Block diagram of TBSS method. 
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The last TBSS script (tbss_4_prestats command) carried out the final steps necessary before 

running the voxelwise cross-subject stats. The mean FA skeleton image was thresholded to suppress 

areas of low mean FA and/or high inter-subject variability, and as ultimate goal to restrict the further 

analysis to voxels that only correspond to WM voxels that were successfully aligned across subjects. 

The threshold can be set as an input on the FSL script tbss_4_prestats. For the mean FA skeleton 

generated, the threshold was adjusted to a value of 0.3 once it shown to be an adequate value to select 

typical WM tracks in the studied subjects´ population. 

From this step a binary skeleton mask was generated, which allowed to define the set of voxels 

used in all subsequent processing steps. Each subject’s FA data was then projected onto the mean FA 

skeleton in such a way that each skeleton voxel takes the FA value from the nearest relevant tract centre. 

This was achieved, for each skeleton voxel, by searching perpendicular to the local skeleton structure 

for the maximum value in the subject’s FA image. 

TBSS allows also the projection of other invariant metrics to the skeleton. The script 

tbss_non_FA was used, given as input a folder containing all subject volumes for a specific metric. By 

running this script, the nonlinear registration (determined on TBSS, first and second steps) were applied 

to the non-FA data, which was followed by the projection of the maximum on the non-FA values on 

each individual skeleton. [156] On this study tbss_non_FA was applied to the preliminary study of 

microstructural changes on MD, MSD, RTAP, RTOP, RTTP, ODI, ICVF and ISOVF, between a control 

group and a group composed by patients with left TLE. 

Having the individual skeletons, TBSS can finally be followed with the voxelwise statistics 

across subjects through the randomise tool [157] (with 500 permutations), by assuming two contrasts: 

contrast 1 corresponds to the patient > control test, and contrast 2 gives the control > patient test. In this 

study, it was tested the brain regions that shown significance increases and decreases in the presence of 

neuropathology as TLE, on FA, MD, MSD, RTAP, RTOP, RTPP, ODI, ICVF, and ISOVF scalar maps 

(with significances computed based on Threshold-Free Cluster Enhancement (TFCE) p-values [158]). 

 

6.2 Results 

By setting the colourmap and with the display ranging from 0.95 to 1, which corresponds to 

thresholding the results at p < 0.05, it was possible to analyse the results of this voxelwise statistics 

analysis. Two different contrasts regarding the microstructural scalar maps were assumed: contrast 1 

corresponding to the patient > control test, and contrast 2 giving the control > patient test. Knowing that 

the skeleton that delineates the major WM tracts is shown in green, blue – light blue regions on the 

skeletons correspond to regions where increases of the microstructural parameters in study were 

significant (which were given by contrast 1), while significant decreases are shown in red - yellow 

(which were given by contrast 2). 

Figure 6.3 shows the changes in FA, MD, MSD, RTAP, RTOP, RTPP, ODI, ICVF and ISOVF 

volumes along the WM skeleton of patients with left TLE compared with healthy controls.  

Therefore, the results suggest an increase in MD and MSD along the WM skeleton of TLE 

patients compared with healthy controls, while a significant decrease was verified in FA, RTAP, RTOP, 

RTPP and ICVF skeletons. No significant changes of ODI and ISOVF were found in the TLE group.  

TLE group exhibited widespread changes of the microstructural parameters along the WM tracts 

on frontal, parietal and temporal lobes. The location was consistent in the FA, MD, MSD, RTAP, RTOP 

and ICVF along the WM tracts, but significantly smaller in the RTTP volume along the corresponding 

areas identified.  

Compared with healthy subjects, lower FA values were verified in TLE patients, with the same 

profile being demonstrated by RTAP, RTOP, RTPP and ICVF. In particular, FA and ICVF were shown 

to significantly decrease on the left and right arcuate fasciculus, genu and splenium of corpus callosum, 

and sporadically along the left and right corticospinal tract. The results of RTAP and RTOP skeletons 
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revealed the same decreasing pattern, which was visible along left and right arcuate fasciculus, genu and 

splenium of corpus callosum and along the left and right corticospinal tract. An occasionally decrease 

of RTPP was observed on the left and right corticospinal tract.  

On the other hand, the spatial profile assumed by the increase of MD was evident on many 

brain-networks in both hemispheres, while the increasing spatial profile of MSD was observed having 

a special focus along left arcuate fasciculus and, occasionally, along the left corticospinal tract and 

splenium of corpus callosum.  

 

 

 

 

 

 

 

Figure 6.3 | TBSS of fractional anisotropy (FA), mean diffusivity (MD), mean squared displacement (MSD), square root of 
return to axis probability (RTAP), cube root of return to origin probability (RTOP), return to plane probability (RTPP), 

orientation dispersion index (ODI), intracellular volume fraction (ICVF), and isotropic volume fraction (ISOVF) skeletons 

along WM pathways and correlated with increases (coloured by blue to light blue) and decreases (coloured by red to yellow) 

on brain, displaying the results threshold at p-value < 0.05. Compared with healthy controls, MD and MSD increase along the 
WM skeleton of TLE patients, while a significant decrease was verified in FA, RTAP, RTOP, RTPP and ICVF skeletons. ODI 

and ICVF changes are not evident within WM tracts between both groups. Abbreviations: AF - arcuate fasciculus, GCC - genu 

of corpus callosum, SCC - splenium of corpus callosum, CST - corticospinal tract. 
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6.3 Discussion 

The purpose of this study was to investigate WM change patterns across the whole brain in 

patients with left TLE, and explore changes in multiple diffusion metrics (FA, MD, MSD, RTAP, RTOP, 

RTPP, ODI, ICVF and ISOVF), by applying a voxel-based technique, the TBSS. TBSS provides a 

powerful and objective method to perform multi-subject comparison, based on voxel-wise statistics of 

diffusion metrics but simultaneous aiming to minimize the effects of misalignment using a conventional 

voxel-based analysis method (Smith et al., 2006) [154]. 

Shown in Figure 6.3, the results from this study indicate that the TLE patients, when compared 

to healthy controls, exhibited significantly reduced FA in widespread WM regions, which suggests that 

TLE is a disease that affects the brain globally, with same change pattern being showed by RTAP, 

RTOP, RTPP and ICVF. However, increase of MD and MSD was observed, with increases of MSD 

being exhibited significantly in the temporal lobe of left hemisphere. Furthermore, no significant 

changes of ODI and ISOVF were found in the TLE group.  

This additional study also demonstrated that TLE was involved in diffusion changes of WM 

regions corresponded to a widespread network of WM tracts, including intrahemispheric fibre tracts, 

temporooccipital connections, frontotemporal connections or motor projection tracts, which is 

consistent with the findings of previous TBSS studies ((Zhenyin et al., 2014) [159]; (Riley et al.,           

2010) [160]; (Schoene-Bake et al., 2009) [161]; (Focke et al., 2008) [162]). 

