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ABSTRACT

Recent developments in magnetic resonance imaging (MRI) provide an in vivo and 

noninvasive tool for studying the human brain. In particular, the detection of anisotropic 

diffusion in biological tissues provides the foundation for diffusion-weighted imaging (DWI), 

an MRI modality. This modality opens new opportunities for discoveries of the brain’s 

structural connections. Clinically, DWI is often used to analyze white m atter tracts to 

understand neuropsychiatric disorders and the connectivity of the central nervous system. 

However, due to imaging time required, DWI used in clinical studies has a low angular 

resolution. In this dissertation, we aim to accurately track and segment the white m atter 

tracts and estimate more representative models from low angular DWI.

We first present a novel geodesic approach to segmentation of white m atter tracts 

from diffusion tensor imaging (DTI), estimated from DWI. Geodesic approaches treat 

the geometry of brain white m atter as a manifold, often using the inverse tensor field 

as a Riemannian metric. The white m atter pathways are then inferred from the resulting 

geodesics. A serious drawback of current geodesic methods is tha t geodesics tend to deviate 

from the major eigenvectors in high-curvature areas in order to achieve the shortest path. 

We propose a method for learning an adaptive Riemannian metric from the DTI data, where 

the resulting geodesics more closely follow the principal eigenvector of the diffusion tensors 

even in high-curvature regions. Using the computed geodesics, we develop an automatic 

way to compute binary segmentations of the white m atter tracts. We demonstrate that our 

method is robust to noise and results in improved geodesics and segmentations. Then, based 

on binary segmentations, we present a novel Bayesian approach for fractional segmentation 

of white m atter tracts and simultaneous estimation of a multitensor diffusion model. By 

incorporating a prior tha t assumes the tensor fields inside each tract are spatially correlated, 

we are able to reliably estimate multiple tensor compartments in fiber crossing regions, even 

with low angular diffusion-weighted imaging. This reduces the effects of partial voluming 

and achieves a more reliable analysis of diffusion measurements.
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CHAPTER 1

INTRODUCTION  

1.1 Motivation
For the past centuries, many histological studies have been conducted to explore the 

unknown structures of the brain [1-4]. While these studies are productive and effective, 

they are ex vivo and commonly involve cells/tissue sectioning and staining. Fortunately, 

the developments of magnetic resonance imaging (MRI) [5-9] in the last century provide us 

an in vivo and noninvasive tool [10-14] tha t can create good contrast between soft tissues of 

the human body. Moreover, diffusion-weighted imaging (DWI) [15-17], an MRI modality, 

opens new opportunities for discoveries of the brain’s structural connections [18-26], as it 

can measure the diffusion of water along different gradient directions in tissues (such as 

brain white matter) and reveal in vivo properties of the brain white matter.

Clinically, DWI is useful for understanding neuropsychiatric disorders [27,28], such as 

autism [29] and the connectivity of white m atter tracts of the central nervous system. For 

example, DWI can be used to study normal brain development [30-33] over time, analyze the 

differences between typically developing people and people with disorders or diseases [34-37], 

and research the connections between different functional regions of the brain. In these kinds 

of studies, tracking and segmenting white m atter tracts [38-63] with certain modeling of 

diffusion signals is often the primary goal of DWI analysis, and the extracted diffusion 

measurements (computed based on the diffusion model) from the segmented white m atter 

tracts are used in the further statistical analysis.

There are many ways to model the DWI signals [17,64-75]. One important way to decode 

the diffusion signals is diffusion tensor imaging (DTI) [17], during which a second-order 

tensor is used to model the diffusion in a voxel from the DWI data. This model only 

requires DWI signals along a small number of gradient directions. The derived diffusion 

measurements, such as fractional anisotropy (FA) and mean diffusivity (MD), are widely 

used in clinical studies. While the diffusion tensor provides an elegant characterization of 

anisotropic diffusion in white matter, it is limited to represent only one tract in each imaging 

voxel, which is problematic in the presence of multiple fibers, such as fiber crossing or partial
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voluming. High-angular resolution diffusion imaging (HARDI) (see [65] for a review) has 

been introduced as a means of distinguishing multiple diffusion compartments. It requires 

DWI signals along many more gradient directions. Several multicompartment models of 

diffusion have been introduced, such as the multitensor [66] and ball-and-stick [72] models. 

However, one drawback to HARDI is the increased imaging time required, which has been a 

barrier to its introduction in clinical studies. Therefore, given the low angular D W I data in 

clinical studies, it is interesting to ask how we can accurately track and segment the white 

matter tracts, and whether it is possible to estimate a H ARD I model, such as the multitensor 

model.

Several works have developed methods for tracking and segmenting white m atter tracts 

from DWI data, such as deterministic tractography [38-40]. These methods compute 

streamlines (sometimes called fibers) by forward integration of the principal eigenvector 

of the diffusion tensors, estimated from DWI signals, from a region. The streamlines 

are filtered by predefined regions of interest (ROIs) to create a segmentation of a white 

m atter tract. One major problem with tractography is tha t imaging noise causes errors in 

the principal eigenvector direction, and these errors accumulate in the integration of the 

streamlines. Stochastic tractography [41-46] is an approach that deals with the problems 

arising from image noise. In these methods, large numbers of streamlines are initiated 

from each seed voxel and are integrated along directions determined stochastically at each 

point. However, this is a computationally-intensive procedure (typically requiring several 

hours). Also, stochastic tractography, like deterministic tractography, suffers from the same 

problems with streamlines stopping in noisy or low-anisotropy regions, leading to artificially 

low (or even zero) probabilities of connection.

An alternative approach tha t deals with this problem is the front-propagation meth­

ods [47-55]. The methods infer the pathways of white m atter by first evolving a level set 

representing the time-of-arrival of paths emanating from a predefined starting region. Then, 

pathways are computed by integrating the characteristic vectors of the level set backward 

from any target point to the starting region [49]. The direction and speed of this evolving 

front at each point is determined by a cost function chosen by the users or derived from 

the diffusion tensor data. One such method, first proposed by O’Donnell et al. [48], is 

to treat the inverse of the diffusion tensor as a Riemannian metric and the paths in the 

propagating front as geodesics, i.e., shortest paths under this metric. This makes intuitive 

sense: traveling along the large axis of the diffusion tensor results in shorter distances, 

while traveling in the direction of the small axes results in longer distances. Therefore, the
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shortest paths will tend to remain tangential to the principal eigenvector of the diffusion 

tensor.

Front-propagation approaches for analyzing white m atter pathways are attractive for 

at least three reasons. First, the front-propagation algorithms are more robust to noise 

than both deterministic tractography and stochastic tractography. This is because front- 

propagation methods compute fibers by optimizing a global criterion over the whole brain, 

so the wavefront is not constrained to follow exactly the principal eigenvector of the tensors. 

Although the principal eigenvector of the tensor is the preferred direction for paths to travel, 

the minimal-cost paths may deviate from these directions if the deviation decreases the 

overall cost, and hence the paths are less sensitive to noise or partial voluming. Second, 

front-propagation methods can compute a large number of fibers using a short computa­

tional time. Efficient implementations of front-propagation solvers are much faster (typically 

requiring several seconds) than stochastic tractography. The graphics processing unit 

(GPU) implementation by Jeong et al. [76] even runs at near real-time speeds. Finally, 

as shown by Fletcher et al. [52], front-propagation methods can be used to segment white 

m atter tracts by solving the geodesic flow from two ROIs and combining the resulting cost 

functions. In contrast to tractography methods, this approach has the advantage that the 

solution will not get stuck in regions of noisy data or low anisotropy.

While this is a powerful framework for computing white m atter pathways, these geodesics 

have the serious deficiency tha t they tend to deviate from the eigenvector directions in 

high-curvature tracts and take straighter trajectories than is desired [53-55]. That is, in 

high-curvature regions, the incremental cost of following the tensor field is overcome by 

the cost associated with the longer (more curved) path. To solve this problem, I develop 

a new Riemannian metric tha t relies on diffusion tensor data but resolves this problem by 

adapting to high-curvature tracts. This results in geodesic paths tha t more faithfully follow 

the principal eigenvectors. Based on the computed geodesics from the two end regions of 

a white m atter tract, I develop an automatic binary segmentation framework resulting in 

segmentations tha t better delineate the white m atter tracts without requiring the users to 

tune parameters or employ other kinds of user intervention [55].

Despite the advantages of the binary segmentation framework, it uses DTI model and 

it is limited to segment only one diffusion tensor in each imaging voxel. In several regions 

of our brain, such as corona radiata, at least two white m atter tracts are passing through 

each other, and voxels at these region have two or even more neural tracts traveling in 

different directions. In addition, some white m atter tracts are mixed with gray m atter or
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cerebrospinal fluid (CSF) at the boundary, such as in the corpus callosum of the human 

brain. In these cases, a single diffusion tensor cannot separate them, and thus the signal 

diffusion tensor is inappropriate and the characterization of the diffusion in these voxels 

using the signal diffusion tensor model is inaccurate. Furthermore, binary segmentations 

sometimes undersegment or oversegment the white m atter tracts, which could bias the 

diffusion measurement statistics and produce misleading results in clinical studies. To 

overcome the drawbacks mentioned above, I propose a novel Bayesian approach to estimate 

simultaneously both the fractional segmentation of white m atter tracts and the multitensor 

diffusion model [77]. Our model consists of several white m atter tracts, and each voxel 

contains a set of weights and tensor compartments. By incorporating a prior that assumes 

the tensor fields inside each tract are spatially correlated, we are able to estimate reliably 

multiple tensor compartments in fiber crossing regions, even with low angular diffusion- 

weighted imaging (DWI). Our model distinguishes the diffusion compartment associated 

with each tract, which reduces the effects of partial voluming and achieves more reliable 

statistics of diffusion measurements.

1.2 Thesis Statement
G eodesic tracking w ith  an adaptive R iem an n ian  m e tr ic  resu lts in  

m ore represen ta tive  geodesics and m ore accurate segm en ta tion s o f  

w hite m a tte r  pa thw ays. Using a spa tia l p r io r , we can es tim a te  fra c ­

tion a l segm en ta tion  and m u ltiten so r  com partm en ts sim u ltaneously  even  

w ith  low angular D W I. T h e proposed  m ethods reduce the p a rtia l vo l­

um e effects and resu lt in  a m ore reliable d iffusion  m easu rem en t anal­

ys is  in  clin ical studies.

The term adaptive means tha t the Riemannian metric is modulated based on the 

curvature of white m atter tracts. The modulated metric will let the geodesic faithfully 

follow the principal eigendirection of tensors in a region.

The term fractional segmentation means tha t we estimate multitensor compartments in 

each voxel. Each compartment belongs to a white m atter tract, and it is associated with a 

number that reveals the fraction of the voxel occupied by the corresponding tract.

1.3 Contributions
I propose the following contributions:

• A d ap tiv e  R ie m a n n ia n  M e tric s  for Im p ro v ed  G eodesic  T rack ing . We for­

mulate a modification of the Riemannian metric tha t results in geodesics adapted to
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follow the principal eigendirection of the tensor even in high-curvature regions. We 

show tha t this correction can be formulated as a simple scalar field modulation of the 

metric and tha t the appropriate variational problem results in a Poisson’s equation 

on the Riemannian manifold. We demonstrate that the proposed method results in 

improved geodesics using both synthetic and real DTI data.

• B in a ry  S eg m e n ta tio n  o f W h ite  M a tte r  T ra c ts  B ased  on  G eodesic  T rack ing . 

We propose an automatic method to segment white m atter tracts based on the angles 

of the two characteristic vector fields from the two ROIs. There are almost no 

parameters in our whole framework, and the only necessary user intervention is to 

draw the ROIs. As such, our method can be very useful for large data clinical studies, 

where fewer parameters and less user intervention are preferred.

• J o in t F ra c tio n a l S eg m e n ta tio n  an d  M u ltite n so r  E s tim a tio n . To overcome the 

drawbacks of binary segmentation, we propose a novel Bayesian approach for fractional 

segmentation of white m atter tracts and simultaneous estimation of a multitensor 

diffusion model. By incorporating a prior tha t assumes the tensor and fraction fields 

inside each tract are spatially correlated, we are able reliably to estimate multiple ten­

sor compartments in fiber crossing regions, even with low angular diffusion-weighted 

imaging (DWI).

• D iffusion M e a su re m e n t A nalysis o f A u tism  D iso rd er. I apply both binary 

segmentation and fractional segmentation to explore the white m atter abnormalities in 

autism neuropsychiatric disorder by analyzing the diffusion measurements from both 

typically developing people and people with neuropsychiatric disorders. I also compare 

the results from binary segmentation with the ones from fractional segmentation.

1.4 Organization of the Thesis
The remainder of the thesis is organized as follows:

Chapter 2 provides the necessary background on topics including human brain white 

matter, diffusion weighted imaging, Riemannian geometry, and methods used to study 

brain white matter.

Chapter 3 presents a geodesic-based method to track the brain white m atter tracts. 

This method uses a modification of the Riemannian metric tha t results in geodesics adapted 

to follow the principal eigendirection of the diffusion tensor even in high-curvature brain 

regions.
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Chapter 4 describes an automatic framework to segment white m atter tracts based on 

the geodesic tracking of the white m atter tracts. A comparison between the framework 

and other segmentation methods is included, and the advantages of using the automatic 

framework are also demonstrated.

Chapter 5 presents a Bayesian approach for fractional segmentation of white m atter 

tracts and simultaneous estimation of a multitensor diffusion model. This method incorpo­

rates a prior tha t assumes the tensor fields inside each tract are spatially correlated, and 

it reliably estimates multiple tensor compartments in fiber crossing regions, even with low 

angular DWI. The method is also applied to explore the white m atter abnormalities in 

autism neuropsychiatric disorders, with a comparison of binary segmentation method.

Chapter 6 concludes with a discussion of the dissertation’s contributions and limitations 

and proposes possible future research in DWI segmentation and tracking.



CHAPTER 2

BACKGROUND  

2.1 Human Brain W hite Matter
The human brain contains about 100 billion neurons and 100 trillion synapses, and 

its major components are grey m atter and white matter. Grey m atter consists mostly of 

neuronal cell bodies, and it contains regions tha t coordinates the human senses, such as 

taste, smell, hearing, speech, and vision. W hite matter, in contrast, is mainly made up of 

glial cells and myelinated axons tha t transm it signals between functional regions in the grey 

matter.

Axons are projections of nerve cells, as shown in Fig. 2.1 , and they transm it signals 

to other cells in the grey matter. Therefore, white m atter plays an important role in 

coordinating communication between different brain functional regions, affects how the 

brain learns and functions, and is related to many common diseases, such as Autism, 

Alzheimer’s disease, and Multiple Sclerosis. During the past few centuries, histological 

studies have been conducted to explore the brain white matter. However, these studies are 

ex vivo. But, fortunately, recent developments in diffusion-weighted imaging (DWI) provide 

an in vivo and noninvasive tool to explore the brain white matter.

Dendrite Axon

Fig. 2.1. Structure of a neuron. The image is adapted from Wikipedia [78].
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2.2 Diffusion Weighted Imaging
As shown in Fig. 2.1, water molecules in tissues, such as axons, are not free. They 

can move around but are restricted by many obstacles, such as membranes. DWI can 

characterize the diffusion process of water molecules in biological tissues, and thus it can be 

used to study properties of white m atter tissues [15-17,64]. In this section, we will briefly 

explain water diffusion and DWI (Section 2.2.1) and discuss different diffusion modeling 

techniques (Section 2.2.2).

2.2.1 M olecular D iffusion and D W I

Diffusion, or molecular diffusion, is a natural process in which each molecule randomly 

moves around at temperatures above absolute zero. The motion of each molecule is known 

as Brownian motion, a concept developed by Albert Einstein [79]. According to Einstein’s 

law, although the motions of every molecule are unpredictable, the radius, r, of the smallest 

circle that contains all possible molecule positions after time t can be modeled as

r  =  V6d T.

On one hand, if the motions are unimpeded, the distance of a molecule from its original 

position is dependent only on its diffusion coefficient, D, and the time allowed to diffuse. 

As illustrated in the left column of Fig. 2.2, starting at the same position, 10 molecules 

move randomly without any spatial constraints, but after a lapse of time, the molecules 

are distributed within a circle. On the other hand, if the molecules are impeded in certain 

directions, water molecules tend to move slower in the impeded directions, and the motion of 

the molecules is anisotropic, as shown in the right column of Fig. 2.2. In human brain white 

matter, the diffusion of molecules is impeded by numerous anisotropic biological tissues, 

such as cell membranes, myelin sheaths, and axons. For example, in the right image of 

Fig. 2.1, since the axons have a tubular structure, water molecules diffuse much faster along 

the axon than they do across its membrane.

The detection of the anisotropic diffusion in biological tissues provides the foundation 

for DWI. By applying different gradient directions, g j, during the imaging, the motion of 

molecules causes signal decay along the directions (see [64] for more details about principles 

of DWI). Thus, we can use the acquired diffusion weighted signals, S j, to model the 

molecular diffusion.
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Fig. 2.2. Computer simulated Brownian motion (adapted from Lim et al. [80]). Isotropic 
motion (left) versus anisotropic motion (right).

2.2.2 D ifferent D iffusion M od eling  Techniques

There are many ways to model diffusion signals. One important way to model the 

diffusion from DWI signals Sj is through the diffusion tensor imaging (DTI) model [17], 

which uses a positive-definite symmetric 3 x 3 matrix (diffusion tensor) D to describe the 

DWI signals Sj in a voxel x as

Sj (x) =  So(x)e-bgT D(x)gj .

In this formula, b is the known b-value, S0 is the acquired baseline image, and gj is the j- th  

gradient encoding direction. Technically, as there are six unknowns in matrix D, we only 

need DWI signals along six gradient directions to estimate D. However, we usually need 

more to get a robust estimation.

In Fig. 2.3, we show a slice of DTI, where each voxel, a diffusion tensor D, is visualized 

by an ellipsoid.

Since D is positive-definite and symmetric, we can compute its eigendecomposition as 

D =  R £ R -1 , where each column of R is an eigenvector of D, and £  is a diagonal matrix, 

of which the diagonal elements are the corresponding eigenvalues Aj. The eigenvector 

corresponding to the largest eigenvalue is called the principal eigenvector, as shown in the 

red arrow in the right image of Fig. 2.3. The principal eigenvector represents the direction,



Fig. 2.3. A slice of a DTI.

in which the water molecules diffuse the fastest. In Fig. 2.4, we show a color-coded principal 

eigenvector image. In the image, the colors represent different tensor directions, and the 

saturation represents the anisotropy of the tensors.

To measure the anisotropy and the total amount of diffusion, numerous diffusion mea­

surements have been derived from the diffusion tensor D, such as fractional anisotropic 

(FA) and mean diffusivity (MD), which are widely used in clinical studies. The formula for

FA is _________________________________________
F A =  ^3((A i -  E[A])2 + (As -  E [A])2 +  (A3 -  E[A])2) .

The FA value represents the normalized standard deviation of the diffusivities. When the 

second and the third axes have the same eigenvalue as the principal axis, D is spherical and 

the FA is 0. When the principal axis has a much larger eigenvalue, D is elongate and the 

FA is close to 1. The formula for MD is

MD =  3 (A1 +  A2 +  A3

which can be thought of as the average diffusivity in the voxel.

While the diffusion tensor is an elegant description of anisotropic diffusion in white 

m atter and it only requires DWI signals along a few number of gradient directions, it 

represents only one tract in each imaging voxel, which is problematic in the presence of 

fiber crossing or partial voluming. High-angular resolution diffusion imaging (HARDI) 

(see [65] for a review) has been introduced as a means to distinguish multiple diffusion
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Fig. 2.4. Color-coded principal eigenvector image.

compartments, and it requires DWI signals along much more gradient directions. There are 

many methods, such as multicompartment [66,72], q-space [69], diffusion spectrum imaging 

(DSI) [64], spherical harmonics [70], q-ball [67], and high order tensor method [73,74], to 

model the HARDI signals. Among the introduced models, the multitensor [66] model is one 

of the models that is widely used.

