363 research outputs found

    Optimal Grasp Synthesis to Apply Normal and Shear Stresses of Failure in Beams

    Get PDF
    This paper investigates the less-studied problem of failing/yielding an object purposefully by a robotic hand. A grasp synthesis capable of using the whole limb surface of the robotic hand is designed based on internal force decomposition. The introduced approach is based on quasistatic assumption and optimization of active internal forces in order to counterbalance the formulated task wrench/load of yielding. As different geometrical constraints are dictated by the manipulation circumstances (e.g. metallic sheet shaping or robotic harvesting), the yielding wrench optimization is developed to be not only sufficient for yielding the object but also effective in meeting all motion restrictions on manipulator. Maximum shear- stress theory is used for yielding analysis of a grasped object. Finite Element Modeling (FEM) simulation results are provided as a validation of our proposed approach

    Pneumatic Hyperelastic Robotic End-Effector for Grasping Soft Curved Organic Objects

    Get PDF
    Pneumatically-driven soft robotic grippers can elastically deform to grasp delicate, curved organic objects with minimal surface damage. However, common actuators have complex geometries and are fabricated with ultra-soft hyperelastic elastomers not originally intended for scientific applications. The complexity of the actuator geometry and extreme nonlinearity of their material’s stress-strain behaviour make it difficult to predict the actuator’s deformation prior to experimentation. In this work, a compact soft pneumatic gripper made with polydimethylsiloxane (PDMS) is developed for grasping delicate organic objects, analyzed through computational modelling and experimentally validated. COMSOL Multiphysics is used to simulate the impact of geometrical parameters on the actuator’s behaviour, allowing for the refinement of the proposed geometry prior to fabrication. Optimal parameters are selected for fabrication, with experimental tests matching simulations within ± 1 mm. Gripper performance is evaluated for three actuator wall thicknesses in terms of contact area with target, contact force, and maximum payload before slippage. The comparative assessment between simulations and experiments demonstrate that the proposed soft actuators can be used in robotic grippers tailored for grasping delicate objects without damaging their surface. Furthermore, analysis of the actuators provides additional insight on how to design simple but effective soft systems

    Rethinking of timber joinery in 21st-century architecture The computation of a timber joinery through complex geometry

    Get PDF
    Master of ScienceDepartment of ArchitectureMajor Professor Not ListedIn recent years, there has been a renewed interest in timber joinery in contemporary architecture. With the introduction of digital fabrication technologies and computational design, it is now possible to create complex timber structures with more complex shapes and designs. One of the critical advantages of timber as a building material is its ability to be combined in various ways. Timber joinery can create solid and durable connections between structural members while providing an aesthetically pleasing finish. In the 21st century, architects and designers are exploring new ways to use timber joinery to create unique and innovative structures. Computational design tools allow designers to create complex geometries that can be fabricated precisely using computer numerical control (CNC) machines and other digital fabrication technologies. Designers who are well-versed in programs like Rhino, Grasshopper, or Revit have the ability to utilize parametric modeling software that can calculate timber joinery that is based on intricate geometry. These tools allow designers to create 3D models of the structure and conduct experiments with different joinery options and configurations. Once the joinery is designed, it can be fabricated using CNC machines or other digital fabrication tools. It allows for high precision and accuracy in the fabrication process, ensuring the joint perfectly fits together. The use of complex timber joinery in contemporary architecture provides functional benefits and a unique aesthetic that cannot be achieved with other materials. By rethinking traditional joinery techniques and embracing digital technologies, architects and designers can create structures that push the boundaries of what is possible through timber construction. This thesis will investigate and explore the timber joinery system and fabrication methods, one of the old wooden structure techniques used in the age of digital technologies that rejuvenate the usage of conventional construction processes in timber buildings. The main aim of this thesis was to study computational design in creating complex wooden segmental base structures that rely on interlocking timber joints as the primary form of connection. This involved analyzing the role of wooden joinery and exploring complex systems made using this technique. The second objective was to create a digital model of several types of parametric wood joineries, such as halve and lap joint, Tenon and mortise joint, and finger joints. A digital model of a complex segmental plate structure with three fundamental parametric joints was also developed. The three basic types include finger, halve and lap clip, and Mortise and Tenon joints. The third objective is a structural and shape optimization of the basic mesh for specified complex geometry, which will be a digital model to evaluate the applicability of the generated joints, and will be determined because of this investigation