In particular, focusing this study just on the diffusion alterations along the arcuate fasciculus, 

corticospinal tract and corpus callosum, the following conclusions could be addressed. FA and ICVF 

showed to significantly decrease on the left arcuate fasciculus, genu and splenium of corpus callosum, 

and sporadically along the left and right corticospinal tract. The results of RTAP and RTOP skeletons 

revealed the same decreasing pattern, which was visible along left and right arcuate fasciculus, genu and 

splenium of corpus callosum, and along the left and right corticospinal tract. An occasional decrease of 

RTPP was also observed on the left and right corticospinal tract. On the other hand, the spatial profile 

assumed by the increase of MD was evident along all the WM pathways of interest in both hemispheres, 

while the increasing spatial profile of MSD was observed having a special focus along left arcuate 

fasciculus and, occasionally, along left corticospinal tract and splenium of corpus callosum.  

These microstructural changes might reflect a combination of axon and myelin loss, therefore 

leading to lower membrane density and higher extracellular volume (Sen & Basser, 2005) [163]. However, 

it is important to note that the splenium of the corpus callosum showed decreased FA without significant 

changes in MD, which may reflect subtle WM fibre incoherence, such as minor fibre loss, as was 

previously mentioned by Riley et al. (2010) [160].  

To the best of our knowledge, a study examining the WM changes in MSD, RTAP, RTOP, 

RTPP, ODI, ICVF and ISOVF in TLE patients compared to healthy controls has not been performed in 

humans so far. However, multiple studies have investigated human axonal and myelin degeneration in 

TLE patients based on the alterations observed in FA and MD, which allow us to justify the results 

achieved with this study in all microstructural metrics, since they are related to each other in some way 

through the diffusion alterations that arise from their increase or reduction comparing to the values 

assumed by healthy controls. With this in mind, we attempt to ensure which processes are exactly 

captured by the different metrics, so that we can choose the ones that best fit a specific pathology or, on 

the other hand, to tell us what extra analysis should be done, if we do not know the type of pathology. 

For example, by comparing TLE patients and healthy subjects, Arfanakis et al. (2002) [164] detected a 

significantly lower FA and higher MD in several WM structures of the TLE patients that were not 

located in the temporal lobes. In another study, Gross et al. (2006) [165] investigated the abnormalities of 

water diffusion in extra-temporal WM of patients with TLE. Results demonstrated reduced FA of the 

genu of the corpus callosum and external capsule and elevated MD of the genu, splenium, and external 
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capsule. Additionally, Petersen (2004) [166] identified a reduction of FA and elevation of MD on the 

hippocampus, temporal lobe, inferior frontal area, and arcuate fasciculus in TLE. 

Besides the interesting results that were obtained with this additional analysis, it is important to 

note that these findings should be interpreted within the context of the following limitations. 

First, Keihaninejad et al. (2012) [167] demonstrated the dependence of specificity and sensitivity 

of TBSS results on the registration target. Additionally, Van Hecke et al. (2010) [168] discussed potential 

pitfalls and limitations of TBSS, such as the assumption that the effect of interest occurs in voxels where 

the local FA is highest, since due to the skeletonization process, only the voxels with maximum FA 

values are included in the final skeletonization process. Consequently, TBSS is only able to tell about 

the statistical difference in voxels with highest FA at any given location without any specificity 

regarding specific part of that region on that plane. 

Second, with an averaging of values across all the subjects, any extreme outlier can substantially 

affect the group level result. With this in mind, it is clear that further studies are required in order to 

elucidate the relationship between axonal changes and TBSS findings in TLE patients. 

Finally, there was not any information available regarding the subjects’ exposure to anti-seizure 

medications, but knowing that the use of the majority of these drugs has been associated with cerebellar 

atrophy, their impact on cerebral WM was not taken into account. However, the use of such medications 

could help to justify some of the results obtained in this study. 

Notwithstanding these limitations, the results from this study indicate that TLE is characterized 

by a combination of axon and myelin loss, which was proved based on the various WM change patterns 

showed by FA, MD, MSD, RTAP, RTOP, RTPP, ODI, ICVF and ISOVF, when compared to healthy 

controls. 
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7 Fixel-Based Analysis (FBA) 

FBA [117, 169] defines fixel as a single fibre population within a voxel. This novel quantitative 

framework aims to study WM by discriminating between alterations in WM (see Figure 7.1) due to 

microstructural abnormalities (alterations in fixel-specific fibre density, FD) and morphological changes 

(alterations in fibre cross-section, FC), and combined microstructural and morphological changes 

(alterations in fibre density and cross-section, FDC). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Our aim with this additional analysis was to establish the utility of FBA in TLE patients, which 

may provide unique complementary information based on the metrics generated and associated to this 

framework, highlighting potential differences between TLE patients and healthy controls. 

 

7.1 Methods 

With the aim to demonstrate how a comprehensive FBA of FD, FC and FDC may provide 

unique yet complementary information to this study, a FBA was done comparing TLE patients to healthy 

controls. However, note that for this specific analysis and as an example of its results, the focus were 

patients with a diagnosis TLE with left epileptic focus (9 patients, 5 male, mean age 12 years, range 5 – 

19 years), which were selected from our initial population in study, and compared to healthy controls (9 

subjects, 5 male, mean age 12 years, range age 8 – 18 years).  

The FBA [169] starts by generating a group average response function using the response 

functions computed per subject on the first analysis. By using the same response function when 

estimating FOD images for all subjects, we could ensure that there are not differences in the intra-axonal 

volume (and therefore diffusion-weighted signal) across subjects that can be detected as differences in 

the FOD amplitude (the Apparent Fibre Density, AFD). 

This step was followed by the upsampling of the dMRI data and correspondents brain masks 

calculated before (using the mrresize command of MRtrix) to a voxel size of 2.00 mm, with the purpose 

of increase the anatomical contrast and improve the downstream spatial normalisation and statistics. 

(A) 

(B) (C) (D) 

Figure 7.1 | (A) Schematic representation of a fibre bundle cross-section (grey circles represent axons, while the grid represents 
imaging voxels). A change to the intra-axonal volume (and therefore ‘ability to relay information’) may manifest as: (B) 

changes in tissue microstructure that result in a change in within-voxel fibre density; (C) a macroscopic difference in a fibre 

bundle's cross-section; or (D) a combination of both fibre density and bundle cross-sectional area. Adapted from [169]. 
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Using the group average response functions, CSD was performed, by running the dwi2fod 

command, to estimate the FOD per subject. 

After this, the mtnormalise command was applied with the aim of scaling all tissue types with a 

spatially smoothly varying normalisation field, which allows to achieve the global intensity 

normalisation in the log-domain, but also to further correct the (residual) intensity inhomogeneities. 

The next step of FBA consists of generating an unbiased FOD template by running the 

population_template script. Starting with a rough alignment via the centre of mass of the images as 

initial template, population_template registers and transforms all subjects to this current best estimate 

of a population template. This template is iteratively updated with the transformed and averaged images, 

which build the basis for the next template iteration. With increasing iteration count, the degree of 

freedom of the transformation (rigid, affine, nonlinear) and the spatial and angular resolution are 

increased (see Figure 7.2). [117] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The next step consisted of register all the FOD images in the population template (by running 

the mrregister command), creating a two-way warp between the FOD template and each subject’s FOD 

image.  

