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Editor’s Introduction

The 7th edition of the International Conference on Partitioned Global Address Space languages
took place in Edinburgh on the 3rd and 4th October 2013. The conference brought together
over 60 attendees from across the globe: leading researchers and scientists from North America,
Europe and Japan addressed a wide range of topics relevant to PGAS languages and exascale
computing.

These proceedings collate the papers that were accepted for publication. The first section of
the proceedings is dedicated to the research papers, which represent substantial bodies of work
and progress beyond the state-of-the art. The subsequent section contains the ”hot” category:
these are shorter papers that introduce work in progress. The proceedings conclude with the
poster submissions.

PGAS2013 was a highly successful conference that presented significant progress in the area of
PGAS research. We hope that the proceedings reflect this success and will bring the research
to a wider audience.

Michèle Weiland, Adrian Jackson and Nick Johnson,
Editors
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Research Papers
These papers were accepted into the research category and are substantive works demonstrating
new results, ideas, applications and models.
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A scalable deadlock detection algorithm for

UPC collective operations

Indranil Roy, Glenn R. Luecke, James Coyle and Marina Kraeva

Iowa State University’s High Performance Computing Group, Iowa State University,
Ames, Iowa 50011, USA

iroy@iastate.edu, grl@iastate.edu, jjc@iastate.edu, kraeva@iastate.edu.

Abstract

Unified Parallel C (UPC) is a language used to write parallel programs for shared and
distributed memory parallel computers. Deadlock detection in UPC programs requires
detecting deadlocks that involve either locks, collective operations, or both. In this paper,
a distributed deadlock detection algorithm for UPC programs that uses run-time analysis
is presented. The algorithm detects deadlocks in collective operations using a distributed
technique with O(1) run-time complexity. The correctness and optimality of the algorithm
is proven. For completeness, the algorithm is extended to detect deadlocks involving both
locks and collective operations by identifying insolvable dependency chains and cycles in a
shared wait-for-graph (WFG). The algorithm is implemented in the run-time error detection
tool UPC-CHECK and tested with over 150 functionality test cases. The scalability of this
deadlock detection algorithm for UPC collective operations is experimentally verified using
up to 8192 threads.

1 Introduction

Deadlocks in complex application programs are often difficult to locate and fix. Currently
UPC-CHECK [3] and UPC-SPIN [4] are the only tools available for the detection of deadlocks in
UPC programs. UPC-SPIN employs a model-checking method which inherently does not scale
beyond a few threads. In addition, every time the program is modified, the model has to be
updated. In contrast, UPC-CHECK uses the algorithm presented in this paper to automatically
detect deadlocks at run-time for programs executing on thousands of threads.

This new algorithm not only detects deadlocks involving UPC collective operations, but
also verifies the arguments passed to the collective operation for consistency. The run-time
complexity of this algorithm is shown to be O(1). The algorithm has been extended to detect
deadlocks involving both collective operations and locks. The run-time complexity of the
extended algorithm is O(T ), where T is the number of threads. Using this deadlock detection
algorithm UPC-CHECK detects all deadlock error test cases from the UPC RTED test suite [2].

The rest of this paper is organized as follows. Section 2 provides the background of various
existing deadlock detection techniques. In Section 3, a new algorithm to detect potential
deadlocks due to incorrect usage of UPC collective operations is presented. The correctness
and run-time complexity analysis of the algorithm are also provided. Section 4 describes the
extended algorithm to detect deadlocks involving both locks and collective operations. The
scalability of this deadlock detection algorithm is experimentally confirmed in Section 5. Finally,
Section 6 contains the concluding remarks.
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2 Background

Out-of-order calls to collective operations on different threads may create a deadlock. Even when
the calls to collective operations are in-order, various non-local semantics dictate that consistent
arguments need to be used in all participating threads. Non-adherence to these semantics could
lead to a deadlock or departure from intended behavior of the program. However, building
scalable tools to detect such errors remains a challenge.

Model-checking tools like MPI-SPIN [10] and UPC-SPIN [4] can detect all possible deadlock
conditions arising from all combination of parameters in all possible control-flows. However, such
tools cannot scale beyond a few threads due to the combinatorial state-space explosion. Tools
employing dynamic formal verification methods do not check all the control flows and hence
can be used for larger programs. Such tools ISP [13], MODIST [16] and POE [12] generally
employ centralized deadlock detection schemes which limit them to verifying executions using a
small number of processes. Execution time of such methods is also usually high. DAMPI [15]
is a dynamic formal verification tool which overcomes this limitation by using a distributed
heuristics-based deadlock detection algorithm.

The most practical method for detecting deadlocks in terms of scalability is run-time analysis.
Tools using this kind of analysis detect only those deadlocks that would actually occur during
the current execution of a program. Marmot [7] and MPI-CHECK [8] employ synchronized
time-out based strategies to detect deadlock conditions. Time-out based strategies may report
false-positive error cases and generally cannot pinpoint the exact reason for the error. On
the other hand, the run-time analysis tool, Umpire [14] uses a centralized WFG based on the
generalized AND⊕OR model developed by Hilbrich et al. [5]. However, MPI-CHECK, Marmot
and Umpire are all based on the client-server model, which limits their scalability to a few
hundred threads. In order to overcome this limitation, MUST [6] utilizes a flexible and efficient
communication system to transfer records related to error detection between different processes
or threads.

Our algorithm uses a different approach to detect deadlocks involving collective operations.
We exploit two properties of operations in UPC which make deadlock detection easier than
in MPI. Firstly, communication between two processes is non-blocking and secondly, non-
determinism of point-to-point communication operations in terms of any source cannot occur in
UPC.

3 Detecting deadlocks due to collective errors in collective
operations

Terms used throughout the rest of this paper are:

1. THREADS is an integer variable that refers to the total number of threads with which
the execution of the application was initiated.

2. A UPC operation is defined as any UPC statement or function listed in the UPC specifica-
tion.

3. The state of a thread is defined as the name of the UPC operation that the thread
has reached. In case the thread is executing an operation which is not a collective or
lock-related UPC operation, the state is set to unknown. If the thread has completed
execution, the state is set to end of execution.

Proceedings of the 7th International Conference on PGAS Programming Models 3
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4. A single-valued argument is an argument of a UPC collective operation which must be
passed the same value on every thread.

5. The signature of a UPC operation on a thread consists of the name of the UPC operation
and the values which are about to be passed to each of the single-valued arguments of the
UPC collective operation on that thread.

6. For any thread k, sk is a shared data structure which stores the state of thread k in
field sk.op. In case state is the name of a UPC collective operation, sk also stores the
single-valued arguments of the operation on that thread.

7. To compare the signatures of UPC operations stored in si and sj means to check whether
all the fields in si and sj are identical.

8. If all the fields in si and sj are identical, the result of the comparison is a match, otherwise
there is a mismatch.

9. C(n, k) denotes the nth collective operation executed by thread k.

The UPC specification requires that the order of calls to UPC collective operations must
be the same for all threads [11]. Additionally, each ‘single-valued ’ argument of a collective
operation must have the same value on all threads. Therefore deadlocks involving only collective
UPC operations can be created if:

1. different threads are waiting at different collective operations,

2. values passed to single-valued arguments of collective functions do not match across all
threads, and

3. some threads are waiting at a collective operation while at least one thread has finished
execution.

An algorithm to check whether any of the above 3 cases is going to occur must compare
the collective operation which each thread is going to execute next and its single-valued
arguments with those on other threads. Our algorithm achieves this by viewing the threads as
if they were arranged in a circular ring. The left and right neighbors of a thread i are thread
(i− 1)%THREADS and thread (i + 1)%THREADS respectively. Each thread checks whether
its right neighbor has reached the same collective operation as itself. Since this checking goes
around the whole ring, if all the threads arrive at the same collective operation, then each thread
will be verified by its left neighbor and there will be no mismatches of the collective operations.
However, if any thread comes to a collective operation which is not the same as that on the
other thread, its left neighbor can identify the discrepancy, and issue an error message. The
correctness of this approach is proven in Section 3.1.

On reaching a collective UPC operation, a thread k first records the signature of the collective
operation in sk. Thread k sets sk.op to unknown after exiting from a operation.Let a and b be
the variables that store signatures of collective operations. The assign (←) and the compare (�)
operations for the signatures of collective operation stored in a and b are defined as follows:

1. b← a means

(a) assign value of variable a.op to variable b.op, and

(b) if a.op 6= end of execution, copy values of single-valued arguments recorded in a to b

4 Proceedings of the 7th International Conference on PGAS Programming Models
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2. b � a is true if

(a) b.op 6= a.op, or

(b) if a.op 6= end of execution, any of the single-valued arguments recorded in a is not
identical to the corresponding argument recorded in b.

Let thread j be the right neighbor of thread i. During execution, thread i or thread j could
reach their respective nth collective operation first. If thread i reaches the operation first, then
it cannot compare C(n, i) recorded in si with C(n, j), since sj does not contain the signature
of the nth collective operation encountered on thread j, i.e. C(n, j). The comparison can be
delayed until thread j reaches its nth collective operation. In order to implement this, another
shared variable dsk is used on each thread k to store the desired signature. For faster access,
both shared variables sk and dsk have affinity1 to thread k. If thread i finds that thread j has
not reached a collective operation (sj .op is unknown), then it assigns si to dsj . When thread j
reaches a collective operation it first records the signature in sj and then compares it with dsj .
If they do not match, then thread j issues an error message, otherwise it sets dsj .op to unknown

and continues.
If thread i reaches the collective operation after thread j (sj .op is assigned a name of a

collective UPC operation), then thread i compares sj with si. If they match, then there is no
error, so execution continues.

The UPC specification does not require collective operations to be synchronizing. This could
result in one or more state variables on a thread being reassigned with the signature of the
next collective operation that it encounters before the necessary checking is completed. To
ensure that the signature of the nth collective operation encountered on thread i i.e. C(n, i) is
compared with the signature of the nth collective operation encountered on thread j, i.e. C(n, j),
the algorithm must ensure that:

1. If thread i reaches the nth collective operation before thread j and assigns dsj the signature
of C(n, i), it does not reassign dsj before thread j has compared dsj with sj , and

2. If thread j reaches the nth collective operation before thread i and assigns sj the signature
of C(n, j), it does not reassign sj before either thread i has a chance to compare it with
si or thread j has a chance to compare it with dsj .

In order to achieve the behavior described above, two shared variables r sj and r dsj are
used for every thread j. Variable r sj is used to prevent thread j from reassigning sj before
the necessary comparisons described above are completed. Similarly, variable r dsj is used to
prevent thread i from reassigning dsj before the necessary comparisons are completed. Both
r sj and r dsj have affinity to thread j.

For thread j, shared data structures sj and dsj are accessed by thread i and thread j. To
avoid race conditions, accesses to sj and dsj are guarded using lock L[j].

Our deadlock algorithm is implemented via the following three functions:

• check entry() function which is called before each UPC operation to check whether
executing the operation would cause a deadlock,

• record exit() function which is called after each UPC operation to record that the operation
is complete and record any additional information if required, and

1In UPC, shared variables that are stored in the physical memory of a thread are said to have affinity to that
thread.
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• check final() function which is called before every return statement in the main() function
and every exit() function to check for possible deadlock conditions due to the termination
of this thread.

Algorithm A1

1 On thread i:
————————————————————
// Initialization

2 si.op← dsi.op← unknown, r si ← 1, r dsj ← 1
————————————————————
// Function definition of check entry(f sig):

3 if THREADS = 1 then
4 Exit check. ;
5 end
6 Acquire L[i] ;
7 si ← f sig ;
8 r si ← 0 ;
9 if dsi.op 6= unknown then

10 if dsi � si then
11 Print error and call global exit function. ;
12 end
13 r si ← 1 ;
14 r dsi ← 1 ;
15 dsi.op← unknown ;

16 end
17 Release L[i] ;
18 Wait until r dsj = 1 ;
19 Acquire L[j] ;

20 if sj .op = unknown then
21 dsj ← si ;
22 r dsj ← 0 ;

23 else
24 if sj � si then
25 Print error and call global exit function ;
26 end
27 r sj ← 1 ;

28 end
29 Release L[j]

————————————————————
// Function definition of check exit():

30 Wait until r si = 1 ;
31 Acquire L[i] ;
32 si.op← unknown ;
33 Release L[i]

————————————————————
// Function definition of check final():

34 Acquire L[i] ;
35 if dsi.op 6= unknown then
36 Print error and call global exit function. ;
37 end
38 si.op← end of execution ;
39 Release L[i] ;

The pseudo-code of the distributed algorithm2 on each thread i to check deadlocks caused by
incorrect or missing calls to collective operations3 is presented.Function check entry() receives
as argument the signature of the collective operation that the thread has reached, namely f sig.

3.1 Proof of Correctness

Using the same relation between thread i and thread j, i.e. thread i is the left neighbor of
thread j, the proof of correctness is structured as follows. Firstly, it is proved that the algorithm
is free of deadlocks and livelocks. Then Lemma 3.1 is used to prove that the left neighbor of
any thread j does not reassign dsj before thread j can compare sj with dsj . Lemma 3.2 proves
that the right neighbor of any thread i, does not reassign sj before thread i can compare si
with sj . Using Lemma 3.1 and Lemma 3.2 it is proven that for any two neighboring threads i
and j, signature of C(n, j) is compared to the signature of C(n, i). Finally, using Lemma 3.3
the correctness of the algorithm is proven by showing that : 1) no error message is issued if
all the threads have reached the same collective operation with the same signature and 2) an
error message is issued if at least one thread has reached a collective operation with a signature

2As presented, the algorithm forces synchronization even for non-synchronizing UPC collective operations.
However, if forced synchronization is a concern, this can be handled with a queue of states. This will not change
the O(1) behavior.

3UPC-CHECK treats non-synchronizing collective operations as synchronizing operations because the UPC
1.2 specification says that ”Some implementations may include unspecified synchronization between threads
within collective operations” (footnote; page 9).
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different from the signature of the collective operation on any other thread. Case 1 is proved by
Theorem 3.4 and Case 2 is proved by Theorem 3.5.

There is no hold-and-wait condition in algorithm A1, hence there cannot be any deadlocks
in the algorithm. To show that the algorithm is livelock-free, we show that any given thread
must eventually exit the waits on line 18 and 30. For any thread i reaching its nth collective
operation C(n, i), thread i can wait at line 18 if thread i itself had set r dsj to 0 on line 22 on
reaching C(n− 1, i). This is possible only if thread i found that sj .op = unknown on line 20,
i.e. thread j is not executing an UPC collective operation. Eventually thread j either reaches
the end of execution or a UPC collective operation. In the former case, a deadlock condition
is detected, an error message is issued and the application exits. In the second case, thread
j finds conditional statement on line 9 to be true and sets r dsj to 1 on line 14. Since only
thread i can set r dsj to 0 again, thread i would definitely exit the wait on line 18. Similarly,
for thread j to be waiting at line 30 after executing C(n, j), it must not have set r sj to 1 at
line 13. This means that dsj .op must be equal to unknown at line 9, implying that thread i has
still not executed line 21 and hence line 20 (by temporal ordering) due to the atomic nature of
operations accorded by L[j]. When thread i finally acquires L[j], the conditional statement on
line 20 must evaluate to false. If thread i has reached a collective operation with a signature
different from that of C(n, j), a deadlock error message is issued, otherwise r sj is set to 1.
Since only thread j can set r sj to 0 again, it must exit the waiting at line 30.

Lemma 3.1. After thread i assigns the signature of C(n, i) to dsj, then thread i does not
reassign dsj before thread j compares sj with dsj.

Proof. This situation arises only if thread i has reached a collective operation first. After thread
i sets dsj to si (which is already set to C(n, i)) at line 21, it sets r dsj to 0 at line 22. Thread
i cannot reassign dsj until r dsj is set to 1. Only thread j can set r dsj to 1 at line 14 after
comparing sj with dsj .

Lemma 3.2. After thread j assigns the signature of C(n, j) to sj, then thread j does not
reassign sj before it is compared with si.

Proof. After thread j assigns the signature of C(n, j) to sj at line 7, it sets r sj to 0. Thread j
cannot modify sj until r sj is set to 1. If thread i has already reached the collective operation,
then thread j sets r sj to 1 at line 13 only after comparing sj with dsj at line 10. However,
thread i must have copied the value of si to dsj at line 21. Alternatively, thread j might
have reached the collective operation first. In this case, thread i sets r sj to 1 at line 27 after
comparing si to sj at line 24.

Lemma 3.3. For any neighboring threads i and j, the signature of C(n, i) is always compared
with the signature of C(n, j).

Proof. This is proved using induction on the number of the collective operations encountered on
threads i and j.

Basis. Consider the case where n equals 1, i.e. the first collective operation encountered
on thread i and thread j. The signature of C(1, i) is compared with the signature of C(1, j).
If thread i reaches collective operation C(1, i) first, then it assigns dsj the signature of C(1, i).
Using Lemma 3.1, thread i cannot reassign dsj until dsj is compared with sj by thread j on
reaching its first collective operation, C(1, j). Alternatively, if thread j reaches its collective
operation first, then Lemma 3.2 states that after thread j assigns the signature of C(1, j) to sj ,
thread j cannot reassign sj before it is compared with si. The comparison between sj and si is

Proceedings of the 7th International Conference on PGAS Programming Models 7
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done by thread i after it reaches its first collective operation and has assigned si the signature
of C(1, i).

Inductive step. If the signature of C(n, i) is compared with the signature of C(n, j), then it
can be proven that the signature of C(n + 1, i) is compared with the signature of C(n + 1, j). If
thread i reaches its next collective operation C(n + 1, i) first, then it assigns dsj the signature
of C(n + 1, i). Using Lemma 3.1, thread i cannot reassign dsj until dsj is compared with sj
by thread j on reaching its next collective operation, i.e. C(n + 1, j). Alternatively, if thread
j reaches its next collective operation first, then Lemma 3.2 states that after thread j assigns
C(n + 1, j) to sj , thread j cannot reassign sj before it is compared with si. The comparison of
sj with si is done by thread i after it reaches its next collective operation and has asigned si
the signature of C(n + 1, i).

Using Lemma 3.3, it is proven that for any neighboring thread pair i and j, the signature of
nth collective operation of thread i is compared with the signature of nth collective operation of
thread j. As j varies from 0 to THREADS − 1, it can be said that when the nth collective
operation is encountered on any thread, it is checked against the nth encountered collective
operation on every other thread before proceeding. Thus in the following proofs, we need to
only concentrate on a single (potentially different) collective operation on each thread. In the
following proofs, let the signature of the collective operation encountered on a thread k be
denoted by Sk. If a state or desired state ai.op is unknown, then it is denoted as a = U for
succinctness. Then in algorithm A1, after assigning the signature of the encountered collective
operation, i.e. line si ← f sig, notice that for thread i:
si must be Si,
dsi must be either U or Si−1,
sj must be either U or Sj , and
dsj must be U .

Theorem 3.4. If all the threads arrive at the same collective operation, and the collective
operation has the same signature on all threads, then Algorithm A1 will not issue an error
message.

Proof. If THREADS is 1, no error message is issued, so we need to consider only cases of
execution when THREADS > 1. If all threads arrive at the same collective operation with the
same signature, then during the checks after si ← f sig, is the same for all i. Let S denote this
common signature. We will prove this theorem by contradiction. An error message is printed
only if:

1. dsi 6= U and dsi 6= si ⇒ dsi = S and dsi 6= S ⇒ S 6= S (contradiction) or

2. sj 6= U and sj 6= si ⇒ sj = S and sj 6= S ⇒ S 6= S (contradiction)

So Theorem 3.4 is proved.

Theorem 3.5. If any thread has reached a collective operation with a signature different from
the signature of the collective operation on any other thread, then a deadlock error message is
issued.

Proof. There can be a mismatch in the collective operation or its signature only if there is more
than one thread.

Since the signatures of the collective operations reached on every thread are not identical,
there must be some thread i for which Si � Sj . For these threads i and j, the following
procedures are made to be atomic and mutually exclusive through use of lock L[j]:
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• Action 1: Thread i checks sj . If sj = U , then thread i executes dsj ← si, else, computes
sj � si and issues an error message if true.

• Action 2: Thread j assigns the signature of the collective operation it has reached to sj .
Thread j checks dsj . If dsj 6= U , the thread j computes dsj � sj and issues message if
true.

There are only two possible cases of execution: either action 1 is followed by action 2 or vice
versa.

In the first case, in action 1, thread i finds sj = U is true, executes dsj ← Si and continues.
Then in action 2, thread j executes sj ← Sj , finds that dsj 6= U and hence computes dsj � sj .
Now, since dsj = Si and sj = Sj and Si 6= Sj (by assumption) implies that dsj � sj is true.
Therefore thread j issues an error message.

In the second case, in action 2, thread j assigns sj ← Sj , finds dsj = U and continues. Before
thread i initiates action 1 by acquiring L[j], it must have executed si ← Si. If dsi 6= U and
dsi � si, then an error message is issued by thread i, otherwise it initiates action 1. Thread i
finds sj 6= U and computes sj � si. Now, since si = Si and sj = Sj and Si � Sj (by assumption)
implies that sj � sj is true. Therefore thread i issues an error message.

Since the above two cases are exhaustive, an error is always issued if Si � Sj and hence
Theorem 3.5 is proved.

Theorem 3.6. The complexity of the Algorithm A1 is O(1).

Proof. There are two parts to this proof.

1. The execution-time overhead for any thread i is O(1). Any thread i computes a fixed
number of instructions before entering and after exiting a collective operation. It waits for
at most two locks L[i] and L[j] each of which can have a dependency chain containing only
one thread, namely thread i− 1 and thread j respectively. Thread i synchronizes with
only two threads, i.e. its left neighbor thread i− 1 and right neighbor thread j. There
is no access to variables or locks from any other thread. Therefore the execution time
complexity of the algorithm in terms of the number of threads is O(1).

2. The memory overhead of any thread i is independent of the number of threads and is
constant.

3.2 Detecting deadlock errors involving upc notify and upc wait op-
erations

The compound statement {upc notify; upc wait} forms a split barrier in UPC. The UPC
specification requires that firstly, there should be a strictly alternating sequence of upc notify
and upc wait calls, starting with a upc notify call and ending with a upc wait call. Secondly,
there can be no collective operation between a upc notify and its corresponding upc wait call.
These conditions are checked using a private binary flag on each thread which is set when a
upc notify statement is encountered and reset when a upc wait statement is encountered. This
binary flag is initially reset. If any collective operation other than upc wait is encountered when
the flag is set, then there must be an error. Similarly, if a upc wait statement is encountered
when the flag is reset, then there must be an error. Finally, if the execution ends, while the flag
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is set, then there must be an error. These checks are performed along with the above algorithm
and do not require any communication between threads. Also modifying and checking private
flags is an operation with complexity of O(1).

If all the threads issue the upc notify statement, then the next UPC collective operation
issued on all the threads must be a upc wait statement. Therefore algorithm A1 working in
unison with the above check needs to only verify the correct ordering of upc notify across all
threads. The correct ordering of the upc wait statements across all threads is automatically
guaranteed with the above mentioned checks. This is reflected in Algorithm A2.

4 Detecting deadlocks created by hold-and-wait depen-
dency chains for acquiring locks

In UPC, acquiring a lock with a call to the upc lock() function is a blocking operation. In UPC
program, deadlocks involving locks occur when there exists one of the following conditions:

1. a cycle of hold-and-wait dependencies with at least two threads, or

2. a chain of hold-and-wait dependencies ending in a lock held by a thread which has
completed execution, or

3. a chain of hold-and-wait dependencies ending in a lock held by a thread which is blocked
at a synchronizing collective UPC operation.

Our algorithm uses a simple edge-chasing method to detect deadlocks involving locks in
UPC programs. Before a thread u tries to acquire a lock, it checks if the lock is free or not. If
it is free, the thread continues execution. Otherwise, if the lock is held by thread v, thread u
checks sv.op to check if thread v:

1. is not executing a collective UPC operation or upc lock operation (sv.op is unknown), or

2. is waiting to acquire a lock, or

3. has completed execution, or

4. is waiting at a synchronizing collective UPC operation.

If thread v is waiting to acquire a lock, then thread u continues to check the state of the next
thread in the chain of dependencies. If thread u finally reaches thread m which is not executing
a collective UPC operation or upc lock operation, then no deadlock is detected. If thread u
finds itself along the chain dependencies, then it reports a deadlock condition. Similarly, if
thread u finds thread w which has completed execution at the end of the chain of dependencies,
then it issues an error message.

When the chain of dependencies ends with a thread waiting at a collective synchronizing
operation, the deadlock detection algorithm needs to identify whether the thread will finish
executing the collective operation or not. Figure 1 illustrates these two cases. Thread u is trying
to acquire a lock in a chain of dependencies ending with thread w. When thread u checks the
sw.op of thread w, thread w may (a) not have returned from the nth synchronizing collective
operation Cs(n,w), (b) have returned from the nth synchronizing collective operation but has
not updated the sw.op in the check exit() function, (c) have completed executing check entry()
function for the next synchronizing collective operation Cs(n + 1, w), or (d) waiting at the
(n + 1)th synchronizing collective operation Cs(n + 1, w). The nth synchronizing collective

10 Proceedings of the 7th International Conference on PGAS Programming Models



Deadlock detection for UPC collective operations Roy, Luecke, Coyle and Kraeva

CS(n, u) 

CS(n+1, u) CS(n+1, w) 

CS(n, w) 

Check_ 
entry() 

Check_ 
  exit() 

Check_ 
entry() 

Check_ 
  exit() 

(a) 

(c) 

(d) 

Thread u Thread w 

sync_phasew = 0 

(b) 

sync_phasew = 1 

sync_phaseu = 0 

sync_phaseu = 1 

Figure 1: Possible scenarios when detecting deadlocks involving chain of hold-and wait depen-
dencies. Scenario (a) or (b) is not a deadlock condition, while scenario (c) or (d) is.

operation encountered on thread w must be a valid synchronization operation that all threads
must have called (otherwise the check entry() function would have issued an error message).
Therefore scenarios (a) and (b) are not deadlock conditions, while (c) and (d) are. To identify
and differentiate between these scenarios, a binary shared variable sync phasek is introduced
for each thread k. Initially sync phasek is set to 0 for all threads. At the beginning of each
check entry() function on thread k, the value sync phasek is toggled. Thread u can now identify
the scenarios by just comparing sync phaseu and sync phasew. If they match (are in-phase),
then it is either scenario (a) or (b) and hence no deadlock error message is issued. If they do
not match (are out-of-phase), then it is either scenario (c) or (d) and hence a deadlock error
message is issued.

4.1 The complete deadlock detection algorithm

The complete algorithm to detect deadlocks created by errors in collective operations and
hold-and-wait dependency chains for acquiring locks is presented below. The check entry() and
check exit() functions receive two arguments: 1) the signature of the UPC operation that the
thread has reached, namely f sig and 2) the pointer L ptr. L ptr points to the lock which the
thread is trying to acquire or release if the thread has reached a upc lock, upc lock attempt or
upc unlock statement.

Checking for dependency chains and cycles adds only a constant amount of time overhead
for each thread in the chain or cycle. This means that the overhead is O(T ) where T is the
number of threads in the dependency chain.
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Algorithm A2

1 On thread i:
—————————————————————
// Initialization

2 Create empty list of acquired and requested locks ;
3 si.op← dsi.op← unknown; r si ← 1; r dsj ← 1;

(sync phasei ← 0)
—————————————————————
// Function definition of check entry(f sig,

L ptr):
4 Acquire L[i] ;
5 si ← f sig ;
6 Release L[i] ;
7 if f sig.op = at upc wait statement then
8 Exit check ;
9 end

10 if f sig.op = at upc lock operation then
11 Acquire c L ;
12 Check status of L ptr ;
13 if L ptr is held by this thread or is part of a cycle

or chain of dependencies then
14 Print suitable error and call global exit ;
15 else
16 Update list of requested locks ;
17 Release c L ;
18 Exit check ;

19 end

20 end
21 if f sig.op = at upc unlock operation then
22 if L ptr is not held by this thread then
23 Print suitable error and call global exit ;
24 else
25 Update list of acquired locks ;
26 Exit check

27 end

28 end
// Thread has reached a collective operation

29 if THREADS = 1 then
30 Exit check ;
31 end
32 Acquire c L ;
33 if this thread holds locks which are in the list of

requested locks then
34 Print suitable error and call global exit ;
35 end
36 Release c L ;
37 Acquire L[i] ;
38 r si ← 0 ;
39 if this is a synchronizing collective operation then
40 sync phasei ← (sync phasei + 1)%2 ;
41 end
42 if dsi.op 6= unknown then
43 if dsi � si then
44 Print error and call global exit function ;
45 end
46 r si ← 1 ;
47 r dsi ← 1 ;
48 dsi.op← unknown ;

49 end
50 Wait until r dsj = 1 ;
51 Acquire lock L[j] ;
52 if sj .op = unknown then
53 dsj ← si ;
54 r dsj ← 0 ;

55 else
56 if sj � si then
57 Print error and call global exit function ;
58 end
59 r sj ← 1 ;

60 end
61 Release lock L[j]

—————————————————————
// Function definition of check exit(f sig, L ptr):

62 Wait until r si = 1 ;
63 Acquire L[i] ;
64 si ← unknown ;
65 Release L[i] ;
66 if f sig.op = at upc lock operation then
67 Acquire c L ;
68 Remove L ptr from the list of requested locks ;
69 Add L ptr to the list of acquired locks ;
70 Release c L ;

71 end
72 if f sig.op = at upc lock attempt operation then
73 if L ptr was achieved then
74 Acquire c L ;
75 Remove L ptr from the list of requested locks ;
76 Add L ptr to the list of acquired locks ;
77 Release c L ;

78 end

79 end
80 Continue execution ;

// Function definition of check final():
81 Acquire L[i] ;
82 si ← end of execution ;
83 if dsi.op 6= unknown then
84 Print error and call global exit function ;
85 end
86 Release L[i] ;
87 Acquire c L ;
88 if this thread holds locks which are in the list of

requested locks then
89 Print suitable error and call global exit ;
90 end
91 if this thread is still holding locks then
92 Print suitable warning ;
93 end
94 Release c L ;
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5 Experimental verification of scalability

This deadlock detection algorithm has been implemented in the UPC-CHECK tool [3]. UPC-
CHECK was used to experimentally verify the scalability of this algorithm on a Cray XE6
machine running the CLE 4.1 operating system. Each node has two 16-core Interlagos processors.
Since we are interested in the verification of scalability, the authors measured the overhead of
our deadlock detection method for 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096 and 8192
threads. The verification of scalability was carried out by first measuring the overhead incurred
when calling a UPC collective operation and then measuring the overhead when running the
CG and IS UPC NAS Parallel Benchmarks (NPB) [1]. The Cray C 8.0.4 compiler was used
with the -hupc option. To pin processes and memory the aprun command was used with the
following options:

-ss -cc cpu.

The authors first measured the overhead of checking for deadlocks involving the upc all bro-
adcast operation with a message consisting of one 4 byte integer. Since deadlock checking is
independent of the message size, the small message size was used so that the checking overhead
could be easily measured. To measure the time accurately, 10,000 calls to upc all broadcast

were timed and an average reported.

time (t1);

for (i = 0; i < 10000; i++)

{

upc_all_broadcast;

}

time {t2};

bcast_time = (t2 - t1)/10000;

Overhead times ranged from 76 to 123
microseconds for multiple nodes, i.e. 64,
128, 256, 512, 1024, 2048, 4096 and 8192
threads. When replacing upc all broadcast

with upc all gather all, overhead times
ranged from 73 to 119 microseconds. In both
cases, a slight increase is observed as we in-
crease the number of threads. The authors
attribute this to the fact that, in general, not
all pairs of UPC threads can be mapped to
physical processors for which the communication between UPC threads i and (i+1)%THREADS
is the same for all i. The maximal communication time for optimally placed UPC threads still
grows slowly as the total number of UPC threads grows. The deviation from constant time in
the above experiment is only a factor of 1.5 for 128 times as many UPC threads.

Class B Class C
Number
of
threads

Without
checks

With
checks

Overhead Without
checks

With
checks

Overhead

2 77.2 77.6 0.4 211.2 211.8 0.6
4 41.4 41.7 0.3 112.7 112.8 0.1
8 28.1 28.7 0.6 73.9 74.2 0.3
16 15.3 16.0 0.6 39.4 40.0 0.6
32 8.6 9.5 0.9 21.1 22.1 0.9
64 5.5 6.6 1.1 13.1 14.0 1.0
128 3.3 4.7 1.3 8.3 9.7 1.4
256 NA NA NA 5.6 7.2 1.6

Table 1: Time in seconds of the UPC NPB-CG benchmark with and without deadlock checking
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Class B Class C
Number
of
threads

Without
checks

With
checks

Overhead Without
checks

With
checks

Overhead

2 4.56 4.59 0.03 20.00 20.11 0.11
4 2.18 2.18 0.00 9.50 9.52 0.01
8 1.34 1.34 0.00 5.28 5.28 0.00
16 0.79 0.79 0.00 3.46 3.46 0.00
32 0.42 0.43 0.01 1.89 1.89 0.00
64 0.29 0.30 0.01 1.30 1.31 0.01
128 0.21 0.22 0.01 0.82 0.82 0.00
256 0.26 0.27 0.01 0.57 0.57 0.00

Table 2: Time in seconds of the UPC NPB-IS benchmark with and without deadlock checking

UPC-CHECK was tested for correctness using 150 tests from the UPC RTED test suite [2].
Each test contains a single deadlock. For all the tests, UPC-CHECK detects the error, prevents
the deadlock from happening and exits after reporting the error correctly [3]. Since these tests
are very small, the observed overhead was so small that we could not measure them accurately.

Timing results for the UPC NPB CG and IS benchmarks are presented in Tables 1 and 2
using 2, 4, 8, 16, 32, 64, 128, and 256 threads. Timings using more than 256 threads could
not be obtained since these benchmarks are written in a way that prevents them from being
run with more than 256 threads. These results also demonstrate the scalability of the deadlock
detection algorithm presented in this paper. Timing data for the class B CG benchmark using
256 threads could not be obtained since the problem size is too small to be run with 256 threads.

6 Conclusion

In this paper, a new distributed and scalable deadlock detection algorithm for UPC collective
operations is presented. The algorithm has been proven to be correct and to have a run-time
complexity of O(1). This algorithm has been extended to detect deadlocks involving locks with
a run-time complexity of O(T), T is the number of threads involved in the deadlock. The
algorithm has been implemented in the run-time error detection tool UPC-CHECK and tested
with over 150 functionality test cases. The scalability of this deadlock detection algorithm has
been experimentally verified using up to 8192 threads.

In UPC-CHECK, the algorithm is implemented through automatic instrumentation of the
application via a source-to-source translator created using the ROSE toolkit [9]. Alternatively,
such error detection capability may be added during the precompilation step of a UPC compiler.
This capability could be enabled using a compiler option and may be used during the entire
debugging process as the observed memory and execution time overhead even for a large number
of threads is quite low.

Acknowledgment

This work was supported by the United States Department of Defense & used resources of the
Extreme Scale Systems Center at Oak Ridge National Laboratory.

14 Proceedings of the 7th International Conference on PGAS Programming Models



Deadlock detection for UPC collective operations Roy, Luecke, Coyle and Kraeva

References

[1] UPC NAS Parallel Benchmarks.

[2] James Coyle, James Hoekstra, Marina Kraeva, Glenn R. Luecke, Elizabeth Kleiman, Varun Srinivas,
Alok Tripathi, Olga Weiss, Andre Wehe, Ying Xu, and Melissa Yahya. UPC run-time error detection
test suite. 2008.

[3] James Coyle, Indranil Roy, Marina Kraeva, and Glenn Luecke. UPC-CHECK: a scalable tool for
detecting run-time errors in Unified Parallel C. Computer Science - Research and Development,
pages 1–7. 10.1007/s00450-012-0214-4.

[4] Ali Ebnenasir. UPC-SPIN: A Framework for the Model Checking of UPC Programs. In Proceedings
of Fifth Conference on Partitioned Global Address Space Programming Models, PGAS ’11, 2011.

[5] Tobias Hilbrich, Bronis R. de Supinski, Martin Schulz, and Matthias S. Müller. A graph based
approach for MPI deadlock detection. In Proceedings of the 23rd international conference on
Supercomputing, ICS ’09, pages 296–305, New York, NY, USA, 2009. ACM.

[6] Tobias Hilbrich, Martin Schulz, Bronis R. Supinski, and Matthias S. Müller. MUST: A scalable
approach to runtime error detection in mpi programs. In Matthias S. Müller, Michael M. Resch,
Alexander Schulz, and Wolfgang E. Nagel, editors, Tools for High Performance Computing 2009,
pages 53–66. Springer Berlin Heidelberg, 2010. 10.1007/978-3-642-11261-4 5.

[7] Bettina Krammer, Matthias Müller, and Michael Resch. MPI application development using the
analysis tool MARMOT. In Marian Bubak, Geert van Albada, Peter Sloot, and Jack Dongarra,
editors, Computational Science - ICCS 2004, volume 3038 of Lecture Notes in Computer Science,
pages 464–471. Springer Berlin / Heidelberg, 2004. 10.1007/978-3-540-24688-6 61.

[8] Glenn R. Luecke, Yan Zou, James Coyle, Jim Hoekstra, and Marina Kraeva. Deadlock detection in
MPI programs. Concurrency and Computation: Practice and Experience, 14(11):911–932, 2002.

[9] Daniel J. Quinlan and et al. ROSE compiler project.

[10] Stephen Siegel. Verifying parallel programs with MPI-Spin. In Franck Cappello, Thomas Herault,
and Jack Dongarra, editors, Recent Advances in Parallel Virtual Machine and Message Passing
Interface, volume 4757 of Lecture Notes in Computer Science, pages 13–14. Springer Berlin /
Heidelberg, 2007. 10.1007/978-3-540-75416-9 8.

[11] The UPC Consortium. UPC Language Specifications (v1.2). 2005.

[12] Sarvani Vakkalanka, Ganesh Gopalakrishnan, and Robert M. Kirby. Dynamic verification of MPI
programs with reductions in presence of split operations and relaxed orderings. In Proceedings of
the 20th international conference on Computer Aided Verification, CAV ’08, pages 66–79, Berlin,
Heidelberg, 2008. Springer-Verlag.

[13] Sarvani S. Vakkalanka, Subodh Sharma, Ganesh Gopalakrishnan, and Robert M. Kirby. ISP: a
tool for model checking mpi programs. In Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming, PPoPP ’08, pages 285–286, New York, NY, USA,
2008. ACM.

[14] Jeffrey S. Vetter and Bronis R. de Supinski. Dynamic software testing of MPI applications
with Umpire. In Proceedings of the 2000 ACM/IEEE conference on Supercomputing (CDROM),
Supercomputing ’00, Washington, DC, USA, 2000. IEEE Computer Society.

[15] A. Vo, S. Aananthakrishnan, G. Gopalakrishnan, B.R. de Supinski, M. Schulz, and G. Bronevetsky.
A scalable and distributed dynamic formal verifier for MPI programs. In High Performance
Computing, Networking, Storage and Analysis (SC), 2010 International Conference for, pages 1
–10, nov. 2010.

[16] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu, Haoxiang Lin, Mao Yang, Fan
Long, Lintao Zhang, and Lidong Zhou. MODIST: transparent model checking of unmodified
distributed systems. In Proceedings of the 6th USENIX symposium on Networked systems design
and implementation, NSDI’09, pages 213–228, Berkeley, CA, USA, 2009. USENIX Association.

Proceedings of the 7th International Conference on PGAS Programming Models 15



Fortran coarray library for 3D cellular automata

microstructure simulation

Anton Shterenlikht

Mech Eng Dept, University of Bristol, University Walk, Bristol BS8 1TR, UK
mexas@bris.ac.uk

Abstract

Coarrays are a part of Fortran language standard. In this work coarrays are used to
construct a parallel cellular automata Fortran library for microstructure simulation. The
library uses a range of multi-dimensional real, integer and logical coarrays with a three-
dimensional image grid. A range of coarray synchronisation and collective statements are
used. The performance of the library is measured using several test programs on HECToR,
including solidification and fracture simulations. Models in excess of 1010 cells have been
successfully analysed on up to 215 = 32768 cores with a speed-up of 20 compared to runs
on 512 cores. While the library delivers useful microstructural predictions, the scaling
results are disappointing, indicating the need for code optimisation. The library is freely
available, under BSD license, from: http://eis.bris.ac.uk/∼mexas/cgpack.

1 Cellular Automata for Microstructure Simulation

Cellular automata (CA) is a popular microstructure simulation tool. It is a discrete space –
discrete time method, in which space is divided into many small identical cells with a number of
pre-defined states. State of each cell changes based on the states of some neighbouring cells. A
CA model is often coupled with a finite element model to result in a hybrid discrete/continuum,
multi-scale mechanical model. Many such hybrid models have been successfully used for the
prediction of the ductile to brittle fracture [9], oxide cracking in hot rolling [3], grain instability
[7], solidification [4] and recrystallisation [8]. Previously we have created a serial CA micro-
and nano-structure evolution library, implemented in Fortran 2003 [7]. In this paper we present
an attempt to parallelise this library with Fortran 2008 coarrays.

2 Fortran Coarrays

Coarrays are a part of the Fortran 2008 standard [5]. Coarray collectives are at a draft technical
specification stage [6] and are expected to be part of the next minor revision of the standard.
However, Cray Fortran compiler provides coarray collectives as an extension to the standard,
with syntax and function very close to the technical specification. At this time coarrays are
fully supported only by Cray and Intel compilers. G95 and GCC compilers provide partial
coarray support (e.g. GCC supports only a single image) [1].

Coarrays are intended for SIMD type parallel programs. Multiple copies of the executable
(images) are distributed to processors. If an array is declared as a coarray then a copy of
this array is created on every processor. Each processor has full read/write access to coarray
elements on all processors. For example, real :: a(2,3)[*], b[*] declares a 2×3 real array
coarray and a real scalar coarray. Any processor can then read/write from/to a coarray on any
image, including itself, using coarray cosubscript. A reference to a variable with no cosubscript
is always a reference to the local variable. For example, line b=a(1,1)[3], executed by any
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image, will copy element (1,1) of array a from image 3 to local variable b; line a(2,:)=b[1],
executed by any image, will set all elements in row 2 of array a on that image to the value of b
on image 1. The total number of images is typically set at run-time via environment variables
and is available to the programmer via num_images intrinsic. The programmer can control
which image executes what lines using this_image intrinsic.

While all local arrays declared as coarrays are independent, together they can be thought to
represent one large global array. The interpretation of such imaginary global array is entirely
up to the user. Thus in the coarray model, the global address space is not partitioned but
rather assembled.

3 CA Coarray Data Structures

The major CA model data structure is the cellular array itself. We define it as a 4D coarray
with a 3D image grid: integer, allocatable :: space(:,:,:,:)[:,:,:]. The 3D image
grid is chosen because it minimises the amount of internal halo exchange information. The
array has three spatial dimensions plus an extra dimension to store multiple physical quantities
(layers). At present the library provides for two layers: (1) grains and (2) damage.

In addition to the main space coarray, all other data structures which need to be ac-
cessed by all images are defined as coarrays. Examples are: grain volume coarray: integer,

allocatable :: gv(:)[:,:,:] and coarray of grain rotation tensors: real, allocatable

:: rt(:,:,:)[:,:,:]. Note that it makes sense to allocate these coarrays with the same
codimensions.

4 Halo Exchange

Each cell in the model represents a cube of material at some user-defined scale. We use a 26-cell
nearest neighbourhood, i.e. 3×3×3 cells minus the central cell. Part of the neighbourhood of a
boundary cell resides in an array on another image, hence halo exchange between neighbouring
images is necessary before every cell evolution (solidification, coarsening, fracture, etc.) incre-
ment. To store the halos, the space coarray is allocated with size increased by 2 cells in each
direction. The halo exchange is done in parallel. Consider the following simple halo exchange
code, running on n images, where the user interprets the space coarray as sharing a common
face normal to direction 1.

allocate( space(0:11,0:11,0:11) [n,1,*] )

integer :: imgpos(3), lcob(3), ucob(3)

imgpos = this_image( space ) ! Image location in the coarray grid

lcob = lcobound( space ) ! Lower cobound of space coarray

ucob = ucobound( space ) ! Upper cobound of space coarray

if ( imgpos(1) .ne. lcob(1) ) & ! For all images but the leftmost

space(0, 1:10,1:10) = & ! copy the upper boundary cell states

space(10,1:10,1:10) & ! into the lower halo array

[imgpos(1)-1,imgpos(2),imgpos(3)]

if ( imgpos(1) .ne. ucob(1) ) & ! For all images but the rightmost

space(11,1:10,1:10) = & ! copy the lower boundary cell states

space(1, 1:10,1:10) & ! into the upper halo array

[imgpos(1)+1,imgpos(2),imgpos(3)]
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In this example each image has 103 microstructure cells plus 6(faces) × 100 + 12(edges) ×
10 + 8(corners) = 730 halo cells. The production code (hxi) is a lot longer because of the need
to exchange halos is three directions plus edges and corners. The library also includes a global
halo exchange routine, (hxg) called when self-similar boundary conditions on the whole model
are chosen by the user.

5 I/O

Coarray I/O can be done in at least two ways. Each image can write its own coarray array in
a unique file. Then it is a job of the post-processing program to read and process all these files
in the correct order. This approach is particularly attractive if the post-processing program
supports parallel I/O. For example, Paraview (http://paraview.org) provides a parallel XDMF
(http://xdmf.org) reader. This option has not be explored yet. Instead, we have implemented
a serial routine that writes data from all images to a single binary file in correct order, as shown
below. We then use the Paraview binary reader for visualisation. This is not very efficient,
but simple. As long as the state of the model is written to file occasionally, this option seems
acceptable. However, if the model has to be written to file often, then this serial routine will
become a bottleneck.

lb = lbound(coarray) + 1 ! Lower and upper bounds of

ub = ubound(coarray) - 1 ! the coarray with no halos.

lcob = lcobound(coarray) ! Lower and upper cobounds

ucob = ucobound(coarray) !

if (this_image() .eq. 1) then ! Only img 1 does the writing

open(unit=iounit, file=fname, access="stream", & ! Open file for binary

form = "unformatted", status = "replace") ! stream write access

do coi3 = lcob(3), ucob(3) ! Nested loops

do i3 = lb(3), ub(3) ! for writing

do coi2 = lcob(2), ucob(2) ! in correct order

do i2 = lb(2), ub(2) ! from all images.

do coi1 = lcob(1), ucob(1) !

write( unit = iounit ) & ! Write one column at a time

coarray(lb(1):ub(1),i2,i3)

[coi1, coi2, coi3]

end do

end do

end do

end do

end do

end if
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6 Model predictions

The library is distributed with a number of test programs, each calling different combinations of
the library routines. The tests were done on HECToR phase 3, which is a Cray XE6 computer
(www.hector.ac.uk). All tests were run with high resolution, 105 cells per grain, required to
achieve scale independence [7].

Fig. 1(a) shows the predicted equiaxed microstructure typically found in normalised steels.
This was obtained with space(200,200,200)[8,8,8] i.e. using 4.1 × 109 cells and 40,960
grains. On 512 processors (16 nodes, 32 processors per node) the run took 5m 36s wall time.
The resulting output file was 16GB. Fig. 1(b) shows grain size (volume) histogram obtained
from the solidification model shown in Fig. 1(a). This data is vital for model validation
because it can be directly compared against experiments. Fig. 2(a) shows the histogram of
the grain mis-orientation angle, for a material with no texture. The mis-orientation angle
is an important parameter affecting grain boundary migration and fracture behaviour. The
histogram agrees perfectly with the theoretical distribution. Finally Fig. 2(b) shows a cleavage
crack propagating through a single, randomly oriented grain. The direction and the value of
the maximum principal stress comes from the finite element solver. The importance of this
result is in demonstrating the fracture predictive capability of the CA fracture model.

(a) (b)

Figure 1: A 4.1 × 109 cell, 40,960 grain equiaxed microstructure model, showing (a) grain
arrangement with colour denoting orientation; (b) grain size size (volume) histogram.

7 Synchronisation, Performance and Code Optimisation

The Fortran standard provides a global barrier, sync all, and selective synchronisation be-
tween arbitrary image sets via sync images. Both types are used in this CA library. In
addition, allocating or deallocating a coarray causes implicit synchronisation of all images.
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(a) (b)

Figure 2: Examples of the CA coarray library use for microstructural modelling, showing (a)
a grain mis-orientation histogram and (b) a cleavage crack in a randomly oriented single grain.

Synchronising a library is hard. This is because the order in which different routines can be
called, if called at all, is not predictable. In addition, the user might write code where different
images call different routines, potentially causing deadlocks.

One extreme option is to synchronise every routine on entry and exit, which, of course, is a
performance killer, but removes the responsibility from the user to ever worry about synchroni-
sation, provided they call the same routines in the same order from all images. Another extreme
is not to provide any synchronisation in the library routines, but delegate all synchronisation
to the user. This option is easy to implement, but is extremely error prone for the user.

We chose to synchronise only those routines where synchronisation is required for correct
execution. For example, halo exchange routines do not include synchronisation statements
because they are not required there. Images can do halo exchange in any order. However, for
correct operation, these routines must be called by every image and only when no image is
updating the cell states. This means that in practice some synchronisation must be used before
and after a call to the halo exchange routine. This responsibility is left to the user. In contrast,
the solidification routine uses synchronisation because it calls the halo exchange routine each
iteration, and because it has to do a collective reduction operation, to determine when the
model space has solidified on all images.

Using only minimal required synchronisation and avoiding single image computation are the
key to a good performance.

As an example, here we analyse the performance of the solidification routine, that has a
triple nested loop for all model cells in the image. Inside the loop, if a cell state is ‘liquid’, then
it acquires the state of a randomly chosen neighbour. The loop cannot be replaced by a parallel
do concurrent construct because it uses random number intrinsic which is not pure, It might
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be possible to parallelise the loop with OpenMP, however, we haven’t explored this yet.

integer :: fin

logical :: finished

main: do

array = space( :, :, :, type_grain )

do x3 = lbr(3),ubr(3)

do x2 = lbr(2),ubr(2)

do x1 = lbr(1),ubr(1)

if ( space( x1, x2, x3, type_grain ) .eq. liquid ) then

call random_number( candidate ) ! 0 .le. candidate .lt. 1

z = nint( candidate*2 - 1 ) ! step = [-1 0 1]

array( x1,x2,x3 ) = space( x1+z(1), x2+z(2), x3+z(3), type_grain )

end if

end do

end do

end do

space( :, :, :, type_grain ) = array

finished = all( space( lbr(1):ubr(1), lbr(2):ubr(2), lbr(3):ubr(3), &

type_grain ) .ne. liquid )

fin = 1

if (finished) fin = 0

!!! exit if (fin .eq. 0) on *all* images

end do main

A global reduction, over all images, is required, to calculate sum(fin) over all images. If it
has a non-zero value, then the iterations continue and another run of the triple loop is done. If
the global sum of fin is zero, then the model is fully solidified on all images, and the iterative
process is complete.

Fig. 3 shows four reduction strategies, which we have used for the purpose of a speed-up
analysis. In all cases img = this image() and nimgs = num images(). The easiest method,
shown in Fig. 3(a), is where a single image is reading values from all other images and computes
the sum. All other images wait. A single sync all global barrier is required in this case.

A slightly more complex strategy, shown in Fig. 3(b), is where every image adds its value
to the global total, kept on image 1. This is done one image at a time with a pair of matching
sync images statements. However, a global barrier, sync all, is still required to make all
images wait for image 1, before they can read the updated value from it.

In both strategies (a) and (b) only one image at a time is doing the work, which is very
inefficient. An improvement can be achieved with a divide & conquer type of algorithm (or
a binary search), Fig. 3(c). This example algorithm works only when the number of images
is a power of 2, i.e. num images()= 2p. The loop takes only p iterations. On the first loop
iteration all even images add their values to lower odd images. On each following iteration the
step between the images in each pair increases by a factor of 2. On the last iteration image
num images()+1 adds its total value to that of image 1. For the case of 23 = 8 images (p = 3)
this can be schematically illustrated like this: i = 1 : (1)← (2), (3)← (4), (5)← (6), (7)← (8);
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i = 2 : (1) ← (3), (5) ← (7); i = 3 : (1) ← (5). Synchronisation is done with pairs of matching
sync images statements. As in case (b), sync all is required at the end to make all images
wait for image 1 before copying its total value.

The final algorithm uses co sum collective, Fig. 3(d), which at this time is still a Cray
compiler extension, but should become an intrinsic function when TS 18508 [6] is adopted into
the Fortran standard. No synchronisation is required in this method. This is because using a
collective subroutine in this case satisfies the two rules of the technical specification [6]. Rule
1: ‘If it is [collective] invoked by one image, it shall be invoked by the same statement on all
images of the current team in execution segments that are not ordered with respect to each
other’. Rule 2: ‘A call to a collective subroutine shall appear only in a context that allows an
image control statement’. Hence, there is no possibility of any two images entering co sum at
different loop iterations. This ensures that all images exit the main loop at the same iteration
count. Likewise, there is no possibility of a deadlock.

if ( img .eq. 1) then

save_fin = fin

do i = 1,nimgs

fin = fin + fin[i]

end do

fin = fin - save_fin

end if

sync all

fin = fin[1]

if ( img .ne. 1) then

sync images ( img - 1 )

fin[1] = fin[1] + fin

end if

if ( img .lt. nimgs ) &

sync images ( img + 1 )

sync all

fin = fin[1]

(a) image 1 only (b) all images in turn with sync images

step = 2

stepold = 1

redu: do i = 1,p

if ( mod(img,step) - 1 .eq. 0 ) then

sync images ( img + stepold )

fin = fin + fin[ img + stepold ]

else if ( mod(img+stepold,step) - 1 .eq. 0 ) then

sync images ( img - stepold )

end if

stepold = step

step = step * 2

end do redu

sync all

fin = fin[1]

call co_sum( fin )

(c) divide & conquer with sync images (d) co_sum

Figure 3: Four reduction algorithms and associated synchronisation strategies used in the
speed-up analysis.
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Fig. 4 shows scaling of the solidification routine with the above four different implementa-
tions of the collective operations. These tests were run on a model with 230 cells, using from
23 = 8 to 215 = 32768 cores, i.e. with the model coarray defined from (512,512,512)[2,2,2]

to (32,32,32)[32,32,32]. The times were calculated with cpu time intrinsic. Each test was
run 3 times, and the error bars show the fastest and the slowest times.
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Figure 4: Timing and speed-up of the solidification routine with different implementations of
the collective operation and corresponding synchronisation.

For up to 512 cores, there are no differences between the four cases. However, for higher
core counts, the co sum and the divide & conquer reductions show the best speed-up. For these
two strategies the speed-up is nearly linear (on the log-log scale) up to at least 215 cores. The
speed-up is nearly 1000 for the core count raising by a factor of 212, from 23 to 215. We could
not conduct experiments with 216 = 65536 cores due to budgetary limitations. Nevertheless,
these speed-up results are very encouraging.

In addition to the scaling analysis, we have also performed profiling analysis of the solid-
ification routines using CrayPAT API calls [2]. Profiling was done with a 232 cell model run
on 512 images. Tab. 1 shows the profiling results for reduction strategies (a), (c) and (d) in
Fig. 3. All values, except the last row, are percentages of the total time spent in each part of
the code. Note that model (d), with co sum spends twice as long doing the global reduction
as the triple loop computation. This is the exact opposite of strategies (a) and (c), calculation
on image 1 with sync all and divide & conquer, where the triple loop takes roughly twice as
long as the global reduction. Nevertheless, the co sum approach is twice as fast overall.

(a), sync all (c), D&C (d), co sum

triple loop 50 60 25
global reduction 35 25 61
serial reduction + I/O 10 10 2
halo exchange 5 5 12
Time, s 35.0 47.1 19.7

Table 1: Relative times spent in different parts of the solidification routines and the total run
time in seconds.

Another example of a global reduction operation is when calculating grain volumes: integer,
allocatable :: gv(:)[:,:,:]. First each image calculates its local grain volume coarray
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array. Then a global sum is calculated over all images. We note that using co sum on 512 cores
is 2 orders of magnitude faster than a single image computation.

8 Concluding Remarks and Future Work

The coarray CA microstructural library gives useful predictions of solidification, grain size
distribution and cleavage fractures. Most of the code scales well up to 30k cores. A notable
exception is the output routine, which is serial. The standard forbids a file to be connected
to more than one image. This makes designing parallel I/O with coarrays hard. Intrinsic
collectives, such as co sum, lead to a better performance compared to user written collective
routines. There are many triple nested loops in the library routines. It is possible that these can
be optimised with OpenMP. Note that at present only Cray compiler supports OpenMP with
coarrays. Finally, we are looking for a suitable scalable parallel open source finite element code
to interface with the library, and ParaFEM (http://parafem.org.uk) will be our first choice.
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Abstract

The Graph500 Breadth-First Search benchmark has emerged as a well-documented
PGAS-style application that both scales to large data set sizes and has documented imple-
mentations on multiple platforms over multiple years. This paper analyzes the reported
performance and extracts insight into what are the leading performance limitations in such
systems and how they scale with system size.

1 Introduction

The most common benchmark[2] to date for supercomputers has been the solution of dense
linear equations of the form Ax = B, using the LINPACK package. The TOP500 web site1 has
been recording such measurements for almost 20 years, and ranked systems on the basis of their
reported sustained floating point operations per second, denoted Rmax. Reports submitted for
consideration in the listings usually provide not only Rmax but also Rpeak (the peak possible
flop rate) and Nmax (the dimension of the matrix at which the measurement was made).

A major objection to the generality of the TOP500 benchmark is that it is too regular, and
too floating point intensive. A second objection is that it does not factor in data set size on
a comparative basis. Detailed analyzes such as [5] indicate that in real, large, scientific codes
the percentage of floating point is much less than in LINPACK, with address computations
and memory referencing taking center stage. This trend is expected to grow even further as
dynamic grids and multi-physics become more common.

In contrast, the Graph500 benchmarks2 are meant to stress parts of a system not key to LIN-
PACK, such as handling extremely large data structures that must encompass many physical
nodes, and high amounts of unpredictable references into these structures. The current bench-
mark, Breadth First Search (BFS), involves creating a very large graph and then finding all
vertices that are connected to some randomly chosen root vertex. The key performance metric
is not flops but “Traversed Edges Per Second” (TEPS).

The only way to solve such problems, especially for the very largest graphs, is to employ
a large parallel system where the major data structures must be partitioned over many nodes
and embedded links are made between different vertices on arbitrary pairs of nodes, making
this an archetypal PGAS-style problem.

After three years of measurements on now 100s’ of systems, the key observation is that the
peak system’s TEPS improved by about 3,600X since the first listing, at a compound annual
growth rate (CAGR) of 62X per year for the first 2.5 years, followed by what appears to be
flattening. This is in contrast to the almost monotonous 1.9X CAGR observed in the TOP500
over 20 years.

1www.top500.org
2www.graph500.org.
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Figure 1: Typical Node Boards for different Architecture Classes.

The goal of this paper is to dive into this explosive growth rate and understand where the
performance increases come from, and what class of systems are most effective in achieving them.
In terms of organization, Section 2 defines the classes of architectures used in this study. Section
3 discusses the Graph500 benchmark. Section 4 discuss the range of typical implementations of
the benchmark on such systems. Section 5 overviews the as-reported Graph500 results in terms
of architectures that support them. Section 6 discusses how these results reflect on scalability
in the underlying systems. Section 7 looks in detail on a series of implementations using two
lightweight systems. Section 8 concludes.

2 Architecture Classes

In analyzing the future of supercomputers, the Exascale report[4] defined two general classes of
architectures that have shown up in TOP500 rankings, heavyweight and lightweight. Since
then the hybrid class has appeared in the TOP500. Fig. 1 pictures typical nodes for these
classes.

All three classes have also appeared in the Graph500 rankings, with the addition of several
more specialized, but more PGAS-relevant architectures. Each class is discussed briefly below.

In these descriptions, a “socket” refers to a high density logic chip such as a microprocessor
that performs some major function, a “core” refers to a logic block capable of independently
executing a program thread, and a “node” is that collection of sockets, memory, and other
support logic that make up the minimum-sized replicable unit in a parallel system.

2.1 Heavyweight Architectures

Heavyweight architectures are the natural progression of what are now the ubiquitous
multi-core microprocessors, and are designed to work with a combination of support chips to
provide the most possible performance per chip, typically at high clock rates and with a fairly
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Figure 2: Modern Heavyweight Node Architecture.
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Figure 3: Modern Lightweight Node Architecture.

large amount of memory. Fig. 2 diagrams a typical heavyweight node, with Fig. 1(a)3 a sample
node from a POWER7+ system, where much of the board is taken up by the heatsinks for the
processor sockets and the I/O sockets.

The chips in modern heavyweight processor sockets have 8-16 cores, each with 2-4 FPUs,
and run at or above 3GHz. Typically up to 4 independent memory channels are supported,
with each channel supporting high capacity, multi-rank, high bandwidth DIMMs.

All the cores in a single heavyweight processor socket share access to all the memory attached
to that socket, usually including cache coherence. In many heavyweight designs this sharing
of memory extends to some, usually small, number of other compute sockets in the same
node. These compute sockets typically share an intra-node network. Thus a single node has
a moderately large number of cores that share local node memory with each other, but has
a more distributed memory interface when dealing with any core or memory elsewhere in the
system, requiring software such as MPI for communication.

Typically at most a 100 or so such nodes can fit in a single rack.

2.2 Lightweight Architectures

The introduction of the IBM Blue Gene/L[6] in 2004 used a compute socket with a dual core
processor chip that included a memory controller, I/O, and routing functions on a single chip.

3image from http://www.theregister.co.uk/2012/11/13/ibm power7 plus flex storwize/.
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Parameter L P Q Q/P

Cores/node 2 4 16 4X
Core Clock (GHz) 0.7 0.85 1.6 1.9X

Max Node Memory (GB) 1 4 16 4X
Memory Ports per Node 1 2 2 same
Memory B/W per Port 5.6 6.8 21.35 3.1X

Total Memory B/W (GB/s) 5.6 13.6 42.7 3.1X
Inter-node Topology 3D 3D 5D

Links per Node 12 12 22 4.7X
Bandwidth per Link (GB/s) 0.175 0.425 2 4.7X

Total Link B/W (GB/s) 2.1 5.1 44 8.6X

Table 1: BlueGene Family Characteristics.
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The cores were much simpler than for the heavyweight machines, and ran at a much lower clock
rate. Such a chip, when combined with some memory, made a complete node in the above sense,
as pictured in Fig. 3. Because the required heatsink was so much smaller than for a heavyweight,
many of these small cards could be packaged in the same space as a heavyweight node (up to
1024 of such nodes in a single rack). Subsequent versions, Blue Gene/P[1] and now Blue
Gene/Q[3], as pictured in Fig. 1(b)4, have continued this class of architecture. Blue Gene/Q
in particular has a 16+1 multi-core processor chip, with two memory controllers connected
directly to conventional DDR3 DRAM chips on the same node board. Table 1 summarizes
some of the key parameters of these systems.

