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Optimal Grasp Synthesis to Apply Normal and Shear Stresses of
Failure in Beams

Mahyar Abdeetedal and Mehrdad R. Kermani'

Abstract— This paper investigates the less-studied problem
of failing/yielding an object purposefully by a robotic hand.
A grasp synthesis capable of using the whole limb surface
of the robotic hand is designed based on internal force de-
composition. The introduced approach is based on quasistatic
assumption and optimization of active internal forces in order
to counterbalance the formulated task wrench/load of yielding.
As different geometrical constraints are dictated by the ma-
nipulation circumstances (e.g. metallic sheet shaping or robotic
harvesting), the yielding wrench optimization is developed to
be not only sufficient for yielding the object but also effective
in meeting all motion restrictions on manipulator. Maximum-
shear-stress theory is used for yielding analysis of a grasped
object. Finite Element Modeling (FEM) simulation results are
provided as a validation of our proposed approach.

I. INTRODUCTION

Robotic hands were designed to enable robots to manip-
ulate objects. As massively reported in literature, robotic
manipulation consists of tasks from the simple pick and
place robots, to more sophisticated assembly such as circuit
chips insertion [1]. Unlike most papers dealing with grasp
manipulation planning, our main focus is on an optimal and
systematic way of failing an object by means of yielding a
tensile object or fracture of a brittle object. To the best of our
knowledge, there is no investigation on optimally performing
of a failure grasp of an object. Moreover, papers which
consider avoiding deflection and/or slippage of a grasped
object, hardly study the effect of bending, tension, or torsion
on the object [2], [3], [4], [5].

Robotic harvesting can be named as an example of failing
an object by means of separating it into pieces. Shaping
of a metallic sheet, tailored beam, efc. are other applica-
tions of yielding in industry. There are cases in which the
manipulation environment demands a set of constraints on
robot motions. For instance, presence of obstacles causes
limitations on applying load/wrench in certain directions (see
Fig. 3).

There are different possible ways of manipulating an
object in order to break it: applying bending, tension, and
torsion [6], [7]. If performing the task of failing an object
using a middle sized robot with average actuators is desired,
an optimal grasp configuration for applying a combination
of all kinds of load is required. In a systematic approach for
failing an object, important concerns are such as: How much
bending, torsion, and/or tension are needed in which angles
to snap a beam? How to avoid exceeding an approximate
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desired displacement for fracture? How to counterbalance
the external load resulted by the object using an optimal
grasp?

Our contributions in this paper are as follows:

o Optimized failing wrench. Finding and optimizing min-
imum wrench which is enough for breaking an object
is provided.

« Object motion constraints. Formulating motion con-
straints on grasped object are considered and it is used
to find suitable failure wrench for a grasped object.

« Internal force decomposition. Active internal force cor-
responds to internal forces caused by active joint dis-
placement. In order to fully exploit the ability of a
robotic hand, we considered the more general case
of whole-limb manipulation in which using the whole
surface of the arm or palm of the robotic hand enables
it to handle larger wrench [8]. The introduced method
for grasp synthesis decomposes internal forces and then
uses active internal forces to meet grasp requirements.

¢ Maximum, and minimum contact force and Coulomb
friction law violence. Constraints on contact forces in
order to limit each of them to maintain in a certain
range and have certain angles to avoid any slippage are
formulated for grasp optimization.

The structure of this paper is as follows: In Section II,
a brief background on the problem statement is given.
Section III presents the proposed grasp synthesis based on
optimal internal force and failure wrench. The validity of
the presented approach is investigated via numerical example
and Finite Element Modeling (FEM) in Section IV.

II. BACKGROUND

In this paper, failing an object by applying optimal contact
forces in a geometrically constrained environment is con-
sidered. Failure usually refers to separation of a part into
two or more pieces; permanently distortion; geometric ruin;
downgrading reliability; or compromised function. Unlike
most grasp planning papers, failure by means of controlled
separation of the object into pieces is desired. This goal can
be limited by the environment. Selection between the amount
of bending or torsion can be dictated by environment, since
there may not be enough room for either of them.