To model multiple diffusion compartments within a voxel, whether from crossing white 

m atter fiber tracts or mixtures of white m atter with CSF or gray matter, the multitensor 

model uses n tensor compartments, D i . Each tensor compartment is associated with a 

nonnegative volume fraction f i to model the DWI signals Sj as

n n
Sj (x) =  So(x) ^  f i (x)e-hgj Di(x)gj, with fi > 0 and ^  fi =  1 , (2.1 )

i=1 i

where b is the b-value, S0 is the baseline image, and gj is the j- th  gradient encoding direction.

The multitensor model is closely related to the DTI model, and the diffusion measure­

ments for DTI can also be applied to each diffusion tensor of the multitensor model. In 

fact, when one of the fractions is equal to 1, the multitensor model is equivalent to the DTI
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model, but to estimate f  and Dj, DWI signals along more gradient directions are required. 

The larger the n, the more DWI signals are required.

2.3 W hite Matter Tracking and 
Segmentation Methods

In DWI, there exist three major classes of methods to analyze white m atter pathways: 

deterministic tractography [38-40], stochastic tractography [41-46], and front-propagation [47­

54]. Deterministic tractography computes streamlines by integrating the principal eigen­

vectors of the diffusion tensors from a seed region. One disadvantage of this technique 

is that it is sensitive to noise, as it accumulates errors arising from image noise along 

the integration of the streamlines. It also has difficulty in cases where the goal is to find 

pathways between two regions because the streamlines are likely to prematurely stop due to 

image noise. Another similar approach is stochastic tractography, in which a large number of 

streamlines are initiated from each seed voxel and are integrated along directions determined 

stochastically at each point. However, this is a computationally intensive procedure, and it 

suffers from the same problems with streamlines stopping in noisy or low-anisotropy regions. 

An alternative method is front-propagation, which infers the white m atter pathways using 

geodesics between two regions. It is an attractive technique and has at least two major 

advantages. First, it is more robust to noise, for it considers the whole diffusion tensor 

field, and second, it is more efficient and computes the geodesics from a starting region to 

any other region simultaneously. In the following subsections, we provide an overview of 

these three methods.

2.3.1 D eterm in istic  Tractography

In DTI, each voxel is a diffusion tensor, D, which is represented by a 3 x 3 symmetric 

positive-definite matrix. From linear algebra, we know D has 3 eigenvalues, A1 >  \ 2 > A3, 

and 3 eigenvectors, e1, e2, and e3, corresponding to the eigenvalues. Recall tha t water 

molecules have a maximum diffusion along e1, and we usually call e1 the principal eigenvec­

tor or the orientation of D. We can reconstruct the fiber tracts by integrating the principal 

eigenvector of the diffusion tensor from a predefined seed region, as shown in the right image 

of Fig. 2.5. The left image of Fig. 2.5 shows some integrated streamlines filtered by some 

predefined ROIs. This algorithm is usually called deterministic tractography or streamline 

tracking. The pseudocode is in Algorithm 1.

Deterministic tractography [38-40] computes streamlines (sometimes called fibers) by 

forward integration of the principal eigenvector of the diffusion tensors from one region.
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Fig. 2.5. Figure is adapted from Miller et al. [81].

A lg o rith m  1 Deterministic tractography algorithm in a generic form 
for each voxels x in the seed region do

w hile none of the stop criteria is triggered do
v(x) =  the principal eigenvector of the diffusion tensor D(x) at x. 
Do one step of forward integration along v(x). 

en d  w hile 
end  for

One major problem with tractography is that imaging noise causes errors in the principal 

eigenvector direction, and these errors accumulate in the integration of the streamlines. 

Another disadvantage to tractography is tha t it has difficulty in cases where the goal is to 

find pathways between two regions. In this scenario, streamlines begin in one of the regions 

and are accepted only if they eventually pass through the desired ending region. However, 

several factors conspire to often result in only a small fraction of fibers being accepted. For 

example, accumulated errors in the streamlines can throw them off the final destination. 

Also, noise and partial volume effects in the tensor field can cause stopping criteria to be 

prematurely triggered, either by low anisotropy tensors or sudden direction changes. The 

Brute-Force (BF) approach proposed by Conturo et al. [39] can increase the number of 

accepted fibers by initiating fiber tracking from every voxel in the brain. However, this 

approach still suffers from the same factors mentioned above and can often segment only 

the main core of the white m atter tracts.
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For diffusion modeling techniques other than DTI, the tractography algorithm is very 

similar to the above one, except tha t we need other ways to find the direction v(x). The 

deterministic tractography algorithm is simple and easy to implement, and there exist some 

variants of this algorithm tha t improve its robustness, such as the tensor line method, in 

which the outgoing vector is modulated according to the orientation of the diffusion tensor, 

but it is still deterministic and does not account for the uncertainty of the diffusion tensor.

2.3.2 S toch astic  Tractography

Stochastic tractography is a class of algorithms tha t is similar to deterministic tractogra­

phy, but it considers the uncertainty along the fiber tracking. The major difference between 

deterministic and stochastic tractography is tha t stochastic tractography initiates a large 

number of streamlines from each seed voxel, as shown in the bottom image of Fig. 2.6. The 

streamlines are integrated along directions determined stochastically at each point. The 

pseudocode is in Algorithm 2.

Compared to deterministic tractography, the modeling of the probability density func­

tion (PDF) p(x) and sampling steps are much more complicated, and the cost of estimating 

p(x) and sampling varies as the models and sampling methods change, but it usually 

costs much more than an eigendecomposition of a diffusion tensor. Several estimated

Fig. 2.6. Figure is adapted from Friman et al. [82].
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A lg o rith m  2 Stochastic tractography algorithm in a generic form 
for each voxels x in the seed region do

N : number of streamlines initiated from each seed voxel 
for i =  0; i < N ; i +  +  do

w hile none of the stop criteria is triggered do
Sample a direction v(x) from the estimated probability density function p(x) from 
the previous direction and the diffusion tensor D(x) at x.
Do one step of forward integration along v(x). 

en d  w hile 
en d  for 

end  for

p(x) are shown in the top image of Fig. 2.6. For more details, please refer to [82-84]. 

Since large numbers of streamlines are initiated from each seed voxel and are integrated 

along directions determined stochastically at each point, this is a computationally intensive 

procedure (typically requiring several hours). Also, stochastic tractography suffers from 

the same problems with streamlines stopping in noisy or low-anisotropy regions, leading 

to artificially low (or even zero) probabilities of connection. Although Barbieri et al. [85] 

combined tensor clustering technique with stochastic tractography in order to improve the 

accuracy of the segmentation results, this method introduces more parameters and strongly 

depends on the quality of the connectivity map.

Stochastic tractography computes many tracts starting from the seed region A. From 

these tracts, we can compute the probability of region A’s connection to another region B, 

p( A ^  B ), by basically computing the fraction of fibers tha t pass B, as mentioned in [82]. 

Intuitively, p( A ^  B)  provides some information about whether there is a connection 

between A and B ; i.e., if the probability is high, there is probably a connection between 

A and B; otherwise, there is less likely a connection between A and B. However, this 

probability has limitations. First, the probability p( A ^  B)  is not necessarily symmetric; 

i.e., p( A ^  B)  is not always equal to p( B ^  A), which means B is less likely connected 

to A even if A is probably connected to B. Second, this algorithm explicitly evaluates the 

probability p(c) of each tract c, from which we can find the maximal probability path. High 

p(c) means the associated tract is likely a true fiber (connection). However, the computed 

p(c) depends on the length of the fiber: the probability decreases while the length of the 

fiber increases. So, in stochastic tractography, a short fiber usually has higher probability 

than a longer fiber. In other words, two regions close to each other usually have a higher 

connection probability than two regions distant from each other, which is probably not the 

case in the real human brain. Moreover, it is not necessarily true tha t two regions connected



16

with more streamlines have a stronger connectivity than two regions connected with less 

streamlines. So higher probability does not equate to a stronger connection. In addition, 

we need to be very careful when we choose the prior during the estimation of p(x). If we use 

different priors to estimate p(x) or choose different methods to sample p(x), the resulting 

streamlines or probability map will vary.

2 .3 .3  Front-P ropagation  M eth od

We first give a toy example of the front-propagation method to compute the shortest 

distance between a point p and any other point in Fig. 2.7. From the starting point p, with 

a predefined local cost function (that tells us the time cost it takes to move in a direction), 

we compute the time it takes to arrive at any other point from point p. This computation 

is shown in the second image of Fig. 2.7. In the second image of Fig. 2.7, we also show 

the contours of this time of arrival function. These contours are just concentric circles, for 

we use an isotropic cost function, which means the costs of moving in any direction are 

the same. Then, we compute the gradient vector field of the time of arrival function and 

integrate the gradient field backward to p from any point q.

F ig. 2.7. Front-Propagation from point p with an isotropic cost function.
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In the DTI literature, front-propagation approaches are one class of methods to track 

and segment the white m atter pathways. These methods infer the pathways of white m atter 

by first evolving a level set representing the time-of-arrival of paths emanating from some 

starting region. Then the pathways are computed by integrating the characteristics vectors 

of the level set backward from any target point to the starting region [49]. The direction and 

speed of this evolving front at each point is determined by some cost function derived from 

the diffusion tensor data. In the front-propagation method, we need to know two pieces of 

information beforehand. One is the starting point/region, which is shown as point p in the 

first image of Fig. 2.8. For visualization purposes, we use a T1 image as the background, 

but this whole front-propagation actually works in DTI. The other piece of information we 

need to know is the local cost function, f  (x,v), defined on every point x of the domain. 

The goal is to find a path tha t minimizes J0 f  (x, v)dt. The local cost function depends 

on both the position x and the traveling direction v. It identifies the cost if we move in a 

certain direction v at the local position x. This cost function can be thought of as a time 

cost function. For example, imagine tha t there is a freeway in the corpus callosum and we 

are driving in the corpus callosum; the time cost to move along the corpus callosum is very 

low, for the speed limit is high on the freeway. If the road we are traveling is narrow, the 

time cost will be very high, for the speed limit is low on a narrow road. Put simply, the 

cost function tells us the traffic conditions.

Given the starting point p and the traffic condition provided by the local cost function 

f ,  we can compute how long it takes to travel from the starting point p to another position. 

We can also compute the time-of-arrival function u  by propagating from the starting point, 

as shown in the last three images of Fig. 2.8. W hat is the time-of-arrival function? When 

you take a flight, the airline usually estimates the time of arrival of the destination. This 

function u  is exactly the same as the an estimated time of arrival. As mentioned earlier, 

the value of the function u  at a position q tells how long it takes to arrive at q from the 

starting point p. Fig. 2.8 shows the contours of the function u. A contour with a value, say 

10 hours, tells us tha t within 10 hours, we can travel to any point inside the contour.

A flight not only estimates a time of arrival but also follows a specific route of travel. 

The time of arrival function u tells us the time cost to arrive at a point q as well as the 

path it takes to arrive at q. To compute this path, we can first compute the gradient of 

the u, ‘V u’, as shown in red arrows in the first image of Fig. 2.9. We then integrate from 

q backward to the starting point p, as shown in Fig. 2.9. This can be done for any point 

other than the starting point p, as shown in Fig. 2.10. Here the Vu is quoted because
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Fig. 2.8. Starting from point p, we compute a time of arrival function.
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Fig. 2.9. We compute the gradient (shown in red arrows) of the time of arrival function 
and integrate backward to p from any other point q.
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Fig. 2.10. We can compute the Geodesic between p and any other point q.

strictly speaking, sometimes, we need to modify the Vu first before we do the integration. 

By computing the time-of-arrival function u, we can also get the geodesics between the 

starting point p and all other points. This is one property of front-propagation.

The front-propagation algorithm summarized in Algorithm 3 actually solves the Eikonal 

equation. For a mathematical discussion about how the Eikonal equation is related to the 

shortest path problem, see Section 2.4.3.

A lg o rith m  3 Front-Propagation algorithm in a generic form 
Given a starting point/region p and a local cost function f  (x, v),
To find a path between p and q tha t minimize

/p f  (x ,v )dt
Step 1: compute the time-of-arrival function u by propagating from p.
Step 2: compute ‘V u’, from any point q integrate ‘V u’ backward to p to get the geodesic 
between p and q.

Front-propagation approaches for analyzing white m atter pathways are attractive for 

at least three reasons. First, the front-propagation algorithms are more robust to noise
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than both deterministic tractography and stochastic tractography. This is because front- 

propagation methods compute fibers by optimizing a global criterion over the whole brain, 

so the wavefront is not constrained to exactly follow the principal eigenvector of the tensors. 

Although the principal eigenvector of the tensor is the preferred direction for paths to travel, 

the minimal-cost paths may deviate from these directions if the deviation decreases the over­

all cost and hence are less sensitive to noise or partial voluming. Second, front-propagation 

methods can compute a large number of fibers using a short computational time. Efficient 

implementations of front-propagation solvers are much faster (typically requiring several 

seconds) than stochastic tractography. The graphics processing unit (GPU) implementation 

by Jeong et al. [76] even runs at near real-time speeds. Finally, as shown by Fletcher et 

al. [52], front-propagation methods can be used to segment white m atter tracts by solving 

the geodesic flow from two ROIs and combining the resulting cost functions. This approach 

has the advantage tha t the solution will not get stuck in regions of noisy data or low 

anisotropy, in contrast to tractography methods. However, it also has the disadvantage 

tha t it requires the user to predefine two ROIs at the endpoints of the white m atter tract 

of interest. Consequently, this approach is only appropriate when the anatomy of the 

white m atter pathway is well-known, i.e., its endpoint regions can be reasonably identified, 

because a white m atter path will always be found. Although, if a “false positive” connection 

is found, this can be detected using heuristic connectivity metrics as introduced by Parker 

et al. [47] and Jackowski et al. [49].

2.3 .4  C onnection  betw een  S toch astic  T ractography and
Front-Propagation

There are underlying similarities between front-propagation and stochastic tractography. 

In front-propagation, we need to select a metric, which tells the cost of moving in a direction. 

In stochastic tractography, we need to model the PDF, which tells us the probability of 

moving in a direction. The metric and PDF are, in a sense, in a reciprocal relationship 

with each other; i.e., a high cost when moving in a direction equates to a low probability of 

moving in the same direction, and a low cost when moving in a direction equates to a high 

probability of moving in the same direction.

On one hand, stochastic tractography computes a distribution of fibers, and there are 

usually many fibers connecting A and B. On the other hand, the front-propagation method 

computes only one fiber with the lowest cost among all fibers connecting A and B, so this 

fiber is optimal in terms of cost. According to stochastic tractography, this lowest cost fiber 

is also likely be optimal or close to optimal in terms of the fiber’s probability, for it is very
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likely tha t this fiber has the highest or close to highest probability.

So, if we choose the right pair of metric and PDF for these two methods, the lowest cost 

fiber between A  and B  computed from the front-propagation method would be the fiber 

with the maximal probability connection A  and B  in stochastic tractography. Even when 

we do not choose the exactly right pair of metric and PDF, the optimal curves of the two 

methods may be very close to each other.

If the PDF of stochastic tractography is chosen according to the metric in the front- 

propagation method, the front-propagation will compute a subset of the fibers computed by 

stochastic tractography (namely, the fibers with the highest probability). For a mathem at­

ical derivation of the relationship between stochastic tractography and front-propagation, 

please refer to [53].

2.4 Mathematical Background
Differentiable manifolds generalize the concepts of differential calculus. Notions such 

as differentiation and integration make sense on differentiable manifolds. Based on dif­

ferentiable manifolds, Riemannian manifolds provide the notion of distance, and thus we 

can measure the length of curves. This section provides a review of the basic differen- 

tiable/Riem annian geometry that will be needed later. A good introduction to the subject 

may be found in [86,87]. In addition, in Section 2.4.3, we show that we can compute the 

geodesics by solving the Eikonal equation.

2.4.1 R iem annian  M anifold

A Riemannian manifold is a differentiable manifold equipped with a Riemannian metric. 

A differentiable manifold (or smooth manifold), a generalization of Euclidean space Rn , 

extends the differential calculus—differentiation, integration, and vector fields—to more 

general spaces.

In a differentiable manifold, each point has a neighborhood tha t is equivalent to the 

Euclidean space; i.e., there is an invertible map from a neighborhood of a point on the 

manifold to the Euclidean space, and this map is called a coordinate chart. In Fig. 2.11, 

we show a diagram of a chart (x, U) tha t maps a region U on M  to an Euclidean space 

through function x .

In differential geometry, for each point x  on a manifold M , there is a vector space 

attached to each point, as shown in Fig. 2.12. This vector space is called tangent space and 

is usually denoted as TxM .
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Fig. 2.11. Coordinate chart

F ig. 2.12. Tangent spaces.
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When a differentiable manifold is equipped with a Riemannian metric, it becomes a 

Riemannian manifold. The Riemannian metric is a natural development of the differential 

geometry. It defines an inner product (v,w) of two vectors in a tangent space, and thus, 

provides a way of measuring the lengths of tangent vectors and curves.

D efin ition  1. A Riemannian metric on a differentiable manifold M  is a smooth function 

that associates to each point p of M  an inner product {■, ■) on the tangent space TpM .

The Riemannian metric can be equated with a smoothly varying positive-definite sym­

metric matrix g, called the metric tensor, defined at each point. For two vectors v, w £ TpM , 

given local coordinates (x1, x 2, . . .  ,x n) in a neighborhood of p (note that superscripts here 

are indices not exponentiation),

gij =  {Ei, E j ),

where E i =  dX- are the coordinate basis vectors at p and form a basis of the tangent space 

TpM . W ith this definition, we can compute the inner product {v,w) as vlgw. Also, for a 

vector v, we can compute the length of the vector as {v, v) 2.

For example, when the front-propagation method is applied to DTI, people sometimes 

utilize the inverse of the diffusion tensor, D -1 , to define a local cost function as

f  =  {u,v) =  uT D -1v.

In this case, since the inverse of the diffusion tensors are positive-definite symmetric and 

they are also Riemannian metric, a DTI is actually wrapped into a Riemannian manifold. 

This inverse tensor cost function makes sense, as shown in Fig. 2.13, for as we move in the 

major axis of the diffusion tensor, the time cost is low; as we move in the minor axis of the 

diffusion tensor, the cost is high.

On a Riemannian manifold M , if there exist two Riemannian metrics g1, g2 satisfying 

g1 =  f g 2 for some positive function f  on M , we call these two metrics conformally equivalent 

and the function f  a conformal factor.

There is a tangent space attached to each point on a manifold. To connect nearby 

tangent spaces (see Fig. 2.12) on a Riemannian manifold, we need the Riemannian (or 

Levi-Civita) connection V j Y , which is the derivative of a vector field Y  in the direction 

of a vector field X . We will write the vector fields X , Y  in terms of a coordinate system 

(x1, x2, . . . ,  xn) as X  =  ^  aiE i and Y  =  ^  bj E j , where ai and bj are smooth coefficient 

functions. Then, the Riemannian connection is given by

V-XY = E ( E  a1̂  +  E r kjai j  E„. (2-2)
k \  i i,j J
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Fig. 2.13. Inverse diffusion tensor as a Riemannian metric.

The terms r  j  are the Christoffel symbols, which are defined as

r k  =  I  ^  ( dgji I dgu dgiA  
ij 2 \  dxi dxj d x l )  ,

where gij denotes the entries of the inverse metric, g -1 . The intuition behind this Rieman- 

nian connection is tha t it is like a directional derivative of vector fields. In the special case 

of Y =  X , VXX  measures how the vector field X  bends along its integral curves.

2.4 .2  G eodesics on R iem annian  M anifold

On a Riemannian manifold, M , the geodesic between two points p,q £ M  (one example 

is shown in Fig. 2.14) is defined by the minimization of the length functional

u (y )=  T  (T ( t ) ,T (t)>1 dt, (2.3)
Jo

where 7  : [0,1] ^  M  is a curve with fixed endpoints, 7 (0) =  p, 7 (1) =  q, T  =  Y  =  d^/dt, 

and the inner product is given by the Riemannian metric (letting g(x) and TxM  denote the 

Riemannian metric and tangent space at a point x £ M , respectively). The inner product 

between two tangent vectors v ,w  £ TxM  is given by (v,w> =  vtg(x)w.