Again all cores in a node’s processor socket view the node as a single shared memory
structure, but as with the heavyweight nodes, other nodes are viewed in a distributed fashion,
requiring software such as MPI for communication.

2.3 Hybrid Architectures

The original Exascale report[4] identified only the heavy and lightweight classes. Since then,
a third class has surfaced in the Top500, which combines with a heavyweight socket a second
compute socket where the chip in it boasts a large number of simpler cores, usually with an even

4image from http://www.cpushack.com/wp-content/ uploads/2013/02/IBM51Y7638 BlueGeneQ.jpg
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larger number of FPUs per core. Today such chips are derived from Graphics Processing
Unit (GPUs), such as the Nvidia Tesla architecture5, the Intel Xeon Phi architecture6, or the
AMD GCN architecture7.

Fig. 1(c) pictures one such node from the Titan supercomputer8.
As with the heavyweight nodes, something of on the order of a 100 such nodes could be

packed into a single rack.
Memory within such nodes is today usually not as fully shared as in the other classes.

Instead, the accelerator node typically can only access its own local GDDR (Graphics Double
Data Rate) memory during computation. Thus the heavyweight host processor must explicitly
transfer between the accelerator’s memory and its own memory. This staging takes both time
and program complexity, and derates the usefulness of the accelerator when random accesses
to larger amounts of data than can fit in the GDDR is needed.

2.4 Other Architecture Classes

In addition to systems that fall into the above three classes, two other system families have
shown up in the Graph500 rankings. First is the Cray XMT-2 massively multi-threaded sys-
tem. This architecture is particularly relevant to the GRAPH500 problem because it natively
supports a large PGAS shared memory model, when a core anywhere in the system can directly
access a memory anywhere else, without intervening software.

The second system architecture consist of variations of the Convey FPGA-based systems9.
This architecture is also particularly relevant because its memory system, albeit smaller than
that possible with large clusters, has much more internal bandwidth, making it a good match
again to BFS.

3 The BFS Benchmark

Several benchmarks are planned under this Graph500 umbrella, with only one of them, Breadth
First Search (BFS), currently defined and tracked through several generations of systems. Two
other benchmarks (Shortest Path and Maximal Independent Set) are planned in the near future.
Unlike the scientific-orientation of LINPACK, these benchmarks are believed to be highly related
to areas such as cybersecurity, medical informatics, data enrichment, social networks, and
symbolic networks.

The purpose of the kernels defined in BFS is to build a very large graph, and then start at
any random vertex and identify all other vertices that are connected to it.

There are three major steps in the benchmarking process:

1. Graph construction: create a data structure to be used for the BFS. The two major
configuration parameters that go into this are:

• Scale: base 2 log of number of vertices (N) in the graph.

• Edgefactor: ratio of total number of edges to total number of vertices in the graph.

5http://www.nvidia.com/content/tesla/pdf/Tesla-KSeries- Overview-LR.pdf
6http://www.intel.com/content/www/us/en/processors/xeon/ xeon-phi-detail.html
7http://www.amd.com/us/Documents/GCN Architecture whitepaper.pdf
8http://techreport.com/r.x/ 2012 10 29 Nvidia Kepler powers Oak Ridges supercomputing Titan/titan-

blade.jpg
9http://www.conveycomputer.com/
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Figure 5: A Sample Graph.

Category Level Scale Vertices (Billion) Memory (TB)

Toy 10 26 0.1 0.02
Mini 11 29 0.5 0.14
Small 12 32 4.3 1.1

Medium 13 36 69 17.6
Large 14 39 550 141
Huge 15 42 4,398 1,126

Table 2: GRAPH500 Problem Size Categories.

2. Breadth-First Search: starting at a random vertex, follow all edges from that vertex to
all vertices reachable over a single edge, and repeat from each vertex that had not been
touched before until as many vertices as possible have been reached.

3. Validation: check that the answer is correct.

Fig. 5 shows a sample graph. Starting at vertex 0, a valid BFS output would be 0, 1, 2, 9,
3, 5. Starting at 2 a valid output would be 2, 3, 0, 9, 5, 1.

If M is the total number of edges within the component traversed by a BFS search (the
second step), and T is the time for doing that search, then the key reported Graph500 metric
is Traversed Edges per Second (TEPS), computed as is M/T. The time for the first and
third steps is not part of the benchmark.

As with the TOP500’s Nmax, there is a problem size component to the GRAPH500, although
in this case it is far more important to evaluate the success of a system than Nmax is to TOP500.
Table 2 lists different classes of problem sizes and a typical memory footprint of the resulting
data structure in bytes, assuming an average node and its associated edges (on average 32 of
them) take about 282 bytes. The “Level” in this table is approximately the base 10 log of
the estimated size in bytes, and “Scale” is the base 2 log of the number of vertices. To date,
very few systems have reached the “Large” category (needing 140TB), let alone the “Huge”
category.

Note in Table 2 the scale in each problem category goes up by 3 (a growth in size of 8X)
as the level goes up by 1 (a growth by a factor of 10), except between levels 12 and 13, where
there is a growth by 16X in size. This extra step is to account for the difference between 83

and 103.
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4 BFS Implementations

The Graph500 web-site gives reference codes for both the graph generators and the BFS al-
gorithm itself. For the latter, several different reference codes are given, some of which are
described in the subsections below.

4.1 Sequential Code

The reference sequential code (in file seq csr.c) has several very large data structures, where
N is the number of vertices (N = 2scale, which for toy problems is 64 million and for huge
problems is 4 trillion) and M the number of edges in the graph (for Graph500, M = 32N):

• An array xoff of size 2N has two words per vertex, indexing to the start and end of a list
in xadj that includes the edges leaving that vertex.

• An array xadj of length M, where each word holds the destination vertex of an edge.

• An array bfs tree of length N, where the v’th entry corresponds to vertex v, and gives
either the index to v’s “ parent” vertex in terms of the BFS search or a special code if v
has not yet been touched.

• An array vlist of length N that contains the vertices in the order in which they were
touched during BFS, with vertices that were touched in the same “level” of the search
arranged in sequential order.

The sequential code is a triply nested loop where:

• the innermost loop iterates over all edges exiting a vertex touched in the last level, de-
termining if the vertices on the other side have been touched before, and if not marking
them as touched in bfs tree and adding them to vlist as part of the next level,

• the middle loop iterates over all vertices touched in the last level of the BFS search,

• the outer loop repeats the inner two as long as new vertices were added to a new level.

Overall time complexity is on the order of O(N+M).

4.2 XMT Code

The XMT reference code demonstrates the advantages of programming a PGAS problem in an
architecture where all memory is visible to all threads. It is virtually identical to the sequential
code with two exceptions: iterations of the inner two loops of the BFS are performed in parallel
by different XMT threads, and the updates to bfs tree and vlist are done with atomic operations
that guarantee that if two threads try to touch the same vertex at the same time, only one
wins.

4.3 MPI Codes

The BFS problem quickly scales to problem sizes that will not fit in the memory of any single
node of any architecture class. While the XMT does scale to bigger sizes with multiple nodes,
its current implementations still don’t grow large enough in total capacity to match the higher
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scales. Thus a third reference implementation partitions the data structures onto different
cluster nodes and uses explicit MPI calls to create the equivalent of a PGAS implementation.

The approach taken in the reference codes is to partition the equivalent of xoff and vlist
into approximately equal-sized pieces, one per node. xadj is also partitioned so that all edges
for all vertices on a node are also on the same node. When the BFS code running on a node
encounters an edge to a vertex that needs to be touched, the code explicitly computes on which
node the vertex resides, and dispatches MPI messages to so inform the other node.

Besides the explicit computation of which node hosts a vertex, this code also handles differ-
ently the process of identifying which vertices have been recently touched, and thus are to be
explored in the next level. A bit vector is kept on each node with one bit for some number of
local vertices. When any node follows an edge to a vertex, the associated bit on the appropriate
node is set to 1 atomically via an MPI OR sent to that node.

Two copies of these bit vectors are kept, one to record newly touched vertices and one from
the last level to indicates which vertices were touched on the last level. At the end of each level,
these vectors are reversed, and the one holding the previous (and now explored) markings reset
to all zeros. This is to avoid the complexity of remotely enqueuing a newly-touched vertex on
a remote queue.

In addition, the two states of a vertex of being touched (and having a parent), and untouched
are expanded to three states: untouched, touched and explored, and touched but not yet
explored. An MPI atomic MIN operation sent to the target node does both a check and state
transition.

There are thus two MPI atomic operations per edge traversed: set the bit and do a MIN.
Transit times and overheads for these messages greatly outweigh the execution costs at their
destination, making them the primary gate on TEPS.

Finally, gluing this together is a series of barriers to synchronize all nodes between levels,
and to determine when the last level has been reached and there are no more vertices to explore.

As will be seen in Section 7, over time there has been a significant increase in performance
due to algorithms only. The most common approach is to sort updates to other nodes by
node number, and send single packets with multiple vertex updates attached, thus amortizing
overhead. Packing vertices by path may also be used so that updates that are “on the way” to
some remote node can piggyback and not consume independent bandwidth.

5 Graph500 Results vs Architecture

A ranking for a system in the Graph500 provides a description of the system used and a subset of
key performance parameters. The former include primarily core and node count, total memory,
and a verbal description of the cores and sockets. The latter include the TEPS rate, the scale of
the problem solved, and a classification of the algorithm used. For this paper, all such listings
were downloaded and augmented where possible with additional information about each system,
with the primary addition being a tag indicating the class of architecture into which the system
falls. This tag was used to select a symbol to use on all the scatter plots that follow:

• Red squares are heavyweight systems.

• Green circles are lightweight systems.

• Purple triangles are hybrids.

• Brown stars are other.
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Figure 6: TEPS over time.scale vs time
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Figure 7: Scale over Time.

Fig. 6 graphs the TEPS rate over time for all reported systems. The key observation is that
the peak systems’ TEPS have improved by about 3,600X from the first listing in Nov. 2011
and Nov. of 2012, at a nearly constant compound annual growth rate (CAGR) of 62X per year,
but this appears to have flattened as of June 2013. It is also interesting to see that until Nov.
2012 there was a noticeable mix of architecture classes near the top of the rankings, but after
this, all points in the top order of magnitude are lightweight.

A second observation is the now six order of magnitude range of performance in the most
recent rankings, in comparison to the only 230X difference between number 1 and number 500
for the Top500. The reason is that there is for the Graph500 a lot more interest in performance
as a function of scale. Fig. 7 provides a time-denoted diagram of scale to match Fig. 6. While
it has nowhere near the CAGR, again nearly all of the biggest problems solved by size are solved
on lightweight systems.
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Figure 8: TEPS versus Scale.
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Figure 9: Memory Capacity versus Scale.

This dominance of lightweight systems is seen again clearly in Fig. 8. After a scale of 30
(1 billion vertices), lightweight systems are uniformly at the peak of the performance metric at
each scale.

Also interesting in Fig. 8 is that the dotted line in this graph is proportional to 1.8 to the
power of scale. Given that the number of vertices is 2 to the scale, this means that performance
grows slightly more slowly than the size of the problem solved. This will be discussed more in
the next section.

Fig. 9 then graphs the memory capacity of the reported systems versus the maximum size
problem they solved. The close clustering of the points to the dotted line indicates that most
systems did in fact try to select problem sizes that came close to filling memory.

Finally, to couple the two key metrics, TEPS and scale, Fig. 10 graphs the product of the
TEPS rate and the number of vertices versus time. Peak values here are growing faster than
linearly with time, indicating that both metrics are improving in concert.
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Figure 10: TEPS*Size over Time.
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Figure 11: Node Count Growth in the Rankings.

6 Scalability in the Graph500

The key questions to be addressed in this section are “what drives the joint growth in both
TEPS and scale,” and “how does this vary among architecture classes.”

The most obvious place to look is in the inherent parallelism in the system, starting with
the number of nodes. Fig. 11 plots the growth in node count through the rankings, where we
see an order of magnitude growth in peak node count over the first year, and then a flattening.

6.1 Weak Scaling

Fig. 12 graphs TEPS as a function of just this node count, ignoring all other factors such as
core count, clock rates, or time of listing.

The most interesting observation is that the best of breed has a TEPS rate proportional to
the number of nodes to the 0.92 power. Further, most of these are lightweight systems, with
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Figure 12: TEPS as a Function of Node Count.

heavyweight systems often delivering 10 to 100 times less performance at the same node count.
Further, most of the leading lightweight points are BlueGene/P systems, designs with very
significant amounts of inter-node bandwidth. The obvious conclusion is that, with sufficient
bandwidth, BFS has almost perfect weak scaling, with the slight nonlinearity (exponent of 0.92
rather than 1) due to such things as barriers or sync points (again something for which the
BlueGene has significant hardware support).

The other observation from Fig. 12 is the significant performance from single node systems.
It isn’t until we get in excess of 32 nodes that parallel systems outdo the best of the single nodes.
This is again most probably related to bandwidth, with memory bandwidth now replacing
inter-node bandwidth. This is particularly easy to see in the best of the single nodes, which
are Convey systems that have a very high bandwidth partitioned memory system within them.
It will be interesting to see how such systems scale when more nodes are employed, and the
bandwidth between nodes becomes more conventional.

Fig. 13 is a similar graph except that it plots cores rather than nodes. This distinction
expands what was the “1 node” peak before, and we see a region of single node, multi-socket,
multi-core points where the system is a single shared memory system and we are replacing
node-node bandwidth with multi-bank memory bandwidth.

6.2 Incremental Performance

A related way to look at the performance results is to look at the incremental growth in
performance offered by each node as we grow system sizes. Fig. 14 divides the total TEPS rate
of each listing by the number of nodes, and plots this versus time. This new metric provides
insight into the incremental power of each additional node.

The key observation here is the over 1000X increase we see on a per node basis over the
first 1.5 years, followed by an essential flattening over the last 18 months.. While some of this
improvement is due to improved hardware, a more likely explanation is that the algorithms
used have improved significantly (this is discussed in more detail in the next section).

The other observation is about how different architecture classes compare. In almost each
ranking, the highest per node performance has been by a single node Convey box, with its large
internal bandwidth. Also, the lightweight class, which provides the highest overall performance,
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Figure 13: TEPS as a Function of Core Count.
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Figure 14: TEPS per Node over Time.

are middle of the pack in terms of per node performance. This is amplified by Fig. 15,
which expresses the per node performance in terms of node count. Here it is obvious that the
lightweight architecture becomes much more scalable as we move to larger systems.

Note also in this figure that the lightweight systems from about 1,000 to 100,000 nodes have
a slight decrease in TEPS per node as node count increases. This is further evidence of the
effects of serializing and decreased injection bandwidth because of cross-node traffic.

7 Detailed Analysis of Lightweight Implementations

Given the high performance of lightweight systems in these rankings, and that there are multiple
systems with potentially different codes and different numbers of nodes but the same node
design, a great deal can be learned by isolating on just them. In particular, we partition the
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Figure 15: TEPS per Node versus Node Count.
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Figure 16: BlueGene TEPS per Node versus Node Count.

data points into BlueGene/P and /Q systems. Figs. 16 and 17 look at TEPS per node as a
function of size and time respectively.

Fig. 17 shows that after the first ranking, the best TEPS per node for BlueGene/P was fairly
constant, whereas there was about a 17X gain for BlueGene/Q before it too stabilized. Given
that all the Q points have identical hardware, this increase can only be explained as optimizing
the algorithms. It will be interesting to see if there are further gains in later rankings.

It is also interesting to note that there is a 112X difference between a /Q and a /P once both
have reached a stable value. Earlier, Table 1 listed the hardware differences between P and Q,
along with the change from P to Q. The biggest difference is in aggregate off-node bandwidth.
Q has 4.7 times the number of links, with 8.6 times bandwidth per link, for a total of 40 times
the total bandwidth. The difference in memory bandwidth is about a factor of 3.1. The rest
must be due to better algorithms.
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Figure 17: BlueGene TEPS over Time.

8 Conclusions

This paper has explored the results of several years of listings of performance of the BFS algo-
rithm on a wide variety of architecture classes, where performance has two components: TEPS
and graph size. TEPS performance does seem to exhibit significant performance improvements
possible by algorithmic changes to optimize the use of bandwidth. Problems of small size are
best processed on single-node systems with a lot of shared memory and a lot of memory band-
width, such as found in the Convey systems. Problems of large size are best run on lightweight
systems where a large number of nodes can be used. Unlike TOP500, hybrid systems are
nowhere near the top in terms of performance.

In terms of details, the best systems seem to follow a near perfect weak scaling model, with
an exponent of almost 1 (0.92) relating the number of nodes to performance.

Looking ahead, it will be interesting to see if performance for existing systems such as
BlueGene/Q continues to improve in ways that indicate improvement in basic algorithms. Also,
with the imminent release of a “Green Grap500” listing, an energy analysis akin to what has
been done for LINPACK can begin. Also, it will be interesting to see if the results for BFS carry
over for both the upcoming additional Graph500 benchmarks and other PGAS benchmarks.
Finally, it will be interesting to see how inherently PGAS architectures such as XMT may
evolve, and if they can match or exceed the performance of other architecture classes.
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Abstract

In the last years the one-sided communication paradigm has become important in
the programming of distributed memory machines. PGAS-like APIs, and also the one-
side communication facilities of MPI, have evolved significantly and now open up new
opportunities for the development of HPC applications.

In this paper we present a model covering the essential features of one-sided communi-
cation systems for discussing and comparing their operational semantics. Our approach is
based on task graphs, which we have extended by introducing virtual tasks. A virtual task
represents an asynchronous communication operation performed by the underlying system
or a RMA unit. By this means we describe the fundamental functions of three popular
one-sided communication APIs, namely OpenShmem, MPI 3.0, and GASPI. We conclude
the paper with an outline of a parallel algorithm based upon our model, which can be used
for data race detection and performance tuning.

1 Introduction
One-sided communication systems decouple data transfer and synchronization. Their communi-
cation patterns are expected to scale better than the patterns used in two-sided communication
systems, where source and destination are required to participate actively in a communication
act, thus tightly coupling data transfer and synchronization.

One-sided communication systems come in a variety of flavours, ranging from PGAS lan-
guages (e.g. UPC [5]) over PGAS-like APIs (e.g. OpenShmem [6], GASPI [2]) up to extensions
of existing APIs (e.g. MPI 3.0 [9]). In order to develop tools useful for a wide range of these
systems models are needed, which cover the essential features of one-sided communication sys-
tems and abstract product-specific properties. Such models allow the development of generic
analysis tools not confined to a particular PGAS flavour.

In this paper we introduce a model, which represents the execution of a parallel program and
the sequence of memory accesses made by application program and the underlying one-sided
communication system. Section 2 explains the foundation of our model: the concept of task
graphs. Fundamental functions of one-sided communication systems are described in terms
of our model in section 3. We draw references to specific functions of popular APIs, namely
OpenShmem, MPI 3.0, and GASPI. In order to keep this section straight to the point we omit
very specific features like MPI windows. Going one step further we describe in section 4, how
our model can be used to reason about the correctness of memory accesses with respect to data
races as well as for performance tuning. The explained algorithm works in parallel by design
in order to be applicable on large systems. Eventually we give an overview of other approaches
used for the modelling of parallel program executions in section 5.
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2 Task Graphs
A task graph represents the ordering of significant events during a program execution in a
directed acyclic graph. The nodes of the graph are the events. The directed edges model a
happens-before relation [10] and specify guaranteed run-time orderings between the events. Due
to the transitivity of this ordering a task graph provides good means to reason about a program
execution, e.g. to identify potential concurrent events: if there is no path from one node to the
other one in either direction, then the two corresponding events can occur simultaneously. A
classic use-case is data race detection: if the events are memory accesses to the same location
and at least one of them is a write access, then this represents a data race.

2.1 Virtual Tasks
A task can be seen as an execution path along the edges through the nodes of the graph. A task
can be a process, a thread, or something different. We believe, that this definition is insufficient
for the modelling of one-sided communication systems. Therefore we refine it by differentiating
between real tasks and virtual tasks.

We call a task a real task, if its execution path represents one particular process or thread.
This corresponds to the classical definition where a task graph consists of sequentially executed
nodes and edges connecting real tasks and representing synchronization relations [3, 7, 11, 13,
14,16]. This model is sufficient for programs at shared-memory systems, since memory accesses
are synchronous with respect to the executing real task. However, one-sided communication
systems use asynchronous memory accesses. For the application it is usually intransparent,
by which means they are actually executed – it might be an underlying system process or
a hardware-based facility (e.g. an RDMA unit). Therefore asynchronous memory accesses
cannot be correlated to a particular process or thread and thus not to a real task. The edges
to and from such a node are defined by the operations causing and handling the corresponding
asynchronous memory access. We call a path through nodes, which do not belong to a real task
a virtual task.

Virtual tasks are always forked from nodes of a real task. Nodes of a virtual task can fork
further virtual tasks or act as join nodes for other virtual tasks. However they can neither
fork nor join a real task. Edges between nodes of a virtual task specify a guaranteed run-time
ordering in the same way as other edges do. Eventually a virtual task will be joined by a node
of a real task. The joining task may be different from the forking task. In that case the virtual
task forms an implicit synchronization relation between the two real tasks.

Our model does not restrict a virtual task to memory accesses. Some one-sided communi-
cation operations introduce other nodes, which might be part of a virtual task. In some cases
even artificial nodes must be used in order to model the correct run-time ordering of events.

3 Modelling One-Sided Communication Operations
In the following we describe the model for every operation in two ways – with an example
graph and with formal building rules. Our starting point is a task graph of all processes of the
application processed in temporal order. Such a graph consists of real tasks only without any
edges between them. This task graph is complemented by applying the following two types of
building rules:
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Node addition 〈X〉 7→ 〈Y, Z〉: Replace the initial node on the left with the set of new nodes
on the right. The first new node replaces the initial node – often it will be equal to the
initial one.

Edge addition X → Y : Introduce an edge from X to Y . The type of the edge is not further
specified. Usually it will be edges from/to newly added nodes.

Memory access nodes are labeled with RL and WL denoting read and write accesses to local
memory or RR and WR denoting read and write accesses to remote memory. Nodes accessing
remote memory asynchronously are part of a virtual task. Nodes representing operations such
as function calls are labeled with the appropriate initial letter. Some labels are augmented by
superscripted letters, which represent arguments. A superscripted r is used for the target rank,
other abbreviations are explained on the fly.

The creation rules are applied to the nodes in their actual execution order. If a node is
prefixed with the universal quantifier ∀ in an edge addition rule, then edges are drawn from all
nodes of the given type, which were already created at that time.

Beside the formal building rules examples are given illustrating the resulting graphs. For
a better understanding we will depict the sequential ordering of events belonging to the same
real task by bold edges. Virtual tasks execute along normal edges. Dashed edges indicate an
ongoing virtual task, which will be joined to a real task at a later point.

3.1 Put and Get operations
Put operations copy data from a local source memory area to a memory area of a remote target.
The data is transparently written to the target – no task at the remote side needs to receive
the data explicitly. Furthermore, all APIs covered in this paper perform the write operation
asynchronously to the calling task. Thus we model this behavior by creating two virtual tasks
from the Put call P , one with the local read access RL and one with the remote write access
WR. We add an edge from RL to WR due to the corresponding data dependency.

The remote write access WR is always asynchronous. In the general case the local read
access RL is asynchronous too, as shown in Fig.1, top. This is the semantic of gaspi_write
and MPI_RPUT. If RL is synchronous, it coincides with P and only one virtual task is needed.
This is the case for MPI_PUT and all OpenShmem put routines. It is shown in Fig.1, bottom.

P

RL

WR

gaspi_write, MPI_RPUT:

〈P 〉 7→ 〈P, RL, WR〉
P → RL

RL → WR

RL

WR

shmem_*_put, MPI_PUT:

〈P 〉 7→ 〈RL, WR〉
RL → WR

Figure 1: Task graphs for Put operations
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G

RR WL 〈G〉 7→ 〈G, RR, WL〉
G → RR

RR → WL

Figure 2: Task graph for an asynchronous Get as defined by gaspi_read and MPI_RGET.

Get operations copy the data from a remote memory source to local memory. This results
in a remote read access and a subsequent local write access. The shmem_*_get routines and the
MPI_GET routine are completely synchronous operations. A synchronous Get returns once the
data has been copied to the target address. Thus it does not introduce additional virtual tasks
or nodes and the corresponding rule is omitted due to its simplicity. In contrast an asynchronous
Get as defined by gaspi_read and MPI_RGET issues the copy request to the underlying system
and returns directly afterwards. This not only delegates the remote read RR to a virtual task,
but also enforces the local write WL to that virtual task due to the data dependency of WL on
RR (Fig.2).

3.2 Local Synchronisation

The Put and Get operations defined by MPI and GASPI invoke asynchronous accesses to local
memory. Hence both APIs provide Wait operations in order to synchronize these accesses with
the local task. In the task graph model a Wait operation is always a pure join node. It does
not introduce other nodes but only edges from previous nodes to itself.

GASPI provides message queues in order to synchronize operations. The function gaspi_wait
takes a queue number q as an argument and blocks until all Put and Get operations posted
to that queue have completed their accesses to local memory. Therefore, the formal notation
given in Fig.3 covers all previous operations for queue q.

MPI provides the MPI_Wait and MPI_Waitall functions in order to wait for local completions
of one or multiple requests req. Thus – unlike GASPI – a MPI Wait targets dedicated Put and
Get operations. In the formula given in Fig.3 the request req determines, whether a read or
write access is targeted.

As can be seen from the graph illustrating the Get/Wait interaction in Fig.3, bottom, a Get
operation is completed when the associated Wait returns. This includes both the local write
access and the remote read access. For a Put operation the situation is different. The state of
the remote write access WR is irrelevant for the local Wait operation, see Fig.3, top.

P W T

RL

WR GASPI:
∀ Rq

L → WT q

∀W q
L → WT q

G W T

RR WL MPI:
{W |R}req

L → WT req

Figure 3: Task graphs for the Wait operation WT of GASPI and MPI.
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RL1 RL2 F RL3

WR1 WR2 WR3O

〈F 〉 7→
〈
F, O1 . . . On

〉

F → O1 . . . On

∀ W r
R → Or

〈P r〉 7→ 〈RL, W r
R〉

RL → W r
R

∀ Or → W r
R

Figure 4: Task graphs for subsequent OpenShmem put operations with a fence operation in-
between. All puts have the same target rank.

3.3 Message Ordering

The three covered APIs use two different concepts to put remote write accesses in a particular
order at the receiving side. OpenShmem and MPI use the well-know approach of fences, while
GASPI uses the queue approach. Interestingly we will see right below, that the two concepts
form very similar task graphs.

The Fence operation of OpenShmem and MPI ensures, that all put requests before that
operation and to a particular target rank are finished before any put request to that rank
after the fence. We model a Fence operation by introducing an artificial Order node O, which
is created by the Fence call (Fig.4). All previous remote write operations W r

R join to Or.
Furthermore, all subsequent remote write operations W r

R have to have edges from Or – since
they cannot be added at this point, the rules for the Put operation need to be refined accordingly.
Note, that shmem_fence does not take any parameter, thus affecting Puts to all remote ranks.
Therefore, Order nodes for all remote ranks are added.

GASPI uses the queue concept for message ordering within every queue. The gaspi_notify
routine writes a flag to the remote side over a selected queue. Like a fence it guarantees that it is
remotely written after all previous Put operations However, GASPI does not define a relation
between a gaspi_notify and subsequent Put operations, since the notification message is
already part of gaspi_notify. Thus the task graph of gaspi_notify (Fig.5) differs in the
following points from the task graph of shmem_fence:

• the ordering node O becomes the notification node WF writing the flag.

• the fence effect is restricted to write accesses posted in the same queue q.

• there is no edge to following Put operations, thus their rules don‘t need to be refined.

P1 P2 N P3

RL1

WR1

RL2

WR2

RL3

WR3WF

〈Nr,q〉 7→ 〈Nr,q, W r,q
F 〉

Nr,q → W r,q
F

∀ W r,q
R → W r,q

F

Figure 5: Task graphs for GASPI put operations with a notify operation in-between. All
operations are posted to the same queue and have the same target rank.
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P N

RL WR WF

T Matching(WF ) → T

Figure 6: Interaction of a gaspi_write(P ), a gaspi_notify(N) and a gaspi_notify_wait(T )
operation. P and N are posted to the same queue and have the same target rank, at which T
is executed.

3.4 Remote Synchronisation
One-sided communication procedures manage the entire communication on the active tasks.
Still, explicit synchronization is sometimes required and thus offered by the one-sided APIs.
OpenShmem and GASPI implement it with a dedicated Test operation T which blocks until
a local memory field (flag) is modified by an remote access WF from another task. Strictly
speaking this will only synchronize T and WF but it can be combined with the message ordering
mechanisms, see Sect. 3.3 above.

In the resulting task graph a Test operation forms a join node T at the remote task. Edges
from the operation writing the flag WF which is triggered by a Notify call to T are added
(Fig.6). The predicate Matching returns all WR, which might potentially trigger T . In order
to identify those nodes, we use the algorithms given in [7]. These algorithms are applied as
a last step in our task graph buildup. It must be noted that the algorithms compute only
happens-before relations and thus may introduce redundant edges. In order to find exactly
matching {WR, T} pairs a further refinement of the algorithms will be needed.

3.5 Collectives
Collective operations are not a specific feature of one-sided communication APIs. However they
provide important synchronization means and must be modeled in the task graph. Here we
consider only blocking collectives, ignoring the nonblocking collectives from MPI 3.0.

A group of participating tasks has to enter and stay in a blocking collective before any
task is allowed to leave it. The groups are defined in different ways. GASPI and MPI have
their group and communicator concepts while OpenShmem calls expect the participants as a
(first:stride:last) triple.

Yet, the task graph for blocking collective operations can be modeled in the same way for
all three APIs. A pairwise interconnection of matching barrier calls is added to the task graph
(Fig.7). The matching predicate yields the set of all matching barrier calls of remote tasks –
they are the first barrier calls in the participating tasks not yet connected to their counterparts.

Reduction routines are a special form of blocking collectives. Their synchronization model
is the same as for barriers. However they access memory during their execution. We model this
by inserting access nodes to local memory between the BE and BL events.

BE

BE

BL

BL BE → matching(BL)

Figure 7: A task graph for barriers connecting Enter(BE) and Leave(BL) events.
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L RL UL

WR

T

L P UL

RL

WR

Figure 8: Task graphs for lock operations. On the left side the lock semantic of OpenShmem
and on the right side the lock semantic of MPI 3.0 using MPI_RPUT is modeled.

3.6 Locks
The locking mechanism as known from shared memory models is provided by OpenShmem
and MPI 3.0. Both APIs support a lock operation (MPI_WIN_LOCK, shmem_set_lock) and
an unlock operation (MPI_WIN_UNLOCK, shmem_clear_lock). And both APIs require, that
matching calls to lock and unlock are made by the same process. However the semantics of
locks are different in OpenShmem and MPI 3.0.

In OpenShmem a lock protects the local read access only. As can be seen in the task graph
(Fig.8, left side), the write access to the remote memory is not protected by the lock. In order to
protect the write access as well the programmer must construct a synchronization path starting
after the Test at the remote task and joining to the local task before the call to unlock. There
is no implicit relation between the local unlock call and the operations at the remote side.

MPI 3.0 extends the semantic of unlock and guarantees a completion of the remote access
when unlock returns (Fig.8, right side). This solves the problem of the unprotected remote
access. On the other hand this is a very strict synchronization. Normally a calling task should
not be interested in the completion of the issued one-sided communication on the remote side.
The unlock semantic of MPI 3.0 is somewhat contrary to that intention, since it requires some
form of acknowledgment from the remote side.

Apparently the usage of the classic locking approach as a means to protect memory accesses
in a one-sided communication API raises some technical difficulties. In a shared memory parallel
program each read and especially each write is synchronous to its calling task. However this
fact does not hold any longer for one-sided communication calls. The virtual tasks introduced
by those calls create memory accesses which are asynchronous to the calling task. Locks on the
other hand remain synchronously bound to their calling task thus making it difficult to provide
an appropriate lock semantic for one-sided communication APIs. Consequently, GASPI does
not provide a locking functionality at all. And, while locking can be incorporated in our model,
we do not consider it further in this paper.

3.7 Atomic Operations
Atomic operations are provided by OpenShmem and GASPI. Since both APIs define a syn-
chronous execution model for them, they don’t introduce virtual tasks. Thus memory accesses
to the location of the atomic variable are synchronous to the corresponding real task. As with
synchronous Get operations a task graph generation rule is omitted due to its simplicity.

Nevertheless atomic operations can contribute to a task graph, if they are used for commu-
nication purposes. In this case they may introduce happens-before relations and thus additional
edges between real tasks. Regrettably there is no universal rule to compute these edges as this
heavily depends on the particular code. However, the design of a tool based on our model
needs to take into account that there might be non-computable happens-before relations and
consequently ought to provide a way to enable the user to add such relations.
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4 Analysis Tools for One-Sided Communication Systems
The rules introduced in the previous section enable us to construct a complete task graph of a
particular program execution. Such a task graph can reveal various properties of that program
execution. For instance, a node, which is part of a virtual task, has an interesting run-time
ordering in relation to a particular real task. Let us assume two nodes S, F , which are part
of the real task and N being the node of the virtual task. S is defined as the last node (with
respect to the sequence of the real task), from which there is a path to N . In turn, F is the
first node, so that there is a path from N to F . Then from the perspective of the real task N
is virtually executing during the complete time span starting at S and finishing at F . Now,
if N represents a writing memory access and there is also an access between S and F to the
same memory location, then we have a data race. We can even extend this analysis in order
to obtain performance tuning hints. A tool can spot premature or superfluous synchronisation
nodes with respect to data-race correctness by finding the largest possible span between S and
F .

However the creation of such tools is challenging. As mentioned in the introduction one-sided
communication systems are dedicated to be used on large systems. Therefore the algorithmic
design have to take into account the expected vast amount of analysis data a priori. In the
following we assume that there is a dedicated analysis site for every real task.

4.1 Obtaining the task graph
Generally speaking, the initial task graph can be obtained by either static or dynamic analysis.
A static analysis tool would try to predict the initial task graph by analysing the program
code. For small sample programs this might be a feasible approach, but an exhaustive static
program-flow and data-flow analysis of a real-world application is not an option according to
experience.

A dynamic analysis traces all events of interest. For the purpose of the tools described in
this paper these are calls to communication operations and local memory accesses. Tracing
memory accesses is a severe task especially in a HPC environment. The vast amount of trace
data must be compressed in order to become manageable. Discussing compression techniques
in detail goes beyond the focus of this paper. Here we only assume, that we have merged
subsequent local memory accesses without intervening communication operations to one event
and that we store the access intervals in the corresponding node.

The traced events form the initial task graph. The construction of the complete task graph
is then performed in parallel by the analysis sites. Created nodes such as remote memory
accesses remain on the creating analysis site. Communication between sites is only necessary
in order to connect nodes representing barriers or Write and Test nodes. Eventually we have
obtained a possibly distributed task graph of our program execution.

4.2 Data-Race Detection
We use the already outlined time span algorithm in order to find data races. The following
algorithm computes the corresponding S, F pairs for every memory access.

1. Nodes in the local task graph are assigned a local incrementing time stamp starting at 0.
This time stamp is considered to be the starting and finishing time stamp

2. Iterating from the last to the first node, the time stamps are recursively propagated as
starting time stamps to nodes, which fork from the processed node. The propagation
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stops at nodes already having a starting time stamp (which is greater or equal due the
backward iteration).

3. Iterating from the first to the last node, the time stamps are recursively propagated as
finishing time stamps to nodes, which join to the processed node. The propagation stops
at nodes already having a finishing time stamp (which is lower or equal due the forward
iteration).

4. Nodes representing remote memory accesses are sent to the site actual processing the
corresponding real task graph. Each such node should have a starting and finishing time
stamp. A missing starting time stamp means it starts at 0. A missing finishing time
stamp means it lasts until the end of the program.

Eventually each analysis site can run the data-race detection for its assigned task graph
locally and in parallel. This is done by testing for overlapping access regions in the two-
dimensional time-stamp/memory-address space. An overlap is reported as a data race, if it
contains at least one write access and if at least one access is not caused by an atomic operation.

4.3 Performance Tuning
The time-stamped task graph created in the previous section can also be used to obtain per-
formance tuning hints. For this purpose it checks in a first step to which degree starting and
finishing time stamps of remote memory access regions can be lowered or raised respectively
without causing conflicting overlaps. It then reverse-propagates the changed stamps across the
graph until a node in the local task graph (from which the time stamp originated) is reached.
The changed time stamp is a possible position of the node in the task graph. If there are equal
nodes skipped due to the movement of the processed node (e.g. Wait operations on the same
GASPI-queue), then the node could be removed. However changing the task graph in that way
may affect other synchronization relations. Therefore in a second phase the changed task graph
must be checked against data races over again. The propagation steps need to propagate only
changed time stamps thus reducing the area of changes in the graph. Eventually the analysis
has computed a set of operations, which can be postponed or removed (e.g. local Waits) or
brought forward (e.g. Puts).

Our task graphs open up more opportunities to deduce performance tuning hints. For in-
stance it is possible to identify superfluous writes (if there is no read access in-between two
writes). However, discussing all these opportunities goes beyond the scope of our paper. We
have provided the algorithmic sketches here primarily in order to demonstrate the usefulness
of our task graph model with respect to the tool development in the realm of one-sided com-
munication systems.

4.4 Visualization
Based on the time span algorithm described above we have implemented two tools to visualize
task graphs and memory access patterns. We trace local memory accesses and function calls
to the GASPI API using Pin [1]. Currently we record only the effective address of every access
and arguments of function call events, but no corresponding time stamps. Thus the tools can
only show the logical interaction of synchronous and asynchronous memory accesses, but not
yet the real-time behavior.

A simple example is shown in Figure 9. The code on the upper left performs a matrix
multiplication (m1 = m1+m2∗m3) and sends the result (m1) in slices to a remote node. After
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every fourth row, the just computed four rows are sent to a remote node via a Put operation
(in particular a gaspi_write call). In addition there is a Wait operation (gaspi_wait) before
every Put thus limiting the asynchronous read access of the former Put call to that point in time.
On the upper right side of the figure a detail of the generated task graph is shown. The task
graph view combines subsequent synchronous local memory accesses in one node (represented
by the r/w node between the gaspi_write and gaspi_wait node). The task graph view can
be leveraged to spot communication patterns and relations between real and virtual tasks.

The diagram view provides a more detailed insight in the memory access events of a par-

// MSZ ... matrix size
double * ptr;
gaspi_segment_ptr (SEG_ID , ( void **)& ptr );
double *m1 = ptr ,

*m2 = ptr + MSZ*MSZ ,
*m3 = ptr + 2 * MSZ*MSZ;

unsigned rowBytes = MSZ* sizeof ( double );
for (int k = 0; k < MSZ; ++k) {

for (int j = 0; j < MSZ; ++j) {
double value = m1[j + MSZ*k];
for (int i = 0; i < MSZ; ++i) {

value += m2[j + MSZ*i] * m3[i + MSZ*k];
}
m1[j + MSZ*k] = value ;

}
if (k > 0 && k % 4 == 3) {

gaspi_wait (0, GASPI_BLOCK );
gaspi_write (SEG_ID , (k -3) * rowBytes , 1,

SEG_ID , 0, 4 * rowBytes , 0,
GASPI_BLOCK );

}
}

Figure 9: Visualization of memory accesses in a compact graph and a detailed diagram
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ticular node. The x axis represents logical time steps, the y axis the address space. Every
synchronous local memory access represents a logical time step and is visualized by one single
dot according to its address. The one-strided accesses to m3 and row-strided accesses to m2
can be seen easily. Asynchronous memory accesses are visualized by rectangles. The length of
a rectangle is computed by the time span algorithm and the height results from the accessed
memory range of the corresponding operation. Since we do not record real time stamps yet,
the Wait operation is not visible as a particular time step, but just limits the length of an
asynchronous read access according to our model. In a future version we will trace time stamps
too, thus being able to spot performance bottle necks like time-consuming Wait operations.

5 Related Work
Various models exist to describe and investigate the execution of parallel programs. Task graphs
were introduced by Emrath et.al. in [7, 8]. This model is widely used since it represents the
happens-before relation [10] in an intuitive way. Netzer et.al. in [11] extended the model by
distinguishing between temporal ordering and data dependence ordering and by integrating
semaphores. The resulting model was used to reason about program executions in shared-
memory systems. Consequently, tools built around these models have put their focus on lock-
based synchronization. The lockset algorithm was introduced by Savage et.al. in [17]. Their
tool Eraser efficiently detects data races in lock-based programs.

Reynolds developed separation logic as another means to describe parallel program execu-
tions [15]. It is used by Botincan et.al. [4] in order to reason about program executions in a
distributed-memory system. They introduce a pend assertion, that is very close to our virtual
task concept. However they have focused their work on a C-like core language and they model
only a small set of operations of one-sided communication systems (Put, Get, Wait/Test). Yet
another model is the Dynamic Program Structure Tree introduced by Raman et.a. [14]. There
it is applied to shared-memory systems. Notably their data-race detection algorithm works in
parallel by design too.

The first data-race detection tool dedicated to PGAS-like distributed memory systems was
published by Park et.al. in [13]. Their tool UPC-Thrille is implemented for the UPC program-
ming language. In the aforementioned work the tool did not detect races due to local memory
accesses yet. Accordingly they have extended UPC-Thrille and present performance results of
exhaustive local memory access tracing in [12].

Bugs due to data-races are still eminent and hard to find. Thus there are plenty of other tools
not mentioned here and surely plenty of tools currently in development. A rather comprehensive
overview of the current state of the art can be found in [12].

6 Conclusion
The main contribution of our paper is the coalescing of the task graph model and the one-sided
communication paradigm in one general approach. We have showed that our approach can be
used to model the fundamental operations provided by popular one-sided communication APIs.

We consider our model as a junction point. It abstracts from the functionality of concrete
one-sided communication APIs. On the other hand it can act as a starting point for the
programming of various tools based on task graphs. We have outlined two possible applications
in section 4.
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The presented work can be extended in various ways. For each of the discussed one-sided
communication APIs a completion of the description covering the respected functionality might
be done. Of course, other APIs or languages using one-sided communication primitives can be
described in terms of our model as well. Furthermore it is necessary to address hybrid parallel
systems, which we have excluded in this paper. For this purpose the algorithm finding remote
synchronisation pairs must be refined.

Our very next step is the development of the outlined data-race detection tool. In a first
step this tool will reason about dynamically traced task graphs consisting of local memory
accesses and calls to GASPI functions. We will use our visualization tool to spot detected data
races. However the tool chain will not be restricted to the GASPI API. The abstraction layer
described in this paper is built into the tool chain and makes the used one-sided communication
API easily exchangeable.
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Abstract

Years ago, the C language made strides into the Fortran-dominated field of high-
performance computing (HPC). Recently, a similar trend is that C++ is being used instead
of C to write HPC applications. Although C and Fortran programmers have the option to
use a partitioned global address space (PGAS) model via Unified Parallel C (UPC) and
coarrays, respectively, C++ programmers do not have an equivalently good option. They
must resort to writing a mixed-language application, usually linking together C++ and
UPC object files, or calling a communication library. Either alternative defeats static type
checking because a C++ compiler does not understand UPC types and general-purpose
libraries deal with raw bytes. The solution is to develop a PGAS model for C++. As
others have demonstrated, Fortran’s coarray model can be ported directly to C++ using
templates; however, this paper shows that a direct port is insufficient because it does not
permit static type checking and C++ idioms. Instead, this paper presents the design of
a new approach where these problems are addressed. The implementation is released as
Coarray C++ in version 8.2 of the Cray Compiling Environment.

1 Introduction

Fortran [1] is the archetypal HPC programming language and C [3] is common, but increasingly
often developers consider C++ [2] for their implementation language. Modern compilers make
its performance competitive, many universities teach programming using C++, and its object-
oriented features help to organize large applications. Similarly, the Message Passing Interface
(MPI) library [12, 13] is the typical HPC parallel programming model, but PGAS languages like
Fortran and UPC [17] offer an alternative that is often simpler due to one-sided communication
requiring less coordination by the programmer. Although one-sided MPI [13] can provide that
same feature, language-based approaches allow the compiler to help the programmer via static
type checking.

Unfortunately for HPC application developers, no solid option has arisen to combine these
trends to allow programming in C++ with a PGAS model. Currently C++ programmers have
two options: write a mixed-language application or use a one-sided communication library.
An example of the first option is to write most of the application in C++, but keep all com-
munication and shared data in UPC source files. These parts are glued together with a C
language interface that uses type punning because C and C++ compilers understand neither
UPC shared data types nor pointers to them. For example, the UPC code below provides a
C interface for obtaining a shared struct from another UPC thread. The struct contains a
UPC pointer-to-shared, so its type declaration is not syntactically valid on the C++ side of
the interface. Worse, the C++ code cannot portably declare a different structure that has the
same layout because UPC does not require that a pointer-to-shared have a particular size or
alignment. For example, the C++ code below might allow the interface to work using certain
compilers. Using pointers to void or treating a UPC data structure as an array of char are
other techniques commonly seen to interface UPC and C++ code. Therefore, static type check-
ing is lost at the interface. An example of the second option for writing C++ PGAS programs is
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to write the entire application in C++ and call a library like SHMEM [6] or Global Arrays [14]
for communication. Such libraries are general purpose and deal with raw bytes or a limited set
of fundamental types.

1 /* UPC Code */

2 struct S1 {

3 ... /* other C data members */

4 shared int* p;

5 ... /* other C data members */

6 };

7
8 shared struct S1 data[THREADS ];

9
10 void get_from_thread( struct S1* local , int thread ) {

11 *local = data[thread ];

12 }

13
14 /* C++ Code */

15 struct S2 {

16 ... /* other C data members */

17 long blob [2]; /* hopefully the same size and alignment as p */

18 ... /* other C data members */

19 };

20
21 extern "C" { void get_from_thread( struct S2* local , int thread ); };

A PGAS model designed for C++ can provide type-checked communication in a way that
feels natural to C++ programmers by supporting C++ idioms, but the details of such a model
have been an open question without much investigation. Common features of C and C++
kindle speculation about a hypothetical UPC++ language, but even though UPC is a PGAS
model for C, it does not follow that it is the most appropriate model for C++. C and C++
are two distinct languages that abide by different language standards [2, 3] and have their
own programming idioms. Specifically, the preferred mechanism for introducing new features
to C++ is via the template library and not via grammar modification. This strategy allows
new features to be prototyped without compiler modification and made available for comment,
often via Boost [5], before being considered for the standard. UPC modifies the C grammar
and a UPC++ language would need to modify the C++ grammar to maintain consistency for
programmers. Although a shared<T> template could implement UPC shared types in C++,
there are many complications. Briefly, an array of shared<T> would not allocate the correct
amount of memory per UPC thread, plus array elements are not self-aware of their position
in the array – knowledge that a UPC compiler uses to determine data locality. Therefore,
T would need to be the array type and properties like block size and rank of the THREADS

dimension would need to be indicated via additional template parameters. These conflicting
strategies – grammar modification versus templates – give UPC++ a difficult path to official
adoption, compounded by UPC never having been adopted by standard C. Finally, UPC offers
a wide variety of data distribution options that intentionally hide the location of a data access,
such that an array element can be accessed without knowing which UPC thread owns it. This
distribution flexibility and access transparency is sometimes useful, but experience shows that
many data distributions are out-performed by a more locality-aware block distribution [4, 10, 11]
that resembles coarrays. Fortran coarrays have been shown to compare well to MPI and out-
perform UPC versions of the same application [7].

The coarray model adopted by Fortran [1] adds an additional dimension, called a codimen-
sion, to a normal scalar or array type. The codimension spans instances of a Single-Program
Multiple-Data (SPMD) application, called images, such that the scalar or array on each im-
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age becomes a coarray. Each image has immediate access via processor loads and stores to
its own coarray, which resides in that image’s local partition of the global address space. By
explicitly specifying an image number in the cosubscript of the codimension, each image may
access other images’ coarrays. Fortran permits multiple cosubscripts to be mapped to an image
number. Although originally a Fortran idea [15], coarrays have been implemented with C++
templates [8] and Python modules [16].

The C++ coarrays implemented by [8] prototyped an early incarnation of the Fortran coar-
ray concept to avoid the cost of modifying a Fortran compiler. Fortran coarray syntax was
literally moved into C++ instead of considering approaches that are more idiomatic for C++
and that permit a greater degree of static type checking. Furthermore, C++ has changed
since then. C++11 [2] introduced a shared-memory parallel programming model using threads.
Coarray images are a broader and typically orthogonal concept to threads, representing coop-
erating processes in a distributed system where a given image might consist of multiple threads
acting within a shared-memory domain. For consistency and ease of parallel programming,
it makes sense that idioms developed for C++11 threads should influence how coarrays are
implemented in C++. This paper presents the design and implementation of Coarray C++ in
version 8.2 of the Cray Compiling Environment, where type safety and maintaining the “look
and feel” of standard C++ are of paramount concern. Implementing Coarray C++ did not
require modifying the compiler or runtime libraries, which is typical for C++ template-based
programming models [8, 9].

2 Coarray C++ “Hello World”

The following program is the Coarray C++ equivalent of the classic “Hello World” program:

1 #include <iostream >

2 #include <coarray_cpp.h>

3 using namespace coarray_cpp;

4 int main( int argc , char* argv[] ) {

5 std::cout << "Hello from image " << this_image ()

6 << " of " << num_images () << std::endl;

7 return 0;

8 }

The header file coarray cpp.h included by Line 2 provides all Coarray C++ declarations within
namespace coarray cpp. Normally a program imports all of the declarations into its names-
pace with a using directive as on Line 3, but having the coarray cpp namespace grants
the programmer the flexibility to deal with name conflicts. The functions this image() and
num images() called on Lines 5 and 6 return the current image’s zero-based rank and the total
number of images in the job. Note that in [8], these functions curiously were member functions,
such that one needed a coarray object just to find out image information. The this image()

function is vital for the SPMD practice of branching on the image number; global scope is im-
portant for cases where no coarray is in scope. The program is compiled with the Cray compiler
and executed using four images as follows:

> CC -o hello hello.cpp

> aprun -n4 ./hello

Hello from image 0 of 4

Hello from image 1 of 4

Hello from image 2 of 4

Hello from image 3 of 4
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The Cray compiler automatically links the application with the same PGAS language runtime
library used for Cray UPC and Cray Fortran, as well as a networking library. It is possible to use
other C++ compilers, such as the GNU g++ compiler, on a Cray system to build Coarray C++
applications, but the user must link with the necessary libraries explicitly. For Coarray C++
implemented for a different platform, the types and function signatures within coarray cpp.h
would remain the same, but their implementation, the runtime libraries, and the mechanism
for launching the application would be different.

3 Type System

3.1 Coarrays

Coarray C++ has a generic coarray template with several specializations. Their forward dec-
larations are shown below:

1 template < typename T > class coarray;

2 template < typename T > class coarray <T[]>;

3 template < typename T, size_t S > class coarray <T[S]>;

4 template < typename T > class coarray < coatomic <T> >;

Line 1 is the generic coarray template, Line 2 is specialized for unbounded arrays (an array
where the leftmost extent is unspecified at compile time), Line 3 is specialized for bounded
arrays, and Line 4 is specialized for coatomic, which serves the same purpose for images as
the std::atomic<T> template does for C++11 threads (see Section 5.2). These specializations
let the coarray template provide type-appropriate constructors, member functions, and oper-
ators. Coarrays of pointers are handled sufficiently by the generic template, but have special
properties (see Section 3.6). For bounded array types, all array extents appear as part of the
template argument; for an unbounded array type, the leftmost extent is specified at runtime
via a constructor argument:

1 coarray <int > i;

2 coarray <int [10][20] > x;

3 coarray <int [][20] > y(n);

An important distinction from [8], where the declaration for x at Line 2 would be CoArray<int>
x(10, 20), is that the extents are part of the type of the coarray so that the compiler can help
enforce type safety. Note that for unbounded array types, the compiler has partial extent
information. The C++ type system permits only the first array extent to be unbounded, thus
in Coarray C++ one cannot declare a coarray where multiple extents are specified at runtime.
This restriction matches C++ because it does not permit allocating multidimensional arrays
where a non-leading dimension is variable (e.g., new int[10][n] is a compile-time error whereas
new int[n][20] is fine).

A coarray declaration creates a coarray object which allocates and manages an object of
its template argument type in the current image’s partition of the global address space. Both
the creation and destruction of a coarray must be executed collectively by all images. This
requirement is satisfied automatically for global and static local coarray declarations, but the
programmer is responsible for ensuring it for local and dynamically-allocated coarrays. Al-
though image teams would allow this requirement to be waived, Coarray C++ does not yet
have teams. The Fortran standard committee is considering how to implement teams and
following their lead might make sense for Coarray C++.
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The Cray implementation allocates the managed objects at symmetric virtual addresses
across all images, so an all-to-all communication of addresses during construction, as done
by [8], is unnecessary. A scalar type is assumed to have a default constructor; if it also has a
copy constructor, then the coarray<T> constructor accepts an initializer of type T which may
have a different value on different images. For an array type, the ultimate element type of the
array is assumed to have a default constructor and initializers are not supported. Internally,
these constructors are called using the C++ language’s placement new syntax, passing the
symmetric memory address.

3.2 Local Data Access

A coarray<T> object transparently behaves like the local T object that it manages, in both
l-value and r-value contexts, so that an existing variable declaration of type T can be changed
to a coarray by modifying its declaration without having to modify all uses of the variable:

1 i = 0;

2 x[1][2] = i;

3 y[3][4] = x[1][2];

Assuming the same declarations as in Section 3.1, i, x[1][2], and y[3][4] all act as a reference
to an object of type int on the current image. The assignments compile to processor loads and
stores and permit normal compiler optimizations like forward substitution. Local assignments
within loops may be vectorized for targets that support vectorization.

Note that in [8], the access x[1][2] would need to be changed to x(1, 2), which is strange
for C++ programmers (though familiar to Fortran programmers). Beyond seeming strange,
the different syntax prevents the C++ practice of writing generic code, such as a function
template that accepts either a normal array or a coarray. Member access is the only exception
to local-access syntax transparency due to C++ operator overloading limitations. C++ does
not permit the member access (dot) operator to be overloaded, so accessing a member of a
coarray of struct type requires switching to the arrow operator:

1 struct Point { int x, y; };

2 coarray <Point > pt;

3 pt->x = 1;

4 pt->y = pt ->x;

This change is familiar to any C or C++ programmer who has changed an existing variable
declaration to pointer type.

3.3 Coreferences

Coreferences extend the C++ concept of references to potentially remote objects that reside
in coarrays. Similar to the coarray template, there is a generic coref template and multiple
specializations to provide type-specific behavior. These types are discussed in Sections 5.2, 6.2,
and 6.3.

1 template < typename T > class coref;

2 template < typename T > class coref <T[]>;

3 template < typename T, size_t S > class coref <T[S]>;

4 template < typename T > class coref <T*>;

5 template < > class coref <coevent >;

6 template < > class coref <comutex >;

7 template < typename T > class coref < coatomic <T> >;
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To access data on other images, the image number is placed in parenthesis immediately after the
coarray object. Any square brackets for array subscripts follow these parenthesis, so x(5)[1][2]

is x[1][2] on image 5. In [8], the syntax would be x[5](1, 2), which uses the Fortran syntax
of square brackets for the image number. Having already established in Section 3.2 that square
brackets must continue in their familiar role for C++ array element access, it makes more
sense to use parenthesis for the cosubscript to maintain a visual distinction for subscripts and
cosubscripts. The following assignments compile to code capable of one-sided gets and puts
across a network:

1 i(7) = 0; // put

2 x[1][2] = i(6); // get

3 y(0) [3][4] = x(5) [1][2]; // get then put

From a type perspective, x(5)[1][2] is a call to operator() of coarray x, which returns a coref-
erence of type coref<int[10][20]>. The [1] bracket calls operator[] of coref<int[10][20]>,
which returns a coref<int[20]>. Finally the [2] bracket calls operator[] of coref<int[20]>,
which returns a coref<int>. This call sequence is inlined. The coref<int> behaves as an int

in l-value and r-value expression contexts, except that reading it will get data from image 5
and writing it will put data to image 5. If x had been const in the context of the access, a
const coref would be obtained from the operator() call instead. A const coref does not
permit modification of data. Accessing members on other images is again complicated by C++
limitations – a pointer to the member must be used:

1 pt(5).member( &Point ::x ) = 1;

The above code sets pt.x equal to 1 on image 5. Overloading the ->* operator was investigated,
but it has a different precedence than the dot and arrow operators, which caused confusion in
some contexts. Calling member functions of objects on other images is not supported.

3.4 Traits

The assignments in Section 3.3 made bitwise copies of fundamental data types, but C++ objects
may have non-trivial copy semantics. C++11 has a template, std::is pod<T>, to check if a
type is a “plain old data” type that does not require special semantics; however, Coarray
C++ does not yet require a C++11 compiler and std::is pod<T> cannot be usefully emulated
without compiler support. To solve this problem, Coarray C++ has the following template:

1 template < typename T >

2 struct coarray_traits {

3 static const bool is_trivially_gettable = true;

4 static const bool is_trivially_puttable = true;

5 };

Various coref<T> member functions consult coarray traits<T> to determine if copying an
object’s bits is sufficient. A user can specialize the template for a non-trivial type of their own
creation. Indicating that a type is not trivially gettable enters a contract for the type to have
a remote copy constructor and a remote assignment operator that accept a const coref<T>.
These functions can use the const coref<T> to read enough information to calculate how much
local storage is required to copy the object, allocate sufficient space, then copy the rest of the
remote object’s data. Indicating that a type is not trivially puttable prohibits the type from
being written in a one-sided manner to another image because it would require help from the
target image.
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3.5 Copointers

Just as any C++ object can have its address taken, a coref<T> has an address() member func-
tion that returns a coptr<T>. Likewise, a const coptr<T> is obtained from a const coref<T>.
The & operator was not overloaded in case the programmer wants a pointer to a coreference,
but one can write a standalone & operator that calls address(). Copointers support pointer
arithmetic and can be used as iterators with standard C++ algorithms. Unlike coreferences,
they can be null. Unlike (most) UPC pointers, arithmetic on them never changes the target
image. The following code fills the array on image 2 with the value 42:

1 #include <algorithm >

2 coarray <int[100]> x;

3 coptr <int > begin = x(2) [0]. address ();

4 coptr <int > end = x(2) [100]. address ();

5 std::fill( begin , end , 42 );

Local pointers are convertible to copointers; going the other direction, copointers have a
to local() member function that attempts to return a normal C++ pointer to the same
data. If the copointer targets the current image, then this function will succeed. If the co-
pointer targets a different image within the same shared-memory domain, then the function
may be able to return a special address that is mapped to the original object. In all other cases,
to local() returns NULL.

3.6 Coarrays of Pointers

A coarray allocates the same amount of memory on every image, but this approach sometimes
can waste memory. A coarray of pointers mirrors a Fortran feature where one can create
a coarray of a derived type containing a pointer component that is then associated with a
different amount of memory on each image. Coarray C++ uses the specialization coref<T*>

to provide the necessary behavior:

1 coarray <int*> x;

2 x = new int[this_image () * 10];

3 *x = this_image ();

4 x[4] = this_image ();

5 sync_all ();

6 ...

7 int y = *x(2);

8 y += x(3) [4];

9 ...

10 sync_all ();

11 delete [] x;

In the above code, x acts like an int* and can hold the result of an allocation via new on Line 2.
Lines 3 and 4 show that x can be dereferenced locally using normal syntax. The sync all()

calls (see Section 6.1) on Lines 5 and 10 ensure that other images do not read the current
image’s data before it is allocated and initialized or after it is deallocated. The remote accesses
on Lines 7 and 8 work because the cosubscript returns a coref<int*>, which first reads the
pointer from the target image before issuing a second read to the pointer’s target on the target
image. For repeated access to the same data, such as within a loop, this extra read can be
hoisted manually via a copointer:

1 const_coptr <int > p = x(3) [0]. address ();

2 for ( int i = 0; i < 30; ++i )

3 foo( p[i] );
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3.7 Coarrays and Functions

A coarray may be passed to a function via a reference or a pointer, but may not be passed by
value. If a coarray could be passed by value, the call would have to be collective. There would
be a collective allocation of a temporary coarray, the data within the original coarray would
need to be copied into the temporary coarray, and eventually the temporary coarray would
need to be collectively destroyed. Pass by value is expensive and there are better alternatives,
like passing a coarray as a const reference, so it is a compile-time error.

4 Type Checking

4.1 Static Checking

Coarray C++ types whose shapes are completely known at compile time are statically type
checked by the C++ compiler. The following example shows a type error detectable by the
compiler:

1 void foo( coarray <int [10][20] >& x );

2 coarray <int [5][10] > y;

3 foo( y ); // illegal

A bounded type is convertible to an unbounded type:

1 void foo( coarray <int [][20] >& x );

2 coarray <int [10][20] > y;

3 foo( y ); // legal

4.2 Dynamic Checking

An unbounded type is convertible to a bounded type, but may throw a mismatched extent error:

1 void foo( coarray <int [10][20] >& x );

2 coarray <int [][20] > y(n);

3 foo( y ); // throws if n != 10

4.3 shape cast

For instances where a coarray or coreference of one shape needs to be reinterpreted as a different
shape, shape cast provides a runtime conversion. The conversion works provided that the
ultimate element type matches and the new type does not have more elements than the old
type, otherwise it throws std::bad cast. The syntax is modeled after the other C++ casts:
static cast, dynamic cast, const cast, and reinterpret cast. None of those are sufficient
to provide the same functionality as shape cast.

