9 research outputs found

    Proceedings of the 7th International Conference on PGAS Programming Models

    Get PDF

    A differentiated proposal of three dimension i/o performance characterization model focusing on storage environments

    Get PDF
    The I/O bottleneck remains a central issue in high-performance environments. Cloud computing, high-performance computing (HPC) and big data environments share many underneath difficulties to deliver data at a desirable time rate requested by high-performance applications. This increases the possibility of creating bottlenecks throughout the application feeding process by bottom hardware devices located in the storage system layer. In the last years, many researchers have been proposed solutions to improve the I/O architecture considering different approaches. Some of them take advantage of hardware devices while others focus on a sophisticated software approach. However, due to the complexity of dealing with high-performance environments, creating solutions to improve I/O performance in both software and hardware is challenging and gives researchers many opportunities. Classifying these improvements in different dimensions allows researchers to understand how these improvements have been built over the years and how it progresses. In addition, it also allows future efforts to be directed to research topics that have developed at a lower rate, balancing the general development process. This research present a three-dimension characterization model for classifying research works on I/O performance improvements for large scale storage computing facilities. This classification model can also be used as a guideline framework to summarize researches providing an overview of the actual scenario. We also used the proposed model to perform a systematic literature mapping that covered ten years of research on I/O performance improvements in storage environments. This study classified hundreds of distinct researches identifying which were the hardware, software, and storage systems that received more attention over the years, which were the most researches proposals elements and where these elements were evaluated. In order to justify the importance of this model and the development of solutions that targets I/O performance improvements, we evaluated a subset of these improvements using a a real and complete experimentation environment, the Grid5000. Analysis over different scenarios using a synthetic I/O benchmark demonstrates how the throughput and latency parameters behaves when performing different I/O operations using distinct storage technologies and approaches.O gargalo de E/S continua sendo um problema central em ambientes de alto desempenho. Os ambientes de computação em nuvem, computação de alto desempenho (HPC) e big data compartilham muitas dificuldades para fornecer dados em uma taxa de tempo desejável solicitada por aplicações de alto desempenho. Isso aumenta a possibilidade de criar gargalos em todo o processo de alimentação de aplicativos pelos dispositivos de hardware inferiores localizados na camada do sistema de armazenamento. Nos últimos anos, muitos pesquisadores propuseram soluções para melhorar a arquitetura de E/S considerando diferentes abordagens. Alguns deles aproveitam os dispositivos de hardware, enquanto outros se concentram em uma abordagem sofisticada de software. No entanto, devido à complexidade de lidar com ambientes de alto desempenho, criar soluções para melhorar o desempenho de E/S em software e hardware é um desafio e oferece aos pesquisadores muitas oportunidades. A classificação dessas melhorias em diferentes dimensões permite que os pesquisadores entendam como essas melhorias foram construídas ao longo dos anos e como elas progridem. Além disso, também permite que futuros esforços sejam direcionados para tópicos de pesquisa que se desenvolveram em menor proporção, equilibrando o processo geral de desenvolvimento. Esta pesquisa apresenta um modelo de caracterização tridimensional para classificar trabalhos de pesquisa sobre melhorias de desempenho de E/S para instalações de computação de armazenamento em larga escala. Esse modelo de classificação também pode ser usado como uma estrutura de diretrizes para resumir as pesquisas, fornecendo uma visão geral do cenário real. Também usamos o modelo proposto para realizar um mapeamento sistemático da literatura que abrangeu dez anos de pesquisa sobre melhorias no desempenho de E/S em ambientes de armazenamento. Este estudo classificou centenas de pesquisas distintas, identificando quais eram os dispositivos de hardware, software e sistemas de armazenamento que receberam mais atenção ao longo dos anos, quais foram os elementos de proposta mais pesquisados e onde esses elementos foram avaliados. Para justificar a importância desse modelo e o desenvolvimento de soluções que visam melhorias no desempenho de E/S, avaliamos um subconjunto dessas melhorias usando um ambiente de experimentação real e completo, o Grid5000. Análises em cenários diferentes usando um benchmark de E/S sintética demonstra como os parâmetros de vazão e latência se comportam ao executar diferentes operações de E/S usando tecnologias e abordagens distintas de armazenamento