As shown in [88], a critical curve for (2.3) is also a critical curve for

E (Y) =  f 1 (T ( t ) ,T (t)> dt, (2.4)
o



26

Fig. 2.14. Demonstration of a geodesic. The red curve is the one with minimum length.

and it is easier to work on the critical curves of (2.4). The only difference is that the 

geodesic tha t minimizes (2.4) has a constant speed.

As we know, for a functional, F ( f ) =  L(t, f  (t), f '( t))dt,  where L and f  are any func­

tions, its critical points satisfy the following equation, called the Euler-Lagrange equation,

dL d dL
--------------- =  0.
d f  dt d f/

Equation (2.4) can be rewritten in the following form

E (7) =  /  (T (t),T (t)) dt = /  <7/ ,7/> dt = /  L (t ,7 ( t) ,V (t))d t.
J 0 J 0 J 0

So by computing the Euler-Lagrange equation of (2.4), a critical curve for E  satisfies the 

following geodesic equation:
d27k =  _  d 7*d7L

dt ^  dt dt ,
*,j

which is equivalent to

V t  T  =  0,

where V still is the Riemannian connection defined in Equation (2.2) and T  =  d7 /d t is still 

the tangent vectors along the curve.

As we mentioned earlier, V t T  measures how the vector field X  bends along its integral 

curves. In addition, it also means tha t tangent vectors, T , remain parallel if they are 

transported along the geodesic as shown in Fig. 2.15.
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Fig. 2.15. Meaning of Riemannian connection V t T =  0.

2.4 .3  Solve E ikonal E quation  to  C om pute G eod esics

In this section, I will show that the geodesic - ( t)  minimizing u(y) in (2.3) also satisfies 

the Eikonal equation

V u(y )t  g-1 (y) V u (-) =  1.

First, u(y) can be rewritten as

J y  /(t)T g(Y )Y/(t) dt =  [
10 Jo v JO

Then, the variation of u(y) is

{T(t),T(t))  1 dt = 1 J y /(t)Tg(Y)y /(t)dt =  / L ( t ,Y( t) ,Y/(t))dt. 
0 0

dL d d L
M ,-<) = ^ ^  + 1  (dY -  )dt

as shown in [53].

Since - (t) is a geodesic, |L  -  dLJL =  o. Then,

Vu(Y) =  ^  =  | L  = . g (Y ) i ( t )  . (2 .5)
^Y V - /(t)T g(-)Y  /(t)
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In addition, we can derive that

- 1 , ^ . . , ^  7 '( t)Tg(7)T „_1 , , g(7)7'(t)Vu (Y)g (7 )V u(7) =  g (y) -
V  7/(t)T g (7)7/(t) \ / 7 /(t)T g (7 )7/(t)

=  7 /(t)T g(7 )T g- 1(7)g(7 )7 /(t) =  7 /(t)T g(Y )T 7/ (t) = .
Y/(t)T g(Y )Y/(t) 7/(t)Tg (7)7/(t) ,

for g(7 ) is symmetric.

From (2.5), we can see that 7 /(t) a  g- 1(Y)Vu(Y), for 7 /(t)Tg(Y)Y/(t) is a scalar.

So, in the end, we get the following two equations

V u(y )g-1 (7 )V u(y ) =  1 (2.6)

Y/(t) a  g- 1(7 )V u(7) . (2.7)

The two equations tell us tha t to reconstruct the geodesic 7 (t) between two points a and 

b on a Riemannian manifold, we can compute u(y) by solving the Eikonal equation (2.6) [53, 

89] for u with the initial condition u(a) =  0. Then, compute 7 /(t) using (2.7) and integrate 

7 /(t) backward from b to a to get the geodesic between the two points.



CHAPTER 3

ADAPTIVE RIEM ANNIAN METRICS FOR 

IMPROVED GEODESIC TRACKING

In this chapter, we present a new geodesic approach for studying white m atter connectiv­

ity from diffusion tensor imaging (DTI). Previous approaches have used the inverse diffusion 

tensor field as a Riemannian metric and constructed white m atter tracts as geodesics on 

the resulting manifold. These geodesics have the desirable property tha t they tend to 

follow the main eigenvectors of the tensors yet still have the flexibility to deviate from 

these directions when it results in lower costs. While this makes such methods more robust 

to noise, it also has the serious drawback tha t geodesics tend to deviate from the major 

eigenvectors in high-curvature areas in order to achieve the shortest path. In this chapter, 

we formulate a modification of the Riemannian metric tha t results in geodesics adapted to 

follow the principal eigendirection of the tensor even in high-curvature regions. We show 

tha t this correction can be formulated as a simple scalar field modulation of the metric, 

and the appropriate variational problem results in a Poisson’s equation on the Riemannian 

manifold. We demonstrate that the proposed method results in improved geodesics using 

both synthetic and real DTI data.

3.1 Introduction
Front-propagation approaches [47,48,50-52,90] in diffusion tensor imaging (DTI) infer 

the pathways of white m atter by evolving a level set representing the time-of-arrival of paths 

emanating from a starting region. The direction and speed of this evolving front at each 

point is determined by a cost function derived from the diffusion tensor data. One such 

method, first proposed by O’Donnell et al. [48], is to treat the inverse of the diffusion tensor 

as a Riemannian metric, and the paths in the propagating front as geodesics, i.e., shortest 

paths, under this metric. This makes intuitive sense: traveling along the large axis of the 

diffusion tensor results in shorter distances, while traveling in the direction of the small 

axes results in longer distances. Therefore, shortest paths will tend to prefer to remain 

tangent to the major principal eigenvector of the diffusion tensor. While this is a powerful
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framework for computing white m atter pathways, these geodesics have the serious deficiency 

tha t in high-curvature tracts they tend to deviate from the eigenvector directions and take 

straighter trajectories than is desired. That is, in high-curvature regions, the incremental 

cost of following the tensor field is overcome by the cost associated with the longer (more 

curved) path. In this chapter, we develop a new Riemannian metric that relies on diffusion 

tensor data but resolves this problem by adapting to high-curvature tracts, resulting in 

geodesic paths tha t more faithfully follow the principal eigenvectors.

As mentioned in Chapter 2, front-propagation methods offer several advantages over 

deterministic tractography [38,40] and stochastic tractography [41-44]. For example, the 

front-propagation algorithms are more robust to noise because the wavefront is not con­

strained to exactly follow the principal eigenvector of the tensors. However, there is one 

serious drawback in front-propagation methods. Fig. 3.1 shows a diagram illustrating 

the problem. In a curved tensor field, one would typically prefer a path that follows, 

to whatever extent possible, the major eigenvectors of the tensors (shown in blue). The 

shortest path, using a Euclidean metric (i.e., ignoring the tensors) follows a straight line, 

except at constraints (shown in red). The typical geodesic with a local, anisotropic metric 

(e.g., using the inverse tensors as metric) will find a compromise between these two (shown 

in magenta). Although the magenta geodesic is taking infinitesimally higher-cost steps than 

the blue curve, its overall length under the inverse-tensor metric is shorter.

This issue has been addressed previously [52] by “sharpening” the tensor, i.e., increasing 

the anisotropy by taking the eigenvalues to some power and renormalizing them. The 

sharpening increases the cost of moving in directions other than the principal eigenvector. 

In fact, the first front-propagation algorithm proposed by Parker et al. [47] essentially takes 

this sharpening strategy to its limit, which results in a cost function tha t is the dot product 

of the level set velocity with the principal eigenvector. However, the amount of sharpening is 

an ad hoc parameter, and sharpening is applied equally across the image, rather than taking 

the curvature of the tract into account. Sharpening tha t increases with the curvature of the 

tract could be more effective. Another downside of sharpening is tha t it changes the shape 

of the tensor and reduces the ability to deviate from the principal direction, thus decreasing 

the desired robustness to noise. It is not clear how to set the amount of sharpening to find 

the best balance between robustness to noise versus faithful following of the eigenvectors.

Our proposed solution to this problem is to develop a new Riemannian metric that is 

a modulated version of the inverse diffusion tensor field. This metric is able to adaptively 

correct the geometry of geodesic curves in high-curvature regions so that they more closely



Fig. 3.1. High curvature tract deviation and our proposed solution. Top: Diagram of 
various pathways between two points in a curved tensor field: the desired path following 
the principal eigenvectors (blue), the shortest path under the Euclidean metric (red), and 
the compromise path taken when using the inverse tensor field as metric (magenta). Bottom: 
A slice of our a(x)  solution for the synthetic data in Section 3.4.1 (Voxels are color coded 
from red [low value] to yellow [high value]).

follow the principal eigenvectors of the tensors. The resulting algorithm requires solving 

for an unknown scalar field (one example is shown in the bottom  image of Fig. 3.1), 

which requires solving a Poisson equation on the Riemannian manifold—however, it does 

not require any arbitrary choice of parameters. We show that this solution is sufficient 

to eliminate the problem with geodesics in high-curvature regions described above and 

illustrated in Fig. 3.1, and we demonstrate the corrected behavior of geodesics on both 

synthetic and real DTI data.

3.2 Adaptive Riemannian Metrics
In this section, we derive a procedure for computing geodesic flows in diffusion tensor 

data that resolves the major drawback of front-propagation approaches outlined above. 

Namely, the geodesics generated by our method more closely conform to the principal 

eigenvector field. Rather than directly using the inverse of the diffusion tensor as the
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Riemannian metric, as is typically done, we compute a spatially varying scalar function 

tha t modulates the inverse tensor field at each point and use this as our metric. We show 

tha t this scalar field can be chosen in such a way tha t the resulting geodesic flows have the 

desired property of following the eigenvector directions. This entails solving the classical 

variational problem for geodesic curves, with the exception that the Riemannian metric is 

scaled by a positive function. In the resulting Euler-Lagrange equation, we then solve for 

the particular scaling function tha t causes geodesics to follow the desired directions. In the 

end, we see tha t the appropriate function is computed by solving a Poisson equation on the 

Riemannian manifold.

3.2.1 T he M etric M od u latin g  Function

On a Riemannian manifold, M , the geodesic between two points p, q £ M  is defined by 

the minimization of the energy functional

E (y) =  T  (T(t), T(t)> dt,
o

where y : [0,1] ^  M  is a curve with fixed endpoints, y(0) =  p, Y(1) =  q, T  =  dY/dt, and 

the inner product is given by the Riemannian metric. In our case the manifold M  c  R3 

is the image domain, and the Riemannian metric can be equated with a smoothly varying, 

positive-definite matrix g(x) defined at each point x £ M . Letting TxM  denote the tangent 

space at a point x £ M , the inner product between two tangent vectors u ,v  £ TxM  is 

given by (u, v> =  utg(x)v. As mentioned above, previous front-propagation approaches to 

DTI have used the inverse of the diffusion tensor field as a metric, i.e., g(x) =  D (x )-1  (or 

a sharpened or modified version), and this choice of metric leads to geodesics that bend 

inwards around curves. To rectify this problem, we will scale the Riemannian metric by a 

positive function ea(x), which results in the new geodesic energy functional

E a (y) =  r  ea(Y(t)) (T(t), T(t)> dt. (3.1)
o

We call the function ea the metric modulating function because it scales the Riemannian 

metric at each point. The exponentiation of a  is to ensure that this scaling factor is positive 

and to make the solution to the variational problem come out simpler in the end. While 

it is possible to envision more complicated modifications of the metric tensor, we choose to 

modify the metric in this fashion for three reasons. First, the shape of the diffusion tensor 

provides information about the relative preference in diffusion directions, and a scaling 

operation allows us to keep this information intact. Second, the modification in (3.1) is 

sufficient to correct for the effects of curvature. In other words, if the tensors are following
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a curved path, but not changing shape, the metric modulating function can be chosen 

in such a way tha t the resulting geodesics perfectly follow the principal eigenvector. We 

demonstrate this property empirically using a synthetic example in Section 5.3. Third, on 

a Riemannian manifold M , if there exist two Riemannian metrics g1, g2 satisfying g1 =  f g 2 

for some positive function f  on M , we call these two metrics conformally equivalent and 

the function f  a conformal factor. So, our modulated Riemannian metric is a conformal 

transformation of an inverse-tensor metric, and the computed ea can be seen as a conformal 

factor.

3.2.2 C om pu ting th e  G eodesic  E quation

To minimize the new geodesic energy functional given in (3.1), we use two tools of 

Riemannian geometry. The first is the Riemannian connection V x Y , which is the derivative 

of a vector field Y in the direction of a vector field X . We will write the vector fields 

X, Y in terms of a coordinate system (x1, x2, . . . ,  xn); note that superscripts here are 

indices, not exponentiation. We write X  =  ^  aiE i and Y =  ^  bj E j , where E* =  g— 

are the coordinate basis vectors, and a* and bj are smooth coefficients functions. Then the 

Riemannian connection is given by

The terms rkj are the Christoffel symbols, which are defined as

r k  =  1  ^  gki ( dgji I dgu dgi j \
ij 2 V dx* dx j d x l )  ,

where g*j denotes the entries of the Riemannian metric, g, and gj  denotes the entries of 

the inverse metric, g -1 . Again, the intuition behind this Riemannian connection is that it 

is like a directional derivative of vector fields. In the special case of Y =  X , Vx X  measures 

how the vector field X  bends along its integral curves.

The second tool tha t we employ is the Riemannian gradient of a smooth function f , 

which we denote grad f .  The gradient of a function on a Riemannian manifold looks like 

the standard Euclidean gradient, except with a multiplication by the inverse of the metric,

i e " grad f  =  g-1  ( f  f  . . .  f  \ .
\  dx1, d x 2, , dxn )

The gradient is defined in this way so tha t the inner product with a unit vector u results 

in the usual directional derivative, V uf  =  (grad f, u).



34

Using the Riemannian connection and Riemannian gradient, we take the variation of 

the energy (3.1). Let W  be a vector field defined along the curve 7  tha t represents an 

arbitrary perturbation of 7 , keeping the endpoints fixed, i.e., W (0) =  W (1) =  0. Notice 

tha t W  and T  are partial derivatives of the variation of 7 , and therefore they commute, 

i.e., V w T  =  V TW . To simplify the notation, we will suppress the parameter t in most of 

the following equations. Then the variational of the energy functional is

Now, setting this last line to zero and dividing through by ea results in the geodesic equation

If we assume, without loss of generality, that geodesics have unit-speed parameterization, 

i.e., ^T|| =  1, then V t T  will be normal to T. Now, assuming this parameterization and 

taking the inner product with T  on both sides of (3.2), we obtain

This can hold only if the tangential component {grad a, T ) =  0. Therefore, the last term in 

(3.2) must vanish, and we get the final, simplified geodesic equation

Vw Ea (Y)

0

grad a  ■ ||T ||2 =  2 V tT  +  2da(T) ■ T. (3.2)

{grad a , T ) =  2da(T ) =  2{grad a , T ).

grad a  =  2VTT. (3.3)

3.2 .3  C om pu tin g  th e  M etric M od u latin g  Function
Now that we have the geodesic equation for the modulated Riemannian metric, we 

introduce the property that we would like to enforce: that the tangent vectors, T , follow
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the unit principal eigenvector directions, V . Satisfying this property directly would result 

in the equation grad a  =  2Vy V , which we would need to solve for a. However, given an 

arbitrary unit vector field V, there may not exist such a function with the desired gradient 

field.

Instead we minimize the squared error between the two vector fields, i.e., we minimize 

the functional

F (a) = /  11grad a  -  2Vy V ||2 dx. (3.4)
JM

As before, the norm here is given by the Riemannian metric. The Euler-Lagrange 

solution to this problem is derived in the following derivation similarly to the classical 

Poisson equation,

dF (a  +  eh)
de

d
e=0

=  ~T f  II grad(a +  eh) — 2 V y V | |2dx|e=o 
de e Md e

=  — (grad(a +  eh) — 2Vy V, grad(a +  eh) — 2Vy V )dx|e=0 
dee M 

e d
= 2 1 {— grad(a +  eh), grad(a +  eh) — 2Vy V)dx|e=0 

e M de

= 2 1 {grad h, grad a  — 2Vy V)dx
Me

=  —2 {h, div(grad a) — 2div(V y V ))dx
e M

+ div(h ■ (grad a  — 2Vy V))dx
eM

=  —2 j {h, A a  — 2div(V y V))dx
e M

+ h -{grad a  — 2Vy V, i t  )dx.
JdM

The div operator used above is the Riemannian divergence, and the divergence of X  on M  

is defined in coordinates as

1 ^  d

where |g| is the determinant of the Riemannian metric, which represents the appropriate vol­

ume element. Finally, the equation of the metric modulating function tha t minimizes (3.4) 

is given by

A a  =  2 d iv (V y V) , (3.5)
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where A a  =  div(grad a) is the Laplace-Beltrami operator on M , defined as

* a >  = ^  E  ^  E  gij ̂ )

in coordinates. From the boundary integral in the last step of the above derivation, the 

appropriate boundary conditions for this problem are the Neumann conditions,

^  =  (grad a, i t > =  (2Vy V, i t >.

Finally, we solve (3.5) with the above boundary conditions to compute a  for a data 

set, and the detailed implementation is discussed in Section 3.3. In the bottom  image of 

Fig. 3.1, we show a slice of our a  solution for the synthetic torus in Section 3.4.1. The 

voxels are color coded from red (low value) to yellow (high value), and we can see that the 

interior of the a  field has a higher value than the exterior. Scaling the inverse tensor metric 

with ea makes the geodesics follow the desired directions. This is because it has a higher 

cost for a pathway to travel along the interior of the torus than the exterior. In addition, 

the a  field is consistent with equation grad a  =  2VVV . As we mentioned earlier, V VV 

measures how V is bending along its integral curve. Since V is rotating only in this case, 

the grad a  points inward to the torus center, which means a  should increase as we move 

from the exterior of the torus to the interior. In another perspective, since the curvature is 

higher in the interior of the torus than the exterior, the a  also penalizes higher curvature. 

The higher the curvature, the higher the a. This also happens on real data. For example, 

in the axial slice of the brain as shown in Fig. 3.2, we can see that the a  is higher in the 

interior of the genu because the curvature is higher in the interior.

3.3 Numerical Implementation
A closer look at (3.5) reveals tha t it is nothing but an anisotropic Poisson equation on the 

image domain. The right-hand side is constant in a, and the Laplace-Beltrami operator on 

the left-hand side can be expressed as V ■ (G V a), where G is a symmetric positive-definite 

matrix, V- is the usual Euclidean divergence operator, and V is the gradient operator in 

the image domain. Since the Poisson equation is on the image grid, we approximate both 

sides of the Poisson equation using a finite-difference approach.

It is common to use central, forward, or backward differences to approximate the first 

derivative. These techniques perform well on noiseless data, but they do not give adequate 

results on noisy data. We find that the computation of d iv (V VV) is sensitive to noise. 

So instead of using these differences, we use the noise-robust differentiator [91] as our
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Fig. 3.2. Demonstration of the a  solution. Top: Slices of the a  solution for a read data in 
different views (Voxels are color coded from red [low value] to yellow [high value]). Bottom: 
Corresponding color-coded principal eigenvector image.

finite-difference approximation of the first derivative, which suppresses the high frequencies 

of the noise signal, is precise on low frequencies, and is particularly beneficial for noisy data.

Care must be taken to handle the sign ambiguity of the eigenvectors V when computing 

V V V . When we compute V V V at a node, we need to make the eigenvectors around the node 

consistent. Our approach selects the eigenvector at the current node as a reference eigenvec­

tor and then chooses the directions that have a smaller angle with the reference eigenvector 

of the eigenvectors in the neighborhood. Remember that since V VV =  V(-V )(—V), it does 

not m atter which direction the reference eigenvector points to of the two possible directions.

After the discretization of the Poisson equation with the Neumann boundary condition, 

we will get a sparse linear system A • a  =  b to solve. For sparse linear systems, there are many 

efficient iterative solvers, such as conjugate gradient [92] (CG). However, CG can apply only 

to symmetric and positive-definite matrices or at least positive-semidefinite matrices. In 

our discretization, the Laplace-Beltrami operator A on the left-hand side is asymmetric 

due to the asymmetric interaction between g-1  and the computation of V a in different 

neighborhoods, so we have to use other solvers that can be applied to asymmetric linear 

systems, such as the generalized minimal residual method [93] (GMRES) and biconjugate 

gradient method [94] (BICG). For BICG, we need to compute AT, which is not trivial, so
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we use GMRES as implemented in PETSc [95-97] library in our implementation.