1 void foo( coarray <int [10][20] >& x );

2 coarray <int[200]> y;

3 coarray <int[50]> z;

4 foo( shape_cast <int [10][20] >(y) ); // legal

5 foo( shape_cast <int [10][20] >(z) ); // throws
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5 Memory Model

5.1 atomic image fence

Coarray C++ follows the host compiler’s C++ memory model for local accesses and the Fortran
model for accesses to other images. Accesses by a single image appear to execute in program
order. Prior to executing an atomic image fence() call, which is modeled after C++11’s
atomic thread fence(), a write to another image need only be visible to the image that wrote
the value. After the fence, the write is visible to all images. Therefore, an implementation of
Coarray C++ is free to use non-blocking communication for all writes, provided that it can
ensure program order when the same image makes multiple accesses to the same data. Reads
block so that a coarray used in an expression context can provide a value. Therefore, corefer-
ences provide a get() member function to launch a non-blocking read that is not guaranteed
to complete until the next fence.

5.2 coatomics

C++11 introduced the atomic<T> template for constructing atomic types. All operations
on these types are atomic with respect to C++11 threads. Likewise, Coarray C++ has
coatomic<T> to provide operations that are atomic with respect to images. Similar conve-
nience typedefs are provided, like coatomic long for coatomic<long>. A generic coatomic
type uses a comutex to provide atomicity (see Section 6.3), but implementations of Coarray
C++ may specialize certain types, like coatomic<long>, to use lock-free hardware atomics. In
distributed systems, atomic<T> operations would use processor atomics whereas coatomic<T>
operations would use network atomics; these two sets of atomic operations might not be memory
coherent and atomic with respect to each other. The following code shows an atomic addition:

1 coarray <coatomic_long > x(0L);

2 size_t n = num_images ();

3 for ( size_t i = 0; i < n; ++i ) {

4 x(i) += this_image (); // atomic add

5 }

6 sync_all ();

7 assert( x == ( n * ( n - 1 ) / 2 ) );

Atomic operations may be performed on regular types by explicitly creating a coreference to the
matching atomic type, but it is left up to the programmer to ensure that non-atomic operations
do not simultaneously touch the data.

1 coarray <long > x(0L);

2 coref <coatomic_long > ref( x(i) );

3 ref += this_image (); // atomic add

6 Image Synchronization

6.1 sync all

As with Fortran’s sync all statement, calling sync all() synchronizes control-flow across all
images and implies a fence. A direct equivalent to Fortran’s sync images statement for point-
to-point image synchronization is not provided, but see Section 6.2 below. Experience shows
that programmers use sync images in contexts where sync all is more appropriate and expect
equivalent performance, which is not realistic.
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6.2 coevent

Events are under consideration for inclusion in the Fortran standard. Coevents provide similar
behavior, allowing one image to post an event and another image to wait on an event to be
posted. A post() call is directed at a particular image, but the wait() call does not know
which image posted the event:

1 coarray <coevent > events;

2 if ( this_image () == 0 ) {

3 // write something to image 1, then

4 events (1).post();

5 }

6 else if ( this_image () == 1 ) {

7 events ->wait();

8 // then read the data

9 }

The specialization coref<coevent> provides the post() function in the above example. Wait-
ing on non-local events (e.g., events(1).wait()) is not supported.

6.3 comutex

A comutex is modeled after C++11’s std::mutex. A comutex provides mutual exclusion among
images. It is up to the programmer to establish a relationship between a comutex and the data
that it protects, although most sensible programming styles dictate that acquiring a mutex on
an image implies that the mutex guards data on that image:

1 coarray <comutex > m;

2 m(i).lock();

3 // access data on image i

4 m(i).unlock ();

7 Cofutures

The facility for explicit management of non-blocking communication is based on C++11’s
std::future<T> template. In C++11, a std::future<T> manages completion of an asyn-
chronous operation that produces a T value. Likewise, in Coarray C++, a cofuture<T> man-
ages a non-blocking copy of type T . A coref<T> can provide a cofuture<T>, either by calling
get cofuture() or relying on implicit conversion:

1 coarray <int > x;

2 ...

3 cofuture <int > f = x(i);

4 ...

5 int z = f + 1;

Using the cofuture in an expression context automatically waits on the data to arrive. If the
data is large, existing storage may be preferable to duplicating storage inside a cofuture. In
that case, T is void because the cofuture does not store data and the wait() member function
or the destructor ensures completion:

1 coarray <int[100]> x;

2 int y[100];

3 ...
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4 cofuture <void > f = x(i).get_cofuture (&y);

5 ...

6 f.wait();

Finally, a non-blocking write can be explicitly managed via put cofuture():

1 coarray <int > x;

2 int y;

3 ...

4 cofuture <void > f = x(i).put_cofuture (&y);

5 ...

6 f.wait();

8 Collectives

8.1 cobroadcast

Cobroadcast replicates the value of a coarray from a root image across all images. The broadcast
does not imply a sync all() because synchronization is not needed when only local values are
accessed, as in this example:

1 coarray <int > x;

2 if ( this_image () == 0 ) {

3 x = 42;

4 }

5 cobroadcast( x, 0 );

6 assert( x == 42 );

8.2 coreduce

Coreduce performs a broadside reduction of coarray images. For example, reducing a coarray<int[100]>
yields 100 result values instead of one. Like cobroadcast, no sync all() is implied. By default,
every image receives the results as part of the original coarray, but there are options to send the
result to only one image or to use a different coarray for the results. Coreduce accepts a com-
mutative and associative function, but implementations may provide optimized specializations
with alternative names. For example:

1 coarray <int[100]> x;

2 cosum( x ); // coreduce( x, std ::plus <int > )

3 comin( x ); // coreduce( x, std ::less <int > )

4 comax( x ); // coreduce( x, std :: greater <int > )

An example of using comax:

1 coarray <int > x;

2 x = this_image ();

3 comax( x );

4 assert( x == num_images () - 1 );

9 Performance Considerations

Because C++ compilers are not aware of Coarray C++, performance would appear to be a
huge challenge. This misconception stems from a belief that compilers for PGAS languages only
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achieve high-performance by exploiting the language’s memory consistency model to schedule
and cache remote accesses. Although UPC, and to some extent Fortran, were designed with
these optimizations in mind, most of the performance of Cray UPC and Fortran comes from
other techniques. The primary network latency optimization is to issue non-blocking writes for
all writes, relying on the language runtime to efficiently enforce the memory model. Coarray
C++ behaves identically. The primary network throughput optimization is to recognize loops
that do small, constant-stride remote memory accesses and replace them with bulk copy func-
tions. UPC has a family of functions (e.g., upc memput(), upc memget()) for this purpose; both
UPC loops and Fortran array syntax loops can be mapped to similar functions. To provide
this behavior in C++, which does not permit array syntax, Coarray C++ allows a corefer-
ence to an array to act as the source or target of an assignment. For syntactic convenience, a
make coref() function automatically creates a coref from a local object:

1 coarray <int [10][100] > x;

2 int local [10][100];

3 ...

4 make_coref( local ) = x(2);

5 x(7)[3] = local [3];

Line 4 creates a coref<int[10][100]> from local, then uses it to store the contents of x from
image 2. There also is support for copying complete slices of arrays. Line 5 copies just row 3 to
image 7. Experiments with these techniques have shown performance equivalent to Cray UPC
and Fortran.

10 Conclusions

Coarray C++ provides typical PGAS language features in a manner that is compatible with
C++ idioms and that permits static and dynamic type checking. Throughout this paper, its
design was contrasted with a more literal approach [8] to moving Fortran features into C++
that did not have the benefit of building on C++11 parallel programming ideas. The initial
version of Coarray C++ is released with version 8.2 of the Cray Compiling Environment and
uses the same language runtime and networking libraries as Cray UPC and Fortran. Future
work is to evolve the language based on user experience, as well as any interesting developments
in both the Fortran and C++ standards. Implementations for other platforms are encouraged.
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Abstract

In order to take advantage of exascale-level computing, it is necessary to extract per-
formance from large number of cores distributed in many nodes. To accomplish this,
new programming models need to be explored and techniques to port codes to these new
programming models have to be developed. GROMACs, a leading molecular dynamics
open-source package, is one of this codes whose scalability needs to be analysed and im-
proved for exascale machines given the interest in the scientific community. Although it
has been already ported to hybrid MPI and OpenMP, there is still room for improvement
in situations involving a large number of nodes. In this work, we present the experiences
of porting GROMACs, a molecular dynamics package, to SHMEM, a low-latency, one-side
communication library. Results show that the replacement of MPI routines by one-side
equivalents does not affect performance, although current limitations on the programming
model and the implementation limits the performance benefit.

1 Introduction

The open-source GROMACS[5]simulation package is one of the leading biochemical molecular
simulation packages in the world and is widely used for simulating a range of biochemical
systems and biopolymers. This is reflected in the fact that both the PRACE pan-European
HPC initiative and the CRESTA exascale collaborative project have identified GROMACS as
a key code for effective exploitation of both current and future HPC systems [1].

The GROMACS code has recently undergone a major restructuring to be able to take
advantage of both hybrid MPI/OpenMP programming models and to be able to exploit GPU
accelerators. A key consideration of a hybrid programming model such as this is the balance
that needs to be achieved between the number of OpenMP threads and MPI tasks. The
performance of the MPI communications have a large influence on both the scaling of the
code and the number of OpenMP threads per task that can be exploited effectively. If the
performance of the communications between parallel tasks could be improved then this would
lead to being able to run the code with a lower number of particles per parallel task improving
both the scaling and parallel efficiency of GROMACS.

In this work we aimed to improve the performance of the inter-task communication by replac-
ing the calls to standard MPI two-sided communication routines with a single-sided communi-
cation interface which can be implemented using different single-sided communication libraries
(for example, SHMEM, MPI 3, Fujitsu Tofu interconnect, Infiniband verbs). Our development
has been performed on the HECToR UK National Supercomputing Facility[3]. HECToR is a
Cray XE6 machine and so we have implemented the interface using calls to the single-sided,
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Figure 1: Performance of GROMACS on HECToR Phase 3 for ADH Cubic test case.

Cray SHMEM communication routines. SHMEM has been selected as it currently available in
a form that can deliver excellent performance on Cray MPP machines (such as HECToR) and
is also currently an area of active development through the OpenSHMEM[2] initiative.

1.1 Initial Benchmarking and Profiling

1.1.1 GROMACS 4.6

Our initial benchmarking and profiling are based on the ADH Cubic test case supplied by
the GROMACS developers using both pure MPI and hybrid MPI+OpenMP (with multiple
OpenMP threads per MPI task). The scaling as a function of number of HECToR nodes is
illustrated in Figure 1.

The data shows that the pure MPI version of GROMACS scales well up to 24 nodes (768
tasks) for this benchmark. The hybrid version with two OpenMP threads per MPI task generally
shows lower absolute performance but is able to exploit more cores (up to 32 nodes, 1024 tasks).
Using higher numbers of MPI tasks for this benchmark is problematic due to issues matching
the parallel domain decomposition to the larger task count.

Table 1.1.1 provides an overview of where time in the code is spent when using both 64 and
512 MPI tasks. We observe that, as expected, when we increase the number of tasks, the MPI
communications become a significant portion of the calculation. In particular, the MPI point-
to-point routines (MPI Sendrecv and MPI Recv) take up the majority of the communication
time. Profiling also reveals that as the number of tasks is increased the sizes of the messages
become smaller - at 24 nodes more than 80% of the MPI Sendrecv messages are less than 4kB
in size.
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Class Function 24 MPI Tasks 512 MPI tasks
USER 76.7% 49.1%

Main 76.7% 49.1%
MPI 22.5% 47.4%

MPI Recv 4.6% 27.1%
MPI Sendrecv 6.7% 11.3%
MPI Alltoall 1.2% 5.0%
MPI Waitall 9.6% 3.5%

Table 1: Percentage of time spent in MPI communication routines of the initial profiled version.

1.1.2 SHMEM

The SHMEM library is an implementation of a single-sided communications library where
data is transferred between parallel tasks by copying or reading data directly from remote
memory. This contrasts with the traditional, two-sided MPI approach where the two tasks
must handshake to exchange data. We would expect the single-sided approach to be faster as
it involves fewer software layers and memory copy operations per communication call.

The SHMEM approach should be particularly efficient on the Cray XE architecture as
the Gemini interconnect has dedicated hardware support for single-sided communications via
Remote Direct Memory Access (RDMA) using the low-level DMAPP API. There are very few
layers of software between the SHMEM interface and the Gemini hardware as each SHMEM
call generally maps directly onto a low-level DMAPP call [6].

We have tested this by implementing a SHMEM equivalent of the MPI Sendrecv subroutine
and then compared the performance between the two as a function of message size on the
current HECToR Phase 3 hardware. The results show that for small message sizes (< 2KB)
the SHMEM operation is around 3 times faster than the MPI equivalent and for larger messages
(>4KB) the SHMEM operation are around 30% faster.

2 Implementation

We have started with replacing the MPI point-to-point communications in the domain decom-
position part of the code. Converting an MPI code to SHMEM is conceptually easy. Listing 1
illustrates a classical MPI SendRecv operation where each processor sends data to the one on
its left and receives from the one on its right.

Listing 1: Simple Send Receive code in MPI

{

int right = (my_rank + 1) % numprocs;

int left = my_rank - 1;

left = left <0? numprocs -1: left;

MPI_SendRecv(send_data , nelem , MPI_BYTE , left , tag ,

recv_data , nelem , MPI_BYTE , right , tag ,

MPI_COMM_WORLD , &status );

}

The SHMEM equivalent of this operation is shown in Listing 2. Notice that in this case,
although for the sake of clarity we keep computing right and left, we only need left. All ranks
will put data on the left rank, thus, implicitly they are receiving data from the right rank. A
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similar implementation, using get instead of put would get the data from the rank in the right.
To ensure all ranks have receive the data we use a global barrier.

Listing 2: Simple Send Receive code in SHMEM

{

int right = (my_rank + 1) % numprocs;

int left = my_rank - 1;

left = left <0? numprocs -1: left;

shmem_putmem (&recv_data , send_data , nelem*sizeof(recv_data [0]), left);

shmem_barrier_all ();

}

Although at a first glance the replacement may be seen straightforward, in the example we
make some assumptions that simplify the implementation. Note that four restrictions should
be considered when porting larger code bases (as in the case of GROMACS):

1. SHMEM is a SPMD model

2. The data to be put or to be get from needs to reside on symmetric memory,

3. Symmetric heap memory routines force an implicit global synchronization,

4. One-side operations are asynchronous by nature,

We will describe how we overcame aforementioned restrictions in our GROMACS SHMEM
implementation.

2.1 SHMEM SPMD limitations

A notable limitation of the SHMEM programming model is that it follows the Single Program
Multiple Data model (SPMD): No process can be added or removed from the group and all
processes execute the same application. This contrast with the GROMACS Multiple Program
Multiple Data (MPMD) approach to solve the Particle-Mesh-Ewald method (PME) on a pre-
defined subset of nodes. To facilitate the work we have disabled this feature in the command
line, assuming all nodes perform the PME part of the code. It is possible to overcome this
limitation with additional work in the non-PME part of the code but we could not implement
it within the time allocated to this project.

2.2 Porting memory allocations to the Symmetric Heap

In Listing 1 we assume that the data pointed by recv_data resides on the symmetric heap. In
C, non-stack variables (such as global or static variables) are symmetric across all ranks (PEs
in SHMEM nomenclature), which excludes memory allocated using traditional malloc. As
an example, the current GROMACS MPI implementation makes extensive use of temporary
buffers allocated using realloc in each rank. This temporary buffers would be freed later, and
are adjusted to the size of the data being sent or received. Restriction (1) forces us to use a
symmetric buffer for these communications. However, if not all ranks reallocate at the same
point, the implicit global barrier will cause a deadlock. The code in GROMACS depicted in
Listing 3 is used in several places across the code to minimize the memory footprint. The local
buffers are reallocated before a communication take place if the data to be received is bigger
than the current size of the buffer. In the SHMEM implementation, it is necessary to ensure
that the size of the buffer is the same across all ranks, hence forcing a global max computation
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before the reallocation (Listing 4). To avoid over-synchronization, instead of computing the
size before the reallocation itself we added an additional parameter to the GROMACS data
structures communicated (mainly atoms and forces) storing the maximum number of elements
in all PEs, reducing the number of calls to the global maximum collective.

Listing 3: Simple buffer reallocation in the MPI implementation

if ( local_buffer_size > number_of_elements * size )

{

local_buffer_size = number_of_elements * size;

buffer = realloc(buffer , local_buffer_size );

}

Listing 4: Buffer reallocation when using SHMEM

int max_local = shmem_get_max_alloc(shmem , local_buffer_size );

if ( max_local >= number_of_elements * size )

{

max_local = number_of_elements * size;

buffer = sh_srealloc(buffer , max_local );

}

To reduce the cost of computing the maximum size across ranks, we can take advantage
of the nature of the molecular dynamics simulation. After a certain number of iterations, the
communication buffers stop growing. We have implemented a simple heuristic where if after a
certain number of iterations the buffer no longer grows, the reallocation is disabled. Currently,
the number of iteration is set by the user using a compile-time variable, but this could easily
be set using an environment variable.

2.3 PE synchronization

The simplest solution to deal with restriction (3) is to use a global barrier to ensure that all
processors have received the data, as shown before in Listing 2. Although given the nature of
GROMACS communication pattern this is possible, it is not reasonable from the point of view
of performance.

To ensure that the receiver has the data the sender is putting, a flag can be used to monitor
the status, so that the receiver can wait until the data has been put in the buffer buy the sender.

In addition to this point-to-point synchronization, it is necessary to avoid race-conditions
when the SHMEM communications are enclosed in a subroutine. Lets take for example the
routine depicted in Listing 5. If the routine is called only once, or if it is always called to
communicate the same pair of ranks, the routine will work as expected. However, if the routine
is called consecutively with different pairs of ranks to perform the send/recv operation, the
value of the flag may be overwritten, breaking the synchronization.

A lock alone would not solve the problem, as SHMEM locks are served on a first-come
first-served policy. If a rank runs overtakes another, it may acquire the lock even if it is not its
turn. To avoid this problem, and taking advantage of the fact that SendRecv communications
in GROMACs are performed by all PEs, we use a static counter in each routine that its
incremented with each call. When a PE enters the routine, it gets the remote value of the
counter. If the number matches its own, then it continues. If not it just waits in a loop until
the other PE reaches the same value for the calling counter. Using this mechanism we avoid
global barriers and we can reduce the number of idle PEs. A diagram of the Send Receive
routine is shown in Figure 2.
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Figure 2: Diagram of a Send/Receive operation implemented on SHMEM

Listing 5: SHMEM Send Receive operation

void shmem_sendrecv_float (....)

{

static int flag = -1;

static int counter = 0;

counter ++;

wait_for_previous_call (& counter)

if (data_to_send)

{

shmem_float_put(recv_buf , send_buf , ..., dest_rank );

}

shmem_quiet ();

shmem_int_p (&flag , 1, dest_rank );

shmem_int_wait (&flag , -1);

flag = -1;

}

3 Performance results

3.1 Time spent in communication routines

Table 3.1 shows the output of the Craypat profiler tool when executing 100.000 steps of one of
the performance benchmarks chosen. The last row of the table, Total comm, shows the sum of
the time spent in MPI and the time spent in SHMEM. Notice the drastic reduction in the time
spent in communication when using SHMEM. However, it is worth noting that the user time
has increased. This is caused by the active waiting of the shmem wait for previous iteration.
This time comes from the imbalance of the application and the problem being executed. The
imbalance time in the MPI implementation is shown as time spent in SendRecv or Recv, but
this comes to user code in our implementation. Notice however that the shmem wait routines,
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Group 1 node, 32 cores 16 nodes, 512 cores
MPI (s) SHMEM (s) MPI (s) SHMEM (s)

Total 2231.71 2189 480.01 530.52
USER 1775.49 (79.6%) 1979 (90.4%) 144.00 (30.0%) 195.54 (37%)
MPI 411.31 (18.4%) 31.90 (1.5%) 257.38 (53.6%) 54.46 (10.3%)

MPI SendRecv 310.99 (13.9%) 31.76 (35.5%) 109.46 (22.8%) 49.83 (9.4%)
MPI AlltoAll 43.90 (2.0%) 126.25 (26.3%)

MPI Sync 44.90 (2.0%) 1.83 (0.1%) 78.62 (16.4%) 1.68 ( 0.3%)
SHMEM 61.53 (2.8%) 65.69 (12.4%)

shmem wait 27.87 (1.3%) 11.16 (2.1%)
shmem int g 11.82 (0.5%) 22.71 (4.3%)
Total comm. 411.31 (18.4%) 93.43 (4.2%) 336 (70%) 121.83 (23%)

Table 2: Profiling output of an execution of the ADH testcase with 100.000 steps.

Figure 3: Performance of GROMACS on HECToR Phase 3 for ADH Cubic test case.

which also are affected by imbalance, are included on the SHMEM time. It is worth noting
also that the maximum collective does not show up at the top of the profiling report. The
heuristics added to reduce the number of overall synchronization improve the performance of
the SHMEM implementation. Disabling these heuristics increases the walltime of the SHMEM
implementation up to a 20%. This experimental data make us believe that the fine-tuning of
these heuristics may improve the performance. In particular, tuning these heuristics for the
particular conditions of each execution (maybe by the means of a user variable or configuration)
could enhance the performance of the different executions.

3.2 Overall performance

We have evaluated two different benchmark problems to measure the performance of the
SHMEM implementation using the HECToR, whose results are shown below.

Figures 3 and 4 show the performance of the GROMACs SHMEM and MPI implemnetations
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Figure 4: Performance of GROMACS on HECToR Phase 3 for the Grappa 45k test case.

in ns/day (nanoseconds of simulation per running day). This is the real performance of the
application, computed as the average performance of three different executions for each number
of threads and cores. The ADH testcase shows more imbalance than the Grappa testcase. Its
performance is worse using SHMEM as the implementation is more affected by the imbalance
due to the synchronization of the size and offset across all ranks during the domain decomposi-
tion. This effect hinders the performance compared to the MPI implementation. Performance
of the SHMEM implementation in a more-balanced execution, such as the Grappa benchmark
in Figure 4, matches the performance of the MPI implementation, and sometimes outperforms
it.

4 Conclusions and Future Work

In this work we have presented the experience of porting a real application with a large code
base to the SHMEM programming library. We have detailed the different problems encountered
and explored the different possible solutions. We believe that this experience will be useful for
other programmers interested in porting codes to SHMEM, or to one-side programming models
in general.

In general, many decisions in the existing code, aimed at improving the performance of
the MPI implementation, limited the performance of SHMEM. For example, some routines
compressed data into a buffer in order to produce a single MPI Send Receive call. This is not
required in SHMEM, where it would be possible to directly send the data to other ranks in
separated put calls with lower overhead.

The critical next step on this work would be to lift the current limitation of using the same
number of PP and PME nodes. There are different implementation possibilities, but require a
notable development and refactoring effort in the GROMACs communication code.

If the SPMD restrictions were lifted, at least to the point where an application may have
separate SHMEM communication sets, the performance would improve notably.

An alternative implementation using MPI one-side communications [4], recently adopted in
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the MPI 3.0 standard, may be seen as better suited given the circumstances. The development
effort and analysis performed during this project will leverage the implementation cost a future
MPI one-side approach, as the major areas of improvement and the refactoring has been already
performed.
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Abstract

The implementation of scalable synchronized data structures is notoriously difficult.
Recent work in shared-memory multicores introduced a new synchronization paradigm
called flat combining that allows many concurrent accessors to cooperate efficiently to re-
duce contention on shared locks. In this work we introduce this paradigm to a domain
where reducing communication is paramount: distributed memory systems. We imple-
ment a flat combining framework for Grappa, a latency-tolerant PGAS runtime, and show
how it can be used to implement synchronized global data structures. Even using simple
locking schemes, we find that these flat-combining data structures scale out to 64 nodes
with 2x-100x improvement in throughput. We also demonstrate that this translates to
application performance via two simple graph analysis kernels. The higher communication
cost and structured concurrency of Grappa lead to a new form of distributed flat combin-
ing that drastically reduces the amount of communication necessary for maintaining global
sequential consistency.

1 Introduction

The goal of partitioned global address space (PGAS) [10] languages and runtimes is to provide
the illusion of a single shared memory to a program actually executing on a distributed memory
machine such as a cluster. This allows programmers to write their algorithms without needing
to explicitly manage communication. However, it does not alleviate the need for reasoning
about consistency among concurrent threads. Luckily, the PGAS community can leverage a
large body of work solving these issues in shared memory and explore how differing costs lead
to different design choices.

It is commonly accepted that the easiest consistency model to reason about is sequential
consistency (SC), which enforces that all accesses are committed in program order and ap-
pear to happen in some global serializable order. To preserve SC, operations on shared data
structures should be linearizable [14]; that is, appear to happen atomically in some global to-
tal order. In both physically shared memory and PGAS, maintaining linearizability presents
performance challenges. The simplest way is to have a single global lock to enforce atomicity
and linearizability through simple mutual exclusion. Literally serializing accesses in this way
is typically considered prohibitively expensive, even in physically shared memory. However,
even in fine-grained lock-free synchronization schemes, as the number of concurrent accessors
increases, there is more contention, resulting in more failed synchronization operations. With
the massive amount of parallelism in a cluster of multiprocessors and with the increased cost
of remote synchronization, the problem is magnified.

A new synchronization technique called flat combining [12] coerces threads to cooperate
rather than contend. Threads delegate their work to a single thread, giving it the opportu-
nity to combine multiple requests in data-structure specific ways and perform them free from
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contention. This allows even a data structure with a single global lock to scale better than
complicated concurrent data structures using fine-grained locking or lock-free mechanisms.

The goal of this work is to apply the flat-combining paradigm to a PGAS runtime to reduce
the cost of maintaining sequentially consistent data structures. We leverage Grappa, a PGAS
runtime library optimized for fine-grained random access, which provides the ability to tolerate
long latencies by efficiently switching between many lightweight threads as sketched out in prior
work [19]. We leverage Grappa’s latency tolerance mechanisms to allow many fine-grained syn-
chronized operations to be combined to achieve higher, scalable throughput while maintaining
sequential consistency. In addition, we show how a generic flat-combining framework can be
used to implement multiple global data structures.

The next section will describe in more detail the Grappa runtime system that is used to
implement flat combining for distributed memory machines. We then explain the flat-combining
paradigm in more depth and describe how it maps to a PGAS model. Next, we explain how
several data structures are implemented in our framework and show how they perform on simple
throughput workloads as well as in two graph analysis kernels.

2 Grappa

Irregular applications are characterized by having unpredictable data-dependent access pat-
terns and poor spatial and temporal locality. Applications in this class, including data mining,
graph analytics, and various learning algorithms, are becoming increasingly prevalent in high-
performance computing. These programs typically perform many fine-grained accesses to dis-
parate sources of data, which is a problem even at multicore scales, but is further exacerbated
on distributed memory machines. It is often the case that naively porting an application to a
PGAS system results in excessive communication and poor access patterns [8], but this class of
applications defies typical optimization techniques such as data partitioning, shadow objects,
and bulk-synchronous communication transformations. Luckily, applications in this class have
another thing in common: abundant amounts of data access parallelism. This parallelism can
be exploited in a number of different ways to improve overall throughput.

Grappa is a global-view PGAS runtime for commodity clusters which has been designed
from the ground up to achieve high performance on irregular applications. The key is la-
tency tolerance—long-latency operations such as reads of remote memory can be tolerated by
switching to another concurrent thread of execution. Given abundant concurrency, there are
opportunities to increase throughput by sacrificing latency. In particular, throughput of ran-
dom accesses to remote memory can be improved by delaying communication requests and
aggregating them into larger packets.

Highly tuned implementations of irregular applications in shared-memory, PGAS, and message-
passing paradigms, typically end up implementing similar constructs. Grappa includes these as
part of its core infrastructure and simply asks the programmer to express concurrency which it
can leverage to provide performance.

Grappa’s programming interface, implemented as a C++11 library, provides high-level op-
erations to access and synchronize through global shared memory, and task and parallel loop
constructs for expressing concurrency. In addition, the Grappa “standard library” includes func-
tions to manipulate a global heap, stock remote synchronization operations such as compare-
and-swap, and several synchronized global data structures. These features make it suitable for
implementing some next-generation PGAS languages like Chapel [6] and X10 [7]. The follow-
ing sections will explain the execution model of Grappa and the current C++ programming
interface.
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Figure 1: Grappa System Overview: Thousands of workers are multiplexed onto each core,
context switching to tolerate the additional latency of aggregating remote operations. Each
core has exclusive access to a slice of the global heap which is partitioned across all nodes, as
well as core-private data and worker stacks. Tasks can be spawned and executed anywhere, but
are bound to a worker in order to be executed.

2.1 Tasks and Workers

Grappa uses a task-parallel programming model to make it easy to express concurrency. A task
is simply a function object with some state and a function to execute. Tasks may block on
remote accesses or synchronization operations. The Grappa runtime has a lightweight threading
system that uses prefetching to scale up to thousands of threads on a single core with minimal
increase in context-switch time. In the runtime, worker threads pull these programmer-specified
tasks from a queue and execute them to completion. When a task blocks, the worker thread
executing it is suspended and consumes no computational resources until woken again by some
event.

2.2 Aggregated Communication

The most basic unit of communication in Grappa is an active message [24]. To make efficient
use of the networks in high-performance systems, which typically achieve maximum bandwidth
only for messages on the order of 64 KB, all communication in Grappa is sent via an aggregation
layer that automatically buffers messages to the same destination.
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2.3 Global Memory

In the PGAS style, Grappa provides a global address space partitioned across the physical
memories of the nodes in a cluster. Each core owns a portion of memory, which is divided
among execution stacks for the core’s workers, a core-local heap, and a slice of the global heap.

All of these can be addressed by any core in the system using a GlobalAddress, which
encodes both the owning core and the address on that core. Additionally, addresses into the
global heap are partitioned in a block-cyclic fashion, so that a large allocation is automatically
distributed among many nodes. For irregular applications, this helps avoid hot spots and is
typically sufficient for random access.

Grappa enforces strict isolation—all accesses must be done by the core that owns it via
a message, even between processes on the same physical memory. At the programming level,
however, this is hidden behind higher-level remote operations, which in Grappa are called
delegates. Figure 1 shows an example of a delegate read which blocks the calling task and sends
a message to the owner, who sends a reply with the data and wakes the caller.

3 Flat Combining

At the most basic level, the concept of flat combining is about enabling cooperation among
threads rather than contention. The benefits can be broken down into three components:
improved locality, reduced synchronization, and data-structure-specific optimization. We will
explore how this works in a traditional shared-memory system, and then describe how the same
concepts can be applied to distributed memory.

3.1 Physically shared memory

Simply by delegating work to another core, locality is improved and synchronization is reduced.
Consider the shared synchronous stack shown in Figure 2, with pre-allocated storage and a
top pointer protected by a lock. Without flat combining, whenever a thread attempts to push
something on the stack, it must acquire the lock, put its value into the storage array, bump the
top, and then release the lock. When many threads contend for the lock, all but one will fail and
have to retry. Each attempt forces an expensive memory fence and consumes bandwidth, and
as the number of threads increases, the fraction of successes plummets. Under flat combining,
instead, threads add requests to a publication list. They each try to acquire the lock, and the
one that succeeds becomes the combiner. Instead of retrying, the rest spin on their request
waiting for it to be filled. The combiner walks the publication list, performs all of the requests,
and when done, releases the lock. This allows the one thread to keep the data structure in
cache, reducing thrashing between threads on different cores. It also greatly reduces contention
on the lock, but introduces a new point of synchronization—adding to the publication list.
However, if a thread performs multiple operations, it can leave its publication record in the list
and amortize the synchronization cost. This publication list mechanism can be re-used in other
data structures, saving each from needing to implement its own clever synchronization.

The above example of delegation is compelling in itself. However, the crux of prior work is
that data structure-specific optimization can be done to perform the combined operations more
efficiently. As the combiner walks the publication list, it merges each non-empty publication
record into a combined operation. In the case of the stack example shown in Figure 2, as it
walks the list, Thread 4 keeps track of the operations on its own temporary stack. When it
encounters Thread 2’s pop, it recognizes that it can satisfy that pop immediately with the push
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Figure 2: Flat combining in shared memory. To access the shared stack, each thread adds its
request to the publication list (1). Thread 4 acquires the stack’s lock and becomes the combiner
(2), while the remaining threads spin waiting for their request to be satisfied. The combiner
walks the publication list from the head, matching up Thread 3’s push with Thread 2’s pop
on its own private stack (3). The two remaining pushes are added to the top of the shared
stack (4). Finally, the top is updated, and Thread 4 releases the lock and continues its normal
execution.

it just processed from Thread 3, so it fills both of their records and allows them to proceed.
After traversing the rest of the publication list, the thread applies the combined operation to
the actual data structure, in this case, the two unmatched pushes are added to the top of the
stack. In the case of the stack, combining came in the form of matched pushes and pops, but
many data structures have other ways in which operations can be matched.

3.2 Grappa

In a PGAS setting, and in Grappa in particular, the cost of global synchronization and the
amount of concurrency is even greater than in shared memory. With thousands of workers
per core, in a reasonably sized cluster there are easily millions of workers. This presents an
opportunity for flat combining to pay off greatly, but also poses new challenges.

To illustrate how flat combining can be applied to Grappa, we must first describe what
a global data structure looks like. Figure 3 shows a simple PGAS translation of the shared-
memory stack from earlier. A storage array is allocated in the global heap, so its elements are
striped across all the cores in the system. One core is designated the master to enforce global
synchronization, and holds the elements of the data structure that all concurrent accessors must
agree on, in this case, the top pointer.

All tasks accessing the stack hold a GlobalAddress to the master object, and invoke custom
delegate methods that, like the read delegate described earlier, block the task until complete.
Example code to do a push is shown in Figure 5. The task must send a message to the master
to acquire the lock. If successful, it follows the top pointer, writes its new value to the end of
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Figure 3: Stack without combining. To do its push, Worker 1 sends a message to synchronize
with the master on Core 0 (1), which sends another message to write the value to the top of
the stack (2), bumps the synchronized top pointer (3), and finally continues. Worker 2, and
workers on other cores, must block at the master and wait for Worker 1 to complete its push
before doing their operations (4).

the stack, returns to bump the top pointer and release the lock, and finally sends a message
back to wake the calling worker. All others block at the first message until the lock is released.
Grappa’s user-level threading allows requests to block without consuming compute resources.
However, all workers on each core perform this synchronization and serialize on a single core,
causing that core to become the bottleneck.

Centralized Combining. A first thought might be to directly apply the idea of flat com-
bining to the serialization at the master. The worker that acquires the lock can walk through
the requests of all the other workers waiting to acquire the lock and combine them. In the case
of the Stack, this would mean matching pushes and pops, applying the remainder, and sending
messages back to all remote workers with results, before starting another round of combining.
This approach reduces traffic to the data structure storage, but a single core must still process
every request, so it cannot scale if every other core is generating requests at the same rate.

Distributed Combining. Instead of all workers sending independent synchronization mes-
sages and putting the burden all on one core, each core can instead do its own combining first
then synchronize with the master in bulk. Distributing the combining to each core allows the
majority of the work to be performed in parallel and without communication.
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Figure 4: Stack with distributed combining. Worker 3’s pop matches with Worker 2’s push,
requiring no global communication (1). After combining locally, Worker 1 and 4’s pushes
remain, so Worker 4 becomes the core’s combiner (2), sends a message to synchronize with the
master (3), adds both new values to global stack (4), bumps the top pointer and releases the
lock on master (5), and finally wakes Worker 1 (6).

In distributed flat-combining, each core builds its own publication list to track all the oper-
ations waiting to be committed to the global data structure. In Grappa, for each global data
structure, a local proxy object is allocated from the core-local heap to intercept requests. Con-
ceptually, workers add their requests to a local publication list in the proxy, one is chosen to do
the combining, and the rest block until their request is satisfied. However, because Grappa’s
scheduler is non-preemptive, each worker has atomicity “for free” until it performs a blocking
operation (such as communication). This means that an explicit publication list with clever
synchronization is unnecessary. Instead, workers merge their operations directly into the local
proxy, and block, except in restricted cases where they are able to satisfy their requirements
immediately without violating ordering rules for consistency (discussed in the next section).
The proxy structure is chosen to be able to compactly aggregate operations and efficiently per-
form matching in cases where it is allowed. Figure 4 shows how pushes and pops are matched
on the proxy’s local stack.

After all local combining has been done, one requesting worker on the core is chosen to
commit the combined operation globally. In Figure 4, Worker 4 becomes the combiner and per-
forms much the same synchronization as in the uncombined case, but is able to push multiple
elements with one synchronization. The global lock must still be acquired, so concurrent com-
bined requests (from different cores) must block and serialize on the master, but the granularity
of global synchronization is coarser, reducing actual serialization.

Centralized combining could be applied on top of distributed combining, combining the
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combined operations at the master node. However, in our experiments, performing the addi-
tional combining on the master did not significantly affect performance, so it is left out of our
evaluation for space.

Memory Consistency Model. In the context of Grappa, sequential consistency guarantees
that within a task, operations will be in task order and that all tasks will observe the same global
order. The Grappa memory model is essentially the same as the C++ memory model [5, 4, 15],
guaranteeing sequential consistency for data-race free programs. To be conservative, delegate
operations block the calling worker until they have become globally visible, ensuring they can
be used for synchronization. As such, delegate operations within a task are guaranteed to be
globally visible in program order and all tasks observe the same global order. Operations on
synchronized data structures must provide the same guarantees. Because it is not immediately
obvious that this distributed version of flat combining preserves sequential consistency, we now
argue why it does.

To behave in accordance with sequential consistency, operations on a particular data struc-
ture must obey a consistent global order. One way to provide this is to guarantee lineariz-
ability [14] of operations, which requires that the operation appear to take effect globally at
some instantaneous point during invocation of the API call. This ensures that a consistent
total order can be imposed on operations on a single data structure. For operations to be
globally linearizable, first of all the execution of local combined operations must be serializable;
this is unchanged from shared-memory flat-combining, and is trivially true due to the atomic-
ity enabled by cooperative multithreading. Second, combined operations must be committed
atomically in some globally serializable order. When committing, combined operations are se-
rialized at the particular core that owns the synchronization (the master core for the Stack).
Whenever a global commit starts, a fresh combiner must be created for subsequent operations
to use. If they were to use the old combiner’s state to satisfy requests locally, it would violate
global ordering because the local object would not reflect other cores’ updates. For this serial
“concatenation” of serialized batches to be valid, the order observed by workers during local
combining must be the same as what can be observed globally as operations are committed.

In the case of a stack or queue, this guarantee comes from applying a batch of push or pop
operations atomically in a contiguous block on the global data structure. Matching pushes and
pops locally for the Stack is one exception to the rule that operations must block until globally
committed. Because a pop “destroys” the corresponding push, these operations together are
independent of all others and can conceptually be placed anywhere in a global order. It is
trivial to respect program order with this placement, so they can be safely matched locally.

Combining set and map operations exposes more nuances in the requirements for consis-
tency. Insert and lookup operations performed by different tasks are inherently unordered unless
synchronized externally. Therefore, a batch of these operations can be committed globally in
parallel, since they are guaranteed not to conflict with each other. Note that if an insert finds
that its key is already in the combiner object, it does not need to send its own message. However,
it must still block until that insert is done to ensure that a subsequent operation it performs
cannot be reordered with it, preserving program order. Similarly, lookups can piggy-back on
other lookups of the same key.

Using intuition from store/write buffers in modern processors, it is tempting to allow a
lookup to be satisfied locally by inspecting outstanding inserts. However, this would allow the
local order in which keys were inserted to be observed. Then to preserve SC, that same order
would need to be respected globally, forcing each batch to commit atomically with respect to
other cores’ batches. Enforcing this would be prohibitively expensive, so a cheaper solution is
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chosen: lookups only get their values from the global data structure, therefore batches can be
performed in parallel.

These requirements only guarantee linearizability of operations on a single data structure.
To guarantee sequential consistency with respect to all accesses, data-race freedom must be
guaranteed by the program, as in the C++ memory model for shared memory.

4 Grappa FC Framework

To leverage the flat-combining paradigm in Grappa, we implemented a generic framework to
improve performance for a number of global data structures. The FC framework handles the
common problems of managing the combiners, handling worker wake-ups, and maintaining
progress. When hooking into the framework, each data structure need only define how to
combine operations and globally commit them.

As mentioned before, the Grappa FC framework takes a different approach than the original
flat-combining work for expressing how operations combine. For each global structure instance,
a proxy object is created on each core and each worker merges its request into that structure
before blocking or becoming the combiner. Each global data structure must define a proxy that
has state to track combined requests, methods to add new requests, and a way to sync the state
globally. An example proxy declaration for the GlobalStack is shown in Figure 5.

The FC framework is responsible for ensuring that all of the combined operations eventually
get committed. There are a number of ways progress could be guaranteed, but one of the
simplest is to ensure that as long as there are any outstanding requests, at least one worker
is committing a combined operation. When that combined operation finishes, if there are still
outstanding requests that have built up in the meantime, another blocked worker is chosen to
do another combined synchronization.

While a combining operation is in flight, new requests continue to accumulate. The frame-
work transparently wraps the proxy object so when one sync starts, it can direct requests to a
fresh combiner. This is done by hiding instances of proxy objects behind a C++ smart-pointer-
like object which provides the pointer to the current combiner, and whenever it detects that it
should send, allocates a new combiner and points subsequent references to that.

4.1 Global Stack and Queue

Figure 5 shows an excerpt from the definition of the proxy object for the Grappa GlobalStack.
The proxy tracks pushes in the pushed values array. When pop is called, if there are pushes,
it immediately takes the top value and wakes the last pusher. Otherwise, it adds a pointer to a
location on its stack where the sync operation will write the result. Because of local matching,
when a Stack proxy is synchronized, it will have either all pops or all pushes, which makes
the implementation of sync straightforward. Note that the operation to synchronize a batch of
pushes looks almost identical to the code to do a single push from Figure 5.

The GlobalQueue has nearly the same implementation as the stack, but is unable to match
locally.

4.2 Global Set and Map

The Grappa GlobalSet uses a simple chaining design, implemented with a global array of cells
(allocated from the global heap), which are partitioned evenly among all the cores, and indexed
with a hash function. Our flat-combining version supports both insert and lookup. To track
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// Global master state
class GlobalStack {

GlobalAddress <T> top;
Grappa ::Mutex lock;

};
// Push *without* combining
void push(GlobalAddress <GlobalStack > master , T e){

// from stack’s master core , perform write to top and increment atomically
delegate ::call(master.core(), [master ,e]{

master ->lock.acquire ();
delegate :: write(master ->top , e);
master ->top++;
master ->lock.release ();

}); // blocks until response arrives
}
// Definition of proxy
class GlobalStackProxy : Grappa :: FCProxy {

GlobalAddress <GlobalStack > master;
// Local state for tracking requests
T pushed_values [1024];
T* popped_results [1024];
int npush , npop;

// Combining Methods
void push(T val);
T pop();

// Global sync (called by FC framework)
void sync() override {

if (npush > 0) {
// on master: acquire lock , return top ptr
auto top = delegate ::call(master.core() ,[=]{

master ->lock.acquire ();
return master ->top;

});
// copy values to top of stack
Grappa :: memcpy(top , pushed_values , npush);
// bump top and release lock
delegate ::call(master.core() ,[master ,npush]{

master ->top += npush;
master ->lock.release ();

});
} else if (npop > 0) {} // elided for space ...

}
};

Figure 5: Snippet of code from GlobalStack.

all of the keys waiting to be inserted, we use the hash set implementation from the C++11
standard library (std::unordered set). As with pops, lookups must provide pointers to stack
space where results should be put, which is done with a hash map (again from the C++
standard library) from keys to lists of pointers. As discussed in Section 3.2, matching lookups
with inserts locally would force a particular sequential order. Instead, we only allow matching
inserts with inserts and lookups with lookups, allowing sync to simply issue all inserts and
lookups in parallel and block until all have completed.

Our implementation of the GlobalMap matches that of the Set but of course stores values.
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Figure 6: Queue and Stack performance. Results are shown on a log scale for a throughput
workload performing 256 million operations with 2048 workers per core and 16 cores per node.
Local flat combining improves throughput by at least an order of magnitude and allows per-
formance to scale. Matching pushes and pops enables the stack to perform even better on a
mixed workload.

5 Evaluation

To evaluate the impact flat combining has, we ran a series of experiments to test the raw
performance of the data structures themselves under different workloads, and then measure the
impact on performance of two graph benchmarks. Experiments were run on a cluster of AMD
Interlagos processors. Nodes have 32 2.1-GHz cores in two sockets, 64GB of memory, and 40Gb
Mellanox ConnectX-2 InfiniBand network cards connected via a QLogic switch.

5.1 Data Structure Throughput

First we measured the raw performance of the global data structures on synthetic throughput
workloads. In each experiment, a Grappa parallel loop spawns an equal number of tasks on all
cores. Each task randomly chooses an operation based on the predetermined “operation mix,”
selecting either a push or pop for the Stack and Queue, or an insert or lookup for the Set and
Map.

Queue and Stack. Figure 6 shows the results of the throughput experiments for the global
Stack and Queue. Results are shown with flat combining completely disabled, only combining
at the master core (“centralized”), and combining locally (“distributed”).

Despite Grappa’s automatic aggregation, without combining, both the stack and queue
completely fail to scale because all workers’ updates must serialize. Though centralized com-
bining alleviates some of the serialization, its benefit is limited because all operations involve
synchronization through a single core. However, with local flat combining, synchronization is
done mostly in parallel, with less-frequent bulk synchronization at the master.
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Figure 7: GlobalStack Statistics. Measured number of combined messages sent by the Stack
with a fixed combining buffer of 1024 elements. Matched pushes and pops result in ops/message
being greater than the buffer size.

On the mixed workload, the stack is able to do matching locally, allowing it to reduce the
amount of communication drastically, greatly improving its performance. Figure 7 corroborates
this, showing that the amount of combining that occurs directly correlates with the observed
throughput.

The queue benefits in the same way from reducing synchronization and batching, and its all-
push workload performs identically to the stack’s. However, the queue is unable to do matching
locally, and in fact, the mixed workload performs worse because the current implementation
serializes combined pushes and combined pops. This restriction could be lifted with more careful
synchronization at the master core.

HashSet and HashMap. Figure 8 shows the throughput results for the Set and Map. Both
data structures synchronize at each hash cell, which allows them to scale fairly well even without
combining. However, after 32 nodes, scaling drops off significantly due to the increased number
of destinations. Combining allows duplicate inserts and lookups to be eliminated, so performs
better the smaller the key range. This reduction in message traffic allows scaling out to 64
nodes.

5.2 Application Kernel Performance

The Grappa data structures are synchronized to provide the most general use and match the ex-
pectations of programmers and algorithms. In these evaluations, we compare the flat-combining
structures against custom, tuned versions that leverage relaxed consistency needs of the appli-
cations.

Breadth-First Search. The first application kernel is the Graph500 Breadth-First-Search
(BFS) benchmark [11]. This benchmark does a search starting from a random vertex in a
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Figure 8: GlobalHashSet and GlobalHashMap. Results are shown for a throughput workload
inserting and looking up 256 million random keys in a particular range into a global hash with
the same number of cells, with 2048 workers per core and 16 cores per node.

synthetic graph and builds a search tree of parent vertices for each vertex traversed during the
search. The BFS algorithm contains a global queue which represents the frontier of vertices
to be visited in each level. Our implementation employs the direction-optimizing algorithm
by Beamer et al. [2]. The frontier queue is write-only in one phase and read-only in the next,
making it amenable to relaxed consistency. We compare performance of BFS using the Grappa
FC queue described above with a highly tuned Grappa implementation that uses a custom
asynchronous queue.

Figure 9a shows the scaling results. Using the simple queue without flat combining is
completely unscalable, but with FC, it tracks the tuned version. This illustrates that providing
a safe, synchronized data structure for initially developing algorithms for PGAS is possible
without sacrificing scaling.

Connected Components. Connected Components (CC) is another core graph analysis ker-
nel that illustrates a different use of global data structures in irregular applications. We imple-
ment the three-phase CC algorithm [3] which was designed for the massively parallel MTA-2
machine. In the first phase, parallel traversals attempt to claim vertices and label them. When-
ever two traversals encounter each other, an edge between the two roots is inserted in a set.
The second phase performs the classical Shiloach-Vishkin parallel algorithm [22] on the reduced
graph formed by the edge set from the first phase, and the final phase propagates the component
labels out to the full graph. Creation of the reduced edge set dominates the runtime of this
algorithm, but includes many repeated inserts at the boundary between traversals, so is a prime
target for the flat-combining Set. Similar to BFS, the Set is write-only first, then read-only
later, so further optimizations involving relaxation of consistency can be applied. Therefore,
we compare our straightforward implementation using the generic Set with and without flat
combining against a tuned asynchronous implementation.
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(b) Connected Components using Kahan’s algo-
rithm.

Figure 9: Performance of graph kernels on a Graph500-spec graph of scale 26 (64 million
vertices, 1 billion edges). Performance for both is measured in Millions of Traversed Edges Per
Second (MTEPS).

The results in Figure 9b show that none of these three scale well out to 64 nodes. However,
performing combining does improve the performance over the uncombined case. The tuned
version outperforms the synchronous version because it is able to build up most of the set
locally on each core before merging them at the end of the first phase. An implementation that
did not provide synchronized semantics could potentially relax consistency in a more general
way.

6 Related Work

Though much attention has gone to lock-free data structures such as the Treiber Stack [23]
and Michael-Scott Queue [18], a significant body of work has explored ways of scaling globally
locked data structures using combining to reduce synchronization and hot-spotting. Techniques
differ mainly in the structures used to do combining: fixed trees [25], dynamic trees (or “fun-
nels”) [20, 17], and randomized trees [1]. In particular, MAMA [17], built for the MTA-2,
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leveraged funnels to better utilize hardware optimized for massive concurrency. On the other
hand, flat combining [12] observed that in multicore systems, hierarchical schemes have too
much overhead, and a cleverly implemented flat publication list can perform better. Follow-on
work introduced parallel flat-combining [13], in which multiple publication lists are combined
in parallel and their remainders serialized. Flat combining was also applied in the NUMA
(non-uniform memory access) domain with scalable hierarchical locks [9], which improves on
prior work on hierarchical locking by leveraging flat-combining’s publication mechanism which
amortizes the cost of synchronization.

Our work extends the flat-combining paradigm further, to the PGAS domain, where only
software provides the illusion of global memory to physically distributed memories. The rel-
atively higher cost of fine-grained data-driven access patterns in PGAS makes flat combining
even more compelling. In addition, the physical isolation per node combined with Grappa’s
engineered per-core isolation guarantees, create a novel situation for combining, which led to
our combining proxy design.

In the distributed memory and PGAS domains, implementing scalable and distributed syn-
chronization is the name of the game. Besides Grappa, other work has proposed leveraging
latency tolerance in PGAS runtimes, including MADNESS [21] which proposes ways of using
asynchronous operations in UPC, and Zhang et al. [26] who use asynchronous messages in a
UPC Barnes-Hut implementation to overlap computation with communication and allow for
buffering. Jose et al. introduced UPC Queues [16], a library which provides explicit queues
as a replacement for locks to synchronize more efficiently and allow for buffering communica-
tion. This work demonstrates a similar use case for synchronized queues as in our work, and
uses them with the Graph500 benchmark as well. In contrast, Grappa performs much of the
same message aggregation invisibly to the programmer, and the FC framework can be used to
implement many data structures.

7 Conclusion

Coming from the multi-core domain, the flat-combining paradigm provides a new perspective
to global synchronization, bringing with it both challenges and new opportunities. We have
shown that the additional concurrency that comes with a latency-tolerant runtime, rather than
compounding the problem, provides a new opportunity for reducing communication by combin-
ing locally. In PGAS implementations there is typically a large discrepancy between the first
simple description of an algorithm and the final optimized one. Our distributed flat-combining
framework allows easy implementation of a library of flat-combined linearizable global data
structures, allowing even simple applications that use them to scale out to a thousand cores
and millions of concurrent threads.
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Applying Type Oriented Programming to the

PGAS Memory Model

Nick Brown

Abstract

The Partitioned Global Address Space memory model has been popularised by a num-
ber of languages and applications. However this abstraction can often result in the pro-
grammer having to rely on some in built choices and with this implicit parallelism, with
little assistance by the programmer, the scalability and performance of the code heavily
depends on the compiler and choice of application.

We propose an approach, type oriented programming, where all aspects of parallelism
are encoded via types and the type system. The type information associated by the
programmer will determine, for instance, how an array is allocated, partitioned and dis-
tributed. With this rich, high level of information the compiler can generate an efficient
target executable. If the programmer wishes to omit detailed type information then the
compiler will rely on well documented and safe default behaviour which can be tuned at a
later date with the addition of types.

The type oriented parallel programming language Mesham, which follows the PGAS
memory model, is presented. We illustrate how, if so wished, with the use of types one can
tune all parameters and options associated with this PGAS model in a clean and consistent
manner without rewriting large portions of code. An FFT case study is presented and
considered both in terms of programmability and performance - the latter we demonstrate
by a comparison with an existing FFT solver.

1 Introduction

As the problems that the HPC community looks to solve become more ambitious then the
challenge will be to provide programmers, who might be non HPC experts, with usable and
consistent abstractions which still allow for scalability and performance. Partitioned Global
Address Space is a memory model providing one such abstraction and allows for the programmer
to consider the entire system as one entire global memory space which is partitioned and each
block local to some process. Numerous languages and frameworks exist to support this model
but all, operating at this higher level, impose some choices and restrictions upon the programmer
in the name of abstraction.

This paper proposes a trade-off between explicit parallelism, which can yield good perfor-
mance and scalability if used correctly, and implicit parallelism which promotes simplicity and
maintainability. Type oriented programming addresses the issue by providing the options to
the end programmer to choose between explicit and implicit parallelism. The approach is to
design new types, which can be combined to form the semantics of data governing parallelism.
A programmer may choose to use these types or may choose not to use them and in the absence
of type information the compiler will use a well-documented set of default behaviours. Addi-
tional type information can be used by the programmer to tune or specialise many aspects of
their code which guides the compiler to optimise and generate the required parallelism code. In
short these types for parallelisation are issued by the programmer to instruct the compiler to
perform the expected actions during compilation and in code generation. They are predefined
by expert HPC programmers in a type library and used by the application programmer who
many not have specialist HPC knowledge.

93



Applying Type Oriented Programming to the PGAS Memory Model Nick Brown

Programmer imposed information about parallelism only appears in types at variable dec-
laration and type coercions in expressions and assignments. A change of data partition or
communication pattern only require a change of data types, while the traditional approaches
may require rewriting the entire structure of the code. A parallel programming language, Me-
sham which follows the PGAS memory model, has been developed which follows this paradigm
and we study a Fast Fourier Transformation (FFT) case study written in Mesham to evaluate
the proposed approach. The pursuit for performance and scalability is a major objective of HPC
and we compare the FFT Mesham version with that of an existing, mature solving framework
and also consider issues of programmability.

2 The Challenge

The difficulty of programming has been a challenge to parallel computing over the past several
decades[8]. Whilst numerous languages and models have been proposed, they mostly suffer from
the same fundamental trade-off between simplicity and expressivity. Those languages which
abstract the programmer sufficiently to allow for conceptual simplicity often far remove the
programmer from the real world execution and impose upon them predefined choices such as the
method of communication. The parallel programming solutions which provide the programmer
with full control over their code often result in great amounts of complexity which can be
difficult for even expert HPC programmers to master for non-trivial problems, let alone the
non-expert scientific programmers which often require HPC.

PGAS languages, which provide for the programing memory model abstraction of a global
address space which is partitioned and each portion local to a process also suffers from this
trade off. For instance, to achieve this memory model the programmer operates at a higher
level far removed from the actual hardware and often key aspects, such as the form of data
communication, are abstracted away with the programmer having no control upon these key
attributes. Operating in a high level environment, without control of lower level decisions, can
greatly affect performance and scalability of codes with the programmer reliant on the compiler
“making the right choice” when it comes to some critical aspects of parallelism.

Whilst the PGAS memory abstraction is a powerful one, on its own it still leaves complexity
to the end programmer in many cases. For example changing the distribution of data amongst
the processes can still require the programmer to change numerous aspects of their code.

3 Type oriented programming

The concept of a type will be familiar to many programmers. A large subset of languages follow
the syntax Type Variablename, such as int a or float b, which is used to declare a variable. Such
statements affect both the static and dynamic semantics - the compiler can perform analysis and
optimisation (such as type checking) and at runtime the variable has a specific size and format.
It can be thought that the programmer provides information, to the compiler, via the type.
However, there is only so much that one single type can reveal, and so languages often include
numerous keywords in order to allow for the programmer to specify additional information.
Using the C programming language as an example, in order to declare a variable m to be a read
only character where memory is allocated externally, the programmer writes extern const char
m. Where char is the type and both extern and const are inbuilt language keywords. Whilst
this approach works well for sequential languages, in the parallel programming domain there
are potentially many more attributes which might need to be associated; such as where the data
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is located, how it is communicated and any restrictions placed upon this. Representing such a
rich amount of information via multiple keywords would not only bloat the language, it might
also introduce inconsistencies when keywords were used together with potentially conflicting
behaviours.

Instead our approach is to allow for the programmer to encode all variable information
via the type system, by combining different types together to form the overall meaning. For
instance, extern const char m becomes var m:Char::const::extern, where var m declares the
variable, the operator : specifies the type and the operator :: combines two types together. In
this case, a type chain is formed by combining the types Char, const and extern. Precedence
is from right to left where, for example, the read only properties of the const type override the
default read & write properties of Char. It should be noted that some type coercions, such as
Int::Char are meaningless and so rules exist within each type to govern which combinations are
allowed.

Within type oriented programming the majority of the language complexity is removed from
the core language and instead resides within the type system. The types themselves contain
their specific behaviour for different usages and situations. The programmer, by using and
combining types, has a high degree of control which is relatively simple to express and modify.
Not only this, the high level of type information provides a rich amount of information upon
which the compiler can use and optimise the code. In the absence of detailed type information
the compiler can apply sensible, well documented, default behaviour and the programmer can
further specialise this using additional types if required at a later date. The result is that
programmers can get their code running and then further tune if needed by using additional
types.

Benefits of writing type oriented parallel codes are as follows:

1. Simplicity - by providing a well documented, clean, type library the programmer can
easily control all aspects of parallelism via types or rely on default well-documented be-
haviour.

2. Efficiency - due to the rich amount of high level information provided by the programmer
the compiler can perform much optimisation upon the code. The behaviour of types
can control the tricky, low level, details which are essential to performance and can be
implemented by domain experts which are then used by non-expert parallel programmers.

3. Flexibility - often initial choices made, such as the method of data decomposition, can
retrospectively turn out to be inappropriate. However, if one is not careful these choices
can be difficult to change once the code has matured. By using types the programmer can
easily change fundamental aspects by modifying the type with the compiler taking care
of the rest. At a language level, containing the majority of the language complexity in a
loosely coupled type library means that adding, removing or modifying the behaviour of
types has no language wide side effect and the “core” language is kept very simple.

4. Maintainability - the maintainability of parallel code is essential. Current production
parallel programs are often very complex and difficult to maintain. By providing for
simplicity and flexibility it is relatively simple for the code to be modified at a later stage.

4 Mesham

A parallel programming language, Mesham[1], has been created based around an imperative
programming language with extensions to support the type oriented concept. By default the
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language follows the Partitioned Global Address Space memory model where the entire global
memory, which is accessible from every process, is partitioned and each block has an affinity
with a distinct process. Reading from and writing to memory (either local or another processes’
chunk) is achieved via normal variable access and assignment. By default, in the absence of
further types, communication is one sided but this can be overridden using optional additional
type information.

The language itself has fifty types in the external type library. Around half of these are
similar in scope to the types introduced in the previous section and other types are more
complex allowing one to control aspects such as explicit communication, data composition and
data partitioning & distribution. In listing 1 the programmer is allocating two integers, a and b
on lines one and two respectively. They exist as a single copy in global memory and variable a
is held in the memory of process zero, b is in the memory associated with process two. At line
three the assignment (using operator := in Mesham) will copy the value held in b at process
two into variable a which resides in the memory of process zero. In the absence of any further
type information the communication associated with such an assignment is one-sided, which is
guaranteed to be safe and consistent but might not be particularly performant.

1 var a : Int : : a l l o c a t e d [ s i n g l e [ on [ 0 ] ] ;
2 var b : Int : : a l l o c a t e d [ s i n g l e [ on [ 2 ] ] ] ;
3 a:=b ;

Listing 1: Default one sided communication

The code in listing 2 looks very similar to that of listing 1 with one important modification,
at line one the type channel has been added into the type chain of variable a. This type
will create an explicit point to point communication link between process two and zero which
means that any assignments involving variable a between these processes will use the point to
point link rather than one-sided. By default the channel type is blocking and control flow will
pause until the data has been received by the target process; the programmer could further
specialise this to use asynchronous (non-blocking) communication by appending the async type
into variable a’s type chain. In such, asynchronous, cases the semantics of the language is such
that the programmer issues explicit synchronisation points, either targeted at a specific variable
or all variables, where it is guaranteed that outstanding asynchronous communications will be
completed. It can be seen that in the tuning discussed here the programmer, using additional
type information, guides the compiler to override the default behaviour. This can be done
retrospectively once their parallel code is working and allows one to tune certain aspects which
might be crucial to performance or scalability.

1 var a : Int : : a l l o c a t e d [ s i n g l e [ on [ 0 ] ] : : channel [ 2 , 0 ] ;
2 var b : Int : : a l l o c a t e d [ s i n g l e [ on [ 2 ] ] ] ;
3 a:=b ;

Listing 2: Override communication to blocking point to point

The code examples considered in this section demonstrate that, following the traditional
PGAS memory model, using types one can either rely on the simple, safe and well documented
default behaviour, or associate additional information and override the defaults as required.
Types used to specialise the behaviour are themselves responsible for their specific actions.
The benefit of this is that by keeping the majority of the language complexity in the types
contained within a loosely coupled type library, it not only results in a much simpler “core”
language but also experts can architect types which simply plug into the language.
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4.1 Comparison

Unified Parallel C (UPC)[2] is an extension to C designed for parallelism and follows the PGAS
memory model. It does this with the addition of language keywords, such as shared to marked
shared variables, and functions. Due to the limited nature of associating attributes to data using
keywords there are still decisions which the UPC programmer is stuck with such as one-sided
communication and the programmer is reliant upon the compiler to do the best job it can of
optimisation in this regard. Additionally, whilst the memory model is global and communication
abstracted, the programmer is still stuck with having to work with low level concepts such as
pointers. As discussed, in the type oriented programming model, many additional attributes
can be associated with variables by the programmer if the defaults are not suitable. All this type
information supports a higher level view of the code because the types controls the behaviour
of variables and allows for the elimination of many function calls which are common in more
traditional approaches.