Having in mind that different subjects will have subtly different brain coverage; to ensure 

subsequent analysis was performed in voxels that contained data from all subjects, all subject masks 

were warped into template space, using mrtransform command and, since the input and output were 

binary data, nearest neighbour interpolation was used. Therefore, the mask intersection was computed 

using the mrmath command. 

To complete this analysis is imperative to compute a WM analysis voxel and a fixel mask, which 

were generated using the mrconvert command with –coord option to retain data from the input image 

only at the first coordinate along the 𝑧-axis, followed by the mrthreshold command. 

Next all fixels from each FOD in the template image were segmented using fod2fixel command. 

After warping the subjects’ FOD images to the template space without FOD reorientation 

through the mrtransform command, each FOD image was segmented to estimate fixels and their FD as 

the FOD lobe integral. So, using the fod2fixel command it was possible to segment each FOD lobe in 

order to identify the number and orientation of fixels in each voxel. 

Figure 7.2 | Representation of the iteration process implemented by the population_template script in order to generate a 
population template from individually subjects’ images. The image of each subject is symbolic represented by S1, S2, S3 and 

S4; the initial template image generated from a rough alignment via the centre of mass of the images is represented by 

template(𝑡), which will be consequently generated by registering and transforming (M1, M2, M3 and M4) all subjects to this 

estimated template template(𝑡); by iteratively updating this template using transformed and averaged images, which build the 

basis for the next template iteration, the final template template(𝑡 + 1) is calculated. Permission kindly provided by Maximilian 

Pietsch. 
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Based on the Jacobian matrix (local affine transformation) the direction of all fixels at each 

voxel in the warp were reoriented with the fixelreorient command. 

With spatial correspondence between subject and template and with the corrected fixel 

orientations, subject fixels were assigned to the template fixels using the fixelcorrespondence command. 

For each fixel in the template fixel analysis mask, the corresponding fixel in each voxel of the subject 

image was identified and the FD value of the subject fixel was then assigned to the corresponding fixel 

in template space.  

However, it is well known that FD, and other related measures that are influenced by the quantity 

of restricted water, only permit the investigation of group differences in the number of axons that 

manifest as a change to within-voxel density. Depending on the disease type and stage, changes to the 

number of axons may also manifest as macroscopic differences in brain morphology. Due to this, a fixel-

based metric related to morphological differences in fibre cross-section was calculated. The use of the 

warp2metric command allowed us to derive the information, which was needed to compute the FC 

metric, entirely from the warps generated during registration. 

Aiming to perform group statistical analysis of FC, the 𝑙𝑜𝑔(FC) was calculated (using the 

mrcalc command with the –log option) to ensure data were centred about zero and normally distributed.  

To account for changes to both within-voxel fibre density and macroscopic atrophy, fibre 

density and fibre cross-section were combined, which allowed to achieve a more complete picture of 

group differences in WM. This combined measure was called FDC, and it was generated by 

‘modulating’ the FD by FC (FDC = FD × FC) using the mrcalc command. 

From the FOD template a whole-brain tractogram was generated using probabilistic fibre 

tractography.   

Statistical analysis (completed by running the fixelcfestats command) of FD, FC, and FDC was 

performed using connectivity-based fixel enhancement (CFE) [170] enhanced t-statistics (5000 

permutations) using 1.5 million streamlines (after applying SIFT to reduce biases associated with 

particular tractography algorithms or seeding strategies, through the tcksift command) and defaults 

parameters. We assigned family-wise error corrected p-values to each fixel using permutation testing of 

the CFE. Significant fixels (p < 0.05) were displayed using MRtrix.  

 

7.2  Results 

Based on the whole-brain template-derived tractogram (Figure 7.3 (A)) and having in mind that 

each fixel was rendered by MRtrix as a line drawn along the fibre orientation considering the statistical 

value of the p-value, streamline points were “cropped” if they corresponded to fixels that did not reach 

significance (p-value > 0.05) and the remaining points coloured by streamline orientation (left-right: 

red, inferior-superior: blue, anterior-posterior: green) (Figure 7.3 (B)), or fixel value of interest as the 

p-value (Figure 7.3 (C)). 
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Shown in Figure 7.4 are fixels with a significant reduction in FD, FC and FDC (especially along 

the left corticospinal tract) in TLE compared to controls. However, the fact that it was not obtained a 

significant result for FDC as expected could mean that there was genuinely no difference in this 

parameter, or the variance was too high, so the study was underpowered to detect it. For each view 

(axial, coronal and sagittal), a single 2D slice of fixels is shown, coloured by family-wise error corrected 

p-value and overlaid on the population FOD template image. By assigning an individual p-value to each 

fixel, rather than to each voxel, fibre tract-specific inference was achieved. 
 

Results suggest that TLE patients have a decrease in the number of axons that manifests as a 

change in both within-voxel FD and FC (Figure 7.4, left and middle), and as expected, group differences 

were maximal on the lesioned side. The combination of information from FD and FC is shown by the 

FDC result (Figure 7.4, right). 

 

 

 

 

 

 

 

 

 

 

Figure 7.3 | Coronal  view of the whole-brain tractogram (A) using the study-specific template, from where a 2D slice of fixels 

(zoomed out from the white square in (A) and threshold at p-value < 0.05) was rendered as lines along the fibre orientation 
and coloured by streamline orientation (B) and p-value (C). 

A 

B 

C 

Figure 7.4 | Fixels with (p < 0.05) decrease in fibre density (FD), fibre cross-section (FC), and fibre density and cross-section 

(FDC). Fixels are colour-coded by family-wise error (FWE) corrected by p-values and overlaid on the population FOD template 

image.  
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To investigate the relative effect sizes of FD and FC, and how they combine to give a larger 

effect size in the FDC analysis, the effect size (group difference) was expressed relative to the control 

group and the result displayed as colour-coded streamlines. Figure 7.5 shows the streamlines that 

correspond to all WM fixels with a significant decrease in FD, FC, and FDC.  

 

 

Many of the fibre pathways that connect to the affected temporal lobe show a significant 

decrease in FD and FDC. These include the WM pathways in study, as the arcuate fasciculus, left and 

right corticospinal tract, and (genu and splenium of) corpus callosum. The results also suggest that the 

main area of atrophy is located in the temporal lobe, which was shown evidently by the FC results. 

 As shown, when compared to healthy controls, TLE patients have a greater general reduction 

in FD than in FC (easily seen through the coronal view at Figure 8.5) along the WM pathways in study. 

This result is of interest, since changes in FC suggest a difference in the number of axons, while 

differences in the length of fibres should be ignored. 

When FD is modulated by FC the effect size is very similar to the result obtained for the effect 

size generated by FD in all pathways shown, which proved to go against the expectations and fail in 

obtain the largest spatial extent of significant difference between the patient and control groups through 

this FDC modulation, as was mentioned by Raffelt et al. (2017) [169]. 