GMRES solves a linear system by constructing a vector space with an orthonormal basis, 

and the solution can be written as the linear combination of the basis vectors. However, one 

drawback of the GMRES is that it also needs to save a certain number of basis vectors. In 

our real data study, to get a good solution, the GMRES usually runs hundreds of iterations, 

and we need to save several hundreds of basis vectors. Each basis vector usually requires 

tens of megabytes of memory, which means we need at least several gigabytes of memory. 

However, the amount of memory usage and computing time depend on the number of 

iterations, and we can reduce the number of iterations by using a good initialization of a . 

Our initialization of a  is computed by minimizing the L 2 norm of the difference between 

V a  and 2Vy V , i.e., we will minimize

J  ||V a -  2V vV ||2 dx 

by solving the Euclidean Poisson equation

A a  =  2 div (VV V ) ,

where A a  =  div(V a) is the Laplace operator and div is just the Euclidean divergence. The 

reason we choose this initialization is that the Euclidean Poisson equation with Neumann 

conditions can be easily discretized to a symmetric positive definite linear system, which 

can be solved using CG efficiently in terms of both memory requirements and computing 

time. W ith the good initialization, we usually need tens of iterations instead of hundreds of 

iterations till the GMRES converges, and we have to save only tens of basis vectors. In our 

real data study, if we use the GMRES with the good initialization, the total cost is about

2 gigabytes of memory and 5 minutes instead of more than 10 gigabytes of memory and 40 

minutes while using the GMRES with zero initialization.

3.4 Results
In this section, we demonstrate the improvement of geodesic flows generated by our 

metric modulating method compared to flows computed with the inverse-tensor metric and 

the sharpened-tensor metric [52] using both synthetic and real DTI data. Our measure of 

quality is how well the geodesics from the three methods follow the principal eigenvectors 

of the noise free tensors. However, as mentioned in Section 4.2, front-propagation methods 

do not explicitly compute the geodesic curves, but instead compute a function u(x), which 

is the time-of-arrival of the geodesic flow at point x. The characteristic vectors of u(x) give 

the tangent vectors along the geodesic. In the case of the inverse-tensor metric, D (x ) - *, the
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characteristic vectors are given by T(x) =  D (x)V u(x). In the case of the sharpened-tensor 

metric, the characteristic vectors are given by T(x) =  M (x)V u(x), where

M  (x) =  |D(x)| i f  - D x ) r ')  ■ (*3-6)
V|D(x)| -3 )

We demonstrate the changes of the sharpened diffusion tensor in Fig. 3.3, and we use 

ft =  3 in all our experiments. In the case of our adaptive metric, the characteristic vectors 

are given by T(x) =  e-a(x)D (x)Vu(x). Here Vu(x) indicates the Euclidean gradient, which 

we approximate with finite differences, as described in [49].

We compute u(x) by solving a Hamilton-Jacobi equation using the Fast Iterative Method, 

as described in [52]. For visualization purposes, we compute the geodesics from both 

methods by integrating their characteristic vectors. Because these vectors always point 

away from the source region, we compute geodesic curves by integrating the characteristic 

vectors backward from any target point in the tensor field. These integral curves of the 

negative characteristic vectors are guaranteed to end up in the source region.

In the following sections, we first validate our adaptive Riemannian metric on clean 

synthetic data in Section 3.4.1 and on noisy synthetic data in Section 3.4.2.

P -------------

Fig. 3.3. The changes of the sharpened diffusion tensor M  as ft increases.
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3.4.1 C lean S yn th etic  C urved Tensor D a ta

To test our method, we generate a synthetic curved tensor field tha t has similar proper­

ties to many white m atter tracts in the brain. The synthetic data is the top half of a solid 

torus, where the tensors rotate along the large circle of the torus. The torus has a minor 

radius of 8 voxels and a major radius of 40 voxels. Each tensor in the tensor field has the 

same eigenvalues (16,4,4) x10- 4mm2/s. A middle slice of the tensor field is shown in the 

first column of Fig. 3.4. The source region for the front-propagation method is shown in 

white.

In the left column of Fig. 3.4, we compare the characteristic vector field (shown in 

blue) of the generated noise-free data with the principal eigenvector field (shown in red).

Fig. 3.4. Tangent vectors of the geodesics (blue) of the generated noise-free data 
(left column) and noisy data at a SNR of 15 (right column) under the inverse-tensor 
metric without modulation (top row), sharpened tensor metric (middle row), and with our 
modulation (bottom row). The red vectors are the principal eigenvectors of the diffusion 
tensors. We subsample the vector field by a factor of 4 both horizontally and vertically in 
order to visualize it.
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Comparing the three images, we can clearly see the characteristic vectors T  follow the 

principal eigenvectors V much better in the middle and bottom images. We do not show 

the vectors at the boundary of the white matter, for some characteristic vectors are pointing 

outwards because of the aliasing artifacts [54], and we will use this convention in the 

following descriptions.

In this synthetic example, we can compute the analytic solution of a(x), which is a(x)  =  

—2 ln r(x) +  C , where r(x) is the distance from x to the center of the torus, and C is some 

constant. We computed the difference between our numerical solution and the analytic a(x), 

and the result was within numerical error. We also computed the root mean square error 

(RMSE) of the angles between the geodesic tangent vectors and principal eigenvectors. The 

RMSE for our adaptive metric is 1.62° compared to 12.21° for the inverse-tensor metric and 

0.84° for the sharpened-tensor metric. Again, we did not count the angles at the boundary 

when we computed RMSE, and we will use this convention in the following descriptions.

In the left column of Fig. 3.5, we visualize the integrated geodesics of the generated noise- 

free data between some target points (on the right side of the torus) and the source region 

(shown in white). Under the sharpened-tensor metric and adaptive metric, the geodesics 

follow the principal eigenvectors of the tensor field and arrive at a point inside the source 

region. In contrast, the geodesics under the inverse-tensor metric without modulation, 

starting from the same target points, take a shortcut and end up at the closest point inside 

the source region by closely following the boundary constraints.

As shown in Fig. 3.4, the sharpened-tensor metric and our adaptive metric have better 

characteristic vector fields and geodesics than the inverse-tensor metric. The sharpened- 

tensor metric is even better than our adaptive metric in terms of RMSE of the angles as 

shown in Table 3.1. This makes sense as we make the tensor sharper by increasing in 

(3.6), the cost of moving in directions other than the principal eigenvector will increase, and 

the geodesics will tend to follow the principal eigenvectors more closely. In the limit case, 

the geodesics will follow the principal eigenvectors perfectly. However, we do not want to 

let the geodesics follow the principal eigenvectors too closely on noisy data, for this would 

decrease the robustness of the front-propagation method to noise as we demonstrate in 

Section 3.4.2. Besides, the amount of sharpening is an ad hoc parameter and even if there 

exists an optimal amount of sharpening, it is not clear how to compute this optimal value.

3.4.2 N o isy  S yn th etic  C urved Tensor D ata

To test the robustness of our method, we simulate Rician noise on the clean synthetic 

data we generated in Section 3.4.1, with a signal-to-noise ratio (SNR) of 10, 15, and 20. To
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Fig. 3.5. The geodesics of the generated noise-free data (left column) and noisy data at 
a SNR of 15 (right column) emanating from the targets points (right side of the torus) to 
the source region (white). The order is the same as Fig. 3.4. We subsample the tensor field 
by a factor of 4 both horizontally and vertically in order to visualize it.

simulate Rician noise, we use the Stejskal-Tanner equation to generate 12 “clean” diffusion- 

weighted images (DWIs) with b =  1000s/mm2 and one non-diffusion-weighted image. We 

then simulate Rician noise on each DWI and estimate the noisy synthetic tensor data.

We do the same comparison for the noisy synthetic data as we did for the clean synthetic 

data. In the right column of Fig. 3.4, we compare the characteristic vector field (shown in 

blue) of the generated noisy data at an SNR of 15 with the principal eigenvector field (shown 

in red) of the clean synthetic data. We can clearly see the characteristic vectors T  follow the 

principal eigenvectors V much better for the sharpened-tensor metric and adaptive metric 

compared to the inverse-tensor metric, but we can also see some characteristic vectors T  

have a relative large angle with the principal eigenvectors V  for the sharpened-tensor metric. 

Again, we compute the RMSE of the angles between the geodesic tangent vectors and clean 

principal eigenvectors. The RMSE for our adaptive metric is 5.94° compared to 16.35° for 

the inverse-tensor metric and 6.97° for the sharpened-tensor metric.
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In addition, in Table 3.1, we can see tha t the RMSE of the angles between the geodesic 

tangent vectors and clean principal eigenvectors increases as the SNR decreases for all 

three metrics. Though our modulating metric has a somewhat larger RMSE than the 

sharpened-tensor metric on the clean data, our modulating metric always has the lowest 

RMSE on the noisy data.

In the right column of Fig. 3.5, we visualize the integrated geodesics of the generated 

noisy data at an SNR of 15 between a target region (on the right side of the torus) and 

a source region (shown in white). Under our adaptive metric, the geodesics follow the 

principal eigenvectors of the tensor field closely and arrive at a point inside the source 

region. In contrast, the geodesics under the inverse-tensor metric take a shortcut and 

end up at the closest point inside the source region by closely following the boundary 

constraints. The geodesics under the sharpened-tensor metric are better than the ones 

under the inverse-tensor metric, but are slightly worse than the ones under our adaptive 

metric.

3.4 .3  R eal D ata

We now show the results of our method applied to a corpus callosum tract from a DTI 

of a healthy volunteer. DTI data were acquired on a Siemens Trio 3.0 Tesla Scanner with 

an eight-channel, receive-only head coil. DTI was performed using a single-shot, spin-echo, 

EPI pulse sequence and SENSE parallel imaging (undersampling factor of 2). Diffusion- 

weighted images were acquired in 12 noncollinear diffusion encoding directions with diffusion 

weighting factor b =  1000 s/m m 2 in addition to a single reference image (b =  0). Data 

acquisition parameters included the following: contiguous (no-gap) 50 2.5mm thick axial 

slices with an acquisition matrix of 128 x 128 over a FOV of 256 mm ( 2 x 2  mm2 in-plane 

resolution), four averages, repetition time (TR) =  7000 ms, and echo time (TE) =  84 ms. 

Eddy current distortion and head motion of each data set were corrected using an automatic 

image registration program [98]. Distortion-corrected DW images were interpolated to 1 x 1 

x 1 mm3 voxels, and six tensor elements were calculated using weighted least squares. The

T able 3.1. The RMSE of the angles (in degrees) between the geodesic tangent vectors and 
clean principal eigenvectors under different metrics and different noise levels.________

No Noise SNR 20 SNR 15 SNR 10
Inverse-tensor 12.21 15.76 16.35 18.35

Sharpened-tensor 0.84 5.31 6.97 10.70
Our adaptive 1.62 4.85 5.94 8.36
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tensor upsampling is done only for the purposes of numerical computations on the voxel 

grid; a finer grid results in higher numerical accuracy.

In the left column of Fig. 3.6, we compare the characteristic vector field T  (shown in blue) 

with the principal eigenvector field V (shown in red) of the corpus callosum. Both sharpened 

tensor and adaptive metrics result in characteristic vectors tha t tend to follow the main 

eigendirections better. We computed the RMSE of the angles between the geodesic tangent 

vectors and principal eigenvectors. The RMSE with our modulation is 9.31° compared to 

17.74° without modulation and 7.28° with sharpened modulation. Note here that there is 

no ground truth, so a lower RMSE just gives a sense of how closely the characteristic vectors 

follow the noisy eigenvectors. As discussed earlier, following the principal eigenvectors too 

closely results in a decrease in robustness to noise.

In the right column of Fig. 3.6, as in the synthetic example, we track backward from 

target points (in the upper right side of the image) to a source region (upper left). Again, 

the geodesics under the inverse-tensor metric take a shortcut and merge into the closest 

point in the source region. In contrast, the geodesics under the sharpened-tensor metric 

and our adaptive metric more faithfully follow the tensor directions. Geodesics from our 

adaptive metric are drawn together slightly because the tensor field is thinner around the 

corner of the corpus callosum. The main paths of the adaptive metric and sharpened-tensor 

metric are similar, which is consistent with our Section 3.4.1 experiments on the synthetic 

torus without noise.

3.5 Conclusion
We presented a new geodesic front-propagation method for computing white m atter 

pathways in DTI and showed tha t it results in geodesics that more faithfully follow the 

principal eigenvectors of the diffusion tensor field, especially in tracts with high curvature. 

Our method is formulated as a simple scalar field modulation of the Riemannian metric, 

and the appropriate variational problem results in a Poisson’s equation on the Riemannian 

manifold. Furthermore, our method is less sensitive to local perturbations, such as noise, 

partial volume effects, or fiber crossing, compared to tractography algorithms. First, our 

adaptive metric is computed by minimizing functional (3.4), which makes our metric less 

sensitive to the noise as shown in Section 3.4.2. Second, the front-propagation method 

computes the pathways by optimizing a global functional using the whole DTI data and 

hence is less influenced by noise, partial volume effects, or fiber crossing.
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Fig. 3.6. Comparison of the tangent vectors and geodesics under different metrics. Left 
column: tangent vectors of the geodesics (blue) under the inverse-tensor metric (top), 
sharpened-tensor metric (middle) and our adaptive metric (bottom ) for a part of the corpus 
callosum. The red vectors are the principal eigenvectors of the diffusion tensors. The FA 
image is shown in the background. Right column: the geodesic flow in the corpus callosum 
from the target points (in the left frontal forcep) to the source region (in the right frontal 
forcep). The background images are the FA image and the diffusion tensor field.



CHAPTER 4

BINARY SEGMENTATION OF WHITE 
MATTER TRACTS BASED ON 

GEODESIC TRACKING

We present a novel geodesic approach to segment white m atter tracts from diffusion 

tensor imaging (DTI). Compared to deterministic and stochastic tractography, geodesic 

approaches treat the geometry of the brain white m atter as a manifold. The white m atter 

pathways are then inferred from the resulting geodesics. Previous methods have tried to 

threshold the cost of the geodesics to segment white m atter tracts, but the segmentation is 

senstitive to the threshold value. In this chapter, we develop a way to automatically segment 

the white m atter tracts based on the computed geodesics. We show the robustness of our 

method on simulated data with different noise levels. We also compare our segmentation 

method using adaptive Riemannian metrics as proposed in Chapter 3 with tractography 

methods and geodesic approaches using other Riemannian metrics and demonstrate that 

the proposed method results in improved segmentations using both synthetic and real DTI 

data.

4.1 Introduction
In order to study normal brain development, as well as neuropsychiatric disorders such 

as autism, it is crucial to understand how different functional regions of the brain are 

connected by white m atter pathways. One approach to studying white m atter in vivo is 

diffusion tensor imaging (DTI), which provides a means for inferring the microstructural 

properties of the white m atter and analyzing fiber tracts. Three approaches to DTI analysis 

are whole-brain connectivity analysis, localizing white m atter regions by registration to 

an atlas, and segmenting individual white m atter tracts from specified regions of interest 

(ROI). In whole-brain connectivity analysis, the goal is to explore the connectivity among 

many anatomical regions over the whole brain, typically using tractography and graph 

statistics [26]. In atlas-based methods, the white m atter is analyzed at the voxel level [99] 

or the atlas is used to segment the white m atter into several anatomical tracts [100]. In
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this chapter, we focus on segmentation of individual white m atter tracts connecting two 

specified ROIs.

Several works have developed segmentation methods for white m atter tracts from DTI 

data. Zhukov et al. [56] employed level-sets to create geometric models of brain structures. 

Rousson et al. [57] extended region-based surface evolution to DTI. Lenglet et al. [58] 

modeled DTI data as multivariate Gaussian distributions and employed a level variational 

approach to segment the white m atter structures. Wang and Vemuri [59] used the square 

root of the J-divergence as the distance of tensors in a region-based active contour model 

for DTI segmentation. Ziyan et al. [60] proposed a modified spectral clustering method 

to segment thalamic nuclei. Awate et al. [61] used a nonparametric model to get a fuzzy 

segmentation of the white m atter tracts. Melonakos et al. [62] proposed a locally constrained 

Bayesian region growing approach based on a precomputed anchor path inside the white 

m atter tract. Niethammer et al. [63] developed a segmentation framework for near-tubular 

white m atter tracts through global statistical modeling and local reorienting of the diffusion 

orientation. These methods focus on segmenting the white m atter tracts of interest from 

the tensor field, and they do not compute parameterized fiber pathways connecting the two 

end regions of the tracts. Tractography [38-46] and front-propagation [47-54] approaches, 

however, provide both a volumetric segmentation of the tract suitable for region-based 

analysis and a parameterization suitable for along-tract statistics [101]. In this chapter, we 

extend the front-propagation approaches and compare our approach to previous methods 

for front-propagation and tractography.

As mentioned in Chapter 2 , deterministic tractography [38-40] computes streamlines by 

forward integration of the principal eigenvector of the diffusion tensors from one region, but 

one major problem with tractography is tha t imaging noise causes errors in the principal 

eigenvector direction, and these errors accumulate in the integration of the streamlines. 

Stochastic tractography [41-46] is an approach tha t deals with the problems arising from 

image noise, but this is a computationally-intensive procedure (typically requiring several 

hours). In contrast, front-propagation approaches infer the pathways of white m atter by 

first evolving a level set, u(x), representing the time-of-arrival of paths emanating from 

some starting region. Then the pathways are computed by integrating the characteristics 

vectors of the level set backward from any target point to the starting region [49].

To segment a white m atter tract, as shown in Fig. 4.1, Fletcher et al. [52] proposed the 

idea of first defining two ROIs at each end of the tract and then thresholding the addition 

u(x) =  u 1(x) +  u 2(x) with a threshold e, where u 1(x) and u 2(x) are the two cost functions
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Fig. 4.1. Image is from [52]. The volumetric pathway is segmented by thresholding u with 
a threshold e, where u =  ui +  u2, and ui is the time-of-arrival function from starting region
R i.

from the two ROIs. In Fig. 4.2, we show an example of u 1 (x), u2 (x), and u(x).

This threshold e, however, is preset and the segmentations of white m atter tracts vary 

hugely with the changes of the threshold e. In Fig. 4.3, we show a slice of the thresholeded 

genu tract with e equals to 0.03, 0.04, and 0.05. We can see tha t the segmentations vary 

excessively. As e increases, part of the segmentation starts to oversegment the tract while 

some other parts still undersegment the tract. So it is tricky to find a good threshold value.

F ig. 4.2. The first/second image is the time-of-arrival function from starting region R1/R2, 
and the last image is the total cost image u =  u 1 +  u2.
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Fig. 4.3. White matter tracts that are segmented (white) by thrsholeding the total cost 
image with e equals 0.03, 0.04, and 0.05.

Thus, users often need to manually adjust the threshold value, which is not only time 

consuming but also may reduce the reliability and repeatability of the segmentations. This 

issue is critical especially for longitudinal studies where we need to analyze the changes of 

a white matter tract over time and we want the segmentations of the white matter tract to 

be consistent for different time points. In this chapter, based on the angles of the geodesics 

from the two end regions of a white matter tract, we develop an automatic segmentation 

framework resulting in segmentations that better delineate the white matter tracts and 

without requiring the users to tune parameters or other kinds of user intervention. We also 

show the improvements of segmentations of the white matter tracts on both synthetic and 

real data (in Section 5.3).

4.2 Automatic Segmentation of 
W hite Matter Tracts

Front-propagation methods do not explicitly compute the geodesic curves, but instead 

compute a cost function u(x), which is the time-of-arrival of the geodesic flow at the point 

x. The characteristic vectors of u(x) give the tangent vectors along the geodesic, and the 

characteristic vectors are given by T (x) = g (x)- 1 Vu(x), where g (x) is the Riemannian 

metric and Vu(x) indicates the Euclidean gradient.