High Performance Fortran(HPF)[4] is a parallel extension of Fortran90. The program-
mer specifies just the data partitioning and allocation, with the compiler responsible for the
placement of computation and communication. The type oriented approach differs because
programmer can, via types, control far more aspects of parallelism. Alternatively, if not pro-
vided, the type system allows for a number of defaults to be used instead. Co-array Fortran
(CAF)[6] provides the programmer with a greater degree of control than in HPF, but still the
method of communication is implicit and determined by the compiler whilst synchronisations
are explicit. CAF uses syntactically shorthanded communication commands like Y[:]=X and
synchronisation statements. Having these commands hard wired into the language is popular,
not just with CAF but many other parallel languages too, the result is less flexible and more
difficult to implement.

Titanium[3] is a PGAS extension to the Java programming language. The PGAS memory
model is followed as the implicit model but also allows the programmer to use explicit message
passing constructs by using additional language facilities. In this respect, providing for both a
higher level implicit memory model and more detailed explicit message passing model, Titanium
has some similarities to Mesham. However explicit control in Titanium relies on the programmer
issuing in built language keywords such as broadcast E from p and/or object methods which
results in language bloat. In Titanium moving from the default PGAS memory model to
the more explicit message passing requires rewriting portions of the code, whereas with our
approach the programmer just needs to modify the type which directs the compiler as to the
appropriate way of handing communication. The Mesham type system is designed such that
it allows the compiler to generate all possible communication options just by using additional
types.

Chapel[7] has been designed, similar to Mesham and Titanium, to allow the programmer to
express different abstractions of parallelism. It does this by providing higher and lower levels
of abstractions which support automating the common forms of parallel programming via the
former and the optimisation and tuning of specific factors using the later. There are some
critical differences between Mesham and Chapel. Firstly, many of these higher level constructs
in Chapel, such as a reduction is implemented via an inbuilt operator, instead in Mesham these
would be types in an independent library. In Chapel, if one declares a single data variable
and then writes to it from multiple parallel processes at the same time then this can result
in a race condition. The solution is to use a synchronisation variable, via the sync keyword
in the variables declaration. In the type based approach the Mesham programmer would be
using a sync type, instead of an inbuilt language keyword, one benefit of this is that if multiple
synchronisation constructs were being used (such as Chapel’s sync, single and atomic keywords)
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then the behaviour in a type chain where precedence is from right to left is well defined. Whilst
languages such as Chapel might disallow combinations of these keywords, supporting them in
a type chain allows for the programmer to mix the behaviours of different synchronisations in
a predicable manner which might be desirable.

5 FFT case study

FFTs are of critical importance to a wide variety of scientific applications ranging from digital
signal processing to solving partial differential equations. Parallelised 2D Fast Fourier Trans-
formation (FFT) code is far more complicated than the equivalent sequential code. Direct
message passing programming requires the end programmer to handle every detail of paral-
lelisation including writing the appropriate communication commands, synchronizations, and
correct index expressions that delimit the range of every partitioned array slice. Whilst using
the PGAS memory model can help abstract some of these details the programmer is reliant
upon assumptions imposed, in the name of abstraction, which can be costly in terms of scalabil-
ity and-or performance with other aspects such as the details of data transposition still needing
to be considered. A small change of how the data is partitioned or distributed may result in
code rewriting. Orienting parallelism around types, however, can relieve the end programmer
from writing low level details of parallelisation if these can be derived from the type information
in code.

1 var n :=8192;
2 var p:= p r o c e s s e s ( ) ∗ 2 ;
3 var i , j ;
4
5 var S : array [ complex , n , n ] : : a l l o c a t e d [ row [ ] : : s i n g l e [ 0 ] ] ;
6 var A : array [ complex , n , n ] : : a l l o c a t e d [ row [ ] : : h o r i z o n t a l [ p ] : : s i n g l e [

evend i s t [ ] ] ] ;
7 var B : array [ complex , n , n ] : : a l l o c a t e d [ c o l [ ] : : h o r i z o n t a l [ p ] : : s i n g l e [

evend i s t [ ] ] ] ;
8 var C : array [ complex , n , n ] : : a l l o c a t e d [ row [ ] : : v e r t i c a l [ p ] : : s i n g l e [ evend i s t

[ ] ] ] : : share [B ] ;
9

10 var s i n s : array [ complex , n / 2 ] : : a l l o c a t e d [ mu l t ip l e [ ] ] ;
11 computeSin ( s i n s ) ;
12 proc 0 { r e a d f i l e (S , ” image . dat ” ) } ;
13
14 A:=S ;
15
16 for j from 0 to A. l o c a l b l o c k s − 1 {
17 var bid :=A. l o c a l b l o c k i d [ j ] ;
18 for i from A[ bid ] . low to A[ bid ] . high FFT(A[ bid ] [ i − A[ bid ] . low ] ,

s i n s ) ;
19 } ;
20
21 B:=A;
22
23 for j from 0 to C. l o c a l b l o c k s − 1 {
24 var bid :=C. l o c a l b l o c k i d [ j ] ;
25 for i from C[ bid ] . low to C[ bid ] . high FFT(C[ bid ] [ i−C[ bid ] . low ] , s i n s

) ;
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26 } ;
27
28 S:=C;
29 proc 0 { w r i t e f i l e (S , ” image . dat ” ) } ;

Listing 3: 2D parallel FFT Mesham code

Listing 3 is the parallel aspects of the 2D FFT case study implemented in Mesham. For
brevity the actual FFT computation algorithm, a CooleyTukey implementation, and other
miscellaneous functions have been omitted. At line 5 the two dimensional array S is declared
to comprise of complex numbers be of size n in each dimension, allocated row major fashion
and a single copy of it resides upon process zero. This array is used to hold the initial data,
an image which is read in at line 12 by process zero and then the results of the transform are
placed into it and written back out at line 29. Line 6 declares variable A, again n by n complex
numbers, but this time it is partitioned via the horizontal type into p distinct partitions which
are evenly distributed amongst the processes using the evendist type. This even distribution
follows a cyclical approach where partitioned blocks will be allocated to process after process
and can cycle around if there are more blocks than processes. Line 7 declares the 2D array B to
be sized, partitioned and distributed in a similar manner to that of A but this array is indexed
column major. The last partitioned array to be declared,C which uses vertical partitioning
rather than horizontal, shares the underlying memory with B ; in effect this is a different view
or abstraction of some existing memory.

Line 10 declares the sinusoid array. Using the multiple type without further information
results in allocation to the memory of all processes and this is used to compute the pre-calculated
constant sinusoid parameters needed by the FFT kernel. Note that in this case no explicit array
ordering is provided, in the absence of further information arrays default to row major ordering.
In fact we could have omitted all row types in the code if we had wished but these are provided
to make explicit to the reader how the partitioned data is allocated and viewed.

The assignment A:=S at line 14 will result in a scattering of data held in S, which is located
on process zero, amongst the processes into each partitioned block of A. In the loop at lines 16
to 19, each process will iterate through the blocks allocated to them and for each block perform
the 1D FFT on individual rows. Assignment from A to B at line 21 essentially transposes A
and shuffles the blocks of array A across processes. This allows each process to perform linear
FFT on the other dimension locally. Because C uses vertical partitioning and is a row major
view of the data, performing row-wise FFT on C is the same as performing column-wise FFT
on B at lines 23 to 26. The last assignment S:=C gathers the data distributed amongst the
processes into array S held on process zero.

From the code listing it can be seen that the number of partitioned data blocks is two times
the number of processes. Uneven partition sizes, for instance when the number of partitions
does not divide evenly into the data size is transparent to the programmer. The types also
abstract how and where the data is decomposed and processes can hold any number of blocks
with the allocation, communication and transposition all taken care of by the type library.
In conventional languages and frameworks it can add considerable complexity when blocks of
data are uneven sizes and unevenly distributed, but using the type oriented approach this is
all handled automatically. The programmer need not worry about these low level and tricky
aspects - unless they want to where additional type information can be used to override the
default behaviour.
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5.1 Modifying data decomposition and distribution

It is often the case that programmers wish to get their parallel codes working in the first instance
and then further tune and specialise if required. Often decisions made early on, such as the
method of data decomposition, might not be correct retrospectively but can be very difficult
to change without rewriting large portions of the code. Conversely, when orientating the code
around types, changing the method of data decomposition is as simple as modifying a type.
This will abstract exactly what data is where and allows for the programmer to not only tune
but also experiment with different distribution options and how these can affect their code
performance and scalability.

In listing 3 the evendist type has been used to perform an even cyclical distribution of
the data. Instead, the programmer can change one or more of the distribution mechanisms to
another distribution type such as array distribution. The arraydist type allows the programmer
to explicitly specify what blocks reside in the memory of what processes using an integer array.
The index of each element in the array corresponds to the block Id and the value held there
which process it resides upon. Listing 4 illustrates using array distribution and is a snippet of
the Mesham FFT code declaring the distributed arrays. At line 1 the array d is declared to be
an array of p integers and in the absence of further information a copy of this is, by default,
allocated on all processes. At lines 3 to 5 for every even numbered block Id we are allocating it
to process one and uneven block Ids to process two. The arrays A, B and C are then declared
to use the arraydist type with the array d controlling what blocks belong where. Apart from
modifying the type and code for the distribution, all other aspects of the FFT code in listing
3 remain unchanged and the programmer can explicitly change what blocks belong where by
modifying the values of the distribution array d.

1 var d : array [ Int , p ] ;
2 var i ;
3 for i from 0 to p − 1 {
4 d [ i ] := i % 2 == 0 ? 1 : 2 ;
5 } ;
6
7 var A : array [ complex , n , n ] : : a l l o c a t e d [ row [ ] : : h o r i z o n t a l [ p ] : : s i n g l e [

a r r a y d i s t [ d ] ] ] ;
8 var B : array [ complex , n , n ] : : a l l o c a t e d [ c o l [ ] : : h o r i z o n t a l [ p ] : : s i n g l e [

a r r a y d i s t [ d ] ] ] ;
9 var C : array [ complex , n , n ] : : a l l o c a t e d [ row [ ] : : v e r t i c a l [ p ] : : s i n g l e [ a r r a y d i s t

[ d ] ] ] : : share [B ] ;

Listing 4: Mesham FFT example using array based data distribution

5.2 Results

Whilst the programmability benefits of orienting parallel codes around types have been ar-
gued, it is equally important to consider the performance and scalability characteristics of
this programming model. We have tested the Mesham version in code listing 3, which uses
a CooleyTukey FFT kernel against the Fastest Fourier Transformation in the West version 3
(FFTW3)[5] library. FFTW is a very commonly used and mature FFT calculation framework
which looks to optimise the computational aspect of FFT by selecting the most appropriate
solver kernel based upon parameters of the data. Performance testing has been carried out on
HECToR, the UK National Supercomputer, a Cray XE6 with 32 cores per node, 32GB RAM
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per node and interconnection via the Gemini router. Data distribution in both test codes is
that of even, cyclical, distribution with one block of data per process. The results presented in
this section are the average of three runs.

Figure 1: Performance of Mesham FFT version compared to FFTW3

Figure 1 illustrates the performance of the FFT example in Mesham compared with the
same problem solved using FFTW3. It can be seen that on small numbers of processes the per-
formance is very similar and both exhibit good scalability as the number of cores is increased
initially. There is some instability with the FFTW3 version compared to running the code
using an even and uneven partitioning of data. Previous tests using FFTW2 illustrated that
that older version of the library performed poorly when run parallel with uneven block sizes
of data. Ironically in our tests the latest version, FFTW3, exhibits better performance when
run with an uneven partitioning of data compared to an even partitioning. The performance of
the Mesham version is more stable and predictable. The rich amount of information available
at compile and runtime means that the language is able to select the most appropriate form of
communication for specific situations automatically. The one size fits all approach of commu-
nication adopted by many existing libraries is often optimised for specific cases and does not
necessarily perform well in all configurations. At medium numbers of core counts the perfor-
mance of the Mesham FFT version is more favourable than that of FFTW3 although as we
go to larger numbers of processes the Mesham version does degrade faster. Due to the slightly
larger overhead of the presently implemented Mesham parallel runtime system, performance
degradation sets in somewhat earlier for this strong scaling scenario than in the highly tuned
Cray MPI implementation.
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Due to the abstractions provided by the PGAS memory model and our use of types, it is
entirely possible to maintain correctness of the code whilst running on different architectures
although this might have a performance impact. The implementation of Mesham is such that
all architecture dependant aspects, for example how specific communications are implemented,
are directed through a runtime abstraction layer which can be modified to suit different target
machines. The runtime abstraction layer used for the experiments in this paper was for each
PGAS processor to be single processes which are connected via MPI. A threading layer also
exists which Mesham codes can use unmodified, and an avenue of further work will be to explore
how we might optimise performance by selecting or mixing these layers. As previously noted, by
changing types the programmer can very easily change key aspects of their code or experiment
with different choices such as data decomposition, and this will promote easy tuning to specific
architectures. Contrast against more traditional approaches, such as MPI, the porting of these
codes to different architectures or mixing paradigms such as OpenMP with MPI often requires
substantial and indepth changes to be made.

5.3 Usage in library development

The FFT case study that we have considered in listing 3 simply illustrates the code in a single
function. It is worth mentioning the suitability to more advanced codes, or even library devel-
opment, where data using these complex type representations are passed between functions. In
the current implementation of Mesham the entire type chain of a variable must be specified in
the formal arguments of a function, which means that the compiler has detailed knowledge of
the variables passed to a function and can perform appropriate static analysis and optimisations
upon them. At runtime, when passed as an actual argument to a function, data will already
have been allocated which occurs as part of a variable’s declaration. The Mesham runtime
library keeps track of the state of all program variables which means that during execution
functions not only know the exact type of data but also its current state. The result is that,
for the FFT example, no redistribution of the data would be required if passed to a function.

6 Conclusions

This paper is not intended to describe the entire language Mesham but illustrate the central
ideas behind the programming paradigm and demonstrate advantages when applied to the
PGAS memory model. Aspects of this paradigm could, in the future, be used as part of existing
PGAS languages to get the best of both worlds - a solution which parallel programmers are
already familiar with but the added programmability benefits of our approach.

The rationale behind type oriented parallelism is not only to generate a highly efficient
parallel executable but also enable programmers to write the source program in an intuitive and
abstract style. The compiler essentially helps the programmer determine various sophisticated
details of parallelisation as long as such details can be derived from the types in the source
program. Optimization algorithms can also benefit from such additional type information.
We have used a 2D parallel FFT case study to evaluate the success of our approach, both in
terms of programmability with the benefits this affords, and also performance when compared
to more traditional solving solutions. It has been seen how the Mesham programmer can
architect their code at a high level using language default behaviour and then, by modifying
type information, further specialise and tune whereas existing PGAS solutions often impose
specific “best effort” decisions upon the programmer. By using types programmers can even
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experiment with different choices, such as data decomposition, which traditionally require a
much greater effort to modify.

We have compared the performance of the FFT Mesham case study against that of FFTW3.
Whereas FFTW3 optimises heavily based upon the computation aspect; our version, where
the compiler and runtime optimise the communication based upon the rich amount of type
information, performs comparatively and in some instances favourably. There is further work
to be done investigating why the performance of the Mesham version decreases more severely
than FFTW past the optimal number of processes and we are looking to extend our version to 3D
FFT with additional data decompositions such as Pencil. We also believe that Mesham would
make a good platform for exploring heterogeneous PGAS, where the complexity of managing
data stored on different devices can be abstracted via types. As discussed in section 5.2 all
machine dependant aspects are current managed via a runtime abstraction layer, and further
development of this could allow for existing codes to be run unmodified on these heterogeneous
machines.
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Abstract

A Technical Specification (TS) is being prepared that extends Fortran 2008 by adding
more coarray features. We provide a brief description of the features. Of particular note
is the ability to continue execution after the failure of some images.

1 Introduction

Fortran 2008 (ISO/IEC 2010) contains features for parallel programming using a SPMD (Single
Program Multiple Data) model. The program is replicated and each replication, known as an
image, has its own set of data objects. Each image can access its own objects as a traditional
Fortran program. In addition, those objects that are declared as coarrays may be accessed
directly from other images by using an additional set of subscripts, known as cosubscripts,
in square brackets. For a detailed explanation, see Chapter 19 of Metcalf, Reid, and Cohen
(2011).

In February 2008, it was decided to remove some of the coarray features that were in the
draft revision of the Fortran standard at that time in order to reduce its size and avoid delays
associated with reaching consensus on the detailed design. It was promised that the features
that had been removed would be the subject of a Technical Specification (TS) that extended
Fortran 2008. This TS was postponed for completion of work on another TS, on further features
for interoperability with C. Serious consideration of the TS on further coarray features began
early in 2012.

The features that were removed in 2008 were

1. The collective intrinsic subroutines.

2. Teams and features that require teams.

3. The notify and query statements.

4. Files connected on more than one image, except for the files preconnected to the units
specified by output unit and error unit.

The Fortran committee (ISO/IEC JTC1 SC22/WG5) decided in June 2012 that while the
overall size and complexity of the features should be similar to that of the features removed in
2008, the details should be different. In particular

1. The collective intrinsic subroutines should be reduced in number, but should include one
to provide a general reduction based on a user-written procedure.

2. The team feature should allow a procedure written for all images to execute on a team
without any changes.

3. The notify and query statements should be replaced by support of events.

4. Not to add a special feature for files connected on more than one image.
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5. To add support for more atomic operations.

6. To add support for continued execution after the failure of some images.

In the rest of the paper, we will summarize and explain each of these features. For full details,
see the current draft (WG5 2013). Note that this is just a draft and the details are likely to
change. We will use square brackets [ ] to indicate optional syntax items. As far as we know,
support of continued operation after the failure of an image has not been attempted in any
other language, although similar facilities are being considered for the next MPI specification.

2 Collective subroutines

The following collective subroutines are included. Each invocation must be made by the same
statement on all the images of the current team and the invocations must be in the same
order. It is to be expected that some synchronization will occur within an invocation but not
necessarily at the beginning or end.

call co broadcast(source,source image) where source is a coarray and source image is
an integer. This copies the value of source on source image to all other images.

call co max(source [,result] [,result image]) where source is of a type integer, real,
or character. It need not be a coarray. This subroutine computes the maximum value of
source on all images elementally (as a scalar if source is scalar and an array if source
is an array). If result is present, the result is placed there and source is not changed;
otherwise, source is overwritten by the result. If result image is present, the result is
defined on image result image and is undefined on other images.

call co min(source [,result] [,result image]) is similar to co max but returns minimum
values.

call co sum(source [,result] [,result image]) is similar to co max but sums the elements.
It is for types integer, real, and complex.

call co reduce(source, operator [,result] [,result image]) is similar to co sum but
is available for any type and applies the user’s operator instead of summation. operator
is a pure elemental function with two arguments of the same type and type parameters as
source and result of the same type and type parameters. It is required to be mathematically
commutative.

All these collectives have optional arguments stat and errmsg to indicate whether the call was
successful and provide error messages.

3 Teams

Teams are defined by scalar values of the derived type team type, defined in the intrinsic module
ISO Fortran env. At any one time, each image executes as a member of a team that is known
as the current team. Initially, the current team consists of all images. The value of a team
variable is formed by executing the statement
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form subteam(id, team [,new index=ni] [,stat=st] [,errmsg=em])

where id is an integer with a positive value and team is a variable of type team type. The
same statement must be executed on all images of the current team (except those that have
failed, see Section 6) and each joins the subteam consisting of all those with the same subteam
identifer id. For example, the statement

form subteam(2-mod(this_image(),2), odd_even)

divides the current team into two halves, according to whether the image index is odd or even.
If new index= is present, ni is an integer that specifies the image index that the executing image
will have in the subteam. The values on images of the subteam must all be different and in the
range 1 to the number of images in the subteam. The execution of a form subteam statement
involves synchronization of all the images of the current team. This allows implementations to
hold data within the team variable to facilitate efficient execution as a team.

The team is changed by execution of the change team construct:

change team(team [,stat=st] [,errmsg=emsg])
block

end team

Within block, each image executes as part of its subteam, defined by team.

Figure 2 at the end of Section 6, which illustrates continued execution with failed images, shows
the formation of subteams and the use of the change team construct.

There is an implicit synchronization of all images of the subteam of the execting image and
another implicit synchronization of these images at the end team statement. The team that
was current when the change team statement was executed is known as the parent team of the
team that executes block. This parent-child relationship gives any executing team a chain of
ancestor teams. The team distance from a team to an ancestor is the number of links in this
chain. The intrinsic function

team_depth()

returns the team distance to the original team of all images.

The intrinsic function

subteam_id([distance])

returns the subteam identifier that was used in the form subteam statement that constructed
the current team (distance absent) or the ancestor team at team distance distance.

An optional argument distance has been added to the intrinsic function this image to return
the image index of the executing image when it was part of the ancestor team at team distance
distance.

An optional argument distance has been added to the intrinsic function num images to return
the number of images in the ancestor team at team distance distance.

To preserve the ability of implementations to use symmetric memory, where each coarray
is stored from the same location on each image, any allocatable coarray that was allocated
before the change team block is executed must not be deallocated during its execution and any
allocatable coarray that is allocated during its execution is automatically deallocated on its
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completion unless it has already been deallocated.

All cosubscripts and image indices are normally relative to the current team, but syntax has
been added to for cosubscripts to refer to an ancestor team. For example

a[ancestor:: i,j]

refers to the coarray a on the image for which it has cosubscripts i,j within the team ancestor.
This makes data on images outside the current team accessible. All the synchronization
statements of Fortran 2008 apply only to the images of the current team, but the images
of any team may be synchronized by execution of the statement

sync team(team [,stat=st] [,errmsg=emsg])

including a team that is an ancestor, a descendant, or neither.

4 Events

An image can use an event post statement to notify another image that it can proceed to
work on tasks that use common resources. An image can wait on events posted by other images
and can query if images have posted events.

Events are stored in scalar coarray variables of the derived type event type defined in the
intrinsic module ISO Fortran env. Each holds a count of the difference between the number
of successful posts and successful waits. The initial value of this count is zero.

Events are posted by executing the statement

event post(event [,stat=st] [,errmsg=emsg])

and waits occur by execution of the statement

event wait(event [,stat=st] [,errmsg=emsg])

If the count of the event is zero, a wait occurs until it becomes positive. A successful wait
decrements the count by one. The event in an event wait statement is not permitted to be
coindexed, that is, it must be a local variable. This restriction allows efficient execution of the
event wait statement.

There are restrictions to prevent the value of an event changing other than through the execution
of event post and event wait. Events may be queried with the intrinsic subroutine

call event_query(event, count [,status])

which provides the current event count for event. The integer status is given the value zero
after a successful query and a nonzero value otherwise.

An example involving a producer-consumer program is shown in Figure 1.

5 Atomic operations

In Fortran 2008, a sequence of statements executed on an image between two image control
statements such as sync all is known as a segment. In general, the programmer is required to
ensure that if a variable is defined in a segment it is not referenced on defined in a segment on
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use, intrinsic :: iso_fortran_env

integer :: i, count

type(event_type) :: event[*]

i = this_image()

do

i = i + 1

if (i>num_images()) i = 1

if (i/=this_image()) then

call event_query(event[i], count)

if (count==0) then

! Produce work packet for image i

event post(event[i])

end if

else

event wait(event)

! Consume work packet from another image

end if

! If all work completed, exit

end do

Figure 1: Producer-consumer program.

another image unless the segments are ordered, say by the use of the sync all statement.

However, this rule may be broken for a scalar variable atom of type integer(atomic int kind)

or logical(atomic logical kind), whose kind value is defined in the intrinsic module iso fortran env

by calling an atomic subroutine. The effect of executing an atomic subroutine is as if the action
on the argument atom occurs instantaneously and thus does not overlap with other atomic
actions that might occur asynchronously. The allowed types are limited because it is anticipated
that there may be special hardware to support atomic actions on them.

Fortran 2008 contains only two atomic subroutines, atomic define and atomic ref. The TS
adds five more atomic subroutines.

For the atomic addition of two integers, the intrinsic subroutine

call atomic_add(atom, value [,old])

is provided. Here, atom is a scalar of type integer with kind atomic int kind and value is a
scalar integer. It is overwritten atomically by adding value to it. If old is present, it is given
the previous value of atom.

For bitwise operations on the bit in two integers, the intrinsic subroutines

call atomic_and(atom, value [,old])

call atomic_or(atom, value [,old])

call atomic_xor(atom, value [,old])

are provided. The arguments are as for atomic add but apply the specified bit operation.

For atomic compare and swap for two integers or logicals, the intrinsic subroutine

call atomic_cas(atom, old, compare, new)
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is provided. Here, atom is a scalar of type integer with kind atomic int kind or of type
logical with kind atomic logical kind, old is of the same type as atom, compare is of the
same type and kind as atom, and new is of the same type as atom. If atom and compare have
the same value, atom is given the value of new. The variable old is given the previous value of
atom.

6 Failed images

A failed image is one for which references or definitions of variables fail when that variable
should be accessible, or the image fails to respond as part of a collective activity. A failed
image remains failed for the remainder of the program execution.

The value stat failed image in the intrinsic module ISO Fortran env is a possible return
value for a stat= specifier for any of these statements change team, end team, form subteam,
sync all, sync images, sync memory, sync team, lock, unlock, event post, event wait,
allocate, or deallocate, and for the stat argument of a collective subroutine. This return
value will occur if there is a failed image in the current team. In the case of sync all,
sync images, or sync team, the statement will have successfully synchronized all the images
of the specified set that have not failed. In the case of form subteam, the statement will
have successfully formed a subteam of those images that have not failed. If an allocate or
deallocate statement is otherwise successful, the allocations and deallocations will have been
performed on the images that have not failed and these images will have been synchronized.
For lock, unlock, event post, event wait, or a collective subroutine, the desired effect will
probably not have been achieved. If no status option is specified for any of the statements
mentioned in this paragraph and a failed image is involved in its execution, the program is
terminated.

The intrinsic function num images has been extended to have an optional argument failed as
well as the additional optional argument distance (see Section 3). If failed is present with
the value true, the number of failed images in the current team, or the ancestor team at team
distance distance, is returned and if failed is present with the value false, the number of such
images that have not failed is returned.

Which images have failed may be determined by the function

failed_images([kind])

This returns an integer array holding the image indices of the failed images in the current team
in increasing order. If kind is present, it specifies the kind parameter of the result.

Figure 2 shows how a code that can continue after a failure might be written. The images
are divided into two halves that each redundantly perform the whole required calculation.
Periodically, each checks to see if the corresponding image of the other half has failed. If it has,
it checks its own team and if this too has a failure, terminates the whole calculation.
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use ISO_Fortran_env ! Specifies team_type and stat_failed_image

integer :: i,me,p,st

type(team_type) :: half,partner

me = this_image()

p = num_images()

i = 1; if (i>p/2) i = 2

form subteam(i, half)

i = me; if (i>p/2) i = me-p/2

form subteam(i, partner)

change team (half)

! Perform whole calculation

:

sync team(partner,stat = st)

if (st==stat_failed_image) then

! Partner has failed. Check my team.

sync memory(stat=st)

if (st==stat_failed_image) error stop

end if

:

end team

Figure 2: Contining after an image faliure.

Another possibility for recovery is for the executing images to form a new team for continued
execution:

if (num_images(failed=.true.) > 0 ) then

form subteam(1, recover)

sync all (stat=st) ! Will return stat_failed_image

change team (recover)

: ! Execute as a subteam

end team

end if
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Abstract

Performance modeling and tuning parallel and distributed applications often require
comprehension of a large and complex code base to identify static locations in the source
code and dynamic points in the program execution that are performance hotspots or po-
tential pitfalls. Proper tool support is essential for these tasks. This paper describes
XAnalyzer, a first-of-its-kind framework that uses pointcuts-and-advice aspects to identify
patterns in the source code and program execution structure that are possible causes of per-
formance bottlenecks, or that may be restructured for better performance. XAnalyzer also
offers suggestions to remedy the problems and improve runtime performance. Evaluation
of XAnalyzer on a number of benchmarks illustrates its correctness. Also, the performance
improvements, in the range of 7% and 87%, achieved through program restructuring based
on the XAnalyzer’s report illustrates its importance and usefulness.

1 Introduction

An understanding of the performance model of a language helps programmers develop efficient
programs. Without proper tool support, programmers must remember critical implementation
details of several high-level language constructs, and must also navigate and comprehend large
pieces of code to identify source locations that may benefit from performance tuning. For
concurrent and distributed programming paradigms, such as Asynchronous Partitioned Global
Address Space languages [6], identifying such locations is even more challenging.

This paper presents XAnalyzer, a framework that identifies patterns in source code and
execution behaviour of an X10 application. These patterns may be potential sources of perfor-
mance bugs and the application may benefit from the use of alternative language constructs or
simple code refactoring. XAnalyzer offers suggestions that programmers may use to alleviate
the bottlenecks or to improve performance. The overarching goal of XAnalyzer is to reduce the
cognitive effort and the time required to diagnose and tune performance-critical pieces of code
and to enhance reasoning about the performance model of an application.

A common way to identify specific source-code patterns in a program is using static analy-
sis. For example, Vasudevan et al. [10] combine clock analysis and aliasing analysis to identify
patterns of clocks (dynamic barriers) in X10 programs that do not require full-blown implemen-
tation of a typical clock. The default clock implementation in X10 enables distributed activities
to synchronize. However, if all activities registered to a clock belong to the same place, a much
faster clock implementation that avoids the overhead of a distributed synchronization protocol
is possible.
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Contrary to mainstream approaches for pattern identification, XAnalyzer uses aspect-orientation
and also relies on program execution behaviour because: (i) it is a unified performance-
diagnostic framework that encompasses both statically identifiable patterns and also the ones
that manifest during runtime; (ii) pointcuts in aspects offer a concise mechanism to identify and
describe the patterns of interest in both source-code locations and program-execution points;
(iii) aspect-orientation provides a modular and pluggable implementation with the guarantee
of a zero cost of instrumentation when turned off. It is difficult to achieve a similar guarantee
when compiler and runtime implementations are instrumented.

XAnalyzer correctly identified important source-code locations, constructs and optimization
opportunities that are critical to performance in several applications used in its evaluation. The
performance benefits achieved in applications tuned with such information demonstrate that
the insights provided by XAnalyzer are important and useful.

2 Related Work

There are several tools, and communication interfaces that characterize parallel applications for
high-performance tuning on multicore clusters. However, they are neither tailored for the Asyn-
chronous Partitioned Global Address Space (APGAS) programming model nor they cater to
the unique needs of the X10 programming language owing to its semantics and implementation.

The PerfExpert [2] tool detects core, socket, and node-level performance bottlenecks in-
side loops and procedures. It uses a local-cost-per-instruction metric to identify and report
performance pitfalls. The scope of XAnalyzer is comparatively broader – it analyzes parallel
constructs such as async, place, and the communication structure between places, besides loops
and procedures, to identify possible characterizations of interest to the programmer.

Diamond et al. [3] use hardware metrics such as cache miss rates, shared off-chip memory
bandwidth, and DRAM page conflicts to determine the scalability of applications on multicore
chips and multi-chip nodes. While their analyses can complement XAnalyzer, their work differs
from ours in two ways. First, they derive scalability information from an application’s execution
characteristics, while XAnalyzer focuses both on source code constructs, and dynamic execu-
tion behaviour to diagnose possible performance pitfalls – including scalability concerns, such
as excessive remote memory accesses. Second, XAnalyzer goes further and provides possible
suggestions as well to tune the applications.

The Global Address Space Performance (GASP) interface [9] is a standard framework for
performance analysis of GAS languages and libraries. GASP assumes that most PGAS lan-
guages use GASnet [1] for communication. However, HPC compilers, such as X10, are not
strictly using the same interface. Therefore, GASP is not applicable to all of them. Also, cou-
pling compiler and instrumentation code complicates future modification of the performance
monitoring code. XAnalyzer is completely decoupled from the compiler and the runtime code.

The Parallel Performance Wizard (PPW) [8] identifies performance bottlenecks and their
causes in PGAS applications. Based on critical-path, scalability, and load-balancing analyses,
PPW also provides suggestions for removing bottlenecks. Unfortunately, PPW is tailored for
PGAS SPMD languages such as UPC and Co-Array Fortran, and does not support X10. Fur-
ther, PPW’s analyses may not be meaningful in the context of X10. For example, visualization
of array distribution is meaningful in UPC because the visualization shows how each statically-
allocated shared array is distributed across the threads at runtime. In X10, the portion of
a distributed array in a place is equally visible and directly accessible to all the place-local
threads. Further, X10’s Asynchronous PGAS semantics poses significant challenge to directly
use PPW – X10 is different from these languages and uses different semantic constructs, code
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generation techniques, and compiler and runtime implementations.
X10DT [11], X10’s integrated development tool, offers development environment, but does

not offer suggestions to programmers on potential source-code locations and constructs that
may be sources of performance bottlenecks.

In the absence of a targeted performance diagnosis and reporting tool and given the difficulty
in porting other available tools to fit X10’s needs, XAnalyzer provides a modular and pluggable
implementation to analyze X10 programs with avenues for future extensions.

3 X10 Preliminaries

Every computation in X10 is an asynchronous activity. An X10 place is a repository for related
data and activities. Every activity runs in a place. X10 provides the statement async (p) S to
create a new activity at place p to execute S. Places induce the notion of locality. The activities
running in a place may access data located at that place with the efficiency of on-chip access.
Access to a remote place may take orders of magnitude longer, and is performed using the at

(p) S statement. An at statement shifts the control of execution of the current activity from
the current place to place p, copies any data that is required by the statements S to p, and, at
the end, returns the control of execution to the original place. The necessary data copying is
done through the runtime system calls inserted by the compiler.

X10 provides DistArrays, distributed arrays, to spread data across places. An underlying
Dist object provides the distribution, telling which elements of the DistArray go in which place.
Dist uses subsidiary Region objects to abstract over the shape and even the dimensionality of
arrays. Specialized X10 control statements, such as ateach, provide efficient parallel iteration
over distributed arrays [7].

X10 provides cross-place references to a shared variable using GlobalRef[T]. X10 also
supports defining objects with distributed state using PlaceLocalHandle[T].

4 Design Overview

.x10 

.java 

XRX 

 x
10

c 
C

O
M

P
IL

E
R

 

.aj 

x10rt 

aspectjrt 

  a
jc

  C
O

M
P

IL
E

R
 

.class 

X
10

 L
au

nc
he

r 

output 

Performance 
characteristics 

Phase-1 Phase-2 Phase-3 

Figure 1: Architecture of XAnalyzer.

The architecture of XAnalyzer is shown in Figure 1. For lack of an aspect-orientation
language for X10, XAnalyzer first compiles the X10 user program to Java, and weaves the
pointcuts-and-advice aspects that encode the rules identifying performance-critical patterns of
interest into the Java code. The aspect-woven byte-code then executes and reports a concise
assessment of the program. Such a design of aspects based on the internals of the X10 compiler
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offers a direct linkage between the runtime behaviour and the contributing static structures.
Further, the design also offers XAnalyzer additional information about programs for perfor-
mance diagnosis that may not always be available or evident from the X10 source code. For
example, it is not apparent from the X10 source code if an at (p) S statement is actually
serialized or not, but the Java intermediate code explicitly exposes Java’s serialization calls to
reflect this information. The demerit of relying on the Java intermediate code is that the same
compilation scheme may not be adopted by other APGAS compilers.

The design of XAnalyzer provides a modular implementation that does not tangle or cut
across the X10 compiler or the runtime. As a stand-alone pluggable implementation, it can be
modified or extended separately and without any changes to other parts of the code.

5 Performance-critical Code Patterns

We explored a wide-body of patterns in X10 programs, but XAnalyzer encodes only those pat-
terns that are critical to performance. They are reported in Table 1. XAnalyzer’s suggestions
about possible code refactoring are not based on proven program-analysis techniques. Thus, the
suggestions are not necessarily precise or sound, and users must use them only as guidelines per
se. Nevertheless, information about possible opportunities for optimization at specific source
locations, or language constructs is valuable during performance tuning.

5.1 False Place Shifts

To perform a place shift, the X10 code generator creates a closure that executes statement S,
serializes the closure, sends the serialized data to place p, and executes the closure in place p.
The closure encapsulates an isomorphic copy of the object graph reachable from S. The caller
of the at statement is blocked until the at statement returns. These operations are expensive
but necessary for shifting part of an activity to a remote place. However, for false place-shifts,
where an activity is shifted to its current place, such operations are unnecessary overheads and
must be avoided. The X10 implementation may be able to eliminate or otherwise optimize
some of this serialization, but it must ensure that any program visible side-effects caused by
user-defined custom serialization routines happen just as they would have in an unoptimized
program [4]. Thus, automatic optimization of serialization requires a complex global analysis
to ensure that it does not interfere with user-defined serializations. Furthermore, performing
global analysis to identify and preclude such false place-shifts may incur high overheads that
may not be offset by the resulting benefits. Therefore, even for a local place (i.e., p == here)
execution of at statement entails copying and serialization of all the program state referenced
by S. However, such overheads can be easily avoided by simple code re-structuring:

at (p) S =⇒ if (p == here)

S;

else

at (p) S;

For the example in Figure 2, XAnalyzer identifies the source code locations that involve
false place-shifts and reports them as follows 1:

line 117: KMeansDist.x10: False place-shift at (there) atomic {
1XAnalyzer reports all occurrences of such place shifts. For brevity, we show only occurrence of each program

pattern in this section.
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110 finish {

111 val clustrsGr = GlobalRef(clustrs );

112 val numClustrsGr = GlobalRef(numClustrs );

113 val there = here;

114 for(d in points_dist.places ()) async {

115 val tnewClustrs = lnewClustrs ();

116 val tClustrCounts = lClustrCounts ();

117 at(there) atomic {

118 for(var j:Int=0; j<DIM*CLSTRS; ++j) {

119 clustrsGr ()(j) += tnewClustrs(j);

120 }

121 for(var j:Int=0; j<CLSTRS; ++j) {

122 numClustrsGr ()(j) += tClustrCounts(j);

123 }

124 }

125 }

126 }

Figure 2: Example of a false place shift.

5.2 Distributed Asyncs and Finish

X10 permits arbitrary patterns of task creation and termination through flexible combination
and nestings of at and async statements inside finish. If a finish encloses remote asyncs,
detecting their termination entails communication costs and latency. Each place maintains
a counter for each finish statement to keep track of the activities spawned and terminated.
Once all activities in a place terminate, the local quiescence event is transmitted to the finish

place. These costs of distributed termination detection increase with the number of places
involved in finish. Therefore, the X10 runtime dynamically optimizes finish by optimistically
treating as if it encloses only local asyncs and then dynamically switching to a more expensive
distributed algorithm only upon encountering an at inside finish. The runtime also performs
sparse message encodings, message coalescing, and lazy allocation of counters to minimize these
overheads.

The runtime also provides efficient implementations specialized for commonly occurring
patterns of distributed concurrency. For example, X10 provides the FINISH DENSE pragma to
indicate that a finish does not need to monitor spawning or termination of asyncs in remote
places. Consider an example where a remotely spawned child async spawns an async back at
its parent’s place. Such a finish is optimized by ignoring both the termination of the parent
task in the current place and the spawning of the child task in the remote place. The finish

only needs to track async creation at the local place with the termination of the child task at
the remote place. X10 also provides optimized implementation of five other forms of finish,
but relies on user guidance to identify the particular pattern of asyncs enclosed by the finish.

In the absence of a fully automated compiler analysis that can identify and apply the related
optimizations, the case for XAnalyzer becomes even more stronger. An overview of the places
involved in a finish, and also its nesting structure helps programmers make better use one of
these available pragmas. XAnalyzer reports distributed finish statements as:

line XXX: finish {place(0), place(1), place(2), place(3)}

The line number indicates the location of finish in the program.
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5.3 Asynchronous Execution

An activity is created by executing the async statement: async S, which starts a new activity
located here executing S. To start a new activity at a specific place, X10 offers the at (p)

async S construct. The costs of executing async, at (here) async (i.e., p==here) and at

(p) async are different. The async construct works directly on the place-resident data and
does not need to create their copies. However, the execution of at (here) async creates copies
of all the values used in S to the local place, i.e., here, even though there is no actual change of
place, and the original values already exist in the place. Thus, the cost of running at (here)

async is higher than that of running async. Further, the cost of running at (p) async is
higher than that of running at (here) async because it involves inter-node communication to
create the copies at the remote node p. Therefore, it is important to use the appropriate async
construct for local and remote places.

However, the overheads of data copying, closure creation and serialization can be easily
avoided by a simple code re-structuring as shown below:

async at (p) S =⇒ if (p == here)

async S;

else

at (p) async S;

For the FSSimpleDist program used in our evaluation, XAnalyzer reports such source code
locations as:

line 46: FSSimpleDist.x10: Async serialized locally

async at (Place.place(p)) {

5.4 at (p) async vs async at(p)

For remote execution of tasks, X10 offers two possible ways of combining async and at state-
ments: at (p) async and async at (p). The first form evaluates the expression p syn-
chronously using the parent async activity, while the second form evaluates p asynchronously
with the parent async as it is enclosed in the body of the async. In many cases, using any of
these two forms interchangeably is semantics preserving.

When the expression p can be evaluated statically, at (p) async is preferred over async

at(p). The execution of at (p) async is translated into a single asynchronous message to the
remote place p, while the execution of async at (p) creates an activity at the current place
and shifts that activity to the remote place. Shifting the place of an activity in this manner is
significantly more expensive than the former form. XAnalyzer alerts programmers about such
opportunities for using cheaper forms of async as:

Found async at (p): at (p) async is preferred

5.5 Excessive Serialization

A large number of place shifts incurs communication and serialization overheads. Frequent
place shifts may occur if data is declared local to a place but accessed by activities from several
other places. A high-level characterization of place shifts in an application may encourage
programmers to test other constructs such as GlobalRefs, where they have greater control over
the data that is serialized. XAnalyzer summarizes the cross-place “at” references as:
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Cross-place “at” references:

{place(1)→ place(0), place(2)→ place(0), ...}

where place(1) → place(0) represents a place-shift from place 1 to place 0.

5.6 Expensive Data Capture

The execution of at may entail copying of significantly more data than programmers may
realize. For example, accessing a field of an instance or calling an instance method will require
capturing the entire object using this. One way to avoid capturing expensive data is to
manually refactor the code to extract the parts of an object that are actually referenced within
the at statement into local variables and then to use them (instead of the entire object) in the
body of the at statement. For the example in Figure 3, XAnalyzer identifies and reports such

1 public class FieldRefInAt {

2 static class Foo {

3 private val selfRef = GlobalRef[Foo](this);

4 public var flag: boolean;

5 // transient public var flag: boolean;

6 }

7 public def setField () {

8 val nxtPlace = here.next ();

9 val baz = (at(nxtPlace) new Foo ()). selfRef;

10 at (baz) { baz (). flag = true; }

11 return true;

12 }

13 public static def main(Array[String ](1)) {

14 val res = new FieldRefInAt (). setField ();

15 }

16 }

Figure 3: Example of field access inside at statement.

expensive data capture as:

line 10: FieldRefInAt.x10: Expensive “this” capture inside “at”

For this synthetic example, capturing the entire object with this can be avoided by quali-
fying the flag variable as transient, as shown in line 5 in Figure 3.

5.7 For-loop index

In X10, for-loop optimization is highly sensitive to trivial details of how the loop is written.
The X10 compiler converts some for loops over rectangular regions into counted for loop nests.
The optimizations apply only on for loops that iterate over a region or an array using an un-
named exploded-form index 2. The snippet of code in Figure 4 shows a for loop that uses the
name p to iterate over the intArray (line 7).

X10 currently does not optimize such loops. XAnalyzer identifies such loops and alerts the
user as follows 3:

2For a 2D array r of size 1..10*1..10, an example of a for loop with un-named exploded-form of index is:
for([i,j] in r).

3The AspectJ compiler does not provide pointcuts to capture joinpoints on loops. Therefore, we use the
AspectBench compiler to identify for-loops.
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1 public class UnOptimizedForLoop {

2 public static def main(Array[String ](1)) {

3 val r = 1..5*1..5;

4 val intArray = new Array[Int]

5 (r, ([i,j]:Point (2))=>i*j);

6 //for ([i,j] in intArray) {

7 for (p in intArray) {

8 intArray(p) += intArray(p);

9 // intArray(i,j) += intArray(i,j);

10 }}

11 }

Figure 4: Example of for loop that will not be optimized.

line 7: UnOptimizedForLoop.x10: Unexploded named point found in for-loop:

Exploded un-named form of index preferred

Simple refactoring of the for loop to use un-named exploded form of index, as shown by
the commented lines in Figure 4, will allow the compiler to optimize the loop.

5.8 Struct vs Class

In X10, an object implementation requires some extra storage to save its runtime class informa-
tion and also a pointer for each reference to the object. An object also requires an extra level of
indirection to read and write data, and also some runtime computation for dynamic dispatch.
Such space and time overheads can be prohibitive in high performance computing if incurred on
all objects. X10 provides structs, stripped-down objects, to mitigate these overheads. Structs
are less powerful than objects because they lack inheritance and mutable fields. Without in-
heritance, method calls do not need to do any lookup and can be implemented directly. Thus,
structs avoid some space and time overhead that objects typically incur.

Struct may not always be a preferred choice for performance tuning over class. For
instance, using an array of struct can offer higher locality benefits over using an array of
references to objects (owing to random heap locations where objects are allocated). However,
if an application uses several references to objects, creating multiple instances of structs would
be significantly more expensive than using objects. Further, refactoring a class to a struct

may require further semantics-preserving changes to other parts of the code. instanceOf

relationship, for example, would no longer apply to structs.

Thus, a programmer must eventually decide whether restructuring a class as a struct

leads to performance gains, and preserves the correctness of the entire application, or neces-
sitates some code changes. But having a choice about possible optimization opportunities is
nevertheless a useful information. XAnalyzer informs programmers about such an opportunity
as follows:

No inheritance and “var” fields in Class: Struct is preferred

Figure 5 shows a snippet of code from the GCSpheres benchmark. The Vector3 class inside
the GCSpheres class does not inherit any other class or interface and does not declare any field
as var. Such a class can be easily refactored as a struct as shown by the comment in line 3.
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1 class GCSpheres {

2 static type Real = Float;

3 // static struct Vector3(x:Real ,y:Real ,z:Real){

4 static class Vector3(x:Real ,y:Real ,z:Real){

5 public def getX () = x;

6 public def getY () = y;

7 public def getZ () = z;

8 public def add (other:Vector3)

9 = new Vector3(this.x+other.x,

10 this.y+other.y,

11 this.z+other.z);

12 public def neg ()

13 = new Vector3(-this.x, -this.y, -this.z);

14 public def sub (other:Vector3)

15 = add(other.neg ());

16 public def length () = Math.sqrt(length2 ());

17 public def length2 () = x*x + y*y + z*z;

18 }

19 ...

20 }

Figure 5: Example of Class that can be refactored as Struct.

6 Use of Aspects in XAnalyzer

A detailed description of Aspect Oriented Programming (AOP) is beyond the scope of this
paper. AOP is introduced in a seminal paper by Kiczales et al. [5]. This section provides a high
level overview of one aspect used in XAnalyzer to illustrate the use of aspects in XAnalyzer.

Figure 6 shows a snippet of aspect that identifies and reports async statements that
are serialized to the local place. The X10 compiler internally converts async at(p) S into
runAsyncAt(..) calls. The pointcut (line 16) runAsyncAtCall() captures all calls to the
runAsyncAt(..) method in the user program. The before() advice (line 18) captures the
place where the async statement is executed and stores it in placeId (line 19). If the place is
local, the advice retrieves and stores the line number of the runAsyncAt(..) call. Then, after
the main method of the user program executes (line 4), the advice prints the source locations
that lead to serialization of local asyncs, and also prints out the first line of code related to the
runAsyncAt(..) method.

7 XAnalyzer Evaluation

This section describes the benchmarks, experimental platform and experiments used in the
evaluation of XAnalyzer.

7.1 Benchmarks

The benchmarks used in the experimental evaluation were chosen from the standard X10 com-
piler release, except for the ForLoop micro-benchmark which we wrote ourselves.

(a) ForLoop is a synthetic benchmark that performs element-wise copy of an Integer array of
size 1000.

(b) NQueensDist is a distributed NQueens problem.
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1 public aspect LocalAsyncSerializationReporter {

2 pointcut mainMethod ():

3 execution(public static void main (..));

4 after() returning: mainMethod () {

5 Iterator it = locSetComments.iterator ();

6 while(it.hasNext ()) {

7 int line =(( Integer)it.next ()). intValue ();

8 showLines(filename , line);

9 extractLineNums(filename , line);

10 }

11 }

12 static int commentLine = 0;

13 Set <Integer > locSetComments =

14 new HashSet <Integer >();

15 pointcut runAsyncAtCall ():

16 call (* runAsyncAt (..));

17 before (): runAsyncAtCall () {

18 Place placeId

19 = (Place)thisJoinPoint.getArgs ()[0];

20 if (placeId.id == 0){

21 commentLine

22 = tjp.getSourceLocation (). getLine ();

23 codeLoc = new Integer(commentLine -2);

24 locSetComments.add(codeLoc );

25 }

26 }

27 }

Figure 6: Aspect that diagnoses serialization of local async.

(c) FRASimpleDist is a simple version of the HPC RandomAccess benchmark.

(d) FSSimpleDist is a simple version of the HPC Stream benchmark.

(e) GCSpheres represents the real-world problem in graphics engines of determining which ob-
jects in a large sprawling world are close enough to the camera to be considered for render-
ing.

(f) StructSpheres is an optimized version of GCSpheres that uses struct instead of a static class.

(g) KMeansDist clusters 2000 points into four clusters.

(h) MontePi computes the value of π using the Monte-Pi algorithm.

(i) Histogram computes the histogram of an array A into Rail B.

(j) HeatTransfer solves 2D partial differential equations that can be expressed as iterative 4-point
stencil operations.

(k) SSCA1 is the HPC Scalable Synthetic Compact Application that provides analytical schemes
to identify similarities between sequences of symbols.

7.2 Experimental Setup

All performance measurements were done on a blade server with 8 nodes, each featuring two
2 GHz Quad-Core AMD Opetron processors (model 2350), with 8 GB or RAM and 20GB
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swap space, running CentOS GNU/Linux version 6. One worker thread was used in each core,
amounting to a total of 64 threads. Each benchmark was run ten times, and the bars in the
performance graphs report their average along with the 95% confidence intervals.

7.3 Correctness and Applicability

Used on a number of benchmarks, XAnalyzer provided a concise and correct assessment of
program characteristics related to performance. XAnalyzer suggested alternative constructs to
remedy performance pitfalls and code refactorings to improve program performance. Table 1
shows the list of program characterizations reported by XAnalyzer. XAnalyzer also displays
the relevant pieces of code, and the source-code locations for each program characteristic as
discussed in Section 5. For space reasons, they are not shown in Table 1. The table also
describes (in italics) information that is suppressed by XAnalyzer because it is either expected
characteristic or is not relevant to performance tuning and modeling.

For each benchmark, the program patterns identified and the corresponding reports gener-
ated by XAnalyzer are shown in Table 2.

Program Patterns Critical to Performance

A
Unexploded named point found in for loop:
Exploded un-named form of index preferred

B
Expensive this capture inside at:
Extract values needed inside at into local variables

C Cross-place at references: {p1 →p0, ..., pn → p0}
D ateach characterization not yet supported

E Distributed Finish {p1, .., pn}

F
Found async at (p):
at (p) async is preferred

G
async serialized locally:
Use async S (if p == here)

H
GlobalRef references: {p1 → p0, p2 → p0, ...}:
PlaceLocalHandle may be an alternative

I
No inheritance and var fields in Class:
Struct is preferred

J
Found false place-shift:
Use S (if p == here) instead of at (p) S

Table 1: Program patterns identifiable by XAnalyzer.

7.4 Performance Benefits of Optimization

Figure 7 shows the execution time of the benchmarks – the Opt version of each benchmark was
obtained by restructuring it using the information displayed by XAnalyzer. The UnOpt version
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Benchmarks
Program Characterizations

A B C D E F G H I J

ForLoop 4
NQueensDist 4 4 4
FRASimpleDist 4 4 4 4
FSSimpleDist 4 4 4 4
KMeansDist 4 4 4 4
MontePi 4 4 4
GCSpheres 4
Histogram
HeatTransfer
SSCA1 4 4 4

Table 2: Patterns in benchmarks identified by XAnalyzer.

is the unoptimized one.4

FRASimpleDist benchmark was optimized by preventing serialization of an async to the
local place, and also by replacing async at(p) with at(p) async. The program contains one
occurrence of each of these constructs. Thus, the performance benefit resulting from remedying
them is small, i.e, 7%.

ForLoop micro-benchmark achieved a performance gain of 60% only from restructuring of
the for loop’s index to use un-named exploded form.

KMeansDist achieved the largest performance gain (87%) among the benchmarks studied.
KMeansDist is an iterative clustering algorithm. In each of its 50 iterations, the unoptimized
KMeansDist clustering algorithm includes: a) three instances of async that are spawned locally
and serialized to the same place, b) one instance of false place shift, and c) three occurrences
of async at(p) that could be restructured as at (p) async.

The contribution of each optimization removing these performance pitfalls is shown in Fig-
ure 8. Performance gains achieved from each individual program restructuring is small and
within the 95% confidence interval of one another. However, when combined together, the op-
timizations show significant gains. The highest gain is achieved by combining all optimizations,
as indicated by the last bar in Figure 8.

SSCA1 was optimized using at(p) async instead of async at(p), and also by preventing
local serialization of async statement. The SSCA1 implementation has one occurrence of each
of these constructs in the code, but they are executed several times inside a loop, and also
over several places. Thus, the resulting performance gain is significant, i.e., 42% over the
unoptimized version.

MontePi’s unoptimized version uses PlaceLocalHandle to store local results at each place,
and then gathers the local results from each place at the root place to compute the value of

4Only the execution time for benchmarks where meaningful optimizations could be performed is shown.
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Figure 7: Execution time of the benchmarks for optimized and unoptimized versions. Shorter
bars are better.

π. The optimized implementation uses GlobalRef to a shared variable at the root place. This
variable holds the sum of local results from all places, instead of storing them in a distributed
PlaceLocalHandle data structure. The optimized version also removed one instance of false
place-shift. The benefit from the single place-shift optimization is not statistically significant,
hence, it is not shown. All of the performance gain, i.e., 48% over the unoptimized version,
in MontePi stems from the use of GlobalRef to update a single variable rather than using
PlaceLocalHandle.

GCSpheres was optimized to use a static nested struct instead of a static nested class.
The optimized version is the StructSpheres benchmark. As evident from Figure 7, StructSpheres
does not perform better than GCSpheres. GCSpheres creates several objects despite its use of
struct. The garbage collector likely leads to high perturbation in execution time and thus,
masks any performance improvement obtained using struct.

In summary, this experimental evaluation indicates that the performance gain due to each
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Figure 8: Breakdown of performance benefit from different optimizations on KMeansDist.
Shorter bars are better.

of the code changes implemented after the identification of the opportunities by XAnalyzer
depends not only on the benefit of each dynamic execution of the change, but also on the
relative frequency of that section of code during execution. Further, the overall performance
gains obtained by combining several optimizations is statistically significant and higher than
those contributed by individual optimizations.

7.5 Performance Overhead due to Aspects

The third bars in the execution-time graphs in Figure 7, labelled as Opt+Inst, show the
overhead of weaving aspects into user code. The perturbation due to aspect instrumentation is
within 95% confidence interval of the execution time.

8 Conclusions and Future Work

XAnalyzer identifies and reports interesting patterns in X10 programs with the premise that
offering high-level insights about a program’s static source-code structure and its dynamic
behaviour allows programmers to improve performance through code restructuring. Indeed, a
number of program patterns pertaining to serialization, communication, spawning parallel tasks,
and referencing shared variables are correctly identifiable by XAnalyzer in the set of benchmarks
studied. Using these insights to performance tune the benchmarks removed several sources of
overhead resulting in significant performance improvements.

Through pointcuts-and-advice-based instrumentation of programs, XAnalyzer provides a
modular and an easy-to-understand implementation that has several opportunities for future
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extension. To the best of our knowledge, XAnalyzer is the first framework that characterizes
X10 programs in this way, and it offers insights for performance tuning.

Currently, XAnalyzer does not identify the ateach construct that provides efficient parallel
iteration over distributed arrays. Future development will include support for characterization
of additional X10 constructs that are critical to performance. A proper integration of XAnalyzer
and existing development tools, such as X10DT, will make developing and performance tuning
of X10 applications even more productive and fun.
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Abstract

Applications in increasingly important domains such as data mining and graph analysis
operate on very large, dynamically constructed graphs, i.e. they are composed of dynami-
cally allocated objects linked together via pointers. Parallel algorithms on large graphs can
greatly benefit from software Distributed Shared Memory’s (DSM) convenience of shared-
memory programming and computational scalability of multiple machines. However, prior
DSM systems did not provide programming and memory abstractions suitable for working
with large dynamic data structures.

In this paper, we present dynamic DSM (dyDSM), an object-based DSM that targets
applications which operate on large dynamic graphs. To achieve this goal, dyDSM differs
from traditional DSM systems in four important ways. First, dyDSM provides program-
ming abstractions that expose the structure of the distributed dynamic data structures
to the runtime enabling the communication layer to efficiently perform object level data
transfers including object prefetching. Second, the dyDSM runtime enables the manage-
ment of large dynamic data structures by providing various memory allocators to support
parallel initialization and storing of dynamic data structures like graphs. Third, dyDSM
provides support for exploiting speculative parallelism that is abundant in applications
with irregular data accesses. Fourth, dyDSM runtime actively exploits the multiple cores
on modern machines to tolerate DSM access latencies for prefetching and updates. Our
evaluation on a 40-core system with data mining and graph algorithms shows that dyDSM
is easy to program in the very accessible C++ language and that its performance scales
with data sizes and degree of parallelism.

1 Introduction

Clusters offer horizontal scalability both in terms of number of processing cores and the amount
of memory. They are especially attractive for modern applications because, with the advances
in network technology, a cluster can provide an application with a faster storage system than
a disk based storage system [7]. While distributed memory clusters are more powerful than
the shared memory machines they are composed of, programming them is challenging. While
PGAS languages [14, 6, 12] ease distributed programming, they primarily explore parallelism
for array-based data-parallel programs using data partitioning. For the most part they do not
consider dynamic data structures nor do they explicitly support software speculation.

We have developed dyDSM which targets applications that employ large dynamic data
structures and overcomes the inadequacies of prior DSM systems. Specifically, we target appli-
cations that operate on large dynamic data like graphs that exhibit no spatial locality and can
exploit speculation for speedup. dyDSM addresses these issues by providing:

∗This research was supported in part by a Google Research Award and NSF grants CCF-1318103, CCF-
0963996 and CCF-0905509 to the University of California, Riverside.
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1. Programming abstractions to communicate structure of the distributed data structure to
the compiler;

2. Multiple allocators to perform parallel and local initialization and distribution of data
structures;

3. Programming abstractions to effectively express speculation in programs and a runtime
to transparently perform speculation on clusters; and

4. A runtime to actively exploit the multiple cores present on individual machines in the
cluster.

Like PGAS languages, dyDSM automatically manages the distributed address space, but
adds language and runtime support for speculative execution. We now describe the application
features of interest and indicate the areas where prior solutions fall short.

Absence of Spatial Locality. Previous DSM systems (virtual memory and cache coherence
protocol inspired systems [21] and Single-Program, Multiple Data [5] systems) were not de-
signed to support dynamic data structures, did not support speculative parallelism, and did
not consider multicore machines. They mostly targeted applications that use large arrays that
exhibit spatial locality while the applications we study extensively use dynamically allocated
data structures that lack spatial locality. Therefore caching and software cache coherence pro-
tocols [21] that they employ are ineffective in tolerating communication latency for the irregular
applications we target.

dyDSM effectively deals with lack of spatial data locality in irregular applications: pro-
gramming annotations expose the structure of the distributed dynamic data structures to the
runtime enabling the communication layer to perform object level data transfers including object
prefetching. By avoiding the use of traditional caching protocols, the need for cache coherence
protocols and thus their drawbacks are eliminated.

Large Dynamic Data Structures. Previous object-based systems like Orca [1] required
the programmer to explicitly and statically partition and allocate data across cluster. The
computations were then executed on the site that contained the data. Given the absence
of spatial locality in graph-like dynamic data structures, there is no intelligent way for the
programmer to statically partition the data. Therefore, dyDSM takes this burden off the
programmer by providing allocators that automatically and uniformly distribute the data across
the cluster. Further, with large dynamic data structures, initializing the data in parallel is
also very important. Otherwise, the data initialization could itself become a bottleneck. For
this, dyDSM provides specialized allocators that enable parallel initialization and I/O of large
data. Finally, dyDSM also provides an allocator to allocate data locally, in cases where the
programmer knows in advance that some data is mostly used locally, and only occasionally
needed on other machines in the cluster. The object transfers between thread-private memory
and virtual shared memory are managed automatically by dyDSM.

Speculative Parallelism for Irregular Applications. Exploiting parallelism in irregular
applications often also requires the use of speculation [26]. With irregular programs being our
targeted applications, dyDSM eliminates the need for general purpose caching and coherence
by employing thread-private memory for the copy-in copy-out speculative model [13]. The DSM
is organized as a two-level memory hierarchy designed to implement the copy-in copy-out model
of computation [13] that supports speculation but does not require use of traditional memory
coherence protocols. As shown in Figure 1, the second level of DSM, named virtual shared
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memory, aggregates the physical memories from different machines to provide a shared mem-
ory abstraction to the programmer. The first level of DSM consists of virtual thread-private
memories (PM) created for each of the threads.
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Figure 1: Memory hierarchy of dyDSM on a modern cluster.

To perform a computation, each thread must first copy-in the required data from the virtual
shared memory into its virtual private memory. Then the thread can continue to use the local
data copies in its private memory to perform computations. The copy-out of modified data
from the private memory to the virtual shared memory makes it visible to all other machines.
This computation model has two advantages. First, when a thread performs its computation
using its private memory, it is able to exploit the temporal data locality without generating
network traffic. Second, this model makes it easy to write programs that exploit speculative
parallelism found in applications that employ dynamic data structures. Finally, the copy-in
copy-out operations are introduced and performed by the dyDSM compiler and runtime, i.e.
they do not burden the programmer. The programmer simply indicates the need for speculation
by marking regions of code as atomic and dyDSM automatically handles all the above details.