    Elastic Inflatable Actuators for Soft Robotic Applications

    Get PDF
    The 20th century’s robotic systems have been made out of stiff materials and much of the developments in the field have pursued ever more accurate and dynamic robots which thrive in industrial automation settings and will probably continue to do so for many decades to come. However, the 21st century’s robotic legacy may very well become that of soft robots. This emerging domain is characterized by continuous soft structures that simultaneously fulfil the role of robotic link and robotic actuator, where prime focus is on design and fabrication of the robotic hardware instead of software control to achieve a desired operation. These robots are anticipated to take a prominent role in delicate tasks where classic robots fail, such as in minimally invasive surgery, active prosthetics and automation tasks involving delicate irregular objects. Central to the development of these robots is the fabrication of soft actuators to generate movement. This paper reviews a particularly attractive type of soft actuators that are driven by pressurized fluids. These actuators have recently gained substantial traction on the one hand due to the technology push from better simulation tools and new manufacturing technologies including soft-lithography and additive manufacturing, and on the other hand by a market pull from the applications listed above. This paper provides an overview of the different advanced soft actuator configurations, their design, fabrication and applications.This research is supported by the Fund for Scientific Research-Flanders (FWO), and the European Research Council (ERC starting grant HIENA)

    Elastic Inflatable Actuators for Soft Robotic Applications

    Get PDF
    The 20th century’s robotic systems have been made out of stiff materials and much of the developments in the field have pursued ever more accurate and dynamic robots which thrive in industrial automation settings and will probably continue to do so for many decades to come. However, the 21st century’s robotic legacy may very well become that of soft robots. This emerging domain is characterized by continuous soft structures that simultaneously fulfil the role of robotic link and robotic actuator, where prime focus is on design and fabrication of the robotic hardware instead of software control to achieve a desired operation. These robots are anticipated to take a prominent role in delicate tasks where classic robots fail, such as in minimally invasive surgery, active prosthetics and automation tasks involving delicate irregular objects. Central to the development of these robots is the fabrication of soft actuators to generate movement. This paper reviews a particularly attractive type of soft actuators that are driven by pressurized fluids. These actuators have recently gained substantial traction on the one hand due to the technology push from better simulation tools and new manufacturing technologies including soft-lithography and additive manufacturing, and on the other hand by a market pull from the applications listed above. This paper provides an overview of the different advanced soft actuator configurations, their design, fabrication and applications.This research is supported by the Fund for Scientific Research-Flanders (FWO), and the European Research Council (ERC starting grant HIENA)

    Impact of Ear Occlusion on In-Ear Sounds Generated by Intra-oral Behaviors

    Get PDF
    We conducted a case study with one volunteer and a recording setup to detect sounds induced by the actions: jaw clenching, tooth grinding, reading, eating, and drinking. The setup consisted of two in-ear microphones, where the left ear was semi-occluded with a commercially available earpiece and the right ear was occluded with a mouldable silicon ear piece. Investigations in the time and frequency domains demonstrated that for behaviors such as eating, tooth grinding, and reading, sounds could be recorded with both sensors. For jaw clenching, however, occluding the ear with a mouldable piece was necessary to enable its detection. This can be attributed to the fact that the mouldable ear piece sealed the ear canal and isolated it from the environment, resulting in a detectable change in pressure. In conclusion, our work suggests that detecting behaviors such as eating, grinding, reading with a semi-occluded ear is possible, whereas, behaviors such as clenching require the complete occlusion of the ear if the activity should be easily detectable. Nevertheless, the latter approach may limit real-world applicability because it hinders the hearing capabilities.</p