In this section, we propose to segment a white matter tract based on the angles of the two 

characteristic vector fields from the two ROIs (see Fig. 4.4). Intuitively, the characteristic 

vectors from the two ROIs would tend to point against each other inside the white matter 

tract and tend to point to similar directions outside the tract. In theory, for each point on 

the Riemannian manifold, there must exist a geodesic from each ROI to the point, which
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Fig. 4.4. The characteristic vectors from the two ROIs would tend to point against each 
other inside the white matter tract.

means we have two characteristic vectors at each point. If the point is on a geodesic from 

one ROI to the other ROI, as shown in the second image of Fig. 4.5, the two characteristic 

vectors must point to opposite directions, though in practice, we do not require that the 

two characteristic vectors be exactly opposite but have a large angle. When we compute 

the angle image of the two characteristic vector fields, since some characteristic vectors are 

pointing outwards at the boundary of the white matter boundary [54], we apply a median 

filter to the angle image to fix this artifact.

In order to segment the tract, we propose to threshold the angle image of the two 

characteristic vector fields. In addition, we do not want to manually set this threshold, 

as this may introduce reliability issues across different subjects or time points. Rather, 

we want to use an algorithm for automatically finding the optimal threshold for the angle 

image. Since the boundary of the tract of interest is very clear in the angle image (one 

example is shown in the second image of Fig. 4.5), we propose to use Otsu’s method [102] 

to automatically segment the tract from the white matter.

Otsu’s method automatically thresholds a gray-level image to a binary image by calcu­

lating the optimal threshold that minimizes the within-class variance

a2w (t) =  Wi(t)CT2(t) +  W2(t)^2(t),

where u 1 (t) and w2(t) are the probabilities of the two classes thresholded by t, which are
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Fig. 4.5. From left to right, top to bottom: A slice of the cost image u(x); the angle 
image between two characteristic vector fields, voxels colors are from white (small angle) 
to red (large angle); result of Otsu’s thresholding directly on the angle image (shown in 
white); result of 95% thresholding of the cost image u(x) (shown in red); and result of 
Otsu’s thresholding of the angle image from the 95% thresholded region.

computed from the histogram, and a 2 (t) and ^  (t) are the variance of the two classes. When 

the image to be thresholded contains two classes of voxels with well-separated intensity 

distributions, which holds for our angle images, Otsu’s method performs well.

With Otsu’s thresholding, we can segment the white matter tract of interest pretty well 

in most cases, but there is still an issue: the two characteristic vector fields sometimes could 

also meet at some white matter tracts other than the one of interest, and the segmented 

image would contains parts of some other white matter tracts (one example is shown in the 

third image of Fig. 4.5). In the case that these extra parts are not connected to the tract 

of interest, we can exclude these parts by choosing only the component containing the two 

ROIs using the connected component method. If these extra parts, however, are connected 

to the tract of interest, the connected component method does not help.
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To resolve this issue, we introduce a step before the Otsu’s thresholding. We propose to 

threshold the cost image u(x) to the limit where all the voxels inside the ROIs are included 

in the thresholded region. We do this because more and more voxels inside the ROIs are 

included in the thresholded region as the threshold increases, and once all the voxels inside 

the ROIs are included, voxels that do not belong to the tracts will be included if we continue 

increasing the threshold. This threshold could be the max cost of all the voxels inside the 

two ROIs, but in case there are some outlier voxels inside the ROIs, we use the 95% largest 

cost of the voxels inside the two ROIs instead. Usually this thresholding of the cost image 

results in a region that is slightly larger than the tract of interest. One example is shown 

in the fourth image of Fig. 4.5. Though the choice of 95% threshold seems ad hoc and the 

increase of the threshold oversegments the tract of interest even more, our method is not 

sensitive to this specific threshold value. The reason is that the following Otsus thresholding 

of the angle image from the thresholded region reduces the amount of oversegmentation as 

shown in the last image of Fig. 4.5. Moreover, this thresholding strategy can be replaced 

with some outlier detection algorithms.

To summarize, our segmentation algorithm has two steps:
1. Segment a relatively small region containing the tract of interest by automatically 

thresholding the cost image u(x) as described above.

2. Based on the angle image, use Otsu’s method to automatically segment the tract of 

interest from the thresholded region from step 1.

4.3 Results
In this section, we demonstrate the improvement of segmentations generated based on 

our metric modulating method compared to those computed with the inverse-tensor metric, 

the sharpened-tensor metric, the BF and multi-ROI approach, and stochastic tractography

[45] using both synthetic and real data. The segmentation algorithms based on geodesic 

tracking are mentioned in Section 4.2. We also test the BF and multi-ROI approach 

because it increases the validity of tractography as shown in Huang et al. [103]. In this 

approach, a fiber is traced for all pixels in the image, but only those fibers that penetrate 

the predefined ROIs are selected. Also, for a fair comparison with other segmentations, we 

truncate the selected fibers if they pass beyond the ROIs. For the deterministic tractography 

algorithm used in the BF +  two-ROI approach, we test continuous tracking (FACT) [104] 

and tensor line [105] methods for both synthetic and real data. In addition, since we use 

a two-tensor model (4.1) to simulate several fiber crossing data in Section 4.3.1, we also 

do two-tensor estimation in the crossing regions and test two-tensor FACT and two-tensor
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tensor line methods for the generated fiber crossing data. In the tractography algorithms 

used in our experiments, our step size is 0.1 of the slice thickness, and for the deterministic 

tractography algorithms, the streamline stops when the change of angle is larger than 

75° during tracking. The stochastic tractography algorithm we used in our experiment 

is Bayesian tractography with 10,000 tracts initiated from each seed point. To compare 

with other two-ROIs approaches, we select only those fibers starting from one ROI passing 

through the other ROI, and the connectivity map is computed from the selected fibers. 

In addition, for quantitative validation purposes, we also truncate the selected fibers as 

mentioned earlier and threshold the connectivity maps with threshold value zero to get 

binary segmentations of the tracts. We use the implementation in Camino [106] library for 

the two-tensor estimation, deterministic tractography, and stochastic tractography.

In the following, we compare our segmentation method with other approaches and 

perform quantitative evaluation of the segmentations on synthetic data in Section 4.3.1. 

Then, we validate our adaptive Riemannian metric and segmentation method on real data 

in Section 4.3.2.

4.3 .1  F iber C rossing Tensor D ata

To test the effectiveness of our segmentation algorithm presented in Section 4.2 on 

crossing tracts, we generate three fiber crossing tensor fields with similar properties to many 

white matter tracts in the brain. One goal of this experiment was to test the influence of 

oblate tensors, where the principal eigenvectors that our adaptive metric attempts to follow 

are not well defined. The synthetic images are two bars crossing at the center of the image 

at an angle of 60° and 90° and a curved torus crossing with a cylinder. The bar has a width 

of 8 voxels, the cylinder has a radius of 8 voxels, and the torus has a minor radius of 8 

voxels and a major radius of 40 voxels. We show a center slice of each tensor field along 

with the ROIs we use in this experiment in the first column of Fig. 4.6.

The tensors in each tract of the two crossing tracts have eigenvalues (16,4,4) x10- 4mm2/s. 

Each voxel of the generated DWI in the crossing area was computed based on the two-tensor 

model,

S  =  S o (fe -bgtDig +  (1 -  f ) e -bgtD29), (4.1)

where S0 is the baseline image, g is the gradient direction, and D i and D 2 are the crossing 

tensors at a voxel. In this case, we use 64 gradient directions with b =  1000s/mm2 and 

f  =  0.5. In addition, the DWI was corrupted by Rician noise to simulate an SNR of 10, 15, 

and 20.
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Fig. 4.6. Simulated fiber crossing data and the connection map from stochastic tractog­
raphy. Left column: the simulated fiber crossing tensor fields with two ROIs (white and 
gray). We subsample the tensor field by a factor of 3 both horizontally and vertically in 
order to visualize it. Right column: the connection map (voxels are color coded from red 
[low intensity] to yellow [high intensity] ) from stochastic tractography. The background 
image is the fractional anisotropy (FA) image.
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In Tables 4.1 and 4.2, we compare the sensitivity, specificity, and Dice coefficient of the 

segmentations computed by eight methods. While the sensitivity and specificity represent 

only the true positive rate and the true negative rate of the segmentations, respectively, the 

Dice coefficient measures how similar the segmentations and the ground truth are overall. 

A segmentation with either a higher sensitivity or a higher specificity does not mean this 

segmentation is better. For example, on one hand, if a segmentation has every pixel, it will 

have sensitivity 1 and specificity 0; on the other hand, if a segmentation has no voxel, it will 

have sensitivity 0 and specificity 1, which is the case for the single-tensor FACT method in 

Table 4.2. So the Dice coefficient is of most interest and a high Dice coefficient should have 

both high sensitivity and high specificity.

From the two tables, we can see that it is very difficult for the single-tensor FACT and 

tensor line methods to pass the 60° crossing area. The stochastic tractography method 

works somewhat better, but its Dice coefficients are still low compared to our method. 

The major reason is that for these three methods, most of the fibers from one tract enter 

the wrong tract by following the ill-defined principal eigenvectors in the crossing region. 

The two-tensor methods perform much better than the single-tensor methods. For the 90° 

crossing data, most of the fibers of the single-tensor FACT method cannot pass though the 

crossing region because the principal eigenvectors are random at the crossing region, but the 

tensor line method works well because the tensors in the crossing region looks like pancakes 

and the fibers tend to go straight. The two two-tensor methods work better compared to 

the 60° crossing case, for the crossing angle is larger, which is easier for the two-tensor

Table 4.1. Quantitative evaluation (Dice, sensitivity and specificity) of the segmentations 
on the generated noisy data at an SNR of 10 based on 1) inverse-tensor metric, 2) 
sharpened-tensor metric, 3) our modulating metric, 4) single-tensor FACT BF +  two-ROI, 
5) single-tensor tensor line BF +  two-ROI, 6) stochastic tractography, 7) two-tensor FACT 
BF +  two-ROI, 8) two-tensor tensor line BF +  two-ROI.

60° Crossing 90° Crossing Curved Crossing
Dice SENS SPEC Dice SENS SPEC Dice SENS SPEC

1 0.997 1 0.992 0.996 1 0.991 0.977 0.960 0.989
2 0.997 1 0.993 0.996 1 0.991 0.978 0.960 0.993
3 0.997 1 0.993 0.997 1 0.991 0.993 0.990 0.991
4 0.044 0.023 0.994 0.143 0.078 0.991 0.665 0.500 0.989
5 0.189 0.105 0.999 0.991 0.989 0.991 0.958 0.919 0.999
6 0.327 0.195 1 0.269 0.155 1 0.860 0.754 0.999
7 0.810 0.681 0.998 0.901 0.821 0.998 0.950 0.905 0.997
8 0.777 0.637 0.996 0.973 0.954 0.991 0.958 0.921 0.994
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Table 4.2. Quantitative evaluation (Dice, sensitivity and specificity) of the segmentations 
on the generated noisy data at an SNR of 20 based on 1) inverse-tensor metric, 2) 
sharpened-tensor metric, 3) our modulating metric, 4) single-tensor FACT BF +  two-ROI, 
5) single-tensor tensor line BF +  two-ROI, 6) stochastic tractography, 7) two-tensor FACT 
BF +  two-ROI, 8) two-tensor tensor line BF +  two-ROI.

60° Crossing 90° Crossing Curved Crossing
Dice SENS SPEC Dice SENS SPEC Dice SENS SPEC

1 0.998 1 0.996 0.996 1 0.991 0.977 0.958 0.992
2 0.998 1 0.996 0.996 1 0.991 0.977 0.959 0.992
3 0.997 1 0.992 0.996 1 0.991 0.993 0.990 0.992
4 0 0 1 0.030 0.015 1 0.705 0.544 0.999
5 0.053 0.027 1 0.991 0.991 0.989 0.952 0.908 0.998
6 0.204 0.124 1 0.536 0.366 1 0.882 0.790 0.997
7 0.929 0.872 0.993 0.949 0.907 0.995 0.967 0.939 0.992
8 0.845 0.749 0.995 0.982 0.974 0.987 0.968 0.941 0.992

estimation algorithm to separate the two tensors. For the image containing a curved tract 

crossing with a cylinder, the single-tensor FACT and stochastic tractography methods work 

better compared to the other two cases because the principal eigenvectors are not random 

except in the center slice of the crossing region, and most of the fibers do not go to the 

wrong tract by following the principal eigenvectors.

For the segmentations based on the geodesic tracking with three metrics, we can see 

that these three methods outperform the other five tractography algorithms and that the 

three methods have very similar Dice coefficients, which are all above 99%, for both 60° 

and 90° crossing. For the data where a curved tract crosses with a cylinder, although these 

three methods still outperform the other five tractography algorithms, the segmentations 

based on our modulating metric have the best Dice coefficient, and their differences from 

the Dice coefficients of the segmentations based on the other two metrics are greater.

Besides, the geodesic methods have very stable segmentations as the noise level changes, 

but the tractography methods are relatively more sensitive to noise. In addition, for different 

crossing data, the best tractography algorithm changes, so it is unclear how to choose the 

most appropriate tractography algorithm if we want to use tractography to segment tracts.

In Fig. 4.7, we show a slice of the segmentations using the best tractography methods (1st 

column) in terms of the Dice coefficient, using the sharpened-tensor metric (2nd column), 

and using our adaptive metric (3rd column). We can see that the segmentations based on 

our adaptive metric are favorable in all three cases. In the right column of Fig. 4.6, we 

show the connectivity maps of the stochastic tractography. We can see that the stochastic 

results miss numerous voxels that are inside the tract of interest.
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Fig. 4.7. A slice of the segmentations of the fiber crossing data at an SNR of 20. The 
first column show the best tractography results in terms of the Dice coefficient, which are 
two-tensor FACT BF + two-ROI method, single-tensor tensor line BF + two-ROI method, 
and two-tensor tensor line BF + two-ROI method from top to bottom. The second/third 
column shows the results based on the sharpened-tensor metric/our modulating metric.

4.3 .2  R eal D ata
We now show the results of our method applied to DTI of 10 healthy volunteers. DTI 

data were acquired on a Siemens Trio 3.0 Tesla Scanner with an 8-channel, receive-only head 

coil. DTI was performed using a single-shot, spin-echo, EPI pulse sequence and SENSE 

parallel imaging (undersampling factor of 2). Diffusion-weighted images were acquired in 

twelve noncollinear diffusion encoding directions with a diffusion weighting factor b = 1000 

s/mm2 in addition to a single reference image (b = 0). Data acquisition parameters included 

the following: contiguous (no-gap) 50 2.5mm thick axial slices with an acquisition matrix of 

128 x 128 over a FOV of 256 mm (2 x 2 mm2 in-plane resolution), four averages, repetition
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time (TR) =  7000 ms, and echo time (TE) =  84 ms. Eddy current distortion and head 

motion of each data set were corrected using an automatic image registration program [98]. 

Distortion-corrected DW images were interpolated to 1 x 1 x 1.25 mm3 voxels, and six 

tensor elements were calculated using weighted least squares. The tensor upsampling is 

done only for the purposes of numerical computations on the voxel grid; a finer grid results 

in higher numerical accuracy.

We selected four white matter tracts—the uncinate fasciculus, genu, arcuate fasciculus, 

and corticospinal tracts—to validate our segmentation algorithm on the real DTI from 10 

subjects. We compare the segmentations of different algorithms as we did in Section 4.3.1, 

except that we do not test the two-tensor methods since the diffusion-weighted images were 

acquired in only 12 diffusion encoding directions. To get a quantitative validation, we need 

the ground-truth segmentation on these real data, and for this we use the Johns Hopkins 

University DTI-based white matter atlases [107-109]. There is both a white matter labels 

atlas, created by hand segmentation, and a white matter tractography atlas, created by 

averaging the results of deterministic tractography. We first register each subject’s DTI to 

their corresponding T2 images, and then we register the T2 image of the atlas to the T2 

image of each subject. In the end, we use the computed deformation field to transform both 

labels to each of the 10 subject’s anatomy. We then use these registered labels as a starting 

point for manual segmentations of the 10 images. This allowed for manual correction of 

segmentations due to anatomical variability and registration errors. Tables 4.3 and 4.4 

give the Dice coefficients and specificity/sensitivity of all methods, compared to the manual 

segmentation ground truth.

In Tables 4.3 and 4.4, we can see similar behavior as we found in the segmentation

Table 4.3. Mean and standard deviation of segmentation metrics (Dice, sensitivity and 
specificity) for the uncinate fasciculus and genu from 10 subjects. Methods shown are 
1) Inverse-tensor metric, 2) Sharpened-tensor metric, 3) Our modulating metric, 4) Sin­
gle-tensor FACT BF +  two-ROI, 5) Single-tensor Tensor line BF +  two-ROI, 6) Stochastic 
tractography.

uncinate genu
Dice SENS SPEC Dice SENS SPEC

1 0.793 (0.054) 0.720 (0.087) 0.999 (0) 0.706 (0.132) 0.625 (0.163) 0.993 (0.004)
2 0.829 (0.047) 0.800 (0.099) 0.999 (0) 0.726 (0.078) 0.637 (0.114) 0.993 (0.003)
3 0.845 (0.036) 0.841 (0.044) 0.999 (0.001) 0.745 (0.046) 0.709 (0.111) 0.988 (0.006)
4 0.460 (0.121) 0.401 (0.119) 0.998 (0.001) 0.628 (0.091) 0.511 (0.117) 0.994 (0.004)
5 0.545 (0.096) 0.506 (0.126) 0.998 (0.001) 0.698 (0.046) 0.599 (0.075) 0.993 (0.003)
6 0.469 (0.158) 0.341 (0.136) 0.999 (0.001) 0.613 (0.074) 0.474 (0.103) 0.996 (0.004)
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Table 4.4. Mean and standard deviation of segmentation metrics (Dice, sensitivity 
and specificity) for arcuate fasciculus and corticospinal tract from 10 subjects. Methods 
shown are 1) Inverse-tensor metric, 2) Sharpened-tensor metric, 3) Our modulating metric, 
4) Single-tensor FACT BF +  two-ROI, 5) Single-tensor Tensor line BF +  two-ROI, 6) 
Stochastic tractography.

arcuate fasciculus corticospinal tract
Dice SENS SPEC Dice SENS SPEC

1 0.729 (0.052) 0.621 (0.074) 0.999 (0.001) 0.778 (0.050) 0.752 (0.089) 0.997 (0.001)
2 0.733 (0.045) 0.650 (0.080) 0.999 (0.001) 0.758 (0.050) 0.733 (0.088) 0.996 (0.001)
3 0.750 (0.034) 0.687 (0.054) 0.998 (0.001) 0.782 (0.041) 0.866 (0.049) 0.994 (0.002)
4 0.429 (0.107) 0.322 (0.094) 0.998 (0.001) 0.373 (0.120) 0.260 (0.098) 0.998 (0.001)
5 0.530 (0.110) 0.410 (0.112) 0.999 (0.001) 0.367 (0.095) 0.246 (0.083) 0.999 (0.001)
6 0.568 (0.123) 0.474 (0.122) 0.997 (0.003) 0.462 (0.098) 0.341 (0.095) 0.997 (0.002)

of synthetic data in Section 4.3.1. First, we can see that the tractography methods have 

difficulties in connecting two regions, especially in the presence of partial voluming or fiber 

crossing. For example, the Dice coefficients of tractography methods are all below 0.6 for 

the uncinate fasciculus, arcuate fasciculus, and corticospinal tract, where there are either 

fiber crossing or fiber kissing inside each tract. The tractography methods work better on 

the genu, in terms of Dice coefficients, because there are no fiber crossings inside this tract. 

In all four tracts, the front-propagation approaches perform better than the tractography 

methods in terms of Dice coefficients, with our adaptive metric performing the highest. For 

the corticospinal tract, compared to the other three highly curved tracts, the three different 

geodesic methods have very close Dice coefficients, and the one with our modulated metric 

does not improve the segmentation by much. This is consistent with what we found on the 

synthetic data, where the geodesic methods have similar Dice coefficients when the tracts 

are straight, and our adaptive metric is better when the tracts are curved.