Exploit Multicores for Tolerating Communication Latency. None of the previous DSM
systems (eg. ORCA [1], Shasta [22] or Emerald [15]) were designed to utilize the modern
multicore machines. Users can overcome this limitation by treating each processor core as
a node in the DSM system and run multiple parallel computation tasks on each machine.
However, due to the limited network resources on each machine, the performance may not scale
well with the number of cores used from each machine. Since multicore machines are widely
used today, dyDSM is designed to efficiently use of all of the available cores. Specifically, dyDSM
utilizes a subset of available cores for asynchronous, off-the-critical-path communication, thus
better hiding network latency than possible with previous approaches.

We have developed a prototype of the dyDSM system. The user writes programs in C/C++
augmented with dyDSM programming abstractions. The code is translated via dyDSM com-
piler based upon LLVM [19] to generate parallel code that calls the dyDSM runtime to effect
allocation of objects in DSM and perform data transfers between thread-private memory and
virtual shared memory. The runtime also implements speculation. We evaluated dyDSM on
a cluster consisting of five eight-core machines using seven applications, including data mining
applications (K-means Clustering, PageRank, Betweenness Centrality) and widely used graph
algorithms (Delaunay Refinement, Graph Coloring, BlackScholes, Single Source Shortest Path).
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These applications process large volumes of data. Our evaluation using 5 machine cluster with
total of 40 cores yielded average speedup of 7x.

The rest of this paper is organized as follows. Section 2 describes our programming interface.
Section 3 describes representation of dynamic data structures in DSM. Section 4 describes how
dyDSM implements communications and supports speculation. Section 5 provides results of
evaluation. Sections 6 and 7 discuss related work and conclusion.

2 Programming Interface of dyDSM

The programming interface of dyDSM does not place any significant burden on the program-
mer as it is like an interface for a shared memory system with some easy-to-use augmentations.
dyDSM provides a familiar, shared memory-like API that allows creation and manipulation of
dynamic data structures with ease. The augmentations perform the important task of identify-
ing the presence and communicating the structure of a distributed dynamic data structure to
the dyDSM runtime. They also indicate the form of parallelism, speculative or non-speculative.
We now describe these programming extensions for use in C/C++ programs.

I. Structure declaration. Structure declarations are used to expose the details of the dis-
tributed dynamic data structures to the runtime enabling the communication layer to perform
object level data transfers including object prefetching. In dyDSM, dynamic data structures
are declared just like in shared-memory programs. The programmer need only add the dsm

annotation to the type declaration of an object type and the pointer variables that point to that
object type. As an example, Figure 2 shows how a graph data structure must use annotation
so that the created graph will reside in DSM. The dsm annotation is used in two places: the
definition of struct Node; and the array of pointers neighbors[ ] which links one node to its
neighboring nodes in the distributed data structure. The same can be achieved if Node were
defined as a class. While the annotation is simple to use for the programmer, the complex task
of distributing the dynamic data structure is automatically carried out by the dyDSM runtime.

dsm struct Node {
int value;

dsm struct Node *neighbors[MAX DEGREE];

};

Figure 2: Annotations for a distributed graph.

II. Dynamic allocation and deallocation. dyDSM eliminates the programmer burden
of static partitioning and distribution of data across the cluster by providing allocators that
automatically and uniformly distribute the data across the cluster. Further, with large dynamic
data structures, dyDSM provides specialized allocators that enable parallel initialization and
I/O of large data. Finally, dyDSM also provides an allocator to allocate data locally, in cases
where the programmer knows in advance that some data is mostly used locally, and only
occasionally needed on other machines in the cluster.

As in shared memory systems, in dyDSM, all annotated data structures are dynamically
allocated and deallocated. Data distribution is achieved automatically at the allocation site
by the dyDSM runtime. When an object is allocated at runtime, it is assigned to one of the
machines in the cluster.

Table 1 shows the programming constructs provided by dyDSM for dynamically allocating
and deallocating objects in DSM. They are similar to the new and delete operators in C++
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Construct Description ID Format

dsm new Node; allocate an element of type Node

and assign it to one of the ma-
chines

[Node Type]-[Alloc.

Type]-[Machine ID]-[Serial]

dsm lnew Node; allocate an element of type Node

and assign it to the local machine
[Node Type]-[Alloc.

Type]-[Machine ID]-[Serial]

dsm cnew Node, id; allocate an element of type Node

with id as its ID and assign it to
one of the machines

[Node Type]-[Alloc.

Type]-[Customized ID]

dsm delete pnode; deallocate the element referred
to by pointer pnode

--

Table 1: Programming constructs for element allocation and deallocation.

except they allocate space in the DSM.The dsm new construct randomly assigns the allocated
element to one of the machines for load balancing. The dsm lnew construct assigns the allocated
element to the local machine. It is used to avoid unnecessary communication when the element
is mostly accessed by the local machine. This is true if data is well partitioned among the
machines. Construct dsm cnew is designed to allow users to specify a customized id for an
object. The last construct, dsm delete, is used to deallocate the object referred to by the given
pointer.

Next we illustrate the dynamic creation of the graph data structure declared in Figure 2
using dsm new. We will illustrate the use of dsm lnew and dsm cnew in the next section. It is
assumed that the graph is being read from a file and created and stored into the DSM. In Figure
3 the first loop (lines 4–8) reads the node information and allocates the nodes in dyDSM. The
second loop (lines 9–12) reads the edge information and connects the nodes accordingly. Each
invocation of dsm new (line 6) assigns a given node to a random machine in the cluster. Array
node ptrs is a local variable that stores all node IDs, which are later used for adding edges.

01 // single thread builds the graph

02 if ( threadid == 0 ) {
03 begin dsm task(NON ATOMIC);
04 for(i=0; i<nodes; i++) { // read nodes
05 read node(file, &id, &v);

06 node ptrs[id] = dsm new Node;

07 node ptrs[id]→value = v;

08 }
09 for(i=0; i<edges; i++) { // read edges
10 read edge(file, &id1, &id2);

11 node ptrs[id1]→nbrs.add(node ptrs[id2]);

12 }
13 end dsm task();
14 }

Figure 3: Reading graph from a file and storing it in DSM.

III. Expressing Parallelism. Parallelism is exploited by creating multiple threads which
execute the same code; however, they operate on different parts of the data structure. While
this is similar to prior approaches for expressing parallelism, the difference in the code arises
due to use of copy-in copy-out computation model [13]. Each thread executes blocks of code
marked using begin dsm task() and end dsm task() in copy-in copy-out fashion. During the
course of executing a code block the thread-private memory is used and any data not found
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in the memory is copied into it. Thus the execution of a code block by a thread is carried
out in isolation from other threads. At the end of the code block’s execution the results are
committed to the owners in virtual shared memory and made visible to all other threads. Note
that programmer does not explicitly specify the data transfers but rather they are achieved
via compiler introduced calls to the dyDSM runtime. Finally, the programmer can specify
whether the update of shared memory must be ATOMIC or can be NON ATOMIC. In the former
case, atomic update guarantees sequential consistency at the code block level. It is used to
implement speculative parallelism such that in case of misspeculation, commit fails and the
execution of code block is reexecuted. The dyDSM runtime that implements virtual shared
memory is responsible for checking atomicity.

01 // each thread works on a subset of nodes

02 for(i=tid*stride; i<(tid+1)*stride; i++) {
03 begin dsm task(ATOMIC);
04 nodeset = NULL;//construct subset of nodes

05 nodeset.insert(node ptrs[i]);

06 while( (node = nodeset.next()) != NULL)

07 for(j=0; j<node→neighbors.size(); j++)

08 if ( check cond(node→neighbors[j]) )

09 nodeset.insert(node→neighbors[j]);

10 update(nodeset); // update info. in nodes

11 end dsm task();
12 }

Figure 4: Parallel computation using speculation.

Let us next illustrate the use of code blocks by threads and the use of ATOMIC and NON ATOMIC.
If we examine the example in Figure 3, because only a single thread constructs the graph,
NON ATOMIC is used. Figure 4 illustrates the use of ATOMIC. It shows a loop that performs com-
putation on a pointer-based data structure. Similar loops can be found in many applications
such as Delaunay refinement, agglomerative clustering [18], and decision tree learner [24]. In
this loop, each thread executes a set of iterations of the outer for loop based upon its tid. A
single iteration forms a code block that is executed atomically. During an iteration a node set
is constructed from a given node in the data structure and then the computation performed
updates the information in the node set. Although each iteration mostly works on different
parts of the data structure, possible overlap between set of nodes updated by different threads
(i.e., speculative parallelism) requires the use of ATOMIC. Note that it is difficult to write the
above parallel loop using distributed memory programming model such as Message Passing
Interface (MPI) since it requires developers to manually synchronize the pointer-based data
structure across different memory spaces. On the other hand, dyDSM makes it easy to write
the above parallel loop since the pointer-based data structure can be shared through reading
and writing in the DSM.

3 Distributed Data Structures in dyDSM
In dyDSM, dynamic data structures are distributed in the virtual shared memory across multiple
machines and objects on one machine can be logically linked to those on other machines.
Moreover, as threads access and operate on objects of the data structure, these objects are
copied into the thread-private memory. The same object may be present in the private memory
of multiple threads. Figure 5 shows a graph data structure in virtual shared memory and
copies of subsets of nodes in thread private memory on two machines. Let us discuss how a
distributed data structure is represented and how the operations on it are implemented. The
implementation of the dyDSM communication layer will be discussed in section 4.
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Figure 5: An example of dynamic data structure stored in dyDSM.

The compiler translates the annotated data structures and pointers by introducing calls
to dyDSM runtime at appropriate places so that data needed by a thread is made available
in its thread-private memory via data transfers performed by dyDSM runtime. The compiler
instruments each annotated data structure to ensure when an object is accessed, the runtime is
called to check if the object is in the thread-private memory. If not, data transfer is performed
to copy the data object from the remote memory to the thread-private memory. All subsequent
accesses to the same object will be directed to the copy in the private memory.

The dynamically allocated objects can only be accessed via pointers. Each object is assigned
a unique ID that acts as its virtual address and is used to access it. Thus, the pointers are
merely represented as IDs of objects they point to. When an object is allocated, its ID is
generated by the runtime on the machine where the allocator is called. In dyDSM, an ID of
an object is a string consisting of three parts: object type; allocation type used to allocate the
object; and a unique string generated according to the allocation policy. The runtime fills the
first two parts at the time of allocation. The unique string is determined according to the
allocation mechanism used.

The construction of the unique string according to the allocation mechanism used is shown
in Table 1 (third column). When dsm new and dsm lnew are used, the unique string is a
combination of the machine ID where the allocator is called and a unique number which is
generated using a local counter. When construct dsm cnew is used, the unique string in the
ID is specified by the programmer. This construct is designed for expressing dynamic arrays.
Accessing the element using the customized ID is similar to accessing an array element in
C/C++, where the structure type and customized ID are used as the array name and index.

When an ID is dereferenced, information in it is used to locate the object and then the
object is copied into the thread-private memory. When committing data to shared memory,
the runtime uses the object IDs to locate the owner machine. For different types of IDs (n, l,
or c), different schemes are used to locate the machine where the object is stored. For object
allocated using dsm new (i.e., n type ID), the machine is located by hashing the ID. For object
allocated using dsm lnew (i.e., l type ID), the machine is located using the machine ID stored
in the object ID. For an object allocated using dsm cnew (i.e., c type ID), the machine is located
by hashing the object ID.

In Figure 3, we demonstrated how a single thread can read a graph from a file build it using
dsm new and store it in DSM. Now, we demonstrate how the same task can be performed in
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parallel using dsm cnew. We assume that the input file is replicated on all machines. Each
thread reads the entire file; however, it only builds part of the graph. In Figure 6, in the first
loop (lines 3–7) each thread reads the node information and assigns each node a customized
ID using dsm cnew. In the second loop (lines 12–19), each thread updates the edges in the
graph using the customized node IDs. With the use of customized IDs, we avoid using the
array node ptrs used in Figure 3 that may not fit in the local memory if the graph is extremely
large. As we can see from line 12, the update of edges requires use of ATOMIC as multiple threads
may be adding edges to the same node.

01 begin dsm task(NON ATOMIC);
02 // read nodes
03 for(i=0; i<(threadid+1)*stride1; i++) {
04 read node(file, &id, &v);

05 if ( i >= threadid*stride1 ) {
06 dsm cnew Node, id;
07 Node[id].value = v;

08 }
09 }
10 end dsm task();
11 // read edges
12 for(i=0; i<(threadid+1)*stride2; i++) {
13 read edge(file, &id1, &id2);

14 if ( i >= threadid*stride2 ) {
15 begin dsm task(ATOMIC);
16 Node[id1].nbrs.add(&Node[id2]);

17 end dsm task();
18 }
19 }

Figure 6: Reading and storing a graph in DSM in parallel via speculation.

While the code shown in Figure 6 requires use of ATOMIC, next we show how to perform
parallel graph construction without use of ATOMIC using dsm lnew. As before, in this version
we assume that the input file is replicated on all machines. Each thread reads the file and
constructs part of the graph identified to belong to its partition. In Figure 7 a dynamic array
is created using dsm cnew for holding pointers to nodes. It is used by all threads to locate nodes.
However, dsm lnew is used to allocate nodes. All nodes are allocated locally on the machine
where they belong. When we update nodes by adding edges, each thread only updates nodes
in its own partition. Thus, not only do we avoid the use of speculation, we also achieve greater
efficiency due to locality.

4 Data Communication in dyDSM

Next we describe the communication layer of dyDSM and show how it implements data trans-
fers and performs communication in parallel with computation. The communication layer also
supports prefetching to further hide network latency and implements atomic updates of DSM
to support speculation.

I. Communication exploiting multicore machines. In dyDSM, each multicore machine
runs multiple computation threads. The performance sometimes does not scale well with the
number of parallel computation tasks on each machine. To improve performance in this case,
dyDSM uses a communication layer consisting of a multiple communication daemons that trans-
fer data between the thread-private memory and the virtual shared memory (see Figure 5). The
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01 // read nodes
02 begin dsm task(NON ATOMIC);
03 for(i=0; i<nodes; i++) {
04 read node(file, &id, &v);

05 if ( partition(id) == threadid ) {
06 dsm cnew NodePtr, id;
07 NodePtr[id] = dsm lnew Node;

08 NodePtr[id]→value = v;

09 }
10 }
11 end dsm task();
12 // read edges
13 begin dsm task(NON ATOMIC);
14 for(i=0; i<edges; i++) {
15 read edge(file, &id1, &id2);

16 if ( partition(id1) == threadid )

17 node ptrs[id1]→nbrs.add(NodePtr[id2]);

18 }
19 end dsm task();

Figure 7: Reading a graph and storing it in DSM in parallel without using speculation.

daemons run on underutilized cores, helping the computation threads perform communication.
The communication is moved off the critical path of a computation thread by offloading it to
daemon threads. Thus, computation and communication is performed in parallel for improved
performance.

The communication layer works as follows. On a thread’s first reference to an object in
virtual shared memory, the communication layer copies the object from the virtual shared
memory to the thread’s private memory. Subsequent accesses to the object, including both
read and write, refer to the object copy in the private memory. Thus, the thread manipulates
the object in isolation, free of contention with other threads. More importantly, caching the
object eliminates the communication overhead of subsequent access to the same object. When
a thread calls dsm end task(), the communication layer commits all modified objects in the
private memory to the virtual shared memory allowing other threads to see the updates.

The communication daemons perform data communication in parallel with computation.
When a thread needs an object, one of the daemons fetches the object from the shared memory
for it. After the thread gets the object and continues its computation, the daemon can continue
to prefetch the objects that will be probably accessed in the future. This can ensure that
the data required by the thread is mostly available locally when needed. When a thread calls
dsm end task(), one of the daemon also helps it perform commit so that the computation
thread can continue to the next computation. Thus, the communication layer hides the network
latency from the threads. As a result, the threads only need to operate on data in thread-private
memory. Communication layer hides read latency by prefetching data needed by threads and
hides write latency by performing commit in parallel with computation.

II. Adapting the number of communication daemons. The number of communication
daemons directly impacts the performance of the system. Figure 8 shows the performance
of two benchmarks with different number of communication daemons. The execution time is
normalized to the one with one communication daemon. More communication daemons in
graph coloring help move more communication off the critical path. However, increasing the
number of communication daemons also leads to consuming more computing resources and
eventually slows down the performance. For SSSP, one daemon is the best choice. We use a
dynamic scheme to find the minimal number of communication daemons to use.
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Figure 8: Performance with varying number of communication daemons.

In dyDSM, a queue between the computation threads and the communication layer holds all
pending communication requests from computation threads. The queue length is used as a hint
to pick the number of daemons. Large queue length means that outstanding communication
requests get queued, degrading performance. Longer queue can also cause higher misspecula-
tion rates due to delay in misspeculation detection. On the other hand, empty queue could
indicate that the number of communication daemons is more than needed, wasting computing
resources. In dyDSM, the program always starts with a small preset number of communication
daemons. Each time a communication daemon processes a communication request, it checks the
queue length. If the queue length is larger than the number of daemons, dyDSM increases the
number of communication daemons by a predefined stride. If the queue length is smaller than
the number of communication daemons, the number of communication daemons is decreased.
To reduce the overhead of starting and terminating daemons, our implementation puts extra
daemons to sleep rather than terminating them.

III. Data prefetching. When a computation task wants to access an object, it first checks
whether a copy already resides in the thread-private memory. If not, the computation task waits
for the remote access to fetch the data object. To avoid this wait, the communication daemons
prefetch data for the computation tasks. To perform data prefetching, when a data element is
accessed by a computation task for the first time, a communication daemon also predicts what
elements are likely to be accessed next. If the predicted elements have not been previously
copied into the local virtual memory, then the daemon sends data requests to their owners. The
prediction is implemented similar to an event handler. To enable data prefetching, programmer
must register a prediction function for the dynamic data structure. The dyDSM construct used
to register the prediction function identifies the data structure requiring prefetching and the
recursion limit (or depth) up to which the prediction is to be performed. When an element of
the data structure is accessed, a communication daemon calls the prediction function, which
takes the accessed element as input and fetches the elements that are likely to be accessed.

dsm predict(struct Node, 2)

void prediction node(struct Node *pnode) {
for (int i=0; i<MAX DEGREE; i++)

dsm fetch(pnode→nbrs[i]);

}

Figure 9: An example of user-defined prediction function.

Figure 9 shows an example of a user-defined prediction function for the graph data structure
used in the example from preceding section. The prediction function prefetches all 2-hop neigh-
bors of the accessed node. This can be used in computations working on connected subgraphs,
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which is true in many graph applications (e.g., Delaunay Refinement, Betweenness Centrality,
Coloring).

IV. Speculation in dyDSM. Many parallel programs require speculation to perform com-
putation correctly. For example, in graph coloring, each computation calculates the color of
one node using the colors of its neighbors. It is possible for two parallel threads to read and
write the color of one node at the same time; thus causing two neighboring nodes to have the
same color. With speculation, all threads are assumed to access different nodes. They perform
computation in isolation. When two threads actually access the same node, one thread succeeds
in committing its results while the other fails and is reexecuted. With speculative execution,
we also achieve sequential consistency at coarse-grained level of code regions.

Speculation requires threads to perform computation atomically and in isolation. In dyDSM,
isolation comes for free since our communication layer and the use of thread-private memory
already ensure computations are performed in isolation. Therefore, speculative execution does
not affect the computation between begin dsm task() and end dsm task(). To ensure atomic-
ity, speculation requires the commit to be performed atomically. When speculation is enabled,
the communication layer performs commit as follows: (i) First, the daemon sends request to the
virtual shared memory to lock all objects marked as read in the private memory. If locking fails
for any object, it releases all acquired locks and then retries locking again. (ii) After successful
locking, the daemon compares the versions of all read objects in the private memory with their
versions in the virtual shared memory. If the versions do not match, it means that one of the
read objects must have since been updated by another thread in the virtual shared memory.
Therefore, the computation must be reexecuted. (iii) If versions match, the daemon then com-
mits all written objects to the virtual shared memory and increases their version numbers by
one. (iv) Finally, the daemon sends request to the virtual shared memory to unlock all acquired
locks so that these objects can be updated by other threads. With remote communication, the
commit for speculation can be time-consuming. However, dyDSM overcomes this problem by
making the communication layer perform the commit in parallel with the computation; thus,
hiding its overhead from computation.

5 Evaluation

This section evaluates dyDSM. The experiments were conducted on a cluster consisting of
five eight-core (2×4-core AMD Opteron 2.0GHz) DELL PowerEdge T605 machines. These
machines are running the Ubuntu 10.04 operating system. They are connected through a Cisco
ESW 540 switch, which is a 8-port 10/100/1000 Ethernet switch. Throughout the experiments,
dyDSM always uses the memory of all five machines no matter how many machines are used
for computation.

Implementation of dyDSM. Figure 10 shows an overview of our prototype implementation
of dyDSM. It consists of a source-to-source compiler and a runtime library. The source-to-
source compiler is implemented using the LLVM compiler infrastructure [19]. It instruments
the annotated distributed data structures, translates pointers to these data structures, and
generates code for prefetching. The dyDSM runtime is implemented on top of Memcached,
an open-source distributed memory object caching system. The runtime provides support for
communication, memory allocation, and speculation. In the experiments, the communication
layer on each machine consists of 32 daemons. By creating many daemons dyDSM provides
high network throughput. We cannot create greater number of daemons on one machine due
to the size of Memcached connection pool. When no data needs to be transferred, the daemons
are blocked and thus consume no processing resource.
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Figure 10: Overview of dyDSM prototype.

Benchmarks. To evaluate our approach, we performed experiments using seven applications,
five of which require speculation. Since dyDSM is built for applications with large data sets,
we selected these applications as they are data-intensive. Some of them are widely-used data
mining programs designed to process large volume of data while others are graph algorithms that
are used in many domains. rtabtab:bench lists the applications used, the key data structure
involved and whether a speculative implementation is used. Next, we briefly describe these
applications.

Benchmark Data Struct. Speculation?

Delaunay Refinement Graph Yes
Graph Coloring Graph Yes
Betweenness Centrality Graph Yes
K-means Clustering Dynamic Array Yes
PageRank Graph No
BlackScholes Dynamic Array No
Single Source Shortest Path (SSSP) Graph Yes

Table 2: Benchmark summary.

Delaunay Refinement implements mesh generation that transforms a planar straightline
graph to a Delaunay triangulation of only quality triangles. The data set is stored in a pointer-
based graph structure. Graph Coloring is an implementation of the scalable parallel graph
coloring algorithm proposed in [4]. Each computation task colors one node using the information
of its neighbors. K-means Clustering [10] is a parallel implementation of a popular clustering
algorithm that partitions n points into k clusters. PageRank is a link analysis algorithm used
by Google to iteratively compute weight for every node in a linked webgraph. BlackScholes

taken from the PARSEC suite [2] uses partial differential equation to calculate the prices of
European-style options. Betweenness Centrality is a popular graph algorithm used in many
areas. It computes the shortest paths between all pairs of nodes. SSSP implements a parallel
algorithm for computing shortest path from a source node to all nodes in a directed graph. The
implementation is based on the Bellman-Ford algorithm.
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5.1 dyDSM Scalability with Parallelism

Applications with high degree of parallelism can take advantage of additional cores available
on multiple machines. However, the additional threads created to exploit more parallelism
also stress the dyDSM communication layer. Next we study how the application speedup
scales as greater number of threads are created to utilize more cores. The threads created can
be scheduled on available cores in two ways: (distributed) they can be distributed across all
machines; or (grouped) they can be grouped so that they use minimal number of machines.
Figure 11 shows the application speedups for both the scenarios while the accompanying Table 3
summarizes the fastest execution times. The baseline is the sequential version of the application.
Comparing the two curves, we observe that distributing the computation threads across the
machines is a better scheduling strategy. For all benchmarks except blackscholes, the speedup
achieved by distributing threads rises faster as the number of computation threads is increased.
By distributing computation threads across the machines, idle cores left on each machines can
be used by the communication layer. Therefore, the computation threads do not compete
with the communication layer for cycles. For blackscholes, grouping threads achieves better
performance because of high degree of data sharing among threads.
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Figure 11: Speedups with varying number of computation threads.

We observe that the performance of most applications scales well with the number of com-
putation threads. The parallel versions are always faster than the sequential version with
maximum speedup of 25x. The performance of k-means drops with more than thirty compu-
tation threads due to very high lock contention in atomicity checks. On average, we achieve 7x
speedup for the benchmarks using forty computation threads on five machines, which demon-
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Benchmark Execution time [fastest] Sequential time
(seconds) (seconds)

Delaunay Refinement 1886.097 39532.22
Graph Coloring 1566.785 23214.378
Betweenness Centrality 25432.078 378835.65
K-means Clustering 16562.046 176791.708
PageRank 1678.381 48018.028
BlackScholes 25789.837 182441.231
Single Source Shortest Path 15067.332 197785.465

Table 3: Execution times at maximum speedup for the distributed execution configuration.

strates dyDSM’s ability to handle parallel applications running across multiple machines. For
six out of seven benchmarks, we achieve highest speedups when eight computation threads are
run on each machine. This shows that the dyDSM communication layer utilizes the cores only
to a limited extent; thus leaving them free to be used by the computation threads.

5.2 Performance of the Adaptive Scheme

Benchmark Adaptive / Static

Delaunay Refinement 1.10
Graph Coloring 0.66
Betweenness Centrality 1.04
K-means Clustering 1.04
PageRank 1.22
BlackScholes 1.19
Single Source Shortest Path 1.54

Table 4: Execution time: Adaptive vs. Ideal static scheme.

This section evaluates the performance of the dynamic scheme that adapts the number of
communication daemons at runtime (described in Section 4). Table 4 shows the execution time
of the adaptive scheme normalized to the ones of the ideal static scheme. For the adaptive
scheme, we set the initial daemon number to four. For ideal static scheme, we found the
number of daemons that gave the best performance. From the table, we can see that the
adaptive scheme greatly improves the performance over the best static scheme for benchmark
graph coloring; this is because the number of chosen daemons varies over the program lifetime
and this is aided by the dynamic scheme. We observe that the performance of SSSP is most
degraded: in the static scheme SSSP performs best at 1 communication thread. The dynamic
scheme performs worse because it favors more communication threads and therefore rarely runs
at the 1-communication thread configuration. For the remaining benchmarks, the adaptive
scheme performs close to that of the static scheme. The slight degradation can be attributed
to the overhead of adaptation: periodically measuring the length of queue, waking up more
communication threads, etc.

6 Related Work
Many previous works have been done on DSM systems [5, 22, 23]. However, these DSM systems
were not developed for modern clusters, where each node has many processing cores. They do
not make use of the multiple cores on each node. In addition, these DSM systems work poorly
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for applications that use using dynamic features provided by modern programming languages.
The performance of SPMD-based DSM is greatly degraded for modern applications as these
dynamic features make the appropriate distribution of data impossible to determine at compile-
time. In a cache-coherent DSM system, data needs to be replicated and/or migrated on-the-
fly as it is impossible to statically figure out the memory access patterns for programs using
dynamic features. dyDSM overcomes these drawbacks. We allow automatic data distribution,
while keeping the communication overhead off the critical path by exploiting the multiple cores
on each machine. Recently, software transactional memory has been introduced as a parallel
programming paradigm for clusters [20, 3, 16, 17, 9]. Compared to them, we move a step further
in hiding latency. Our communication mechanism makes efficient use of multicore machines.
Latency tolerance is achieved by moving communication off the critical path, i.e., commits occur
asynchronously in parallel with computations.

Partitioned global address space (PGAS) is a parallel programming model which tries to
combine the performance advantage of MPI with the programmability of a shared-memory
model. It creates a virtual shared memory space and maps a portion of it to each processor.
PGAS provides support for exploiting data locality by affining each portion of the shared mem-
ory space to a particular thread. The PGAS programming model is used in UPC [8], Co-Array
Fortran [11], Titanium [14], Chapel [6] and X10 [12]. UPC, Co-Array Fortran, and Titanium
use SPMD style with improved programmability. Chapel and X10 extend PGAS to allow each
node to execute multiple tasks from a task pool and invoke work on other nodes. These PGAS
programming models primarily explore parallelism for array-based data-parallel programs using
data partitioning. For the most part they do not consider dynamic data structures.

Given this works’ focus on speculative parallelism for applications with low, non-deterministic
sharing, we do not expect much benefit from sophisticated load balancing schemes as proposed
in [25]. Moreover, at today’s scale, such schemes can easily overwhelm the network. For pur-
poses of this work, Memcached’s data partitioning along with on-demand prefetching suffice.

7 Conclusion
This paper presented dyDSM, which is a DSM system designed for modern dynamic applications
and clusters composed of multicore machines. It provides a simple to use programming interface
and a powerful runtime and compiler that handles of the tedious tasks of using distributed-
memory. dyDSM’s support for large dynamic data structures makes it unique and very relevant
for modern applications. The communication layer of dyDSM runtime makes use of multiple
cores on machines and prefetching to high network latency. dyDSM also offers sequential
consistency at coarse-grain level and supports speculative parallelism. Our evaluation of dyDSM
on a cluster of five eight-core machines shows that it performs well giving an average speedup
of 7x across seven benchmark programs.
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[4] Erik B. Boman, Doruk Bozdaǧ, Unit Catalyurek, Assefaw H. Gebremedhin, and Fredrik Manne.
A scalable parallel graph coloring algorithm for distributed memory computers. In EURO-PAR,
pages 241–251, 2005.

140 Proceedings of the 7th International Conference on PGAS Programming Models



Programming Large Dynamic Data Structures on a DSM Cluster of Multicores SC. Koduru et. al.

[5] David Callahan and Ken Kennedy. Compiling programs for distributed-memory multiprocessors.
J. Supercomputing, 2(2):151–169, 1988.

[6] Bradford Chamberlain, David Callahan, and Hans Zima. Parallel programmability and the chapel
language. IJHPCA, 21(3):291–312, 2007.

[7] Jeffrey S. Chase, Darrell C. Anderson, Andrew J. Gallatin, Alvin R. Lebeck, and Kenneth G.
Yocum. Network i/o with trapeze. In HOTI, 1999.

[8] UPC Consortium. UPC language specifications, v1.2. Lawrence Berkeley National Lab Tech Report
LBNL-59208, 2005.

[9] Alokika Dash and Brian Demsky. Integrating caching and prefetching mechanisms in a distributed
transactional memory. TPDS, 22(8):1284–1298, 2011.

[10] Inderjit S. Dhillon and Dharmendra S. Modha. A data-clustering algorithm on distributed memory
multiprocessors. In Workshop on Large-Scale Parallel KDD Systems, 1999.

[11] Yuri Dotsenko, Cristian Coarfa, and John Mellor-Crummey. A multi-platform co-array fortran
compiler. In PACT, 2004.

[12] Philippe Charles et al. X10: an object-oriented approach to non-uniform cluster computing. In
OOPSLA, pages 519–538, 2005.

[13] Min Feng, Rajiv Gupta, and Yi Hu. SpiceC: scalable parallelism via implicit copying and explicit
commit. In PPoPP, pages 69–80, 2011.

[14] P. Hilfinger, D. Bonachea, K. Datta, D. Gay, S. Graham, B. Liblit, G. Pike, J. Su, and K. Yelick.
Titanium language reference manual. U.C. Berkeley Tech Report, UCB/EECS-2005-15, 2005.

[15] E Jul, H Levy, N Hutchinson, and A Black. An object-oriented language and system that indirectly
supports dsm through object mobility. 1988.

[16] Christos Kotselidis, Mohammad Ansari, Kimberly Jarvis, Mikel Lujan, Chris Kirkham, and Ian
Watson. DiSTM: A software transactional memory framework for clusters. In ICPP, pages 51–58,
2008.

[17] Christos Kotselidis, Mohammad Ansari, Kimberly Jarvis, Mikel Lujan, Chris Kirkham, and Ian
Watson. Investigating software transactional memory on clusters. In IPDPS, pages 1–6, 2008.

[18] Milind Kulkarni, Martin Burtscher, Calin Casaval, and Keshav Pingali. Lonestar: A suite of
parallel irregular programs. In ISPASS, 2009.

[19] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program analysis &
transformation. In CGO, 2004.

[20] Kaloian Manassiev, Madalin Mihailescu, and Cristiana Amza. Exploiting distributed version
concurrency in a transactional memory cluster. In PPoPP, pages 198–208, 2006.

[21] Jelica Protic, Milo Tomasevic, and Veljko Milutinovic. Distributed shared memory: Concepts and
systems. IEEE Concurrency, 4(2):63–79, 1996.

[22] Daniel J. Scales, Kourosh Gharachorloo, and Chandramohan A. Thekkath. Shasta: a low overhead,
software-only approach for supporting fine-grain shared memory. In ASPLOS, pages 174–185, 1996.

[23] Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck, Steven K. Reinhardt, James R. Larus, and
David A. Wood. Fine-grain access control for distributed shared memory. In ASPLOS, pages
297–306, 1994.

[24] Paul E. Utgoff, Neil C. Berkman, and Jeffery A. Clouse. Decision tree induction based on efficient
tree restructuring. Mach. Learn., 29(1):5–44, 1997.

[25] Robert P Weaver and Robert B Schnabel. Automatic mapping and load balancing of pointer-
based dynamic data structures on distributed memory machines. In Scalable High Performance
Computing Conference, 1992. SHPCC-92. Proceedings., pages 252–259. IEEE, 1992.

[26] Ye Zhang, Lawrence Rauchwerger, and Josep Torrellas. Hardware for speculative parallelization
of partially-parallel loops in dsm multiprocessors. In HPCA, pages 135–139, 1999.

Proceedings of the 7th International Conference on PGAS Programming Models 141



An Efficient Implementation of Stencil

Communication for the XcalableMP PGAS

Parallel Programming Language

Hitoshi Murai1 and Mitsuhisa Sato2

1 RIKEN AICS, Kobe, Japan
h-murai@riken.jp

2 Center for Computational Science, University of Tsukuba, Tsukuba, Japan
msato@cs.tsukuba.ac.jp

Abstract

Partitioned Global Address Space (PGAS) programming languages have emerged as
a means by which to program parallel computers, which are becoming larger and more
complicated. For such languages, regular stencil codes are still one of the most impor-
tant goals. We implemented three methods of stencil communication in a compiler for a
PGAS language XcalableMP, which are 1) based on derived-datatype messaging; 2) based
on packing/unpacking, which is especially effective in multicore environments; and 3) ex-
perimental and based on one-sided communication on the K computer, where the RDMA
function suitable for one-sided communication is available. We evaluated their perfor-
mances on the K computer. As a result, we found that the first and second methods are
effective under different conditions, and selecting either of these methods at runtime would
be practical. We also found that the third method is promising but that the method of
synchronization is a remaining problem for higher performance.

1 Introduction

As computer systems become larger and more complicated, for example, with respect to memory
hierarchy and interconnect topology, to achieve higher performance, a programming method
that can provide users with high productivity and high performance is strongly demanded.
Partitioned Global Address Space (PGAS) programming languages, such as XcalableMP (XMP)
[22], the coarray feature of Fortran 2008 [18], Unified Parallel C (UPC) [21], Chapel [8], and
X10 [5], are considered to meet this demand and have been investigated extensively.

A number of PGAS languages set the goal of supporting a broader range of applications,
such as irregular applications having task parallelism that High Performance Fortran (HPF)
[14], which is an ancestor of PGAS languages, could never support successfully. However, the
situation whereby regular stencil codes, such as reported in [19, 10, 7], are among the most
significant goals remains unchanged. Therefore such languages should provide a means for
effectively handling stencil communication.

We implemented three types of stencil communication in the Omni XcalableMP compiler
that we are currently developing, and the details of these types of stencil communication are
presented herein. The first type is based on the derived datatype of Message Passing Interface
(MPI) [15]. The second type is based on packing/unpacking buffers, which may be executed in
parallel if possible. Finally, the third type is experimental and is based on the extended RDMA
interface [9] dedicated for the K computer [16]. The goal of the present study is to explore an
optimal method of implementing stencil communications in compilers for PGAS languages.

The contributions of the present paper include:
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• Three implementations of stencil communication, including an RDMA-based implemen-
tation, for PGAS language compilers, are described.

• Their advantages and disadvantages are discussed based on their evaluation on the K
computer.

The remainder of the present paper is organized as follows. Sections 2 and 3 provide a
brief overview of the XMP language specification and the Omni XMP compiler, respectively.
Sections 4 and 5 describe the proposed implementations of stencil communication, which are
evaluated in Section 6. After discussing related research in Section 7, Section 8 presents the
conclusion and areas for the future research.

2 XcalableMP

XcalableMP (XMP) is a directive-based language extension for Fortran and C, proposed by the
XcalableMP Specification Working Group. XMP supports typical parallelization methods based
on the data/task parallel paradigm under the “global-view” model, and enables parallelization of
the original sequential code with minimal modification. XMP also includes the coarray feature
imported from Fortran 2008 for “local-view” programming. In addition, the combination of
OpenMP directives and XMP is to be included in the next update of its specification. In this
section, we present a brief overview of the specification of XMP.

The readers can find an example of an XMP program in Figure 8.

2.1 Execution and Memory Model

Execution Model The execution entities in an XMP program are referred to as XMP nodes
or, more simply, nodes. An XMP node is mapped at runtime to a physical computation node
on which an MPI process can run with multithreading in hybrid parallelization or with multiple
MPI processes in flat parallelization.

The basic execution model of XMP is Single Program Multiple Data (SPMD). Each XMP
node starts execution from the same main routine and continues to execute the same code
independently (i.e., asynchronously) until an XMP directive, which is global and to be executed
collectively by all of the nodes, is encountered.

Memory Model Each node has its own memory and can directly access only data contained
therein. If a node should access data on a remote node, users must explicitly specify an inter-
node communication with an XMP directive, such as reflect described in the following section,
in global-view programming or coarrays in local-view.

2.2 Data and Work Mapping

Data Mapping First, an array is aligned with a template, which is a virtual array, by the
align directive. Next, the template is distributed onto a node set in a certain format, such as
the block format, the cyclic format, or the block-cyclic format, by the distribute directive.
As a result, each element of the array is assigned through the distributed template to one or
more nodes (Figure 1). The set of local elements of an array logically form a rectangle and is
allocated in the local memory.
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Figure 1: Data and Work Mapping in XMP

Work Mapping An iteration space of a loop nest is, in analogy with an array, “aligned” with
a template by the loop directive. An aligned loop nest is executed in parallel by the executing
nodes.

2.3 Directives for Stencil Communication

2.3.1 The shadow Directive

An array distributed in the block or non-uniform block (“gblock”) format may have an addi-
tional area referred to as shadow, which is used as a buffer to communicate with the neighbor
elements of each block of the array.

Figure 2 (a) shows the syntax of the shadow directive of XMP, which is used to specify the
width of the shadow area of each axis of an array1. Users can also specify different widths for
the lower and upper shadows of an axis.

2.3.2 The reflect Directive

Figure 2 (b) shows the syntax of the reflect directive of XMP, which is used to update the
shadow area of an array with the value of its corresponding reflection source.

Specifying the width clause, only a part of the shadow area can be updated. In addition,
when the /periodic/ modifier is specified in the width clause, the update is “periodic” along
the axis, which means that the shadow object at the global lower (upper) bound is updated
with the value of the data object at the global upper (lower) bound.

A communication induced by the reflect directive can be asynchronous when the async

clause is specified with the directive. Such asynchronous communications are issued but not
completed, along with nonblocking communications of the MPI standard, at the point of the
directive to overlap with the following computation.

Figure 3 illustrates how the shadow and reflect directives work for a one-dimensional array.

2.3.3 The wait async Directive

The wait async directive (Figure 2 (c)) blocks and therefore statements following it are not
executed, until all of the asynchronous communications specified by async-ids are complete.

1When shadow-width is of the form “*”, the entire area of the array is allocated on each node, and all of the
area not owned by it is regarded as shadow. This feature is referred to as “full shadow” but is not dealt with in
the present paper.
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[F] !$xmp shadow array-name ( shadow-width [, shadow-width]... )

[C] #pragma xmp shadow array-name [shadow-width][[shadow-width]]...

where shadow-width must be one of:

int-expr
int-expr : int-expr
*

(a) the shadow directive

[F] !$xmp reflect ( array-name [, array-name]... )

[width ( reflect-width [, reflect-width]... )] [async ( async-id )]

[C] #pragma xmp reflect ( array-name [, array-name]... )

[width ( reflect-width [, reflect-width]... )] [async ( async-id )]

where reflect-width must be one of:

[/periodic/] int-expr
[/periodic/] int-expr : int-expr

(b) the reflect directive

[F] !$xmp wait async ( async-id [, async-id ]... ) [on nodes-ref | template-ref]
[C] #pragma xmp wait async ( async-id [, async-id ]... ) [on nodes-ref | template-ref]

(c) the wait async directive

Figure 2: Syntax of the XMP directives for stencil communication ([F] is the line for XMP/-
Fortran, and [C] the line for XMP/C. indicates that the syntax rule continues.)

reflect

p(1) p(2) p(3) p(4)

shadow array

Figure 3: Workings of the shadow and reflect directives

Note that communications other than those induced by reflect can be asynchronous in XMP,
and wait async may have to handle them.

3 Omni XcalableMP

Omni XcalableMP is a reference implementation of an XMP compiler that is being developed as
an open-source project by the HPCS Laboratory of the University of Tsukuba and Programming
Environment Research Team of RIKEN AICS [1].
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Figure 4: Descriptors in Omni XMP

Omni XMP consists of two major parts: a translator and a runtime library. The translator
translates an XMP source program into a program that is in the base language and involves
calls to the runtime routines. In particular, each executable directive, such as reflect and
wait async, in the source program is replaced with a sequence of runtime routine calls. The
runtime library is in charge of, for example, parallel execution control, communication and
synchronization, and memory management at runtime.

In the current implementation, the runtime library is based on MPI for portability, although
those based on other communication libraries such as the extended RDMA interface of the K
computer, which is dealt with in Section 5, and GASNet [3] are also being developed or planned.

The current implementation supports platforms of Linux clusters, Cray machines, the K
computer, and any other machines on which MPI works.

4 Implementation

We implemented the reflect communication using two methods for general (MPI-supported)
platforms: One method is based on MPI’s derived datatype, and the other method is based on
packing/unpacking buffers.

The XMP runtime system autonomously determines at runtime which of the two methods
is used for stencil communications. In addition, users can explicitly specify the method with
an environment variable.

4.1 Reflect Schedule Descriptor

The Omni XMP runtime system manages a descriptor of each distributed array to be referenced
as necessary by the runtime library. The lifetime of the descriptor is the same as that of the
corresponding array. In addition to this array descriptor, if a shadow area is declared for a
dimension of an array, the runtime system creates a reflect schedule descriptor (RSD), which
stores information on the schedule of a reflect communication for the dimension, and links the
RSD from the array descriptor (Figure 4). Once created, an RSD is reused repeatedly unless
the schedule is changed by another reflect directive with different clauses specified. Table 1
shows the components of the RSD.
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Table 1: Components of the reflect schedule descriptor

Type Name Description

int
lo width

latest widthshi width

int is periodic latest periodic flag

MPI Datatype
datatype lo

MPI vector datatypedatatype hi

MPI Request req[4]
MPI request handles for
upper/lower send/recv

void*
lo send buf

buffers for lower shadowlo recv buf

void*
hi send buf

buffers for upper shadowhi recv buf

void*
lo send array target positions in array
lo recv array for upper shadow

void*
hi send array target positions in array
hi recv array for upper shadow

int
count components of vector
blocklength (used in pack/unpack)
stride

int
lo rank MPI ranks of neighboring
hi rank nodes

4.2 Method 1: Derived Datatype

Any reflect communication can be performed as a point-to-point nonblocking communication
of a message of type vector and length one, where vector is one of MPI’s built-in derived
datatypes consisting of equally spaced blocks and constructed by the function MPI TYPE VECTOR.

The vector datatype has three components: count for the number of blocks; blocklength for
the number of elements in each block; and stride for the number of elements between start of
each block.

The count, blocklength, and stride of the vector for reflect in the k’th dimension of an
N-dimensional array are calculated as follows2:

count = lsizek+1 × · · · × lsizeN−1

blocklength = lsize0 × · · · × lsizek−1 × shadowk

stride = lsize0 × · · · × lsizek

where lsizei and shadowi represent the local size, which is the size of elements resident on each
node, and the width of the lower or upper shadow area, in the i’th dimension of the array,
respectively. Note that the local size includes the size of the shadow area.

The schedule of the nonblocking communication of the vector is bound to a persistent com-
munication request, which is stored in the RSD and is used to initiate and complete persistent
communication in functions MPI Startall and MPI Waitall, respectively (Figure 5).

Note that a schedule is created for each dimension of the array but, in the current imple-
mentation, persistent communications for all dimensions are issued asynchronously in a batch.
This means that shadow areas at the corner boundaries of an array may not be updated prop-
erly, and, therefore, the nine-point difference cannot be handled. This problem can be resolved

2This applies to the Fortran-style column-major ordering of array elements. These calculations for C can be
obtained easily but are not presented herein
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1 // create datatypes

2 for (i = 0; i < ndims; i++){

3 MPI Type vector(count , blocklength*lwidth , stride , MPI_BYTE , &reflect->dt lo);
4 MPI Type commit(&reflect->dt lo);
5 ...

6 }

7

8 // initiate persistent comms.

9 for (i = 0; i < ndims; i++){

10 MPI Recv init(rbuf_lo , 1, reflect->dt lo, src , tag , comm , &reflect->req[0]);
11 ...

12 MPI Send init(sbuf_hi , 1, reflect->dt hi, dst , tag , comm , &reflect->req[3]);
13 }

14

15 // do persistent comms.

16 MPI Startall(4*ndims , reflect->req);
17 MPI Waitall(4*ndims , reflect->req, status );

Figure 5: Overview of derived-datatype method

easily by issuing persistent communications for each dimension synchronously and in sequence.
However, for asynchronous reflect (described in Section 4.4), communications between ordi-
nal neighbor nodes should be implemented in order to properly update the shadow area. The
pack/unpack and the RDMA methods described in the following sections also have the same
problem.

4.3 Method 2: Pack/Unpack

The method of communication of a message of type vector performed by the MPI library is
implementation-dependent. One implementation can pack a vector into a contiguous buffer
before sending data, whereas another implementation might send blocks of a vector one by one
without packing. In general, internal packing/unpacking in sending/receiving a vector should
be considered to be neither fully optimized nor multithreaded even in a multicore environment.
Note that it is theoretically possible to parallelize packing/unpacking vectors, whereas this is
not possible for a general datatype.

In order to achieve higher performance primarily in multicore environments, routines for
packing/unpacking vectors are multithreaded using an OpenMP directive. Note that the spec-
ification states that an XMP directive is single-threaded and therefore an implementation can
use multithreading to parallelize the corresponding runtime library routines.

However, such parallelization is effective only when more than one processor core is available
in an XMP node (i.e., when using hybrid parallelization). Therefore the Omni XMP runtime
system determines whether the packing/unpacking operation is to be executed in parallel, using
an OpenMP API runtime library routine omp get num procs, which returns the number of
processors (cores) available to the program.

Figure 7 shows the internal packing routine XMPF pack vector in Omni XMP, where vari-
ables count, blocklength, and stride are the same as those of the derived-datatype method.
The loop is executed in parallel only if the number of available processor cores is greater than
one and the amount of packing/unpacking operation is large enough for parallelization. The
THRESHOLD variable indicates the threshold of the amount for parallelization, and the appropri-
ate value of THRESHOLD depends on the environment.
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Figure 6: Packing/Unpacking a vector in reflect

1 void _XMPF_pack_vector(char * restrict dst , char * restrict src ,

2 int count , int blocklength , int stride ){

3

4 if (_xmp_omp_num_procs > 1 && count * blocklength > THRESHOLD ){

5 #pragma omp parallel for

6 for (int i = 0; i < count; i++){

7 memcpy(dst + i * blocklength , src + i * stride , blocklength );

8 }

9 }

10 else {

11 for (int i = 0; i < count; i++){

12 memcpy(dst + i * blocklength , src + i * stride , blocklength );

13 }

14 }

15

16 }

Figure 7: Packing routine

The communication buffer used for packing/unpacking in this method is managed by the
runtime system. In the current implementation, once allocated for the dimension of an array,
the communication buffer persists and is reused repeatedly for the lifetime of the array.

4.4 Asynchronous Communication

As shown in Section 2.3.2, a reflect communication can be asynchronous when the async

clause specified in a reflect directive.
Such an “asynchronous reflect” is handled by the Omni XMP runtime system through

MPI request handles associated with the nonblocking communications issued for it. The asyn-
chronous reflect proceeds at runtime as follows:

1. At a reflect directive, a set of nonblocking communications is issued, and their request
handles are stored in the asynchronous communication table (ACT), which is a hash table
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with async-ids as the hash keys.
2. The communications proceed while possibly overlapping some computations.
3. At an wait async directive, the ACT is retrieved with the specified async-id to obtain

the corresponding request handle, and issues MPI Waitall to complete the nonblocking
communications associated with the request.

Note that the wait async directive is used to complete asynchronous communications other
than reflect, and, therefore, the above mechanism is designed to be applicable to any asyn-
chronous communications in XMP.

In the current implementation, asynchronous reflect is performed in the derived-datatype
method described in Section 4.2, because issuing a nonblocking communication as early as
possible without packing/unpacking in order to facilitate overlapping the following computation
is advantageous for achieving high performance.

5 RDMA-based Experimental Implementation

In this section, we present an experimental implementation of the reflect directive based on
the extend RDMA interface of the K computer3.

5.1 The Extended RDMA Interface

The MPI library of the K computer and FUJITSU’s PRIMEHPC FX10 supercomputer provides
users with the extended RDMA interface. The interface consists of a number of functions4 that
enable inter-node communication that makes the most of the underlying interconnect hardware,
such as Network Interface Controllers (NICs).

When implementing reflect communications using RDMA writes of this interface, the
following items must be considered.

• An array must be registered to the system and associated with a memory ID using the
FJMPI_Rdma_reg_mem function, in advance of being accessed through this interface. In
the current implementation, all of the distributed arrays with shadow are registered to be
(possibly) accessed through the interface.

• The array must be distributed onto the entire node set that corresponds to
MPI COMM WORLD, because the target process of RDMA is identified with the rank
in MPI COMM WORLD.

• The availability for the RDMA writes, i.e., whether the shadow areas on the neighboring
nodes are ready to be updated, must be explicitly confirmed by each node before issuing
the RDMA writes, which means that synchronizations are needed before reflect.

• Completion of the RDMA writes, i.e., whether the shadow areas on the neighbor-
ing nodes have been updated, must be explicitly confirmed by each node using the
FJMPI_Rdma_poll_cq function, which means that synchronizations are needed after
reflect.

• A tag that is an integer from 0 to 14 can be assigned to an RDMA in order to identify
the RDMA. Since an async-id is used as the tag in the asynchronous mode, the value of
the async-id is restricted to the 0 to 14 range.

The third and fourth items are due to the collectiveness of the reflect communication.
3The implementation is experimental because this implementation has some limitations (e.g., the number of

arrays having shadow areas) that are derived from those of the extend RDMA interface and has not yet been
released.

4These functions are based on a low-level communication library dedicated to the K computer and FX10.
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5.2 Method 3: RDMA

Normal Mode A normal reflect communication based on the extended RDMA interface
is performed in the following steps.

1. Each node waits until all of the nodes reach this point (barrier synchronization);
2. issues an RDMA write for each block of the vector;
3. polls its NICs until all of the RDMA writes issued by the node are completed; and
4. waits until all of the nodes reach this point (barrier synchronization).

The first barrier synchronization guarantees that the neighboring nodes are available, and
the second barrier synchronization guarantees that all of the actions involving the communica-
tion on both the local and remote nodes are completed.

The reason for the lack of packing/unpacking is that the latency of RDMA writes is suf-
ficiently low and the overhead of issuing multiple RDMA writes is smaller than that of pack-
ing/unpacking buffers.

Asynchronous Mode Steps 1 and 2 above are performed by reflect, and steps 3 and 4
above by wait async, with the following differences. At reflect, RDMA writes are issued
while setting the async-id as a tag, and the number of RDMAs issued for the async-id is stored
in ACT. At wait async, the NIC is polled until as many RDMAs as extracted from ACT are
completed.

6 Evaluation

Using XMP, we parallelized a prototype of the dynamical core of a climate model for large
eddy simulation, SCALE-LES [19], which is a typical five-point stencil code in Fortran (Figure
8), and ran the prototype on the K computer [16] in order to evaluate the performance of each
implementation of reflect. The performance of an MPI-based implementation was also evalu-
ated for comparison. The language environment used was K-1.2.0-13. The problem dimensions
were 512 × 512 horizontally and 128 vertically, and the execution time was measured for 500
time steps.

In this evaluation, we assigned one XMP node to one compute node of the K computer,
where intra-node thread-level parallelism can be automatically extracted from node programs
by the compiler. The condition for parallelizing packing/unpacking buffers in the pack/unpack
method was that the count of a vector (count in Figure 7) was more than eight times greater
than the number of available cores (_xmp_omp_num_procs in Figure 7), i.e., more than eight
blocks per thread. Therefore, the length of each block (blocklength in Figure 7) was not
considered in this evaluation.

For clarify, the evaluation results are presented in three graphs in Figure 9. For the purpose
of comparison, some results are presented in more than one graph. The vertical axes in these
graphs indicate the speedup of the execution time, relative to that on a single node, and the
horizontal axes in these graphs indicate the number of nodes. The computation times of these
implementations are approximately equal because their computation codes generated by Omni
XMP are identical and are nearly equivalent to that of MPI . Therefore, the difference in the
execution time comes from the difference in the communication time (Table 2).

Figure 9 (a) shows the performance of normal-mode reflect communications, where MPI
indicates the results obtained for the hand-coded MPI version, XMP-dt indicates the results
obtained for the derived-datatype method, and XMP-pack indicates the results obtained for
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1 !$xmp nodes p(N1,N2)

2 !$xmp template t(IA ,JA)

3 !$xmp distribute t(block ,block) onto p

4 ...

5 real (8) :: dens (0:KA,IA ,JA)

6 ...

7 !$xmp align (*,i,j) &

8 !$xmp& with t(i,j) :: dens , ...

9 !$xmp shadow (0,2,2) :: dens , ...

10 ...

11 !$xmp reflect (dens , ...) width &

12 !$xmp& (0,/ periodic /2,/ periodic /2)

13 ...

14 !$xmp loop (ix ,jy) on t(ix ,jy)

15 do jy = JS, JE

16 do ix = IS, IE

17 ...

18 do kz = KS+2, KE -2

19 ... dens(kz,ix+1,jy) + ...

20 ...

21 end do

22 ...

23 end do

24 end do

Figure 8: Code snippet of the target climate model

Table 2: Breakdown of the execution time (in seconds)

#nodes 4 16 64 256 1024
comm. comp. comm. comp. comm. comp. comm. comp. comm. comp.

XMP-pack 8.98 413.1 7.09 102.3 4.95 23.3 4.28 5.35 2.46 1.17
XMP-dt 16.77 413.7 15.79 102.5 8.94 23.3 5.99 5.22 3.30 1.21
XMP-RDMA 7.19 415.4 7.04 101.0 4.80 23.4 4.06 5.22 2.79 1.12
XMP-async 29.50 416.9 15.47 103.3 8.35 23.2 5.48 5.29 3.05 1.26
MPI 15.39 423.6 8.82 100.0 5.47 23.0 3.61 4.98 4.16 N/A
MPI-RDMA 8.39 421.3 2.58 100.1 1.09 23.0 0.64 5.00 1.99 1.21

the pack/unpack method. The pack/unpack method is comparable in performance to the MPI
version oand is faster than the MPI version for the 1,024-node execution. However, the results
might depend on the fast inter-core hardware barrier of SPARC64 VIIIfx [24]. In fact, we
observed that the pack/unpack method is not as effective for an average Linux cluster, as
campared to the K computer. On the other hand, the derived-datatype method is slower than
MPI. We verified that the derived-datatype method is faster than both the pack/unpack method
and MPI in the flat-parallel environment. The results are not presented herein because of space
limitations.

Figure 9 (b) shows the performance of asynchronous-mode reflect communications, where
XMP-dt indicates the results obtained for the synchronous-mode derived-datatype method (for
comparison), XMP-async indicates the results obtained for the asynchronous-mode reflect

that do not overlap with the computations, and XMP-async-olap indicates the results obtained
for as much part of the asynchronous-mode reflect as possible overlapped with the compu-
tations. The overhead introduced for asynchronous communication, such as management and

152 Proceedings of the 7th International Conference on PGAS Programming Models



An Efficient Implementation of Stencil Communication for XcalableMP Murai and Sato

�

���

���

���

���

���

���

� ��� ��� ��� ��� ���� ����

�
�
�
�
�
�
�
��
�	


�
��

�
�

��������	�
�����������

��������

����	


���

(a) normal reflect

�

���

���

���

���

���

���

� ��� ��� ��� ��� ���� ����

�
�
�
�
�
�
�
��
�	


�
��

�
�

��������	�
�����������

��������	�
���

��������	

�����

(b) asynchronous reflect

�

���

���

���

���

���

���

� ��� ��� ��� ��� ���� ����

�
�
�
�
�
�
�
��
�	


�
��

�
�

��������	�
�����������

��������

��������

����	
��

(c) RDMA-based reflect

Figure 9: Evaluation results on the K computer

retrival of ACT, is not so large and the performance is improved significantly by overlapping
communication with computation in the 1,024-node execution.

Figure 9 (c) shows the performance of RDMA-based reflect communications, where MPI-
RDMA indicates the results obtained for the hand-coded RDMA-based version, XMP-pack
indicates the results obtained for the pack/unpack method (not based on RDMA, for com-
parison), and XMP-RDMA indicates the results obtained for the RDMA-based method. The
experimental implementation is slower than both the hand-coded RDMA-based implementa-
tion and the pack/unpack implementation because the barrier synchronizations before issuing
RDMA writes and after completing RDMA writes are too strong to perform stencil communi-
cation efficiently. Actually, in the hand-coded implementation, point-to-point synchronizations
between neighboring nodes are used instead of barrier synchronizations. In the future, synchro-
nizations performed in RDMA-based reflect should be weakened in order to achieve higher
performance.
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7 Related Research

The reflect directive and its asynchronous mode of XMP originates from HPF/JA, which is
an extension of High Performance Fortran for accelerating real-world applications [12, 20]. The
function of partial reflection was first supported by HPF/SX V2 [17] and HPF/ES [23], the
HPF compiler for NEC’s SX-series supercomputers and the Earth Simulator, respectively, and
later by the dHPF compiler developed by Rice University [6]. Since there is no specification
for periodic stencil communication in either the HPF standard or the HPF/JA specification,
to our knowledge, no compilers for HPF or HPF-like languages have supported periodic stencil
communication yet. On the other hand, a region-based parallel language ZPL that supports
periodic stencil communication has been reported [4].

The optimization of stencil communication in HPF is described in a previous study [13], in
which a method of generating communications based on realignment was proposed and compile-
time optimizations for multidimensional stencil communications were presented.

In [2, 11], implementations of mesh-based regular applications with coarrays, which is a
one-sided communication feature from Co-Array Fortran or Fortran 2008, are compared with
implementations of mesh-based regular applications with MPI, from the viewpoints of, for
example, memory layout and the usage of communication buffers. Stencil communications
based on coarrays were demonstrated to be effective in mesh-based regular applications and
could, in some cases, outperform stencil communications based on MPI.

8 Conclusions and Future Research

We implemented three methods for stencil communication in the Omni XMP compiler. The
first method based on derived-datatype messaging is simple and general, and could be efficient
depending on the implementation of the underlying MPI library. The second method is based
on packing/unpacking and has the advantage of being multithreaded in multicore environments.
The third method, which is experimental and is based on the extended RDMA interface of the
K computer, may be able to achieve higher performance, but at present has approximately the
same performance as the second method because of exceedingly strong synchronizations.

Areas for future research include:

• managing reflect communications from/to ordinal neighbor nodes properly in nine-point
difference stencil codes;

• setting an appropriate threshold for parallelizing packing/unpacking buffers in the pack-
/unpack method;

• improving the performance of the RDMA-based method by reducing the strength of syn-
chronizations; and

• providing a more portable and efficient implementation based on the one-sided commu-
nication of MPI-3.
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Abstract

The present paper introduces designs of the XcalableMP PGAS language for improved
productivity and performance of a high performance computing (HPC) system. The design
of a unique XcalableMP programming model is based on both local-view and global-view
models. This design allows programmers to easily develop HPC applications. Moreover,
in order to tune HPC applications, XcalableMP provides inquiry functions for program-
mers to obtain local memory information of a global array. In the present paper, we
evaluate the productivity and the performance of XcalableMP through implementations
of the High-Performance Computing Challenge (HPCC) Benchmarks. We describe the
implementations of three HPCC benchmarks, including RandomAccess, High-performance
Linpack (HPL), and Fast Fourier Transform (FFT). In order to evaluate the performance
of XcalableMP, we used the K computer, which is a leadership-class HPC system. As a
result, we achieved 163 GUPS with RandomAccess (using 131,072 CPU cores), 543 TFlops
with HPL (using 65,536 CPU cores), and 24 TFlops with FFT (using 262,144 CPU cores).
These results reveal that XcalableMP has good performance on the K computer.

1 Introduction

At present, leadership-class high-performance computing (HPC) systems consist of hundreds
of thousands of compute nodes, and the number of the compute nodes will continue to in-
crease. Applications run on the system are used so many times that programmers require a
high-performance programming language to reduce the execution time. Moreover, in order to
reduce the programming and maintenance costs, programmers also require the programming
language to be productive. Partitioned Global Address Space (PGAS) model languages, such
as SHMEM[12], Global Arrays[23], Coarray Fortran[24], Titanium[29], Unified Parallel C[13],
Chapel[11], and X10[25], are emerging as alternatives to Message Passing Interface (MPI)[26].
In particular, the greater part of Coarray Fortran is incorporated into the Fortran 2008 stan-
dard. In addition to these languages, we have been designing and developing a new PGAS
model language called XcalableMP (XMP) [19, 21, 22, 28], which is a directive-based language
extension of C and Fortran.