 

7.3  Discussion 

The majority of diffusion MRI analysis methods and clinical studies have focused on measures 

related to within-voxel microstructure only. In this additionally study, a novel approach to WM 

morphology using diffusion MRI was used, known as FBA, allowing a comprehensive statistical 

analysis of WM quantitative measures in order to have access to changes that may result within WM 

tracts in the presence of TLE. Rather than computing some scalar metrics from the diffusion model in 

Figure 7.5 | Effect sizes across fibre density (FD), fibre cross-section (FC), and fibre density and cross-section (FDC) expressed 
as percentage decrease relative to the control group (ranging from 0 % to 10 %).  
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each image voxel as the voxel-wise approaches; with this analysis framework, scalar quantitative 

(microstructural or macrostructural) measures are represented within fixels (specific fibre populations 

within voxels), enabling inference of fibre-specific properties in the WM The commonly investigated 

metrics within this framework are: FD that reflects changes in tissue microstructure, being a marker of 

the intra-axonal restricted compartment of a fibre bundle; FC that refers to the cross-sectional area that 

is occupied by a fibre bundle, and measures changes in local tissue macrostructure; and, combined 

measure FDC that allows to have access to both tissue microstructure and macrostructure changes. 

Our aim with this additionally analysis was to establish the utility of FBA in TLE patients (with 

left epileptic focus), which may provide unique complementary information based on the metrics 

generated and associated to this framework, and highlight potential differences between TLE patients 

and healthy controls. 

The results illustrated by Figure 7.4 and Figure 7.5 suggest that a significantly reduced FD, FC 

and FDC was verified in pathways that are concordant with the seizure foci. According to Raffelt et al. 

(2016) [169], this results could be justified by the degeneration process that affects WM structures with 

the loss of axons in the presence of a neuropathological condition as TLE. Additionally, Figure 7.5 

based on the effect size (group difference) expressed relative to the control group, allow us to conclude 

that the microstructural and/or macrostructural reductions in WM tracts of the TLE patients were not 

just confined to the temporal region of the left hemisphere (in this particularly case of study), with these 

changes being observed in large-scale brain networks, involving temporal and extratemporal regions of 

both hemispheres, which is in concordance with the previous achievements defended by Fahoum et al. 

(2012) [130] and Laufs (2012) [131]. 

It is also important to say that the FDC analysis was computed in order to detect additional 

significant fixels based on an increase in sensitivity that could be achieved by combining FD and FC. 

However, as it was possible to conclude and previously mentioned by Raffelt et al. (2016) [169], the 

combined FDC analysis may not always be more sensitive if the effect of interest is predominantly in 

either FD or FC, since combining FD and FC also combines the variance from each source, which allows 

us to say that FD and FC should still be investigated separately, since they may offer further insight to 

better characterise the effects under study. 

Moving beyond the tensor model that has inherently voxel-averaged comparisons, FBA is able 

to perform fixel-based comparisons that provide more directly interpretable measures of structural 

connectivity, which account for the differing ways in which changes to intra-axonal volume may 

manifest. Indeed, in a disease like TLE, in which substantial WM loss occurs, partial volume effects 

could contribute to significant findings in voxel-based analyses of WM microstructure. As such, it is 

important to consider both microstructural and morphological differences that might reflect axonal loss 

as Raffelt et al. (2016) [169] made reference. 
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8 Conclusion  

In the field of neuroimaging, diffusion weighted imaging remains one of the few techniques that 

allows researchers and clinicians to evaluate the microstructure of both healthy and pathological brain, 

in vivo and non-invasively. Over the years, diffusion imaging has played a very important clinical role 

by providing quantitative parameters relate to WM microstructure (Tournier et al., 2011) [41].  

Furthermore, with the advent of DTI and the techniques that have followed, it has provided the 

only current means to investigate connectional anatomy in-vivo. In turn, this enabled to explore the 

connectivity of different brain regions, providing the anatomical substrate for complex brain functional 

networks, which emerge from the interaction of multiple integrative centres that process and transmit 

information across brain regions. Following on from DTI, it became clear that a simple tensor model is 

unable to fully characterize the complexity of microstructural arrangements that is found in the brain: 

there are numerous examples of kissing, crossing and fanning fibres, which are configurations that are 

indistinguishable with DTI.  

Whilst DTI still remains a very useful technique clinically, providing maps of parameters related 

to microstructural organization such as FA, the exploration of this complexity led to a plethora of 

methods dedicated to recovering microstructural features of the diffusion signal as accurately as 

possible.  

Parametric diffusion models such as NODDI rely on a priori assumptions about the tissue 

microstructure and can therefore be very powerful tools for characterizing tissue regions where the 

microstructure is known and the parametric model is rich enough to embody it. Specifically, NODDI 

was introduced by Zhang et al. (2012) [97] as a practical diffusion MRI technique for estimating the 

microstructural complexity of dendrites and axons in vivo on clinical MRI scanners.  

In contrast, the non-parametric framework of MAP-MRI defined by Özarslan et al. (2013) [91], 

aims to quantify diffusion in arbitrary tissue environments, and therefore may be more amenable to 

detecting and studying pathology or brain tissue changes at the whole-brain level, based on an analytical 

reconstruction of associated metrics that recover microstructural information by exploring restriction of 

water molecules. 

With this in mind, rather than use a “tract-averaged” approach to analysis by averaging the 

scalar values into a single point-spread estimate for each WM tract, I proposed a complete workflow to 

conduct an along-tract analysis of WM pathways in the human brain and integrate not only DTI derived 

measures, but also more advanced parameters from NODDI and MAP-MRI, taking into account the 

potentially rich anatomical variation in diffusion imaging metrics along the tracts. 

In this study, the tractography technique was performed in order to reconstruct the arcuate 

fasciculus, corticospinal tract and corpus callosum, in a subjects’ population concerned by TLE patients 

and healthy controls. Then, after some specific markers of microstructural complexity were obtained for 

each WM tract, such as MD and FA as derived tensor measures; MSD, RTAP, RTOP and RTPP from 

the MAP-MRI framework; ODI, ICVF and ISOVF mapped using NODDI; the along-tract analysis was 

computed.  

First, this analysis was performed along each WM tract of interest and then, in order to show 

that this technique allows a more detailed analysis of small ROIs extracted, it was also applied to check 

the along-tract streamline distribution from a complex fibre geometry with multiple fibres populations 

as the centrum semiovale (a region with crossing fibres from the arcuate fasciculus, corticospinal tract 

and corpus callosum). As a result, the microstructure signature of each WM tract was delineated based 

on the within variation of each scalar map previously estimated, taking into account the normal anatomy 

of each tract and the possible changes that could occur associated to the diagnosis of this 

neuropathological condition, due to an increased diffusivity and reduced diffusion anisotropy, 

suggesting a loss of structural organization and expansion of the extracellular space. Having in mind the 
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values previously registered for the variation of each microstructural parameter along each WM pathway 

of interest and along a small ROI extracted from each one aiming to avoid fibres from the WM tracts in 

the neighbourhood, this along-tract technique of analysis also demonstrated to be able to characterize 

the centrum semiovale with its complex WM configuration.  

Second, the technique was easily extended to between-group analysis, by conducting an along-

tract analysis of differences in multiple microstructural parameters between 9 TLE patients with left 

epileptic focus and 9 healthy controls.  