In Figs. 4.8, 4.9, 4.10, and 4.11, we show slices of the ground-truth segmentations, the 

segmentations of the best tractography methods in terms of Dice coefficient, the connectivity 

map from stochastic tractography, and the segmentations based on geodesic tracking. We 

can see that in all cases, the BF +  two-ROI methods tend to undersegment the white matter 

tracts. They often miss a lot of voxels that are obvious inside the tracts of interest. This is 

especially obvious in the segmentations of uncinate fasciculus (Fig. 4.11) and corticospinal 

tract (Fig. 4.10). These two methods can usually segment the central part of the tracts, 

but often miss voxels around the boundary of the tracts since the fibers passing these voxels 

are likely to stop at the boundary of the white matter or enter into other tracts because 

of partial voluming or fiber crossing. In addition, we can also see that the BF +  two-ROI 

approach sometimes includes some voxels outside the tracts of interest. For example, in the
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Fig. 4.8. A slice of segmentations (shown in white) and a connectivity map of the genu 
of the corpus callosum. Left column (from top to bottom): ground-truth segmentation, 
segmentation from single-tensor tensor line BF +  two-ROI method, connectivity map from 
stochastic tractography; Right column (from top to bottom): segmentations based on 
geodesic tracking with the inverse-tensor metric, sharpened-tensor metric, and our adaptive 
metric.
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Fig. 4.9. A slice of segmentations (shown in white) and a connectivity map of the 
direct arcuate fasciculus. Left column (from top to bottom): ground-truth segmentation, 
segmentation from single-tensor tensor line BF +  two-ROI method, connectivity map from 
stochastic tractography; Right column (from top to bottom): segmentations based on 
geodesic tracking with the inverse-tensor metric, sharpened-tensor metric, and our adaptive 
metric
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Fig. 4.10. A slice of segmentations (shown in white) and a connectivity map of 
the corticospinal tract. Left column (from top to bottom): ground-truth segmentation, 
segmentation from single-tensor FACT BF +  two-ROI method, connectivity map from 
stochastic tractography; Right column (from top to bottom): segmentations based on 
geodesic tracking with the inverse-tensor metric, sharpened-tensor metric, and our adaptive 
metric.
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Fig. 4.11. A slice of segmentations (shown in white) and a connectivity map of the uncinate 
fasciculus. Left column (from top to bottom): ground-truth segmentation, segmentation 
from single-tensor tensor line BF +  two-ROI method, connectivity map from stochastic 
tractography; Right column (from top to bottom): segmentations based on geodesic tracking 
with the inverse-tensor metric, sharpened-tensor metric, and our adaptive metric.
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segmentation of the genu from the tensor line BF + two-ROI method in Fig. 4.8, we can 

see that there is an isolated segment in the segmentation. This is caused by some fibers 

that first went to other tracts of the brain and then make a U-turn before they arrive at 

the ROI as shown in Fig. 4.12. This problem might be solved by changing our stop criteria, 

i.e., decreasing the stop angle threshold for tractography, but this results in worse results 

by also decreasing the volume of the segmentations.

The stochastic tractography has the same undersegmentation problems, as shown by 

their resulting probability maps. First of all, they miss a lot of voxels around the boundary 

of the tracts, and we can also see that the central part of the tract has higher probabilities 

than the voxels close to the boundary of the white matter tracts. For the connectivity map 

of the uncinate (Fig. 4.11), only a few voxels have intensity in the shown slice, and even in 

the maximum intensity projection along the sagittal plan (Fig. 4.13), the connectivity map 

still looks very thin. It is obvious that it is very difficult to get a good segmentation based 

on the probability map. This makes sense because if a fiber from deterministic tractography 

stops at the boundary of the white matter, even if we initiate a lot more fibers, there is 

still a big chance that the fibers arrive at the boundary and stop there. Moreover, both the 

BF method and stochastic tractography are computationally-intensive approaches. Though 

the BF process is a preprocessing step and it only needs to be done once, we usually need 

several gigabytes of storage space to save the whole brain tractography result.

On the other hand, for geodesic-based segmentation methods, the segmentations based

Fig. 4.12. Fibers generated from the single-tensor tensor line BF +  tow-ROI method for 
the genu of the corpus callosum.
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Fig. 4.13. Maximum intensity projection of the connectivity map along the sagittal plane 
for the uncinate fasciculus.

on the inverse-tensor metric and sharpened-tensor metric are better than the BF + two-ROI 

approach in terms of missing voxels. For example, they delineate the structure of the 

corticospinal tract and uncinate fasciculus better, although they sometimes also miss some 

voxels as shown in Figs. 4.10 and 4.11. However, they also clearly undersegment the genu 

of the corpus callosum in Fig. 4.8. This is from missing a lot of the voxels at the posterior 

side of the tract, due to the same curvature effects and shortcutting seen in the synthetic 

annulus. Also, they may oversegment the tracts as shown in the segmentations of the 

arcuate fasciculus in Fig. 4.9. Here they both oversegment the tract because they include 

many voxels below the tract which should be inside the inferior longitudinal fasciculus. 

However, our adaptive metric results in improved segmentations of these tracts. In the 

segmentations of the genu in Fig. 4.8, our method corrects the shortcutting and includes 

most voxels of the genu. Our method’s segmentations of the direct arcuate fasciculus are 

also improved, as seen in Fig. 4.9. While the BF + two-ROI approach undersegments 

the tract and the other two geodesic-based methods oversegment the tract, our method 

finds a good balance between the two (although it also includes a few voxels inside the 

inferior longitudinal fasciculus). For the segmentations of corticospinal tract in Fig. 4.10, 

the difference among the geodesic-based segmentations is not as obvious as the other tracts 

since this tract is relatively straight.

4.4 Conclusion
The standard tractography method has the potential to explore white matter structure. 

It is a good tool to visualize the white matter pathways, but it also lacks reproducibility
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and could sometimes produce many false positive tracts due to noise or fiber crossing, so it 

is not a great tool to do segmentations.

Compared to our method, the BF + two-ROI approach requires the fibers to pass both 

of the two ROIs. While this increases the validity of tractography, it also make the approach 

have the tendency to undersegment the white matter tracts since many fibers stop at the 

boundary of the white matter or enter into other tracts. The stochastic tractography has a 

very similar problem.

We presented a new geodesic-based algorithm for segmenting white matter tracts in DTI. 

We developed a segmentation framework based on the computed geodesics from the modified 

Riemannian metric (Chapter 3). Since the modification and segmentation algorithm are 

formulated on a general Riemannian manifold, our method can also be applied to problems 

for which there exist a Riemannian metric (which is just the Euclidean metric in Euclidean 

space) and preferred geodesics.

We have demonstrated the advantages of our method over the state-of-the-art methods 

on both synthetic and real data. We have shown that our adaptive Riemannian metric 

results in geodesics that more faithfully follow the principal eigenvectors of the diffusion 

tensor field, resulting in segmentations that better delineate the white matter tracts, es­

pecially in tracts with high curvature. In addition, there are almost no parameters in our 

entire framework, and the only user intervention we need is identification of ROIs. As such, 

our method can be very useful for large data clinical studies, where fewer parameters and 

user intervention are preferred.

Furthermore, our method is less sensitive to local perturbations, such as noise, partial 

volume effects, or fiber crossing, compared to tractography algorithms. First, the adaptive 

metric is computed by minimizing a functional over the whole image domain, which makes 

our metric less sensitive to the noise as shown in Chapter 3. Second, the front-propagation 

method computes the pathways by optimizing a global functional using the whole DTI data 

and hence is less influenced by noise, partial volume effects, or fiber crossing.



CHAPTER 5

JOINT FRACTIONAL SEGMENTATION 

AND MULTITENSOR ESTIMATION 
IN DIFFUSION MRI

In this chapter, we present a novel Bayesian approach for fractional segmentation of 

white matter tracts and simultaneous estimation of a multitensor diffusion model. Our 

model consists of several white matter tracts, each with a corresponding weight and ten­

sor compartment in each voxel. By incorporating a prior that assumes the tensor fields 

inside each tract are spatially correlated, we are able to reliably estimate multiple tensor 

compartments in fiber crossing regions, even with low angular diffusion-weighted imaging 

(DWI). Our model distinguishes the diffusion compartment associated with each tract, 

which reduces the effects of partial voluming and achieves more reliable statistics of diffusion 

measurements. We test our method on synthetic data with known ground truth and 

show that we can recover the correct volume fractions and tensor compartments. We also 

demonstrate that the proposed method results in improved segmentation and diffusion 

measurement statistics on real data in the presence of crossing tracts and partial voluming.

5.1 Introduction
Diffusion-weighted imaging (DWI) is a magnetic resonance imaging (MRI) modality 

that can measure the directional diffusion of water in tissue, and a second-order model of 

diffusion within a voxel is estimated from the DWI data in diffusion tensor imaging (DTI). 

As mentioned in Chapter 2, the diffusion tensor is an elegant description of anisotropic 

diffusion in white matter and an powerful tool for clinical studies of white matter anatomy 

and brain development abnormalities, but it is limited to represent only one tract in each 

imaging voxel. In several regions of the brain, two or more white matter tracts are passing 

through each other, such as the intersection of the corona radiata and the corpus callosum. 

In addition, some white matter tracts are mixed with gray matter or cerebrospinal fluid 

(CSF) at the boundary, such as the corpus callosum and lateral ventricles. In these
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cases, a single diffusion tensor is incapable of distinguishing between multiple diffusion 

compartments.

It has been shown that partial volume effects and underestimation of diffusion mea­

surements occur in crossing areas [110-112]. For example, Alexander et al. [110] showed 

that the trace of the diffusion tensor will tend to be underestimated in the presence of 

partial voluming, and Metzler-Baddeley et al. [112] showed that CSF-based partial volume 

artifacts have a larger impact on tensors with smaller fractional anisotropy (FA). Further­

more, underestimation of diffusion tensor measurements could bias statistics of diffusion 

measurements, providing misleading results in clinical studies. Although the partial volume 

effects might be detected during the DTI analysis [113], it cannot resolve the partial 

volume effects completely, and other methods that can correct the partial volume effects are 

needed. To address this problem, Tuch et al. [64] proposed an approach using high angular 

resolution diffusion-weighted imaging (HARDI) (see [65] for a comprehensive review), which 

measures the DWI signals along a large number of gradient encoding directions, typically 

64-100. Several multicompartment models of diffusion have been introduced, such as the 

multitensor [66] and ball-and-stick [72] models. For example, the multitensor model [66] 

models the diffusivity in a voxel using a combination of tensor compartments, and each 

tensor compartment has an associated fraction. HARDI can model the fiber geometries 

more accurately, but one drawback to HARDI is the increased imaging time required, which 

has been a barrier to its introduction in clinical studies.

Several works have proposed correcting the partial volume effects using low-angular 

resolution images (approximately 30 gradient directions) [114-117]. Pasternak et al. [117] 

proposed a bitensor model that reduces partial volume effects and could also be done in 

conventional DTI, but this method can only separate brain tissue from surrounding free 

water and it cannot solve the fiber crossing. Landman et al. [116] used a multitensor 

model and compressed sensing to solve the fiber crossing using low angular DWI, but they 

employed a set of basis directions to map the multiple tensor model to lower dimensionality, 

which could bias the estimated tensors. It has already been shown that the use of spatial 

regularization can improve the DTI estimation [118-120]. Other researchers [114,115,121], 

therefore, have applied the similar idea and used spatial prior regularization to help the 

multitensor estimation. For example, Pasternak et al. [121] used a smooth regularization to 

reduce partial volume effects using multitensor fitting and showed that the regularization 

can help solve ill-posedness, but they tested their methods on only two fiber crossings. All 

the methods mentioned above use DWI with at least 30 gradient directions.
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None of these methods combine multiple compartment estimation with white matter 

tract segmentation, which is often a primary goal of DWI analysis. In this paper, we propose 

a method that jointly solves the tract segmentation and multitensor model estimation 

problems. In each voxel, our model assigns a fractional weight to each fiber tract to indicate 

the proportion of that voxel that belongs to the given tract. These weights also serve as 

the volume fractions in the multitensor model for that voxel, linking the segmentation 

to the diffusion estimation problem. We impose a Markov random field (MRF) spatial 

prior to take advantage of spatial redundancy during the estimation and to regularize the 

multitensor field. To the best of our knowledge, ours is the first model that combines 

fractional segmentation of white matter with multitensor estimation. We compare our 

method with state-of-the-art binary segmentations of white matter tracts, which sometimes 

undersegment or oversegment tracts. We demonstrate that the fractional weights can 

improve statistical analysis of derived measurements, such as fractional anisotropy (FA), 

by appropriately weighting the data associated with a particular tract. Using synthetic 

data with known ground truth, as well as real DWI brain data, we show that our method 

improves tract segmentations, distinguishes multiple tissue compartments, and provides 

better diffusion estimates even when using only 12 gradient directions.

5.2 Fractional Segmentation and 
Multitensor Estimation

In this section, we propose a Bayesian approach to simultaneously estimate both the 

fractional segmentation of white matter tracts and the multitensor diffusion model. Our 

goal is to estimate the volume fractions and diffusion tensors in such a way that the DWI 

signal from the estimated multitensor model matches the measured DWI signal and the 

estimated tensor compartments in each tract are spatially smooth. This leads to a maximum 

a posteriori (MAP) estimation approach, in which the log posterior is

logp(9|S) a: logp(S|9) +  logp(9),

where 9 represents the parameters of the model, namely, the multitensor field and volume 

fractions, and S is the original DWI signal. The likelihood, p(S|9), models the fit of the 

multitensor model in each voxel to the DWI signal, and the prior, p(9), is a Markov Random 

Field (MRF) smoothness prior on the multitensor and volume fraction field. We now 

describe both the likelihood and prior in detail.
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5.2.1 L ikelihood— T he D a ta  A ttach m en t Term

To model multiple diffusion compartments within a voxel, whether from crossing white 

matter fiber tracts or mixtures of white matter with CSF or gray matter, we use a multiten­

sor model of the given DWI signals. The multitensor model uses n tensor compartments, 

Di, and each tensor compartment is associated with a nonnegative volume fraction f i to 

model the DWI signals Sj as

where b is the b-value, So is the baseline image, and gj is the j-th  gradient encoding direction. 

In contrast to the usual multitensor model, we also associate each volume fraction fi  to a 

white matter tract segmentation. That is, we want to segment the DWI into n  white matter 

tracts, where f i(x) represents the fraction of the voxel at position x that is occupied by 

fibers in the ith tract. In addition, we preserve the n-th tract, a background tract that 

represents the fraction of the voxel that does not belong to any of the n — 1 tracts.

Now, assuming the DWI signal is corrupted by additive, i.i.d. Gaussian noise, our 

log-likelihood is the following DWI signal matching term:

This noise model could be replaced with a Rician noise likelihood or a noncentral chi- 

distribution for multichannel MRI. Conceptually this would not change the underlying 

methodology, but rather would make the estimation procedure slightly more complicated. 

The Gaussian likelihood is a simplifying approximation.

Inside a white matter tract, it is reasonable to assume that the tensors field should be 

spatially correlated, i.e., the tensor field flows smoothly inside a white matter tract. Thus, 

we incorporate an MRF prior on the tensor fields inside each tract, given by

1 f  n 
p(Di) =  — e-Ul(Di), and Ui(Di) =  A1 / V ^ i (D i(x))dx,

Z  J^ i  

where Z  is a normalization constant, A is a weighting parameter, and 0 1(Di(x)) is a function 

that measures the correlation of tensors in the ith tract, around x.

n n
Sj(x) =  So(x) ^  fi(x)e bgjDi(x)gj, with ^  fi =  1, (5.1)

i=1 i

5.2.2 T he M arkov R and om  F ield  Prior
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Similarly, the fractions / .  should also be smooth inside a tract except at the boundary 

of fiber crossings. The prior we incorporate on the fractions inside each tract is in the same 

form as the prior on the tensor fields, which is

1 . n
P(/i) =  z?e-U2(fi), and U2(/.) =  A J  ^ 02(/.(x))dx.

Jo, .

Thus, by combining the log-likelihood term with the prior, we end up minimizing the

energy

r /  m n 2
E ( / i ,A ) =  /  £  (S ^x ) £  /,(x )e-bgTD<(x)»  -  Sj(x))

'  j= 1 i= 1
n n \

+  Ai £  0i(D.(x)) +  A2 £  02(/i(x)M  dx.
i i

We use the full six-component tensor model to represent D., but we want to emphasize that 

D. could be any other diffusion model, such as the ball-and-stick model. In addition, we

use

0i(D.(x)) =  £  ||V D f (x) ||2 =  £  £  ( D f  (y) -  D f  (x))2, (5.2)
p,q p,q yeN(x)

where N(x) is a neighborhood around x, and Dpq represents the component in the pth row

and the qth column of the matrix D.. 0 1(Di(x)) could be generalized to other functions for

measuring the smoothness of D.. For example, we find that it is helpful to use a function

that can preserve the edge of the tensor fields, such as the total variation norm, on the

background, especially when there are multiple tracts or elements on the background. In

this case, the total variation norm can help prevent the blurring across different tracts or

elements. We use the total variation norm for the background tract in Section 5.3.4. For

the prior on /., in order to smooth / .  and preserve boundaries inside /. as well, our prior

on /. is

0 2( / . (x)) =  llV /i(x)ll =  I £  ( / . (y) -  / i (x))2. (5.3)
yeN(x)

5.2 .3  O p tim izing f .  and D .

We use a gradient descent algorithm to compute /. and D.. The partial derivatives are 

computed using the prior in (5.2) and (5.3), but the partial derivatives using other prior 

can be computed similarly. The partial derivative of E  with respect to /. is
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and the partial derivative of E  with respect to D jq is

d D q = ( mm 2 ( (So(x) t  / i (x)e
j=1 i=l

■ ( - j q )) + 2  ■ Al ■ ( -  div(VDpq (x)))^ ■ ^(p, q),

m ( n

j=1 i=1

■ )) -  2 ■ AiA (Dpq (x)^  ■ ^  q^

where gj1 represents the pth element of the vector g j, and ^(p, q) =  1 if p =  q, and ^(p, q) =  2 

if p =  q. Special care is required in the update of / i . In every iteration of our gradient 

descent algorithm, we project the computed gradient of E  with respect to / i onto the 

constraint hyperplane defined by Y^n= 1 /  =  1. To ensure that the / i remain positive, we 

also need to project the gradient onto the simplex boundary defined by the constraints 

/ i > 0 when necessary. Then we do a line search to compute the optimal step size for 

updating / i . Though this should guarantee that / i satisfies the constraint in theory, in 

practice we still need to renormalize the / i to make ^ n =1 /  =  1 every certain number of 

iterations because of the numerical error.

So far, we have not discussed how the binary segmentations are involved in our model. 

The way we incorporate binary segmentations is through the initialization of our optimiza­

tion. For the n  tracts, the first n  -  1 tracts are the binary segmentation of the white mater 

tract we want to segment, and we will preserve the last one, the n-th tract that represents 

the fraction of the voxel that does not belong to any of the n -  1 tracts.

As in Algorithm 4, to initialize our gradient descent, we first compute binary segmen­

tations for each of the n -  1 tracts of interest. The nth label is reserved as a “background”

5.2 .4  In itia lization  o f th e  O ptim ization  
w ith  B inary Segm entation
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label that does not belong to any of the tracts. The binary segmentations just need to 

roughly capture the tracts, which could be accomplished by several methods. We use 

a front-propagation geodesic segmentation [52,54,55], which uses a Riemannian metric 

derived from the diffusion tensor field and constructs white matter tracts as geodesics 

connecting two regions-of-interest (ROI) on the resulting manifold. These geodesics have 

the desirable property that they tend to follow the main eigenvectors of the tensors, yet 

still have the flexibility to deviate from these directions when such deviation results in lower 

costs. This makes such methods more robust to noise and also allows them to pass through 

crossing regions. After segmenting the n — 1 tracts of interest for each voxel inside the 

predefined image mask, if no segmentations include the voxel, we initialize fn as 1 and Dn 

as the weighted least squares estimate of a single-tensor model. Otherwise, we initialize the 

fractions f  equally amongst all segmentations that intersect at the voxel, and we initialize 

all corresponding tensors Dj in that voxel with the same weighted least-squares estimate of 

a single-tensor model at that voxel.