Since most existing HPC applications are written in MPI, PGAS languages are not widely
used. One reason for this is that the productivity and performance of PGAS languages on
an HPC system remain unclear. Therefore, in the present study, we reveal the productivity
and performance of the XMP PGAS language using a maximum of 32,768 compute nodes
(262,144 CPU cores) of the K computer. The K computer was ranked 4th in the Top500[9] on
June, 2013. In order to measure the productivity and performance, we have used the High-
Performance Computing Challenge (HPCC) benchmarks[5]. The HPCC benchmarks are a set
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of benchmarks to evaluate multiple attributes, such as the random access speed of memory,
system interconnect, and the processor on an HPC system. The HPCC benchmarks are also
used at the HPCC Award Competition, which has been held at the supercomputer conference
since 2005. The HPCC Award Competition consists of two classes. The class 1 competition
uses four of the HPCC benchmarks, namely, RandomAccess, High-performance Linpack (HPL),
Fast Fourier Transform (FFT), and STREAM, to evaluate the overall performance of an HPC
system. These benchmarks are frequently used in scientific fields. The class 2 competition
uses three or four of the HPCC benchmarks to evaluate the productivity and performance of
a programming language. In the present paper, we have implemented RandomAccess, HPL,
and FFT benchmarks because parallelizing the STREAM benchmark is easy. Through these
implementations and evaluations, we investigate potential improvements in HPC systems that
may be achieved through proper XMP design.

To this end, the present paper makes the following specific contributions: (1) Designs of the
XMP programming model for an HPC system are proposed and their effectiveness is validated;
and (2) The implementation of the HPCC benchmarks using XMP and the tuning of these
benchmarks are presented. These contributions are also useful for other PGAS languages.

The remainder of the present paper is structured as follows. Section 2 presents the require-
ments of a promising programming model on an HPC system. Section 3 introduces an overview
of XMP. Section 4 describes implementations and evaluations of the HPCC benchmarks. Sec-
tion 5 discusses the productivity and performance of the HPCC benchmarks in XMP. Section
6 summarizes the present paper and describes areas for future research.

2 Requirements of a Programming Model on High-
performance Computing System

A promising programming model for HPC systems must have both high productivity and high
performance. In this section, we consider the features necessary for a promising programming
model.

2.1 High Productivity

2.1.1 Components of Productivity

The productivity of HPC applications is based on not only the programming cost but also the
porting, tuning, maintenance, and educational costs. In addition, the productivity is related
to the ability to easily reuse and extend a part of the application. Therefore, the productivity
should not be evaluated based solely on the Source Lines Of Code (SLOC), which should be
one of indicators used in the evaluation of the productivity.

2.1.2 Performance Portability

In general, the lifetime of an HPC application is longer than the lifetime of the hardware.
Once the HPC application has been created, the application is used for several decades while
maintaining, expanding, and changing its data structure and/or algorithm. Therefore, the HPC
application should enable high performance on different machines with little effort. In order to
meet this requirement, the source code must clearly indicate the behavior of the computer, for
example, access to local memory and data communication.
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2.1.3 Usage of Numerical Libraries

In order to reduce the porting and programming costs and allow high performance, HPC appli-
cations often use numerical libraries such as BLAS[1] and Scalapack[2]. Therefore, a promising
language must be able to use the numerical libraries directly or to use a language-specific li-
brary such as UPCBLAS[16]. In order to use numerical libraries directly from the PGAS model
language, the language should expose local memory information of its global address space.

2.1.4 Coexistence with MPI

At present, most HPC applications are written in MPI. Since the performances of existing MPI
applications are extremely good, it is not worth rewriting all of the existing MPI applications in
terms of a promising language. Therefore, the promising language and MPI should coexist. In
particular, the promising language must be able to call an MPI library and an MPI application.
Moreover, a library and an application written in the promising language must be able to be
called from an MPI application. In order to meet these requirements, the promising language
must deal with MPI objects such as an MPI communicator.

2.2 High Performance

2.2.1 Ease of Tuning

In order to tune high-performance applications, programmers must perform hardware-aware
programming. In other words, each line of the promising language allows programmers to
clearly understand what happens on the hardware.

2.2.2 Support of Any Parallelizations

In order to increase the performance/cost ratio, the commonly used HPC system is a multicore
cluster and may also have accelerators such as a Graphics Processing Unit (GPU) or a Many In-
tegrated Core (MIC). Therefore, the promising language should control hybrid-parallelization,
which combines process-parallelization with thread-parallelization, and parallelization on ac-
celerators. At present, MPI and OpenMP are frequently used for hybrid parallelization, and
CUDA and OpenACC[7] are frequently used for parallelization on accelerators. Note that the
promising language does not need to support all parallelizations as its function. For example,
if the promising language can use OpenMP directives, the promising language does not have to
support thread-parallelization as its function.

3 Overview of XcalableMP

In this section, we describe some of the features of the design of XMP related to performance
and productivity, as described in Section 2. In addition, we introduce the implementation of
an XMP compiler.

3.1 Design

The XMP specification[28] has been designed by the XMP Specification Working Group, which
consists of members from academia, research laboratories, and industries. This Working Group
is supported by the PC Cluster Consortium in Japan[8].
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integer function
type(xmp_desc)
integer
integer

XMP/Fortran

xmp_array_gtol(d, g_idx, l_idx)
d

g_idx(NDIMS)

l_idx(NDIMS)

XMP/C

void xmp_array_gtol(xmp_desc_t d, int g_idx[], int l_idx[])

Figure 1: Example of XMP Inquiry Functions

 #include "mpi.h"

 #include "xmp.h"

 #pragma xmp nodes p(4)

void main(int argc, char *argv[]) {

    xmp_init_mpi(argc, argv);

    MPI_Comm comm = xmp_get_mpi_comm();

 

    user_mpi_func(comm);

   

    xmp_finalize_mpi();

}
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Figure 2: Example of the Use of the MPI
Programming Interface in XMP/C

3.1.1 Familiar HPC Language (related to Section 2.1.1)

In order to reduce programming and educational costs, XMP is extended to familiar HPC
languages, such as Fortran and C, and these extensions are referred to herein as XMP/Fortran
and XMP/C, respectively.

3.1.2 Support of Global-view and Local-view (related to Section 2.1.1)

In order to develop various applications, the XMP programming model is an SPMD under the
global-view and local-view models. In the global-view model, XMP enables parallelization of
an original sequential code using minimal modification with simple directives such as OpenMP.
In the local-view model, the programmer can use coarray syntax in both XMP/Fortran and
XMP/C. In particular, XMP/Fortran is designed to be compatible with Coarray Fortran.

3.1.3 XMP Inquiry Functions (related to Sections 2.1.2, 2.1.3, and 2.2.1)

In order to use numerical libraries, XMP inquiry functions provide local memory information of
a global array defined in the XMP global-view model. Figure 1 shows one of the XMP inquiry
functions xmp array gtol(). This function translates an index (specified by g idx) of a global
array (specified by descriptor d) into the corresponding index of its local section and sets to an
array (specified by l idx). In addition to this function, the XMP specification defines inquiry
functions that enable the collection of other local memory information, such as the pointer,
size, and leading dimension of a global array. The XMP inquiry functions enable the use of
numerical libraries and tune the application using the local memory information.

3.1.4 MPI Programming Interface (related to Section 2.1.4)

In order to call an MPI program from an XMP program, the MPI programming interface, a
function xmp get mpi comm() in XMP/C, is provided. This function returns a handle of an MPI
communicator associated with the execution of processes. In addition to this function, the XMP
specification defines two functions, xmp init mpi() and xmp finalize mpi(), to initialize and
finalize the MPI execution environment in XMP/C. Figure 2 shows an example of using these
functions. Line 2 includes xmp.h, in which the functions are defined. Line 3 defines the XMP
node set, which is a process unit and typically corresponds to an MPI process. Thus, this
program is executed on four nodes. Lines 6 and 11 perform initialization and finalization of the
MPI execution environment. Line 7 obtains an MPI communicator, and line 9 sends the MPI
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communicator to the user-defined MPI function. Similarly, XMP/Fortran also provides these
functions.

The XMP specification has not yet provided a function of how to call an XMP program
from an MPI program. However, in the implementation of FFT using XMP (described in
Section 4.3.1), an FFT main kernel is called by an MPI program (Figure 13) because an Omni
XMP compiler informally supports the function. Now, we are planning to design a new XMP
specification to support the function.

3.1.5 Leverage HPF’s Experience (related to Section 2.2.1)

Part of the design of XMP is also based on High Performance Fortran (HPF)[17, 18]. Thus,
some concepts of HPF, such as the use of a template, which is a virtual global index, have been
inherited. However, all communication and synchronization actions occurred only at points of
the XMP directive or coarray syntax because of performance awareness. In other words, an
XMP compiler does not automatically insert communication calls. This design is different from
HPF. Since it is clear what each line does in XMP, this design enables programmers to easily
tune an application.

3.1.6 Use of Other Parallelizations (related to Section 2.2.2)

In XMP, OpenMP and OpenACC pragmas can also be used only for local calculations because
programmers can obtain the local memory information (described in Section 3.1.3). We have
been designing a new XMP specification for mixing communication with these pragmas.

On the other hand, XMP-dev[19, 20], which is an extended XMP, has been proposed. Since
XMP-dev provides pragmas for accelerators, XMP-dev allows programmers to easily develop
parallel applications on an accelerator cluster.

3.2 Implementation

We have been developing an Omni XMP compiler[6, 19] as a prototype compiler to compile
XMP/C and XMP/Fortran codes. The Omni XMP compiler is a source-to-source compiler that
translates an XMP/C or XMP/Fortran code into a parallel code using an XMP runtime library.
The parallel code is compiled by the native compiler of the machine (e.g., Intel compiler).

The latest Omni XMP compiler (version 0.6.2-beta) has been optimized for the K computer.
For example, in order to use high-speed one-sided communication on the K computer, the coar-
ray syntax is translated into calling the extended RDMA interface provided by the K computer
[15]. In Section 4, we use the Omni XMP Compiler to evaluate the HPCC benchmarks.

4 High-Performance Computing Challenge Benchmarks
in XcalableMP

In this section, we introduce the proposed implementations of the HPCC benchmarks and de-
scribe the evaluations thereof. In order to evaluate the performance of these implementations,
we used a maximum of 32,768 compute nodes (262,144 CPU cores) of the K computer (CPU:
SPARC64 VIIIfx 2.0 GHz (eight CPU cores), Memory: DDR3 SDRAM 16 GB 64 GB/s, Net-
work: Torus fusion six-dimensional mesh/torus network 5GB/s x2 (bi-directional) x10 (links
per node)). In addition, in Section 4.4, we evaluate the performance of these implementations
on a general PC cluster.
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An overview of each benchmark is presented below.

• The RandomAccess benchmark measures the performance of random integer updates of
memory via interconnect.

• The HPL benchmark measures the floating point rate of execution to solve a dense system
of linear equations using LU factorization.

• The FFT benchmark measures the floating point rate of execution for double-precision
complex one-dimensional Discrete Fourier Transform.

4.1 RandomAccess

4.1.1 Implementation

The proposed algorithm is iterated over sets of CHUNK updates on each node. In each iter-
ation, the proposed algorithm calculates for each update the destination node that owns the
array element to be updated and communicates the data with each node. This communication
pattern is known as complete exchange or all-to-all personalized communication, which can be
performed efficiently by an algorithm referred to as the recursive exchange algorithm when the
number of nodes is a power of two [14].

We implemented an algorithm with a set of remote writes to a coarray in local-view pro-
gramming using XMP/C. Note that the number of the remote writes is also sent as an additional
first element of the data. A point-to-point synchronization is specified with the XMP’s post
and wait directives in order to realize asynchronous behavior of the algorithm.

Figure 3 shows part of the proposed RandomAccess code. Line 1 declares arrays recv[][] and
send[][] as coarrays. Since these arrays on both hand sides of a coarray operation should be
coarrays due to a restriction of the interface of the K computer, the array send[][] on the right-
hand side, which was originally a normal (non-coarray) data, is declared as a coarray. In line 18,
the variable nsend, which is the number of transfer elements, is set to the first element of array
send[][] to be used by the destination node to update its local table. In line 19, XMP/C extends
the syntax of the array reference of the C language so that the “array section notation” can be
specified instead of an index. The number before the colon in square brackets (0) indicates the
start index of the section to be accessed, and the number after the colon (nsend+1) indicates
its length. The number in square brackets after an array and the colon (ipartner) indicates the
node number. Thus, line 19 means that elements from send[isend][0] to send[isend][nsend] are
put to those from recv[j][0] to recv[j][nsend] in the ipartner node. In line 20, the sync memory
directive is used to ensure the remote definition of a coarray is complete. In line 21 and 27, the
post and wait directives are used for point-to-point synchronization. The post directive sends
a signal to the node ipartner to inform that the remote definition for it is completed. Each
node waits at the wait directive until receiving the signal from the node jpartner.

4.1.2 Performance

We performed the proposed implementation, referred to as flat-MPI, of RandomAccess on each
CPU core. The table size is equal to 1/4 of the system memory. Figure 4 shows the performance
results. For comparison, we evaluated the modified hpcc-1.4.2[5] RandomAccess, for which the
functions for sorting and updating the table are specifically optimized for the K computer.
The best performance of the XMP implementation is 163 GUPS (Giga UPdates per Second)
in 131,072 CPU cores. Figure 4 shows that the XMP implementation and modified hpcc-1.4.2
have approximately the same performances.
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u64Int recv[MAXLOGPROCS][RCHUNK+1]:[*],

               send[2][CHUNKBIG+1]:[*];           // Declare Coarrays

...

for (j = 0; j < logNumProcs; j++) {

  nkeep = nsend = 0;

  isend = j % 2;

  ipartner = (1 << j) ^ MyProc;

  if (ipartner > MyProc) {

    sort_data(data, data, &send[isend][1], nkept, &nsend, ...);

    if (j > 0) {

      jpartner = (1 << (j-1)) ^ MyProc;

#pragma xmp wait(p(jpartner+1))

#pragma xmp sync_memory

      nrecv = recv[j-1][0];

      sort_data(&recv[j-1][1], data, &send[isend][1], nrecv, &nsend, ...);

    }

  }

  else {    ...    }

  send[isend][0] = nsend;

  recv[j][0:nsend+1]:[ipartner+1] = send[isend][0:nsend+1];

#pragma xmp sync_memory

#pragma xmp post(p(ipartner+1), 0)

  if (j == (logNumProcs - 1)) update_table(data, Table, nkeep, ...);

  nkept = nkeep;

}

...

jpartner = (1 << (logNumProcs-1)) ^ MyProc;

#pragma xmp wait(p(jpartner+1))

#pragma xmp sync_memory

nrecv = recv[logNumProcs-1][0];

update_table(&recv[logNumProcs-1][1], Table, nrecv, ...);
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Figure 3: Source Code of RandomAccess
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Figure 4: Performance of RandomAccess
on the K Computer

double A[N][N];

#pragma xmp template t(0:N−1, 0:N−1)

#pragma xmp nodes p(P,Q)

#pragma xmp distribute t(cyclic(NB), cyclic(NB)) onto p

#pragma xmp align A[i][j] with t(j,i)
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Figure 5: Define the Distribution Array for High-
performance Linpack
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Figure 6: Block-cyclic Distribution in
High-performance Linpack

4.2 High-performance Linpack

4.2.1 Implementation

Figure 5 shows part of the proposed HPL implementation in XMP/C, where each node dis-
tributes a global array A[][] in a block-cyclic manner, as is the case with hpcc-1.4.2 HPL. In
this code, a template directive declares a two-dimensional template t, and a node directive
declares a two-dimensional node set p. A distribute directive distributes the template t onto
P × Q nodes in the same block size (where NB is the block size). Finally, an align directive
declares a global array A[][] and aligns A[][] with the template t. Figure 6 shows the block-cyclic
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double L[N][NB];

#pragma xmp align L[i][*] with t(*,i)

  :

#pragma xmp gmove

L[j+NB:N-j-NB][0:NB] = A[j+NB:N-j-NB][j:NB];

Figure 7: Source Code of a gmove Direc-
tive in High-performance Linpack
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Figure 8: Panel Broadcast Using a gmove Di-
rective in Figure 7

#include “xmp.h”

int g_idx[2], l_dx[2];

...

// set g_idx

...

xmp_desc_t A_desc = xmp_desc_of(A);  // A is a global array

xmp_array_gtol(A_desc, g_idx, l_idx);

int local_y = l_idx[0];

int local_x = l_idx[1];

cblas_dgemm(..., N/Q-local_y, N/P-local_x,  ...,  

             &L[g_idx[0]][0], ...,  &A[g_idx[0]][g_idx[1]], ...);
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Figure 9: Example of a Calling BLAS Library
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Figure 10: Performance of High-
performance Linpack on the K Computer

distribution in Figure 5.

Figures 7 and 8 indicate a panel broadcast operation in HPL using the gmove directive
and array section notation. The array L[][] is also distributed in the block-cyclic manner,
but only the first dimension of the array L[][] is distributed. Thus, target elements of the
array A[j+NB:N-j-NB][j:NB] (stripe block in Figure 8) are broadcast to the array L[j+NB:N-
j-NB][0:NB] that exists on each node. Note that since a non-blocking gmove directive has not
yet been implemented in the Omni XMP compiler, this gmove directive is a blocking operation.

In HPL, the performance of matrix multiply is significant important. Thus, high-
performance DGEMM() and DTRSM() functions in the BLAS library should be used. In order
to use the BLAS library optimized for the K computer, we call DGEMM() and DTRSM() func-
tions using XMP inquiry functions (refer to Section 3.1.3). Figure 9 shows part of a code for
calling the BLAS library. Line 1 includes the header file xmp.h to use XMP inquiry functions.
Line 6 gets the descriptor of the global array A[][], and Line 7 sets the local indices from global
indices. Line 10 calls the DGEMM function using local indices. The N/Q-local y and N/P-
local x are the local widths of the column and row of the calculated matrixes. In addition, XMP
has a rule that a pointer of a global array indicates a local pointer on the node to which it is
distributed. Thus, &L[g idx[0]][0] and &A[g idx[0]][g idx[1]] indicate proper local pointers. In
contrast to the hpcc-1.4.2 HPL, the DGEMM() function is called only one time in each update
operation, because a node has all of the data for the matrix multiply.
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COMPLEX*16 :: A(NX,NY), A_WORK(NX,NY), B(NY,NX)

!$XMP template ty(NY)

!$XMP template tx(NX)

!$XMP nodes p(*)

!$XMP distribute ty(block) onto p

!$XMP distribute tx(block) onto p

!$XMP align A(*,i) with ty(i)

!$XMP align A_WORK(i,*) with tx(i)

!$XMP align B(*,i) with tx(i)

   ...

!$XMP gmove

A_WORK(1:NX,1:NY) = A(1:NX,1:NY) 

!$XMP loop (i) on tx(i)

!$OMP parallel do

DO 70 I=1,NX

    DO 60 J=1,NY

        B(J,I)=A_WORK(I,J)

    60   CONTINUE

70   CONTINUE
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Figure 11: Source Code of the Fast Fourier Trans-
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Fourier Transform

4.2.2 Performance

We performed the proposed implementation with eight threads per process on one node. The
size of the array A[][] is approximately 90% of the system memory. Figure 10 shows the
performance and the theoretical peak performance of the system. The best performance is
543 TFlops in 65,536 CPU cores. This performance is approximately 53% of the theoretical
peak. The performance of using only eight CPU cores (on one node) is 100 GFlops, which is
approximately 78% of the theoretical peak. The parallelization efficiency appears not to be
very good. The main reason is that an effective panel broadcast operation has not yet been
implemented. We consider this issue in Section 5.1.2.

4.3 Fast Fourier Transform

4.3.1 Implementation

We parallelized a subroutine, “PZFFT1D0”, which is the main kernel of the FFT. This sub-
routine is included in ffte-5.0 [3]. Figure 11 shows part of the proposed FFT implementation in
XMP/Fortran. In lines 2 through 9, the template, nodes, distribute, and align directives
describe the distribution of arrays A(), A WORK(), and B() in a block manner.

In a six-step FFT, which is an algorithm used in ffte-5.0, a matrix transpose operation must
be performed before one-dimensional FFT. In the sequential version FFT, the matrix transpose
is implemented by local memory copy between A() and B(). In the XMP version, the matrix
transpose operation is implemented by the gmove directive and local memory copy in lines 11
through 20. Figure 12 shows how to transpose matrix A() to B(). In figure 12, the number is
the node number to which the block is allocated, and the dotted lines indicate how to distribute
the matrices. Since the distribution manner of the arrays (A() and B()) is different, node 1
does not have all of the elements of matrix A(), which are needed for the transpose. The
gmove directive is used to collect these elements. Initially, a new array A WORK() is declared
to store the elements. A WORK() is distributed by template tx, which is used to distribute
B(). Consequently, the local block of A WORK() and that of B() have the same shape. By
the all-to-all communication of the gmove directive in lines 11 and 12, all elements needed
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int MAIN__(int argc, char *argv[]){

    _XMP_init(argc, argv);

    ...

    pzfft1d0_(...);

    ...

    _XMP_finalize();

    return 0;

}

1
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7

8

Main function/C with MPI

SUBROUTINE PZFFT1D0(...)

    ....

    !$XMP gmove

      A_WORK(1:NX, 1:NY) = A(1:NX, 1:NY)

    ....

    CALL ZFFT1D(...)

    ....
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XMP/Fortran

SUBROUTINE ZFFT1D(...)

    ....

    RETURN

END
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Figure 13: Example of Calling an XMP
Program from an MPI Program
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Figure 14: Performance of the Fast Fourier
Transform on the K computer

for transpose are stored in A WORK(). Finally, lines 14 through 20 copy the elements to B()
using the loop directive and OpenMP thread-parallelization. The loop directive distributes
iterations that are specified by the on clause and are executed in parallel.

This FFT implementation is a good demonstration of how to mix an XMP program with
an MPI program. The subroutine “PZFFT1D0” written in XMP/Fortran is called by the main
function written in the C language with MPI. In addition, the “PZFFT1D0” calls other subrou-
tines in ffte-5.0. Figure 13 shows these procedures, which are the same as the hpcc-1.4.2 FFT.
Lines 2 and 6 in “Main function/C” of Figure 13 call the XMP init() and XMP finalize()

functions to initialize and finalize an XMP execution environment. These functions are used
internally in the Omni XMP compiler and also set up an MPI execution environment. Since
this method is informal, we intend to design official functions for how to call an XMP program
from another language.

4.3.2 Performance

We performed the proposed implementation with eight threads per process on one node. For
comparison, we evaluated the hpcc-1.4.2 FFT. The program size is approximately 60% of the
system memory. Figure 14 shows the performance of the implementations. The best perfor-
mance of the XMP implementation is 24 TFlops for 262,144 CPU cores. The performance of
the XMP implementation is approximately half that of the hpcc-1.4.2 FFT. The primary reason
for this difference is that an internal packing operation for arrays is slow when using the gmove
operation. We consider this issue in Section 5.1.3.

4.4 Performance on a General PC Cluster

In this section, we describe the performance of the proposed implementations on a general
PC cluster. We used HA-PACS (CPU: Intel Xeon E5-2670 2.60 GHz [eight CPU cores x
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Figure 15: Performance Results on HA-PACS

two sockets/node], memory: DDR3 SDRAM 128 GB 51.4 GB/s/socket, network: Fat-Tree
Infiniband QDR 4 GB/s x 2 (bi-directional) x two rails)[4] located at the University of Tsukuba.
We used a maximum of 64 compute nodes (1,024 CPU cores) in this evaluation.

4.4.1 RandomAccess

We performed the RandomAccess on each of the CPU cores (flat-MPI). Figure 15(a) shows that
the performance of XMP RandomAccess is slightly worse than that of modified hpcc-1.4.2. The
reason for the low performance is the use of GASNet[10] as a one-sided communication layer
for a coarray on a general PC cluster. Thus, the difference in performance between GASNet
and MPI is less than that between the extended RDMA and MPI on the K computer.

4.4.2 High-performance Linpack

We performed the HPL on each socket (eight threads/process, two processes/node). Figure
15(b) shows the performances of HPL are approximately the same. Using 1,024 CPU cores
(128 processes, 64 compute nodes), the performance of XMP implementation is 81% of the
theoretical peak performance of the system. The reason for the good performance is that a
compute node of HA-PACS has more memory than that of the K computer. Thus, the ratio of
computation on HA-PACS is larger than that on the K computer, and the difference between
the performances is slight.

4.4.3 Fast Fourier Transform

We performed FFT on each of the CPU cores. The reason for using flat-MPI was that the
performance of flat-MPI was better than that of hybrid-parallelization. Figure 15(c) shows
that both the performances of the FFT are almost the same. The reason for this is that thread-
parallelization for the packing array in the hpcc-1.4.2 FFT was not performed in this evaluation
(refer to Section 5.1.3).

5 Consideration

5.1 Productivity and Performance of XcalableMP

In this section, we discuss the productivity and performance of XMP for the implementations
of the HPCC benchmarks in Section 4.
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5.1.1 RandomAccess

In general, a coarray is a more convenient means for expressing communications in parallel
programs than traditional MPI library routines. Therefore, it can be said that XMP provides
good productivity in implementing the RandomAccess benchmark.

On the other hand, the XMP version with coarrays does not outperform the MPI, even
though the extended RDMA interface used to implement coarrays in XMP could make the
most use of the underlying network hardware and be faster than the vanilla MPI. There are
two reasons for this. First, there is no way to complete memory operations from/to a certain
image (or node in XMP) in the Fortran standard, and the sync memory statement being used,
which completes all memory operations on the image, is too strong for such a purpose. Second,
the current implementations of the post and wait directives for point-to-point synchronization
are not optimal and could be implemented more efficiently with the extended RDMA interface.

5.1.2 High-performance Linpack

The gmove directive is useful for increasing the productivity. The panel broadcast operation
is performed while maintaining the global image in Figures 7 and 8. In other words, the
gmove directive automatically performs packing/unpacking data and communication for global
array. However, it is difficult for programmers to understand in detail what operations and
communications occur.

In order to increase the parallel efficiency of the HPL, it is known that scheduling of commu-
nication for panel broadcast is significant important. For example, a panel broadcast algorithm
provided by the hpcc-1.4.2 HPL first sends the panel to a right-hand neighbor process, because
the process can start a calculation using the received panel as soon as possible. If XMP uses
this algorithm, XMP will use the function of the XMP coarray. In this case, the performance
of the HPL will increase, but the complexity of the code will also increase.

5.1.3 Fast Fourier Transform

The SLOC of the subroutine “PZFFT1D0” written in XMP/Fortran is 65. On the other hand,
the SLOC of an original “PZFFT1D0” written in Fortran with MPI is 101. Moreover, the
code of the “PZFFT1D0” becomes simple because this code maintains a global image using the
gmove and loop directives in Figure 11.

However, the main reason for the low performance is the gmove directive. Before the
all-to-all communication, the transported data (two-dimensional array A() in Figure 12) must
be packed in a one-dimensional array. This operation is performed internally in the gmove
directive. In the hpcc-1.4.2 FFT, this operation is also performed in the same manner as
the XMP version FFT. However, the hpcc-1.4.2 FFT performs this operation using thread-
parallelization. The gmove directive has not yet supported internal thread-parallelization.

5.2 Comparison with Other PGAS Implementations

In this section, we present the performances and productivities of the HPCC benchmarks using
other PGAS languages. Table 1 shows the performances and the SLOC of RandomAccess,
HPL, and FFT at the HPCC Awards class 2 in 2011 and 2012, and the XMP implementations.
Note that not only the SLOC but also the performance is only one of indicators of performance.
This is because the performance of each benchmark is strongly related to the characteristics of
the machine.
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Table 1: Performance and SLOC of HPCC Awards Class 2 and XcalableMP in 2011 and 2012

Language Machine
RandomAccess HPL FFT

(GUPS) [SLOC] (TFlops) [SLOC] (TFlops) [SLOC]
X10 IBM Power 775 844 [143] 589 [708] 35 [236]
Chapel Cray XE6 4 [112] 8 [658] (NO DATA)
Charm++ BlueGene/P & Cray XT5 43 [138] 55 [1,770] 3 [185]
Coarray Fortran Cray XT4 & XT5 2 [409] 18 [786] 0.3 [450]
XcalableMP The K computer 163 [258] 543 [288] 24 [1,373]

Table 1 shows that the SLOC of HPL written in XMP are relatively good. The reason
is that the gmove directive of XMP automatically generates complicated communication and
pack/unpack operations. The SLOC of FFT written in XMP is a large number because we have
implemented only the main kernel of all FFT subroutines. The other kernels are almost the
same as the hpcc-1.4.2 FFT written in MPI. The performance of RandomAccess written in XMP
is much worse than that written in X10. The reason is that IBM Power 775 has a significant
high-speed interconnect (its peak bi-directional interconnect bandwidth of 192 GB/s)[27].

6 Conclusion and Future Research

The present paper describes the proposed implementations of RandomAccess, HPL, and FFT of
the HPCC benchmarks using XMP. Through these implementations, we demonstrate that the
XMP programming model has good productivity for an HPC system. Moreover, we evaluated
the performances on the K computer, which is a leadership HPC system. The results using
a maximum of 262,144 CPU cores show that XMP has scalable performances. There are two
important reasons for the good performance. First, XMP coarray syntax directly uses a high-
speed extended RDMA interface on the K computer. Second, XMP can tune the application
while being aware of local memory because XMP provides functions to obtain local memory
information for a global array. These results show that XMP has good strategies for high
performance and productivity of HPC applications.

In the future, several investigations have been described as follows. First, we will rewrite
part of the code on the local-view model in order to increase the performance. Second, the
internal packing operation in the gmove directive will support thread parallelization. Third,
we will develop real applications using XMP. Finally, we will implement applications using XMP
and OpenACC on an accelerator cluster and evaluate their productivity and performance.
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Abstract

GPI is a PGAS model based library that targets to provide low-latency and highly
efficient communication routines for large scale systems. We compare and analyse the
performance of two algorithms, which are implemented with GPI and MPI. These algo-
rithms are a sparse matrix-vector-multiplication (SpMVM) and a fluid flow solver based
on a lattice Boltzmann method (LBM). Both algorithms are purely memory-bound on a
single node, whereas at the large scale, the communication between the processes becomes
more significant. GPI, in principle, is fully capable of performing communication alongside
computation. Both the algorithms are modified to leverage this feature. In addition to
the näıve approach with blocking calls in MPI, the algorithms are also evaluated using
non-blocking calls and explicit asynchronous progress via an external library. We con-
clude that GPI implementations handle non-blocking asynchronous communication very
effectively and thus hiding communication costs.

1 Introduction and background

In order to increase the efficiency and scalability of MPI-like programming environments, many
developments have been made over the past several years. Using Partitioned Global Address
Space (PGAS)[10] languages is one part of these efforts. The PGAS model provides a shared
memory view for distributed memory systems, thus making it possible to access (read/write)
memory of the remote processes without their active involvement. The main motivation behind
the PGAS programming model is to increase the simplicity of codes and to provide better
efficiency and scalability at the same time. Some of the PGAS languages gained some popularity
like Coarray Fortran[3], Unified Parallel C[17], and Chapel[2]. Some other implementations
provide a PGAS communication model via API calls. This avoids the need to learn a new
language and a complete rewrite of applications. The Global address space Programming
Interface (GPI)[4] and Global Arrays Toolkit[5] are examples of such PGAS based APIs.

The GPI library is a relatively new addition to the PGAS programming model libraries. De-
veloped by Fraunhofer ITWM1, it focuses on providing low-latency, high speed communication
routines for large scale systems.

In the scope of this paper, we implement two algorithms using GPI. The first is a sparse
matrix-vector-multiplication (SpMVM) algorithm. SpMVM is a significant operation which
occurs in many scientific algorithms quite often and makes up a large amount of the overall
application runtime. The second algorithm is a fluid flow solver based on a lattice Boltzmann
method (LBM)[14]. Due to its effective algorithmic implementation and ease of parallelization,

1Fraunhofer Institute for Industrial Mathematics (ITWM): http://www.itwm.fraunhofer.de/en
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LBM has gained significant importance in scientific and research communities. We compare
the performance and scalability of our GPI vs. MPI implementations and extend our previous
work [12] where MPI and Coarray Fortran were compared.

Related Work: Grünewald [6] used a stencil based application (BQCD) to compare GPI
and MPI implementations. A performance advantage of 20-30% is achieved for the GPI code
through its ability to perform communication asynchronously to the work the application per-
forms. In [13] Simmendinger et al. implemented the unstructured CFD solver TAU using GPI
and receives a far better speedup as compared to MPI and hybrid MPI/OpenMP implementa-
tions. A similar comparison for a parallel adaptive search algorithm is presented by Machado
et al. in [8], who achieve a better speedup than the MPI implementation for some test cases.
The core reason for the improvement in application performance with GPI is the reformulation
of algorithms to benefit from the one-sided asynchronous communication capabilities of GPI.

An important point in optimizing communication is to create or leverage communication
hiding. Hereby the communication library (e.g. PGAS or MPI) communicates in the back-
ground while the application continues with its own work. In this case asynchronous progress
of the message transfer is performed and communication and computation overlap. The MPI
standard does not require this behavior (also not for the non-blocking point-to-point semantic)
and only high-quality implementations provide support for this. A rough evaluation of MPI
implementations concerning this feature can be found in [7] and [20]. To provide asynchronous
progress, even if it is not supported by the MPI implementation, the APSM library (Asyn-
chronous Progress Support for MPI) [20] can be used, which requires a thread-safe MPI library.
Transparently to the user, non-blocking MPI communication calls are intercepted by the library
and an own progress thread is used to drive the message transfer in the background. The pin-
ning (a.k.a. affinity) of the progress thread can be set by an environment variable. We test the
GPI performance against the MPI versions of the algorithms with and without APSM-library
support.

The main contributions of this paper are:

1. Implementation of SpMVM with GPI.

2. Implementation of LBM with GPI.

3. Optimization of GPI based SpMVM and LBM implementations to achieve asynchronous
communication.

4. A thorough performance comparison of GPI with their respective MPI implementations.

5. The performance benchmark of MPI with APSM support and its comparison with GPI
performance.

This paper is structured as follows. In Sect. 2, we present an introduction to GPI. The
experimental framework is presented in Sect. 3. In Sect. 4 the GPI implementation of SpMVM
is elaborated. Further the performance benchmarks are conducted and compared with the MPI
implementation. The same is done for the LBM code in Sect. 5. Finally, Sect. 6 gives the
summary and concludes the paper.

2 Global address space Programming Interface (GPI)

The Global address space Programming Interface (GPI) is a library based on the PGAS style
programming model for C/C++ and Fortran. The GPI API consists of a set of basic routines.
Its communication layer can take full advantage of the hardware capabilities to utilize remote
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direct memory access (RDMA) for spending no CPU cycles on communication. Each GPI
process has a global and local memory. The global memory can be accessed by other processes,
i.e. the data that has to be shared with other processes must be located in this memory region.
The local memory is private to each process and hence is not accessible to other processes. The
amount of global memory for each process must be specified at the start of the application
when GPI is initialized by the startGPI call (similar to MPI Init).

The API of GPI provides one-sided and the usual two-sided communication calls. The one-
sided calls consist of readDmaGPI and writeDmaGPI. Both of these calls are non-blocking and
require a wait call (waitDmaGPI ) to ensure the accomplishment of the read/write operation.
The two-sided communication calls are sendDmaGPI and recvDmaGPI. All communication
calls can only operate on the global memory. The only exception to this is allReduceGPI call
which can use local memory as well.

GPI only supports one GPI process per socket (or node), thus for multi-core environments,
GPI relies on a threading module called Multi-core Threading Package (MCTP) for intra-socket
resource utilization. The MCTP threading module also is developed by Fraunhofer ITWM and
provides fine NUMA-aware control over threads. The more widely used OpenMP programming
model can also be used as an alternative threading package. A minimum of two nodes are
required to run a GPI program. GPI supports InfiniBand and Ethernet (RDMAoE, RoCE)
interconnects.

The present version (1.0) of GPI also provides basic fault-tolerance on a process level. Unlike
an MPI application, if one or more processes of a GPI application fail, the remaining processes
can proceed with their work as usual.

3 Experimental Framework

For performance evaluation, we have used RRZE’s LiMa2 cluster. This cluster comprises of
500 compute nodes equipped with two Intel Xeon 5650 “Westmere” CPUs (six physical cores,
two-way SMT cores) running at the base frequency of 2.66GHz with 12MB shared cache per
chip. The ccNUMA system has two locality domains, each with 12GB RAM(24GB in total).
The STREAM(scale) benchmark [9] achieves a bandwidth of around 40GB/s (20GB/s per
socket). Simultaneous multithreading (SMT) and “Turbo Mode” are enabled. The system is
equipped with Mellanox QDR InfiniBand (IB) and GBit Ethernet interconnects. GPI can only
use the IB interconnect as the onboard GBit chips do not support RDMAoE or RoCE.

In the scope of this paper, we present the implementation details and results of the following
two algorithms.

SpMVM: The Sparse Matrix-Vector-Multiplication is a significant operation which occurs in
many scientific applications. Mostly it covers a significant portion of the overall computation
time. Thus its efficiency is critical to the application performance. A SpMVM operation consists
of ~y = A~x , where A is an n× n dimensional matrix, and ~x, ~y are n dimensional vectors. The
operation can be written as

yi =
∑

j

(A)i,j · xj . (1)

2LiMa cluster at the Erlangen Regional Computing Center (RRZE): http://www.hpc.rrze.fau.de/systeme/
lima-cluster.shtml
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Matrix Dimension Avg. NNZ per row size in MB
RRZE3 6.2 · 106 19 1530
DLR1 2.8 · 105 144 642
HV15R 2 · 106 140 4545
RM07R 3.8 · 105 98 602

Table 1: The matrices used for benchmarks.

(a) Matrix RRZE3 (b) Matrix DLR1 (c) Matrix HV15R (d) Matrix RM07R

Figure 1: The sparsity structure of the benchmarked matrices.

In case of a dense matrix, it is obvious to store the matrix in an n× n array. On the other
hand, for sparse matrices, the effective storage strategy of the matrix is critical for performance.
Some of the most famous matrix storage schemes are Compressed Row Storage (CRS), Com-
pressed Columns Storage (CCS), Ellpack-Itpack, Jagged-Diagonal, Blocked Compressed Row
Storage (BCRS), Compressed Diagonal Storage (CDS), etc [15]. For CPUs, the CRS storage
scheme is known for its best all-round performance for non-structured sparse matrices. There-
fore, in this paper, we follow this format. This scheme consists of three one dimensional arrays:
values, column index, and row pointer. The values array consists only of non-zero values of the
matrix. The column index array stores the column index of the corresponding non-zero matrix
value. The row pointer determines the number of non-zeros in a row. The size of values and
column index arrays is equal to the number of non-zeros in the matrix. The size of row pointer
array is equal to n+ 1.

The parallel MPI and GPI implementation details and results are provided in Sec. 4.
We have performed the benchmarks using four different sparse matrices: RRZE3, DLR1,
HV15R[16], and RM07R[16]. Table 1 shows the details of the matrices used whereas spar-
sity structure of the matrices is shown in Fig. 1.

LBM: The lattice Boltzmann Method[14] is used as a fluid flow solver. In the recent past it
has gained significant popularity in science and research communities also due to the fact that
it is simple to parallelize. LBM can be seen as a Jacobi-like stencil algorithm, but with two
major differences: (1) each cell has not only one, but (as in our case) 19 values and (2) no values
read are reused during the same iteration over the lattice. Our implementation uses the D3Q19
model[11] with the BGK collision operator[1]. In each iteration, the data is read from the 4-D
source lattice (three spatial dimensions plus one for the 19 cell values) and modified values are
written to the 4-D destination grid. The update of one cell is performed by reading one value
of each of the cell’s 19 surrounding neighbors. Out of these values new ones are computed,
which are used to update the cell’s own values in the destination lattice. Thereby the values
are arranged in a structure-of-array data layout (for details see [18]).

In this paper, we have used a prototype application based on LBM which simulates a 3-D
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SpMVM_sync(mat ,rhs ,res)

{

rhs ->communicate_remote_RHS_blocking ();

spMVM(mat , rhs , res);

}

Listing 1: The SpMVM function with synchronous MPI communication.

lid-driven cavity problem. The implementation details of its MPI and GPI parallelism are given
in Sec.5.

For both the applications, the performance of the five following cases is examined:

1. Blocking MPI communication (näıve MPI case)

2. Non-blocking MPI communication

3. Non-blocking MPI communication with APSM library

4. Synchronous GPI communication

5. Asynchronous GPI communication

Our evaluation of the benchmarks is based on absolute performance of the application and
the degree of overlap efficiency the library can offer. In addition, the scaling behavior of the
overlap efficiency is also examined. For benchmarking, the Intel C++ compiler (version 12.1.11)
with Intel MPI (version 4.0.3.008) was used. The pinning of the threads is explicitly performed
from within the code by sched setaffinity().

4 SpMVM

The parallel implementation of the SpMVM algorithm is based upon distributing the matrix
rows amongst the processes. Each process then calculates its result vector ~y corresponding to its
assigned rows. The division of the number of rows per process can be performed in two ways. A
näıve way is to divide the number of rows evenly between all processes. For sparse matrices, this
approach can potentially result in work imbalance amongst processes. For optimal workload
distribution, our implementation is based upon having (more or less) equal number of non-zeros
for each process. Each process owns the part of the right hand side (RHS) ~x that corresponds
to its rows of the matrix. The calculation of the result vector ~y can be seen as a combination
of two parts i.e. a “local part” and a “non-local part”. The part for which the RHS values are
local to the process is regarded as local part. The other part, for which the RHS values need
to be fetched from other processes is regarded as non- local part.

In a simple synchronous communication approach, these parts are combined. Thus, commu-
nication of RHS is required before performing the sparse-matrix-vector-multiplication. Listings
1 and 2 show the SpMVM function in a synchronous communication setting for MPI and GPI,
respectively. In the MPI case, the communication is two-sided and no global synchronization
is required. On the contrary, two synchronization calls are required for the GPI case. The first
synchronization ensures the completion of communication on all processes. This guarantees
that each process has updated RHS values received by remote processes. The second synchro-
nization is required before the next SpMVM. After that all processes have finished the previous
SpMVM iteration and have up-to-dated RHS values.

In an asynchronous (non-blocking) communication setting, the local and non-local parts are
computed separately. The communication request for reading the non-local RHS is placed before
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SpMVM_sync(mat ,rhs ,res)

{

rhs ->communicate_remote_RHS_one_sided ();

rhs ->wait();

sync();

spMVM(mat , rhs , res);

sync();

}

Listing 2: The SpMVM function with synchronous GPI communication.

SpMVM_async(mat ,rhs ,res)

{

rhs ->communicate_remote_RHS_non -blocking ();

spMVM_local(mat , rhs , res);

rhs ->wait();

spMVM_remote(mat , rhs , res);

}

Listing 3: The SpMVM function with asynchronous MPI communication.

the local-SpMVM kernel. A wait routine ensures the completion of this communication request.
After receiving the non-local RHS values, the non-local part can now be computed. Listings
3 and 4 show the pseudo code of the SpMVM function with asynchronous communication for
MPI and GPI, respectively. As in the previous case, no global synchronization is required for
the MPI case. GPI on the other hand, requires the first synchronization call before computing
non-local part. The second synchronization is needed before the next iteration.

The GPI asynchronous communication has two effects on the execution of the code. First,
the overlapping of communication and computation, which results in better performance. The
second effect is due to the introduction of a global synchronization call between local and non-
local SpMVM parts. This is matrix dependent and can be large if the ratio of local to non-local
NNZ amongst all processes is not even. If this imbalance is big, it can result in large overhead.

For benchmarking, we have followed a hybrid implementation i.e. MPI/OpenMP and
GPI/OpenMP. The parallelization within the socket is performed using OpenMP threads. Fig-
ure 2 shows the performance comparison of five different cases (as described in Sec. 3) for
different matrices. This benchmark has been performed on 32 LiMa nodes with 64 processes
each having 6 threads. The performance of non-blocking MPI is nearly similar to näıve MPI
(blocking MPI) for all matrices. This shows that Intel MPI (version 4.0.3) can not perform

SpMVM_async(mat ,rhs ,res)

{

rhs ->communicate_remote_RHS_one_sided ();

spMVM_local(mat , rhs , res);

rhs ->wait();

sync();

spMVM_remote(mat , rhs , res);

sync();

}

Listing 4: The SpMVM function with one-sided asynchronous GPI communication.
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Figure 2: The performance comparison of SpMVM with näıve MPI, non-blocking MPI , non-
blocking MPI with APSM, synchronous GPI, and asynchronous GPI cases for four different
matrices on 32 LiMa nodes.

the non-blocking communication calls in an asynchronous way. The usage of APSM library
boosts the performance only in the case of RRZE3. For RRZE3 and DLR1 matrices, the GPI
asynchronous communication performs better than the näıve MPI case. The APSM support
case with RRZE3 matrix is even better than the asynchronous GPI. The synchronization cost
in case of GPI introduces large overhead in the case of HV15R and RM07R and hides the
advantage gained due to asynchronous communication. Thus, the performance for HV15R and
RM07R is lower than the MPI cases.

Figure 3 shows the performance comparison between various cases of MPI vs. GPI in case
of strong scaling from 2 to 96 LiMa nodes. As per GPI requirement, the baseline for this
strong scaling starts with two nodes. For all matrices, the baseline performance of MPI and
GPI is nearly the same except for RRZE3 where asynchronous GPI performs 35% better than
the näıve MPI case. Around 32 nodes, the matrices DLR1 and RM07R fit into the L3 cache
completely and thus the strong scaling performance does not increase in a linear fashion from
this point on. The asynchronous GPI performance stays similar to the MPI performance for
smaller number of nodes. For more than 32 nodes, the global synchronization in each iteration
for GPI becomes more expensive and starts to reduce the performance.

5 Lattice Boltzmann Method

The domain in our test application consists of a 3-D lid-driven cavity. A hybrid parallel model
is followed using a MPI/OpenMP and GPI/OpenMP. For parallelization, the domain is divided
into slices in the Z-direction. Thus the ghost elements are exchanged in the Z-direction. The
size of this communication depends on the number of cells in X and Y-directions. The runtime
of the benchmark depends on the time-steps and the number of domain cells.

In a typical synchronous stream-collide based implementation, first the domain cells are up-
dated in a stream-collide step. Boundary layers are then exchanged to update the ghost cells of
each process before moving on to the next iteration. Listing 5 shows the algorithm for an LBM
iteration loop with synchronous communication. As we have followed one-sided communica-
tion routines (read/write) in GPI, a barrier is essential before performing communication (i.e.
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Figure 3: The MPI vs. GPI SpMVM performance comparison in case of strong scaling for
different matrices.

for(int t=1; t <= timesteps; ++t)

{

update_cells ();

barrier ();

exchange_ghost_cells ();

}

Listing 5: LBM iteration loop with synchronous communication. The barrier is essential before
one-sided communication is performed (i.e. GPI case).

updating ghost cells) in order to make sure that the target buffer has already been used and is
ready for the next update. As communication can only take place between global memories of
processes, all the distribution-functions (including ghost elements) are allocated in the global
memory of GPI. This avoids the in-memory copy of the ghost-elements from local to the global
memory.

In order to take the benefit of GPI’s capability to perform communication asynchronously
in the background of the application, we adapted the algorithm to make this overlap possible.
This involved splitting the stream-collide routine into two parts. The first part includes per-
forming stream-collide on the boundary (next-to-ghost) cells. After performing this step, the
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for(int t=1; t <= timesteps; ++t)

{

update_boundary_cells ();

exchange_ghost_cells_begin ();

update_inner_cells ();

exchange_ghost_cells_end ();

}

Listing 6: Pseudo code of LBM iteration loop with asynchronous communication (computation-
communication overlap)

communication of ghost-layers is initiated. In the second stream-collide stage, the computa-
tion on the inner cells of the domain is performed while the ghost-layers communication takes
place in the background. The wait call after the second stream-collide step makes sure that
communication has been completed. Listing 6 shows a simple pseudo code for such a case.

For GPI, as the communication is one-sided (read/write), the synchronization between the
processes is essential to make sure that the read values from the neighboring process are valid
values (i.e. the remote process for the read operation has already updated the values to be read).
One way to make this synchronization possible is by introducing a global barrier. In order to
avoid the cost of global synchronization, we have implemented a synchronization scheme only
between the communicating neighbor processes. The approach is similar to the one presented
in [6]. It has been combined with a relaxed synchronization approach [19] to further enhance
the communication performance. In a relaxed synchronization approach, each process copies
its owed values in a separate so called transfer buffer, which is located in the global memory.
One flag boundary ready per process and direction is required in the global memory. The local
process sets its flags after its updated data values are written into the transfer buffer. A remote
process, who wants to fetch the local process boundary values, polls on this flag. When it
becomes ready the remote process reads the desired values and unsets the flag again. The local
process waits for the flag to be unset before it continues with the next iteration. Listing 7
shows the LBM iteration loop with such a relaxed synchronization. All cell data is stored in
the local memory and only the transfer buffers and synchronization flags are allocated in the
global memory.

For the LBM case in particular, some overhead gets inherently induced with the adjustment
of the algorithm for GPI in order to achieve the communication overlap. The first overhead
originates from the in-memory coping of the transfer buffers (i.e. from local to global memory).
The second, rather small overhead is introduced by splitting the “stream-collide” routine which
updates the cells and thus causing less efficient cache usage.

Figure 4 presents the results of weak scaling up to 96 LiMa nodes for MPI (naive, non-
blocking and non-blocking with APSM) and GPI (synchronous and asynchronous). The domain
size of 2100× 2100× 24 cells is selected for the base case of 2 nodes. As the communication is
carried out over an InfiniBand network, a large cross-section of the domain is chosen (2100 ×
2100) to have a significant contribution of communication to the overall runtime. This way,
the communication hiding can be clearly seen. For weak scaling the domain size is scaled in
Z-direction. The baseline case for this performance benchmark is the näıve MPI case (i.e. no
overlap between computation and communication). For the case of MPI with non-blocking
communication, the performance remains largely unchanged. The case with APSM support
(MPI, non-blocking, APSM) shows a performance improvement. Näıve GPI beats the näıve
MPI implementation as the number of nodes get larger. The best performance is achieved with
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for(int t=1; t <= timesteps; ++t)

{

update_boundary_cells ();

copy_boundary_cells_to_comm_buffer ();

boundary_ready[local_rank ][EAST] = 1;

boundary_ready[local_rank ][WEST] = 1;

wait_for(boundary_ready[remote_rank_east ][WEST] == 1);

wait_for(boundary_ready[remote_rank_west ][EAST] == 1);

read_remote_boundary_cells ();

boundary_ready[remote_rank_east ][WEST ]=0;

boundary_ready[remote_rank_west ][EAST ]=0;

update_inner_cells ();

wait_for(boundary_ready[local_rank ][EAST] == 0);

wait_for(boundary_ready[local_rank ][WEST] == 0);

}

Listing 7: Pseudo code of LBM iteration loop having asynchronous communication and relaxed
synchronization.
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Figure 4: Performance of LBM implemented with MPI and GPI on LiMa in the case of weak
scaling with 2100× 2100× 12 cells per process.

the algorithm adapted for asynchronous communication with GPI. The performance difference
to all other variants becomes increases for larger number of nodes. With 96 nodes, the LBM
implementation with asynchronous GPI case is ≈ 30% better than the näıve MPI one.

The communication time can only be fully overlapped as long as it is smaller than the
computation time. In order to check the efficiency of overlap, we define the overlap fraction µ
as follows:

µ =
Tsync − Tasync

Tcomm
(2)

Here, Tsync and Tasync represent the total runtime synchronous and asynchronous communica-
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Figure 5: Fraction of communication that can be overlapped with computation for LBM im-
plemented with MPI and GPI variants.

tion respectively. Tcomm represents the pure communication time for the case without overlap.
A higher number of µ indicates more efficient communication computation overlap. If com-
putation gets slower by the overlapped communication, the Tasync gets larger and effects the
overlap fraction.

Figure 5 shows the communication overlap fraction µ for LBM benchmark up to 96 nodes.
The overlap with non-blocking MPI is low and inconsistent. Utilizing the APSM library im-
proves this behavior, but yet not to the best. The duration for communication completion get
reduced, but simultaneously the computation time increases. Hence no optimal overlap fraction
is reached. The best results are achieved with asynchronous GPI with an overlap fraction close
to 95%.

6 Summary

In order to improve the scalability, performance and ease of programmability for very large scale
computing clusters, the usage of Partitioned Global Address Space (PGAS) is one implementa-
tion candidate. The GPI library is a relatively new addition to the PGAS programming model
libraries. In this paper, we have implemented a sparse matrix-vector-multiplication (SpMVM)
and a lattice Boltzmann method based application with GPI and MPI. For both algorithms a
comparative performance study was concluded. The results revealed that in order to fully utilize
the potential of GPI, algorithms have to be adapted to allow for a communication-computation
overlap. In principle, this is also possible for MPI, but support for asynchronous communication
depends on the used MPI implementation. With SpMVM the performance benefit with GPI is
matrix dependent and the global synchronization reduces the performance on large number of
nodes. In the case of LBM the expensive global synchronization could be replaced by a more
relaxed synchronization scheme, which is the reason for the significant performance-gain over
the non-blocking MPI implementation.
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Abstract

Message Passing Interface (MPI) has been the de-facto programming model for scien-
tific parallel applications. However, data driven applications with irregular communica-
tion patterns are harder to implement using MPI. The Partitioned Global Address Space
(PGAS) programming models present an alternative approach to improve programmabil-
ity. OpenSHMEM is a library-based implementation of the PGAS model and it aims to
standardize the SHMEM model to achieve performance, programmability, and portability.
However, since OpenSHMEM is an emerging standard, it is unlikely that entire applica-
tions will be re-written with it. Instead, unified communication runtimes have paved the
way for a new class of hybrid applications that can leverage the benefits of both MPI
and PGAS models. Such unified runtimes need to be designed in a high performance,
scalable manner to improve the performance of emerging hybrid applications. Collective
communication primitives offer a flexible, portable way to implement group communica-
tion operations and are supported in both MPI and PGAS programming models. Owing
to their advantages, they are also widely used across various scientific parallel applications.
Over the years, MPI libraries have relied upon aggressive software-/hardware-based and
kernel-assisted optimizations to deliver low communication latency for various collective
operations. However, there is much room for improvement for collective operations in
state-of-the-art, open-source implementations of OpenSHMEM. In this paper, we address
the challenges associated with improving the performance of collective primitives in Open-
SHMEM. Further, we also explore design alternatives to enable collective primitives in
OpenSHMEM to directly leverage the designs available in the MVAPICH2 MPI library.
Our experimental evaluations show that our designs significantly improve the performance
of the OpenSHMEM’s broadcast and collect operations. Our designs also improve the
performance of the Graph500 benchmark using by up to 57%, with 4,096 OpenSHMEM
processes.

1 Introduction and Motivation

The Message Passing Interface (MPI) [20] has been a popular programming model for High
Performance Computing (HPC) applications for the last couple of decades. MPI has been very
successful in implementing regular, iterative parallel algorithms with well-defined communica-
tion behaviors. Data-driven applications often pose challenges associated with load balancing
and often exhibit irregular communication patterns. These issues are harder to address with
a traditional message-passing programming paradigm. The Partitioned Global Address Space
(PGAS) programming models present an alternative approach compared to message passing and
are believed to improve programmability of such applications. However, the existing PGAS
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models are still emerging and being standardized, whereas the MPI models are much more
widely adopted. The MPI models are also extensively tuned and can deliver superior perfor-
mance and scalability. Owing to these reasons, it is unlikely that applications will be designed
solely with the PGAS models in the future. It is more likely that applications will continue to
be written with MPI as their primary programming model; but, parts of the applications will
be adapted to use a suitable PGAS model, such as OpenSHMEM or UPC, leading to a class of
“hybrid” applications. This trend has also paved the way for unified communication runtimes,
such as, MVAPICH2-X [22], which allow applications to leverage the best of both MPI and
PGAS models.

Collective communication primitives offer a flexible, portable way to implement group com-
munication operations. Owing to their advantages, collective operations are supported across
both MPI and PGAS models. They are also widely used across various scientific applica-
tions [9, 14]. Most MPI stacks implement collective communication using point-to-point oper-
ations. However, with the increasing use of multi-core platforms, high-performance MPI im-
plementations have incorporated optimizations specific to multi-core architectures [19, 15, 6].
Some implementations of MPI, such as those on IBM Blue Gene, leverage specific network and
system features to optimize latency of collective operations [8, 16]. MPI implementations also
rely on kernel-assisted mechanisms to improve the performance of collective operations [17].

The MPI standard defines a high-level communicator construct to define the scope of com-
munication operations and to facilitate specific optimizations for collective operations. MPI
libraries typically construct sub-communicators and implement collective operations in a hier-
archical, multi-core aware manner to deliver low communication overheads. However, the com-
municator object is fairly robust and affects the development of irregular applications, which
may involve communication operations with varying process groups. Hence, PGAS models,
such as OpenSHMEM, allow applications to specify the set of processes participating in a col-
lective in a “loosely” defined manner, through PE start, PE size, and logPE stride variables.
An OpenSHMEM implementation can choose to construct a communication tree to implement
a collective operation, such as, broadcast, based on these parameters. Or, implementations may
choose to implement the collective in a simple linear manner through series of puts and gets. In-
variably, such designs are not multi-core-aware, and do not use advanced shared-memory-based
or kernel-assisted mechanisms thereby performing poorly when compared to their MPI counter-
parts. Further, the lack in performance of collective operations in OpenSHMEM will also affect
the performance of parallel applications. Hence, a transparent, light-weight mechanism to map
the collective operations in OpenSHMEM to their MPI counterparts holds much promise to
improve the performance of collective operations. Further, this allows OpenSHMEM collectives
to directly leverage the entire gamut of designs that are available in high performance MPI
implementations.

In this paper, we explore the challenges associated with improving the performance of collec-
tive operations in OpenSHMEM. We propose a high-performance, light-weight caching mecha-
nism to map the primitives in OpenSHMEM to those in MPI, thereby allowing OpenSHMEM
implementations to directly leverage the advanced designs that are available in MPI libraries.
We evaluate our proposed designs through various microbenchmarks and application kernels,
such as Graph500 and 2D-Heat, at large scales. Based on our experimental evaluations, 2D-Heat
performance is improved by around 7% and 29% at 512 processes, and Graph500 performance
is improved by 57% and 82% at 4,096 processes over existing linear and tree-based algorithms.

To summarize, we address the following important problems:

1. What are the fundamental limitations that affect the performance of collective communi-
cation primitives in OpenSHMEM implementations?
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2. Can we improve the performance of collective operations in OpenSHMEM through effi-
ciently mapping them on to collective operations in high performance MPI libraries?

3. What are the potential trade-offs of such an approach; and, can we design a light-weight,
transparent, and scalable interface to seamlessly improve the performance of common
OpenSHMEM collectives through leveraging MPI-level designs?

4. Finally, what are performance benefits of our proposed approach across various micro-
benchmarks and hybrid OpenSHMEM applications?

2 Background

2.1 PGAS models and OpenSHMEM:

In Partitioned Global Address Space (PGAS) programming models, each Processing Element
(PE) has access to its own private local memory and a global shared memory space. The locality
of the global shared memory is well defined. Such a model allows for better programmability
through a simple shared memory abstraction while ensuring performance by exposing data
and thread locality. SHMEM (SHared MEMory) [29] is a library-based approach to realize
the PGAS model and offers one-sided point-to-point communication operations, along with
collective and synchronization primitives. SHMEM also offers primitives for atomic operations,
managing memory, and locks. There are several implementations of the SHMEM model that
are customized for different platforms. However, these implementations are not portable due
to minor variations in the API and semantics. OpenSHMEM [25] aims to create a new, open
specification to standardize the SHMEM model to achieve performance, programmability, and
portability.

2.2 Message Passing Interface:

MPI has been the dominant parallel programming model in the high performance computing
domain for the past couple of decades. It has been widely ported and several open-source
implementations have been made available. It has also achieved very good performance and
scalability. MVAPICH2 [21] is a high-performance implementation of the MPI-2 standard on
InfiniBand, iWARP, and RoCE (RDMA over Converged Ethernet). It is currently used by
more than 2,070 organizations in 70 countries worldwide.

2.3 Collective Operations in MVAPICH2:

MVAPICH2 uses state-of-the-art designs, such as shared-memory-based multi-core aware de-
signs, kernel-based zero-copy intra-node designs, and InfiniBand hardware-multicast-based de-
signs, to improve the latency of blocking collective operations [18, 15, 30]. In these designs,
the processes that are within a compute node are grouped within a “shared memory commu-
nicator.” One process per node is designated as a leader and participates in a “leader commu-
nicator” that contains leaders from all nodes. The collective operations are scheduled across
these communicators to achieve low communication latency. MVAPICH2 uses such a design to
implement various collectives – broadcast, reduce, allreduce, scatter, gather, and barrier. The
inter-leader phases can be implemented through standard point-to-point based algorithms and
can be optimized using techniques like hardware-multicast, while the intra-node exchanges are
implemented via shared-memory, or kernel-assisted approaches.
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2.4 Unified Communication Runtime for MPI and PGAS Models:

Applications
(MPI, PGAS, MPI+PGAS)

InfiniBand Network

MVAPICH2-X: Unified Communication 
Runtime

PGAS Interface MPI 
Interface

PGAS
calls

MPI calls

Figure 1: MVAPICH2-X: Unified Communica-
tion Runtime for MPI and PGAS

As discussed in Section 1, it is critical to de-
sign communication runtimes that offer the
best performance and scalability while sup-
porting the use of hybrid programming mod-
els like MPI and PGAS. MVAPICH2-X [22]
library, based on the Unified Communica-
tion Runtime (UCR), provides a unified and
high performance communication runtime
and currently supports MPI (+ OpenMP),
UPC and OpenSHMEM models, and a com-
bination of these models [11, 10]. The ar-
chitecture of MVAPICH2-X is shown in Fig-
ure 1. This facilitates hybrid programming
models without having the overheads of sepa-
rate runtimes and their inter-operation. UCR
and hence MVAPICH2-X draws from the de-
sign of MVAPICH and MVAPICH2 [21] MPI
software stacks that have been optimized and widely adopted on large scale, high-performance
clusters. MVAPICH2/MVAPICH2-X offer highly optimized MPI collective communication as
described in Section 2.3. However, the current version (v1.9) of MVAPICH2-X does not take
advantage of the optimized collective communications for OpenSHMEM. This involves several
challenges as outlined in Section 1. This paper targets and addresses several of these challenges.