According to maximum-shear-stress theory (MSS theory),
vielding begins whenever the maximum shear stress in any
element equals or exceeds the maximum shear stress in
a tension-test specimen of the same material when that
specimen begins to yield [9].
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Fig. 1. (a) Bending stress resulted by applying moment M at x. (b) Shear
stress resulted by torque 7' acting about x.

As shown in Fig. la the beam subjected to a bending
moment M about x axis. z is neutral axis where bending
stress varies linearly and it is given by
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where I = [y?dA is the second moment of area about the x
axis. The maximum deflection that moment M causes can be
written as

(1

Mi?
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where [ is the length of the beam, and E is called Young’s
modulus.

It can be easily shown that by having c¢ as the radius to
outer surface the maximum magnitude of the bending stress
is

Mc
Omax = T 3)

If force distribution is presented on the length of the
beam, moving in the direction of z axis results in larger
bending moment which also results the net force in the z
direction. A shear force is required for equilibrium. This
shear force gives rise to a shear stress. However, the bending
is usually assumed to be pure in order to eliminate the
resulted complications.

As shown in Fig. 1b a beam subjected to a forque vector
results in object torsion. The shear stress resulted by torque

T acting on a round bar with radius p is given by

Tz = TTp
where J is polar second moment of area. The angle of twist,
in radians, for a circular beam can be written as

T
= FJ &)
where R is modulus of rigidity. Considering ¢ as the radius
to outer surface, the maximum shear stress is

T c
Tmax = T (6)

The case of a point undergoing plane stress with only one
non-zero normal stress and one shear stress is considered
here. Consider S, as yield strength, according to MSS theory,
the yielding process starts when
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where P is the axial tension in z direction. Force and moment
applied to the object are combined into the object wrench
vector denoted by w = [f7,m"] € R® where f is contact
force vector exchanged by robot link and object and m is
the applied moment vector. The wrench vector for applying
tension, torsion, and bending is w=1[0 0 P M 0 T]” which
shows force, P, in z direction, moment, M, about x-axis, and
torque, T, about z-axis. Since MSS theory is a conservative
criterion for avoiding failure, for our purpose sufficiently
larger moment and torque have to be inserted.

Optimal contact forces in a grasp configuration are sup-
posed to be found to meet the criteria (7) for counterbalanc-
ing a desired wrench, w,, while considering the constraints
on y from (2) and 8 from (5).

III. GRASP ANALYSIS OF FAILURE

Applying suitable wrench in order to fail an object de-
mands the capability of inserting desired contact forces in
a grasp configuration. In this paper, quasistatic assumption
is considered, which is a common assumption in literature
[10], [11]. The quasistatic assumption states that there will
be no motion for grasped object in case of losing contacts
with robotic hand. This should not be confused with the
motions of grasped object and robotic manipulator during
the performing of the grasp task. Quasistatic model of
manipulation system can be expressed as

w=-Gf ®)

where w € R® is the resulted object wrench, GT € R3%*6
is grasp matrix, and f € R** is contact force vector. The
general solution of (8) is

f=-GwH+AE& )

where GT is assumed to be right inverse of Grasp matrix, and
A € R3*8 is a matrix whose column is a basis of null-space
of G and £ € RS is a free g-vector which parametrizes the
homogeneous solution. The homogeneous part of solution



refers to internal forces which have an important role in the
stability of grasp.