This along-tract analysis of multiple microstructural metrics showed differences with statistical 

relevance, both locally and in extratemporal tracts despite the left epileptic focus, between the two 

groups, which agrees with the concept that epilepsy is a network disorder. The results suggest lower FA 

at the arcuate fasciculus in TLE patients. Regarding the corticospinal tract, lower FA was detected in 

the brainstem and close to the motor cortex, with a brief decrease being also verified near the mid-

sagittal plane of the corpus callosum. Higher MD was observed within all tracts in TLE patients, which 

were also characterized by higher MSD. RTAP and RTOP were lower along the tracts of TLE patients. 

Despite RTPP assume lower values along the arcuate fasciculus and corticospinal tract of TLE patients, 

a smaller variation was displayed across the corpus callosum between the two groups, with no 

statistically significance being observed. Nevertheless, the MAP-MRI reveals to be a technique that 

subsumes DTI while is also able to provide several novel and quantifiable parameters that capture 

previously obscured intrinsic features of tissue microstructure. In particular, we showed that the arcuate 

fasciculus is microstructurally abnormal bilaterally despite the unilateral TLE diagnosed in these 

patients. And, the spatial profile assumed by RTAP and RTOP showed an increased difference within 

the corpus callosum between the two groups compared to the along-tract behaviour drawn by the FA 

profile, which highlights the biologically specificity of these tissue markers in pathologies characterized 

by neuronal reduction as TLE. Regarding the NODDI derived measures and focusing on the results 

assumed by ODI and ISOVF, major differences with statistical relevance between the two groups were 

not detected, expect along the left arcuate fasciculus for both microstructural parameters, and along the 

left/right corticospinal tract for the ISOVF metric. The results also reveal that the TLE patients showed 

significant lower values of ICVF when compared to healthy controls.  

On the other hand, focused on the within-tract variability of the multiple microstructural 

parameters that exists along the tracts in study, these two studies based on an along-tract approach also 

highlighted the feasibility and potential benefits for clinical purposes with increased pathophysiological 

specificity obtained through this kind of analysis.  

In addition, as a validation method of the microstructural changes that were concluded using the 

along-tract analysis when TLE patients were compared with healthy controls, but also as a technique 

capable of investigate WM change patterns across the whole brain, a TBSS method was applied to our 

dataset. As a fully automated whole-brain analysis technique that uses voxel-wise statistics on diffusion 

metrics but simultaneous minimizes the effects of misalignment using a conventional voxel-based 

analysis method, with TBSS we aimed to be able to describe the WM change patterns across the whole 

brain in TLE patients, and explore multiple diffusion metrics (FA, MD, MSD, RTAP, RTOP, RTPP, 

ODI, ICVF and ISOVF) alteration related to this neuropathological condition. 

Based on this, with this study a global map of the WM changes in TLE patients by means of 

TBSS method was generated. Compared with healthy controls, the TLE patients showed significantly 

reduced FA, RTAP, RTOP, RTPP and ICVF, and increased MD and MSD in distributed WM regions, 

including the WM tracts studied using the along-tract analysis (between-groups study). No significant 

differences were achieved for ODI and ISOVF between the two groups along any of the tracts. 

The diffusion changes and clinical correlations illustrated by the microstructural change patterns 

of each metric obtained with this leading technique for voxel-wise analysis were important since these 

findings are well documented through several studies over the last years, which allow us to assume it as 

a valid tool to investigate the robustness and clinical feasibility of the results derived from the along-
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tract analysis, as well as the pathophysiological specificity regarding the diffusion changes that occur 

associated to TLE.  

Nevertheless, one of the crucial steps of the TBSS analysis is the creation of the mean FA 

skeleton which represents the centres of all tracts common to the group, in order to project each subject's 

aligned FA data onto this skeleton. In addition TBSS assumes that the measurements are calculated by 

taking a weighted average of the microstructural parameters of each individual fibre at the node (so 

called “fibre core”) to combine measures throughout the length of the fibres across different subjects. 

This allow us to conclude that the workflow comprised by the along-tract analysis also shows increased 

specificity, compared to this voxelwise analysis, by displaying the values of each microstructural 

parameter on multiple points that were equidistantly distributed along each fibre across the whole 

thickness of each WM tract, which also reveals to be a major and extremely useful advantage of this 

technique in order to see and explore the extent of within-tract variability of each scalar map along the 

tracts. 

Finally, an additional study was also performed based on the FBA in order to support the 

conclusions derived from the along-tract analysis between TLE patients and healthy controls. FBA 

allows a comprehensive statistical analysis of WM quantitative measures in order to detect changes in 

intra-axonal volume that may manifest as differences in within-voxel fibre density and/or macroscopic 

fibre bundle morphology in the presence of TLE (with left epileptic focus). 

The FBA started with the generation of a population-specific FOD template, followed by the 

registration of all FOD images to that template. To identify WM differences between TLE patients and 

controls, three factors were quantified in all WM fixels: FD, FC and FDC.  

Reductions in FD, FC and FDC were identified in TLE patients compared to controls, which is 

in line with the microstructural changes that result from the degeneration process that affects WM 

structures with the loss of axons in the presence of a neuropathological condition as TLE. Results that 

were also in concordance with the previous results obtained through the between-groups analysis 

performed using an along-tract approach, highlighting the fact that those changes are not necessarily 

restricted to the temporal lobe but might extend to other brain regions as well. 
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9 Future Directions 

Future directions naturally emerge from the conclusions of this dissertation. First of all, it is 

clear that nowadays the whole diffusion imaging community is converging towards the use of multi-

shell techniques and that for these to have clinical research value, it is essential that new methodologies, 

both at hardware and reconstruction level are practical and effective. Regarding the diffusion propagator 

reconstruction performed with SHORE or MAP-MRI, taken as a feasible and viable novel technique for 

clinical applications, future studies focusing on quantitative assessment, biophysical validation and 

clinical performance are needed. MAP-MRI subsumes DTI and provides a more comprehensive 

microstructural tissue characterization with complementary scalar indices that potentially could be more 

specifically related to features of tissue morphology (e.g., compartment size, cellularity, restriction). 

Consequently, the next step in investigating such approach would require optimisation of this 

methodology not only in terms of ability to reconstruct microstructural indices, which were explored in 

this dissertation as biologically specific tissue markers, but also in terms of angular features of the 

diffusion signal, for purposes of structural connectivity studies.  

This will be crucial for tractography purposes where Spherical Deconvolution remains one of 

the best techniques to recover the directionality of diffusion displacements throughout the brain. The 

combination of diffusion propagator metrics in the computation of the orientation distribution function, 

tailored for the natural diffusivities of axons, can potentially improve angular resolutions. Furthermore, 

as tractography becomes more and more ubiquitous in the research community and clinical practise, the 

mapping of these metrics as well as others provided by DTI and NODDI, for example, along tracts, as 

explored in this dissertation, may help to better characterize differences between control and patient 

groups. However, knowing that this technique of analysis may help introduce a new way of comparing 

data which can portray differences in a more informative way, we can conclude from the results provided 

by the along-tract approach presented and used on the current study, that further studies are still needed 

focusing on the technical methodologies associated to the presented approach, since the standard 

deviation associated to each sample point of the diffusion metrics along the tracts was significant, which 

somehow may have influenced our results and consequently the conclusions drawn from them. 