2.5 Non-collective Communicator Creation in MPI-3

MPI-3 defines a new communicator management routine for non-collective communicator cre-
ation. The syntax of the routine is as follows:
MPI Comm create group(MPI Comm comm, MPI Group group, int tag, MPI Comm *newcomm);

Here, the comm is an input parameter, which is a superset of processes in sub-group. This call
requires only processes that belong to the group to participate in the communicator creation
operation. Hence, this operation performs much better than the conventional MPI commu-
nicator constructor function MPI Comm create [7]. We use this MPI-3 interface for creating
non-collective communicators in our design.

3 Improving Collective Communication in OpenSHMEM

This section presents the design details of implementing OpenSHMEM collectives over MPI
collectives. We start this section by describing the various collectives in OpenSHMEM, followed
by a discussion on the different set of challenges associated with this approach, and finally
present our proposed design details.

The collective operations defined in OpenSHMEM specification v1.0 are - shmem barrier,
shmem collect, shmem broadcast and shmem reduce operations. The equivalent of these op-
erations in MPI are MPI Barrier, MPI AllGather and MPI AllReduce. Thus, we can state
that OpenSHMEM collective operations are a subset of those defined in MPI. However, we
cannot directly map OpenSHMEM collective operations over MPI collectives. The challenges
are explained in following section.
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3.1 Design Challenges

3.1.1 Difference in Specifying Participating Processes

MPI uses a high-level communicator object to identify the group of processes that are partic-
ipating in a collective communication operation. An MPI implementation may define special
pre-defined communicators during MPI Init and they remain valid for the duration of the par-
allel job. One such pre-defined communicator is the MPI COMM WORLD that includes all the MPI
processes in the parallel job. During the course of the parallel job, new communicators can be
constructed to correspond to sub-groups of processes and to define the scope of communication
operations. As discussed in Section 2.3, MPI libraries create sub-communicators for each com-
municator object created by the application and utilize them to improve the performance of
collective operations. On the other hand, in OpenSHMEM, there is no notion of a communica-
tor. Each collective call in OpenSHMEM specifies start PE, stride PE, and size parameters.
An OpenSHMEM implementation uses these parameters to dynamically define the scope of a
collective operation and identify the set of processes that are participating in the specific col-
lective operation. Hence, an OpenSHMEM implementation is required to dynamically create
logical communication structures to implement collective operations, depending on the set of
parameters defined by the application. Owing to these factors, state-of-the-art OpenSHMEM
implementations do not utilize advanced multi-core-aware designs to optimize the performance
of collective operations.

3.1.2 Expensive Communicator Creation

A simple way to map OpenSHMEM’s collective operations to MPI collectives is to create a new
MPI communicator for each OpenSHMEM collective operation. If an application is utilizing a
unified communication library, such as, MVAPICH2-X, it can directly invoke the correspond-
ing MPI collective operation with such a communicator. We note that such an operation can
be performed transparently within the OpenSHMEM implementation, requiring no modifica-
tions to an existing OpenSHMEM application. While such a simplistic design may allow an
OpenSHMEM implementation to directly utilize MPI-level designs, it may not always deliver
the best communication latency. This is primarily because communicator creation in MPI is
an expensive operation. These routines typically involve a collective communication operation
between all the participating processes to generate context-ids. Further, the OpenSHMEM
implementation must carefully release the resources allocated for such communicators, in order
to prevent the MPI library from running out of internal resources. Hence, it is critical to design
a light-weight interface to allow OpenSHMEM implementations to seamlessly utilize the entire
range of high performance designs that are available in MPI implementations.

3.2 Detailed Design

We take on these challenges and come up with a design with light weight Communicator Creator
and a Communicator Cache. The overall design is depicted in Figure 2. For every OpenSHMEM
collective call, we propose to first check if it defines a process group to include all the processes
in the parallel job. In this case, the OpenSHMEM collective operation can be directly mapped
to an equivalent MPI collective routine, with the MPI COMM WORLD communicator. If the pro-
cess group defined by the OpenSHMEM application does not correspond to MPI COMM WORLD,
we propose to maintain a cache of communicators, Communicator Cache. Our design performs
a look-up operation to identify a matching communicator. If our communication runtime has
already created such a communicator, we consider this as a “cache-hit” and we directly re-use

Proceedings of the 7th International Conference on PGAS Programming Models 189



Optimizing OpenSHMEM Collectives J. Jose, K. Kandalla, J. Zhang, S. Potluri and DK Panda

this communicator. However, if the process group does not correspond to any cached communi-
cator, we treat this as a “cache-miss” and we create a new communicator using Communicator
Creator and we cache the newly created communicator in Communicator Cache. Our Com-
municator Creator component relies on the non-collective communicator constructor (Section
2.5), to create the communicator in O(log N) time (where N is the number of participating
processes). The design details of communicator creator and cache are explained in following
sections.

3.2.1 Communicator Creator

InfiniBand Network

MVAPICH2-X 
Unified Communication Runtime

OpenSHMEM Interface MPI Interface

Point-Point 
Operations

MPI 
Collective 

Operations
Point-Point 
Operations

Collective Operations
Non-collective 
communicator 

creation
Communicator 

Cache

Application
(OpenSHMEM, MPI, Hybrid (MPI+OpenSHMEM)

Figure 2: Proposed Design of OpenSHMEM Collectives

As discussed in Section 2.5, the rou-
tines provided by MPI for commu-
nicator creation are collective over
an existing parent communicator.
MPI-3 has proposed a routine for
creating non-collective communica-
tor. We base our communicator
creation based on this communica-
tor creation routine. The algorithm
is collective only on processes that
are members of group, and the def-
inition of the group must be iden-
tical across all the MPI processes.
The complexity of this algorithm is
log(N), where N is the number of
participating processes.

3.2.2 Communicator Cache

Even though the algorithm takes log(N) steps for communicator creation, it is not advisable
to create communicator during every collective call. We implemented a Least Recently Used
(LRU) based cache for caching communicator. The communicators are held in this cache.
When an application invokes an OpenSHMEM collective on a process group that matches a
cached-communicator, we directly re-use it. The size of cache is configurable. Depending
on the utilization pattern of the cached-communicators, our design transparently destroys the
least recently used communicator and releases all its resources. Finally, when the application
terminates, all the cached communicators are freed.

4 Experimental Evaluation

In this Section, we describe our experimental test-bed and discuss our evaluations. We study the
performance characteristics of collective operations with our proposed designs, across various
micro-benchmarks, pure OpenSHMEM, and hybrid MPI+OpenSHMEM applications.

4.1 Experiment Setup

We used two clusters for performance evaluations.
Cluster A: This cluster consists of 144 compute nodes with Intel Westmere series of processors
using Xeon Dual quad-core processor nodes operating at 2.67 GHz with 12 GB RAM. Each
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node is equipped with MT26428 QDR ConnectX HCAs (32 Gbps data rate) with PCI-Ex Gen2
interfaces. The operating system used is Red Hat Enterprise Linux Server release 6.3 (Santiago),
with kernel version 2.6.32-71.el6 and OpenFabrics version 1.5.3-3.
Cluster B: This cluster (TACC Stampede [31]) is equipped with compute nodes with Intel
Sandybridge series of processors using Xeon dual eight-core sockets, operating at 2.70 GHz with
32 GB RAM. Each node is equipped with MT4099 FDR ConnectX HCAs (54 Gbps data rate)
with PCI-Ex Gen3 interfaces. The operating system used is CentOS release 6.3, with kernel
version 2.6.32-279.el6 and OpenFabrics version 1.5.4.1. Even though this system has large num-
ber of cores, we were able to gain access to only 8,192 cores for running experiments for this
paper.

For all the experiments, we have used MVAPICH2-X OpenSHMEM based on OpenSHMEM
version 1.0vd [25]. We used Graph500 v2.1.4 in our experiment evaluations. For all microbench-
mark evaluations, we report results that are averaged across 1,000 iterations and three different
runs to eliminate experimental errors. We used Cluster A for micro-benchmark and 2D-Heat
application kernel evaluation and Cluster B for Graph500 evaluations.

4.2 MicroBenchmark Evaluations

In this section, we compare the performance of various collective operations in OpenSHMEM,
across various implementations and design choices, with a varying number of processes. Specif-
ically, we are interested in exploring the differences between OpenSHMEM’s linear and tree-
based approaches for implementing collective operations and our proposed approach that allows
us to map OpenSHMEM’s collectives to those in MPI. In the following figures, we refer to our
proposed designs as “OSHM-Hybrid”. We also include a comparison with the latency of the
corresponding MPI collective operation.

In Figures 3(a), (b), and (c), we study the performance of the OpenSHMEM’s shmem collect

operation, across varying number of processes. We note that the current version of OpenSH-
MEM reference implementation [25] does not include tree-based algorithm for shmem collect.
Hence, we compare OpenSHMEM’s default Linear version (denoted as “OSHM-Linear”) with
our proposed Hybrid design and MVAPICH2’s default implementation of the corresponding
MPI Allgather collective. We note that for all the three system sizes, our proposed designs
deliver significant benefits, up to 1000X times better than OpenSHMEM’s default Linear im-
plementation. We also note that our design offers the same communication performance as the
MPI implementation. Hence, we note that our proposed mapping mechanism introduces very
little overheads, while allowing OpenSHMEM collectives to seamlessly leverage the efficient
designs that are available in MVAPICH2.

Similarly, in Figures 4 (a), (b), and (c), we study the performance characteristics of different
design alternatives for the shmem broadcast collective operation, with varying number of pro-
cesses. For this collective, we also include a comparison with the Tree-based implementation
(denoted as “OSHM-Tree”) that is available in OpenSHMEM, along with the Linear imple-
mentation, our proposed Hybrid version, and the default implementation in the MVAPICH2
library. We observe that the OpenSHMEM’s tree-based design outperforms the Linear design.
This is primarily because the tree implementation can allow the entire operation to complete in
a maximum of log(N) steps, with N OpenSHMEM processes. However, in the Linear scheme,
the root of the broadcast needs to perform N steps to individually transfer the data to every
other process. We note that our proposed Hybrid design performs about 10X better than the
tree-based implementation of broadcast in OpenSHMEM and is comparable to the performance
of the default implementation of MPI Bcast in MVAPICH2. These performance benefits mainly
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arise from the shared-memory based, hierarchical designs that are used in the MVAPICH2 li-
brary. Since such advanced designs are not available in pure OpenSHMEM implementations,
our designs lead to significant performance benefits.

Finally, in Figures 5(a), (b), and (c), we perform a similar comparison for OpenSHMEM’s
shmem reduce collective operation. We note that our proposed Hybrid design outperforms
OpenSHMEM’s default implementation by a factor of 100 and does not add any additional
overheads, when compared to the default MPI implementation of Allreduce.

In Figures 6, we compare the performance of the shmem broadcast operation with a different
process sub-group, instead of allowing all the OpenSHMEM processes to participate in the
collective operation. This benchmark is designed to demonstrate the performance of various
design choices, with slightly varying process groups. As a simple variant, we allow only the
processes with even ranks to participate in the collective operation. In this version of the
benchmark, we note the performance characteristics are fairly similar to those discussed in
Figures 4(a), (b), and (c). This observation is primarily because once the new process sub-
group has been formed, the new communicator is cached within the communication library and
it can be re-used for any subsequent operation with the same process group.
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Figure 3: Collect Performance Comparison (All Processes) (a) 128 Processes, (b) 256 Processes,
and (c) 512 Processes
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Figure 4: Broadcast Performance Comparison (All Processes) (a) 128 Processes, (b) 256 Pro-
cesses, and (c) 512 Processes

4.3 OpenSHMEM Application Evaluation

We consider two application kernels — 2D-Heat and Graph500 [12] — for performance eval-
uation. The 2D-Heat application kernel is available in OpenSHMEM v.1.0 release. This
benchmark uses Gauss-Seidel method for modeling 2D heat conduction. Gauss-Seidel kernel
is repeated until the standard deviation between adjacent 2D matrices is less than a prede-
fined convergence value. In the Gauss-Seidel kernel, data transfer between adjacent processes
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Figure 5: Allreduce Performance Comparison (All Processes) (a) 128 Processes, (b) 256 Pro-
cesses, and (c) 512 Processes
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Figure 6: Broadcast Performance Comparison (Even Processes) (a) 128 Processes, (b) 256
Processes, and (c) 512 Processes

are performed using shmem float put and synchronization between stages are achieved using
shmem barrier all calls. After every iteration of Gauss-Seidel kernel, sum of squares is calcu-
lated using shmem float sum to all calls. PE 0 calculates the square root and is broadcasted
to all PE’s using shmem broadcast64. Figure 7(a) shows the performance results of 2D-Heat
Transfer Modeling benchmark. We used an input matrix of size 8 K x 8 K for this experiment.
The benchmark was run for different number of processes, as shown in the figure. As it can be
noted from the results, our design based on MPI collectives performs better than both linear
and tree based collective designs, for all scales. Moreover, the performance benefits improve
as we increase the system size. With 512 processes, the execution times were 179.6, 136.9,
and 127.0 seconds for linear, tree, and hybrid designs, respectively. This is about 7% and 29%
improvement, compared to tree and linear collective designs.

The second application kernel in our performance evaluation is Graph500 benchmark. The
Graph500 Benchmark Specification [32] is a new set of benchmarks to evaluate scalability
of supercomputing clusters in the context of data-intensive applications. We use Concurrent
Search benchmark kernel of Graph500 suite in our application evaluation. It is basically a
Breadth First Search (BFS) traversal benchmark based on level synchronized BFS traversal
algorithm. In the benchmark, each participating process keeps two queues — ‘CurrQueue’
and ‘NewQueue’. In each level, vertices in CurrQueue are traversed, and the newly visited
vertices are put into NewQueue. At the end of each level, the queues are swapped. When the
queues are empty at all the participating processes, the algorithm terminates. We modify this
benchmark to use the collective reduction operation shmem longlong sum to all for identifying
if the queues are empty. The number of times the collective operation gets called depends on
the size of the graph and problem scale size. We used an input graph of size 512 million edges
and eight billion vertices. We used cluster B for Graph500 evaluation.

The performance results of Graph500 hybrid benchmark are shown in Figure 7(b). The new
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design based on MPI collectives improves the performance significantly. For 4,096 processes,
the new design takes about 1.81 seconds where as the linear and tree based designs take 10.6
and 4.2 seconds, respectively. This is about 82% and 57% improvement, respectively.
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Figure 7: Performance of OpenSHMEM Applications

For both the applications, the new design of OpenSHMEM collectives based on MPI collec-
tives performs better for all system sizes. The performance benefits improve as we increase the
number of processes.

5 Related Work

There have been several SHMEM variants after Cray Research introduced it in Cray T3D
platform [5]. Some of the major implementations are QSHMEM [27], SGI-SHMEM [29], GP-
SHMEM [13], HP-SHMEM, and IBM-SHMEM. MPI implementation of SHMEM [2] are also
available. Some of these implementations are still in use today. However, every variant has its
own spin off the SHMEM API semantics. With the recent OpenSHMEM effort [4] in unifying
SHMEM specifications, a renewed interest has been observed in developing high-performance
implementation of the OpenSHMEM specification. Sandia National Laboratories recently de-
veloped OpenSHMEM over Portals network programming interface [1]. Portals is a low-level
network data movement layer and programming interface to support higher-level one-sided and
two-sided interfaces. Latest Portals 4 [28] has included support for PGAS programming lan-
guages. Brightwell et. al proposed an intra-node implementation of OpenSHMEM, that uses
operating system virtual address space mapping capabilities to provide efficient intra-node op-
erations [3]. Potluri et. al. proposed a high-performance hybrid intranode runtime for OpenSH-
MEM by taking advantage of shared-memory-based, kernel-based and network-loopback-based
techniques [26].

Yoon et. al developed portable OpenSHMEM library called GSHMEM [33]. GSHMEM
employs GASNet communication middleware from UC Berkeley and is based on the v1.0
draft of the OpenSHMEM specification. OpenSHMEM reference implementation (OpenSH-
MEMv1.0) [25] also uses GASNet as the communication subsystem. Using GASNet-InfiniBand
conduit, these OpenSHMEM implementations enable OpenSHMEM communication on Infini-
Band networks. Several papers mentioned above include a discussion on optimized implementa-
tion of the OpenSHMEM collective operations, some proposing optimized algorithms and some
taking advantage of the new communication channels introduced [3, 26]. Dinan et. al. proposed
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the non-collective communicator creation in MPI [7] and highlighted that such algorithms can
be used for PGAS models.

Nishtala et. al, have proposed optimizations to improve the performance of UPC collec-
tives [24, 23]. In this paper, we address the challenges involved in improving the performance
of collective operations in OpenSHMEM. We propose light-weight, transparent designs to map
collective operations in OpenSHMEM directly to their equivalent collective operations in MPI.
Since state-of-the-art MPI libraries rely on a set of highly optimized designs to implement col-
lective operations, our work potentially allows OpenSHMEM implementations to seamlessly
leverage the designs that are available in MPI implementations.

6 Conclusion and Future Work

In this paper, we explored the challenges associated with improving the performance of collective
operations in OpenSHMEM using MPI collectives. We proposed a high-performance, light-
weight caching mechanism to map the primitives in OpenSHMEM to those in MPI, thereby
allowing OpenSHMEM implementations to directly leverage the advanced designs that are
available in MPI libraries. We evaluated our proposed designs through various microbenchmarks
and application kernels - Graph500 and 2D-Heat, at large scales. Our experimental evaluations
reveal that 2D-Heat performance is improved by around 7% and 29% at 512 processes, and
Graph500 performance is improved by 57% and 82% at 4,096 processes over existing linear
and tree based algorithms. We plan to design a light weight communicator mechanism at the
runtime layer, so that any programming model can leverage it.
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Abstract

Intel Many Integrated Core (MIC) architecture is steadily being adopted in clusters
owing to its high compute throughput and power efficiency. The current generation MIC
coprocessor, Xeon Phi, provides a highly multi-threaded environment with support for
multiple programming models. While regular programming models such as MPI/OpenMP
have started utilizing systems with MIC coprocessors, it is still not clear whether PGAS
models can easily adopt and fully utilize such systems. In this paper, we discuss several
ways of running UPC applications on the MIC architecture under Native/Symmetric pro-
gramming mode. These methods include the choice of process-based or thread-based UPC
runtime for native mode and different communication channels between MIC and host for
symmetric mode. We propose a thread-based UPC runtime with an improved “leader-
to-all” connection scheme over InfiniBand and SCIF [3] through multi-endpoint support.
For the native mode, we evaluate point-to-point and collective micro-benchmarks, Global
Array Random Access, UTS and NAS benchmarks. For the symmetric mode, we evaluate
the communication performance between host and MIC within a single node. Through
our evaluations, we explore the effects of scaling UPC threads on the MIC and also high-
light the bottlenecks (up to 10X degradation) involved in UPC communication routines
arising from the per-core processing and memory limitations on the MIC. To the best of
our knowledge, this is the first paper that evaluates UPC programming model on MIC
systems.

1 Introduction

Over the past decade, the field of High Performance Computing has witnessed a steady growth
in the density of compute cores available in nodes. The advent of accelerators and coprocessors
has pushed these boundaries further. The Intel Many Integrated Core (MIC) architecture
(known as Xeon Phi) provides higher degrees of parallelism with 240+ threads on 60+ low
powered cores on a single PCIe card. Such developments have made it increasingly common
for High Performance Computing clusters to use these coprocessors that pack a theoretical 1
Teraflop double precision compute throughput per card. This trend is evident in the recent
TOP500 list [4], where systems equipped with MIC coprocessors have risen from seven to twelve
in the past six months (from November 2012 to June 2013). In fact, Tianhe-2 [7], which ranks
first in the current Top500 list, is composed of 32,000 Intel Ivy Bridge Xeon Sockets and 48,000
Xeon Phi boards (total of 3,120,000 cores).

The Intel Xeon Phi [2], providing x86 compatibility, runs a Linux operating system and offers
a highly flexible usage model for application developers. MIC supports the use of several popular

∗This research is supported in part by National Science Foundation grants #OCI-0926691, #OCI-1148371
and #CCF-1213084.
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programming models including MPI, OpenMP, Thread Building Blocks, and others that are
used on multi-core architectures. This dramatically reduces the effort of porting applications
developed for multi-core systems onto the Xeon Phi.

High end systems have been deployed with high performance interconnects such as Infini-
Band [13]. The latest TOP500 list shows 41% of the supercomputing systems rely on InfiniBand
as their network interconnects. InfiniBand offers Remote Direct Memory Access (RDMA) fea-
tures to deliver low latency and high bandwidth to HPC systems and scientific applications.
Intel MPSS [1] enables InfiniBand-based communication from the MIC to local and remote host
processors as well as local and remote MICs. This allows MIC-clusters to leverage on popular
distributed memory programming models such as Message Passing Interface (MPI).

The unique environment, that emerging hybrid many-core systems with high-performance
interconnects, poses several optimization challenges for HPC applications. Recent studies [18,
19, 11] have analyzed the challenges and effects of running regular programming models such as
MPI/OpenMP on these emerging heterogeneous systems. However, the irregular programming
models, such as PGAS and its implementations like Unified Parallel C (UPC) [22], are still not
well investigated on the platforms with Intel MIC coprocessors. As high end clusters equipped
with InfiniBand networks and MIC coprocessors gain attention, the broad question remains:
How to optimally run PGAS implementations, such as UPC, on such MIC clusters and what
will be the corresponding performance characteristics?

2 Motivation

2.1 Problem Statement

On the Intel MIC, applications are usually run in one of the following modes:

1. Native : MIC can be used in a native many-core mode where the application runs only
on the coprocessor.

2. Offload : MIC can be also used in an offload accelerator mode where the application runs
only on the host and offloads compute-intensive parts of code to the coprocessor.

3. Symmetric: A symmetric mode is also offered on MIC where the application can be
launched on both the coprocessor and the host. This mode provides maximum control in
the way applications are launched and allows application developers to take full advantage
of the resources offered by the host and coprocessor.

Several previous works [18, 19, 6] have explored running MPI applications on MIC. With
both the native mode and the symmetric mode, the limited memory on the MIC places con-
straints on the number of MPI processes that can run on it and hence can be prohibitive towards
fully utilizing the hardware capabilities available. In order to overcome this limitation, hybrid
programming models of MPI and OpenMP can be deployed for less process count and mem-
ory footprint; and, allow for light-weight threads to fully subscribe all the cores on the MIC.
However, this approach involves more programming efforts to modify MPI applications with
OpenMP directives. Hence the availability of a highly multi-threaded environment and the
need for high programming productivity makes PGAS implementations such as UPC a more
natural fit for the MIC.

The offload mode allows programmers to use compiler directives to offload regions of com-
putation that may benefit from acceleration on the coprocessor. However, in this mode, the
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Coprocessor Offload Engine (COE) manages all memory operations with coprocessor memory,
and hence, any data residing on the coprocessor must be first copied on to the host through
COE if there is an intent to send that data out of the node. This increases the memory copy
overheads on applications. Furthermore, programmers are not exempted from changing the
source code of applications for marking the regions of computation to be offloaded. Also, for
computations characterized by irregular communication patterns, it is hard to mark the regions
of computation to be offloaded due to the irregular computation feature. Therefore, this paper
mainly explores and discusses the situations of evaluating the performance characteristics of
UPC runtime and running UPC applications under native and symmetric modes. Even for these
two modes, we still need to address and investigate additional problems, as outlined below:

1. UPC threads can be mapped to either OS process or thread. The process-based runtime
and thread-based runtime rely on different schemes for intra-node communication. Taking
the new features of MIC into consideration, what are the performance differences between
these two runtime schemes?

2. As shown in Figure 1(a), the limited memory on the MIC leaves dozens of UPC threads
sharing a small global memory region in the native mode. What is the performance
impact on UPC applications of this kind of many-core architecture with a small memory
space?

3. As shown in Figure 1(b), in the symmetric mode, the host memory space and coprocessor
memory space will be integrated as a global memory region for UPC threads running on
both host and coprocessor. What are the performance characteristics of the communica-
tion between host and MIC?

Intel Xeon Phi
Co-processors

Global Memory Region

MIC Memory
8G

Local Memory Region

(a) Mapping Global Shared
Memory Region on MIC for
native mode

Intel Xeon Phi
Co-processorsIntel Xeon

CPU

Global Memory Region
on Host

Global Memory Region
on MIC

CPU CPU CPU

IBA HCA

PCIe

(b) Connect MIC and host in symmetric mode

Figure 1: UPC on MIC: native and symmetric modes

2.2 Contributions

This paper addresses all of above issues and shares our early experiences of UPC on the MIC
under native and symmetric modes. This paper makes the following key contributions:
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1. We compare the pros and cons of process-based and thread-based UPC runtime imple-
mentations and show that thread-based runtime is a better alternative for UPC on MIC
in the native mode.

2. We propose a new connection mode for thread-based runtime with multi-endpoint sup-
port, in order to address the communication issue for host-to-MIC and MIC-to-host in
symmetric mode. The new connection mode can reduce the number of required connec-
tions from O(N2) to O(N) while keeping the shared array access between host and MIC
efficient.

3. We present and analyze the proposed thread-based runtime with new connection mode
for intra-MIC, host-to-MIC, and MIC-to-host separately. We also evaluate the impact of
MIC on UPC benchmarks with different communication patterns such as Random Access,
NAS, and UTS.

To the best of our knowledge, this is the first paper that evaluates UPC programming
model on MIC systems. The rest of the paper is organized as follows. Section 3 discusses some
background on UPC and InfiniBand. We further discuss alternatives for running UPC on MIC
in Section 4. Section 5 gives our experimental results. Section 6 lists the related work. Finally,
we conclude the paper in Section 7.

3 Background

In this Section, we provide an overview of UPC and InfiniBand architectures.

3.1 UPC

Unified Parallel C (UPC) [22] is an emerging parallel programming language that aims to in-
crease programmer productivity and application performance by introducing parallel program-
ming and remote memory access constructs in the language. There are several implementations
of the UPC language. The Berkeley UPC implementation [15] is a popular open-source imple-
mentation of UPC. IBM and Cray also distribute their own versions of UPC implementations
specifically optimized for their platforms.

GASNet interface is utilized by Berkeley UPC for memory access across network. It consists
of Core APIs and Extended APIs [9]. The Core API interface is a narrow interface based on
the Active Message paradigm. Extended APIs provide a rich, expressive, and flexible interface
that provides medium and high-level operations on remote memory and collective operations.
GASNet supports different network conduits, viz., ibv (OpenIB/OpenFabrics IB Verbs), udp
(UDP), lapi (IBM LAPI) [12], mpi (MPI), etc. In previous work [14], we proposed a new
high performance Unified Communication Runtime (UCR) for InfiniBand network support to
Berkeley UPC through GASNet interface. A network endpoint contention free UCR with multi-
endpoint support is proposed in [16].

3.2 InfiniBand Architecture

InfiniBand network [13] has been widely used in the high performance computing systems. In
June 2013, there are 41% systems in TOP500 list using InfiniBand as the primary network.
The most powerful feature in InfiniBand is the Remote Direct Memory Access (RDMA). The
RDMA-based communication can be processed without any remote host processor involvement.
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The basic RDMA operations are RDMA write and RDMA read, which are used in the UPC
runtime system to implement upc memput and upc memget, respectively.

4 Alternatives for Running UPC on MIC

4.1 UPC Runtime: Process-based or Thread-based?

UPC thread refers to an instance of execution for UPC applications. Depending on different
implementations of UPC runtime, each UPC thread can be mapped to either an OS process
or an OS thread. While OS threads share the entire address space, processes can only share
certain memory regions. Thus, in existing process-based runtime, the intra-node memory ac-
cess between two UPC threads has to be realized through one of the two shared memory based
schemes. The first scheme is copy-via-shared-memory. In this scheme, shared memory performs
as intermediate buffer. The owner of the source copies the data from source buffer to a tempo-
rary buffer that has been mapped to shared memory. Then the owner of the destination copies
the data from the temporary buffer to the destination buffer. There are three disadvantages
of the copy-via-shared-memory scheme: overhead from extra copy, extra memory footprint
for intermediate buffer, and extra synchronization between source and destination processes.
Many-core systems such as MIC have larger number of cores and limited memory compared to
normal, multi-core systems. The copy-via-shared-memory scheme thus suffers higher overhead
on MIC. Furthermore, the synchronization between source and destination is also against the
one-sided native feature of UPC programming language.

The second scheme utilized by process-based runtime is shared-memory-mapping. The
Berkeley UPC runtime offers a feature called PSHM (Inter-Process SHared Memory) [5]. PSHM
provides support for UPC shared arrays using Unix System V (SysV) shared memory. The whole
local part of the shared memory region, which belongs to one process, needs to be mapped into
the address space of all the other processes. All other processes then can direct read/write
UPC shared arrays through shared memory mapping. This removes the extra copy overhead
and synchronization problems in the first scheme. However, the mapping of shared region from
every process to all the other processes generates a huge amount of memory footprint in the
kernel space. The number of required entries in page table is O(N2), where N equals to the
number of processes. In a many-core system like MIC, with possibly more than 60 processes, a
large amount of memory is consumed for the page table. In short, the problems with the two
shared memory based schemes on multi-core systems are worse off on many-core systems like
MIC.

On the other hand, thread-based runtime can achieve much lower latency to directly access
shared array with no extra memory requirement. This is because all the UPC threads on
the same node are mapped to OS threads spawned by a single OS process. As a result, the
global shared array region within a single node belongs to the same address space. UPC direct
memory access within a single node between different UPC threads then can be done by system
memory copy functions directly from the source buffer to destination buffer. Regarding to
the drawbacks of thread-based runtime, previous research [8] has reported that it suffers from
bad network performance, due to sharing of network connections when hardware allows one
connection per process. Our previous work [16] proves that through multi-endpoint support,
thread-based runtime can achieve the same performance as a process-based runtime.

Based on the comparison between process-based and thread-based runtime implementations
for intra-node communication, in the many-core system with increasing intra-node communica-
tion and limited memory space, thread-based UPC runtime with multi-endpoint design is the
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right direction from both performance and scalability point of view. We thus choose to utilize
thread-based runtime for the evaluations in the following sections of the paper.

4.2 Remote Memory Access Between MIC and HOST

Communications between MIC and host can go through either SCIF-based [3] channel, which
is based on PCIe, or IB-based channel. Both of these channels provide remote memory access
(RMA) semantics. In the context of MPI programming, it has been shown that, for this
configuration, IB is suited in the small message range and SCIF is suited in the large message
range [19]. For IB-based communication in the UPC process-based runtime, every process on
the MIC needs to establish a connection with every process on the host and vice versa. This
requires order of NMIC×NHOST number of connections, where NMIC and NHOST refer to the
number of UPC threads on MIC and host, respectively. With 60+ cores on MIC, the number
of connections will increase significantly for a large value of NMIC . Hence the process-based
runtime can place increased pressure on the limited memory residing on the coprocessor. In
order to reduce the memory footprint for MIC-to-HOST communication without compromising
performance, we propose a “leader-to-all” connection mode for multi-endpoint support [16] in
the multi-threaded runtime.

Figure 2 shows how the “leader-to-all” connection mode works. First of all, the MIC leader
thread MICleader registers a shared memory region local to the whole MIC co-processor. After
the registration, all other threads on MIC can access this shared memory region just pinned-
down by MICleader. The host leader thread, HOSTleader, does the same registration. After
MICleader and HOSTleader finish registration, those two leaders exchange their rkeys of the
pinned-down memory. Those two rkeys are distributed to all the threads on MIC and host by
the MICleader and HOSTleader, respectively. Then all the threads on MIC (host) establish
connections with the remote leader thread on host (MIC). When a thread HOSTi needs to
access a shared array address belonging to any thread MICj on the MIC, thread HOSTi uses
the connection between itself and the thread MICleader with the distributed rkey. Through this
“leader-to-all” connection mode, the number of connections between MIC and host is reduced
to NMIC +NHOST .

Intel Xeon Phi
Co-processors

Global Memory Region
on MIC

Pin-down the whole global 
memory region

Intel Xeon

CPU

CPU

CPU CPU

CPU CPU

CPU

CPU

Intel Xeon

CPU

Global Memory Region
On Host

CPU CPU leader

CPU CPU CPU CPU

Pin-down the whole global 
memory region

Intel Xeon Phi
Co-processors

(a) Connect Host threads with leader on MIC (b) Connect MIC threads with leader on Host

Figure 2: Leader-to-all Connection Mode

For large message communication, where SCIF-channel performance is more optimal, we
reuse the “leader-to-all” connection design through IB over SCIF mechanism [17].
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5 Results

In this section, we evaluate the proposed multi-threaded UPC runtime with micro-benchmarks
and applications.

5.1 Experimental Setup

Our experimental environment is a dual socket node containing Intel Sandy Bridge (E5-2680)
dual octa-core processors, running at 2.70GHz, a SE10P (B0-KNC) coprocessor and a Mellanox
IB FDR MT4099 HCA. The host processors are running CentOS release 6.3 (Final), with kernel
version 2.6.32-279.el6.x86 64. The KNC runs MPSS 4346-16 (Gold). The compute node is
configured with 32GB of “host” memory with an additional 8GB of memory on the Xeon Phi
coprocessor card. The Intel compiler composer xe 2013.0.079 has been used. All the micro-
benchmark results are averaged over 1,000 iterations.

The UPC implementation used in the evaluation section is based on Berkely UPC v2.16.0
and the multi-endpoint UCR runtime proposed in [16]. As discussed in Section 4.1, we have
all the UPC threads mapped to OS threads and “leader-to-all” connection mode is utilized to
enable communication between host and MIC in symmetric mode.

MIC can support quad hyper threads for each core. However, when we evaluated the
performance of Hyper Threading by binding more than one thread on each core, the performance
drops dramatically. Thus in the following evaluations, there is only one thread on each MIC
core.

5.2 Micro-benchmark Evaluations

In this section, we present the performance evaluation results of point-to-point and collective
micro-benchmarks.

5.2.1 Native Mode Point-to-Point Evaluations

We first evaluate the native mode by running benchmarks purely on MIC and host, respectively.
“Intra-host” refers to the results when running with native mode on host, where two UPC
threads are all launched on host. “Intra-MIC” refers to the results with native mode on MIC.

In Figure 3, we compare UPC memput performance running with 2 threads on MIC or
host separately. The latency of a 256 byte message size memput operation running on MIC
and host are 0.2 and 0.01µs, respectively. For large messages, a 1 MB message size latency on
MIC and host are 440 and 60µs. We observe that there is a huge gap in the performance of
the memput operation on the two platforms. On the MIC, there is up to 10X memory copy
overhead for a single communication pair in comparison with that on the host. This difference
in performance can be attributed to the difference in performance of the memcpy operation as
well as the frequency at which the cores run on these two platforms.

In Figure 4, we run the same benchmark with 16 threads on the host and with either 16
or 60 threads scattered on the MIC. For the MIC case, we have performed experiments with
all 240 threads being used but as the performance was significantly worse, we have avoided
including corresponding results. By using 16 threads on host and 60 threads on MIC, all of the
cores on the CPU and coprocessors are fully occupied by UPC threads. For small messages, the
memput latency for 256 byte message size with eight pairs of threads running on host and MIC
are 0.01 and 0.2µs, respectively. The memput latency for 256 byte message size with 30 pairs
of threads running on MIC is 0.2µs. We are able to observe that with increasing concurrent
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small message communication (eight pairs to 30 pairs), MIC is able to keep the same latency up
to 256 KB message size. This trend can be explained by the high bandwidth ring available on
the MIC [2]. For large message size, the memput latency for 1 MB message size with 8 pairs of
threads running on host or MIC are 100 and 480µs, respectively. The memput latency of 1 MB
message size with 30 pairs of threads running on MIC is 850µs. We can observe that more
concurrent large message transfers have more memory copy overhead, due to the limitation of
the interconnects inside the MIC node.
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Figure 3: Intra-MIC Evaluations: single pair memput latency
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Figure 4: Intra-MIC Evaluations: multi-pair memput latency

5.2.2 Native Mode Collective Evaluations

In this subsection, we evaluate the performance of UPC collectives running on host or MIC
with a varying number of threads. We chose Bcast, Gather, and Exchange as representatives
for common patterns across HPC applications. In Figure 5(a), we present Bcast results with
16 threads on host, 16, 32, and 60 threads on MIC, respectively. We could see that there are
performance differences between running 16 threads on host and MIC. When we increase the
number of threads for collective operations, the performance of collective operations are affected
by increased memory contention. In Figures 5(b) and 5(c), we run the same set of experiments
for Gather and Exchange operations. We could see that Gather and Exchange operations have
the same performance trends as Bcast operation.
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Figure 5: Intra-MIC Evaluations: collective latency

5.2.3 Symmetric Mode Point-to-Point Evaluations

In this subsection, we evaluate the performance of memput operations across host and MIC
in symmetric mode. We measure the performance from both host side and MIC side and
show the results. In Figure 6, UPC threads launched on host CPUs initialize the upc memput

function calls while UPC threads on MIC are idle. We increase the number of threads involved in
communication from 1 to 16. On the other hand, UPC threads on MIC initialize the upc memput

functions in Figure 7 from 1 thread to 60 threads. When the number of threads on the MIC
and the host increases, the memput latency increases as a result of memory contention. While
a single thread memput costs 1.5µs and 16 concurrent memput costs 6.6µs from host to MIC,
as shown in Figure 6(a), MIC to host transfers perform significantly worse than host to MIC
transfers as this involves the IB HCA reading from the MIC and this is known to suffer from
the PCIe read bottleneck. In Figure 7(a), we observe that from MIC to host, memput costs
3.8µs for single thread, 21µs for 16 threads, and 51µs for 60 threads. This indicates some of
the bottlenecks involved in transferring data over the PCIe as traffic increases. In sum, the
host-to-MIC and MIC-to-host performance is not symmetric in the symmetric mode.
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Figure 6: Host-to-MIC Evaluations: multi-pair memput latency

5.3 Random Access

The Random Access benchmark is motivated by a growing gap in performance between proces-
sor operations and random memory accesses. This benchmark measures the peak capacity of
the memory subsystem while performing random updates to the system memory. We carry out
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Figure 7: MIC-to-Host Evaluations: multi-pair memput latency

Random Access benchmark for native mode on host and MIC with full utilization. With table
size equal to 2,097,152 words, the host native mode gets 93µs while MIC native mode is 246µs
(Figure 8). We further evaluated RandomAccess benchmark in symmetric mode with total
76 UPC threads where 16 UPC threads on host and 60 UPC threads on MIC. The execution
time dramatically increased from less than 1 second in native mode (both host and MIC) to 52
seconds in symmetric mode.

5.4 UTS Benchmark

The Unbalanced Tree Search (UTS) benchmark is a parallel benchmarking code that reports the
performance achieved when performing an exhaustive search on an unbalanced tree [21]. In the
benchmark, upc lock is frequently utilized for load balancing. Fetching request is implemented
by upc memget operation. We evaluate the native mode on host and MIC and show the results in
Figure 8. Due to the frequent small message exchange introduced by upc lock and upc memget,
we can observe a 4X execution time on MIC of the execution time on host.

5.5 NAS Benchmark

In this section, we compare NAS benchmark performance with native mode and symmetric
mode. In Figure 9, we present the results of NAS Class B performance. In both host and
MIC native modes, the CPUs and coprocessors are fully occupied with 16 and 60 UPC threads,
respectively. We are able to observe that 60 MIC coprocessors deliver 80%, 67%, and 54% per-
formance as 16-CPU host for MG, EP, and FT. However for communication-intensive bench-
marks CG and IS, the MIC spends 7x and 3x execution time, due to the bottleneck of slower
intra-MIC communication, as we observed in Section 5.2.1.

In order to understand the scalability of host and MIC accordingly, we also measure the
results of the same set of benchmarks with only one UPC thread on a CPU or a MIC core,
respectively. We compare the Mop/s (Million operations per second) for each CPU or MIC
core in the situations of single-thread and fully-occupied. As shown in Table 1, it is interesting
to find out that, though MIC gives worse performance for the total execution time, it has less
perforamnce degradation or better improvement for most of the benchmarks (except for IS)
when the scale of the benchmarks increases. This evaluation indicates that MIC system could
have a better scalability than the host system.

We also compare the FT Class B performance between native mode and symmetric mode.
Four threads with native mode on host takes 22 seconds for FT Class B test. However, when we
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CG EP FT IS MG
host MIC host MIC host MIC host MIC host MIC

single-thread 536 12 23 4 1248 103 85 12 2930 249
fully-occupied 602 18 23 4 580 80 57 4 854 189

ratio 12.3% 52.5% 0% 0% -53.5% -21.7% -33% -65% -70% -23%

Table 1: NAS benchmarks with native mode: Mop/s per core

launch the job through symmetric mode with four UPC threads on host and MIC, respectively,
the total execution time for FT benchmark is 116 seconds.
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During the evaluation of NAS benchmark, we also experienced unbalanced memory problem
for the symmetric mode. As shown in Figure 1, MIC system has much less local memory (8G)
than host node (32G ). In symmetric mode, the size of shared array region on host must match
the size of shared array region on MIC. When the problem size of NAS benchmark increases, the
MIC memory can be easily used up while the host memory is still available. One of the benefits
of symmetric and native modes is that UPC applications can run on MIC with no change to
source code. This means coprocessors are assigned with the same workload as CPUs. However,
considering the unbalanced physical memory size and computation power, optimizations to
assign corresponding workload and shared memory region on coprocessors and CPUs would be
an important consideration in this direction.

6 Related Work

There have been many researches to utilize MIC to accelerate parallel applications. Being a
new terrain, optimal programming model for writing parallel applications on MIC is yet to be
explored. In [18], Sreeram et. al presented their experience with MVAPICH2 MPI library on
MIC architecture. They have tuned and modified the MVAPICH2 library to provide better
performance for basic point-to-point and collective operations running on MIC architecture.
Article [19] proposes designs that are based on standard communication channels and Intel’s
low-level communication API (SCIF) to optimize MPI communications on clusters with Xeon
Phi coprocessors. They are able to show performance improvements of running applications on
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MIC. Besides existing works in MPI, there are also some works using UPC (Unified Parallel C)
on MIC. Article [20] describes SGI compiler support for running UPC application on MIC.

Global Address Space Programming Interface (GASPI) [10] is a PGAS API. GASPI allows
software developer to map memory of Xeon Phi to RDMA PGAS memory segments. Those
segments could be directly read/write from/to between processes – inside nodes and across
nodes. Those RDMA operations could significantly minimize synchronization overheads. In
this paper, we explore the performance benefits of using UPC on MIC. We provide a detailed
evaluation of UPC-level benchmarks and applications.

7 Conclusion

In this paper, we discussed the intra-node memory access problems and host-to-MIC connection
issues for running UPC applications on a MIC system under native and symmetric programming
modes. We chose the multi-threaded UPC runtime with the new proposed “leader-to-all”
connection mode according to the discussion. We evaluated point-to-point, collectives, Random
Access test and NAS/UTS benchmarks for native mode. We also examined the point-to-
point communication performance between host and MIC in symmetric mode. According to
the evaluation results, we found out several significant problems for UPC running on many-
core system like MIC, such as the communication bottleneck between MIC and host, and the
unbalanced physical memory and computation power issues. For the future research directions,
deploying delegate to handle communications between MIC and host in a contention-aware
manner could help alleviate the high asymmetric memory access overhead. Optimizations to
assign corresponding workload and shared memory region across coprocessors and host CPUs
would be an important consideration for symmetric mode.
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Abstract

Memory utilization for communication will become a major problem in the exascale
era because an exascale parallel computation job will include millions of processes and a
conventional communication layer requires preprovisioned memory of a size proportional
to the number of processes. One approach to addressing the memory utilization problem
is to allocate a data sink on a remote node dynamically each time a node needs to send
data to the remote node. In this paper, a memory management scheme that can provide
memory to a process in a remote node is called “global memory management.” A global
memory management scheme that can be accessed via interconnect is an ideal solution
that does not waste local processing resources but is also different from today’s local
memory management schemes. For a stepping stone to global memory management, we
propose an asynchronous global heap that virtually achieves global memory management
while minimizing modifications to the operating system and the runtime. In addition, new
hardware features for global memory management are also co-designed.

1 Introduction

Cluster-type parallel computers are the mainstream of today’s high performance computing
(HPC). A cluster is composed of a massive number of stand-alone computers that are inter-
connected. On a stand-alone computer, a network interface is an expansion device and not a
first-class citizen such as a processor, memory, and operating system. An ordinary network
interface incurs ten or more microseconds of latency [6] because of a data delivery scheme that
involves context switches. In contrast, today’s HPC interconnect devices access remote mem-
ory in the sub-microsecond range [3, 4, 1] at the price of overheads establishing a connection
to the remote node and registering memory to the device. These overheads are permitted as
a tradeoff to resolve performance bottlenecks. Therefore, today’s interconnect designs target
large or iterative data transfers.

Memory utilization for communication will become a major problem in the exascale era
because an exascale parallel computation job will include millions of processes and conventional
communication layers require preprovisioned memory of a size proportional to the number of
processes in order to avoid performance bottlenecks. One approach to addressing the memory
utilization problem is to allocate a data sink on a remote node dynamically each time a node
needs to send data to the remote node. In this paper, a memory management scheme that can
provide memory to a process in a remote node is called “global memory management,” and
memory provided by the global memory management scheme is called “global memory.” A
global memory management scheme that can be accessed via interconnect is an ideal solution
that does not waste local processing resources but is also different from today’s local memory
management schemes.
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For a stepping stone to global memory management, we propose an asynchronous global
heap that virtually achieves global memory management while minimizing modifications to
the operating system and the runtime. In addition, new hardware features for global memory
management are also co-designed assuming a system-on-chip whose device I/O bus is customized
to enhance the memory access capability of the integrated interconnect device.

In this paper, we propose an asynchronous global heap as a primitive global memory man-
agement scheme. In Section 2, the asynchronous global heap is introduced. In Section 3, the
results of evaluating the asynchronous global heap functions are shown. In Section 4, this work
is summarized, and possible future works are listed.

2 Asynchronous Global Heap

We propose an asynchronous global heap that includes a concurrent data structure allocated
on each process and application programming interfaces (API) to provide free memory to other
processes. Control variables and a heap body of the data structure are designed to be accessed
via the remote direct memory access (RDMA) features of an interconnect device. Therefore,
the control variables and heap body are allocated in a memory region that can be accessed
via RDMA. With today’s operating system and runtime, RDMA capable memory regions are
required to be pinned and registered to an interconnect device prior to RDMA access. Therefore,
the data structure is placed in a locally provided memory region, and the free memory managed
by the operation system decreases even though the heap body is totally unused at the time.
We choose memory allocators of runtimes including the malloc() function to resolve this prior
memory consumption problem while leaving the operating system and the memory registration
scheme unchanged. The implementation of an asynchronous global heap uses only memory
allocation system calls of the operating system, so the memory allocator of a runtime can
obtain free memory from an asynchronous global heap.

2.1 Data Structure

Figure 1 shows the data structure of an asynchronous global heap. To isolate fragmentation
caused by local and remote memory allocation, local memory allocation consumes free memory
from the top, and global memory allocation consumes free memory from the bottom. A control
variable that indicates the bottom of the free memory is called a “global break” (gbrk), and
another control variable that indicates the bottom of the memory allocated locally is called a
“global limit” (glimit). The gbrk variable may be changed by global memory allocators, and
the glimit variable may be changed by a local memory allocator. All memory allocators using
the asynchronous global heap read both the gbrk and glimit variables to calculate the size of
the free memory space, so accessing these variables requires exclusive control.

Each process holds a dynamic state of its own asynchronous global heap that consists of
three control variables: a lock, the gbrk, and the glimit. A control structure including these
control variables is placed in conjunction with the heap body. Caching the dynamic state of
another process is prohibited.

2.2 Application Programming Interfaces

The API design of an asynchronous global heap is similar to the data segment system calls
of Linux which includes the brk() system call. There are five API functions. The ginit()
function initializes the asynchronous global heap. The gbrk() function changes the global break.
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control variables 

free memory RDMA 
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memory allocated locally 
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memory allocated globally 

Figure 1: Data structure of asynchronous global heap

The sgbrk() function moves the global break. The gglimit() function changes returns the free
memory information. The sglimit() function changes the global limit. To obtain free memory
from other nodes, gbrk(), sgbrk(), and gglimit() functions have an input argument to specify
a process identification number. Initializing an asynchronous global heap involves a collective
communication process that gathers the identifiers of RDMA capable memory regions of whole
processes. API functions other than the ginit() do not register local memory or exchange
identifiers of registered memory.

2.3 Co-designing New RDMA Features

Global memory obtained from an asynchronous global heap can be accessed with ordinary
RDMA put and get features. To access the control variables effectively, we introduce three
additional RDMA features: RDMA atomic compare and swap (CAS), RDMA remote fence,
and interoperable atomic operations. RDMA atomic CAS sequentially operates compare and
swap on remote memory without interruption from any other RDMA accesses and effectively
performs mutual exclusion of the control structure. RDMA remote fence forces memory accesses
of the RDMA requests sent prior to the fence completed before the memory accesses of RDMA
requests sent after the fence are started. Implementing a RDMA remote fence feature that
handles memory access ordering remote-side may reduce the latency of reading control variables
because an RDMA get request can be sent speculatively immediately after the RDMA remote
fence following the RDMA atomic CAS, which tries to acquire the lock. Interoperable atomic
operations are carefully implemented atomic operations of the processor atomic instructions and
RDMA atomic operations, so processor atomic instructions are ensured not to be interrupted by
any RDMA memory accesses, and RDMA Atomic operations are ensured not to be interrupted
by any processor memory accesses. Interoperable atomic operations allow any control variable
of an asynchronous global heap to be accessed by processor memory access instructions as long
as the control variables belong to the accessing process itself.
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3 Evaluation

3.1 Evaluation Environment

In this chapter, we evaluate the execution time of the gbrk(), gglimit(), and sglimit() functions
that are assumed to be called frequently from memory allocators that support asynchronous
global heap. A prototype system of the K computer placed in Fujitsu’s Numazu Plant was
used for the evaluations. The processor was a SPARC64TM VIIIfx [5], and it has an operating
frequency of 2 GHz and eight cores. The interconnect device was a Tofu interconnect [2]. The
experiment programs used the Message Passing Interface (MPI) and were executed with two
MPI processes. The MPI process rank 0 repeatedly executed an asynchronous global heap API
function 1001 times to access the same asynchronous global heap. The experiment programs
measured the time between starting the second execution of the function and finishing the last
one.

The experiment programs used the Tofu library (tlib) in conjunction with MPI for RDMA
communication. The tlib is a low-level API for using features of the Tofu interconnect directly.
Each MPI process created a thread to emulate RDMA atomic CAS and interoperable atomic
operations. The RDMA remote fence was implemented by using the strong order flag feature
of the Tofu interconnect [1].

The average execution time of each function was measured for each of the four different
combinations of access patterns and assumed RDMA features. For the remote access patterns,
the MPI process rank 0 accessed its own asynchronous global heap, and there were two options:
assume or do not assume the RDMA remote fence feature. For the local access patterns, the
MPI process rank 0 accessed an asynchronous global heap on MPI process rank 1, and there
were two options: assume or do not assume the interoperable atomic operations feature.

3.2 Evaluation Result

Figure 2 shows the evaluation results. The graph shows the measured average execution time
of the asynchronous global heap API functions. The vertical axis has a logarithmic scale, and
the unit of time is microseconds. The results of local access with RDMA atomic were shorter
than those of remote access by 35 to 48%. The difference comes from the access method for
controlling variables other than the lock variable. For the local access patterns, only the lock
variable was accessed by RDMA, and the others were accessed by processor instructions. For
the remote access patterns, all control variables were accessed by RDMA. The results of remote
access with fence were shorter than those for remote access without fence by 25 to 37%. The
difference comes from speculative accesses to the control variables with fence that hide the
latencies of mutual exclusion. As for hiding mutual exclusion latencies, the results of remote
access with fence were closer to those of local access with RDMA atomic rather than those
of remote access without fence. For the local access patterns, interoperable atomic operations
reduced the execution time by 99% because all control variables were accessed by processor
instructions when interoperable atomic operations were assumed.

4 Summary and Future Work

In this paper, we proposed an asynchronous global heap as a stepping stone for an ideal global
memory management scheme that allows other nodes to obtain memory directly via an inter-
connect. An asynchronous global heap provides free memory to both local and global memory
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Figure 2: Evaluated average execution time of asynchronous global heap API functions

allocators. For efficient access to control variables, three RDMA features were also introduced:
RDMA atomic CAS, RDMA remote fence, and interoperable atomic operations. The results
of evaluating the API functions showed that RDMA remote fence reduced access time to an
remote asynchronous global heap by 25 to 37%, and interoperable atomic operations reduced
access time to a local asynchronous global heap by 99%.

Our possible future work includes investigating an extensible asynchronous global heap, an-
other global memory management scheme that causes no fragmentation, low-latency algorithms
for global memory allocators to merge fragments on deallocation, and intelligent strategies for
user programs to reuse allocated data sinks.
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Introduction

This paper presents current work in adding Unified Parallel C (UPC) support to the GAP
computer algebra system [3]. Our work is motivated by the need to parallelise orbit enumeration,
a central concept for many areas of discrete mathematics. This algorithm requires the storage
of, and access to, potentially huge numbers of objects. UPC’s memory model allows large,
distributed data structures whose memory requirements exceed the amount of memory available
on any single node. It can make use of the memory available to multiple nodes in a cluster or
HPC system, while still using the normal C-array syntax. We describe the main functionality
of UPC-extended GAP, show and discuss some preliminary performance results and consider
further improvements.

This paper is structured as follows: in Section 1 we provide an overview of the GAP system;
in Section 2 we describe the orbit enumeration problem and consider parallelisation strategies;
in Section 3 we introduce the implemetation of UPCGAP; Sections 4 and 5 discuss results and
provide pointers to future work respectively.

1 The GAP system

The GAP system [3] is an open-source system for discrete computational algebra. It consists
of a kernel written in C which provides the run-time environment, memory management and
an interpreter for the GAP language. It also contains a library written in the GAP language
and implementations of various mathematical algorithms, along with data libraries such as the
library of groups of small orders and the character table library. GAP has been developed
since 1986 and has a substantial user base, being used for research and teaching at hundreds of
institutions worldwide.

The GAP programming language uses a very sophisticated type system which supports dynamic
polymorphism and is fully described in [2]. Currently the language is being extended with
primitives and higher-level parallel skeletons for shared and distributed memory programming
as part of the HPC-GAP project.

Adding UPC support to GAP comes with many challenges. Firstly, functionality to work with
UPC constructs should be available at the GAP language level. Secondly, the GAP kernel
requires adaptation to be compiled with a UPC compiler, and new kernel modules require
adherence to GAP kernel programming rules. Most importantly, GAP operates with objects
having more complex structure than floats or integers: managing these in UPC memory con-
structs is a non-trivial task. Finally, to be useful and easily used by the GAP community, the
most suitable form of organising the UPC extension is a GAP package.
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2 Parallel orbit enumeration

Orbit enumerations represent an important class of algorithms that have many applications
in computational discrete mathematics, e.g. determinisation of finite-state automata, parsing
formal languages and group theory. The orbit enumeration problem can be formally described
in the following way:

Definition 1 (Orbit of an element). Let X be a set of points, G a set of generators, f :
X ×G→ X a function (where f(x, g) will be denoted by x · g) and x0 ∈ X a point in X. The
orbit of x0, denoted by OG(x0), is the smallest set M ⊆ X such that:

1. x0 ∈M

2. for all y ∈M and all g ∈ G we have y · g ∈M .

The basic sequential orbit enumeration algorithm starts with two lists: M = [x0], the orbit
points discovered so far and U = [x0], a set of unprocessed points. In each step, we remove the
first point x from U , apply all generators g ∈ G to x and add the resulting points x · g that
are not in M to M and U . This terminates when all g ∈ G have been applied to all x ∈ M ,
discovering the whole of the orbit OG(x0). The number of entries in M gives the length of the
orbit. Pseudo-code for solving this can be seen in Algorithm 1.

The key observation that makes the parallelisation of this algorithm possible is that each gener-
ator g ∈ G can be applied to each point from U in parallel. However, it becomes apparent that
parallel threads will have to synchronise their access to both U and M . A common structure for
M is a hash table and for U is a queue, both of which are implemented as part of our package.
It is possible to allow parallel access to different parts of M by different parallel threads with
the caveat that only one thread may access one location at any time. At first, a suitable paral-
lelisation strategy seems to use one thread per generator g ∈ G. This way, multiple generators
would be applied to each point in parallel. However, in many practical problems the size of G
is small, restricting parallelization.

Algorithm 1 Sequential Orbit enumeration algorithm

M ← x0

U ← x0

while U 6= ∅ do
x← element from U
for g ∈ G do

y ← x · g
if y 6∈M then

M ← y
U ← y

end if
end for

end while

Therefore, we propose the strategy where each parallel thread executes the following loop:

1. Test whether the set of unprocessed points U is empty;

2. If U is not empty, remove from U a set of points X such that |X| ≤ N , and apply each
generator g ∈ G to each point from X, producing a set of points Y ;
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3. Add to M and U all points from Y that are not already in M ;

4. If U is empty, wait until it becomes non-empty, or until the termination condition is met.

Pseudo-code for this can be seen in Algorithm 2. exit test is function which returns 1 if all
threads have no work to do, and 0 otherwise.

Algorithm 2 Parallel Orbit enumeration algorithm

M ← x0

U ← x0

if f 6= 1 then
while U 6= ∅ do

X ← min(N, |U |) elements from U
for g ∈ G do

for x ∈ X do
y ← x · g
if y 6∈M then

M ← y
Y ← y

end if
end for

end for
U ← Y

end while
f ← exit test

else
Exit

end if

3 A UPC kernel for GAP

UPC [1], a PGAS language extension to C, is implemented by both open source (Berkeley
UPC, GUPC) and commercially available (Cray) compilers. Its memory model allows access
to any element of an array stored in the shared memory space by any parallel thread using
standard array syntax. UPC makes it possible to have efficient distributed data structures whose
memory requirements exceed the amount of memory available on any single node. Since orbit
enumeration often requires storage of a large number of objects, this explains our motivation
to extend GAP with UPC support.

The UPCGAP package adds to the GAP kernel two UPC data structures, namely a distributed
hash-table and a queue, as well as functions to manipulate these using the GAP language. Both
the hash-table and the queue must be able to store a number objects of a fixed size; these are
determined by the problem to be solved. Dynamic memory allocation is used for both structures
allowing efficient use of memory at the cost of potential efficiency gains from blocked memory
layout.

The hash-table structure comprises two parts: one for the storage of objects (the object table),
and one which indicates if a corresponding location in the object table is empty or full (the
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indicator table). We seek, at this stage, only to enumerate the objects and therefore provide a
function which both tests for membership and stores objects should they not exist in the object
table. The object and indicator tables are allocated in UPCs default manner; if location x is
stored in the shared memory space affine to thread t, location x+ 1 is stored in the space affine
to thread t+1. As dynamic memory allocation is used, the blocking factor is not preserved and
we use a simple algorithm to determine on which thread each location resides. Hash clashes
(where two different objects hash to the same location) are handled by searching the indicator
table to find the next empty location. By using an array of locks (one per thread) to control
write access to the hash-table, we are able to allow parallel access albeit in a coarse grained
manner.

The queue structure likewise comprises two parts: one for the storage of objects and a pointer
which indicates the location holding the head of the queue. We provide two access functions
for the queue: one to add and another to remove an object. A single lock prevents concurrent
manipulation of the queue by more than one thread.

4 Results

To gain an understanding of the performance of our parallel implementation of orbit enumer-
ation, we use an example from group theory: the sporadic finite simple Harada-Norton (HN)
group in its 760-dimensional representation over the field with 2 elements, acting on vectors.
The set X of all possible points consists of about 10228 elements. The size of the orbit used
in our test is 1140000 points. We compute this orbit using four different chunk-sizes: 10, 100,
1000 and 10000. The chunk-size is the maximum number of elements which may be removed
from the queue by a thread in one iteration, denoted by N in Algorithm 2.

The code was run both on HECToR, the UK national supercomputing service, using the Cray
UPC compiler, and also on Ladybank, an 8-core shared memory machine based at St Andrews,
with Intel Xeon X5570 2.93 GHz processors and 64 GB RAM, using GUPC compiler.

Figure 1 shows the speedups of our parallel implementation over sequential orbit enumeration
using 1–32 threads on HECToR. We observe that when fewer cores (≤ 8) are used we obtain
sublinear, but reasonable, speedup, and that the speedup is mostly independent of the chunk
size. When more cores are used, we can observe a drop in performance for all chunk sizes, except
the largest one. We suspect that the performance drop is due to contention in accessing shared
resources (hash-table and queue). The larger the chunk size is, the less frequently parallel
threads access these shared data structures, and this results in a better performance.

Figure 2 shows how the size of the task queue changes over time during the orbit calculation
for different chunk-sizes at a fixed thread count on Ladybank. This illustrates the non-regular
nature of the orbit calculation. We can observe that for smaller chunk sizes, the size of the task
queue is large and grows constantly until the final stage. This indicates that threads are not
able to take advantage of all available parallelism and is most likely due to them spending time
waiting for access to shared data structures. As the chunk-size increases, we can observe that
queue sizes are smaller and they do not increase dramatically over time. This is likely due to
threads being able to do more work as they need less frequent access to shared data structures.
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Figure 1: Performance for enumerat-
ing the orbit of the HN group for vary-
ing thread counts and chunk-sizes.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

0.5s 1s 1.5s 2s 2.5s 3s

Ta
sk

 q
ue

ue
 s

iz
e

Time

Size of the task queue over time for different chunk sizes

Batch size:
10
50

100
500

1000
5000

10000
50000

Figure 2: Irregularity of orbit calcu-
lation on 8 cores using varying chunk
sizes.

5 Conclusions and Future Work

In this paper we have presented UPCGAP, a package for extending the GAP system to make
use of the large memories and parallel processing provided by UPC. We have shown that with
the addition of some simple data structures and manipulation functions, we are able to provide
some modest scaling in our example application.

We suggest that additional scaling and performance may come from optimisation of the hash
table and queue implementations. In particular future work will focus on increasing the granu-
larity of the locks of the hash-table. It may also be possible to extend chunking to the storage
of objects in the hash-table, which, combined with the use of non-blocking locks, could reduce
contention. We also plan to run more experiments with different orbit instances on different
parallel architectures.
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Abstract
The Cray XC30 is the latest Cray supercomputer architecture. It is a promising plat-

form for the Partitioned Global Address Space programming model because of its all-to-all
like, remote direct memory access capable Aries interconnect complemented by the Cray
programming environment having the most advanced Fortran coarrays support so far. We
evaluate the performance of some collective communication operations implemented with
Fortran coarrays on the Cray XC30 architecture and compare them with blocking and
non-blocking Message-Passing Interface collectives.