Not all internal forces are actively controllable in a robotic
hand. By definition of Jacobian and Grasp matrices, the
infinitesimal motion of a contact point on the robot end-
effector and the infinitesimal displacement of the same
contact point on the grasped object are J8q and G7du,
respectively. Corresponding vector of contact forces caused
by considering stiffness in each contact points is

Sf=K(J8q— G du) (10)

where K € R¥<>3m s the stiffness matrix of grasp. By
differentiating (8) and assuming external load is constant,
the following equation is obtained

0=-G§f (11)

Note that Grasp matrix variation with respect to object
displacement can be neglected [12]. Substituting (10) into
(11) yields

Su= (GKG")"'GKJSq (12)

and the equivalent contact force variation to object displace-
ment (12) is

8f=(I-KG'(GKG")"'G)KJSq (13)

Equation (13) relates the variation of internal contact
forces (8 f) to the joints activation (0¢). Therefore, all active
internal contact forces can be expressed as

§f=Bv (14)

where B € R¥<*¢ is a basis matrix of the column space of
(I—-KG"(GKGT)"'G)KJ and v € R® is a free e-vector (e <
g) that parametrizes the reachable (active or controllable)
internal contact forces. Therefore, the general solution (9) is
limited to

f=—-G'w+Bv (15)

The free vector v can be used for internal force optimization
since it belongs to not only the null space of Grasp matrix
but also to column space of Jacobian matrix. This fact
physically means that these forces can be actively controlled
by displacing the robot joints.

A. GRASP OPTIMIZATION

There can be an infinite number of solutions for the
problem (8). Therefore, a cost function can be designed
and optimized in order to reach the best solution in certain
regards. In addition to applying suitable wrench for counter-
balancing the expected task wrench, there are other concerns
in a grasp. One of the most important issues in grasp
synthesis is actuators saturation which has to be avoided and
can be formulated as

lmax_O

= £l =

where /2; is jth constraint for ith contact, Jimax is defined
as a maximum contact force which should not be exceeded
at contact point i and f; is actual contact force at contact

(16)

point i. Duty range of some force sensors requires a mini-
mum amount of force to be applied. Moreover, considering
a minimum contact force avoids contact forces chattering
and sustaining the continuity of contacts. Minimum force
constraint can be written as

2)~i = _f;'Tni"_ﬁ,min <0

A7)

where f; min is defined as desired minimum force to be
applied to contact point i and n; is normal vector at con-
tact point i. Avoiding slippage of contact points which are
assumed to obey Coulomb’s friction law, is also required in
a grasp. This law states the following relation between the
tangential component of contact force, f;;, and its normal
component, f;,

1l < el fui (18)

where p is friction coefficient. (18) can be rewritten as

Ilfi = fuill < wllfuill which implies [|fil] < v/1+p? | fuill-

Therefore, the slippage avoidance constraint is

3

A= \/1-1—72

An optimized grasp is able to efficiently counterbalance
external wrenches as well as satisfying the mentioned con-
straints. Optimization can be done by using the free vector v
in (15) to satisfy constraints while keeping the contact efforts
minimum. Simultaneously, external wrenches can be resisted
by using the remaining term in contact force solution (15).
Hence, the proposed grasp optimization can be expressed as

1 (v)l
Ii(v)<0,ie{l,....n},j€{1,2,3}

The provided optimization ensures meeting all contact forces
constraints while keeping them at minimum magnitude. This
optimization does not need to be real-time and it can be done
as a pre-grasp process.

B. OPTIMIZED FAILURE WRENCH

A desired w, can be considered for the object in order to
apply needed torque and moment to fail the object and at
the same time avoid violating constraints on the amount of
twist and deflection. Defining Y as the maximum allowable
deflection and ® as the maximum allowable twist, from
(2) and (5) maximum moment, M,,x = %Y and maximum
torque, Tpax = %@ will result in the desired wrench w,; =
[00 P Myugy O Tpax]”. using (7), the optimized wrench for
failing the object is

1Al = fni<0 (19)

minimize:
VER®

subject to:

minimize: |[|[w(M,T)||
M,T
subject to: O(T)—© <0
yM)-Y <0

\/ max +4Tmax S}' S 0

Note that P is not considered in the proposed optimization
since gripper, without loss of generality, is assumed to have
enough room for at least one direction to move the grasped
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Fig. 2. Block diagram of the proposed approach.