Despite all this, the along-tract analysis will be certainly useful not only to quantify 

microstructure, but also to infer structural connectivity, as current methodologies remain to be an open 

challenge in terms of diagnostic potential. Furthermore, while new methods of validating diffusion 

imaging are being developed, and as this fields gets close to the limit of what is possible without any 

assumptions on what is being imaged, the integration between model free and model-based approaches 

is certainly an avenue worth pursuing.  

With this in mind and regarding the interesting results provided by the present along-tract 

approach, the aim of a future study could be to demonstrate that the architectural configuration of WM 

pathways reconstructed with tractography can be improved by informing the algorithm about the 

underlying microstructural characteristics, which play a key role by quantitative describing the diffusion 

process, even in the presence of crossing / kissing / fanning fibres, or a neurological disorder, such as 

epilepsy. As an example, we can performe an analysis showing that we could see better differences 

using WM tracts that had been "filtered" by the signature that was generated by an along-tract analysis, 

compared to “unfiltered” tractography. 

Additionally and regarding the FBA, we propose to apply this framework to other dMRI models 

that aim to estimate a fixel-specific measure related to the intra-axonal volume (e.g. NODDI).  

Given that FBA is a relatively new framework, there will naturally be a number of interesting 

follow-up experiments that can be conducted within a cross-sectional and longitudinal FBA setting. For 

example, adding the information regarding the subjects’ exposure to anti-seizure medications, which is 

known to be associated with cerebellar atrophy, may be a useful information to better define and 

characterize the degeneration process that was observed in this study across the TLE patients when 

compared to healthy controls. Incorporating this and other related variables in a follow-up analysis 

would be interesting and warranted. On the other hand, although FBA enables a more comprehensive 
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insight into WM changes, as illustrated by recent application in other disease states ((Raffelt et al.,   

2016) [169]; (Genc et al., 2017) [171]; (Vaughan et al., 2017) [172]; (Wright et al., 2017) [173]; (Gajamange 

et al., 2018) [174]), future studies including FBA, in conjunction with other neuroimaging methods, could 

enable much more fibre tract-specific insight than has previously been possible. 
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11  Appendices 

The current chapter comprises the appendices referring to the project that was developed. 

According to the University College London Research Ethics Committee, the identification of the 

subjects’ IDs is consider a breach of the ethical permission. So, in the next scripts the subjects’ ID was 

written instead of the light-blue rectangle during the study. 

 

11.1 Auxiliary MATLAB function  

This appendix presents the auxiliary MATLAB function which was developed to extract the 

ROIs that correspond to the postcentral and precentral brain regions, which in turn allowed to obtain the 

homologous connection between motor cortices of the corpus callosum. 
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11.2 DTI derived metrics protocol 

 This appendix presents the script which was developed using the facilities of DIPY to return 

FA and MD values for a subject as example.  
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11.3 MAP-MRI derived metrics protocol 

 This appendix presents the script which was developed using the facilities of DIPY to return 

MSD, RTOP, RTAP and RTPP values for a subject as example.  
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11.4 NODDI derived metrics protocol 

 This appendix presents the script which was developed using the facilities of AMICO to return 

ODI, ICVF and ISOVF values for a subject as example.  
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11.5 Design matrix and contrasts file 

 This appendix presents the design matrix and the contrasts file, both used on the FBA and 

TBSS analysis. 
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11.6 Along-tract analysis: single-subject  

 This appendix presents the results regarding the along-tract analysis of a single-subject. 

Figure 11.1 | Along-tract analysis of the left arcuate fasciculus (AF), left corticospinal tract (CST), corpus callosum (CC) - 

homologous connection between motor cortices, and left centrum semiovale (from top to bottom) based on their tractograms, 

from which it was possible to generate the reconstructions via MATLAB (first column). The following columns are divided in 
groups of three rows. The first row illustrate the variation of fractional anisotropy (FA) and mean diffusivity (MD) along each 

WM tract of interest. In the second row, it was highlighted, from all the streamlines, the value of each diffusion metric assumed 

by each resampled point that is part of the extracted ROI from each WM pathway. The respective average variation of each 

scalar map along the extracted ROI is represented in the third row of graphs. The reconstruction of left AF was coloured by 
blue, the left CST by orange, and the CC by light-blue, from which the extracted ROIs were coloured by yellow, red and grey, 

respectively. The centrum semiovale (left hemisphere) was coloured by black after merging the left AF (blue), left CST 

(orange) and CC (light-blue). The units of MD are 𝑚𝑚2/𝑠. 
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Figure 11.2 | Along-tract analysis of the left arcuate fasciculus (AF), left corticospinal tract (CST), corpus callosum (CC) - 
homologous connection between motor cortices, and left centrum semiovale (from top to bottom) based on their tractograms, 

from which it was possible to generate the reconstructions via MATLAB (first column). The following columns are divided in 

groups of three rows. The first row illustrate the variation of mean square displacement (MSD), (square-root of) return to axis 

probability (RTAP), (cube-root of) return to origin probability (RTOP) and return to plane probability (RTPP) along each WM 
tract of interest. In the second row, it was highlighted, from all the streamlines, the value of each diffusion metric assumed by 

each resampled point that is part of the extracted ROI from each WM pathway. The respective average variation of each scalar 

map along the extracted ROI is represented in the third row of graphs. The reconstruction of left AF was coloured by blue, the 

left CST by orange, and the CC by light-blue, from which the extracted ROIs were coloured by yellow, red and grey, 
respectively. The centrum semiovale (left hemisphere) was coloured by black after merging the left AF (blue), left CST 

(orange) and CC (light-blue). The units of MSD are 𝑚𝑚2/𝑠, and RTAP, RTOP and RTPP are given by 𝑚𝑚−1.  
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Figure 11.3 | Along-tract analysis of the left arcuate fasciculus (AF), left corticospinal tract (CST), corpus callosum (CC) - 
homologous connection between motor cortices, and left centrum semiovale (from top to bottom) based on their tractograms, 

from which it was possible to generate the reconstructions via MATLAB (first column). The following columns are divided in 

groups of three rows. The first row illustrate the variation of orientation dispersion index (ODI), intracellular volume fraction 

(ICVF) and isotropic volume fraction (ISOVF) along each WM tract of interest. In the second row, it was highlighted, from 
all the streamlines, the value of each diffusion metric assumed by each resampled point that is part of the extracted ROI from 

each WM pathway. The respective average variation of each scalar map along the extracted ROI is represented in the third row 

of graphs. The reconstruction of left AF was coloured by blue, the left CST by orange, and the CC by light-blue, from which 

the extracted ROIs were coloured by yellow, red and grey, respectively. The centrum semiovale (left hemisphere) was coloured 
by black after merging the left AF (blue), left CST (orange) and CC (light-blue).  