1 Introduction

The Partitioned Global Address Space (PGAS) programming model provides a global view
of the memory across nodes and supports one-sided access to shared data. The new Cray
XC30, or Cascade, architecture is a promising platform for utilizing PGAS languages due to its
remote direct memory access (RDMA) supporting hardware and an all-to-all style interconnect
topology as well as programming environment featuring compiler, runtime and tool support for
several PGAS languages.

It is often necessary to have application phases involving a large set of processes work-
ing collectively to perform a global (across all processing elements) communication operation.
These collective operations, such as data replication, task synchronization, and reduction can
be straightforwardly performed in PGAS languages by accessing shared variables in a global
address space. In two-sided communication models such as the message-passing interface (MPI)
[1] they exist as standalone procedures. In subsequent sections we report some first experiences
on how the collective communication patterns implemented with Fortran coarrays perform on
the XC30. Even if the PGAS collectives are available in optimized libraries such as the GASNet
library [2], we will study straightforward implementations to simulate cases where a programmer
wants to integrate the collective operations in a coarrays code to enable overlapping compu-
tation and data addressing, as well as to have full control on synchronization. Moreover, by
deliberately using compact, non-hand-tuned implementations, we are able to comment on how
well the compiler recognizes and implements the communication patterns. We have imple-
mented all MPI non-vector collective corresponds and will focus on two of them as an example.
These implementations are available in the CRESTA Collective Communication Library [3].
Those who are interested in the implementation details can obtain the source code from the
authors.

2 Observations

2.1 Example of a rooted collective: data replication

Although the coarrays syntax allows for a very elegant and simple MPI Bcast style data transfer
expressed on a single source line, there is a danger that all tasks accessing the memory of one
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Figure 1: The average throughput of the data replication (Bcast) operation with coarrays (left),
MPI Bcast (middle) and MPI Ibcast (right).

image simultaneously may become a bottleneck. In principle, the compiler could recognize and
implement such an expression with a more efficient communication pattern.

We compared several approaches for data replication. From these, we observed that an
approach where the data is first fetched from the root process by square root of num images()
images, and then the remaining get their data from one of these images, was the fastest one.
Even this most elaborate approach (still consisting of 7 lines of code, however) is being outper-
formed by MPI Bcast and especially MPI Ibcast for small communicators and messages. With
1024 and 4096 images the coarray approach is marginally faster than MPI Bcast for larger mes-
sages. However, the differences are not dramatic, and the coarray approach appears as a valid
alternative for MPI Bcast style communication patterns, especially since this kind of communi-
cation seldom becomes a bottleneck. The comparison of the more elaborate coarrays broadcast
with MPI Bcast and MPI Ibcast are presented in Figure 2.1 as average times to complete the
operation (i.e. a smaller value is faster).

2.2 Example of non-rooted collectives: all-to-all data exchange

The all-to-all data exchange pattern is a scalability bottleneck often encountered in supercom-
puting applications: because the number of messages increases as a square of the number of
MPI tasks. It is also encountered in key algorithms in scientific computing, for example in Fast
Fourier Transforms.

We implemented the Alltoall with coarrays using two different approaches: Directly loop-
ing over the full set of images, each image fetches its portions from the other; and another
in which the fetching loop is split over images, to a loop running from this image()+1 to
num images() and to a subsequent loop running from 1 to this image()-1. This is to avoid
several simultaneous fetches from the same image.

Of these, the second implementation was faster. The comparison of the former implemen-
tation with MPI Alltoall and MPI Ialltoall are presented in Figure 2.2. These are again
average times needed to complete the operation. Coarrays are again a viable alternative out-
performing both MPI Alltoall and MPI Ialltoall starting from somewhat larger message
sizes.

Of other all-to-all collectives, a coarray implementation of the reduce-scatter operation uti-
lizing the upcoming coarray intrinsics (here co sum) was able to outperform the MPI version.
For the all-reduce (MPI Allreduce) or gather-to-all (MPI Allgather) operations, no coarray
implementation was established that would have outperformed the MPI version.
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Figure 2: Performance of all-to-all data exchange with coarrays (left) and with blocking (middle)
and non-blocking MPI (right).

3 Concluding remarks

The Cray XC30 architecture is a very capable PGAS programming platform; benefitted by the
RDMA-capable, all-to-all style, interconnect together with the programming environment sup-
port including an optimizing compiler and a performance analysis suite CrayPAT that natively
supports PGAS languages.

We conclude that outperforming MPI in collective operations with the coarrays approach is
challenging, but the coarray programming model is an alternative for MPI even when employ-
ing collective communication patterns. The straightforward and compact coarray alternatives
were sometimes faster than MPI, especially in the intensive data exchange as available in the
MPI Alltoall procedure, at least up to 4096 MPI tasks / coarray images. The performance
difference depends on the communicated data size and the number of tasks / images, coarrays
being faster starting from messages of a few hundred bytes. We found also that the coarrays im-
plementation of the reduce-scatter operation (cf. MPI Reduce scatter) was able to outperform
the MPI implementation.

Since the MPI library of XC30 precedes to the libraries in the earlier XT and XE Cray
product lines, i.e. is a product of years of intense development and optimization efforts, we
tend to believe the cases where coarrays outperformed MPI are not due to non-optimality or
immaturity of the MPI library but rather an example of capabilities of the PGAS approach in
this architecture.

Our observations on best practice for coarray programming on the XC30 include the follow-
ing:

• Implementing multiple intermediate roots in rooted (one-to-all or all-to-one) collectives
is necessary to achieve performance that would be even comparable with MPI.

• Avoiding multiple simultaneous accesses to an image is important, but such load balancing
can be achieved by quite simple approaches.

Whether it is possible to overlap computation and communication better with coarray collectives
than with the non-blocking collectives of MPI 3.0, which are available on XC30 already, is left
for a later study.
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Abstract

From the viewpoint of performance and scalability, relaxed memory consistency models
are common and essential for parallel/distributed programming languages in which mul-
tiple processes are able to share a single global address space, such as Partitioned Global
Address Space languages. However, a problem with relaxed memory consistency models is
that programming is difficult and error-prone because they allow non-intuitive behaviors
that do not occur in the ordinary sequential memory consistency model.

To address the problem, this paper presents a model checking framework in which
users are able to define their own memory consistency models, and check programs under
the defined models. The key point of our model checking framework is that we define
a base model that allows very relaxed behavior, and allow users to define their memory
consistency models as constraints on the base model.

1 Introduction

One of the problems of Partitioned Global Address Space (PGAS) languages from the viewpoint
of ease of writing programs is that they are based on relaxed memory consistency models [3],
like multicore CPUs [12] and conventional distributed shared memory systems [14]. A memory
consistency model is a formal model that defines the behavior of shared memory accessed
simultaneously by multiple processes. In a relaxed memory consistency model, the shared
memory behaves differently from that in a sequential one. More specifically, the behavior defined
by a relaxed memory consistency model may not match any possible behavior of a sequential
process that simulates the behavior of multiple processes by executing their instructions in an
arbitrary interleaved way.

To prevent non-intuitive behaviors of relaxed memory models, programmers must insert
explicit synchronization operations in their programs; however, this is difficult and error-prone.
Conservatively inserting synchronization operations severely degrades the performance of the
program. However, it is difficult to reduce the number of synchronization operations cor-
rectly because even a slight lack of synchronization can introduce unpredictable and/or non-
reproducible bugs.

One possible approach to address the above mentioned problem of relaxed memory consis-
tency models is to apply model checking to verify programs. Model checking is a formal program
verification approach that explores all the possible program states that can be reached during
program execution. Software model checkers are available for parallel/distributed programs
including for PGAS languages [10, 17, 20, 7, 9, 1, 2].

However, most of the existing studies of model checking parallel/distributed programs con-
sider the sequential memory consistency model only. Therefore, they cannot be used to verify
programs executing on shared memory with relaxed memory consistency models. Although
several studies of program verification considering relaxed memory consistency models have
been carried out (e.g., [11, 5, 4, 6]), most of these support only one or a small number of fixed
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Figure 1: Overview of our abstract machine

theoretical models, and are thus not suitable for handling practical relaxed memory consistency
models that may vary from language to language. Some of the works try to handle multiple
relaxed memory consistency models uniformly (e.g., [18, 22, 21, 16, 8]), but these are still lim-
ited to a few existing relaxed memory consistency models and it is not apparent how to adapt
and support the other models not covered by these.

To address the problem, this paper presents a model checking framework in which users are
able to define their own memory consistency models, and verify programs under the defined
models. The key point of our approach is that we define and provide a base model that
allows very relaxed behaviors, and allows users to define their memory consistency models as
constraints on the base model.

The rest of this paper is organized as follows. Section 2 describes our base model on
which memory consistency models can be defined. Section 3 explains how to define memory
consistency models using example constraint rules representing rules of memory consistency
models for Coarray Fortran. Section 4 briefly introduces the implementation of our model
checker. Finally, Section 5 concludes the paper and discusses future work.

2 Base Model

In this section, we introduce our base model on which various memory consistency models can
be defined. More specifically, in Section 2.1 we introduce an abstract machine for the model.
Then, we describe the execution traces of the abstract machine in Section 2.2.

2.1 Abstract Machine

An overview of our abstract machine is shown in Fig. 1. The abstract machine consists of a
fixed number of processes. Each process has its own state (that is, program instructions, local
variables, and memory). Basically, execution of the instructions is closed within each process,
and communication between processes occurs only when a process performs a store operation
on its memory, and the update is broadcast to the other processes.

A more formal definition of the abstract machine is given in Figs. 2 and 3. Owing to space
limitations, the semantics of the abstract machine is not given in this paper. The semantics is
standard and straightforward, except that the instructions can be reordered and memory store
instructions send requests for memory updates to other processes. The next section describes
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(State) S ::= (P1, . . . , Pn)
(Process) P ::= (I, V,M)
(Store) V ::= {x1 7→ v1, . . . , xi 7→ vi}
(Memory) M ::= {`1 7→ v1, . . . , `j 7→ vj}

where
(Variable) x (local variables)
(Location) ` (addresses in memory)
(Label) L (labels in instructions)
(Value) v ::= n | ` | L

Figure 2: Definition of our abstract machine

(Insts.) I ::= i1; . . . ; in
(Inst.) i ::= (L,A, ι)
(Raw Inst.) ι ::= Move x←t | Load x← [x]

| Store [x]←t | Jump tt if tc
| Atomic (ι1; . . . ; ιn) | Nop

(Term) t ::= x | v
(Attrs.) A ::= {a1, . . . , an}
(Attribute) a (user-defined attributes)

Figure 3: Definition of the instructions

how to handle instruction reordering in our base model.

2.2 Execution Traces

This section explains how to handle relaxed memory consistency models in our base model; that
is, how to simulate the effect that memory accesses performed by one process can be observed in
a different order by other processes. The key ideas are threefold. First, our model decomposes
an instruction into the fetch and issue of the instruction. Additionally, the issue of a memory
instruction is further decomposed into the issue itself and its corresponding memory operation.
Specifically, the issue of a memory load instruction is decomposed into the issue itself and the
memory access, which stores the obtained value in a variable local to its own process. On the
other hand, the issue of a memory store instruction is decomposed into the issue itself and
memory updates on each process. Second, each process in the abstract machine executes not
only its own instructions, but also the other processes instructions and memory operations.
At first sight, this may appear redundant, but it is necessary to handle some relaxed memory
consistency models that allow processes to observe inconsistent shared memory images. Third,
our model considers all the possible permutations of instruction issues and memory operations
performed by all the processes. In this paper, we call the permutations execution traces (or
simply traces).

(All Traces) TS ::= {τ | S � τ}
(Trace) τ ::= o1; . . . ; on; . . .
(Operation) o ::= Fetchp′ p i

| Issuemp′ p i
| Rflctmp′ [⇒p] i ` v

Figure 4: Definition of execution traces
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A more formal definition of execution traces is given in Fig. 4. Trace τ is defined as an
ordered (finite or infinite) sequence of operations o, where o is either an instruction fetch
(denoted by the tag Fetch), an instruction issue (denoted by the tag Issue), or a memory
operation (denoted by the tag Rflct). Please note that the subscript p′ of the operation tags
indicates that the operations are included in the execution of the abstract machine by process
p′. (Recall that as mentioned above, each process executes not only its own instructions but also
the instructions and memory operations of the other processes.) A more detailed explanation
is omitted owing to space limitations.

3 Defining Consistency Models

In this section, we explain how to define memory consistency models on the base model described
in Section 2, by showing an example rule that represents a barrier instruction of Coarray
Fortran [15]. Informally speaking, memory consistency models are defined as constraints on
execution traces, and the traces satisfying the constraints are considered to be valid under the
memory consistency models.

Coarray Fortran has a barrier instruction called sync all, and the memory consistency model
of Coarray Fortran [15] ensures that instructions that are fetched before (or after) the barrier
instruction have to be completed before (or after) the barrier instruction completes. For exam-
ple, the following rule preserves the order between the barrier instruction (sync all) and a store
instruction:

∀p, p′, i, i′.
Fetchp′ p i ↓ Fetchp′ p i′ ⊃
∀p′′. Issuemp′ p i ↓ Rflctm

′
p′

[
⇒p′′

]
i′ ` v

and Fetchp′ p i
′ ↓ Fetchp′ p i ⊃

∀p′′. Rflctm′
p′

[
⇒p′′

]
i′ ` v ↓ Issuemp′ p i

if i ≡ ( , A, Nop) , i′ ≡ ( , , Store [x]←t) ,

and sync-all ∈ A

In the above rule, o1 ↓ o2 means that o1 appears before o2 in execution traces. In addition, m
and m′ represent the positions of i and i′ in the trace, respectively, ` = V (x), and v = V (t),
where V is the state of the local variables of process Pp when instruction i′ is issued. Note that
the attribute of instruction i is used to indicate that i is a barrier operation.

4 Implementation

Based on the approach explained in Sections 2 and 3, we implemented a prototype model
checker. Basically, the model checker takes a user program and a memory consistency model as
inputs, and generates a model in PROMELA, which is the model description language of the
SPIN model checker [10]. Then, the generated model is passed to the SPIN model checker to
perform model checking. Note that model checking is conducted in such a way that each process
defined in the input program explores the generated model independently (refer to Section 2.2).

In fact, using the proposed model checker, we successfully checked several small example
programs taken from the specification documents of UPC [19] and Itanium [13]. In addition,
the model checker was used to analyze differences between three relaxed memory consistency
models: UPC [19], Coarray Fortran [15], and Itanium [13].
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5 Conclusion and Future Work

In this paper we described an approach to model checking parallel/distributed programs with
shared memory (e.g., PGAS programs) under relaxed memory consistency models. In our
approach, users are able to define memory consistency models as constraint rules on our quite
relaxed base model. Based on this approach, we implemented a prototype model checker with
which we conducted several preliminary experiments.

Future work includes two directions. First, we intend on improving the algorithm for model
checking by utilizing, for example, partial order reduction. Because the current implementation
of our model checker is prone to the state explosion problem, it is necessary to further optimize
the algorithm to enhance its practicality. Second, we aim to develop a formal system for our
base model based on Kripke semantics to verify properties directly by theorem proving.
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Abstract

The most critical step for static concurrency analysis of OpenSHMEM is to detect
matching unaligned collective synchronization calls within an OpenSHMEM program.
Concurrency analysis will be able to detect the regions in the code where two or more
OpenSHMEM calls run concurrently and help identify parallel programming errors due to
incorrect usage of OpenSHMEM library calls. For the concurrency analysis to be accurate
the collective synchronization matching process must be accurate. This task is particularly
challenging for OpenSHMEM programs since the OpenSHMEM library provides textually
unaligned barriers over an active set in addition to the traditional barrier all statement.
An active set is essentially a logical grouping of processing elements. In this paper we
discuss our effort towards discovering and matching barrier calls in OpenSHMEM. We
extend the OpenSHMEM Analyzer (OSA) to discover potential synchronization errors due
to unaligned barriers in OpenSHMEM programs.

1 Introduction

Parallel programming libraries are critical for High Performance computing applications. Open-
SHMEM is a PGAS library that can be employed on shared as well as distributed systems to
aid SPMD programs to achieve potentially low-latency communication via its onesided data
transfer calls. Other than data transfer an OpenSHMEM library provides library calls for
collective operations (broadcast, reductions, collections and synchronization), atomic memory
operations, distributed locks and data transfer ordering primitives (fence and quiet). As all
libraries go, OpenSHMEM is limited by the lack of compiler support to ensure the correct use
of the library in a parallel context. A part of the burden is alleviated by the syntactic and
basic semantic checks already present in the OpenSHMEM Analyzer (OSA) [10]. OSA extends
the existing compiler technology to report errors accurately in context of C and OpenSHMEM.
In this paper we extend the OSA to perform barrier matching analysis and make the control
flow graph (CFG) aware of OpenSHMEM calls and its the SPMD semantics [11]. Studies have
determined that multi-valued expressions that affect control flow statements the cause of concur-
rency [8,9,13] and are needed for barrier matching analysis. Multi-valued expressions are those
that evaluate to different values on different processes [3]. A multi-valued expression depends
on a multi-valued seed/variable. A generic example of multivalued seed is the process id (which
we know is unique for different processes). Another level of complexity exists for OpenSHMEM
where the the collective synchronization statements are textually unaligned and may be ap-
plicable only over a portion of the total processing elements (PEs) executing the same code.
Barrier matchng [15] across the different concurrent regions within an OpenSHMEM program
is needed to detect possible synchronization errors. We present a framework1 for modifying

1This work is supported by the United States Department of Defense and used resources of the Extreme
Scale Systems Center located at the Oak Ridge National Laboratory.
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and analyzing the CFG to build a program dependence graph and perform unaligned barrier
matching in presence of different collective synchronization calls, namely, shmem barrier (which
is over an active set) and shmem barrier all.

2 Related Work

Collective synchronization matching has a myriad of applications. It is used as a stepping stone
to facilitate complex analysis for process-level parallelism analysis of a program in [6] . Their
analysis avoids the problem of having to identify textually unaligned barriers by assuming that
barriers are identified via unique barrier variables. One of the first works to verify program
synchronization patterns and the rules that govern the synchronization sequences was done
in [2] for Split-C. They analyze the effects of single valued expression on the control flow
and concurrency characteristics of the program. They simplify the identification of unaligned
barriers and single valued variables by using the single keywords for annotating the named
barriers. Barrier matching for MPI [15] evaluates the different concurrent paths the processes
may take (using multi-value conditional and barrier expression analysis) and check that each
processes encounters an equal number of barriers. Our approach to barrier matching is similar
but we distinguish our approach by avoiding the use of barrier subtrees to match barriers. This
makes our analysis more resilient to unstructured code.

3 Motivation

OpenSHMEM is a PGAS library that provides routines for programmers using the SPMD
programming paradigm. The OpenSHMEM Specification [1] provides the definition and func-
tionality of these concise and powerful library calls for communicating and processing data. We
first describe the collective calls and then discuss their implication and potential error scenarios
they could lead to where programs may be syntactically correct but are either semantically
wrong or may result in parallel behavior unintended by the programmer. Collective synchro-
nization in OpenSHMEM is provided by shmem barrier and shmem barrier all (over a subset
of PEs and all PEs respectively) in OpenSHMEM.

3.0.1 shmem barrier all

A shmem barrier all (referred to as barrier all) is defined over all PEs. OpenSHMEM requires
all PEs to call shmem barrier all at the same point in the execution path. It provides global
synchronization and its semantics guarantee completion of all local and remote memory updates
once a PE returns from the call.

3.0.2 shmem barrier

A shmem barrier (referred to as barrier) is defined over an active set. An active set is a
logical grouping of PEs based on three parameters (passed as arguments), namely,PE start,
logPE pe and PE size triplet [1]. OpenSHMEM requires all PEs within the active set to
call shmem barrier at the same point in the execution path. When barriers are not matched
it is a obvious dead-lock situation, but even in cases where all barrier (barrier all and barrier)
statements are well matched the compiler needs to differentiate between the two to make sure
that the semantics of the OpenSHMEM library are not violated. In the code below we observe
one such situation.
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1 s t a r t p e s (0 ) ;
2 i n t me = my pe ( ) ;
3 . . .
4 i f (me%2 == 0) {
5 source = 0.23 ∗ me;
6 shmem int put(&target , &source , 1 , (me+1)% npes ) ;
7 shmem barrier ( 0 , 1 , 4 , pSync ) ; //b1
8 x = ta rg e t ;
9 shmem bar r i e r a l l ( ) ; //b2

10 }
11 e l s e {
12 x = ta rg e t ;
13 shmem bar r i e r a l l ( ) ; //b3
14 }
15 r e turn 0 ;

OpenSHMEM example.c

In this example all barrier statements are matched. We see that on line 5 all even numbered
PEs update their value of the variable source and immediately after, update the value of
the symmetric variable target on the next PE in a circular fashion. Simultaneously all odd
numbered PEs are updating a local variable x with the value in their symmetric variable target
(line 12). Since the semantics of OpenSHMEM only guarantee the completion of puts after
synchronization, on line 12, the odd numbered PEs may or may not have the updated value of
target. The programmer may easily miss such errors leading to an application with inconsistent
results. For this type of analysis barrier matching is essential to detect concurrent execution
phases for reads and writes to the same variables along with data flow analysis.

4 Unaligned Collective Synchronization Matching Frame-
work

To be able to discover matching barriers in OpenSHMEM program we need to first locate
and mark the multi-valued expressions which cause different processes to follow different
execution paths. Multi-valued expressions evaluate to different results on different PEs. The
outcome of a multi-valued expression depends on a multi-valued seed. Extending the rules
stated in [3] we can make certain assumptions about the expressions that generate from a
known single-valued or multi-valued seed. Depending on the semantics of OpenSHMEM and
its treatment of different program variables, the rules for determining multi-valued seed have
to be modified. Different library calls cause changes in the values that may make them single
or multi-valued. This information is required for a finer analysis and to avoid overestimation
of concurrency. Table1 lists the OpenSHMEM library operation categories that cause a change
in the value of a program variable (this includes all variables used in the program irrespective
of their class) and the effect they have on the variable. Explanation of the API and the
nomenclature is beyond the scope of the paper (refer to OpenSHMEM Specification 1.0 [1]).

4.1 Identifying Multi-value Conditionals

To identify multi-value conditionals we need to essentially follow the data flow propagation of
the multi-value seeds through the program’s CFG and mark the conditionals that are affected
directly or indirectly by them [15]. A system dependence graph [5] needs to be built. We look
at program slicing as a way to identify the reach of these multi-valued seeds. Programming
slicing is defined as, ”A decomposition based on data flow and control flow analysis” [14]. To
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OpenSHMEM Library Operations Variable
Affected

Effect

num pes npes Single-valued

my pe me Multi-valued

PUT (elemental, block, strided) target Multi-valued

GET (elemental, block, strided) target Multi-valued

ATOMICS (fetch and operate) target Multi-valued

BROADCAST target Multi-valued

COLLECTS (fixed and variable
length)

target array Single-valued if active set = npes
else Multi-valued

Table 1: Effect of OpenSHMEM library calls on program variables

do the program slicing, we look at the data flow and control flow information generated by the
compiler and build a system dependence graph [5] as shown in Figure 1. If we were to take a
forward slice of the sample program based on the multi-valued PE number me at A2, then we
get either A3-B1-B2-B3-B4-B5-D or A3-C1-C2-D depending on the value of me. These slices
help us identify the multi-valued conditionals in the program by finding the points at with the
slices diverge.

Figure 1: System Dependence Graph

4.2 Synchronization Matching

To facilitate analysis between and across barrier regions we need to identify code phases ( a valid
synchronization free path enclosed within barriers) that lie between matching barriers. We use
the approach in [15] for developing barrier expressions and barrier trees as the first step towards
barrier matching. As defined in [15] barrier expressions are very similar to path expressions
and can be generated from them by replacing the node labels by barrier labels. Like regular
expressions these expressions use three types of operators: concatenation (·), alternation (|), and
quantification (∗) [7]. Additionally we borrow the operator |c from [15] to indicate the operator
concurrent alternation, which essentially indicates that the different execution paths diverge
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Placement of barriers Operator used Result

b1 followed by b2 · b1 · b2

if((single-valued) conditional) b1 else b2; | b1 | b2

if((multivalued-valued) conditional) b1 else b2; |c b1 |c b2

for(n times) b; · b1· b2 · ... bn

Table 2: Rules for building a barrier expression

from a multi-valued conditional and that different PEs may take different paths from this point
on. Table 2 gives the rules that govern the barrier expression generation. It is important to
note that if the result of a quantification operation is statically non-deterministic (like a barrier
enclosed within a while loop based on a value available only at run-time) we cannot determine
with confidence any concurrency relationship for such programs. Using the operators mentioned
above we can derive the barrier expression and the barrier tree. The barrier expressions can
be generated by first generating the path expressions using methods in [4] or [12]. The barrier
expression for the entire program is generated by first evaluating the barrier expressions of the
individual procedures and then connecting them together using the inter-procedural program
dependence graph. Barrier matching is done by first generating the legal sequences of barriers
by a constraint driven depth-first-search of the barrier tree and validating barrier sequences
that have at least one other barrier sequence of the same length.

5 Evaluation

As of this writing we are testing our methodology using the OpenSHMEM versions of NAS
Parallel benchmarks (in C). We have been successful in detecting matching barriers in all the
smaller test codes provided with the OpenSHMEM Validation and Verification Suit. For some
codes we intentionally added unmatched barriers and our algorithm was able to detect it. In
severely unstructured codes or with conditional values which are runtime dependent (which are
defaulted to multivalued) our algorithm generates a warning even if barriers are matched.
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Abstract

Partitioned Global Address Space (PGAS) integrates the concepts of shared memory
programming and the control of data distribution and locality provided by message passing
into a single parallel programming model. The purpose of allying distributed data with
shared memory is to cultivate a locality-aware shared memory paradigm. PGAS is com-
prised of a single shared address space, which is partitioned among threads. Each thread
has a portion of the shared address space in local memory and therefore it can exploit data
locality by mainly doing computation on local data.
Unified Parallel C (UPC) is a parallel extension of ISO C and an implementation of the
PGAS model. In this paper, we evaluate the performance of UPC based on a real-world
scenario from Molecular Dynamics.

1 Introduction
Partitioned Global Address Space (PGAS) is a locality-aware distributed shared memory

model for Single Program Multiple Data (SPMD) streams. PGAS unites the concept of shared
memory programming and distributed data. It provides an abstraction of Global Shared
Address Space, where each thread can access any memory location using a shared memory
paradigm. The Global Shared Address Space is formed by integrating the portions of the mem-
ories on different nodes and the low level communication involved for accessing remote data
is hidden from the user. Unified Parallel C (UPC) is an implementation of the PGAS model.
The low-level communication in UPC is implemented using light-weight Global-Address Space
Networking (GASNet). UPC benefits from the brisk one-sided communication provided by
GASNet and thus has a performance advantage over message passing [5].

Molecular Dynamics simulates the interactions between molecules [1]. After the system is
initialized, the forces acting on all molecules in the system are calculated. Newton’s equations of
motion are integrated to advance the positions and velocities of the molecules. The simulation is
advanced until the computation of the time evolution of the system is completed for a specified
length of time.

In this paper, we evaluate the intra- and inter-node performance of UPC based on a real-
world application from Molecular Dynamics, compare it intra-node with OpenMP and show the
necessity for manual optimizations by the programmer in order to achieve good performance.

2 Unified Parallel C
Unified Parallel C (UPC) is a parallel extension of ISO C. It is a distributed shared memory

programming model that runs in a SPMD fashion, where all threads execute the main program
or function. Using UPC constructs, each thread can follow a distinct execution path to work on
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different data. UPC threads run independently of each other, the only implied synchronization
is at the beginning and at the end of the main function [4]. It is the responsibility of the
programmer to introduce necessary synchronization when shared data is accessed by more than
one thread. Apart from a global shared address space, UPC also provides private address
space for each thread. The private address space is only accessible by the thread whichs owns
it. This allows a programmer to intelligently allocate the data in private and shared address
spaces. Data which remains local to a thread should be allocated on the private address space.
Whereas data which needs to be accessed by multiple UPC threads, should be allocated on the
portion of the shared address space of the thread doing most computation on it [4].

UPC accommodates several constructs which allow to allocate data and the thread with
affinity to it on the same physical node. UPC also provides constructs to check the locality of
data. The programmer needs to identify data as local in order to access it with a local pointer.

UPC utilizes a source to source compiler. The source to source compiler translates UPC
code to ANSI C code (with additional code for communication to access remote memory, which
is hidden from the user) and links to the UPC run-time system. The UPC run-time system can
examine the shared data accesses and perform communication optimizations [5] [4].

3 Molecular Dynamics Code
We ported our in-house Molecular Dynamics code CMD, developed for basic research into

high performance computing. CMD features multiple MD data structures, algorithms and par-
allelization strategies and thus allows for quantitative comparisons between them. Two widely
used data structures are implemented - with corresponding algorithms - for the computation of
interactions between molecules in the system, “BasicN2” and “MoleculeBlocks”. The Molecule-
Blocks code has been ported to UPC.

MoleculeBlocks implements a linked cell approach, where the domain is spatially decom-
posed into cells (of the size cut-off radius) and then the molecules are distributed among these
cells. In this algorithm, the distances between the molecules are computed only intra-cell and
for neighboring cells. Furthermore, Newton’s 3rd law of motion is used to reduce the compute
effort by half. Figure 1 shows an example of the MoleculeBlocks algorithm for a 2D domain
space. When the interaction between a pair of molecules is computed, the resulting force is
written to both molecules. Thus, the centered cell (dark gray), as shown in figure 1, modifies
the forces of its own molecules and molecules of its right and lower neighbor cells (gray). Al-
though the use of Newtons 3rd law lessens the computational effort, it raises the requirements
regarding synchronization in order to avoid race conditions.

4 Porting Molecular Dynamics Code to UPC
For MoleculeBlocks, the system of molecules (called Phasespace) is spatially decomposed

into cells where each cell contains a number of molecules (as shown in figure 2). The cells
are then distributed among the UPC threads in a spatially coherent manner (as opposed to
the default round-robin fashion) to reduce the communication overhead between the UPC
threads. The CMD simulation code is comprised of two parts, (i) phasespace initialization
& grid generator and (ii) main simulation loop.

4.1 Phasespace Initialization & Grid Generator
Phasespace initialization involves allocation of the memory dynamically on the global shared

space for molecules and cells. A routine for performing the transformation (or mapping) of
a spatially coherent cell indices (i,j,k) to consecutive integers (cell IDs) is introduced in the
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Figure 1: Calculation of interac-
tion between molecules using the
MoleculeBlocks algorithm.

Figure 2: Domain is spatially decomposed
into cells and distributed among threads
in a spatially coherent manner.

code, which allows UPC shared array to distibute spatially coherent cells among UPC threads
by blocking consecutive cell IDs. The Grid generation routine initializes the positions and
velocities of the molecules and adds them to the phasespace.

4.2 Main Simulation Loop
All the routines inside the main simulation loop have been implemented in UPC as locality-

aware algorithms. Each thread only calculates the different parameters for the cells which reside
in its portion of shared space. Due to manual optimization, each thread accesses its cells using
local pointer instead of pointer-to-shared.

The Lennard-Jones Force Calculation routine is the most compute intensive routine of the
simulation. Here, each thread computes the inter-molecular interactions, for the cells residing
in its portion of shared space and with the neighbor cells which may reside locally or remotely.
The synchronization among threads is provided through a locking strategy. We have tested
different locking granularities, which are “lock per molecule” and “lock per cell”. Furthermore,
we have also implemented pre-fetching and copy-at-once strategies to reduce the communication
between UPC threads. This has a major effect when the UPC code is scaled beyond a single
node. With pre-fetching and copy-at-once strategies, a UPC thread pre-fetches the values (of
positions and forces) of the molecules of its neighbor cell if the neighbor cell is remote (i.e.
does not reside in its local portion of the shared space) to its private space. The function of
pre-fetching is implemented using the upc memget routine. Once a UPC thread has pre-fetched
the data, it computes all interactions between the molecules of the two cells and then copies all
the calculated forces to the neighbor cell in one go using the upc memput routine.

In order to calculate the global value of parameters (e.g potential energy), the coordination
among threads is done using the reduction function upc all reduceT available in the collective
library of UPC.

5 Hardware Platforms
The presented benchmarks have been produced on a Cray XE6 system and a Cray XC30

system. The code was built by means of the Berkeley UPC compiler (version 2.16.2) on both
systems. The cray compiler had some performance issues which are under investigation. The
nodes of the XE6 system feature two AMD Interlagos processors (AMD Opteron(TM) Proces-
sor 6272 clocked at 2.10GHz) with 16 integer cores each. Two integer cores share a floating
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point unit. On the other hand, the compute nodes of the XC30 system contain two Intel Sandy-
bridge processors (Intel(R) Xeon(R) CPU E5-2670 0 clocked at 2.60GHz) with 8 cores and 8
hyperthreads each. For the present benchmarks no hyperthreads have been used.

For a full documentation and technical specifications of the hardware platforms, the reader
is referred to the online material1.

6 Evaluation
The UPC implementation of CMD is evaluated for the cut-off radius of 3 with the following

strategies (a lock always locks the entire cell).
1. Lock per molecule (LPM) - Acquire lock for each molecule-molecule interaction
2. Lock per cell (LPC) - Acquire lock for each cell-cell interaction
3. Lock per cell plus prefetching (LPC+) - Same as lock per cell but with pre-fetching and

copy-at-once strategies
The cut-off radius determines the maximum distance for evaluating molecule-molecule in-

teractions. Increasing the cut-off will result in more interactions per molecule and therefore
more computational effort. The cell size is equal to the cut-off radius.

In the first UPC implementation of CMD, we did not perform the manual pointer optimiza-
tions. The shared address space was always accessed using pointer-to-shared irrespective of the
fact whether the data accessed by a UPC thread is local or remote. The test cases of 500, 3,000
and 27,000 molecules without pointer optimizations executed 10 times slower than the current
version which incorporates manual pointer optimizations.

The rest of the evaluation is based on the version with manual optimization, a cut-off radius
of 3 and with 6,000,000 molecules. Thus, all scaling benchmarks shown here are based on strong
scaling. The evaluation metrics are explained in the following subsection.

6.1 Evaluation Metrics
The UPC implementation of CMD is evaluated for all three strategies described above, on

the basis of intra- and inter- node performance. For each case, we have taken the average
execution time for five program runs.

Intra-Node Performance The intra-node performance compares the UPC and OpenMP
implementations of CMD on a single node.

Inter-Node Performance The inter-node performance shows the scaling on multiple
nodes. Under populated nodes are used for inter-node results when the number of UPC threads
are less than the total available CPU count of 4 nodes. The threads are always equally dis-
tributed among the nodes.

6.2 Results
Here we show the execution time of CMD both intra- and inter-node, and compare the

execution time with varying locking granularities.

Intra-Node Performance Figure 4 shows the intra-node benchmark for the execution
time of UPC implementation of CMD. Clearly, the lock per cell strategy is superior to the lock
per molecule. Pre-fetching and copy-at-once has no significant impact on intra-node perfor-
mance. Figure 3 compares intra-node performance achieved with OpenMP and UPC. UPC
performs similarly to OpenMP on a single node. This is a satisfactory result, as the aim is not
to provide a better shared memory parallelization, but to use a shared memory paradigm for
distributed memory. Having a comparable performance as OpenMP is a good basis.

1www.cray.com/Products/Computing/XE/Resources.aspx, www.cray.com/Products/Computing/XC/Resources.aspx
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Inter-Node Performance Figure 5 shows the inter-node performance achieved with UPC,
using LPC and LPC+. The LPM strategy is disregarded due to its inferior intra-node perfor-
mance. As can be seen, the LPC strategy shows very poor inter-node performance (2 or more
threads). The execution time jumps by a factor of 20+, as soon as inter-node communication
comes into play. However, the LPC+ strategy shows a solid scaling behaviour, making this
implementation competitive even for production runs. Figure 6 shows the speedup of CMD
with LPC+ strategy on intra- and inter-node, for both XE6 and XC30 clusters.

7 Conclusion
As we have shown in this paper, it is possible to implement a competitive distributed memory

parallelization using UPC. However, the implementation is far from trivial. There are many
pitfalls, leading to significant performance degradations and they are not always obvious.

The first and most elusive problem is the use of pointer-to-shared for local data accesses. As
a programmer, one would expect UPC compilers or the run-time to automatically detect local
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data accesses and perform the necessary optimization. However, this is not the case and the
performance degradation for our use case was a staggering factor 10. This suggests that with
the currently available compilers, manual pointer optimization (using local C pointers when a
thread has affinity to the data) is mandatory.

The second issue is not discussed in detail here. In a nutshell: the default round robin
distribution of shared array elements leads to significant communication traffic in this scenario.
Manual optimization was necessary, essentially replacing round robin with a spatially coherent
distribution. Thus, the programmer needs to keep the underlying distributed memory archi-
tecture in mind.

The third and maybe most disturbing problem is related to communication granularity. The
LPM and LPC strategies represent the way one traditionally would approach a shared memory
parallelization. As the data is available in shared memory, there is no need to pre-fetch it
or to package communication. However, these approaches fail completely when utilized for
distributed memory, as can be seen in figure 5.

The good news is, all the above problems can be solved, the bad news is: it requires the
programmer to think in terms of distributed memory parallelization. However, this is not the
driving idea behind PGAS.

In our view, in order for PGAS approaches to prosper in the future, these issues have to
be addressed. Only if better data locality, data distribution and communication pooling is
provided automatically by the compiler or run-time will programmers start seeing true benefit.
The required information for such improved automatic behaviour is available to the compiler,
as the parallelization is achieved purely through UPC data structures and routines.
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Abstract

Gaspi (Global Address Space Programming Interface) is an API specification for Par-
titioned Global Address Spaces. The Gaspi API is focused on three key objectives: scala-
bility, flexibility and failure tolerance. Gaspi uses one-sided RDMA driven communication
in combination with remote completion in a PGAS environment. As such, Gaspi aims
to initiate a paradigm shift from bulk-synchronous two-sided communication patterns to-
wards an asynchronous communication and execution model. Gaspi follows a single pro-
gram multiple data (SPMD) approach and offers a small, yet powerful API composed of
synchronization primitives, fine-grained control over one-sided read and write communica-
tion primitives, synchronous and asynchronous collectives, global atomics, passive receives,
communication groups and communication queues. With GPI 2.0, the Gaspi standard has
been implemented by Fraunhofer ITWM as a highly efficient open source implementation
under GPL v3.

1 Introduction

As the supercomputing community prepares for the era of exascale computing, there is a great
deal of uncertainty about viable programming models for this new era. HPC programmers
will have to write application codes for systems which are hundreds of times larger than the
top supercomputers of today. It is unclear whether the two-decades-old MPI programming
model [5], by itself, will make that transition gracefully. Despite recent efforts to support
true asynchronous communication, the message passing standard of MPI still focuses on bulk-
synchronous communication and two-sided semantics to a large extent. Elapsed time for col-
lective bulk-synchronous communication potentially scales with the logarithm of the number
of processes, whereas the work assigned to a single process potentially scales with a factor
of 1/(number of processes). Hence, the scalability of bulk-synchronous communication pat-
terns appears to be limited at best. With todays ever increasing number of processes, a
paradigm shift from bulk-synchronous communication towards an asynchronous programming
model seems to be inevitable. While recent efforts in MPI 3.0 have improved support for
one-sided communication and an asynchronous execution model, MPI still requires explicit
exposure and access epochs with a corresponding entry and exit, i.e. a so-called PSCW cycle
(Post,Start,Complete,Wait). We here present an alternative to the programming model of MPI.
Gaspi is a Partitioned Global Address Space (PGAS) API. In contrast to MPI, Gaspi lever-
ages one-sided RDMA driven communication with remote completion in a Partitioned Global
Address Space. In Gaspi data may be written asynchronously and one-sided, whenever it is
produced, along with a corresponding notification. On the receiving side Gaspi guarantees
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that data is locally available whenever this notification becomes locally visible. The notifi-
cation mechanism in Gaspi enables its users to reformulate existing bulk-synchronous MPI
applications towards an asynchronous dataflow model with a very fine-grained overlap of com-
munication and computation. Gaspi leverages zero-copy asynchronous writes and reads with
RDMA queues and aims at a minimum of communication overhead. Gaspi allows for a lot of
flexibility in using its partitioned global address spaces (which in Gaspi are called segments),
but does not enforce a specific memory model. Implementing e.g the equivalent of shmem
malloc/put/get functionality on top of the Gaspi segments is rather straightforward. We have
however opted against including this functionality in the core API since an enforcement of a
symmetric global memory model does not fit irregular problems or heterogeneous hardware.
Gaspi allows its users to span multiple segments with configurable sizes and configurable par-
ticipating ranks. Gaspi also supports a variety of devices for its segments, like e.g GPGPU
memory, main memory of Xeon Phi cards, main memory of host nodes or non-volatile memory.
All these segments can directly read/write from/to each other within the node and across all
nodes. With a growing number of nodes, failure tolerance becomes a major issue as machines
expand in size. On systems with large numbers of processes, all non-local communication should
be prepared for a potential failure of one of the communication partners. Gaspi features time-
outs for non-local functions, allows for shrinking or growing node sets and enables applications
to recover from node-failures. In contrast to other efforts in the PGAS community, Gaspi is
neither a new language (like e. g. Chapel from Cray [1], UPC [2] or Titanium [6]), nor an ex-
tension to a language (like e. g. Co-Array Fortran [8]). Instead - very much in the spirit of MPI
- it complements existing languages like C/C++ or Fortran with a PGAS API which enables
the application to leverage the concept of the Partitioned Global Address Space. While other
approaches to a PGAS API exist (e.g. OpenSHMEM [9] or Global Arrays), we believe that
Gaspi has a rather unique feature set like the support for multiple (and freely configurable)
segments, failure tolerance or the concept of remote completion. A concept similar to remote
completion exists in the ParalleX project. In principle, one may identify the triggering of a
Gaspi remote notification after delivering the corresponding data payload as the most simple
of all possible ParalleX parcels.

2 GASPI overview

2.1 History

Gaspi inherits much of its design from the Global address space Programming Interface (GPI
[7, 3]), which has been developed in 2005 at the Competence Center for High Performance Com-
puting (CC-HPC) at Fraunhofer ITWM. GPI is implemented as a low-latency communication
library and is designed for scalable, real-time parallel applications running on cluster systems.
It provides a PGAS API and includes communication primitives, environment run-time checks
and synchronization primitives such as fast barriers or global atomic counters. GPI has been
used to implement and optimize CC-HPC industry applications like the Generalized Radon
Transform (GRT) method in seismic imaging or the seismic work flow and visualization suite
PSPRO. Today, GPI is installed on Tier 0 supercomputer sites in Europe, including the HLRS
in Stuttgart and the Juelich Supercomputing Centre. In 2010 the request for a standardization
of the GPI interface emerged, which ultimately lead to the inception of the GASPI project in
2011. The work was funded by the German Ministry of Education and Science and included
project partners Fraunhofer ITWM and SCAI, T-Systems SfR, TU Dresden, DLR, KIT, FZJ,
DWD and Scapos. On June 14th 2013 the members of the Gaspi project have released the
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Figure 1: Two Gaspi memory segments, one on Intel Xeon Phi, one on the x86 Host.

first specification for the new API [4]. At the same time, Fraunhofer ITWM has released GPI
2.0 [3], the first implementation of the Gaspi specification.

3 Key concepts in GASPI

3.1 GASPI execution model

Gaspi follows a SPMD (Single Program, Multiple Data) style in its approach to parallelism.
Hence, a single program is started and initialized on all desired target computational units.
Gaspi adheres to the concept of ranks. Similarly to MPI each Gaspi process receives a unique
rank with which it can be identified during runtime. The Gaspi API has been designed to
coexist with MPI and hence in principle provides the possibility to complement MPI with a
partitioned global address space. Gaspi aims at providing interoperability with MPI in order
to allow for incremental porting of existing applications. Gaspi provides high flexibility in the
configuration of the runtime parameters for the processes and allows for a shrinking or growing
process set during runtime. In case of starting additional Gaspi processes, the additional Gaspi
processes have to register with the existing Gaspi processes.

3.2 GASPI groups

Groups are sub-sets of processes identified by a sub-set of the total set of ranks and closely
related to the concept of a MPI communicator. Collective operations are restricted to the
ranks forming the group. Each Gaspi process can participate in more than one group. In case
of failure, where one of the Gaspi processes included within a given group fails, the group has
to be reestablished.

3.3 GASPI segments

GASPI does not enforce a specific memory model, like, for example, the symmetric distributed
memory management of OpenSHMEM [9]. Rather GASPI offers PGAS in the form of con-
figurable RDMA pinned memory segments. Modern hardware typically involves a hierarchy
of memory with respect to the bandwidth and latencies of read and write accesses. Within
that hierarchy are non-uniform memory access (NUMA) partitions, solid state devices (SSDs),
graphical processing unit (GPU) memory or many integrated cores (MIC) memory. In Fig. 1
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two Gaspi segments were created, one segment across the memory of the Xeon Phi and one
segment across the main memory of the x86 host. It also would have been possible to create
the segment on Xeon Phi and e.g. a segment per NUMA domain of the x86 host. In general,
the Gaspi memory segments can serve as an abstraction which is able to represent any kind
of memory level, mapping the variety of hardware layers to the software layer. A segment is a
contiguous block of virtual memory. In the spirit of the PGAS approach, these Gaspi segments
may be globally accessible from every thread of every Gaspi process and represent the partitions
of the global address space. The segments can be accessed as global, common memory, whether
local - by means of regular memory operations - or remote, by means of the communication
routines of Gaspi. Memory addresses within the global partitioned address space are specified
by the triple consisting of the rank, segment identifier and the offset. Allocations inside of the
pre-allocated segment memory are managed by the application.

3.4 GASPI queues

Gaspi provides the concept of message queues. These queues facilitate higher scalability and
can be used as channels for different types of requests where similar types of requests are
queued and then get synchronized together but independently from the other ones (separation
of concerns, e. g. one queue for operations on data and another queue for operations on meta
data). The several message queues guarantee fair communication, i. e. no queue should see its
communication requests delayed indefinitely.

3.5 GASPI one sided communication

One sided communication in Gaspi is handled through asynchronous RDMA calls in the form
of RDMA read and RDMA write. Gaspi provides extended functionality for these calls which
allows arbitrarily strided data with arbitrary offsets and length to be written - even with an
equally arbitrarily strided (user-defined) transposition on the remote side if required.

3.6 GASPI weak synchronization

One-sided communication procedures have the characteristics that the entire communication is
managed by the local process only. The remote process is not involved. This has the advantage
that there is no inherent synchronization between the local and the remote process in every
communication request. Nevertheless, at some point, the remote process needs the information
as to whether the data which has been sent to that process has arrived and is valid. To this
end, Gaspi provides so-called weak synchronization primitives which update a notification on
the remote side. The notification semantic is complemented with routines which wait for an
update of a single or even an entire set of notifications. In order to manage these notifications
in a thread-safe manner Gaspi provides a thread safe atomic function to reset local notification
with a given ID. The atomic function returns the value of the notification before reset. The
notification procedures are one- sided and only involve the local process.

3.7 GASPI passive communication

Gaspi provides a single routine with two-sided semantics in the form of passive communication.
Passive communication aims at communication patterns where the sender is unknown (i.e. it can
be any process from the receiver perspective) but there is a potentially need for synchronization
between processes. Passive communication typically happens completely asynchronously to the
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rest of the application workflow and is most directly comparable to a non-time critical active
message. Example use cases are distributed updates or the logging of results to the console.
The passive keyword means that the communication calls avoid busy-waiting, computation.
Instead passive receives are triggered by an incoming message in a predefined communication
queue.

3.8 GASPI global atomics

Gaspi provides atomic counters, i. e. globally accessible integral types that can be manipulated
through atomic procedures. These atomic procedures are guaranteed to execute from start to
end without fear of preemption causing corruption. Gaspi provides two basic operations on
atomic counters: fetch_and_add and compare_and_swap. Global atomics can be applied to
all data in the Gaspi segments.

3.9 GASPI collective communication

Collective operations are operations which involve a whole set of Gaspi processes. Collective
operations can be either synchronous or asynchronous. Synchronous implies that progress is
achieved only as long as the application is inside of the call. The call itself, however, may be
interrupted by a timeout. The operation is then continued in the next call of the procedure.
This implies that a collective operation may involve several procedure calls until completion.
We note that collective operations can internally also be handled asynchronously, i.e. with
progress being achieved outside of the call. Beside barriers and reductions with predefined
operations, reductions with user defined operations are also supported via callback functions.

4 Conclusion

We have presented the Global Address Space Programming Interface (Gaspi) as an alternative
to the MPI programming model. Gaspi is a partitioned global address space API, targeting
both extreme scalability and failure-tolerance. With GPI 2.0, the Gaspi standard has been
implemented by Fraunhofer ITWM as a highly efficient open source implementation under
GPL v3. We cannot give a full account of the performance specifications of GPI 2.0, here.
These may be inspected on the GPI site of Fraunhofer ITWM [3]. We note however, that many
of these results are close to the wire speed. We also would like to refer to the Gaspi website
[4].
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Abstract

Partitioned Global Address Space (PGAS) languages appeared to address programmer produc-
tivity in large scale parallel machines. The main goal of a PGAS language is to provide the ease
of use of shared memory programming model with the performance of MPI. Unified Parallel
C programs can suffer from shared access conflicts on the same node. Manual or compiler
code optimization is required to avoid oversubscription of the nodes. This paper explores loop
scheduling algorithms and presents a compiler optimization that schedules the loop iterations
to provide better network utilization and avoid node oversubscription.

1 Introduction

Unified Parallel C language [7] promises simple means for developing applications that can run
on parallel systems without sacrificing performance. One of the inherited limitations of the
UPC languages is the transparency provided to the programmer when accessing shared mem-
ory. Furthermore, high-radix network topologies are becoming a common approach [4, 5] to
address the latency wall of modern supercomputers. To effectively avoid network congestion
the programmer or the runtime spreads the non-uniform traffic evenly over the different links.
This paper explores possible loop scheduling schemes and proposes a loop transformation to
improve the performance of the network communication. The compiler [6] applies a loop trans-
formation to spread the communication between different networks and to avoid overloading
computational nodes.
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Figure 1: Comparison of compiler-transformed and hand-optimized code: upc memput (a),
fine-grained get (b), and fine-grained put (c).

2 Compiler-assisted loop transformation

The idea of compiler-assisted loop transformation is to hide the network complexity from the
programmer’s perspective. First, the compiler collects normalized loops that have no loop
carried dependencies and that contain shared references. Next, the compiler checks if the upper
bound of the loop is greater or equal the number of UPC threads, and if it is not upc forall

loop. The compiler categorizes the loops in two categories based on the loop upper bound and
shared access type:

• Loops that have coarse-grain transfers and whose upper bound is the number of UPC
threads. In this case, the compiler creates a lookup table with the number of UPC
threads as the array size. The contents of the lookup table are the randomly shuffled
threads. Then the compiler replaces the induction variable inside the body of the loop
with the return value of the look up table.

• Loops that contain fine-grained communication or contain coarse-grain transfers but with
the upper bound of the loop different from the number of threads. The compiler skews
the iterations in such a way that each UPC thread starts executing from a different point
in the shared array.

3 Experimental Results

The evaluation uses one microbenchmark and four applications in a IBM Power 775 [5]. The
microbenchmark is a loop that accesses a shared array of structures. There are three variations
of this microbenchmark. In the upc memput microbenchmark the loop contains coarse grain
upc memput calls. The fine-grained get contains shared reads and the fine-grained put
contains shared writes.

Cache level Baseline % Schedule

Level 1 0.14% 0.19%
Level 2 0.19% 24.49%
Level 3 0.32% 28.84%

Table 1: Average cache misses using
256 UPC threads for Sobel.

While the performance of the manual and compiler-
transformed fine-grained microbenchmarks is similar,
the compiler transformation achieves slightly lower per-
formance than the hand-optimized benchmark because
of the insertion of runtime calls. Figure 1 compares the
compiler-transformed and hand-optimized code.

There are three different patterns in the applica-
tions. In the first category are applications that have
performance gain compared with the version without
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Figure 2: Comparison of baseline and compiler-transformed code for fish (a), Sobel (b), NAS
FT (c), bucket-sort (d) and bucket-sort with only the communication pattern (e).

the scheduling (baseline), such as the NAS FT benchmark [3]. This benchmark achieves from
3% up to 15% performance gain, due to its all-to-all communication pattern. Moreover, the
performance of the gravitational gravitational Fish benchmark [1] is almost identical and the
transformation reveals minimal performance gains. On the other hand, the performance of the
Sobel benchmark [3] decreases up to 20% compared with the baseline version, because of poor
cache locality. Table 1 presents the cache misses for the Sobel benchmark for different cache
levels using the hardware counters. Figures 2(d) and 2(e) present the results for bucket-sort [2]
with enabled and disabled local sort. There are minor differences between the baseline and
the transformed version when using the benchmarks with enabled the local sort. However, the
transformed version has better results — up to 25% performance gain — than the baseline
version when only the communication part is used.

4 Conclusions and Future Work

This paper presents an optimization to increase the performance of different communication
patterns using loop iterations scheduling. The compiler optimization improves the performance
of programs that contain problematic access patterns, including the all-to-all communication.
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This paper presents a new version of the PCJ library [1, 2] for Java language that helps to
perform parallel and distributed calculations. The current version is able to work on the mul-
ticore systems connected with the typical interconnect such as ethernet or infiniband providing
users with the uniform view across nodes.

The library implements partitioned global address space model and was inspired by lan-
guages like Co-Array Fortran, Unified Parallel C and Titanium. In contrast to listed languages,
the PCJ does not extend nor modify language syntax. When developing the PCJ library, we put
emphasis on compliance with Java standards. The programmer does not have to use additional
libraries, which are not part of the standard Java distribution.

In the PCJ, each task has its own local memory and stores and access variables only lo-
cally. Some variables can be shared between tasks and that variables can be accessed, read
and modified by other tasks. The library provides methods to perform basic operations like
synchronization of tasks, get and put values in asynchronous one-sided way. Additionally the
library offers methods for creating groups of tasks, broadcasting and monitoring variables.

We have used PCJ library to paralelize example application, in this case ray tracing. We
have measured the performance of 3D ray tracing of the scene rendered at a resolution of NxN
pixels. The PCJ version of the RayTracer test contains a naive implementation of Reduce
operation that uses asynchronous get (getAsync) method. The speedup for PCJ library is
competitive compare to MPICH2; the gained speedup for larger cases is even better.

The tests show that there are still areas for improvements, especially in the case of intern-
ode communication. The mechanisms for synchronizing and transmitting messages should be
improved. Additionally, there are no advanced techniques for the breakdown recovery and node
failure handling.
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The class of Partitioned Global Address Space (PGAS) languages aims to deliver an in-
creased level of abstraction to classical supercomputing languages, while retaining their high
performance. However, with abstraction comes additional run- and compile-time overhead, and
a reduced portfolio of techniques to tune the parallel performance. In this work we study this
tension on three state-of-the-art PGAS languages, X10, Chapel, and UPC, and we report on
programmability, tunability and parallel performance, for a typical, data-parallel application.

This work, which is part of an MSc final project, aims to evaluate the degree in which PGAS
languages achieve the goals of portability, programmability, performance and robustness, using
X10, Chapel, and UPC as our main languages of interest. To this end, we present cluster-based
implementations of the N-body problem in all three languages, and we give an assessment of
performance, language features and tool support.

Preliminary Results: For our N-body implementations we achieve the best speedup of 5.4
on 12 machines using X10. Our hardware platform is a 12-node cluster of 8-core machines (2
quad-core Xeon E5506 2.13GHz, with 256kB L2 and 4MB shared L3 cache). The implementa-
tions in the other languages are still in a performance debugging phase, and so-far both UPC
and Chapel deliver speedups of ca. 2 on multiple machines. Details will be on the poster.

X10 has a strong object-oriented flavour, which helps a programmer, not already familiar
with the details of parallel programming, in developing an initial version. The syntax is slightly
unusual, combining object oriented syntax conventions (e.g. array declaration) with higher-
order functions (e.g. array initialisation), as used in functional programming. In exploring the
coordination aspects of the execution, we have reached the point were low-level constructs had
to be resorted to in order to reduce the communication overhead. This was unexpected, but
potentially due to the limited time spent on this implementation of the code.

The tutorial and community support for Chapel proved much more useful than those for
the other languages, but to some degree they are also confusing, due to different language
versions. The main web page helps in that respect, highlighting the most important information.
However, details of example applications are not elaborated on, and tutorials sometimes admit
that low-level issues, such as data distribution, have been elided in the tutorial. While it is
understandable that the community focuses on the selling points of the language, it is this part
of “awkward” low-level issues that take a substantial amount of programmer time for a new
programmer to get started in this field.

From a language design point of view, Chapel’s concepts of (sub-)domains proved very
useful for the N-body implementation, avoiding manual decomposition and communication.
Defining the array distribution required experimentation, due to the many options available
to e.g. block distributions, and changes in syntax. Higher-order functions proved to be an
important structuring element in the program design.

As expected, the UPC version is the most verbose of the parallel implementations. It is
similar to the Chapel implementation, using a parallel for loop, but lacks Chapel’s support for
coordination, domains or bulk operations on arrays.
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The numerical computation of the Fourier Transform, or the Discrete Fourier Transform
(DFT), is an important part in a myriad of different scientific contexts. Applications range
from time series and spectral analysis, to solution of partial differential equations, signal pro-
cessing and image filtering. From the original method devised in 1965 by Cooley and Tukey,
several different algorithms for calculating the 2D/3D Fast Fourier Transform (FFT) have been
developed through the years. Fundamentally, two basic parallel formulations exist: the binary
exchange algorithm and the transpose algorithm. In this poster, we use the second formulation,
i.e where a transpose operation dominates the communication part of the algorithm. The NAS
benchmark is a suite of different benchmark kernels exhibiting different communication pat-
terns. In this poster, we work on the Fourier Transform (FT) kernel. UPC (Universal Parallel
C) is a Partitioned Global Address Space (PGAS) language, which means that all processes
have access to the same global address space, so that a process can read and write data to
the memory of another remote process. The one-sided nature of communication in UPC, pro-
vides the language with a certain edge over traditional message-passing-based paradigms such
as MPI: the overhead for small messages sizes is significantly reduced in UPC if compared to
MPI. Due to the large overhead costs for smaller sizes packages in MPI, one normally tends
to aggregate several messages into larger bulk messages, which can then be more efficiently
transferred over the network. This is not necessary to the same extent in UPC, and this allows
one to optimize algorithms in novel ways, by increasing the total number of messages sent, yet
still retaining good performance.
In this work, we leveraged this feature of UPC to implement a communication-computation
overlapped version of the NAS FT Benchmark, which allows us to achieve strong performance
gains over the blocking version of NAS FT. These gains are solely possible due to the nature
of one-sided communication in UPC. We modified the traditional UPC version of the NAS FT,
and changed it from one bulk all-to-all transpose operation, into a non-blocking computation-
communication overlapped version. The original NAS FT UPC version with a D-class input
size, using 128 cores, runs in 268 seconds, which can be contrasted with the modified non-
blocking version of the same size, also using 128 cores, which runs in 185 seconds, which is
roughly 30% faster. We found that the combined use of an algorithm that allows to overlap
communication and computation and the use of non-blocking DMAPP remote memory access
lead to a decrease of the execution of time if compare to a blocking version of the FFT. We
report that the non-blocking FFT is 30% faster than blocking FFT on the 128 cores, while on
1024 cores the non-blocking version is 2% faster.

∗acknowledges support from the European Commissions Seventh Framework Programme (FP7/2007-2013)
under the grant agreements no. 287703 (CRESTA, cresta-project.eu).
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Abstract

With the evolution of many core and multicore systems different programming models
have evolved to meet the needs of the current applications and their communication and
computation needs. One such programming model is the Partitioned Global Address Space
model which works to combine the advantages of both shared and distributed memory pro-
gramming by providing a finer control over the data placement and access. OpenSHMEM
is a PGAS library that allows for programmers to develop parallel SPMD applications with
the help of its point-to-point (putget) communication operations, remote atomic memory
operations, collective operations (like broadcast and reduce) and a simple set of ordering,
locking, and synchronization primitives. The OpenSHMEM Specification provides general
guidelines and expectation of the library’s behavior but without a validation suite the dif-
ferent vendor implementations could differ in their interpretation of the specification. In
this paper we present the first Validation and Verification suite which not only validates
an OpenSHMEM library’s functions but also provides micro-benchmarks that can be used
to study and compare the performance of each of the individual library APIs for fur-
ther analyses across different OpenSHMEM library implementations or different hardware
configurations.

1 Introduction

In parallel computing over many and multi-core systems the Partitioned Global Address Space
programming model has been largely successful in delivering optimum performance for dis-
tributed systems running SPMD applications. Popular language extensions and libraries under
the PGAS programming model include Coarray Fortran (CAF), Unified Parallel C (UPC),
OpenSHMEM etc. While CAF and UPC are language extensions, OpenSHMEM [2] is a library
which provides a library API for one-sided point-to-point communication operations, remote
atomic memory operations, collective operations (like broadcast and reduce) and a simple set
of ordering, locking, and synchronization primitives. Till the OpenSHMEM specification V 1.0
[1] was finalized in 2011, the libraries were historically called SHMEM and had many variant
flavors depending on the vendor and the targeted hardware system. These SHMEM library
implementations vary in optimizations and hardware support they provide, but they all uphold
the key concepts and principles of the original SHMEM library developed in 1993 by Cray Re-
search Inc. Since the announcement of the specification, all SHMEM library implementations
are striving to come together to support a unified API that will promote portability of appli-
cations and reproducibility of results across different (now) OpenSHMEM libraries that may
run on different hardware platforms. To aid this effort University of Houston, along with Oak
Ridge National Lab have developed the Validation and Verification (V&V) suite that checks
for conformance of a given OpenSHMEM library to the current OpenSHMEM specification. In
this poster we give an introduction to the OpenSHMEM specification and the key concepts of
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OpenSHMEM which are the foundation of the Validation and Verification suite. We discuss
the different OpenSHMEM library calls and the expected behavior of an implementation. We
also deliberate over the different ways in which we verify that an OpenSHMEM library adheres
to the specification and the challenges that we faced therein.
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