TABLE I
PROPERTIES OF POLYETHYLENE BEAM

Modulus of rigidity (N/m?)  3.8732 x 108
Young’s modulus (N /m?) 1.1x10°
Yield strength (N /m?) 2.5x 107

part of the failed object. Therefore, it is assumed that the
free direction for robotic manipulator movement is toward z
direction.

Now the remaining questions are which degrees of free-
dom of the robot are available to apply torsion and bending
about the supported point of the grasped object and also how
much torques actuators have to apply. If v* considered to be
the optimal value provided by the introduced optimization,
the desired applied force is f = —G"w,+Bv*. Robotic hand
is shaped and locked itself around the object by applying
Thana = JT f and then the manipulator can apply required
wrench without losing contact with the grasped object. The
grasp analysis static mapping is depicted in Fig. 2.

IV. NUMERICAL RESULTS

Numerical assessments were carried out on grasping of a
cantilevered polyethylene beam which is fixed on the ground.
As depicted in Fig. 3a there are obstacles which limit the
manipulator movements. It is assumed that the locations
of the obstacles and the size of the robotic hand limit the
twisting angle to less than 3deg and displacement along x
axis to less than 20cm. The main properties of the considered
polyethylene beam are summarized in Table I. The beam is
assumed to have circular shape with radius of ¢ = l1mm
and length of 400mm. According to (2) and (5) maximum
moment, M,,,, = 40Nm and maximum torque, 7,,,,, = 0.8Nm
result in the desired wrench wy = [0 100 0 0 0 0.8]7. Note
that applying desired maximum moment in wy is done by
applying a force in y direction. This way of applying moment
is valid, since the grasp does not lose contact with the object
and the applied force is always normal to the neutral axis of
the object.

Fig. 3b shows the planar projection of the beam grasped
by one finger only, with three revolute joints, through three

Finger Top View

Robotic Manipulator

Cantilevered Beam

Fig. 3. (a) A robotic hand connected to a manipulator to fail a circular beam
without violating constraint caused by obstacles. (b) A grasp configuration
for a circular beam grasped by a finger with three revolute joints.

hard contacts. Joints, contacts, and object coordinates are
depicted in Fig. 3b. Link lengths are 22mm and for sake of
simplicity the link diameter are not considered. J; and G;
correspond to Jacobian matrix and Grasp matrix of contact
point i, respectively. The complete Jacobian matrix, J =
JT,JT . J1T, and Grasp matrix, GT =[Gy, G,,G3]" are

011 o0 o0 .011 .022 0 .011 .022 0
JI = 0o o0 0 011 0 O .011 .022 0 |,
0 00 O 0 0 011 0 O

1 0 0 0 0 0
0 1 0 0 0 —.011
0O 0 1 0 .o11 0
0 -1 0 0 0 0
GT=|1 1 0 0 0 0 —.011
0 0 1 .01l 0 0
-1 0 0 0 0 0
0 -1 0 0 0 —.011
0 0 1 0 -—o011 0 |

Null space of Grasp matrix is the subspace of internal
forces. From (9) the homogeneous solution is a basis for
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Fig. 4. The best function value versus generation.

this subspace. The null space of Grasp matrix is

-1 1 0
-1 0 -1
0 0 0
-1 0 -2

A=| 1 0 0
0 0 0
0 1 0
0 0 1
0 0 0 |

Interpenetration of this matrix can be intuitively done by
Fig. 3b. Each column shows opposing forces at different
contacts, except the last column which belongs to null space
of JT. This fact can be easily understood after computing
active internal force transfer matrix, B

Safety ratio = Ti

15
10
0.6437 min
0

100[mm)]
||
50 z z

Fig. 5. Safety ratio based on MSS theory after applying 100N in y direction
and 0.8Nm around z axis. The deflection is in true scale.