 

 

 



88 
 

  

Figure 11.4 | Along-tract analysis of the right arcuate fasciculus (AF), right corticospinal tract (CST), corpus callosum (CC) - 

homologous connection between motor cortices, and right centrum semiovale (from top to bottom) based on their tractograms, 

from which it was possible to generate the reconstructions via MATLAB (first column). The following columns are divided in 
groups of three rows. The first row illustrate the variation of fractional anisotropy (FA) and mean diffusivity (MD) along each 

WM tract of interest. In the second row, it was highlighted, from all the streamlines, the value of each diffusion metric assumed 

by each resampled point that is part of the extracted ROI from each WM pathway. The respective average variation of each 

scalar map along the extracted ROI is represented in the third row of graphs. The reconstruction of right AF was coloured by 
blue, the right CST by orange, and the CC by light-blue, from which the extracted ROIs were coloured by yellow, red and 

grey, respectively. The centrum semiovale (right hemisphere) was coloured by black after merging the right AF (blue), right 

CST (orange) and CC (light-blue). The units of MD are 𝑚𝑚2/𝑠. 
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Figure 11.5 | Along-tract analysis of the right arcuate fasciculus (AF), right corticospinal tract (CST), corpus callosum (CC) - 
homologous connection between motor cortices, and right centrum semiovale (from top to bottom) based on their tractograms, 

from which it was possible to generate the reconstructions via MATLAB (first column). The following columns are divided in 

groups of three rows. The first row illustrate the variation of mean square displacement (MSD), (square-root of) return to axis 

probability (RTAP), (cube-root of) return to origin probability (RTOP) and return to plane probability (RTPP) along each WM 
tract of interest. In the second row, it was highlighted, from all the streamlines, the value of each diffusion metric assumed by 

each resampled point that is part of the extracted ROI from each WM pathway. The respective average variation of each scalar 

map along the extracted ROI is represented in the third row of graphs. The reconstruction of left AF was coloured by blue, the 

left CST by orange, and the CC by light-blue, from which the extracted ROIs were coloured by yellow, red and grey, 
respectively. The centrum semiovale (right hemisphere) was coloured by black after merging the right AF (blue), right CST 

(orange) and CC (light-blue). The units of MSD are 𝑚𝑚2/𝑠, and RTAP, RTOP and RTPP are given by 𝑚𝑚−1.  
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Figure 11.6 | Along-tract analysis of the right arcuate fasciculus (AF), right corticospinal tract (CST), corpus callosum (CC) - 
homologous connection between motor cortices, and right centrum semiovale (from top to bottom) based on their tractograms, 

from which it was possible to generate the reconstructions via MATLAB (first column). The following columns are divided in 

groups of three rows. The first row illustrate the variation of orientation dispersion index (ODI), intracellular volume fraction 

(ICVF) and isotropic volume fraction (ISOVF) along each WM tract of interest. In the second row, it was highlighted, from 
all the streamlines, the value of each diffusion metric assumed by each resampled point that is part of the extracted ROI from 

each WM pathway. The respective average variation of each scalar map along the extracted ROI is represented in the third row 

of graphs. The reconstruction of left AF was coloured by blue, the left CST by orange, and the CC by light-blue, from which 

the extracted ROIs were coloured by yellow, red and grey, respectively. The centrum semiovale (right hemisphere) was 
coloured by black after merging the right AF (blue), right CST (orange) and CC (light-blue).  
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INTRODUCTION & OBJECTIVES 

Traditional tractography studies rely on averaging diffusion metrics along reconstructed pathways to identify 

microstructural changes between groups. A workflow to conduct along-tract analysis of white matter tracts and 

integrate not only DTI derived measures, but also more advanced parameters from MAP-MRI, was developed to 

investigate differences between controls and patients with TLE, taking into account the potentially rich anatomical 

variation in diffusion metrics along the tracts. 

 

METHODS 

9 Patients with left TLE and 9 controls (Table 1) were studied. Images were previously acquired and pre-processed. 

Tractography of arcuate fasciculus (AF), corticospinal tract (CST) and corpus callosum (CC) – homologous 

connection between motor cortices, and along-tract analysis, with integration of diffusion metrics, were performed 

(complete pipeline in Figure 1). A Kruskal-Wallis test was executed to verify that the groups are statistically 

different, taking into account three sections of each tract with equivalent number of resampled points. A 1% 

significance value was considered.  

 

 

Table 1 – Controls and patients with Temporal Lobe Epilepsy (TLE) characterisation according to gender. Age is given in years old (y.o.) 

with mean ± standard deviation (SD) and with the respective range. 

 Controls Patients with TLE 

N 9 9 

Gender 5 M / 4 F 5 M / 4 F 

Age (y.o.) by gender 
[13 ± 5] / [11 ± 3] 

[8 - 18] / [8 - 15] 

[13 ± 6] / [11 ± 6] 

[6 - 19] / [5 - 19] 

Age (y.o.) group total 
12 ± 4 

[8 – 18] 

12 ± 5 

[5 – 19] 
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RESULTS 

Along-tract analysis of multiple microstructural metrics showed differences with statistical relevance 

between the groups (Figure 2). The results suggest a more detailed tissue characterization based on 

MAP-MRI parameters, reflecting the greater neuroanatomical specificity of these microstructural 

features along the tracts. We show that AF is microstructurally abnormal bilaterally despite the unilateral 

TLE diagnosed in these patients. Additionally, RTAP and RTOP showed an increased difference within 

CC between the groups compared to the along-tract behaviour drawn by FA, which highlights the 

biologically specificity of these markers in pathologies characterized by neuronal reduction as TLE.  

 

CONCLUSION 

Increased diffusivity and reduced anisotropy were observed, suggesting a loss of structural organization 

and expansion of the extracellular space, both locally and in extratemporal tracts, despite the left 

epileptic focus, which agrees with the concept that epilepsy is a network disorder. MAP-MRI parameters 

also show significant microstructural brain tissue changes, being a useful adjunct to conventional DTI 

parameters.   

 

Figure 1 - Pipeline of the along-tract analysis. From the diffusion images were generated: (a) five-tissue-type (5TT) segmented tissue images 

which were used as inputs on the estimation of the response-functions (RFs); (b) BET (Brain Extraction Tool) masks used to compute the fibre 

orientation distributions (FOD) images and their normalised images; and, (c) microstructural scalar maps using DIPY as framework. (d) The 

inclusion regions-of-interest (ROIs) were drawn to compute the tracts, using the 5TT image to delineate the propagation and termination of 

streamlines. (e) Using MRtrix, every streamline from each tract was resampled to a fixed number of points which were distributed 

equidistantly, in order to ensure that each streamline had the same number of points, and used to sample the scalar maps. Using MATLAB 

tools the microstructural averaged values were plotted along the tracts. 
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Figure 2 - Along-tract analysis of the fractional anisotropy (FA), mean diffusivity (MD), mean square displacement (MSD), square-root of 

return-to-the-axis probability (RTAP), cube-root of return-to-the-origin probability (RTOP), and return-to-the plane probability (RTPP) along 