    Additive manufacturing and joints: Design and methods

    Get PDF
    The industrialization of the Additive Manufacturing (AM) processes is enabling the use of AM components as final product in several applications. These processes are particularly relevant for manufacturing components with optimized custom-tailored geometries. However, to fully exploit the potentiality of AM, the development of knowledge aimed to produce dedicated design methods is needed. Indeed, even if AM enables the manufacturing of new kinds of structures, e.g. 3D lattice structures, it introduces process-specific design input and limitations that needs design methods different to from the ones for subtractive manufacturing. Design for AM (DfAM) is a design methodology that aims to take advantage of new buildable geometries but taking into account also AM processed materials anisotropy and 3D printing constraints. Recent literature focused on the assembly of AM components and on the AM components joining to a main structure. The conclusion was that adhesive bonding is a promising joining process, especially considering its improved stress distribution compared to fastening, but at the time of writing a method that combines DfAM and adhesive bonding knowledge is not available. The work presented in this thesis focused on developing knowledge on design for AM and bonded joints. First step was evaluating testing methods for AM and producing data on materials properties. Secondly, the early works on tailoring approaches for AM joints, published recently in scientific literature, were analyzed. Then AM dedicated designs, modifications and testing methods were proposed both for the adherends (in the thickness and on the surfaces) and the joints. Specifically, an innovative joint design concept was introduced, i.e. using the 3D printing parameters as bonded joint design factors. Eventually, feasibility of performing joints using multi-material AM with conductive polymer to embed heating elements was assessed. The 3D printed through the thickness circuits is a cutting-edge approach to enable new solutions for joints structural monitoring and self-healing

    Robotic Manipulation of Environmentally Constrained Objects Using Underactuated Hands

    Get PDF
    Robotics for agriculture represents the ultimate application of one of our society\u27s latest and most advanced innovations to its most ancient and vital industry. Over the course of history, mechanization and automation have increased crop output several orders of magnitude, enabling a geometric growth in population and an increase in quality of life across the globe. As a challenging step, manipulating objects in harvesting automation is still under investigation in literature. Harvesting or the process of gathering ripe crops can be described as breaking environmentally constrained objects into two or more pieces at the desired locations. In this thesis, the problem of purposefully failing (breaking) or yielding objects by a robotic gripper is investigated. A failure task is first formulated using mechanical failure theories. Next, a grasp quality measure is presented to characterize a suitable grasp configuration and systematically control the failure behavior of the object. This approach combines the failure task and the capability of the gripper for wrench insertion. The friction between the object and the gripper is used to formulate the capability of the gripper for wrench insertion. A new method inspired by the human pre-manipulation process is introduced to utilize the gripper itself as the measurement tool and obtain a friction model. The developed friction model is capable of capturing the anisotropic behavior of materials which is the case for most fruits and vegetables.The limited operating space for harvesting process, the vulnerability of agricultural products and clusters of crops demand strict conditions for the manipulation process. This thesis presents a new sensorized underactuated self-adaptive finger to address the stringent conditions in the agricultural environment. This design incorporates link-driven underactuated mechanism with an embedded load cell for contact force measurement and a trimmer potentiometer for acquiring joint variables. The integration of these sensors results in tactile-like sensations in the finger without compromising the size and complexity of the proposed design. To obtain an optimum finger design, the placement of the load cell is analyzed using Finite Element Method (FEM). The design of the finger features a particular round shape of the distal phalanx and specific size ratio between the phalanxes to enable both precision and power grasps. A quantitative evaluation of the grasp efficiency by constructing a grasp wrench space is also provided. The effectiveness of the proposed designs and theories are verified through real-time experiments. For conducting the experiments in real-time, a software/hardware platform capable of dataset management is crucial. In this thesis, a new comprehensive software interface for integration of industrial robots with peripheral tools and sensors is designed and developed. This software provides a real-time low-level access to the manipulator controller. Furthermore, Data Acquisition boards are integrated into the software which enables Rapid Prototyping methods. Additionally, Hardware-in-the-loop techniques can be implemented by adding the complexity of the plant under control to the test platform. The software is a collection of features developed and distributed under GPL V3.0
    • …
    corecore