A lgorithm  4 Initialization of f j and Dj
{Let Q be the mask we are working with and x be a voxel} 
for x € Q do

{Let C be number of binary segmentations that contain voxel x and T(x) be the 
diffusion tensor estimated from the diffusion tensor model at voxel x.} 
if C =  0 th en

for i =  1, 2,..., n — 1 do 
fi(x) =  1/C, Dj(x) =  T(x) 

end for
fn(x) =  0, Dn(x) =  0 

else
for i =  1, 2, ... , n — 1 do 

fi(x) =  0, Dj(x) =  0 
end for
fn(x) =  1,Dn(x) =  T (x) 

end if 
end for

5.2.5 P aram eter Selection

One key issue of the proposed method is how to select the appropriate parameters for 

the prior. We find that the most important parameter is the one associated with the tensor 

smoothness. So we will focus on how to select this parameter, with other parameters fixed.

Our approach to select the appropriate parameter is based on cross validation. Basically, 

we first randomly select n (for example, we use n =  24 for the parameter selection in Sec­



74

tion 5.3.4) subjects from our dataset. Each subject has a DWI with 12 gradient directions. 

We randomly select one of the 12 DWI signals as the test data in such a way that the 

selected gradient directions can spread uniformly on the sphere S2, and the remaining 11 

DWI signals with the b0 image are used to optimize the fractions and tensors. Then, we 

choose several reasonable parameter values. With each parameter value, we optimize the 

fractions and tensors, compute the prediction in the gradient direction associated with the 

test DWI data, and then measure the root mean square error (RMSE) between the predicted 

DWI and the test DWI data for each subject. In the end, we average the RMSE over the 

24 subjects and use the result as a measure of goodness of the parameter value.

In Section 5.3.4, the parameter values we selected are 1E6, 5E6, 1E7, 5E7, 1E8, 5E8, 

1E9, 5E9, and 1E10. Their averaged RMSE are 5.47, 5.26, 4.93, 4.44, 4.34, 4.18, 4.25, 5.17, 

and 5.30, respectively. In addition, we also fit a single-tensor image with the 11 DWI signals 

using the weighted least square method and compute its prediction error for the test DWI 

data. The averaged RMSE is 5.27.

In Fig. 5.1, we plot the computed errors. We can see that the RMSEs of most selected 

parameters are better than the RMSE of the single-tensor image. Also, among all the 

parameter values, the one associated with 5E8 has the minimum error.

Parameter Selection (log scale)

Fig. 5.1. Plot of the averaged RMSE. The RMSE for each parameter value is shown as 
black points, and the RMSE for the single-tensor image is shown as a blue line.
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5.2 .6  P ath  R egression  A long th e  S egm ented  Tracts

Our estimated fraction f i can also be used to improve statistical summaries of the 

diffusion data along segmented tracts. Here we demonstrate an example of the use of these 

fractions in a nonparametric regression along a tract. Let {xi} be the collection of voxel 

locations within a segmented tract. Each voxel has an associated parameter, si =  s(xi) e 

[0, 1], which denotes the arc-length parameter along the pathway at the spatial location 

xi [52]. Denote by di a data value at the location xi . This data may be a full diffusion 

tensor or a derived measure, such as FA or mean diffusivity (MD). We compute a continuous 

description of the data as a function of s using a nonparametric kernel regression,

y(s) =  dif iG(s — si ,a) 
y(s) ^ V  ? ru  \ ,

£ i  f iG(s — si ,a)
where G (^, a) denotes a Gaussian kernel with mean ^  and standard deviation a. In 

the kernel regression, in addition to the Gaussian kernel, each data value is weighted 

by the fraction fi, which makes our regression more robust to partial voluming since our 

fractional segmentation will appropriately assign small fi to data values influenced by partial 

voluming. The function y defined above gives a continuous average of the data along the 

pathway, which can be used to quantify the diffusion measurement along a pathway.

5.3 Results
In this section, we demonstrate the advantages of the fractional segmentations and 

improvements in multitensor estimations computed by our method on both synthetic and 

real data. On synthetic data with ground truth, we test our method on both low and 

high angular DWI and compare it with the multitensor model estimation implemented in 

Camino [106] using HARDI. Our measure of quality is the root mean square error (RMSE) 

between the estimated volume fractions/tensors and true volume fractions/tensors. In 

addition, we also show that our method improves the diffusion measurement statistics. 

On real data, we demonstrate that the proposed method results in improved segmentation 

and diffusion measurement statistics in crossing tracts and in the presence of partial vo- 

luming. To visualize the fractional segmentation, we convert our fractional segmentation 

to a color-coded RGB image, where each color component is set to a corresponding volume 

fraction. For visualization purposes, tensors with a weight lower than 0.2 are not shown.

5.3.1 C orrecting P artia l V olum e Effect

To test the ability of our method to correct partial volume effects, we generated one 

white matter tract whose boundary is mixed with isotropic tensors as shown in Fig. 5.2.



Fig. 5.2. Demonstration of partial volume effect correction. Top: synthetic white matter 
tract with partial volume effects at the boundary (shown in white). Middle: our estimated 
tensors. Bottom: our fractional segmentation. We subsample the tensor field by a factor of 
two both horizontally and vertically in order to visualize it.

The ground truth is a straight white matter tract with a width of 8 voxels and a length 

of 38 voxels, mixed with isotropic diffusion tensors at the boundary (shown in white in 

Fig. 5.2) with equal volume fractions in the multitensor model (5.1). The sphere tensors 

used to simulate CSF have eigenvalue (3,3,3) x10- 3mm2/s. The tensors in the white matter 

tract have eigenvalue (1.6,0.4,0.4) x 10- 3mm2/s. Using the mixed tensor field, we generate 

DWIs with 12 gradient directions and slightly blur the DWIs to simulate the point spread 

function (PSF) arising from imaging. We corrupt the DWIs with Rician noise to get an 

SNR of 20 (top image of Fig. 5.2).

Our estimated white matter tensor field is in the middle image of Fig. 5.2. As we can see, 

the estimated tensor field can recover the true white matter tensor from the mixed tensors 

at the boundary. In addition, our estimation algorithm denoises tensors in the interior. 

Our color-coded fractional segmentation is shown in the bottom panel of Fig. 5.2. In this 

example, the segmented white matter tract is the blue channel and the exterior is the green 

channel. The boundary is correctly assigned a 50% mixture of both compartments. The 

RMSE of our fractional segmentation of the white matter tract is 7.74 x 10-2 , and the 

RMSE of our estimated tensors is 5.22 x 10-5 .

In the left two images of Fig. 5.3, we do a regression analysis of the FA in the segmented
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Fig. 5.3. Path regression along the segmented tracts. Left two images: FA regression 
of simulated straight tract using binary (top) and fractional (bottom) segmentations, 
respectively. Ground truth is shown in green and the regression is shown in black. Right 
two images: FA regression of arcuate fasciculus from binary (top) and fractional (bottom) 
segmentations, respectively.

tracts with a  =  0.1 as mentioned in Section 5.2.6, where the x-axis is the arc-length position 

along the tract. We first plot the FA values as points. The color is coded by the volume 

fractions: solid blue denotes 0, and solid red denotes 1, so the binary segmentation values 

are always shown in red. The regression along the tract is shown in black, and the ground 

truth is shown as a dashed green line. It is clear that the partial volume effects bias the 

regression in the binary segmentations. In our method, the FA values are more tightly 

distributed around the ground truth due to the reduction of the partial volume effects and 

the denoising from our spatial prior.

5.3.2 F iber C rossing W h ite  M atter Tracts

To test the performance of our method in the presence of multiple white matter tracts 

crossing, we generate three fiber crossing tensor fields that have properties similar to many
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white matter tracts in the brain: 1) two bars crossing at the center of the image at an angle 

of 45°, 2) a curved tract crossing with a bar, and 3) three orthogonal bars crossing at the 

center of the image. We show a center slice of each tensor field in Fig. 5.4.

The tensors in each white matter tract have eigenvalues (1.6,0.4,0.4) x 10- 3mm2/s. We 

generate two sets of DWI datasets, one with 12 gradient directions and the other with 

64 gradient directions. Each voxel of the generated crossing DWI at the crossing area 

was computed based on the multitensor model (5.1), and we use b = 1000s/mm2 for both 

datasets. The true fractions in the crossing regions for the three data sets are (0.4, 0.6), 

(0.4, 0.6), and (0.3, 0.3, 0.4), respectively. In addition, the DWI was corrupted by Rician 

noise to simulate an SNR of 20.

In Figs. 5.5 and 5.6, we show the estimated tensors and fractions from our method and 

Camino. We test Camino only on noisy 64-direction DWI because Camino cannot estimate a 

multitensor model from only 12 gradient directions (it estimates each voxel independently). 

However, we can test our method on both noisy 64-direction DWI and 12-direction DWI 

because our spatial prior utilizes information from multiple neighboring voxels. On the 

first row of Fig. 5.5, we test our method on noiseless 12-direction DWI to show that we 

can recover multiple tensors, even when the solution is underdetermined at single voxels 

because of our spatial prior. On the second and third rows, we test our method on noisy 

64-direction DWI and noisy 12-direction DWI. The results are much improved over those 

from Camino, and our method works slightly better on the 64-direction DWI, for it has 

more information. The results from Camino are shown in the last row of Fig. 5.5. We 

gave Camino the advantage of a map of the correct number of tensor compartments in each 

voxel, but did not provide this extra information to our algorithm.

\
\w

N \ \ \

-++<■++-
-++-0-++--+++++-

Fig. 5.4. Generated fiber crossing data. Left: 45° crossing. Middle: a curved tract crossing 
with a straight tract. Right: three orthogonal tracts crossing. We subsample the tensor 
field by a factor of three both horizontally and vertically in order to visualize it.
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Fig. 5.5. Estimated tensors of the crossing region for the three crossing datasets: first 
column is for the 45° crossing, second column is for the curved tract crossing, and the 
third column is for the three orthogonal tracts crossing. First row: our estimated tensors 
from noiseless 12-direction DWI. Second row: our estimated tensors from noisy 64-direction 
DWI. Third row: our estimated tensors from noisy 12-direction DWI. Fourth row: estimated 
tensors from Camino using noisy 64-direction DWI.
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Fig. 5.6. Estimated fractional segmentations. The order is the same as in Fig. 5.5.
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We also show our fractional segmentation in Fig. 5.6. Since the weights computed 

from Camino do not correspond to segmentations, we solve a correspondence problem by 

minimizing the angles between estimated tensors from Camino and the true tensors. After 

the optimal order is found, we use the corresponding weights as the fractional segmentation. 

Outside the crossing region, as we mentioned earlier, we tell Camino the number of tensors, 

so Camino always has the true weights outside. The finding is consistent with the case 

for tensor estimation. For the noiseless data, the error between our solution and the true 

solution is close to zero, as shown in Table 5.1. For the noisy data, the solution of our 

method is worse when we use the 12-direction DWI than when we use the 64-direction 

DWI, but generally our results are fairly good for all three cases, and they look better than 

Camino inside the crossing regions.

In Table 5.1, we do a quantitative comparison of our method and Camino. Since we 

give Camino the true weight outside the crossing regions, to do a better comparison, we 

compute the RMSE of the estimated volume fractions only inside the crossing region, but 

we compute the RMSE of tensors in the whole white matter tracts. As shown in Table 5.1, 

the RMSE of our method is much smaller than the RMSE of Camino, and our method 

works best on the noiseless data, but when there is noise, our method has smaller RMSE 

when using DWI with more gradient directions.

5.3 .3  R eal D ata

We now show the results of our method applied to real DWI data. DWI data were 

acquired on a Siemens Trio 3.0 Tesla Scanner with an 8-channel, receive-only head coil. DWI 

was performed using a single-shot, spin-echo, EPI pulse sequence and SENSE parallel imag­

ing (undersampling factor of 2). Diffusion-weighted images were acquired in 12 noncollinear 

diffusion encoding directions with diffusion weighting factor b =  1000 s/mm2 in addition 

to a single reference image (b =  0). Data acquisition parameters included the following:

Table 5.1. RMSE of the estimated volume fractions and tensor compartments of our 
method (first three rows) and Camino using noisy DWI with 64 directions (last row).

45° Crossing Curved Crossing Three Crossing
Weight Tensor Weight Tensor Weight Tensor

Clean 12-dir 1.16E-4 5.61E- 7 1.44E-2 2.97E-5 1.33E-5 1.12E- 7
Noisy 64-dir 7.38E-2 1.39E-4 4.89E-2 1.38E-4 5.16E-2 2.09E-4
Noisy 12-dir 8.37E-2 1.54E-4 6.18E-2 1.63E-4 5.71E-2 3.07E-4
Camino 2.6E -1 4.40E-3 2.34E-1 2.89E-3 1.45E-1 3.14E-3
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contiguous (no-gap) 50 2.5 mm thick axial slices with an acquisition matrix of 128 x 128 

over a FOV of 256 mm ( 2 x 2  mm2 in-plane resolution), four averages, repetition time (TR) 

=  7000 ms, and echo time (TE) =  84 ms. Eddy current distortion and head motion were 

corrected using an automatic image registration program [98]. Distortion-corrected DW 

images were interpolated to 1 x 1 x 1 mm3 voxels, and six tensor elements were calculated 

using weighted least squares. The tensor upsampling is done only for the purposes of 

numerical computations on the voxel grid; a finer grid results in higher numerical accuracy.

To test the reliability of our method, we first randomly select one subject from the 

dataset, who has both a 12-direction DWI and a 64-direction DWI. Using the 12-direction 

DWI, we fit a single-tensor image. Using the same 12-direction DWI and selected parameter 

value as described in Section 5.2.5, we apply our method to the left arcuate fasciculus of 

the brain of the subject. Then we compute the RMSE between the predicted DWI and the 

64-direction DWI data for both the single-tensor method and the proposed method.

The histogram of the differences between the two sets of RMSE is shown in Fig. 5.7. 

We can see that most of the RMSE of the proposed method is smaller than the one of the 

single-tensor method. The mean and standard deviation of the differences are -0.91 and 

1.50. Also, we did a one-sided Wilcoxon test of the differences. The null hypothesis is that 

the differences have a 0 mean, and the result shows that the mean is significantly less than 0 

with a p-value 1.28E-5. This means that the RMSE of the proposed method is significantly 

smaller than the one of the single-tensor method.

RMSE Differences over 64 Gradient Directions
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Fig. 5.7. Histogram of the differences between the RMSE of the proposed method and the 
one of the single-tensor image over 64 gradient directions.
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In Fig. 5.8, we show our results for the arcuate fasciculus of the brain of a subject. In the 

first column, we show the initial binary segmentation, the DTI tensor field, and the color- 

coded principal eigenvector image. As we can see, the binary segmentation oversegments 

the tract because it includes many voxels (red arrow) below the tract that should be inside 

the inferior longitudinal fasciculus. In addition, it also undersegments the tract, missing 

the blue area on the lower right of the image (black arrow), which should be included in 

the segmentation. On the top-right image, we overlay the DTI tensor field on our fractional 

segmentation to demonstrate that our segmentation corrects the errors from the binary 

segmentation. In the middle-right image, we overlay our estimated tensors on top of our

Fig. 5.8. The binary segmentation is shown on the first column and our fractional 
segmentation is shown on the second column. The overlay tensor fields are the DTI tensor 
field except for the last one, where our estimated tensors are displayed. On the last row, 
the background images are the color-coded principal eigenvector images.
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segmentation. In the bottom-right image, we overlay our estimated fractional segmentation 

on the color-coded principal eigenvector image. From both images, we can see that our 

segmentation reduces the partial voluming effect at the boundary of the tract and has lower 

weights at the border of the arcuate fasciculus and inferior longitudinal fasciculus, where 

the tensors from the two tracts are mixed together. In addition, our segmentation also 

includes the blue area, which the binary segmentation missed.

In the right two images of Fig. 5.3, we do a similar regression analysis as mentioned in 

Section 5.3.1. We can see the FA values are more tightly distributed on the bottom image 

than on the top one, which is a sign of a possible reduction of partial volume effects as 

shown in Section 5.3.1. In addition, it may improve statistical power in clinical studies by 

reducing the within-subject variance.

We also test our method on a brain region with complex white matter organization as 

shown in Figs. 5.9 and 5.10. In this brain region, we segment three white matter tracts 

as the binary input of our method. These three tracts are one branch from the corpus 

callosum, the corticospinal tract, and the superior longitudinal fasciculus. In Fig. 5.10, we 

compare the DTI model with the proposed method. In the first column, we overlay the DTI 

tensor field on the FA background and its closer view of the crossing region. In the second 

column, we show our estimated tensors and a closer view of the same crossing region. As 

we can see, the DTI model cannot tell the different fibers inside a voxel. However, it is clear 

that our method can estimate multiple tensor compartments in the crossing region and also 

reduce the isotropic partial voluming of the estimated tensors in the corpus callosum (blue 

arrow). Our fractional segmentation is shown in Fig. 5.9, where we overlay our color-coded 

fractional segmentation on top of the FA background on the top two images. We overlay the 

estimated tensor compartments on the corresponding fractional segmentation on the bottom 

three images. We can see that the tensors in each white matter tract are spatially consistent 

due to our spatial prior, and the fractional segmentation is biologically reasonable.

5.3 .4  D iffusion M easurem ent A nalysis o f A u tism  D isorder

Many disorders and diseases are related to brain white matter tracts. Autism spectrum 

disorder is one of them. Autism is a neuropsychiatric disorder characterized by impaired 

communication and repetitive behavior. The prevalence of autism in children is about 2% 

in the United States as of 2012. Analyzing the cause of autism is important not only for 

studying the white matter abnormalities in neuropsychiatric disorders, but also for better 

understanding normal brain development.

A key diagnostic feature of autism is impairment in communication, especially language
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Fig. 5.9. Our fractional segmentation.
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Fig. 5.10. The proposed method can distinguish multiple tissue compartments in a fiber 
crossing area. First row: the DTI field, and our estimated multitensor field. Second row: 
the closer views of the crossing region (inside the red box).

impairments, and it has been found that language development and functioning is signif­

icantly delayed in autism. For example, children with autism sometimes have difficulty 

responding to spoken language even though their hearing is normal. Moreover, the arcuate 

fasciculus (AF) is a white matter tract that is crucial in language, and it connects three 

language regions, Wernicke’s area, Broca’s area, and Geschwind’s area. Thus, the AF is an 

important structure to study in autism, and it is interesting to research whether the AF of 

individuals with autism is different from that of typically developing people.

We have been working with an autism dataset from our collaborator Dr. Janet Lain- 

hart from the Department of Psychiatry, University of Wisconsin-Madison. This dataset 

includes many DWI scans of patients with autism and typically developing people. We 

use this dataset to explore the white matter abnormalities in autism by comparing the 

diffusion measurements from segmentations of people with autism with the ones of typically 

developing people.

Table 5.2 shows the characteristics of the selected samples from this dataset. We selected
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Table 5.2. Characteristics of the samples.
Control Group (n=29) Autism Group (n=27)

Mean SD Range Mean SD Range
Age (years) 15.64 5.43 8-26 15.71 5.23 7-27
PIQ 110.55 11.55 90-134 108.24 12.11 80-125
VIQ 112.34 12.54 91-140 107.44 20.26 71-145

29 typically developing people and 27 people with autism. The two groups were matched 

on age, verbal IQ, and performance IQ. We first use the method proposed in Chapter 4 to 

compute binary segmentations of AF for both groups. Then, we study the white matter 

abnormalities in autism by comparing the diffusion measurements computed from binary 

segmentations of people with autism with the ones of typically developing people [122]. In 

the next, with the binary segmentation as the initialization of the proposed method, we 

compute the fractional segmentation and multitensor estimation of AF for both groups, 

and similarly we use the estimated tensors to explore the white matter abnormalities in 

autism neuropsychiatric disorder by analyzing the diffusion measurements computed from 

our fractional segmentation. In addition, we also compare the diffusion measurements 

analysis using the binary segmentation with the one using fractional segmentation.

As mentioned earlier, we compute the binary segmentations of both the left and the 

right AF for each subject. For each segmented AF, we compute the average values for 

axial diffusivity (AD), radial diffusivity (RD), FA, and MD as in [122]. For the proposed 

method, we compute the fractional segmentation and multitensor estimation of both the left 

and the right AF with the selected optimal parameter value as described in Section 5.2.5, 

and then we compute the weighted mean of AD, RD, FA, and MD for each AF. In the 

following discussion, when we say the diffusion measurements in fractional segmentation, 

we mean the diffusion measurements computed from the foreground tensors weighted by 

the foreground fractions.