(from left to right) the left / right arcuate fasciculus (AF), where (1) represents the Broca's area, (2) the Geschwind’s area  and (3) the 

Wernicke's area; the left / right corticospinal tract (CST), where (4) represents the region near the brainstem, (5) the region at the level of the 

internal capsule and (6) the region near the motor cortex; and the corpus callosum (CC) - homologous connection between motor cortices, 

where (7) represents the connections to right motor cortex, (8) the colossal fibres near the mid-sagittal plane and (9) the connections to left 

motor cortex. The level of significance is represented by one star (*) where the p-value is lower than 0.01 (i.e. difference between groups with 

statistical relevance). The average variation of each microstructural parameter across the TLE patients is represented by the blue line and the 

associated standard deviation coloured by light-blue; and, the average variation of each microstructural parameter across the healthy controls 

is represented by the orange line and the associated standard deviation coloured by light-orange. The units of MD and MSD are 𝑚𝑚2/𝑠, and 

RTAP, RTOP and RTPP are given by 𝑚𝑚−1. Abbreviations: A – anterior; P – posterior; L – left; R – right.  
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INTRODUCTION 

Traditional tractography studies rely on averaging diffusion metrics along reconstructed pathways to identify 

microstructural changes between groups. Here, we developed a workflow to conduct along-tract analysis of white 

matter (WM) tracts and integrate not only Diffusion Tensor Imaging (DTI)1 derived measures, but also more 

advanced parameters from Mean Apparent Propagator-Magnetic Resonance Imaging (MAP-MRI)2,3, to 

investigate differences between controls and patients with Temporal Lobe Epilepsy (TLE) taking into account the 

potentially rich anatomical variation in diffusion metrics along the WM tracts. 

 

METHODS 

Data acquisition and pre-processing: 9 Patients with left TLE (5 males, mean age 12 years, age range 5–19 years) 

and 9 controls (5 males, mean age 12 years, age range 8–18 years) were studied. Data were collected on a Siemens 

Prisma 3.0T clinical system using a multi-band diffusion weighted single-shot spin echo - echo planar imaging 

sequence, with an acceleration factor of 2. Two sets of 60 non-collinear directions, using a weighting factor of 

1000𝑠/𝑚𝑚2 and 2200𝑠/𝑚𝑚2, were acquired along with 13 additional T2-weighted (b=0) volumes. 66 axial slices 

of thickness 2.0𝑚𝑚 were imaged, using a FOV=220×220𝑚𝑚2 and 110×110 voxel acquisition matrix, for a final 

image resolution of 2.0×2.0×2.0𝑚𝑚3; TE=60𝑚𝑠 and TR=3050𝑚𝑠. Images were denoised using MRtrix (Veraart’s 

method4,5), with TOPUP and EDDY being used to correct susceptibility distortions, motion and eddy current. 

Data processing: Tractography of arcuate fasciculus (AF), corticospinal tract (CST) and corpus callosum (CC) – 

homologous connection between motor cortices, and along-tract analysis, with integration of diffusion metrics 

computed using DIPY6, were performed (complete pipeline in Figure 1). A Kruskal-Wallis test was also executed 

in order to verify that the groups are statistically different, taking into account three sections (start, middle, end) 

of each tract with equivalent number of resampled points. A 1% significance value was considered.  
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RESULTS 

Along-tract analysis of multiple microstructural metrics showed differences with statistical relevance between the 

two groups (Figure 2). The results suggest lower FA (fractional anisotropy) at AF in TLE patients. Regarding the 

CST, lower FA was detected in the brainstem and close to the motor cortex, with a brief decrease being also 

verified near the mid-sagittal plane of the CC. Higher MD (mean diffusivity) was observed within all tracts in TLE 

patients, which were also characterized by higher MSD (mean squared displacement). RTAP (return to axis 

probability) and RTOP (return to origin probability) were lower along the tracts of TLE patients. Despite RTPP 

(return to plane probability) assume lower values along the AF and CST of TLE patients, a smaller variation was 

displayed across the CC between the two groups, with no statistically significance being observed. Nevertheless, 

a more detailed tissue characterization based on MAP-MRI parameters was obtained, reflecting the physically 

meaningfulness of these microstructural features with greater neuroanatomical specificity along the tracts. For 

example, we show that the AF is microstructurally abnormal bilaterally despite the unilateral TLE diagnosed in 

these patients. And, RTAP and RTOP showed an increased difference within the CC between the two groups 

compared to the along-tract behaviour drawn by the FA profile, which highlights the biologically specificity of 

these tissue markers in pathologies characterized by neuronal reduction as TLE.  

Figure 1 - Pipeline of the along-tract analysis. From the diffusion images were generated: (a) five-tissue-type (5TT) segmented tissue images 

which were used as inputs on the estimation of the response-functions (RFs); (b) BET (Brain Extraction Tool) masks used to compute the fibre 

orientation distributions (FOD) images and their normalised images; and, (c) microstructural scalar maps using DIPY as framework. (d) The 

inclusion regions-of-interest (ROIs) were drawn to compute the tracts, using the 5TT image to delineate the propagation and termination of 

streamlines. (e) Using MRtrix, every streamline from each tract was resampled to a fixed number of points which were distributed equidistantly, 

in order to ensure that each streamline had the same number of points, and used to sample the scalar maps. Using MATLAB tools the 

microstructural averaged values were plotted along the tracts. 
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Figure 2 - Along-tract analysis of the fractional anisotropy (FA), mean diffusivity (MD), mean square displacement (MSD), (square-root of) 

return-to-the-axis probability (RTAP), (cube-root of) return-to-the-origin probability (RTOP), and return-to-the plane probability (RTPP) 

along (from left to right) the left / right arcuate fasciculus (AF), where (1) represents the Broca's area, (2) the Geschwind’s area  and (3) the 

Wernicke's area; the left / right corticospinal tract (CST), where (4) represents the region near the brainstem, (5) the region at the level of the 

internal capsule and (6) the region near the motor cortex; and the corpus callosum (CC) - homologous connection between motor cortices, 

where (7) represents the connections to right motor cortex, (8) the colossal fibres near the mid-sagittal plane and (9) the connections to left 

motor cortex. The level of significance is represented by one star (*) where the p-value is lower than 0.01 (i.e. difference between groups with 

statistical relevance). The average variation of each microstructural parameter across the TLE patients is represented by the blue line and the 

associated standard deviation coloured by light-blue; and, the average variation of each microstructural parameter across the healthy controls 

is represented by the orange line and the associated standard deviation coloured by light-orange. The units of MD and MSD are 𝑚𝑚2/𝑠, and 

RTAP, RTOP and RTPP are given by 𝑚𝑚−1. Abbreviations: A – anterior; P – posterior; L – left; R – right.  
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CONCLUSION 

The results showed increased diffusivity and reduced anisotropy, suggesting a loss of structural organization and 

expansion of the extracellular space with TLE, both locally and in extratemporal tracts despite the left epileptic 

focus, which agrees with the concept that epilepsy is a network disorder. In addition MAP-MRI parameters also 

show significant microstructural brain tissue changes and are a useful adjunct to conventional DTI parameters.   
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