    A protocol reconfiguration and optimization system for MPI

    Get PDF
    Modern high performance computing (HPC) applications, for example adaptive mesh refinement and multi-physics codes, have dynamic communication characteristics which result in poor performance on current Message Passing Interface (MPI) implementations. The degraded application performance can be attributed to a mismatch between changing application requirements and static communication library functionality. To improve the performance of these applications, MPI libraries should change their protocol functionality in response to changing application requirements, and tailor their functionality to take advantage of hardware capabilities. This dissertation describes Protocol Reconfiguration and Optimization system for MPI (PRO-MPI), a framework for constructing profile-driven reconfigurable MPI libraries; these libraries use past application characteristics (profiles) to dynamically change their functionality to match the changing application requirements. The framework addresses the challenges of designing and implementing the reconfigurable MPI libraries, which include collecting and reasoning about application characteristics to drive the protocol reconfiguration and defining abstractions required for implementing these reconfigurations. Two prototype reconfigurable MPI implementations based on the framework - Open PRO-MPI and Cactus PRO-MPI - are also presented to demonstrate the utility of the framework. To demonstrate the effectiveness of reconfigurable MPI libraries, this dissertation presents experimental results to show the impact of using these libraries on the application performance. The results show that PRO-MPI improves the performance of important HPC applications and benchmarks. They also show that HyperCLaw performance improves by approximately 22% when exact profiles are available, and HyperCLaw performance improves by approximately 18% when only approximate profiles are available

    Providing support to uncovering I/O usage in HPC platforms

    Get PDF
    High-Performance Computing (HPC) platforms are required to solve the most diverse large-scale scientific problems in various research areas, such as biology, chemistry, physics, and health sciences. Researchers use a multitude of scientific software, which have dif ferent requirements. These include input and output operations, directly impacting per formance because the existing difference in processing and data access speeds. Thus, supercomputers must efficiently handle a mixed workload when storing data from the ap plications. Understanding the set of applications and their performance running in a super computer is paramount to understanding the storage system’s usage, pinpointing possible bottlenecks, and guiding optimization techniques. This research proposes a methodology and visualization tool to evaluate a supercomputer’s data storage infrastructure’s perfor mance, taking into account the diverse workload and demands of the system over a long period of operation. We used the Santos Dumont supercomputer as a study case. With our methodology’s help, we identified inefficient usage and problematic performance factors, such as: (I) the system received an enormous amount of inefficient read operations, below 100 KiB for 75% of the time; (II) imbalance among storage resources, where the overload can correspond to 3× the average load; and (III) high demand for metadata operations, accounting for 60% of all file system operations. We also provide some guidelines on how to tackle those issues.Plataformas de Processamento de Alto Desempenho (PAD) são necessárias para resolver os mais diversos problemas científicos de grande escala em várias áreas de pesquisa, tais como biologia, química, física e ciências da saúde. Pesquisadores utilizam uma infinidade de aplicações científicas, que por sua vez possuem diferentes requisitos. Dentre esses re quisitos estão as operações de entrada e saída, que impactam diretamente o desempenho devido a diferença de velocidade existente entre o processamento e o acesso aos dados. Dessa forma, os supercomputadores devem lidar de forma eficiente com uma carga de trabalho mista ao armazenar os dados utilizados pelas aplicações. O entendimento do conjunto de aplicações e seus desempenhos ao executar em um supercomputador é pri mordial para entender a utilização do sistema de armazenamento, identificando possíveis gargalos, e orientando técnicas de otimização. Essa dissertação propõe uma metodologia e uma ferramenta de visualização para avaliar o desempenho da infraestrutura de arma zenamento de dados de um supercomputador, levando em consideração as demandas e cargas de trabalho diversas do sistema durante um longo período de operação. Como estudo de caso, o supercomputador Santos Dumont foi estudado. Com a ajuda de nossa metodologia, identificamos uso ineficiente e fatores de desempenho problemáticos, como: (I) o sistema recebeu uma enorme quantidade de operações de leitura ineficientes, abaixo de 100 KiB por 75% do tempo; (II) desequilíbrio entre os recursos de armazenamento, onde a sobrecarga pode corresponder a 3× a carga média; e (III) alta demanda por ope rações de metadados, representando 60% de todas as operações do sistema de arquivos. Também fornecemos algumas diretrizes sobre como lidar com esses problemas

    Optimization techniques for fine-grained communication in PGAS environments

    Get PDF
    Partitioned Global Address Space (PGAS) languages promise to deliver improved programmer productivity and good performance in large-scale parallel machines. However, adequate performance for applications that rely on fine-grained communication without compromising their programmability is difficult to achieve. Manual or compiler assistance code optimization is required to avoid fine-grained accesses. The downside of manually applying code transformations is the increased program complexity and hindering of the programmer productivity. On the other hand, compiler optimizations of fine-grained accesses require knowledge of physical data mapping and the use of parallel loop constructs. This thesis presents optimizations for solving the three main challenges of the fine-grain communication: (i) low network communication efficiency; (ii) large number of runtime calls; and (iii) network hotspot creation for the non-uniform distribution of network communication, To solve this problems, the dissertation presents three approaches. First, it presents an improved inspector-executor transformation to improve the network efficiency through runtime aggregation. Second, it presents incremental optimizations to the inspector-executor loop transformation to automatically remove the runtime calls. Finally, the thesis presents a loop scheduling loop transformation for avoiding network hotspots and the oversubscription of nodes. In contrast to previous work that use static coalescing, prefetching, limited privatization, and caching, the solutions presented in this thesis focus cover all the aspect of fine-grained communication, including reducing the number of calls generated by the compiler and minimizing the overhead of the inspector-executor optimization. A performance evaluation with various microbenchmarks and benchmarks, aiming at predicting scaling and absolute performance numbers of a Power 775 machine, indicates that applications with regular accesses can achieve up to 180% of the performance of hand-optimized versions, while in applications with irregular accesses the transformations are expected to yield from 1.12X up to 6.3X speedup. The loop scheduling shows performance gains from 3-25% for NAS FT and bucket-sort benchmarks, and up to 3.4X speedup for the microbenchmarks