Many studies show hemisphere asymmetry in volume or diffusion measurements of the 

AF. To understand the hemisphere asymmetries in AF between the typically developing 

people group and the autism group, we fit linear mixed effect (LME) models for each 

diffusion measurements. The model we use is y ~  age +  group (autism or control) + 

hemisphere (left or right) +  group*hemisphere, where y is one of the diffusion measurements 

and group*hemisphere represents the interaction between group and hemisphere. The 

control group and left hemisphere (LH) is chosen as the reference category. This means 

a significant hemisphere (right) effect indicates a significant difference in mean diffusion 

measurement between left and right hemisphere (RH) for controls, a significant group
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(autism) effect indicates a significant difference in mean diffusion measurement between 

control and autism in the LH, and a significant interaction between group and hemisphere 

indicates a significant difference in asymmetry between autism and controls.

In Tables 5.3 and 5.4, we show the results from LME of volume for both the binary 

segmentation and fractional segmentation. We can see that for both binary and fractional 

segmentation, there was a significant decrease in volume from the left AF to the right AF. In 

addition, for the binary segmentation, age had a significant effect on volume; for fractional 

segmentation, the effect of age was not significant but approaches significance (p =  0.0661). 

The volume data is plotted in Fig. 5.11.

Table 5.3. Linear mixed effects model analysis of volume computed from binary segmen­
tation.

Covariate Est. Effect SE t-value p-value
Age 4.58E1 2.20E1 2.08 0.0426
Autism 1.78E2 2.97E2 0.60 0.5510
RH -9.56E2 2.57E2 -3.72 0.0005
Autism x RH 3.70E2 5.79E-3 -0.31 0.7613

Table 5.4. Linear mixed effects model analysis of volume computed from fractional 
segmentation.

Covariate Est. Effect SE t-value p-value
Age 2.92E2 1.55E1 1.88 0.0661
Autism 1.38E2 2.05E2 0.67 0.5031
RH -7.77E2 1.70E2 -4.58 0.0000
Autism x RH 2.44E2 8.80E-3 -0.25 0.8042

Binary Seg Fractional Seg

T D  le ft T D  rig h t A S D  le ft A S D  rig h t T D  le ft T D  rig h t A S D  le ft A S D  right

Fig. 5.11. Boxplot of volume in the arcuate fasciculus for both control and autism groups.
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In Tables 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11, and 5.12, we show the coefficients of LMEs 

of AD, MD, FA, and RD. For AD, there were no significant effects of age, group, or 

hemisphere in both binary and fractional segmentation, but the interaction between group 

and hemisphere was significant in the fractional segmentation. For MD, FA, and RD, age, 

hemisphere, and group had significant effects in the binary segmentation. The MD and RD 

were significantly decreased with age, whereas the FA was significantly increased with age. 

In addition, the MD and RD were significantly increased in the RH for controls and in the 

autism group in the LH, and the FA was significantly decreased in the RH for controls and 

the autism group in the LH. In contrast, in fractional segmentation for FA and RD, age 

had similar significant effects with binary segmentation, and the interaction between group 

and hemisphere was significant for MD. There were no significant effects, however, with 

hemisphere or group.

Table 5.5. Linear mixed effects model analysis of AD computed from binary segmenta­
tion.________________________________________________________________________

Covariate Est. Effect SE t-value p-value
Age -1.28E-3 8.69E-4 -1.48 0.145
Autism 1.29E-2 9.88E-3 1.30 0.198
RH 5.67E-3 5.06E-3 1.12 0.268
Autism x RH 8.78E-3 7.29E-3 1.20 0.234

Table 5.6. Linear mixed effects model analysis of AD computed from fractional segmen­
tation._______________________________________________________________________

Covariate Est. Effect SE t-value p-value
Age 3.92E-4 2.46E-3 0.16 0.8742
Autism -3.96E-2 3.24E-2 -1.22 0.2278
RH 3.13E-2 2.69E-2 1.16 0.2492
Autism x RH 8.98E-2 3.87E-2 2.32 0.0242

Table 5.7. Linear mixed effects model analysis of MD computed from binary segmenta­
tion.________________________________________________________________________

Covariate Est. Effect SE t-value p-value
Age -2.93E-3 6.62E-4 -4.43 0.0000
Autism 2.16E-2 7.18E-3 3.01 0.0040
RH 1.82E-2 2.23E-3 8.15 0.0000
Autism x RH -3.79E-4 3.22E-3 -0.12 0.9067
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Table 5.8. Linear mixed effects model analysis of MD computed from fractional segmen­
tation..

Covariate Est. Effect SE t-value p-value
Age -2.88E-3 1.64E-3 -1.76 0.0849
Autism 3.50E-3 2.08E-2 0.17 0.8666
RH 1.48E-2 1.59E-2 0.94 0.3535
Autism x RH 4.75E-2 2.28E-2 2.08 0.0425

Table 5.9. Linear mixed effects model analysis of FA computed from binary segmenta­
tion.

Covariate Est. Effect SE t-value p-value
Age 2.65*E-3 5.39E-4 4.92 0.0000
Autism -1.83*E-2 6.39E-3 -2.86 0.0060
RH -2.22E-2 4.03E-3 -5.51 0.0000
Autism x RH 1.03E-2 5.79E-3 1.77 0.0816

Table 5.10. Linear mixed effects model analysis of FA computed from fractional segmen­
tation.

Covariate Est. Effect SE t-value p-value
Age 2.96E-3 9.60E-4 3.09 0.0032
Autism -2.14E-2 1.11E-2 -1.94 0.0580
RH -2.27E-3 6.11E-3 -0.37 0.7122
Autism x RH 1.16E-4 8.80E-3 0.01 0.9895

Table 5.11. Linear mixed effects model analysis of RD computed from binary segmenta­
tion.

Covariate Est. Effect SE t-value p-value
Age -3.75E-3 7.37E-4 -5.16 0.0000
Autism 2.59E-2 8.05E-3 3.22 0.0022
RH 2.45E-2 3.36E-3 7.29 0.0000
Autism x RH 4.96E-3 4.84E-3 -1.03 0.3098

Table 5.12. Linear mixed effects model analysis of RD computed from fractional segmen­
tation.

Covariate Est. Effect SE t-value p-value
Age -4.51E-3 1.71E-3 -2.64 0.0109
Autism 2.50E-2 2.03E-2 1.23 0.2234
RH 6.61E-3 1.29E-2 0.51 0.6104
Autism x RH 2.63E-2 1.86E-2 1.41 0.1628
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It seems that some significance disappeared in the fractional segmentation (the diffusion 

measurements from the foreground tensors weighted by the foreground fractions). To under­

stand where the differences were between binary segmentation and fractional segmentation, 

we did the same analysis on the raw tensors (the single-tensor estimated from DWI) weighted 

by the foreground fractions to check whether the differences were caused by the estimated 

fractions or the estimated tensors. The results turned out to be similar to the ones associated 

with binary segmentation. Age, hemisphere, and group had similar significant effects for 

MD, FA, and RD, but not for AD. We show the boxplots of AD and MD in Figs. 5.12, 5.13, 

and 5.14 and results from LMEs of AD and MD in Tables 5.13 and 5.14. These results 

suggest the statistical differences between binary segmentation and fractional segmentation 

were mainly from the estimated multitensors. We use the total variation norm as the prior 

on the background to prevent blurring across different tracts or elements, and the estimated 

fractions and tensors are more like the multitensor representation of the DWI signals. When 

some of DWI signals cannot be explained by the foreground tensors, it is likely that they 

are explained by the background tensors.

Thus, we also did the same kind of analysis on the weighted background tensors using the 

foreground fractions to check where there are something important for the group difference 

in the background tensors. We use the foreground fractions to weight the background tensors 

to find out whether the estimated background tensors are important for the differences 

between the control group and autism groups. We want to use the background tensors only 

inside the arcuate fasciculus, so we weighted the background tensors with the foreground 

fractions. It turns out that for AD, MD, FA, and RD, the hemisphere had a significant 

effect. The AD, MD, and RD were significantly increased in the RH for controls, whereas 

the FA was significantly decreased in the RH for controls. We show the boxplots of AD, 

MD, and RD in Figs. 5.12 and 5.13 and results from the LMEs of AD and MD in Tables 5.15 

and 5.16. This result is similar to the one from binary segmentation and consistent with 

what was found in [122]. Another major finding in [122] was that the MD and FA were less 

lateralized in the autism group. Though no significant group and hemisphere interactions 

were found in this experiment, the decreases in asymmetry between control and autism were 

relatively close to the significance level for AD and MD, compared to the one from binary 

segmentation. These results suggest the background tensors may contain information that 

is important for the differences between control and autism groups, and we should consider 

incorporating the background tensors into the exploration of the white matter abnormalities 

in autism neuropsychiatric disorder. However, the way we incorporate the background
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Binary Seg Fractional Seg

TD  left TD  right ASD left ASD right

Foreground Fractions + Raw Tensors
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Fig. 5.12. Boxplot of AD in the arcuate fasciculus for both control and autism groups.
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Binary Seg Fractional Seg

TD  left TD  right ASD left ASD right

Foreground Fractions + Raw Tensors

TD  left TD  right ASD left ASD right

Foreground Fractions + BKG Tensors

TD  left TD  right ASD left ASD right TD  left TD  right ASD left ASD right

Fig. 5.13. Boxplot of MD in the arcuate fasciculus for both control and autism groups.
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Fig. 5.14. Boxplot of FA (top) and RD (bottom) in the arcuate fasciculus for both control
and autism groups.
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Table 5.13. Linear mixed effects model analysis of AD computed from fractional segmen-
tation with raw tensors.

Covariate Est. Effect SE t-value p-value
Age -1.23E-3 8.89E-4 -1.16 0.2525
Autism 1.31E-2 1.02E-2 -1.29 0.2015
RH 7.42E-3 5.24E-3 1.42 0.1627
Autism x RH 7.31E-3 7.55E-3 0.97 0.3375

Table 5.14. Linear mixed effects model analysis of MD computed from fractional segmen­
tation with raw tensors.

Covariate Est. Effect SE t-value p-value
Age -2.92E-3 6.65E-4 -4.40 0.0001
Autism 2.18E-2 7.21E-3 3.02 0.0038
RH 1.82E-2 2.23E-3 8.16 0.0000
Autism x RH -2.10E-4 3.21E-3 -0.7 0.9481

Table 5.15. Linear mixed effects model analysis of AD computed from fractional segmen-
tation with background tensors.

Covariate Est. Effect SE t-value p-value
Age -2.33E-3 2.41E-3 -0.97 0.3375
Autism 2.93E-2 3.23E-2 0.90 0.3697
RH 7.72E-2 2.76E-2 2.79 0.0072
Autism x RH -6.39E-2 3.98E-2 -1.61 0.1143

Table 5.16. Linear mixed effects model analysis of MD computed from fractional segmen-
tation with background tensors.

Covariate Est. Effect SE t-value p-value
Age -2.08E-3 1.81E-3 -1.15 0.2561
Autism 3.46E-2 2.45E-2 1.41 0.1631
RH 6.26E-2 2.11E-2 2.96 0.0045
Autism x RH -4.40E-2 3.05E-2 -1.44 0.1545

tensors into the analysis is somewhat ad hoc, and how to use this information appropriately 

is open to future research. In addition, only the hemisphere had a significant effect in this 

analysis. And for all the analysis, the raw tensors have the most sensitive statistics that 

can distinguish the two groups. While the fractional segmentation gives a better qualitative 

segmentation of the tracts and the multitensor model can better represent the DWI signals, 

it does not necessary give better statistics. At least in this application, the raw tensors have 

a better summary of the diffusion measurements.
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5.4 Conclusion
We present a Bayesian approach for joint fractional segmentation of white matter tracts 

and multitensor estimation in DWI. Our method can reliably estimate multiple tensor 

compartments in fiber crossing regions even with low angular DWI. We apply the fractional 

segmentation to explore the white matter abnormalities in autism neuropsychiatric disorder. 

The results suggest the raw tensors have the most sensitive statistics that can better 

distinguish the autism group from the control group. While the fractional segmentation 

gives a better qualitative segmentation of the tracts and the multitensor model can better 

represent the DWI signals, it does not necessary give better statistics. It is interesting 

to research whether there are ways to combine multiple tensors to better summarize the 

diffusion measurements.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this chapter, I will summarize the contributions and limitations of the dissertation 

and propose open questions and possible future research directions in DWI segmentation 

and tracking.

6.1 Summary
The tracking and segmentation of white matter tracts is a challenging problem due to 

image artifacts, such as noise and partial volume effects. Moreover, due to the lack of high 

angular DWI data in most clinical studies, it is also difficult to estimate HARDI models. In 

this dissertation, we address questions about how to track and segment the white matter 

tracts accurately and how to estimate a HARDI model, such as the multitensor model, from 

low angular DWI data.

• We first presented a geodesic-based method to track the brain white matter tracts. 

This method used a scaling of the inverse-tensor Riemannian metric that results in 

geodesics adapted to follow the principal eigendirection of the diffusion tensor even 

in high-curvature brain regions. Compared to tractography algorithms, our method 

is less sensitive to local perturbations, such as noise, partial volume effects, or fiber 

crossing (Chapter 3).

• On the basis of the proposed adaptive geodesic tracking of the white matter tracts, 

we then described an automatic binary segmentation framework by taking advantages 

of the angles of the two characteristic vector fields from the two predefined ROIs. 

Our method can better delineate the white matter tracts. Since both the adaptive 

Riemannian metric and the automatic segmentation algorithm are formulated on a 

general Riemannian manifold, our method can also be applied to problems for which 

there exist a Riemannian metric (which is just the Euclidean metric in Euclidean 

space) and preferred geodesics (Chapter 4).

• In the end, to overcome the drawbacks of binary segmentation, we proposed a novel 

Bayesian approach for fractional segmentation of white matter tracts and simultaneous
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estimation of a multi-tensor diffusion model. With a prior that assumes the tensor 

and fractions fields inside each tract are spatially correlated, our method can reliably 

estimate multiple tensor compartments in fiber crossing regions even with low angular 

DWI. In addition, we also apply both the binary and the fractional segmentation 

methods to explore the white matter abnormalities in autism neuropsychiatric disorder 

(Chapter 5).

While we have endeavored to develop a robust and reliable framework for DWI tracking, 

segmentation, and tensor estimation, there remain a number of limitations of the proposed 

methods. First of all, the proposed adaptive Riemannian metric is effective when the tensor 

field is only rotating. When there are other effects in the tensor field, more complicated 

modulations of the metric are required. Second, the proposed binary segmentation method 

works well for tubular white matter structures. When the structures have branches, the 

characteristic vectors from the two ROIs of structure may point to similar directions inside 

these branches. Though we can try to segment the structures with several segments, 

the choices of the boundary of the segments are not always trivial. Moreover, while the 

fractional segmentation method can jointly solve the tract segmentation and multitensor 

model estimation, this method also assumes the number of tracts is known inside the brain 

region to be segmented. So care must be taken when the method is applied. I will talk 

about several issues in detail as potential future work in Section 6.2.

6.2 Future Work
In Chapter 3, we proposed a simple scalar field modulation of the Riemannian metric. 

The modulation we chose is scaling. As demonstrated empirically in Chapter 3, the 

scaling can correct the geodesics if the tensor filed is only rotating. However, if there 

are other effects, such as shrinkage or expansion, other kinds of modulation are needed, 

such as shearing, rotation, or other kinds of linear transformation. Moreover, the idea of 

modulation was motivated by forcing the geodesics to follow the principal eigenvector of 

the diffusion tensor, but it is possible to incorporate this modulation idea into diffusion 

tensor denoising or estimation by minimizing a chosen error function over the whole image 

domain. In addition, it is also interesting to generalize the similar idea to HARDI models. 

Moreover, there are two more areas we have identified as potential future work. First, the 

aliasing artifacts along the white matter boundary described in [54] have, to the best of our 

knowledge, not been addressed in the literature. One possible solution to this problem would 

be to use a fuzzy boundary where the cost function increases to infinity along the normal
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direction. Currently the cost function changes instantaneously to infinity at the boundary 

(i.e., moving outside the boundary is infinite cost). Another issue is that the geodesics in 

front-propagation techniques can, in some cases, cross an edge between two adjacent tracts. 

We can envision a modification to our metric modulating function, ea , that would increase 

the penalty for passing across such edges. This could be achieved by scaling the metric by 

a larger amount at edges, i.e., increasing the distances in these directions.

The segmentation methods we developed in Chapter 4 perform well on highly curved 

tracts; it might be able to recover U-shaped tracts between neighboring gyri, which are 

poorly recovered by classical tensor based tractography [39,123]. In addition, our method 

needs to predefine two ROIs of the white matter tracts of interest, which requires the tracts 

of interest are well-characterized and the users have the prior knowledge about the white 

matter trajectory. Also, the position of the ROIs may influence analysis of the clinical 

studies, which need to be further studied. One possible future direction is to segment the 

white matter tract with only one ROI inside the tract, which requires less prior knowledge 

about the tract of interest. For example, Deschamps and Cohen [124] proposed freezing 

the propagation front for extraction of thin and long structures from a given single ROI. 

This idea can be used to segment white matter tracts with one ROI. The challenge is how 

to determine the appropriate conditions to freeze the front. Moreover, since the proposed 

method computes binary segmentation of the tracts, which sometimes undersegment or 

oversegment tracts, it might help to incorporate some anatomical prior, such as a white 

matter atlas, into our segmentation framework.

In Chapter 5, by incorporating a prior that assumes the tensor and fraction fields 

inside each tract are spatially correlated, our method can reliably estimate multiple tensor 

compartments in fiber crossing regions even with low angular DWI. However, this spatial 

prior on the foreground tracts is isotropic, which means the tensors and fractions tend 

to blur across the white matter tract boundaries. To prevent this, one idea is to use 

an anisotropic spatial prior [125]. For example, we can use a prior that assumes the 

tensors and fractions are spatially correlated only along the tensor directions. Moreover, 

our noise model could be replaced with a Rician noise likelihood, and it would also be 

interesting to investigate the sensitivity of our current gradient-based optimization to the 

initial binary segmentation and explore stochastic optimization schemes. In addition, the 

way we incorporate the background tensors into the statistical analysis is not elegant, and 

how to use this background information appropriately is open to future research.

Another important question in the proposed fractional segmentation method is how to
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choose or set the strength of the spatial prior. If the prior is too strong, it will ignore the 

data and make all the tensors similar to each other. If the prior is too weak, the tensor 

estimation will be unstable because there are too many degrees of freedom in the tensor 

estimation. Though we used a cross validation approach in Chapter 5 to select the spatial 

prior parameter, such an approach is very time consuming. In addition, it is not accurate, 

for there is a spacing between the chosen parameter candidates, and the selected parameter 

is optimal for a group of subjects but not for a single subject. Thus, it is useful to find 

methods that can compute the optimal parameter both efficiently and accurately.

It is always exciting to study how the brain regions are connected, so it is important for 

us to understand the theories of normal brain and cognitive development. One important 

question that needs to be addressed in brain connectivity analysis is how to measure the 

strength of the connectivity between two brain regions. For example, a good connectivity 

metric should be invariant to the distance between the two regions, i.e., this metric should 

not necessarily increase when the geodesic gets longer. For both the stochastic tractography 

and the front-propagation methods, the outputted probability and time cost are not invari­

ant to the distance. We can normalize the probability or time cost by dividing it by the 

distance, but this is ad hoc, and it is more interesting to use properties invariant to distance 

to define a metric. One possible example is the angle between the two characteristic vector 

fields from the two predefined ROIs. If we find a good connectivity metric, we can use it to 

analyze whole brain connectivity. To explore whole brain connectivity, we can first select 

many different ROIs, compute the strength of the region-to-region connectivity of each pair 

of these regions, and obtain a symmetric connectivity matrix, A, where A j denotes the 

strength of the connectivity between region i and region j. Based on this matrix, we can 

use some clustering methods, such as spectral clustering, to extract meaningful connectivity 

information about how the brain regions are connected.
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