20.0747
—13.5691
0
33.3333
33.1988
0
53.2735
53.0976

f=-G'ws+Bv* =

In this spatial case, all
[20.0747,-13.5691,0]",  f» =

defined by

contact

0

forces

(i =

33.3333,33.1988,0]7,
and f3 = [53.2735,53.0976,0]") are inside the circular cone,

VIS ufe >0

[ —0.5353  0.5818
0.1256  0.3305
0 0
0 0
B=| —-0.2513 —0.6609
0 0
—0.7866 —0.0792
0.1256  0.3305
L 0 0 -

which has two columns showing that there is a contact
forces corresponds to zero joint action. The column space
of matrix B can be used to satisfy the force components
constraints. In this example, it is assumed that all contact
forces have to have normal component larger than 20N to
avoid chattering and also maintaining in duty range of sen-
sors. In addition, for avoiding actuators saturation maximum
magnitude of 100N is considered for each contact forces. If
friction coefficient for all contact points is considered to be
uw =1, v* can be optimized using genetic algorithm which
results v* = [—56.0266 — 1.4190]. As it was noted before,
the optimization process need not to be real-time and can
be done as a pre-grasp process. The computation time for
this example is 3.62 seconds. The best function value versus
generation is plotted in Fig. 4. The resulted contact force
vector is

The torque vector of robotic hand actuators is

—3.0720
—2.1208
—0.5860

Thand =

The FEM simulation for the specified beam is done by
ANSYS®. In this simulation, beam is considered to be
isotropic and we set the safety factor in MSS theory to be 1.
The resulted displacement and twisted angle are verified to be
2.059deg and 16.741cm, respectively. Figure (5) illustrates
the ratio Tjﬁ which is called safety ratio in MSS theory.
Red color indicates the ratio of 0.6437 which shows that
shear stress is near 1.5 times more than yield strength of
the material. According to depicted FEM result the beam
fails. Deformations of the beam in x, y, and z are separately
shown in Fig. 6. This figure shows that required geometrical
constraints are well satisfied.
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Fig. 6. Deformation of the beam through its length in x,y, and z axes.

V. CONCLUSION anD FUTURE WORK

In this paper, the problem of purposefully failing/yielding
an object using an optimal robotic grasp is considered.
We took all geometrical restrictions dictated by manipu-
lation environment into account and optimized a minimal
external wrench needed to successfully yield the object. A
grasp structure capable of applying this failing load was
introduced. A generalized grasp problem was considered
in which robot can make contact using the whole surface
of its body. This fact results in presence of uncontrollable
internal forces. We designed a grasp optimization capable of
counterbalancing large external wrenches based on internal
force decomposition. A numerical example indicating a case
of failing an object wrapped by a robotic finger in presence
of geometrical constraints was provided. Finite element anal-
ysis of failure based on maximum-shear-stress theory was
presented in order to validate the proposed grasp synthesis.

The provided analysis is valid for traditional engineering
materials such as ceramics, steel or plastic which are uni-
form, or isotropic, in nature. In other words, material prop-
erties, such as strength, stiffness, and thermal conductivity,
are independent of both position within the material and
the choice of coordinate system. However, there are many
applications including robotic harvesting, shaping cardboard,
bone implants or any other tasks require yielding anisotropic
materials.

The complete bending failure of anisotropic beams such
as tree branches or mammals’ bones are hard to achieve.
There are cases (wood for instance) that the beam is much
stronger longitudinally than transversely [13]. Buckling and
green-stick fracture in biological beams occurs as depicted
in Fig. 7. This behavior can be explained by anisotropy

(@) (b)

Fig. 7. (a) Buckling instead of breaking into pieces. (b) Greenstick fracture
rather than breaking.

between the radial and tangential directions. For instance,
80 per cent of fiber cells in wood are oriented longitudinally
which results in higher longitudinal yielding strength [14].
We are excited about addressing this issue in future work.
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