    Software for Exascale Computing - SPPEXA 2016-2019

    Get PDF
    This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest

    Optimizing the HPCC randomaccess benchmark on blue Gene/L Supercomputer

    No full text

    Predictive analysis and optimisation of pipelined wavefront applications using reusable analytic models

    Get PDF
    Pipelined wavefront computations are an ubiquitous class of high performance parallel algorithms used for the solution of many scientific and engineering applications. In order to aid the design and optimisation of these applications, and to ensure that during procurement platforms are chosen best suited to these codes, there has been considerable research in analysing and evaluating their operational performance. Wavefront codes exhibit complex computation, communication, synchronisation patterns, and as a result there exist a large variety of such codes and possible optimisations. The problem is compounded by each new generation of high performance computing system, which has often introduced a previously unexplored architectural trait, requiring previous performance models to be rewritten and reevaluated. In this thesis, we address the performance modelling and optimisation of this class of application, as a whole. This differs from previous studies in which bespoke models are applied to specific applications. The analytic performance models are generalised and reusable, and we demonstrate their application to the predictive analysis and optimisation of pipelined wavefront computations running on modern high performance computing systems. The performance model is based on the LogGP parameterisation, and uses a small number of input parameters to specify the particular behaviour of most wavefront codes. The new parameters and model equations capture the key structural and behavioural differences among different wavefront application codes, providing a succinct summary of the operations for each application and insights into alternative wavefront application design. The models are applied to three industry-strength wavefront codes and are validated on several systems including a Cray XT3/XT4 and an InfiniBand commodity cluster. Model predictions show high quantitative accuracy (less than 20% error) for all high performance configurations and excellent qualitative accuracy. The thesis presents applications, projections and insights for optimisations using the model, which show the utility of reusable analytic models for performance engineering of high performance computing codes. In particular, we demonstrate the use of the model for: (1) evaluating application configuration and resulting performance; (2) evaluating hardware platform issues including platform sizing, configuration; (3) exploring hardware platform design alternatives and system procurement and, (4) considering possible code and algorithmic optimisations

    Predictive analysis and optimisation of pipelined wavefront applications using reusable analytic models

    Get PDF
    Pipelined wavefront computations are an ubiquitous class of high performance parallel algorithms used for the solution of many scientific and engineering applications. In order to aid the design and optimisation of these applications, and to ensure that during procurement platforms are chosen best suited to these codes, there has been considerable research in analysing and evaluating their operational performance. Wavefront codes exhibit complex computation, communication, synchronisation patterns, and as a result there exist a large variety of such codes and possible optimisations. The problem is compounded by each new generation of high performance computing system, which has often introduced a previously unexplored architectural trait, requiring previous performance models to be rewritten and reevaluated. In this thesis, we address the performance modelling and optimisation of this class of application, as a whole. This differs from previous studies in which bespoke models are applied to specific applications. The analytic performance models are generalised and reusable, and we demonstrate their application to the predictive analysis and optimisation of pipelined wavefront computations running on modern high performance computing systems. The performance model is based on the LogGP parameterisation, and uses a small number of input parameters to specify the particular behaviour of most wavefront codes. The new parameters and model equations capture the key structural and behavioural differences among different wavefront application codes, providing a succinct summary of the operations for each application and insights into alternative wavefront application design. The models are applied to three industry-strength wavefront codes and are validated on several systems including a Cray XT3/XT4 and an InfiniBand commodity cluster. Model predictions show high quantitative accuracy (less than 20% error) for all high performance configurations and excellent qualitative accuracy. The thesis presents applications, projections and insights for optimisations using the model, which show the utility of reusable analytic models for performance engineering of high performance computing codes. In particular, we demonstrate the use of the model for: (1) evaluating application configuration and resulting performance; (2) evaluating hardware platform issues including platform sizing, configuration; (3) exploring hardware platform design alternatives and system procurement and, (4) considering possible code and algorithmic optimisations.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore