
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

ANDRÉ RAMOS CARNEIRO

Providing Support to Uncovering I/O Usage
in HPC Platforms

Thesis presented in partial fulfillment of the
requirements for the degree of Master of
Computer Science

Advisor: Prof. Dr. Philippe O. A. Navaux
Coadvisor: Prof. Dr. Carla Osthoff

Porto Alegre
July 2022

CIP — CATALOGING-IN-PUBLICATION

Carneiro, André Ramos

Providing Support to Uncovering I/O Usage in HPC Platforms
/ André Ramos Carneiro. – Porto Alegre: PPGC da UFRGS,
2022.

93 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2022. Advisor: Philippe O. A. Navaux; Coadvisor: Carla
Osthoff.

1. Visualization. 2. Lustre. 3. Parallel File System. 4. High-
Performance Storage. 5. I/O Workload. 6. I/O Characterization.
7. Metadata. I. Navaux, Philippe O. A.. II. Osthoff, Carla. III. Tí-
tulo.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. Claudio Rosito Jung
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“A reader lives a thousand lives before he dies.

The man who never reads lives only one.”

— GEORGE R.R. MARTIN

ACKNOWLEDGMENTS

I would like to thank my advisor, Prof. Dr. Philippe Olivier Alexandre Navaux,

and co-advisor, Prof. Dr. Carla Osthoff, for the guidance, support, and patience during

the accomplishment of my master’s.

I want to express my sincere gratitude to my friend and colleague Jean Luca Bez

for providing invaluable insights and help in constructing this work.

I am grateful to my parents, Claudio and Helena Carneiro, to my wife, Priscila

Carneiro, and to my friends Angélica de Fátima Tavares da Silva and Jamel Salles de

Souza Leite, for always caring and supporting me during the most important times of my

life, both good and bad.

I wish to show my appreciation to the National Laboratory for Scientific Com-

puting (LNCC/MCTI, Brazil) for providing HPC resources of the SDumont supercom-

puter, which have contributed to the research results reported within this document. URL:

<http://sdumont.lncc.br>.

http://sdumont.lncc.br

ABSTRACT

High-Performance Computing (HPC) platforms are required to solve the most diverse

large-scale scientific problems in various research areas, such as biology, chemistry, physics,

and health sciences. Researchers use a multitude of scientific software, which have dif-

ferent requirements. These include input and output operations, directly impacting per-

formance because the existing difference in processing and data access speeds. Thus,

supercomputers must efficiently handle a mixed workload when storing data from the ap-

plications. Understanding the set of applications and their performance running in a super-

computer is paramount to understanding the storage system’s usage, pinpointing possible

bottlenecks, and guiding optimization techniques. This research proposes a methodology

and visualization tool to evaluate a supercomputer’s data storage infrastructure’s perfor-

mance, taking into account the diverse workload and demands of the system over a long

period of operation. We used the Santos Dumont supercomputer as a study case. With our

methodology’s help, we identified inefficient usage and problematic performance factors,

such as: (I) the system received an enormous amount of inefficient read operations, below

100 KiB for 75% of the time; (II) imbalance among storage resources, where the overload

can correspond to 3× the average load; and (III) high demand for metadata operations,

accounting for 60% of all file system operations. We also provide some guidelines on

how to tackle those issues.

Keywords: Visualization. Lustre. Parallel File System. High-Performance Storage. I/O

Workload. I/O Characterization. Metadata.

Fornecendo Suporte Para a Descoberta das Demandas de E/S em plataformas de

PAD

RESUMO

Plataformas de Processamento de Alto Desempenho (PAD) são necessárias para resolver

os mais diversos problemas científicos de grande escala em várias áreas de pesquisa, tais

como biologia, química, física e ciências da saúde. Pesquisadores utilizam uma infinidade

de aplicações científicas, que por sua vez possuem diferentes requisitos. Dentre esses re-

quisitos estão as operações de entrada e saída, que impactam diretamente o desempenho

devido a diferença de velocidade existente entre o processamento e o acesso aos dados.

Dessa forma, os supercomputadores devem lidar de forma eficiente com uma carga de

trabalho mista ao armazenar os dados utilizados pelas aplicações. O entendimento do

conjunto de aplicações e seus desempenhos ao executar em um supercomputador é pri-

mordial para entender a utilização do sistema de armazenamento, identificando possíveis

gargalos, e orientando técnicas de otimização. Essa dissertação propõe uma metodologia

e uma ferramenta de visualização para avaliar o desempenho da infraestrutura de arma-

zenamento de dados de um supercomputador, levando em consideração as demandas e

cargas de trabalho diversas do sistema durante um longo período de operação. Como

estudo de caso, o supercomputador Santos Dumont foi estudado. Com a ajuda de nossa

metodologia, identificamos uso ineficiente e fatores de desempenho problemáticos, como:

(I) o sistema recebeu uma enorme quantidade de operações de leitura ineficientes, abaixo

de 100 KiB por 75% do tempo; (II) desequilíbrio entre os recursos de armazenamento,

onde a sobrecarga pode corresponder a 3× a carga média; e (III) alta demanda por ope-

rações de metadados, representando 60% de todas as operações do sistema de arquivos.

Também fornecemos algumas diretrizes sobre como lidar com esses problemas.

Palavras-chave: Lustre, Visualização, Sistemas de Arquivos Paralelos, Armazenamento

de Alto Desempenho, Carga de Trabalho de E/S, Caracterização de E/S, Metadado.

LIST OF ABBREVIATIONS AND ACRONYMS

ACL Access Control List

ALCF Argonne Leadership Computing Facility

CF Coverage Factor

CIFS Common Internet File System

CN Compute Node

CPU Central Processing Unit

DKRZ German Climate Computing Centre

DL Deep Learning

ext4 Fourth Extended Filesystem

FLOPS Floating-point Operations Per Second

FS File System

GPFS General Parallel File System

HDD Hard Disk Drive

HPC High-Performance Computing

I/O Input and Output operation

ION I/O Node

LDLM Lustre Distributed Lock Management

LI Load Imbalance

LMT Lustre Monitoring Tool

LN Login Node

LNET Lustre Networking

LNCC National Laboratory for Scientific Computing

MDS Metadata Server

MDT Metadata Target

ML Machine Learning

MN Management Node

MPI Message Passing Interface

MPI-IO Message Passing Interface Input/Output specification

NERSC National Energy Research Scientific Computing Center

NFS Network File System

NTFS New Technology File System

OLCF Oak Ridge Leadership Computing Facility

OSC Object Storage Client

OSD Object Storage Devices

OSS Object Storage Server

OST Object Storage Target

PFS Parallel File System

QO Quality of Operation

RAM Random Access Memory

RDMA Remote Direct Memory Access

RPC Remote Procedure Call

SINAPAD Brazil National High-Performance Computing System

SLURM Simple Linux Utility for Resource Management

SMA Simple Moving Averages

SSD Solid State Drive

TOKIO Total Knowledge of I/O

UFRGS Federal University of Rio Grande do Sul

USB Universal Serial Bus

VM Virtual Machine

LIST OF SYMBOLS

µ Arithmetic Mean

σ Standard Deviation

LIST OF FIGURES

Figure 2.1 Local File System. ...18
Figure 2.2 Networked File System..19
Figure 2.3 Parallel File System. ..20
Figure 2.4 Metadata Management Representation. ..22
Figure 2.5 Parallel File System. ..23
Figure 2.6 Lustre PFS Architecture. ...24

Figure 3.1 Serial I/O..29
Figure 3.2 Parallel I/O - File-Per-Process. ..30
Figure 3.3 Parallel I/O - Shared-File...31
Figure 3.4 Stripe Access. ..32

Figure 4.1 Data collection and analysis workflow. ...41
Figure 4.2 Datasets Structure. ...44

Figure 5.1 Data distribution for 3 months. The y-axis is the throughput in GiB by
minute. The figures have different scales. ..48

Figure 5.2 2020 CDF of the Transfer Size (A) and Throughput (B) for the Read
(Red) and Write (Blue) operations among OSTs. The vertical lines represent
the mean observed values: 604 KiB Read and 1791 KiB Write for Size, and
1.568 GiB/m Read and 2.531 GiB/m Write for Throughput.50

Figure 5.3 2021 CDF of the Transfer Size (A) and Throughput (B) for the Read
(Red) and Write (Blue) operations among OSTs. The vertical lines represent
the mean observed values: 1043 KiB Read and 1420 KiB Write for Size, and
6.695 GiB/m Read and 3.445 GiB/m Write for Throughput.51

Figure 5.4 Workload distribution by week. The x-axis represents the week of the year.53
Figure 5.5 SMA3HR of LI for the read (red) and write (blue) workload. Values

< 0.5 can be considered as low imbalance, values around 1 are moderate, and
those above represent severe imbalance. Missing values refer to maintenance
periods...54

Figure 5.6 SMA3HR of read and write throughput by OST. ..55
Figure 5.7 2021 metadata load distribution by week. (A) depicts the load of I/O

operations (purple) and and metadata operations (yellow). (B) details the
metadata operation type. ..58

Figure 5.8 Identified applications (2020), their Science Domains, and number of jobs.60
Figure 5.9 Identified applications (2021), their Science Domains, and number of jobs.61
Figure 5.10 CFbw of the jobs. The dots in red, black, and blue represent the Max.,

Avg. and Min., respectively, of all jobs, observed on each timestamp.62
Figure 5.11 2020 Distribution of the Quality of Operation (left) and Transfer Size

(right). The x-axis are the QO index and size in KiB, respectively.63
Figure 5.12 2021 Distribution of the Quality of Operation (left) and Transfer Size

(right). The x-axis are the QO index and size in KiB, respectively.64
Figure 5.13 2020 applications’ workload distribution. ...65
Figure 5.14 2021 applications’ workload distribution. ...66
Figure 5.15 2020 Distribution of the Simultaneous Resource Used by each appli-

cation in read (red) and write (blue). The y-axis (count) represents the amount
of resource simultaneously used by each job of the application.............................69

Figure 5.16 2021 Distribution of the Simultaneous Resource Used by each appli-
cation in read (red) and write (blue). The y-axis (count) represents the amount
of resource simultaneously used by each job of the application.............................70

Figure 5.17 2020 applications’ metadata load distribution. (A) presents the load
division between I/O (purple) and metadata operations (yellow). (B) presents
the division among each metadata operation type. ..71

Figure 5.18 2021 applications’ metadata load distribution. (A) presents the load
division between I/O (purple) and metadata operations (yellow). (B) presents
the division among each metadata operation type. ..72

LIST OF TABLES

Table 4.1 Lustre I/O metrics..42
Table 4.2 Lustre Metadata Counters. ..43

Table 5.1 Transfer Size (KiB) and Quality of Operations...49
Table 5.2 Amount of Metadata Operations ...57
Table 5.3 Individual application’s peak throughput ..61
Table 5.4 Average Data Transfer per Job from 2021 ..67

CONTENTS

1 INTRODUCTION...14
1.1 Contributions...15
1.2 Document Organization ...16
2 BACKGROUND..17
2.1 Parallel File Systems ...17
2.2 Lustre Architecture and its Deployment on SDumont ..23
2.2.1 Lustre’s Architecture..23
2.2.2 The SDumont ...26
3 RELATED WORK ...28
3.1 Performance Limiting Factors...28
3.1.1 How applications interact with the PFS...28
3.1.2 Concurrency, Contention, and Interference ...35
3.2 File System Evaluation ...37
4 ANALYSIS AND VISUALIZATION METHODOLOGY41
4.1 Data Gathering Step ...41
4.2 Data Pre-Processing Step ...43
4.3 Data Analysis Step ..45
5 GLANCING AT THE LUSTRE FILE SYSTEM ..47
5.1 Overview of Lustre Usage ..47
5.1.1 I/O Data Analysis...47
5.1.2 Metadata Analysis..56
5.2 Detailed View of a Region of Interest..58
5.2.1 Applications I/O Data Analysis ...59
5.2.2 Applications Metadata Analysis ..70
6 DISCUSSION ..73
7 CONCLUSION ...75
7.1 Future Work ..77
7.2 Publications ...78
REFERENCES...83
APPENDIX A — RESUMO EXPANDIDO ..91

14

1 INTRODUCTION

Supercomputers dominate the High-Performance Computing (HPC) environments

with hundreds to thousands of compute nodes. These HPC systems solve the most diverse

problems in various science domains: biology, chemistry, physics, and health sciences.

Researchers of different areas use various scientific software, which has different require-

ments. For instance, applications can be serial or parallel and read/write different amounts

of data in various formats and sizes. This scenario leads to the supercomputers having to

handle mixed workloads.

The evolution of processing chips and high-speed networks allows supercomput-

ers to process larger datasets. Moreover, the infrastructure that stores these datasets also

has to provide high-performance access so that the applications can perform their input

and output (I/O) operations efficiently. For an HPC environment, it’s not just the amount

of floating-point operations per second (FLOPs) that affects the performance but also how

much data they can effectively read from and write to the storage system per second.

Parallel File Systems (PFS), a decentralized storage system in which dedicated

machines act as data servers that reduce the overhead of processing I/O requests, are the

de-facto file system type for HPC systems. Lustre (MICROSYSTEMS, 2007) is one of

the most adopted PFS on HPC systems, representing ≈ 30.5% of the file systems used

on IO500 list 1. Although advances in data storage architectures provide a better per-

formance, for instance, by using SSD devices, there is still a considerable performance

gap between how fast the system can handle I/O operations and how fast it can process

the data. This difference affects how supercomputers can be used productively for new

scientific discoveries. More research is being done with the rapid expanse of supercom-

puters while generating more data to be read and written, making the shared data storage

infrastructure one of the main bottlenecks for achieving sustainable performance. The

PFS cannot keep providing performance because of rising concurrency and interference

(YILDIZ et al., 2016; YU et al., 2018). Aside from the I/O operations, another critical

factor in the HPC storage management are the metadata operations, which are respon-

sible for maintaining the file system directory tree, file access permissions, ownership,

timestamps, attributes, etc. As the datasets increase, the metadata performance becomes

critical and can quickly turn into a bottleneck (ALAM et al., 2011).

Lawrence et al. (2017) and Saini et al. (2012) demonstrate that different scientific

1https://io500.org/

15

applications have their performance impacted in diverse ways by Lustre, with some using

the resources more efficiently than others. This variation is linked to specific workload

requirements and Lustre simultaneously handling various applications under contention.

Some factors that impose limitations and negatively impact the performance of Lustre are

misaligned access patterns (BARTZ et al., 2015), load imbalance between storage servers

(PATEL et al., 2019), and resource contention (NEUWIRTH et al., 2017). Besides, we

should also consider that the existing I/O stack exposes many tunable parameters, such

as stripe size of the PFS, seeking to provide performance improvements to diverse work-

loads. However, the misconfiguration of such parameters because of the users’ lack of

knowledge about its application’s I/O operations can add to the observed poor perfor-

mance, making understanding of I/O usage and behavior critical. Furthermore, a poorly

performing I/O application could also negatively impact all others currently running in

the system since the storage is a shared resource.

This research aims to understand the impact and uncover data storage needs in a

supercomputer by evaluating Lustre’s performance concerning the diverse I/O and meta-

data workloads from different domains and their demands. The utilization behavior was

studied and compared over two periods comprising three months of operation, from

March to May of 2020 and 2021, when there was 16.50 PiB of data movement through

109.79 billion I/O operations. We developed a methodology for continuous characteriza-

tion and visualization of performance factors, such as small request sizes, load imbalance,

and resource contention. We used the Santos Dumont Supercomputer (SDumont) 2 as a

case study because little is known about the impact of its storage and I/O stack configura-

tion on the application set that runs daily in that production machine.

1.1 Contributions

The main objective is to obtain a comprehensive understanding of the utilization

of the PFS of a supercomputer, identifying bottlenecks and providing possible guidelines

on how to tackle those issues. Considering these goals, the main contributions are the

following:

• A methodology developed to collect, analyze, and visualize I/O data from the PFS,

using open-source software that does not require administrative privileges, allowing

2https://www.lncc.br/sdumont

16

it to be easily implemented and reproduced.

• A web application developed to streamline the visualization and analysis of the

PFS usage data. Such a tool makes it easier to reproduce the analysis and study for

different periods of interest.

• The comparison between periods from two years reveals how dynamic the I/O de-

mands are, demonstrating the need for continuous PFS evaluation to better meet

users’ demands.

• Investigation of the I/O workload and usage behavior from Lustre’s Object Storage

Targets (OST) and SDumont’s compute nodes. The study shows that the workload

demand is not dominated by a single type of operation and can significantly vary

across the period.

• An analysis of individual OST usage demonstrated a significant load imbalance

across them during regular system operation.

• By crossing the I/O usage metrics from the compute nodes with information from

the job scheduling management system was possible to identify problematic appli-

cations that could lead to overall performance degradation at the PFS servers.

• The analysis and characterization of the metadata operations show a considerable

demand, with the metadata accounting for 60% of all file system operations.

1.2 Document Organization

The document is organized as follows. Chapter 2 presents some background con-

cepts on the topics of this dissertation, and Chapter 3 discusses related work. Chapter 4

details the methodology developed to study a supercomputer’s parallel file system. Re-

sults are discussed in Chapter 5. Chapter 6 summarizes the lessons learned and compares

our findings with other systems. Finally, concluding remarks and future work are pre-

sented in Chapter 7.

17

2 BACKGROUND

In the following sections, we explain some important concepts that serve as a base

for this dissertation. A brief overview of Parallel File Systems in High-Performance Com-

puting is presented, followed by a description of the Lustre PFS and the Santos Dumont

supercomputer.

2.1 Parallel File Systems

Supercomputers dominate the High-Performance Computing (HPC) environments.

They are clusters of machines composed of hundreds to thousands of compute nodes (CN)

used for processing, login nodes (LN) through which users connect to the system and sub-

mit their jobs (i.e., a particular application execution), a resource and scheduler manager

(which can be collocated with the LN or placed in a dedicated management node – MN)

that orchestrate the concurrent execution of users’ applications on the CNs, a shared stor-

age system to house the data, and a high-speed network to connect all the components.

These HPC systems solve the most diverse problems in various science domains: biology,

chemistry, physics, and health sciences. Researchers of different areas use various scien-

tific software, which has different requirements. For instance, applications can be serial

or parallel and read/write different amounts of data in multiple formats and sizes. This

scenario leads to the supercomputers having to handle mixed workloads.

The rapid expanse in the technology of processing chips and high-speed networks

allows the building of massive supercomputers, which have millions of processing cores

and PiB of main memory. For example, Fugaku 1, the fastest supercomputer according to

the November 2021 edition of the Top500 list 2, has a total of 7, 630, 848 computing cores

and 5.087 PiB of memory.

Moreover, the infrastructure that stores the datasets used by scientific applications

also has to provide high-performance access to efficiently perform the input and output

(I/O) operations. I/O is commonly used by scientific applications to achieve goals like

storing the numerical output from simulations for later analysis and visualization, loading

initial conditions or datasets for processing, checkpointing to files that save the state of an

application in case of system failure, or Implementing ‘out-of-core’ techniques for algo-

1https://www.r-ccs.riken.jp/en/fugaku/project
2https://www.top500.org/lists/top500/2021/11/

18

rithms that process more data than can fit in system memory. But as the supercomputers

grow, the I/O needs are also getting bigger because (i) there is more “room” to execute

applications concurrently, and (ii) the data size growth accompanies the total available

system memory. This scenario leads to the datasets generated by scientific applications

increasing exponentially in both volume and complexity (XIE et al., 2012; WANG et al.,

2016).

Although advances in data storage architectures provide a better performance, for

instance, by using SSD devices on the shared storage system (CAULFIELD; GRUPP;

SWANSON, 2009) or as client-side cache device (QIAN et al., 2019), there is still a

considerable performance gap between how fast the system can handle I/O operations

and how fast it can process the data. This difference affects how supercomputers can be

used productively for new scientific discoveries, making the shared storage infrastructure

one of the main bottlenecks for achieving sustainable performance.

In computing environments, the file system has two key roles: organizing and

maintaining the file namespace (directory tree structure) and storing and retrieving the

contents of files and their attributes on a storage device (e.g., HDD, SSD, USB stick,

CD-ROM) (ARPACI-DUSSEAU; ARPACI-DUSSEAU, 2018). Local file systems (Fig-

ure 2.1) are used by a single client with direct access to the disk (e.g., NTFS 3 or ext4 4

in a workstation or CN). Networked file systems (Figure 2.2) provide storage space and

single namespace access to one or more clients who might not have direct access to the

disk (e.g., NFS 5 or CIFS 6 provided by a server).

Figure 2.1 – Local File System.

Workstation

Storage Device

File System

Source: Author

The traditional centralized architectures are not designed to have many outstand-

ing data requests and have scalability issues because there is only one access point to
3https://www.ntfs.com/index.html
4https://ext4.wiki.kernel.org/index.php/Main_Page
5https://datatracker.ietf.org/doc/html/rfc7931
6https://cifs.com/

19

Figure 2.2 – Networked File System.
Workstation Workstation Workstation Workstation

Network

Storage Server

Storage Device

File System

Source: Author

the data (OLIVARES et al., 2001), unable to handle requests from thousands of CNs.

Parallel File Systems (PFS) were designed to provide greater data access throughput for

concurrent and independent access from scientific applications to overcome the deficien-

cies of the centralized architecture of traditional storage that cannot cope with current

supercomputers. In the same way that supercomputers use various CNs together to obtain

more computational power, PFS (Figure 2.3) is a special kind of networked file system

that uses several dedicated storage servers to aggregate the individual bandwidth and pro-

vide high throughput while reducing the overhead of processing I/O requests (PRABHAT;

KOZIOL, 2014; CHING et al., 2007). A PFS differs from a non-parallel (centralized) file

system in that the data can be distributed across multiple storage servers, which can be

accessed simultaneously to increase the bandwidth of the file system.

According to Prabhat and Koziol (2014), there are some key requirements that

PFSs should meet in HPC environments:

• Division of files in data blocks: The PFS should be capable of dividing a file into

blocks of data (commonly called striping) across storage servers, allowing parallel

access to different parts of the file by the processes of a parallel application. This

way, the data access is not restricted to a single storage server and increases the

performance.

• Access to individual data blocks: Aside from dividing the file, the PFS should

provide a mechanism for each process in a parallel application to access distinct

subsets of the data.

20

Figure 2.3 – Parallel File System.
Workstation Workstation Workstation Workstation

Network

Storage Server

Storage Device

Storage Server

Storage Device

Storage Server

Storage Device

File System (single namespace)

Source: Author

• Single namespace: Since the file system is scattered across several storage servers,

the PFS should deliver the aggregated file systems as a single namespace. CNs

should see the whole file system as a single unity instead of various storage islands.

• Fault-Tolerance: Since the PFS comprises two or more storage servers, it must

implement mechanisms, through hardware and/or software, to deal with failures

and keep the service as highly available as possible. Being fault-tolerant overcomes

the single point of failure of traditional centralized storage.

• Locking: The PFS must implement a locking mechanism to manage concurrent

access to files, avoiding corruption. CNs should be able to obtain locks on data

units of the file they will access before I/O occurs.

• Cache coherency: By allowing multiple access to the same file (or parts of the

file) from numerous CNs, the PFS must implement a cache consistency protocol

to avoid incoherent data. This coherency is usually implemented through locking

mechanisms (as long as the CN has a lock, it knows its cached data is valid).

• API: Legacy applications that rely on standardized libraries to perform their oper-

ations should access the files in a PFS the same way on a local file system without

recompilation. However, the PFS should provide a specialized API that allows de-

velopers to obtain greater control over how the data are divided and distributed.

In this fashion, it is possible to optimize the application to take advantage of the

special characteristics of the PFS.

21

• Scalable capacity and performance: To meet the increasingly high demands of

I/O, both in performance and size, the PFS must be scalable in a scale-out fashion.

Its capacity and performance should be easily increased by adding more storage

servers. The PFS must be scalable to attend to the demands of thousands of clients,

support hundreds of servers, house thousands of storage devices, and provide vast

storage of capacity and hundreds of GiB/s of system bandwidth.

The PFSs cannot always keep up with the generated concurrency because of the

rising number of CNs on supercomputers. For this reason, many leadership-class HPC

platforms utilize an I/O forwarding layer (ALI et al., 2009; OHTA et al., 2010), which

stands between the CNs and the PFS. This layer comprises dedicated I/O nodes (ION) re-

sponsible for receiving the I/O requests from the CNs, performing rescheduling or aggre-

gation, and directly interacting with the storage servers. The I/O forward layer decreases

contention in accessing the PFS because it handles requests from fewer nodes instead of

thousands of CNs. The study presented in this work does not contemplate an I/O forward-

ing layer. However, the methodology developed, described at Chapter 4, could be adapted

to study how the I/O forwarding layer interacts with the PFS based on the demands from

the CNs.

Currently, there are numerous PFSs available, and most of them share various

characteristics. These systems have two key aspects that distinguish them: how they

store the data and handle metadata management. The file data can be stored as data

stream blocks using the local file system on the storage servers or as multiple objects on

object-based storage (MESNIER; GANGER; RIEDEL, 2003). Object-based storage is

the general term for how data unities, called objects, are organized and handled. Each

object is composed of three properties: (i) the file data as a variable-length sequence of

bytes; (ii) an expandable amount of metadata, which holds contextual information about

the data; and (iii) a unique global identifier, which is like an object’s address to find

it throughout the distributed storage system. The objects are stored on Object Storage

Devices (OSD) that use a specialized local file system that implements the object storage

primitives.

Metadata is information about data such as size, permissions, location among the

storage servers, owner, access control lists (ACLs), and access times. As all basic file

system operations involve metadata operations, metadata access scalability impacts the

whole system. Regarding the metadata management in PFS, there are two types of archi-

tectures: decentralized and centralized (PRABHAT; KOZIOL, 2014). In the decentralized

22

architecture (Figure 2.4a), the metadata is collocated with the file data and spread through-

out the file systems. The storage server manages both I/O operations and maintains the

directory hierarchy. In this architecture, the directory tree structure of the file system is

distributed to the storage servers. Some PFSs allow the utilization of dedicated servers to

handle only the metadata operations, but the whole directory structure is spread among

the servers.

Figure 2.4 – Metadata Management Representation.

Storage Server
Metadata + Data

Storage Device

Storage Server
Metadata + Data

Storage Server
Metadata + Data

Storage Server
Metadata + Data

Storage Device Storage Device Storage Device

File System (single namespace)

(a) Decentralized

Metadata Server

Storage Device

I/O Server
Data

Storage Device

File System (single namespace)

I/O Server
Data

Storage Device

I/O Server
Data

Storage Device

(b) Centralized

Source: Author

The centralized metadata architecture (Figure 2.4b) is characterized by having a

dedicated server to handle only the metadata operations and maintaining the directory tree

structure. Operations such as open, close, remove and rename are executed through

the metadata server. For example, during a write request: (i) the client process contacts

the metadata server with an open operation; (ii) the metadata server checks the file’s ACL

and informs where and how the file is stored; (iii) the client directly access the storage

servers to write the data. Some PFSs that use this type of architecture allow the utilization

of two or more metadata servers to divide the namespace logically. However, each server

is still responsible for managing access to the whole directory tree branch. Figure 2.5

depicts a directory tree where the Metadata Server 1 is responsible for managing the

/scratch branch (the root directory of the file system) and everything below it, except

23

accesses to the /scratch/intensive branch, which are managed by the dedicated

Metadata Server 2.

Figure 2.5 – Parallel File System.

File System (single namespace): /scratch

/scratch
(Root Dir)

Metadata Server 1 Metadata Server 2

/scratch/intensive

/scratch/intensive/A

/scratch/intensive/B

/scratch/projects/scratch/projects

/scratch/documents

File File
File

File

Source: Author

PFSs are the de-facto file system type for HPC systems, and Lustre is considered

the most popular one. Lustre is the most used PFS of the top 10 disclosed supercomputers

from the November 2021 TOP500 list, with 4 deployments. Concerning the list from

2021 of the IO500 7, with 72 submissions, Lustre accounts for 30.5%. The following

section describes the Lustre file system.

2.2 Lustre Architecture and its Deployment on SDumont

This section discuss the Lustre’s architecture and the motivation for using the

SDumont supercomputer as a test-bed.

2.2.1 Lustre’s Architecture

The Lustre PFS is an open-source client-server object-based file system imple-

mented entirely on the Linux Kernel, developed for high-performance environments. It

provides a POSIX-compliant namespace and scalable I/O resources. Instead of using

7https://io500.org/

24

traditional block-based storage, where the files are divided into equal-sized blocks and

the metadata management is coupled with the I/O management, Lustre uses a distributed

object-based storage, where a file can be divided into objects of different sizes that store

the data, and the metadata management is decoupled. This approach entrusts the block

storage management to dedicated backend servers, which diminish problems associated

with scalability and performance of the traditional centralized file systems. There are

two types of objects on Lustre: (i) data objects containing byte arrays used to store file

data, and (ii) metadata objects containing key-value data used to implement the directory

tree structure and the file/directory attributes (layout, size, access permissions, owner,

timestamps, etc.). These objects are implemented by the Lustre object storage device, an

abstraction that enables the use of different backend file systems (ldiskfs or ZFS). A sin-

gle storage device instance corresponds to a single backend storage volume and is termed

a storage target.

The key components of Lustre’s architecture are Metadata Servers (MDS), Meta-

data Targets (MDT), Object Storage Servers (OSS), Object Storage Targets (OST), Clients,

Lustre Distributed Lock Manager (LDLM), and the Lustre Networking (LNET), depicted

by Figure 2.6:

Figure 2.6 – Lustre PFS Architecture.

MDS

 MDT LDLM

Lustre File System (single namespace)

OSS 1

 OST 1 LDLM

OSS 2

 OST 2 LDLM

OSS 3

 OST 3 LDLM

CN
OSC

CN
OSC

CN
OSC

CN
OSC

 HighSpeed Network
LNET/Ptlrpc

Source: Author

• MDS is responsible for managing all metadata operations on the file system, such

as deciding where a data object will be stored, setting and retrieving file/directory

25

attributes, and exporting MDTs to the clients.

• MDT is the backend storage target responsible for holding the metadata objects.

• OSS handle the file I/O operations and export one or more OSTs to the clients.

• OST is the backend storage target responsible for holding the file data objects. It

can be exported actively by only one OSS.

• Clients combine the MDTs and OSTs in a single namespace while communicating

the users’ requests to the MDSs or OSSs. Each Lustre I/O operation originates

with a system call from a user process on a CN. Each CN has a file cache as its

I/O buffer and invokes a local Lustre kernel module called Object Storage Client

(OSC) to handle file operations and I/O. The OSC performs I/O by issuing Lustre

RPC calls to OSSs. Each Lustre I/O operation to an OSS is a read or a write-on

exactly one object which resides on an OST.

• LDLM is a service provided by storage targets (MDT and OST) in addition to

object storage services. LDLM locks are used to serialize conflicting file system

operations on objects managed by that target and are used to ensure distributed

cache coherency.

• LNET provides the communication infrastructure stack for every component, al-

lowing message passing, remote direct memory access (RDMA), and high-speed

communication. The Lustre RPC layer (Ptlrpc) is built on top of LNET to provide

robust client–server communications in the face of message loss and server failures.

Lustre uses the data striping technique, which divides a file into data chunks

among selected OSTs. The size of the chunks is referred to as stripe_size, and

the number of OSTs by which the file will be split into is referred to as stripe_count.

Summing up, the file is composed of N stripe_count objects that are stored in the

OSTs in a round-robin fashion, and each object is composed of one or more data chunks

(stripes) of size stripe_size. Lustre allows the user that creates the file to spec-

ify the stripe_size, stripe_count, and the starting OST, which will hold the

1st object. If not specified, the system uses the default values for stripe_size and

stripe_count (varies from deployment to deployment), and selects the starting OST

at random. Striping can improve performance in file access as it makes it possible to

aggregate multiple data servers’ bandwidth to access a single file using parallel I/O op-

erations. When a file is open on Lustre, the client first contacts the MDS to retrieve the

file layout. The file layout has information about the file striping, and on which OSTs

26

it is stored. After that, the client interacts directly with the OSSs for the subsequent I/O

operations without communicating with the MDS.

Lustre PFSs are typically optimized for high bandwidth: they work best with a

small number of large, contiguous I/O requests rather than a large number of small ones

(i.e., small numbers of large files rather than large numbers of small files).

2.2.2 The SDumont

The Santos Dumont Supercomputer (SDumont) 8, a Bull/Atos machine located at

the National Laboratory for Scientific Computing (LNCC) 9 in Brazil, is an example of an

HPC environment with significant heterogeneity of research on several science domains,

each with a specific set of scientific software. The primary ones are Chemistry (21.3%),

Physics (17.1%), Engineering (12.6%), and Biological Sciences (10, 1%). SDumont is

the Tier-0 of the National High-Performance Computing System (SINAPAD) 10 and one

of the largest in Latin America. It currently has 133 research projects in progress, with a

daily average of ≈ 200 concurrent jobs. In operation since 2016, SDumont has a total of

18, 424 CPU cores distributed across 758 compute nodes (CN).

To store all the data, SDumont has a Lustre PFS shared storage, deployed through

the CRAY/HPE ClusterStor 9000 v3.3, composed of one MDS and ten OSS. Each server

has one storage target made out of 40 HDD in RAID6 format. The total storage capacity of

the deployed system is 1.7 PiB. An Infiniband FDR (56 Gb/sec) fat-tree full-nonblocking

network connects the storage servers and the client nodes. Lustre is mounted on the

client nodes with the default stripe_count = 1 and stripe_size = 1 MiB.

According to the ClusterStor 9000 technical specifications 11, the peak performance a

Lustre system with similar characteristics as the one implemented on SDumont should

achieve, without considering the effects of cache, is 45 GB/s. The aggregate network

bandwidth to access the Lustre system is 70 GB/s, which should not impose a bottleneck

on the communication.

Bez et al. (2019) investigated the performance difference between MPI imple-

mentations when issuing collective operations, focusing on two specific applications on

the SDumont supercomputer. The study includes an initial Lustre workload characteriza-

8https://sdumont.lncc.br/
9https://www.lncc.br/

10https://www.lncc.br/sinapad/
11https://www.hpe.com/psnow/doc/c04663932?jumpid=in_lit-psnow-red

27

tion using monitoring data collected during a week of operation. The study presented that

the writing operations were responsible for 80% of the workload and that the aggregate

performance did not reach 15% of the system’s maximum peak. However, there was still

no comprehensive data on Lustre’s behavior and usage on SDumont. Without a detailed

analysis over a representative period, it is challenging to assess if the Lustre delivers the

required performance or limits the scalability of applications executed on SDumont.

28

3 RELATED WORK

The previous chapter depicted how complex the storage for an HPC system can

be, which contributes to many factors impacting the application’s performance. This

chapter first discusses some of the most common performance limiting factors that users,

developers, and system administrators should pay attention to, alongside related work

exposing how these factors impact production systems. The last section presents some

works related to the methodology proposed in this dissertation to evaluate the PFS of an

HPC system.

3.1 Performance Limiting Factors

This section discusses some performance limiting factors, divided into two fronts.

First, we present how an application interacts with the PFS in an individual view. Second,

we expose the problems that may arise when running multiple applications in a single

environment.

3.1.1 How applications interact with the PFS

Different scientific applications from diverse scientific domains have their perfor-

mance impacted in myriad ways by the PFS, with some using the resources more effi-

ciently than others. The variability in performance, influenced by the applications’ access

patterns, can frustrate users’ expectations of how their applications will perform when

using the PFS. The access pattern (NIEUWEJAAR et al., 1996) describes how the appli-

cation interacts with the storage system concerning the type of operation (read or write)

performed, whether it performs parallel or serial I/O, the number of files used, the spatial

data locality accessed inside the file, and the operation’s transfer size. Also, file type, I/O

library, bandwidth, and PFS type can affect performance.

A parallel application can perform its I/O operations in a serial or parallel model

(CHING et al., 2007). On the serial I/O (Figure 3.1), only one process (usually the “rank

zero”) of the application is responsible for performing all the I/O operations (i.e., reading

or writing the entire file). Every other process must send/receive its data to/from the

designated I/O process. This approach is simpler to implement but does not scale because

29

of memory and bandwidth constraints of the CN executing the process responsible for the

I/O, and because a single CN cannot access the total aggregated bandwidth of the PFS.

Also, the time spent with I/O increases with the amount of data and processes. On the

other hand, the parallel I/O is characterized by all, or a subgroup of, processes performing

the I/O operations. This way, each CN is responsible for handling a smaller amount

of data, and the application can scale to a higher number of processes because of the

aggregated bandwidth of all CNs involved.

Figure 3.1 – Serial I/O.

File

Parallel Application

 Process 0

1 2 3

 Process 1

1 2 3

 Process 2

1 2 3

 Process N

1 2 3. . .Data Blocks

P0.1P0.2P0.3P1.1P1.2P1.3P2.1P2.2P2.3 PN.1PN.2PN.3Logical View . . .

Source: Author, inspired by Ching et al. (2007)

Also according to (CHING et al., 2007), the parallel I/O is usually implemented

in two different approaches regarding the number of files used. The applications can per-

form parallel I/O using file-per-process or shared-file. In the file-per-process approach,

depicted by Figure 3.2, each process performs its I/O operations isolated in their individ-

ual files. On the other hand, in the shared-file approach, depicted by Figure 3.3), all pro-

cesses perform their I/O operation on a single shared file. TThe file-per-process usually

presents higher throughput because of not performing synchronization among processes

during I/O operations or because it can avoid lock contention at the PFS level. How-

ever, it can present scalability problems at a high processes count because of metadata

access overhead (ALAM et al., 2011). An application using file-per-process running on a

thousand processes generates a thousand create and open requests on the metadata server.

This scenario leads to severe bottlenecks as the number of cores increases on the super-

computer. Another problem with the file-per-process is that it usually needs an additional

post-process to merge all files for later analysis or visualization. Despite the shared-file

approach needing some synchronization, it can make use of aggregation and coordina-

30

tion optimizations like that provided by MPI-IO (THAKUR; GROPP; LUSK, 1999) (or

libraries developed on top of it). The file-per-process and shared-file approaches are also

referred to as N-to-N and N-to-1.

Figure 3.2 – Parallel I/O - File-Per-Process.

File N

File 3

File 2

File 1

Parallel Application

 Process 0

1 2 3

 Process 1

1 2 3

 Process 2

1 2 3

 Process N

1 2 3. . .Data Blocks

P0.1P0.2P0.3Logical View P1.1P1.2P1.3 P2.1P2.2P2.3 . . . PN.1PN.2PN.3

Source: Author, inspired by Ching et al. (2007)

There are different ways the data on the file can be placed and accessed by the

processes while using the shared-file approach (BYNA et al., 2008; GE, 2010). The

most typical ways the processes can access the file are: (i) contiguous (Figure 3.3a),

where each process accesses whole segments of the file, from beginning to end, on con-

secutive requests that begin precisely where the previous request ended; and (ii) strided

(Figure 3.3b), a non-contiguous pattern where each process access different segments of

the file, performing requests of the same size and incrementing the file pointer by the

same amount (displacement) between each request. The strided access can also be ran-

dom, where the requests are different sizes, resulting in different displacements. Best

performance usually comes when the data is accessed contiguously in memory and disk.

Non-contiguous (strided) access results in random accesses by performing many seek

operations to move the file pointer, which, in turn, breaks the buffering and prefetching

policies employed at the PFS clients, storage servers, and storage devices (LIU et al.,

2010; DING et al., 2007).

The transfer size (also known as request size) is the amount of data transferred at

each I/O operation. Small transfer sizes harm the application’s performance when using

a PFS because the storage servers must be accessed multiple times for a small number

of bytes, the latency of the network used to access the storage servers, and the latency

of the storage devices. Larger I/O operations and matching the PFS stripe setting may

improve performance because more data is being transferred on a single operation, hiding

31

Figure 3.3 – Parallel I/O - Shared-File.

File

Parallel Application

 Process 0

1 2 3

 Process 1

1 2 3

 Process 2

1 2 3

 Process N

1 2 3. . .Data Blocks

P0.1P0.2P0.3P1.1P1.2P1.3P2.1P2.2P2.3 PN.1PN.2PN.3Logical View . . .
Segment 0 Segment 1 Segment 2 Segment N

(a) Contiguous Access

File

Parallel Application

 Process 0

1 2 3

 Process 1

1 2 3

 Process 2

1 2 3

 Process N

1 2 3. . .Data Blocks

P0.1 P0.2 P0.3P1.1 P1.2 P1.3P2.1 P2.2 P2.3PN.2 PN.3Logical ViewPN.1

Segment 0 Segment 1 Segment N

(b) Strided Access

Source: Author, inspired by Byna et al. (2008), Ge (2010)

the latency of I/O operation.

The transfer size is also related to another aspect when accessing a PFS, which is

the misaligned stripe access (LIAO; CHOUDHARY, 2008; LANG et al., 2009; DICK-

ENS; LOGAN, 2009). The PFS allows the files to be striped (divided into units of “stripe

size”) over multiple storage servers to provide parallel access and take advantage of ag-

gregate I/O capacities, such as network and storage device bandwidth. With aligned ac-

cesses, the application’s process performs requests whose sizes align perfectly with the

file’s stripe, directly accessing one storage server. Misaligned access occurs when the re-

quest size differs from the stripe’s size. The issuing of misaligned data accesses degrades

32

the application’s performance. Each request must be divided into uneven smaller requests

to communicate with more than one storage server, limitng the resulting throughput to the

PFS. Figure 3.4a depicts the aligned access, where each 64 KiB request is performed on

individual 64 KiB stripes, accessing only one storage server per request. In Figure 3.4b,

the 100 KiB requests have to be divided into two or more operations because of the stripe

size of 64 KiB, enforcing accesses on different storage servers per request.

Figure 3.4 – Stripe Access.

File System (single namespace)

Parallel Application

 Process 3

64 KiB Request

 Process 0 Process 1 Process 2

Storage Server 0

Storage Device

Stripe 0

Storage Server 1 Storage Server 2 Storage Server 3

Storage Device

Stripe 1

Storage Device

Stripe 2

Storage Device

Stripe 364 KiB Stripe Size

(a) Aligned Access

File System (single namespace)

Parallel Application

 Process 3

100 KiB Request

 Process 0 Process 1 Process 2

Storage Server 0

Storage Device

Stripe 0

Stripe 4

Storage Server 1 Storage Server 2 Storage Server 3

Storage Device

Stripe 1

Stripe 5

Storage Device

Stripe 2

Stripe 6

Storage Device

Stripe 3

64 KiB Stripe Size

(b) Misaligned Access

Source: Author, inspired by Dickens and Logan (2009)

33

The lock mechanism implemented by the PFS also affects the misaligned access.

If a process makes a write request for an amount of data larger than a file stripe, it must

acquire locks from those storage servers responsible for the stripes that are part of the

request. The Lustre PFS, for example, enforces I/O atomicity by having the process

obtain all the locks to these stripes and hold the locks until the servers receive the entire

data to be written, which serialize the accesses to the stripe to mediate the contention. As

an example, the accesses from processes 0 and 1 to write on the stripe 1 located at the

storage device of the storage server 1, depicted on 3.4b, have to be serialized, seriously

degrading I/O performance. The read performance is less affected by this characteristic

because read locks are shareable among processes.

Various studies have shown how access patterns can influence the applications’

performance. Liao and Choudhary (2008) investigate file domain partitioning methods

regarding the PFS’s lock boundaries. The experiments conclude that the applications

achieve the best write performance when their requests are aligned with the stripe’s lock-

boundary of the PFS.

Lang et al. (2009) present a case study of the I/O performance and scalability chal-

lenges on Intrepid, a supercomputer with 163, 840 cores and served by a PFS composed

of 128 storage servers, located at Argonne Leadership Computing Facility (ALCF). They

used a collection of benchmarks testing different request sizes to measure the behavior of

the storage system under various workloads. The results show that for small misaligned

requests, the performance is severely reduced by a factor of 2×. The best performance

was achieved with shared-file and aligned accesses. The results also point out two other

deficiencies: (i) at a higher number of processes, there was roughly a 20-25% decrease

in performance with file-pre-process compared to shared-file; and (ii) that for misaligned

and file-per-process workloads, the storage device sees many concurrent smaller requests,

often out of order, which makes the file system unable to aggregate I/O requests. Carns et

al. (2011) is another work that studied the Intrepid. Using Darshan (CARNS et al., 2009)

to explore the applications deployed at that machine, they found that despite the file-per-

process model being the most popular method for I/O, it only scales up to about 8192

nodes (32, 768 cores = 20% of the machine). The performance begins to suffer scalability

issues at higher core counts, making the shared-file approach a better choice.

Saini et al. (2012) surveyed the NASA scientific and engineering applications,

characterizing the I/O requirements of typical applications on the Pleiades supercomputer

using the Lustre PFS. They show that file striping will improve the performance of appli-

34

cations that perform I/O to a single or multiple large shared files. However, it has little

effect for applications that perform serial I/O and when multiple nodes perform I/O simul-

taneously to different small files (each < 10 MiB). The application needs to issue bigger

transfer sizes to take advantage of the stripe size. Other critical aspects found are that

applications performing many operations with small transfer sizes (<= 4 KiB) presented

low performance and inefficient use of Lustre PFS, while bigger transfer sizes lead to bet-

ter performance. Also, the performance of the file-per-process applications can be better

than the single-shared file by a factor of 3.1 to 6.3 on a lower number of cores but suffers

from scalability problems when the core count approaches half of the supercomputer.

Zhang et al. (2013) used a benchmark to investigate the effects of misaligned

access on storage system performance in the Darwin cluster at Los Alamos National Lab-

oratory. They found that misaligned data access results in consistently lower throughputs

than their respective aligned counterparts. Using 16 processes and misaligned requests

larger than the PFS stripe size, the throughput presented a reduction of 52%.

Yildiz et al. (2016) studied the interference on various levels of the storage sub-

system. Regarding the data spatial locality, they show that when executing on a storage

device made of HDDs, a strided (non-contiguous) application can be up to 12× slower

than a contiguous one. When using SSDs, which have no rotational delay and are less sus-

ceptible to seek operations originated by the random access, the decrease in performance

is only 2.75×.

Lawrence et al. (2017) evaluate the PFSs of several European HPC centers using

the benchio 1 benchmark. The study shows that it is necessary to use as many stripes as

possible to get the best parallel write performance for a single-shared file case, while the

file-per-process pattern presents better results when the files are not striped. It also shows

that the I/O operation request and stripe sizes should match to get closer to the theoretical

maximum performance. Generally, the larger the amount of data written per writer, the

larger the stripe size should be.

Isakov et al. (2020) used an explainable machine learning (ML) platform to an-

alyze 89, 844 Darshan logs collected on the Argonne Leadership Computing Facility

(ALCF) Theta supercomputer. Among the main findings of applications’ access patterns

that correlate with bad performance are issuing small transfer sizes (in the 1–10 KiB

range), using many files during the execution (file-per-process), and performing random

access operations. Aspects that presented the most positive correlation with performance

1https://github.com/EPCCed/benchio

35

were consecutive and sequential I/O and large requests (1 MiB to 4 MiB, i.e., multiples

of the PFS stripe size).

3.1.2 Concurrency, Contention, and Interference

Concurrency, contention, and interference are closely related concepts that signif-

icantly affect the system throughput, performance, and user experience of the PFS. Con-

currency means multiple utilization is happening simultaneously on a shared resource (SKIN-

NER; KRAMER, 2005; HWU; KEUTZER; MATTSON, 2008; ARPACI-DUSSEAU;

ARPACI-DUSSEAU, 2018). Concurrency can occur on various processors in a CNs (and

multiple cores in a single processor chip), various cores using the network interface or

the storage disk, multiple CNs utilizing the network, multiple applications (or a parallel

application) running on one CN, multiples applications running in a supercomputer on

different sets of CNs, and multiples applications performing I/O on the PFS.

The contention is a conflict over simultaneous access to a shared resource (LIANG

et al., 2019; JOKANOVIC et al., 2010; BLAGODUROV; FEDOROVA, 2012; CHUN-

DURI et al., 2019). The conflicts must be resolved through locks, semaphores, and

scheduling, favoring one access over the other. In I/O for HPC, the primary shared re-

source that applications contend for is the PFS, which comprises components that can

become a point of contention. The CNs interact with many storage servers in parallel to

access data. As a result, storage servers have to serve many clients concurrently. An enor-

mous amount of concurrent access to the storage server can cause severe I/O contention

and impacts the overall performance of PFS. The I/O contention includes the competition

of limited bandwidth of storage servers and the lock contention. For example, a parallel

application can perform parallel access to a file stored on a PFS if the file is striped and

each task of the application access exactly one individual stripe. If two or more tasks

try to access the same stripe for a write operation, the PFS must mediate this access by

performing locks on the stripe and serializing the accesses. This behavior results in per-

formance degradation because the other tasks have to wait for the completion of the write

request.

I/O interference in HPC can be defined as “the performance degradation observed

by any single application performing I/O in contention with other applications running on

the same platform” (YILDIZ et al., 2016). Therefore, the rise in the concurrency from the

ever-larger supercomputers leads to an increase in contention scenarios, which, in turn,

36

increases the number of applications suffering from interference. Managing such a con-

currency scale poses critical challenges to the HPC I/O system (HU et al., 2016; XIE et

al., 2012). When a CN issues a large request to a striped file, this request is split into

smaller requests sent in parallel to several storage servers. The operation completes only

when all these servers have treated their part of the initial request. Hence, any slowdown

experienced by a single server because of contention leads to a global slowdown for the

entire operation. Suppose two servers decide to serve requests from different applica-

tions in a different order. In that case, both applications will suffer interference from a

slowdown observed in servers that have not prioritized their request.

Various studies show the harmful effects of contention and interference on I/O

for HPC. Zhang and Jiang (2010) point out that frequent disk head seeks, because of

the access interference on each storage server while concurrently serving requests from

different processes, can seriously hurt the performance of a system by a factor of up to

5×. The study of Hashimoto and Aida (2012) evaluates the performance degradation in

each application program when Virtual Machines (VMs) are executing two applications

concurrently in a physical computing server. The experimental results indicate that the

interference among VMs running two HPC application programs with high memory usage

and high network I/O in the physical computing server significantly degrades application

performance.

A more general study by Xie et al. (2012) analyzed the behavior of a center-wide

shared Lustre parallel file system on the Jaguar supercomputer and its performance vari-

ability. One performance degradation seen on Jaguar was caused by concurrent applica-

tions sharing the filesystem. Bhatele et al. (2013) investigated the performance variability

in Cray machines and found that the interference of multiple jobs that share the same net-

work links is a serious factor for high-performance variability, presenting a reduction of

27.8% in performance.

Yildiz et al. (2016) performed a systematic study of root causes of I/O interference

in different components of the PFS, presenting a performance degradation by up to 2.5×

under interference. They found that significant variability often arose from poor flow con-

trol in the I/O path rather than the presence of a single bottleneck in only one component

of the storage system. All these studies highlight the impact of application interference

on HPC systems.

37

3.2 File System Evaluation

Efficient I/O performance is a critical part of modern supercomputing. Studies

show a growing need for a better understanding of the storage infrastructure and explain-

ing the attained I/O performance by the applications. Luu et al. (2015) analyzed Darshan’s

logs (CARNS et al., 2011) from the execution of more than one million jobs during 2014

on three leading HPC supercomputer platforms: Intrepid and Mira at ALCF and Edison at

NERSC. The authors observed that all the I/O paradigms (file-per-processes, shared file,

and sub-setting I/O) are represented among the best and worst applications’ performance,

which means no single approach always delivers the optimal performance. Furthermore,

one-third of all the jobs spent more than half of their execution time on metadata opera-

tions. The system-wide evaluation found that the aggregate throughput for three-quarters

of the applications never exceeds 1 GB/s, roughly 1% of the average peak platform band-

width available. Darshan is an I/O characterization tool designed to capture an accurate

picture of application I/O behavior. There are two methods to get the I/O trace logs with

Darshan. The application must be configured to use the Darshan runtime library during its

execution or compile the application with special wrappers that directly link it to the Dar-

shan library. The use of only Darshan logs to perform platform-wide analysis has some

drawbacks. Darshan might be unable to trace every application executed on the supercom-

puter (because of lack of compatibility or not configured on the user compiled/installed

application), leading to missing important behavior. To get a current and accurate state of

the supercomputer usage, analyzing the enormous number of Darshan logs needs to be re-

executed, which might be a significant time-consuming activity. There is no server-side

information, missing the big picture of the PFS utilization.

Lockwood et al. (2018a) used system monitoring through the Total Knowledge of

I/O (TOKIO) framework (LOCKWOOD et al., 2018b), benchmarks, and active probing

on the I/O storage infrastructure (Lustre File System and GPFS) of two leadership-class

HPC centers (NERSC and ALCF). They analyzed data over a year of production opera-

tion to identify the reasons for low performance and how to improve it. They investigated

applications on multiple time scales, seeking to identify absolute performance and vari-

ability trends, the high CPU load on the data servers, and contention for bandwidth. The

results demonstrate variations in the I/O performance during regular operation and differ-

ent execution periods because of software updates and sustained I/O-intensive workloads.

They also show that contention for resources generates transient I/O performance prob-

38

lems. TOKIO is a software framework designed to encapsulate the mechanics of various

I/O monitoring and characterization tools used in HPC. TOKIO relies on Darshan logs

to collect information from the compute nodes, bringing the previously mentioned draw-

backs and not monitoring how the compute nodes used the PFS. The usage data from the

storage servers come from the Lustre Monitoring Tool (LMT) (WARTENS; GARLICK,

2010), which might not be supported by the system vendor of the supercomputer (as was

the case with SDumont). Also, despite providing user-perceived performance over time,

active probing on the shared storage might insert some unwanted interference on the over-

all PFS usage.

Patel et al. (2019) proposed a tool to analyze the log data of Lustre PFS obtained

with LMT in one year (2018) of operation from the parallel storage system at NERSC

HPC data center, shared by Edison and Cori supercomputers. This study shows that the

Lustre used is dominated by read operations, even with a Burst-Buffer system (in Cori).

They also demonstrate that the OST usage is unbalanced regarding I/O activity. On such

a large-scale platform, applications tend not to take advantage of I/O parallelism, often

using few concurrent OSTs. LMT monitors Lustre File System servers (MDT, OST, and

LNET routers), collecting data using the Cerebro monitoring system and storing it in a

MySQL or MariaDB database. Aside from not being supported on SDumont, LMT only

provides Lustre server-side activity, lacking information on which and how applications

used the PFS.

Sivalingam et al. (2019) proposed another approach. The authors used LASSi, a

tool to analyze application usage and contention caused by the use of shared resources

(file system or network) on the Lustre File System deployed at the ARCHER supercom-

puter, deployed at the UK National Supercomputing Service. LASSi combines Lustre

statistics and job information to calculate derived metrics, identifying a particular class

of jobs that generated excessive I/O load. They identified that over 50% of the use in the

analysis period was for jobs that read less than 4 GiB and wrote less than 32 GiB. Overall,

twice as much data was written on ARCHER than it was read. LASSi is an approach sim-

ilar to the one presented in this dissertation. However, it relies on a MySQL database to

store all the collected information, which might impose limitations on its replicability. As

an example, the installation and utilization of a MySQL server on the administrative in-

frastructure of SDumont is not supported by the system vendor nor allowed by the System

Administrators. Despite LASSi collecting metrics from the Lustre’s servers, it does not

assess the load imbalance among the storage devices nor characterize the metadata uti-

39

lization of the file system, two aspects we tackle in our methodology. Another difference

between our methodology and LASSi is that we provide an application characterization

regarding its transfer size, allowing the identification of problematic behavior. In contrast,

LASSi does not provide such distinction.

Betke and Kunkel (2019) aims to identify anomalies or high workloads from

jobs’ telemetric data through a workflow based on Machine Learning. The analysis is

automated by splitting each job’s monitoring data into smaller portions and generating a

footprint. A classification method is applied to the footprint dataset to sort the applica-

tions with similar I/O behavior, isolating applications with harmful I/O patterns for opti-

mization. They used one week’s data from DKRZ’s monitoring system at Mistral, which

classified 33, 193 jobs on 8 I/O behavior classes. Even though a promising approach, it

needs some tuning on the automatic class labeling, lacking the maturity to be employed

in a production system.

Those methodologies tend to rely on the periodic execution of probes (usually I/O

benchmarks that ran on the shared file system), application-level profiling (Darshan), or

tools that require administrative privileges (LMT) and might not be supported by storage

vendors. Also, they often do not collect information from compute nodes to monitor sys-

tem health and track performance. This dissertation proposes a broader methodology to

provide a bigger picture of the whole system’s I/O utilization, allowing continuous analy-

sis from the Storage Devices to the Compute Nodes and tracking inefficient behavior. Our

methodology intents to track the storage servers’ utilization, assessing causes of possible

performance drawbacks, such as load imbalance. Monitoring the CNs allows for inves-

tigating which applications were executing on the supercomputer, how they utilized the

PFS, and their I/O demands. We adopted the use of open-source software that does not

require administrative privileges, allowing it to be easily implemented and reproduced.

The metadata performance on HPC storage systems is also gaining attention in

various works, exposing the need for improvements and better understanding. Chas-

apis et al. (2014) evaluates the performance of Lustre’s metadata server (MDS) concern-

ing multi-core and multi-socket platforms. The study concludes that Lustre’s metadata

performance does not scale when increasing the number of sockets and cores, with the

MDS’s back-end device not being the limiting factor, but rather, its software not being

multi-core ready. Zhao et al. (2015) analyze and evaluate the performance of scien-

tific applications on four representative file systems (S3FS, HDFS, Ceph, and FusionFS)

on three cloud platforms (Kodiak cluster, Amazon EC2, and FermiCloud) regarding the

40

metadata performance. They demonstrate that a distributed management approach brings

orders of magnitude improvements over the performance of centralized deployments. The

distributed metadata presented almost linear scalability (up to 512 nodes), justifying its

employment for intensive metadata accesses.

Kunkel and Markomanolis (2018) developed a new metadata benchmark called

MDWorkbench, capable of emulating many concurrent users, providing latency profile

and throughput. They used it to evaluate four parallel file systems (GPFS IBM Spectrum

Scale, Lustre, Cray’s Datawarp, and DDN IME) on five computing platforms: Cooley at

ACLF, Mistral at DKRZ, IME at Dusseldorf, Shaheen II at KAUST, and Cori at NERSC.

The results show that capturing the contention caused by metadata changes and identify-

ing the relation between observed throughput and latency was possible. To the best of our

knowledge, the present work is the first to integrate I/O and metadata analysis in the same

approach while characterizing their needs in an HPC system.

41

4 ANALYSIS AND VISUALIZATION METHODOLOGY

This chapter presents the methodology developed in this work and how it was

implemented in the SDumont environment. To study the Lustre PFS utilization in su-

percomputers we propose a pipelined workflow, comprised of three steps, as depicted in

Figure 4.1: (1) Collect performance metrics from the nodes; (2) Pre-process the raw

metric data and store it in an easy-to-use format; and (3) Analyze the data.

Figure 4.1 – Data collection and analysis workflow.

Data gathering
Gather the collectl metric files
from all nodes

Step 1

Pre-Processing
Parse raw files, storing in SQLite
database

Step 2

Analysis

Data analysis, generating
visualization and reports with R

Step 3

SQLite OST/MDT
CSTOR Database

SDumont
Compute Nodes

ClusterStor
9000

collectl

collectl

parser

parser

SQLite job usage
 Database

SLURM
Database

Administrative
 Database

analyzer

Raw CSTOR
OST/MDT

.gz

Raw Ccompute
OST/MDT

.gz

SQLite OST/MDT
Compute Database

Data Cross

Source: Author

4.1 Data Gathering Step

We selected the collectl 1 tool to perform the utilization metrics gathering. It is an

open-source system performance monitoring tool that collects metrics from various sub-

systems, such as CPU, disk, inodes, memory, and network, public available by Linux’s

kernel modules on the /proc and /sys pseudo-filesystems. collectl is made of a col-

lection of Perl scripts. Its advantages are that it is easily deployed and configured, does

not need administrative privileges to install or use, is capable of storing the collected met-

rics on a local compressed file or sending them over the network, and has a flexible API

that enables the development of custom modules (plugins). collectl-lustre 2 is a special
1http://collectl.sourceforge.net
2https://github.com/pcpiela/collectl-lustre

42

plugin to collect I/O metrics and metadata counters exposed by Lustre’s kernel modules

on servers and clients. The default I/O metrics provided by the collectl-lustre plugin are

the number of reads and writes operations and the volume of data transferred in KiB. Ad-

ditional metrics are calculated in steps 2 and 3 of the workflow. All the metrics used are

summarized in Table 4.1.

Table 4.1 – Lustre I/O metrics.

Metric Description

reads Number of read operations.
readkb Volume of data read (KiB).
readsize Transfer size of read operation (readkb/reads).
readqo Quality of read operation ((reads ∗ 1024)/readkb).
writes Number of write operations.
writekb Volume of data written (KiB).
writesize Transfer size of write operation (writekb/writes).
writeqo Quality of write operation ((writes ∗ 1024)/writekb).
CFbw Bandwidth Coverage Factor of a job.
LI Load Imbalance.
SMA3HR Simple Moving Averages of three hours.

Source: Author

The Lustre’s metadata kernel module exposes counters common to the MDS and

compute node clients and other counters exclusive to each of them. For this reason,

collectl-lustre retrieves information about fopen, fclose, getattr, setattr, and

sync counters on both the MDS and clients. Among the counters exclusive to the MDS

are unlink and statfs. The seek counter is available only on clients. Table 4.2

summarizes the metadata counters of the MDS and client nodes.

The collectl tool version 4.3.1, with collectl-lustre, was installed on all ClusterStor

Lustre nodes (MDS and OSSs) and on the 758 Compute Nodes. The execution of collectl

was configured to collect metrics in 15 seconds intervals and store it on a daily compressed

file at the local /tmp file system to avoid interference with Lustre. The overhead imposed

by collectl on the monitored nodes was neglectable (< 0.1% of CPU).

The collection of data in short time intervals creates significant demand for storage

space and CPU resources during the Pre-Processing and Analysis steps. For example,

the pre-processing of one-day data collected with 15 seconds intervals from the compute

nodes took around 2.5 hours and generated a database with 7 GiB size. Our experiments

with intervals of 1, 5, and 10 seconds increased those values by up to 4× but did not bring

an increase in data representativeness that justified the excess in resource consumption.

For this reason, we collected the Lustre utilization metrics every 15 seconds. Despite

43

Table 4.2 – Lustre Metadata Counters.

Counter Node Description

getattr

MDS

Operation that get file/dir attributes.
setattr Operation that set file/dir attributes.
getxattr Operation that get file/dir extended attributes.
setxattr Operation that set file/dir extended attributes.
unlink File/dir removals.
statfs Operation that return statistics about the file system.
sync Operation that synchronizes data to the file system.
fopen File open requests.
fclose File close requests.
link Hard or symbolic link creation.
mkdir Directory creation requests.
rmdir Directory removal requests.

fopen

Client

File open requests.
fclose File close requests.
getattr Operation that get file/dir attributes.
setattr Operation that set file/dir attributes.
seek Operation that change the file pointer.
fsync Operation that synchronizes data to the file system.

Source: Author

losing a certain degree of precision (because collectl provides an average value in that

time interval), we found this choice still gave us a good overall picture of the system’s

utilization.

4.2 Data Pre-Processing Step

The Pre-Processing step consists of a collection of scripts developed in Python 3

v3.8, designed to collect the collectl raw files (generated at Step 1) from each node daily

and perform parsing, cleaning, and inserting the data into an SQLite4 database. The choice

to use the SQLite format for storing the data was due to its mobility (the database is a

single compact file, and any dataset stored in it can be easily transferred from one system

to another). It comes pre-installed on most Linux distributions (even if it is not already

installed, SQLite can be easily deployed and executed without administrative privileges

since it is just a single executable). Besides, it has APIs for various data analysis tools

and languages. At this point, there are two distinct datasets, one from the data collected

3https://www.python.org/
4https://www.sqlite.org/index.html

44

at the ClusterStor Nodes and one from the SDumont Compute Nodes.

The data collected from the Compute Nodes alone does not provide enough in-

sight as to “who, how, and why” was using the Lustre file system. To contextualize the

Lustre utilization, an intermediate Data Crossing process was utilized, combining data

from: (1) Compute Nodes dataset; (2) SLURM5 resource manager, regarding the number

of submitted jobs, application name, runtime, start and end time, the number of compute

nodes, and the total number of cores; and (3) an internal administrative database used

by SDumont’s managers, which provides information about the Science Domain of each

research project using the SDumont. By crossing the data from which nodes a job used,

with which domain the job belongs to, and the metrics from the Compute Nodes dataset, a

new dataset composed of time-series data was generated, called Job Usage. The structure

of the datasets generated is depicted by Figure 4.2, where, aside from the metrics pre-

sented by the Tables 4.1 and 4.2, Timestamp is the moment the metrics were collected,

OST Name is the name of the Object Storage Target where the I/O metrics were col-

lected, Node Name is the name of the compute node that used the Lustre PFS (through

the OSTs for I/O or through the MDT for metadata), jobid is the identification number

of the job that used the Lustre PFS through the compute nodes, account is the name of

the Linux group that submitted the job, Science Domain is the name of the science

domain belonging to the account, and application is the name of the application

used by the submitted job.

Figure 4.2 – Datasets Structure.

(a) ClusterStor I/O (OST)

(b) ClusterStor Metadata (MDT)

(c) Compute Nodes I/O (OST)

(d) Compute Nodes Metadata (MDT)

(e) Job Usage I/O (OST)

(f) Job Usage Metadata (MDT)

Source: Author

5https://slurm.schedmd.com/documentation.html

45

During the Pre-Processing step, two complementary I/O metrics are generated:

(i) the average transfer size in KiB and (ii) the Quality of Operation (QO), as proposed

by Sivalingam et al. (2019). The latter, given by the Equation 4.1, is based on the default

1 MiB stripe_size of the Lustre file system on SDumont, making 1 MiB the optimal

size for read or write per operation. Based on QO, the operation would make an optimal

usage of Lustre when 1 MiB is read or written. Hence, a value of “1” represents optimal

usage, and values in a higher order of magnitude represent that the transfer size is smaller

than stripe_size, leading to poor quality because of misaligned access. The opera-

tion is also considered inefficient if the QO metric present values lower than “1” because

of misalignment, with a transfer size bigger than stripe_size. However, lower QO

(< 1) is preferable to higher QO because each operation transfers more data, leading to

higher throughput.

Operation_Typeqo =
Number_Of_Operations ∗ 1024

KiB_Transferred
(4.1)

4.3 Data Analysis Step

During this step, additional I/O metrics are calculated: Bandwidth Coverage Factor

(CFbw), Load Imbalance (LI), and Simple Moving Averages (SMA) of each metric. The

CFbw (Equation 4.2), as proposed by Lockwood et al. (2018a), represents the fraction of

the system bandwidth that can be attributed to the job and is given by the amount of data

transferred by the job divided by the amount of data transferred to/from Lustre. For in-

stance, a job with a CFbw of 0.60 indicates that other competing jobs consumed 40% of

the available resources.

CFbw(job) =
Nbytes(job)

Nbytes(Lustre)
(4.2)

The standard deviation (σ) measures the dispersion in a distribution of values

regarding its central tendency. Considering the OSTs’ load (amount of data read/written

at each timestamp), it is possible to use the σ to evaluate how severe the load imbalance

is. A σ of zero means that the load is evenly distributed. When the distribution presents a

“high” σ, few OSTs handle more data than the others. In contrast, a “low” σ represents

a better load distribution. Since the σ is quantified as high or low regarding the mean (µ)

load observed on the OSTs at each timestamp, the LI metric (Equation 4.3) is defined

46

as a Coefficient of Variation 6 to express better how severe the imbalance is. LI values

below 0.5 can be considered low imbalance, values around 1 are moderate, and values

above are regarded as a severe imbalance.

LI =
σ

µ
(4.3)

The SMA (HANSUN, 2013), a time series analysis technique commonly used in

the financial market, is an arithmetic mean of a variable within a specific time frame (tf)

and moves through a time series. For a metric m at timestamp t, the SMAtf of m is given

by Equation 4.4:

SMAtf (m) =
1

tf

t∑
i=t−tf

mi (4.4)

The financial market data have a high variation through time, similar to the I/O

usage on HPC. With the use of SMA, it is possible to identify a tendency throughout the

period. We tested various time frame intervals, and the value of 3 hours was selected,

which proved to be a reasonable length to reduce part of the “noise” from the high vari-

ability and amount of data while still providing a good representation.

Reproducing this study’s analyses with a new dataset from SDumont or other HPC

platforms can be daunting. We developed a web application using R+Shiny 7 to streamline

the analysis process. The app consumes the datasets generated in Step 2 and produces the

statistical and visual analysis for any time frame of interest, facilitating the reproducibility

of the results. A reduced version of the app used in this study is publicly available at

<http://arcarneiro.shinyapps.io/sdumont_lustre>. The minimum requirements to run a

full version of the app used in this study are a system with the Shiny Server, 100 GiB of

storage, 16 GiB RAM, and a quad-core 2.20 GHz processor.

6The Coefficient of Variation is a statistical measure of the dispersion of data points in a data series
around the mean.

7https://shiny.rstudio.com/

http://arcarneiro.shinyapps.io/sdumont_lustre

47

5 GLANCING AT THE LUSTRE FILE SYSTEM

This chapter presents the evaluation of the Lustre PFS deployed on SDumont using

the proposed methodology. We collected the usage metrics for three months (March,

April, and May) of 2020 and 2021 to study the utilization of the Lustre PFS and compare

the findings between years. We divided the analysis of the PFS into two parts. First,

the whole period (three months) is analyzed using the ClusterStor dataset (Section 5.1).

Second, a specific period of interest was analyzed using the Job Usage dataset (Section

5.2). In each one, we compare the data from the two years to assess the evolution in the

PFS utilization.

5.1 Overview of Lustre Usage

This section provides an overview of the Lustre PFS utilization, analyzing the

operation data obtained during March, April, and May from the years 2020 and 2021.

Section 5.1.1 focuses on the I/O operations performed on the system with data collected

from the ClusterStor’s OSSs and OSTs. Section 5.1.2 presents the evaluation of the Meta-

data operations with data from the MDS.

5.1.1 I/O Data Analysis

We investigated the aggregated throughput of the storage system during the afore-

mentioned period. Figure 5.1 illustrates the results in GiB/m for 2020 and 2021. Read

(red, upper facet) and write (blue, lower facet) operations are stacked together based on

when the metric was collected. In the two years, there were scheduled maintenances on

ClusterStor to recover failed nodes and update the Lustre version. In 2020, the mainte-

nance window was from April 13th to April 17th, and in 2021, from March 8th to March

12th. During those periods, the file system was inaccessible, resulting in no reported

values.

By comparing both years was possible to notice an increase in utilization. In

terms of absolute values, in 2020, there were 1.8 PiB data read and 2.9 PiB written, and

the system received 64.154 billion read requests and 1.234 billion writes. Compared with

2021, the total volume of data read presented an increase of 4.7× (7.95 PiB), and the

48

Figure 5.1 – Data distribution for 3 months. The y-axis is the throughput in GiB by minute. The
figures have different scales.

R
ead

W
rite

20
20

−0
3−

09

20
20

−0
3−

13

20
20

−0
3−

17

20
20

−0
3−

21

20
20

−0
3−

25

20
20

−0
3−

29

20
20

−0
4−

02

20
20

−0
4−

06

20
20

−0
4−

10

20
20

−0
4−

14

20
20

−0
4−

18

20
20

−0
4−

22

20
20

−0
4−

26

20
20

−0
4−

30

20
20

−0
5−

04

20
20

−0
5−

08

20
20

−0
5−

12

20
20

−0
5−

16

20
20

−0
5−

20

20
20

−0
5−

24

20
20

−0
5−

28

20
20

−0
6−

01

20
20

−0
6−

05

0

300

600

900

0

300

600

900

Timestamp

T
hr

ou
gh

pu
t (

G
iB

/m
)

(a) 2020

R
ead

W
rite

20
21

−0
2−

28

20
21

−0
3−

04

20
21

−0
3−

08

20
21

−0
3−

12

20
21

−0
3−

16

20
21

−0
3−

20

20
21

−0
3−

24

20
21

−0
3−

28

20
21

−0
4−

01

20
21

−0
4−

05

20
21

−0
4−

09

20
21

−0
4−

13

20
21

−0
4−

17

20
21

−0
4−

21

20
21

−0
4−

25

20
21

−0
4−

29

20
21

−0
5−

03

20
21

−0
5−

07

20
21

−0
5−

11

20
21

−0
5−

15

20
21

−0
5−

19

20
21

−0
5−

23

20
21

−0
5−

27

20
21

−0
5−

31

20
21

−0
6−

04

0

300

600

900

1200

0

300

600

900

1200

Timestamp

T
hr

ou
gh

pu
t (

G
iB

/m
)

(b) 2021

Source: Author

data written increased 1.5× (4.1 PiB). The number of reading operations decreased 1.6×

(39.102 billion), and the write operations increased 4.3× (5.297 billion). The increase in

the volume of data transferred to/from the system is accompanied by an increase in the

number of jobs submitted to SDumont, where in 2020, there were 36, 884 jobs, and in

2021 145, 793, representing 4× more jobs. The increase in reading data volume but the

decrease in operation suggests that applications are reading larger chunks of data, which

is beneficial to attain high performance. However, writes seem to go in the opposite

direction, with smaller request sizes which are proven to harm performance (LANG et

49

al., 2009; ISAKOV et al., 2020).

During the whole period of the collected data, and considering the entire file sys-

tem (sum of all OSTs), the highest throughput peaks are attributed to writing operations in

both years. The maximum achieved in 2020 was 1, 127 GiB/m (at 2020-04-20T14:30:00)

and in 2021 was 1, 145 GiB/m (2021-04-01T18:50:00), which represents ≈ 41.74% and

≈ 42.41%, respectively, of the maximum bandwidth of the ClusterStor1. The average

write throughput in 2020 was 25.336 GiB/m and in 2021 was 34.452 GiB/m (1.3× in-

crease). The read operations presented lower values in 2020 but significantly increased

in 2021. The peak read throughput in 2020 was 316 GiB/m (at 2020-03-24T20:36:00)

and in 2021 was 1, 077 GiB/m (at 2021-03-20T18:50:00), accounting for ≈ 11.7% and

≈ 39.89%, respectively, of the max bandwidth. The average read throughput in 2020 was

15.825 GiB/m and in 2021 was 66.953 GiB/m (4.2× increase). If we focus on the peak

throughput registered at each OST, the write occurred simultaneously as a single event on

all OSTs, which is the peak throughput for the whole file system. On the other hand, the

readings presented the peaks on each OST spread out through the period, with none of

the OSTs’ peaks coinciding. This behavior indicates that the applications write data more

coordinatedly than they read.

Table 5.1 – Transfer Size (KiB) and Quality of Operations.

Year Operation Metric Min. 1st Q. Median 3rd Q. Max.

2020
Read Size 4.00 6.60 23.80 577.00 4096.00

QO 0.25 1.77 43.00 155.00 256.00

Write Size 0.01 530.00 1458.00 2947.00 4096.00
QO 0.25 0.35 0.70 1.93 525131.00

2021
Read Size 4.00 271.00 816.00 1786.00 4096.00

QO 0.25 0.57 1.25 3.78 256.00

Write Size 0.01 420.00 970.00 2149.00 4096.00
QO 0.25 0.48 1.10 2.44 104865.00

Source: Author

Table 5.1 depicts the distribution of the Transfer Size and Quality of Operation

across the observed data of the two years, showing that in 2020 the writes use the Lustre

file system more efficiently, with 75% being below 2 QO, and by using bigger transfer

sizes. On the other hand, reads present a somewhat inefficient use, with most of its oper-

ations being above 2 QO and using less than 512 KiB for its transfer sizes. In 2021, the

1According to the technical specifications, the peak performance a ClusterStor system such as the one
installed on SDumont should achieve, without considering cache effects, is 45 GiB/s. Since we aggregated
the data by minute, we assume the peak is 2700 GiB/m (45 GiB/s×60 s).

50

reads still were inefficient and presented smaller transfer sizes when compared to writes.

Nonetheless, it is possible to notice a considerable improvement when comparing the

read operations from 2020 against the 2021 values. For example, the median read transfer

size went from 23 KiB to 816 KiB. This increase in the read operation size is why there

was a decrease in the number of reading operations while increasing the amount of data

transferred. The writing operations slightly declined (lower quality and smaller transfer

sizes). Another important observation in Table 5.1 is that in 2021, the performance gap

between reading and writing operations narrowed. In 2020 the average write transfer

size was ≈ 3× bigger than the read size (1729 KiB and 651 KiB respectively), while in

2021, the write size was only ≈ 1.4× bigger than the read (1488 KiB and 1018 KiB).

This difference in request sizes explains why we observed higher throughput on writing

operations.

Figure 5.2 – 2020 CDF of the Transfer Size (A) and Throughput (B) for the Read (Red) and
Write (Blue) operations among OSTs. The vertical lines represent the mean observed values: 604

KiB Read and 1791 KiB Write for Size, and 1.568 GiB/m Read and 2.531 GiB/m Write for
Throughput.

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Transfer Size (KiB)

C
D

F

Read

Write

A

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
Throughput (GiB/m)

C
D

F

Read

Write

B

Source: Author

The CDF analysis of the throughput and transfer size observed among the OSTs

demonstrates how the difference in performance between reading and writing operations

narrowed from 2020 to 2021. In 2020, as Figure 5.2A shows, the average write transfer

size was ≈ 3× bigger than the read size (1791 KiB and 604 KiB respectively). Also,

the read size presented a lower variance because its overall slope is steeper, with 75% of

the read samples having sizes below the mean, while the rest have much bigger transfer

sizes. Steeper slopes indicate a tighter range of values and lower variability. The write

51

size presented values slightly evenly spread out between the observed spectrum. It is also

possible to notice through Figure 5.2A that the read size is shifted left the furthest towards

lower values, indicating that it usually is smaller than write sizes. The average write

throughput observed among the OSTs was ≈ 1.6× higher than the read (2.531 GiB/m

and 1.568 GiB/m respectively), as depicted by Figure 5.2B, which also shows that almost

75% of the activities have data transfer rates less than the average values.

In 2021, the average transfer size for reading increased ≈ 1.7×, reaching 1043 KiB,

while the size for writing presented a slight decrease (from 1791 to 1420 KiB). The read

operation showed ≈ 62% of occurrences below average the average value, and ≈ 55%

of the size of write operations were below the average value. This behavior in the trans-

fer size is reflected in the average throughput, which increased ≈ 4.2× for reading and

≈ 1.3× for writing from 2020 to 2021. Differently from 2020, in 2021, the reading

throughput now has a higher average value than writing (≈ 2×). The throughput of read-

ing and writing operations from the 2021 data presented values below the mean for 75%

of the operation time, as observed in 2020.

In 2020, the difference between the transfer size of reading and writing operations

was 1187 KiB, while in 2021, it narrowed to 377 KiB, which contributed to the observed

increase in reading throughput.

Figure 5.3 – 2021 CDF of the Transfer Size (A) and Throughput (B) for the Read (Red) and
Write (Blue) operations among OSTs. The vertical lines represent the mean observed values:

1043 KiB Read and 1420 KiB Write for Size, and 6.695 GiB/m Read and 3.445 GiB/m Write for
Throughput.

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Transfer Size (KiB)

C
D

F

Read

Write

A

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
Throughput (GiB/m)

C
D

F

Read

Write

B

Source: Author

We computed the correlation coefficient between the quality of operation and the

52

amount of transferred data using Spearman’s (SPEARMAN, 1904) correlation test, as

the Kolmogorov-Smirnov (DODGE, 2008) test could not conclude that all these results

follow a normal distribution. The statistical test has indicated a strong inverse correlation

between the quality of operation and the transfer size (ρ = −0.87). Since the optimal

value for the quality operation is 1 (which indicates using operations with 1 MiB blocks),

a greater amount of data is read or written in a single timestamp, leading to more efficient

use of the resources. As for the operation’s size compared to the transfer volume, there is

a strong positive correlation (ρ = 0.94). As expected, the bigger the size of the operation,

the more data is transferred, achieving better performance.

For the workload characterization, we analyzed how much each type of operation

demands from the system. Overall, in 2020, the write workload dominated the throughput,

representing 61.75% of all data transferred. Nevertheless, considering the number of

operations, the workload is primarily dominated by read operations, representing 98.11%

of the total amount. There were ≈ 52× more read operations than writes. The data from

2020 presents a scenario where Lustre received an enormous amount of inefficient reads.

In 2021 the read operations dominated both data transferred and number of operations,

accounting for 66% of the throughput and 88% for the number of operations.

The Figure 5.4a depicts the workload distribution between reads and writes grouped

by week and split by the number of operations (left) and the volume of data transferred

(right). Checkpoints do not always dominate the I/O workload of HPC systems. Scientists

are reading large volumes of data into HPC systems as part of their science (LOFSTEAD

et al., 2011; LATHAM et al., 2014). As new applications from Big Data and Machine

Learning (ML) enter the HPC system, the ratio between reading and writing-bound work-

loads varies based on the application set running on the platform. During the three-month

observation of the 2020 period, writing operations dominated nine of the twelve weeks

of data transferred. Nonetheless, this trend shifts towards reading-intensive applications

for three weeks (W14, W16, and W17). Regarding the number of operations, the read-

ing operations dominated the workload across all weeks, fairly balanced on W12. This

behavior demonstrates how the demand for I/O operations changes across the period and

how varied the workload is – while more read operations are occurring, more data are

being written (especially in the last five weeks).

Unlike 2020, Figure 5.4b denotes that in 2021 the volume of data transferred was

dominated by reads, with writes dominating only four out of fourteen weeks. The num-

ber of reading operations continues to dominate most weeks, except for weeks W10 and

53

Figure 5.4 – Workload distribution by week. The x-axis represents the week of the year.

Number of Operations Data Transfer Volume

W
11

W
12

W
13

W
14

W
15

W
16

W
17

W
18

W
19

W
20

W
21

W
22

W
11

W
12

W
13

W
14

W
15

W
16

W
17

W
18

W
19

W
20

W
21

W
22

0%

25%

50%

75%

100%

Week of Year

W
or

kl
oa

d

operation read write

(a) 2020

Number of Operations Data Transfer Volume

W
09

W
10

W
11

W
12

W
13

W
14

W
15

W
16

W
17

W
18

W
19

W
20

W
21

W
22

W
09

W
10

W
11

W
12

W
13

W
14

W
15

W
16

W
17

W
18

W
19

W
20

W
21

W
22

0%

25%

50%

75%

100%

Week of Year

W
or

kl
oa

d

Operation Write Read

(b) 2021

Source: Author

W11, which were dominated by writing in both the number of operations and the volume

of data transferred. The behavior of a greater number of reading operations of small size

still occurs and can be observed mainly on weeks W15 and W17, where the readings

dominated the number of operations. Still, the writings dominated the amount of data

transferred. That prompts system administrators, I/O library developers, and I/O spe-

cialists to tackle automatic selective optimizations for read-intensive and write-intensive

applications, taking into account the application’s I/O demands and characteristics in fu-

ture supercomputers I/O subsystems.

The analysis of the OSTs’ load distribution indicates that a considerable imbal-

54

Figure 5.5 – SMA3HR of LI for the read (red) and write (blue) workload. Values < 0.5 can be
considered as low imbalance, values around 1 are moderate, and those above represent severe

imbalance. Missing values refer to maintenance periods.

read
w

rite

20
20

−0
3−

09

20
20

−0
3−

13

20
20

−0
3−

17

20
20

−0
3−

21

20
20

−0
3−

25

20
20

−0
3−

29

20
20

−0
4−

02

20
20

−0
4−

06

20
20

−0
4−

10

20
20

−0
4−

14

20
20

−0
4−

18

20
20

−0
4−

22

20
20

−0
4−

26

20
20

−0
4−

30

20
20

−0
5−

04

20
20

−0
5−

08

20
20

−0
5−

12

20
20

−0
5−

16

20
20

−0
5−

20

20
20

−0
5−

24

20
20

−0
5−

28

20
20

−0
6−

01

20
20

−0
6−

05

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

Timestamp

3H
R

 S
M

A
 L

oa
d

Im
ba

la
nc

e

(a) 2020

read
w

rite

20
21

−0
2−

28

20
21

−0
3−

04

20
21

−0
3−

08

20
21

−0
3−

12

20
21

−0
3−

16

20
21

−0
3−

20

20
21

−0
3−

24

20
21

−0
3−

28

20
21

−0
4−

01

20
21

−0
4−

05

20
21

−0
4−

09

20
21

−0
4−

13

20
21

−0
4−

17

20
21

−0
4−

21

20
21

−0
4−

25

20
21

−0
4−

29

20
21

−0
5−

03

20
21

−0
5−

07

20
21

−0
5−

11

20
21

−0
5−

15

20
21

−0
5−

19

20
21

−0
5−

23

20
21

−0
5−

27

20
21

−0
5−

31

20
21

−0
6−

04

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Timestamp

3H
R

 S
M

A
 L

oa
d

Im
ba

la
nc

e

(b) 2021

Source: Author

ance. Figure 5.5a depicts the SMA3HR (Equation 4.4) of the reading and writing LI

metric, showing that for 2020, both operations follow similar trends regarding the load

imbalance. Despite ClusterStor presenting 0.6 LI for 50% of the time, there are some

severe cases where the overload represented up to 300% of the OSTs’ average load. An

interesting imbalance case happened on April 10th, 2020, where it is possible to observe

a spike in the writing load. Not only is the imbalance severe, but it also lasted for more

than one day on certain occasions. The average for reading was 0.92 while for writing

55

was 0.80. The imbalance between reading and writing was similar, with at least 25% of

the time operating with LI above 1. Figure 5.5b depicts that the 2021 utilization data

presented a decrease in the imbalance, with the average LI for reading being 0.68 while

for writing it was 0.58. The reading was more unbalanced, with at least 25% of the time

operating with LI above 1.

Figure 5.6 – SMA3HR of read and write throughput by OST.

00
01

02
03

04
05

06
07

08
09

20
20

−0
3−

09

20
20

−0
3−

13

20
20

−0
3−

17

20
20

−0
3−

21

20
20

−0
3−

25

20
20

−0
3−

29

20
20

−0
4−

02

20
20

−0
4−

06

20
20

−0
4−

10

20
20

−0
4−

14

20
20

−0
4−

18

20
20

−0
4−

22

20
20

−0
4−

26

20
20

−0
4−

30

20
20

−0
5−

04

20
20

−0
5−

08

20
20

−0
5−

12

20
20

−0
5−

16

20
20

−0
5−

20

20
20

−0
5−

24

20
20

−0
5−

28

20
20

−0
6−

01

20
20

−0
6−

05

05
101520

05
101520

05
101520

05
101520

05
101520

05
101520

05
101520

05
101520

05
101520

05
101520

Timestamp

3H
R

 S
M

A
 T

hr
ou

gh
pu

t (
G

iB
/m

)

Read Write

(a) 2020

00
01

02
03

04
05

06
07

08
09

20
21

−0
2−

28

20
21

−0
3−

04

20
21

−0
3−

08

20
21

−0
3−

12

20
21

−0
3−

16

20
21

−0
3−

20

20
21

−0
3−

24

20
21

−0
3−

28

20
21

−0
4−

01

20
21

−0
4−

05

20
21

−0
4−

09

20
21

−0
4−

13

20
21

−0
4−

17

20
21

−0
4−

21

20
21

−0
4−

25

20
21

−0
4−

29

20
21

−0
5−

03

20
21

−0
5−

07

20
21

−0
5−

11

20
21

−0
5−

15

20
21

−0
5−

19

20
21

−0
5−

23

20
21

−0
5−

27

20
21

−0
5−

31

20
21

−0
6−

04

0255075100125

0255075100125

0255075100125

0255075100125

0255075100125

0255075100125

0255075100125

0255075100125

0255075100125

0255075100125

Timestamp

3H
R

 S
M

A
 T

hr
ou

gh
pu

t (
G

iB
/m

)

Read Write

(b) 2021

Source: Author

Lustre’s default load balancing focuses on OST’s available storage space, whereas

the MDS uses a round-robin approach to designate where to store the data objects. This

approach does not consider the current I/O load on the OSSs and, allied with the default

56

striping policy on SDumont (stripe_count = 1 and stripe_count = 1 MiB),

potentially leads to hot-spots and resource contention that degrades performance. Hence,

updating the default striping policy in the machine could alleviate such imbalance by

better distributing the load among the selected OSTs. Another rather invasive approach

system administrators might take is to adopt a dynamic load balancer that automatically

coordinates the workload and data placement among I/O servers (NEUWIRTH et al.,

2017; WADHWA et al., 2019).

The analysis of the SMA3HR of reading and write throughput from 2020, broken

down by OST, indicates that the spike in the imbalance on April 10th was due to OST 09

receiving a more significant write workload than the others (Figure 5.6a). The increase

in LI of the reads between March 28th and April 5th, 2021 (also observed as an increase

of reading on Figure 5.1) is due to a load concentration on three OSTs 01, 03, and 08

(Figure 5.6b). With the SMA, we can observe the general trend, identifying regions of

interest where usage peaks occur and periods when a specific OST receives more load

than the others.

5.1.2 Metadata Analysis

This subsection presents the analysis of the metadata operations performed on the

Lustre PFS for only the 2021 dataset. It was impossible to collect all metrics during 2020

because of a bug in the collectl-plugin MDS module that prevents the collection of correct

operation counters information exposed by the newer versions of the Lustre MDS kernel

module (2.10 and later).

Table 5.2 summarizes the number of executions of each metadata operation during

the whole period. The most demanding operations are fopen, fclose, getattr, and

setattr. Considering all the metadata operations executed at the same timestamp, the

mean ops/s was 8, 920 and the maximum registered was 205, 016 ops/s. It seems that there

is a tendency by the users to treat the Lustre PFS as a regular file system (e.g., HOMEDIR),

where they usually execute plenty of commands that return the file and directory attributes

(size and access mode). This behavior can generate an unnecessary overload on the MDS

because this operation is costly (the MDS must query each OST to get information about

the object’s size to get the total file size). The setattr operation is associated with

file creation since it is necessary to configure the default access mode every time a file

is created. On the other hand, the manual change of file attributes by the users (through

57

chmod or chown commands) is uncommon. Another behavior that stood out is the “low”

number of file removals (unlink). This indicates that many old unused files occupy

valuable space on Lustre PFS.

Table 5.2 – Amount of Metadata Operations

Operation Total Min ops/s Avg. ops/s Max. ops/s

fopen 28, 812, 381, 450 1 3,859 102,291
fclose 25, 369, 943, 340 1 3,398 102,132
getattr 6, 733, 374, 960 1 902 32,698
setattr 3, 451, 979, 850 1 462 8,406
unlink 593, 117, 055 1 87 2,357
getxattr 345, 187, 575 1 47 7,833
statfs 280, 998, 450 1 38 62
sync 125, 075, 625 1 76 1,618
mkdir 94, 034, 205 1 14 1,228
rmdir 41, 638, 320 1 34 1,041

setxattr 4, 354, 485 1 83 1,061
link 1, 649, 205 1 139 2,357

Source: Author

Figure 5.7A depicts the load distribution between I/O and Metadata operations. It

is possible to notice that the Metadata operations dominate most weeks, except for W12

and W13. This figure denotes how metadata-intensive the utilization of the Lustre PFS

on SDumont is, with weeks where the I/O operations reach only 5% of the total load. The

Metadata was responsible for 60% of all file system operations, with 67 billion requests

against 44 billion I/O requests. In Figure 5.7B it is possible to observe an approximate

constant trend of fopen and fclose operations across the whole period. On W10,

however, there is an increase in the getattr and setattr operations, also observed

on W17, W18, and W19. The system has a high demand for opening and closing files and

retrieving file or directory attributes. Most of the time, there are more operations to open

and close files than to read and write them, indicating that the system handles many small

files and the applications perform small throughput I/O (as indicated in Section 5.1.1).

The metadata workload characterized on SDumont would not be desirable on a scratch

Lustre PFS designated for high throughput, where it is desirable that the metadata opera-

tions be kept at a minimum.

The metadata operations are becoming an increasingly hot development topic and

a genuine concern on high-performance storage. It is possible to observe this trend on

the latest release of the IO500 (KUNKEL et al., 2021), where the most significant growth

in the max score is attributed to metadata while the I/O throughput presents little to no

58

Figure 5.7 – 2021 metadata load distribution by week. (A) depicts the load of I/O operations
(purple) and and metadata operations (yellow). (B) details the metadata operation type.

0%

25%

50%

75%

100%

W
08
W

09
W

10
W

11
W

12
W

13
W

14
W

15
W

16
W

17
W

18
W

19
W

20
W

21
W

22

W
or

kl
oa

d

I/O

Metadata

A

0%

25%

50%

75%

100%

W
08
W

09
W

10
W

11
W

12
W

13
W

14
W

15
W

16
W

17
W

18
W

19
W

20
W

21
W

22
W

or
kl

oa
d

fclose

fopen

getattr

setattr

getxattr

setxattr

link

unlink

mkdir

rmdir

statfs

sync

B

Source: Author

increase over the years. Among the improvements that boost metadata performance are

the use of multiple servers (RODRíGUEZ-QUINTANA et al., 2016), indexing mecha-

nisms (PAUL et al., 2020), and client-side pre-allocation (LI et al., 2019). There are fea-

tures (FRAGALLA; LOEWE; PETERSEN, 2020) specific to improve Lustre’s metadata

performance that system administrators should assess, such as Distributed Namespace

(DNE – use of multiple metadata servers to distribute the load) and Data on MDT (DoM

– store small files on the MDT instead of placing all data on OSTs as is normally done in

Lustre, significantly reducing the number of requests and accesses to OSTs). SDumont

implements none of those improvements.

5.2 Detailed View of a Region of Interest

Section 5.1 presented an overall view of the Lustre PFS usage on SDumont, which

indicated that read operations seem to make inefficient use of the PFS, and it has a high

demand for metadata operations. We made a more in-depth analysis using the Job Us-

age dataset with two periods, one from each year because we wanted to verify which

applications contributed to specific events. We selected the period between March 24th

and March 28th of 2020 because it comprises the peak throughput for the read opera-

tions (Figure 5.1a) of that year, and for 2021, between March 28th and April 1st because

of the striking increase in reading volume (Figure 5.1b). Crossing the information from

59

the compute node dataset and SLURM’s job list is resource-demanding, depending on

the date range. Nevertheless, this process can be executed on-demand on any period to

understand better how the Lustre FS behaved during a given event.

5.2.1 Applications I/O Data Analysis

The analysis presented in this subsection used the information collected at the

compute nodes to characterize the applications’ I/O utilization. During the selected period

of 2020, a total of 866 jobs have been executed on SDumont. With the SLURM’s infor-

mation, we were able to identify nine different applications: AMBER 2, BIE 3, CASINO 4,

DockThor 5, GROMACS 6, LAMMPS 7, NAMD 8, QUANTUM ESPRESSO 9, and SIESTA 10.

It was not possible to identify some job’s applications solely based on the executable name

provided by SLURM, and therefore cataloged under three groups as Bash Scripts (exe-

cutable name informed is bash and the user’s job is executed directly through a script),

OpenMPI mpiexec (executable name reported by SLURM is orted and the application is

started directly through mpiexec/mpirun, without using SLURM’s srun command),

and unknown (when the user compiles the application and the executable name informed

is not present on the system administrators’ database of known applications).

Figure 5.8 details the applications and which “Science Domain” used them. It

is interesting to notice that an application can be employed in different areas, such as

GROMACS, used by projects in Chemistry, Physics, Biological Sciences, and Health Sci-

ences. This fact contributes to applications having different I/O volumes, demands, and

behaviors (BEZ et al., 2019). The Science Domain that used the largest application set

was Physics, with nine different applications, followed by Chemistry, with five. The five

most executed applications were unknown (37.41%), DockThor (27.83%), QUANTUM

ESPRESSO (9.93%), AMBER (7.39%), and Bash Script (6.93%). For the 2021 dataset,

we observed a total of 845 submitted jobs and recorded eleven different applications, plus

the three groups depicted in Figure 5.9: AMBER, BIE, DockThor, GROMACS, LAMMPS,

2https://ambermd.org/
3https://people.astro.umass.edu/ weinberg/BIE/
4https://vallico.net/casinoqmc/
5https://www.dockthor.lncc.br/
6https://www.gromacs.org/
7https://www.lammps.org/
8https://www.ks.uiuc.edu/Research/namd/
9https://www.quantum-espresso.org/

10https://departments.icmab.es/leem/siesta/

60

LHCB DIRAC 11, ORCA 12, Python 13, QUANTUM ESPRESSO, SIESTA, and VASP 14.

The Science Domain that used the largest application set was Physics and Chemistry,

which used seven different applications each. The five most executed applications on

2021 were: DockThor (36.21%), unknown (17.75%), QUANTUM ESPRESSO (10.06%),

LHCB DIRAC (8.88%), and AMBER (7.57%).

Figure 5.8 – Identified applications (2020), their Science Domains, and number of jobs

Weather and Climate

Physics

Mathematics

Materials science

Health sciences

Geosciences

Engineering

Computer science

Chemistry

Biological sciences

Biodiversity

Astronomy

AM
BER

Bas
h

Scr
ipt BIE

CASIN
O

Doc
kT

ho
r

GROM
ACS

LA
M

M
PS

NAM
D

Ope
nM

PI m
pie

xe
c

QUANTUM
 E

SPRESSO

SIE
STA

un
kn

ow
n

Jobs

50

100

150

200

Source: Author

Different types of optimizations can be employed on the storage system to im-

prove performance. I/O optimizations can be applied to applications at each layer of the

stack (BEHZAD et al., 2019), and automatic dynamic scheduler (GAINARU et al., 2015;

DORIER et al., 2014) can schedule applications with the same I/O patterns to alleviate

congestion. One thing in common that these optimizations techniques need is each appli-

cation’s I/O access patterns characteristics. The same application can have different I/O

behavior (BEZ et al., 2019) depending upon which science domain used it—in that way,

having the information about the science domain that used the application and the access

pattern might help I/O libraries, schedulers, and other techniques to obtain a better picture

and comprehension when applying the optimizations.

11https://lhcb-dirac.readthedocs.io/en/latest/
12https://orcaforum.kofo.mpg.de/index.php
13https://www.python.org/
14https://www.vasp.at/

61

Figure 5.9 – Identified applications (2021), their Science Domains, and number of jobs

unknown

Physics

Mathematics

Materials science

Health sciences

Geosciences

Engineering

Computer science

Chemistry

Biological sciences

Astronomy

AM
BER

Bas
h

Scr
ipt BIE

Doc
kT

ho
r

GROM
ACS

LA
M

M
PS

LH
CB D

IR
AC

Ope
nM

PI m
pie

xe
c

ORCA

Pyth
on

QUANTUM
 E

SPRESSO

SIE
STA

un
kn

ow
n

VA
SP

Jobs

100

200

300

Source: Author

Aside from the maximum throughput achieved for reads in 2020 (presented in

Section 5.1 – 316 GiB/m), the peak for writes in this specific period was 370 GiB/m

(at 2020-03-27). Table 5.3 describes the peak achieved by an individual application for

reading and writing. It is important to notice that: (i) only one job (application) was

responsible for ≈ 91.87% read throughput and ≈ 95.43% for the write throughput in the

2020 period, (ii) both with high CFbw, and (iii) there was a decrease in the throughput of

individual application from 2020 to 2021 but with an increase in the bandwidth utilization

by a more significant number of applications (the decrease in the CFbw value indicates

an increase in the contention for resources). The QUANTUM ESPRESSO application,

which presented the highest throughput, can be categorized as a traditional HPC Scientific

Application, highly parallelized and optimized (GIANNOZZI et al., 2020).

Table 5.3 – Individual application’s peak throughput

Year Application Operation GiB/m CFbw

2020
QUANTUM ESPRESSO Read 290 0.84
QUANTUM ESPRESSO Write 353 0.94

2021
unknown Read 153 0.70
QUANTUM ESPRESSO Write 90 0.31

Figure 5.10a depicts how the bandwidth of the whole Lustre file system was used,

62

where the maximum (red), minimum (blue), and average (black) CFbw of the jobs, at

each timestamp, throughout the specific 2020 period is plotted. This behavior indicates

that a few applications with high I/O throughput consume the bandwidth since the average

value is closer to the minimum. As depicted by Figure 5.10b, in 2021, a few jobs also

dominated the bandwidth, but the utilization is more constant, as opposed to the bursty

behavior observed in 2020. It is possible to observe high-bandwidth jobs starting on

March 31st, with the decrease in the Max. CFbw and a slight increase in the average

values.

Figure 5.10 – CFbw of the jobs. The dots in red, black, and blue represent the Max., Avg. and
Min., respectively, of all jobs, observed on each timestamp.

0.00

0.25

0.50

0.75

1.00

20
20

−0
3−

24
 0

2H

20
20

−0
3−

24
 1

0H

20
20

−0
3−

24
 1

8H

20
20

−0
3−

25
 0

2H

20
20

−0
3−

25
 1

0H

20
20

−0
3−

25
 1

8H

20
20

−0
3−

26
 0

2H

20
20

−0
3−

26
 1

0H

20
20

−0
3−

26
 1

8H

20
20

−0
3−

27
 0

2H

20
20

−0
3−

27
 1

0H

20
20

−0
3−

27
 1

8H

20
20

−0
3−

28
 0

2H

20
20

−0
3−

28
 1

0H

20
20

−0
3−

28
 1

8H

20
20

−0
3−

29
 0

2H

Timestamp

C
F

bw Max

Min

Avg

(a) 2020

0.00

0.25

0.50

0.75

20
21

−0
3−

28
 0

3H

20
21

−0
3−

28
 1

1H

20
21

−0
3−

28
 1

9H

20
21

−0
3−

29
 0

3H

20
21

−0
3−

29
 1

1H

20
21

−0
3−

29
 1

9H

20
21

−0
3−

30
 0

3H

20
21

−0
3−

30
 1

1H

20
21

−0
3−

30
 1

9H

20
21

−0
3−

31
 0

3H

20
21

−0
3−

31
 1

1H

20
21

−0
3−

31
 1

9H

20
21

−0
4−

01
 0

3H

Timestamp

C
F

bw Max

Min

Avg

(b) 2021

Source: Author

63

Figure 5.11 presents the overall distribution for the 2020 period of the Transfer

Size and QO metrics. We analyzed the distribution of each application’s Quality of Op-

erations, and the majority of them presented inefficient reads, with readqo above 1 most

of the time. In 2020, the most notably read-inefficient applications were DockThor, BIE,

and Bash Script. Only the OpenMPI mpiexec category presented readqo under 1 for 75%

of its execution, meaning it read blocks of data closer to the Lustre’s stripe_size.

Regarding each Science Domain, Biodiversity and Materials Science presented the best

behavior, using larger sizes for the operations with a good QO index. The other Domains

follow the inefficient usage behavior.

Figure 5.11 – 2020 Distribution of the Quality of Operation (left) and Transfer Size (right). The
x-axis are the QO index and size in KiB, respectively.

Quality of Operation Transfer Size (KiB)

0 100 200 300 0 1000 2000 3000 4000

AMBER

Bash Script

BIE

CASINO

DockThor

GROMACS

LAMMPS

NAMD

OpenMPI mpiexec

QUANTUM ESPRESSO

SIESTA

unknown

operation read write

Source: Author

As for the transfer sizes, most applications seldom use sizes larger than 1 MiB.

Most issue 100 KiB or smaller at least 75% of the time. We did not observe transfer sizes

above 4 MiB due to Lustre’s default maximum bulk I/O RPC size (CORPORATION,

2017) from a client to the OST, even though applications might be issuing bigger opera-

tions. Requests bigger than 4 MiB need to be broken down by two or more RPCs. This

parameter can be tuned up to 16 MiB on the current Lustre version (2.1X), allowing fewer

64

RPCs to transfer the same amount of data between clients and servers. Applications that

used bigger size operations were SIESTA, QUANTUM ESPRESSO, CASINO, and AM-

BER, with at least 50% of the time above 1 MiB. These applications could benefit from

increasing the maximum bulk I/O RPC size since they presented the use of 4 MiB transfer

size of write operations. The application category that presented the largest reading sizes

was the OpenMPI mpiexec, using above 2 MiB during 75% of its execution. The appli-

cations with the most notably smallest sizes were LAMMPS, DockThor, BIE, and Bash

Script, with 75% of their operations under 40 KiB.

Figure 5.12 – 2021 Distribution of the Quality of Operation (left) and Transfer Size (right). The
x-axis are the QO index and size in KiB, respectively.

Quality of Operation Transfer Size (KiB)

0 100 200 300 0 1000 2000 3000 4000

AMBER

Bash Script

BIE

DockThor

GROMACS

LAMMPS

LHCB DIRAC

OpenMPI mpiexec

ORCA

Python

QUANTUM ESPRESSO

SIESTA

unknown

VASP

operation write read

Source: Author

Figure 5.12 depicts that the applications observed during the 2021 observation

window present a similar behavior as in 2020. The most notably read-inefficient were

Bash Script and BIE. The ones that presented the most efficient operations were GRO-

MACS, OpenMPI mpiexec, and Python. Applications started through OpenMPI mpiexec

presented the largest sizes for both reads (50% above 1 MiB) and writes (75% above

1 MiB). We could not identify those applications based only on the SLURM informa-

tion. Hence, there could be a broad mix of applications in this group, as occurs with the

unknown group. The write transfer size was bigger than the read for most applications.

65

Those that used the biggest write sizes were OpenMPI mpiexec, ORCA, and SIESTA, with

1.5 MiB or above for at least 50% of their execution time.

Figure 5.13 – 2020 applications’ workload distribution.

Number of Operations Data Transfer Volume

AM
BER

Bas
h

Scr
ipt BIE

CASIN
O

Doc
kT

ho
r

GROM
ACS

LA
M

M
PS

NAM
D

Ope
nM

PI m
pie

xe
c

QUANTUM
 E

SPRESSO

SIE
STA

un
kn

ow
n

AM
BER

Bas
h

Scr
ipt BIE

CASIN
O

Doc
kT

ho
r

GROM
ACS

LA
M

M
PS

NAM
D

Ope
nM

PI m
pie

xe
c

QUANTUM
 E

SPRESSO

SIE
STA

un
kn

ow
n

0%

25%

50%

75%

100%

Application

W
or

kl
oa

d

operation read write

Source: Author

Most applications’ workload in 2020 is dominated by write operations, regarding

the number of operations and volume of data transferred. Figure 5.13 depicts that once

again, only the OpenMPI mpiexec category presents read dominance (above 80% on the

number of operations and data volume). Two applications presented inverse workload

demands: (i) CASINO, with the number of operations dominated by reads and the data

transferred dominated by writes (indicating its writing operations are bigger than read-

ings); and (ii) BIE, with writes dominating the number of operations, and reads the data

transferred (indicating its reading operations are bigger than writings).

Regarding the workload of each Science Domain, five presented dominance for the

number of readings, with the most notable being Biodiversity (90%) and Health Sciences

(76%). Considering the amount of data transferred, only Biodiversity had its workload

dominated by reading (55%). The most write-demanding Domains are Geosciences, Bio-

logical Sciences and Climate and Weather in both the number of operations and volume

of data. Two interesting cases are Astronomy and Health Sciences, where reads dominate

66

the number of operations. Still, the volume of data transferred is dominated by writes,

indicating that the workflow of these two Science Domains utilizes many small read op-

erations and few larger write operations.

Figure 5.14 – 2021 applications’ workload distribution.

Number of Operations Data Transfer Volume

AM
BER

Bas
h

Scr
ipt BIE

Doc
kT

ho
r

GROM
ACS

LA
M

M
PS

LH
CB D

IR
AC

Ope
nM

PI m
pie

xe
c

ORCA

Pyth
on

QUANTUM
 E

SPRESSO

SIE
STA

un
kn

ow
n

VA
SP

AM
BER

Bas
h

Scr
ipt BIE

Doc
kT

ho
r

GROM
ACS

LA
M

M
PS

LH
CB D

IR
AC

Ope
nM

PI m
pie

xe
c

ORCA

Pyth
on

QUANTUM
 E

SPRESSO

SIE
STA

un
kn

ow
n

VA
SP

0%

25%

50%

75%

100%

Application

W
or

kl
oa

d

operation write read

Source: Author

The Figure 5.14 shows that the 2021 period presented an increase in the number

of read-intensive applications, where from the fourteen identified applications, four are

dominated by reads (BIE, OpenMPI mpiexec, Python, and unknown) on both the number

of operations and volume of data transferred.

The emergence of jobs using applications developed with Python and presenting a

read-intensive workload lead us to believe that those are ML applications since the main

ML frameworks (e.g., TensorFlow 15, Keras 16, Caffe 17, pyTorch 18, Apache MXNet 19,

scikit-learn 20) are implemented with (or have an interface to) Python (WANG et al., 2019)

and are read-intensive (DRYDEN et al., 2021; CHOWDHURY et al., 2019; CHIEN et

15https://www.tensorflow.org/
16https://keras.io/
17https://caffe.berkeleyvision.org/
18https://pytorch.org/
19https://mxnet.apache.org/
20https://scikit-learn.org/stable/

67

Table 5.4 – Average Data Transfer per Job from 2021

Application Read (GiB) Write (GiB)

unknown 5, 394 23
BIE 793 60
OpenMPI mpiexec 95 42
AMBER 3 44
QUANTUM ESPRESSO 2 22

Source: Author

al., 2018). However, at the current development stage of our methodology, we cannot

guarantee that all the jobs using Python are ML jobs because SLURM does not provide

other information besides the name of the executable used. This prompts the need for a

better application identification in the resource management and job scheduling system

(e.g., SLURM, LoadLeveler 21, PBS Pro 22), a mechanism that would allow the user

to specify the application’s name, greatly facilitating the system administrator’s task to

recognize the purposes of a job. The precise application identification and characterization

enable supercomputers to meet the scientific community’s emerging needs better.

ORCA presented a read-intensive workload regarding the number of operations

but wrote more data than read, with a significant difference in the transfer sizes for each

operation – while 75% of reading operations has to transfer size below 45 KiB, writings

presented transfer sizes above 1 MiB for 75% of the time. Bash Script showed a read-

intensive data transfer but issued more write operations, indicating many small writes

(75% of the time below 2 KiB). The other applications are write-intensive.

Table 5.4 presents the five most data-intensive applications from 2021. The appli-

cations categorized under the unknown group (the second most executed) have the highest

average amount of data read per job (5, 394 GiB), being responsible for the expressive in-

crease in the reading activities observed in Figure 5.1b. Other noteworthy applications are

BIE and the OpenMPI mpiexec group, with a significant difference between the amount

of data read and written. Interestingly, none of the five applications presented an evenly

write/read workload.

Finally, we evaluated each application’s level of I/O parallelism using the data

collected at Compute Node at each timestamp. We present the results in two facets: (1)

how many OSTs the application used and (2) how many Compute Nodes performed I/O

operations. In 2020, each application’s average simultaneous OST was ≈ 3.24, which

21https://publibfp.boulder.ibm.com/epubs/pdf/c2367902.pdf
22https://www.altair.com/pbs-professional

68

is below half the available OSTs (10 in total). During 75% of the time, the applications

use only up to four OSTs simultaneously. The average simultaneous Compute Nodes

used during I/O activities was ≈ 1.64 and 75% of the cases used only up to two nodes,

which is considerably lower than the OSTs used. This difference in proportions indicates

that most of the time, the applications use few Compute Nodes to perform I/O on a more

significant number of OSTs. It was possible to observe cases where the application used

only one Compute Node to write on all ten OSTs. It is essential to notice that the parallel

I/O performed by the applications of multiple OSTs might be due to accessing a single file

striped across two or more OSTs or by accessing, at the same time, different files stored

individually on different OSTs. It is currently impossible to identify which type of access

the application performs.

Figure 5.15 depicts the level of parallelism used by each application, distinguished

by the read and write operations. It is possible to observe that the level of parallelism

among applications is higher on the write operations on both Compute Node and OST

usage, except for the AMBER. Interesting applications are (i) GROMACS and LAMMPS,

which, on average, use more simultaneous Compute Nodes for reading operations and

only one (in both cases) for writes; and (ii) CASINO, that uses multiple compute nodes to

read from a single OST but uses a single Compute Node to write to multiple OSTs.

The level of parallelism in 2021 follows a similar trend as the one observed in

2020, with the average simultaneous OST used being 3.6 while the average for compu-

tational nodes used for I/O operations was 1.65. The analysis of the utilization divided

by the type of operation reveals that, on average, the jobs use ≈ 4 OSTs for concurrent

reads. Writing operations showed slightly lower values, with an average of 3.3 simultane-

ous OSTs. In general, applications use fewer simultaneous nodes for the I/O operations

than available OSTs, with only five applications using more than five compute nodes si-

multaneously.

As presented by Figure 5.16, eight use more OSTs for reading operations than for

writing from the fourteen identified applications. Interesting cases we highlight are: (i)

ORCA and Python used only one Compute Node to perform their I/O operations but used

up to ten OSTs for simultaneous I/O operations; (ii) LAMMPS and SIESTA used up to four

Compute Nodes for reading operations and only one for writes, but on 75% of the cases

used up to nine OSTs for writes and only one for reads; and (iii) the OpenMPI mpiexec

group presented the highest simultaneous Compute Node utilization (25 nodes).

The analysis of how the applications used the Lustre PFS on SDumont made it

69

Figure 5.15 – 2020 Distribution of the Simultaneous Resource Used by each application in read
(red) and write (blue). The y-axis (count) represents the amount of resource simultaneously used

by each job of the application.

C
om

puteN
ode

O
S

T

AM
BER

Bas
h

Scr
ipt BIE

CASIN
O

Doc
kT

ho
r

GROM
ACS

LA
M

M
PS

NAM
D

Ope
nM

PI m
pie

xe
c

QUANTUM
 E

SPRESSO

SIE
STA

un
kn

ow
n

4

8

12

16

2.5

5.0

7.5

10.0

Application

C
ou

nt

Read Write

Source: Author

possible to identify that most of them perform small I/O requests, especially for the reads,

resulting in inefficient utilization. The high rate of small requests signals that most appli-

cations do not use specialized I/O libraries (e.g., HDF5 (FOLK; CHENG; YATES, 1999)

and MPI-IO (CORBETT et al., 1996)) that have optimizations capable of aggregating and

reorganizing data access patterns to read or write large contiguous chunks that potentially

match the layout in the OSTs. As the Coverage Factor of the Bandwidth (Figures 5.10a

and 5.10b) shows, few applications issuing high throughput operations use most of the ag-

gregate bandwidth provided by the storage system, leaving plenty of available bandwidth.

On the other hand, there is considerable demand for low latency performance to respond

to the many small transfer size operations. It is possible to suggest that an I/O Forward-

ing (ALI et al., 2009) or Burst Buffer (LIU et al., 2012) layer would significantly benefit

SDumont in handling these low-latency small requests. The System Administrators can

opt to direct efforts to improve the I/O performance of the most demanding applications

or implement frameworks (BEHZAD et al., 2019; GAINARU et al., 2015; DORIER et

al., 2014) that auto-tune and optimize I/O for a more extensive set of applications.

70

Figure 5.16 – 2021 Distribution of the Simultaneous Resource Used by each application in read
(red) and write (blue). The y-axis (count) represents the amount of resource simultaneously used

by each job of the application.

C
om

puteN
ode

O
S

T

AM
BER

Bas
h

Scr
ipt BIE

Doc
kT

ho
r

GROM
ACS

LA
M

M
PS

LH
CB D

IR
AC

Ope
nM

PI m
pie

xe
c

ORCA

Pyth
on

QUANTUM
 E

SPRESSO

SIE
STA

un
kn

ow
n

VA
SP

0

5

10

15

20

25

2.5

5.0

7.5

10.0

Application

C
ou

nt

Read Write

Source: Author

5.2.2 Applications Metadata Analysis

The analysis presented in this subsection used the information collected at the

compute nodes to characterize the applications’ metadata utilization for the periods de-

fined in Section 5.2. Figure 5.17A illustrates the load ratio between I/O and metadata op-

erations recorded by each application’s jobs executed in the 2020 window. Only CASINO

presents a metadata-intensive behavior (more metadata than I/O) from the twelve identi-

fied applications. AMBER also makes heavy usage of metadata. The one with the lowest

metadata usage are GROMACS, LAMMPS, and the OpenMPI mpiexec category. It is pos-

sible to notice that the usual load of metadata operations is between 10% and 25%.

Figure 5.17B depicts the types of metadata operations used by the applications. It

is possible to observe that the seek operation dominates most of the applications (AM-

BER, Bash Scripts, CASINO, NAMD, QUANTUM ESPRESSO, SIESTA, and unknown),

indicating a great number of random access. Two applications (BIE and OpenMPI mpiexec)

present a high load of fopen and fclose operations, (and, to a lesser extent, the ap-

71

Figure 5.17 – 2020 applications’ metadata load distribution. (A) presents the load division
between I/O (purple) and metadata operations (yellow). (B) presents the division among each

metadata operation type.

0%

25%

50%

75%

100%

AM
BER

Bas
h

Scr
ipt BIE

CASIN
O

Doc
kT

ho
r

GROM
ACS

LA
M

M
PS

NAM
D

Ope
nM

PI m
pie

xe
c

QUANTUM
 E

SPRESSO

SIE
STA

un
kn

ow
n

W
or

kl
oa

d

I/O

Metadata

A

0%

25%

50%

75%

100%

AM
BER

Bas
h

Scr
ipt BIE

CASIN
O

Doc
kT

ho
r

GROM
ACS

LA
M

M
PS

NAM
D

Ope
nM

PI m
pie

xe
c

QUANTUM
 E

SPRESSO

SIE
STA

un
kn

ow
n

W
or

kl
oa

d

fopen

fclose

getattr

setattr

seek

fsync

B

Source: Author

plications DockThor and LAMMPS), indicating the use of many files during its workflow.

Large numbers of file opens and closures lead to poor scalability as overhead (latency) in

open and close in Lustre is very high (SAINI et al., 2012). Three applications (DockThor,

GROMACS, and LAMMPS) presented a high load of the getattr, operations that re-

trieve file information from the MDS. This type of metadata operation should be avoided

as much as possible because it increases the overload on the MDS (i.e., for every getattr

operation, the MDS has to contact the OSS and OST to get the file’s attributes, increasing

the traffic on the network. If the file is striped across many OSTs, this scenario gets even

worse.). The setattr operation is hardly used by the applications. These observations

highlight the heterogeneous I/O workloads that a shared PFS has to handle efficiently

to provide performance. However, the plethora of available tunable parameters makes

it hard for end-users to understand when and how they should tune it to avoid bottle-

necks. Furthermore, poorly tuned applications executing on the shared PFS could harm

performance to themselves and other concurrent jobs. Future HPC storage systems should

automatically isolate or provide mechanisms to adjust the PFS based on the observed I/O

workloads.

Regarding the Science Domain, only Materials Science and Astronomy are metadata-

intensive, with their load reaching 55% and 49%, respectively. Health Science makes mi-

72

nor use of metadata operations, presenting the lowest workload. The other domains show

a metadata workload between 10% and 25%.

Figure 5.18 – 2021 applications’ metadata load distribution. (A) presents the load division
between I/O (purple) and metadata operations (yellow). (B) presents the division among each

metadata operation type.

0%

25%

50%

75%

100%

AM
BER

Bas
h

Scr
ipt BIE

Doc
kT

ho
r

GROM
ACS

LA
M

M
PS

LH
CB D

IR
AC

Ope
nM

PI m
pie

xe
c

ORCA

Pyth
on

QUANTUM
 E

SPRESSO

SIE
STA

un
kn

ow
n
VA

SP

W
or

kl
oa

d

I/O

Metadata

A

0%

25%

50%

75%

100%

AM
BER

Bas
h

Scr
ipt BIE

Doc
kT

ho
r

GROM
ACS

LA
M

M
PS

LH
CB D

IR
AC

Ope
nM

PI m
pie

xe
c

ORCA

Pyth
on

QUANTUM
 E

SPRESSO

SIE
STA

un
kn

ow
n
VA

SP

W
or

kl
oa

d

fopen

fclose

getattr

setattr

seek

fsync

B

Source: Author

The metadata load distribution from the 2021 is depicted by Figure 5.18. For

the applications identified in the 2021 period and not present in 2020, only Python and

LHCB DIRAC present a metadata-intensive behavior, with a load of respectively 95%

and 65%. ORCA and VASP are I/O intensive, with their metadata load reaching only

5%. Regarding the metadata operations most used by each application, LHCB DIRAC is

dominated by seek and getattr, ORCA presents a high load of file open and close,

Python is dominated by getattr executions, and VASP presents a high load of seek.

An option to better service the observed workload is to install a second MDS,

tailored for small access and low latency, on the Lustre to house those metadata-intensive

applications and projects. This way would be possible to logically split the namespace

into “normal” and “demanding” areas regarding the metadata usage.

73

6 DISCUSSION

This chapter discusses the lessons learned with the analysis of SDumont and com-

pares the findings against the storage system of other HPC platforms described in the

following works: Kim and Gunasekaran (2015) studied Spider, a Lustre-based storage

cluster located at the Oak Ridge Leadership Computing Facility (OLCF) and used by the

Titan supercomputer. Spider is composed of 192 OSSs, 1, 344 OSTs and have a band-

width of 240 GB/s; Gunasekaran et al. (2015) presents an evaluation of the Spider 2

storage system, also located at OLCF. It comprises 288 OSSs, 2, 016 OSTs, and has a

bandwidth of 1 TB/s; and Patel et al. (2019) studied the Lustre parallel storage system

shared by Edison and Cori supercomputers, deployed at the National Energy Research

Scientific Computing Center (NERSC). The Lustre file system is composed of 248 OSSs,

each having a corresponding OST, with a bandwidth of 700 GB/s.

I/O Workload: The I/O workload on HPC systems is not dominated by a single

type of operation, as some studies imply. While Kim and Gunasekaran (2015) presented

only a marginal difference between the read (42.2%) and write (57.8%) workload, the

system analyzed by Gunasekaran et al. (2015) shows a write dominance of 75%. In con-

trast, Patel et al. (2019) observed that the read constantly dominates the workload. The

data transfer volume observed on SDumont presented a certain seasonality (Figure 5.4).

The 2020 period presented an overall workload of data movement dominated by writings,

with only three weeks demonstrating reading dominance. The data movement of 2021, on

the other hand, presented an inverse behavior, mainly being dominated by readings. How-

ever, regarding the number of requests, the workload is massively dominated by reads. In

general terms, the total data written was ≈ 1.6× the data read, but the system received

≈ 52× more read requests than writes. This indicates that more data is written using large

request sizes. The findings of SDumont help design future storage system acquisition for

HPC systems with this type of heterogeneous environment.

Transfer Size: The system studied by Kim and Gunasekaran (2015) presents

most transfer sizes that are either less than 16 KiB or between 512 KiB and 1 MiB. Gu-

nasekaran et al. (2015) concluded that 60% of write requests are 4 KiB or less, and over

50% of reads were at least 1 MiB. The transfer sizes on SDumont present an inverted pro-

portion, with reads being small (50% below 23 KiB) while writes are larger (75% above

530 KiB). The write transfer size on SDumont was ≈ 3× larger than the read requests.

This difference in operation size confirms that there are far more small reads than writes.

74

On the quality of operations, the reads are notably worse than the writes. This information

helps optimize block devices since the PFS throughput is highly dependent on the transfer

size.

Bandwidth Usage: SDumont presented low bandwidth usage if compared with

other systems. Kim and Gunasekaran (2015) observed that the peak read throughput

reached 75% of the maximum bandwidth, while the writes reached 54%. The system

analyzed by Gunasekaran et al. (2015) presented up to 80% of the bandwidth for reads

and 70% for writes. The peak of writes on SDumont reached 42.41% of the maximum

bandwidth, while the reads reached 39.89%. Aside from being lower, we see an inverted

behavior.

Load Imbalance: This is a problem that has not been fully addressed in large-

scale platforms. As shown with our results (Figure 5.5), the load imbalanced on SDu-

mont can be as severe as a single OST receiving 100% of the load. The works presented

by Kim and Gunasekaran (2015), Patel et al. (2019) reported similar problems. High

load imbalance results in low throughput and under-utilization. To ease this problem, sys-

tem administrators might consider adopting a dynamic load balancer that automatically

coordinates the workload and data placement among I/O servers.

Low I/O Parallelism: HPC applications still do not take full advantage of a PFS

or of high-level I/O libraries and middleware that has the potential to improve I/O per-

formance. Even on a large-scale system, as depicted by Patel et al. (2019), in more than

98% of the cases, the applications used only 20 of the available 248 OSTs. On SDumont,

75% of the observed jobs used only up to 4 of the 10 available OSTs. This is another

indication of why the bandwidth usage is low. The peak throughput observed was when

a single application performed a write operation using all OSTs at once. Application de-

velopers should consider high-level I/O libraries to leverage the data access parallelism,

and end-users should be instructed on how to tune the file system’s striping parameters

for efficient usage.

75

7 CONCLUSION

This work evaluated the PFS storage of the SDumont supercomputer, which houses

research from different Science Domains. The study used metrics collected from storage

servers and compute nodes to analyze the machine’s I/O behavior for three months from

two years. The utilization of the proposed methodology provided insights into under-

standing Lustre’s usage and the I/O needs of scientific applications. It was possible to

identify critical aspects that negatively impact the performance of SDumont, such as:

• Inefficient read operations: There’s a high count of operations using small transfer

sizes (≈ 52× more read requests than writes but on average, write size was ≈ 3×

bigger than the reads), which often translates into poor performance. Since the

Lustre file system is oriented for large file I/O performance, the current scenario

might limit applications with high read demand.

• Low latency demand: The utilization of SDumont is not even near saturating the

bandwidth of the storage system, with the peak throughput not reaching 50% of the

available resources. This indicates that there is still room to service applications

that perform high I/O throughput. However, the high count of small operations and

the high load of seek operations denotes an important demand for low latency

operations.

• High-level libraries: The applications are not taking full advantage of high-level

I/O libraries and middleware to aggregate the small requests into larger ones.

• Imbalance among resources: The analysis of individual OST usage and the LI

metric indicates how the load is distributed, denoting some severe and lasting cases

where the overload corresponds to 3× the average OSTs’ load.

• Problematic applications: Identification of problematic behaviors, such as BIE,

which exhibits the worst readqo and is read-intensive. The Science Domain analy-

sis shows that Biodiversity and Health Sciences also have high demands for reading

operations.

• Demand for metadata operations: The metadata analysis shows a considerable de-

mand for this type of operation on SDumont, accounting for 60% of all file system

operations. This scenario raises a warning for the system administrators to take

some action about it quickly.

Identifying these aspects guides the administration of SDumont to focus their ef-

76

forts on helping improve the system’s performance and usability. The actions can be

divided into production-ready and experimental approaches. The production-ready are

techniques or tools already available as a “product on the market”, implemented, tested,

and operational in many HPC centers. These are the starting point that system administra-

tors can directly implement. Under this category, the system administrators of SDumont

can:

• Evaluate the adoption of an I/O forwarding layer (ALI et al., 2009; OHTA et al.,

2010; VISHWANATH et al., 2010; LANDSTEINER et al., 2016; SUGIYAMA;

WALLACE, 2008), that can receive the small-sized operations from the CNs, ag-

gregate, reorder and reschedule them, and then directly interact with the storage

servers, thus relieving the high read demand.

• To attend to the low latency operations demand, they can adopt SSDs, which can

be done on two fronts: on the CNs to be used as a client-side cache device (QIAN

et al., 2019), and on the PFS’s servers (CAULFIELD; GRUPP; SWANSON, 2009;

LOCKWOOD et al., 2019) by replacing the HDD.

• Revise Lustre’s configuration parameters, such as the default striping policy (to help

with the load imbalance among the OSTs) and increase maximum bulk I/O RPC

size (CORPORATION, 2017) (to help applications issuing bigger transfer sizes).

• Implement Lustre improvements (FRAGALLA; LOEWE; PETERSEN, 2020) pro-

vided by newer versions (2.x). The Distributed Namespace (CROWE; LAVEN-

DER; SIMMS, 2015; SIMMONS et al., 2016) (DNE) allows the use of multiple

metadata servers, thus distributing the load, and Data on MDT (HAN; KIM; EOM,

2016) (DoM) allows to store small files on the MDT instead of placing all data on

OSTs as is normally done in Lustre, significantly reducing the number of requests

and accesses to OSTs.

• Regarding the most demanding projects and problematic applications, the system

administrators can gather a task force to perform a detailed analysis and address par-

ticular requirements, such as implementing a high-level I/O library (e.g., ADIOS (GODOY

et al., 2020), NetCDF (REW; DAVIS, 1990), HDF5 (FOLK; CHENG; YATES,

1999), MPI-IO (CORBETT et al., 1996)) to improve performance.

The experimental group comprise approaches under research and not yet widely

implemented, thus requiring careful assessment before employing on a production system.

Under this category, the system administrators of SDumont can:

77

• Assess the use of a load balancer that automatically coordinates the workload and

data placement among Object Storage Servers (NEUWIRTH et al., 2017; WAD-

HWA et al., 2019), thus smoothing the imbalance.

• Evaluate the implementation of a framework to auto-tune and optimize the I/O

stack (BEHZAD et al., 2019; GAINARU et al., 2015; DORIER et al., 2014) for

a extensive set of applications.

• Study the indexing mechanisms (PAUL et al., 2020) and client-side pre-allocation (LI

et al., 2019) to improve the metadata performance.

7.1 Future Work

Future work will focus on improving the application identification. The significant

number of jobs categorized under the Bash Scripts, OpenMPI mpiexec, and unknown

groups presents a challenge to a better understanding of the storage system, since many

applications are grouped under them. This better identification would also help provide

additional information for frameworks oriented for I/O optimizations guided for specific

applications.

For future work, there is a need for improving the application identification. The

2021 application analysis (5.2.1) how critical this is, where the group of jobs Bash Scripts,

OpenMPI mpiexec, Python, and unknown represented 24% of the jobs submitted. Those

groups presents a challenge to a better understanding of the storage system because we

have insufficient knowledge about its purposes and many applications are grouped under

them. For example, the Python group, that presented a read-intensive workload, might

be ML applications since the most popular frameworks are implemented with (or have an

interface to) Python (WANG et al., 2019) and are read-intensive (DRYDEN et al., 2021;

CHOWDHURY et al., 2019; CHIEN et al., 2018). However, at the current development

stage of our methodology, we cannot determine how many jobs using Python are ML jobs

because SLURM does not provide other information besides the name of the executable

used (in this case, it only informs python). One option is to parse the user’s submission

script and check which environment modules it loads. Another possibility is to revise

the system administrators’ database of known applications, looking for possible improve-

ments. The precise application identification and characterization enable supercomputers

to meet the scientific community’s emerging needs better and also help provide additional

78

information for frameworks oriented to I/O optimizations guided for specific applications.

The scalability and performance of our methodology also need attention. For

example, the Data Crossing process to generate the Job Usage dataset of five days took

around 7 hours. All the Python scripts developed for the Step 2 of the methodology

(Pre-Processing) are serial, not exploring the multi-thread capabilities of current CPUs.

Implementing some sort of parallelism in the data processing would speed up the Step 2

operations and enable studies of more extended periods.

Furthermore, the utilization metrics are continuously collected on the compute

nodes, even when no jobs are running. This generates data containing zero value records

that only occupy storage space. In our future work we plan to integrate the collection

tool with the SLURM resource manager to collect the metrics only when a job starts

running on the compute nodes. We also plan to add the collection of utilization metrics

from other subsystems, such as CPU, network, and the CNs’ local disks (SSD). This

modification aims to assess how the I/O utilization interacts with and demands from those

other subsystems. For example, how much the imbalance among the OSTs costs from the

OSSs’ CPU, or if the amount of data sent to the OSTs through the network is the same

arriving at the OSTs.

Another objective in our plans is to assess the impacts of implementing new tech-

nologies and modifications in the storage stack of SDumont. For example, currently on

SDumont, the network to access the Lustre PFS, with an aggregate bandwidth of 70 GB/s,

does not impose a bottleneck on the communication. However, what will happen if the

administration of SDumont increases the maximum bulk I/O RPC size to 16 MiB? The

applications will be capable of transferring larger amounts of data per operation, possibly

increasing network congestion, which might turn into a bottleneck. If the administra-

tion of SDumont implements an I/O forwarding layer, how many small operations can

it aggregate, and how would this impact the Lustre PFS? These questions need careful

assessment to provide efficient resource utilization of the SDumont supercomputer.

7.2 Publications

The following papers were produced during this dissertation, first listing the ones

related to the this work and to the HPC storage research field, including those submitted

and under review:

79

• CARNEIRO, A. R.; BEZ, J. L.; OSTHOFF, C.; SCHNORR, L. M.; NAVAUX, P.

O. A. Uncovering I/O Demands on HPC Platforms: Peeking Under the Hood of

Santos Dumont. In: Journal of Parallel and Distributed Computing, 2022 (Submit-

ted).

ABSTRACT: High-Performance Computing (HPC) platforms are required to solve

the most diverse large-scale scientific problems in various research areas, such as

biology, chemistry, physics, and health sciences. Researchers use a multitude of

scientific software, which have different requirements. These include input and

output operations, which directly impact performance due to the existing difference

in processing and data access speeds. Thus, supercomputers must efficiently han-

dle mixed workload when storing data from the applications. Understanding the

set of applications and their performance running in a supercomputer is paramount

to understanding the storage system’s usage, pinpointing possible bottlenecks, and

guiding optimization techniques. This research proposes a methodology and visual-

ization tool to evaluate a supercomputer’s data storage infrastructure’s performance,

taking into account the diverse workload and demands of the system over a long

period of operation. As a study case, we focus on the Santos Dumont supercom-

puter, identifying inefficient usage, problematic performance factors, and providing

guidelines on how to tackle those issues.

• CARNEIRO, A. R.; BEZ, J. L.; OSTHOFF, C.; SCHNORR, L. M.; NAVAUX, P.

O. A. HPC Data Storage at a Glance: The Santos Dumont Experience. In: 2021

IEEE 33rd International Symposium on Computer Architecture and High Perfor-

mance Computing (SBAC-PAD), 2021.

ABSTRACT: High-Performance Computing (HPC) platforms are used to solve

the most diverse scientific problems in research areas, such as biology, chemistry,

physics, and health sciences. Researchers use a multitude of scientific software,

which have different requirements. These requirements include input and output

operations, which directly impact performance due to the existing difference in

processing and data access speeds. Thus, supercomputers must efficiently handle

a mixed workload scenario when storing data from the applications. Knowledge

of the application set and its performance running in a supercomputer is needed

to understand the storage system’s usage, pinpoint possible bottlenecks, and guide

optimization techniques. This research proposes a methodology and visualization

tool to evaluate a supercomputer’s data storage infrastructure’s performance, taking

80

into account the diverse workload and demands of the system over a long period of

operation. As a study case, we focus on the Santos Dumont supercomputer, where

we were able to identify inefficient usage and problematic factors of performance.

• BEZ, J. L.; CARNEIRO, A. R.; PAVAN, P. J.; GIRELLI, V. S.; BOITO, F. Z.; FA-

GUNDES, B. A.; OSTHOFF, C.; SILVA DIAS, P. L.; MEHAUT, J.-F.; NAVAUX, P.

O. A. I/O Performance of the Santos Dumont Supercomputer. In: The International

Journal of High Performance Computing Applications, 2019.

ABSTRACT: In this article, we study the I/O performance of the Santos Dumont

supercomputer, since the gap between processing and data access speeds causes

many applications to spend a large portion of their execution on I/O operations. For

a large-scale expensive supercomputer, it is essential to ensure applications achieve

the best I/O performance to promote efficient usage. We monitor a week of the

machine’s activity and present a detailed study on the obtained metrics, aiming at

providing an understanding of its workload. From experiences with one numerical

simulation, we identified large I/O performance differences between the MPI im-

plementations available to users. We investigated the phenomenon and narrowed

it down to collective I/O operations with small request sizes. For these, we con-

cluded that the customized MPI implementation by the machine’s vendor (used

by more than 20% of the jobs) presents the worst performance. By investigating

the issue, we provide information to help improve future MPI-IO collective write

implementations and practical guidelines to help users and steer future system up-

grades. Finally, we discuss the challenge of describing applications I/O behavior

without depending on information from users. That allows for identifying the ap-

plication’s I/O bottlenecks and proposing ways of improving its I/O performance.

We propose a methodology to do so, and use GROMACS, the application with the

largest number of jobs in 2017, as a case study.

• CARNEIRO, A. R.; BEZ, J. L.; BOITO, F. Z.; FAGUNDES, B. A.; OSTHOFF, C.;

NAVAUX, P. O. A. Collective I/O Performance on the Santos Dumont Supercom-

puter. In: 2018 26th Euromicro International Conference on Parallel, Distributed

and Networkbased Processing (PDP), 2018.

ABSTRACT: The historical gap between processing and data access speeds causes

many applications to spend a large portion of their execution on I/O operations.

From the point of view of a large-scale, expensive, supercomputer, it is important

to ensure applications achieve the best I/O performance to promote an efficient us-

81

age of the machine. In this paper, we evaluate the I/O infrastructure of the Santos

Dumont supercomputer, the largest one from Latin America. More specifically, we

investigate the performance of collective I/O operations. By conducting an analy-

sis of a scientific application that uses the machine, we identify large performance

differences between the available MPI implementations. We then further study the

observed phenomenon using the BT-IO and IOR benchmarks, in addition to a cus-

tom microbenchmark. We conclude that the customized MPI implementation by

Bull (used by more than 20% of the jobs) presents the worst performance for small

collective write operations. Our results are being used to help the Santos Dumont

users to achieve the best performance for their applications. Additionally, by inves-

tigating the observed phenomenon, we provide information to help improve future

MPI-IO collective write implementations.

The following papers were also published but are not directly related to the I/O

research field, though they are still relevant to the HPC research field:

• CARNEIRO, A. R.; SERPA, M. S.; NAVAUX, P. O. A. Lightweight Deep Learn-

ing Applications on AVX-512. In: 2021 IEEE Symposium on Computers and Com-

munications (ISCC), 2021.

ABSTRACT: Machine Learning and Deep Learning applications are of paramount

importance these days. Different areas of academia and industry use daily work-

loads based on these applications. Several aspects are relevant regarding their appli-

cability, such as the complexity and accuracy of the models and their performance

and energy efficiency. Currently, there is a trend to usually favor the use of GPUs

to train and execute Deep Learning models, intensified by specialized hardware.

However, this article demonstrates that using a CPU with AVX-512 instructions

can achieve comparable performance to current GPUs and, depending on the work-

load, suppress it by ≈ 1.8×.

• HERRERA, S.; RIBEIRO, W.; TEIXEIRA, T.; CARNEIRO, A. R.; CABRAL

F.; BORGES, M.; OSTHOFF, C. Avaliação de Desempenho no Supercomputador

SDumont de uma Estratégia de Decomposição de Domínio usando as Funcional-

idades de Mapeamento Topológico do MPI para um Método Numérico de Escoa-

mento de Fluidos. In: Anais da VI Escola Regional de Alto Desempenho do Rio de

Janeiro, 2020.

ABSTRACT: Oil and gas simulations need new high-performance computing tech-

82

niques to deal with the large amount of data allocation and the high computational

cost that we obtain from the numerical method. The domain decomposition tech-

nique (domain division technique) was applied to a three-dimensional oil reservoir,

where the MPI (Message Passing Interface) allowed the creation of a uni, bi and

three-dimensional topology, where a subdivision of a reservoir could be solved in

each MPI process created. A performance study was developed with these domain

decomposition strategies in 20 computational nodes of the SDumont Supercom-

puter, using a Cascade Lake architecture.

83

REFERENCES

ALAM, S. R. et al. Parallel i/o and the metadata wall. In: Proceedings of the Sixth
Workshop on Parallel Data Storage. New York, NY, USA: Association for Computing
Machinery, 2011. (PDSW ’11), p. 13–18. ISBN 9781450311038. Available from Internet:
<https://doi.org/10.1145/2159352.2159356>.

ALI, N. et al. Scalable i/o forwarding framework for high-performance computing sys-
tems. In: 2009 IEEE International Conference on Cluster Computing and Work-
shops. [s.n.], 2009. p. 1–10. Available from Internet: <https://doi.org/10.1109/CLUSTR.
2009.5289188>.

ARPACI-DUSSEAU, R. H.; ARPACI-DUSSEAU, A. C. Operating Systems: Three
Easy Pieces. 1.00. ed. [S.l.]: Arpaci-Dusseau Books, 2018.

BARTZ, C. et al. A best practice analysis of hdf5 and netcdf-4 using lustre. In: ISC
High Performance 2015. [s.n.], 2015. Available from Internet: <https://doi.org/10.1007/
978-3-319-20119-1_20>.

BEHZAD, B. et al. Optimizing i/o performance of hpc applications with autotuning. As-
sociation for Computing Machinery, New York, NY, USA, v. 5, n. 4, mar 2019. ISSN
2329-4949. Available from Internet: <https://doi.org/10.1145/3309205>.

BETKE, E.; KUNKEL, J. M. Footprinting parallel i/o – machine learning to classify
application’s i/o behavior. In: International Conference on High Performance Com-
puting. Springer International Publishing, 2019. p. 214–226. Available from Internet:
<https://doi.org/10.1007/978-3-030-34356-9_18>.

BEZ, J. L. et al. I/o performance of the santos dumont supercomputer. In: The Interna-
tional Journal of High Performance Computing Applications. SAGE, 2019. p. 227–
245. Available from Internet: <https://doi.org/10.1177/1094342019868526>.

BHATELE, A. et al. There goes the neighborhood: Performance degradation due to
nearby jobs. In: SC ’13: Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis. [s.n.], 2013. p. 1–12. Available
from Internet: <https://doi.org/10.1145/2503210.2503247>.

BLAGODUROV, S.; FEDOROVA, A. Towards the contention aware scheduling in hpc
cluster environment. Journal of Physics: Conference Series, IOP Publishing, v. 385,
p. 012010, oct 2012. Available from Internet: <https://doi.org/10.1088/1742-6596/385/1/
012010>.

BYNA, S. et al. Parallel i/o prefetching using mpi file caching and i/o signatures. In:
SC ’08: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing. [s.n.],
2008. p. 1–12. Available from Internet: <https://doi.org/10.1109/SC.2008.5213604>.

CARNS, P. et al. Understanding and improving computational science storage access
through continuous characterization. ACM Trans. Storage, Association for Computing
Machinery, New York, NY, USA, v. 7, n. 3, oct 2011. ISSN 1553-3077. Available from
Internet: <https://doi.org/10.1145/2027066.2027068>.

https://doi.org/10.1145/2159352.2159356
https://doi.org/10.1109/CLUSTR.2009.5289188
https://doi.org/10.1109/CLUSTR.2009.5289188
https://doi.org/10.1007/978-3-319-20119-1_20
https://doi.org/10.1007/978-3-319-20119-1_20
https://doi.org/10.1145/3309205
https://doi.org/10.1007/978-3-030-34356-9_18
https://doi.org/10.1177/1094342019868526
https://doi.org/10.1145/2503210.2503247
https://doi.org/10.1088/1742-6596/385/1/012010
https://doi.org/10.1088/1742-6596/385/1/012010
https://doi.org/10.1109/SC.2008.5213604
https://doi.org/10.1145/2027066.2027068

84

CARNS, P. et al. 24/7 characterization of petascale i/o workloads. In: . [s.n.], 2009. p. 1
– 10. Available from Internet: <https://doi.org/10.1109/CLUSTR.2009.5289150>.

CAULFIELD, A. M.; GRUPP, L. M.; SWANSON, S. Gordon: Using flash memory to
build fast, power-efficient clusters for data-intensive applications. In: Proceedings of
the 14th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems. New York, NY, USA: Association for Computing Ma-
chinery, 2009. (ASPLOS XIV), p. 217–228. ISBN 9781605584065. Available from Inter-
net: <https://doi.org/10.1145/1508244.1508270>.

CHASAPIS, K. et al. Evaluating lustre’s metadata server on a multi-socket platform. In:
2014 9th Parallel Data Storage Workshop. [s.n.], 2014. p. 13–18. Available from Inter-
net: <https://doi.org/10.1109/PDSW.2014.5>.

CHIEN, S. W. D. et al. Characterizing deep-learning i/o workloads in tensorflow. In: 2018
IEEE/ACM 3rd International Workshop on Parallel Data Storage & Data Intensive
Scalable Computing Systems (PDSW-DISCS). [S.l.: s.n.], 2018. p. 54–63.

CHING, A. et al. High-performance techniques for parallel i/o. In: Handbook of Parallel
Computing. [S.l.]: Chapman and Hall/CRC, 2007. p. 887–910.

CHOWDHURY, F. et al. I/o characterization and performance evaluation of beegfs
for deep learning. In: Proceedings of the 48th International Conference on Par-
allel Processing. New York, NY, USA: Association for Computing Machinery, 2019.
(ICPP 2019). ISBN 9781450362955. Available from Internet: <https://doi.org/10.1145/
3337821.3337902>.

CHUNDURI, S. et al. Gpcnet: Designing a benchmark suite for inducing and measur-
ing contention in hpc networks. In: . New York, NY, USA: Association for Comput-
ing Machinery, 2019. (SC ’19). ISBN 9781450362290. Available from Internet: <https:
//doi.org/10.1145/3295500.3356215>.

CORBETT, P. et al. Overview of the mpi-io parallel i/o interface. In: . Input/Output
in Parallel and Distributed Computer Systems. Boston, MA: Springer US, 1996. p.
127–146. ISBN 978-1-4613-1401-1. Available from Internet: <https://doi.org/10.1007/
978-1-4613-1401-1_5>.

CORPORATION, I. Lustre Software Release 2.x. 2017. Available from Internet: <https:
//doc.lustre.org/lustre_manual.xhtml>.

CROWE, T.; LAVENDER, N.; SIMMS, S. Scalability testing of dne2 in lustre 2.7. Lustre
Users Group, 2015.

DICKENS, P. M.; LOGAN, J. Y-lib: A user level library to increase the performance
of mpi-io in a lustre file system environment. In: Proceedings of the 18th ACM In-
ternational Symposium on High Performance Distributed Computing. New York,
NY, USA: Association for Computing Machinery, 2009. (HPDC ’09), p. 31–38. ISBN
9781605585871. Available from Internet: <https://doi.org/10.1145/1551609.1551617>.

DING, X. et al. Diskseen: Exploiting disk layout and access history to enhance i/o
prefetch. In: USENIX Annual Technical Conference. [s.n.], 2007. v. 7, p. 261–
274. Available from Internet: <https://www.usenix.org/legacy/events/usenix07/tech/full_
papers/ding/ding.pdf>.

https://doi.org/10.1109/CLUSTR.2009.5289150
https://doi.org/10.1145/1508244.1508270
https://doi.org/10.1109/PDSW.2014.5
https://doi.org/10.1145/3337821.3337902
https://doi.org/10.1145/3337821.3337902
https://doi.org/10.1145/3295500.3356215
https://doi.org/10.1145/3295500.3356215
https://doi.org/10.1007/978-1-4613-1401-1_5
https://doi.org/10.1007/978-1-4613-1401-1_5
https://doc.lustre.org/lustre_manual.xhtml
https://doc.lustre.org/lustre_manual.xhtml
https://doi.org/10.1145/1551609.1551617
https://www.usenix.org/legacy/events/usenix07/tech/full_papers/ding/ding.pdf
https://www.usenix.org/legacy/events/usenix07/tech/full_papers/ding/ding.pdf

85

DODGE, Y. The concise encyclopedia of statistics. In: . New York, NY: Springer
New York, 2008. chp. Kolmogorov–Smirnov Test, p. 283–287. ISBN 978-0-387-32833-
1. Available from Internet: <https://doi.org/10.1007/978-0-387-32833-1_214>.

DORIER, M. et al. Calciom: Mitigating i/o interference in hpc systems through cross-
application coordination. In: 2014 IEEE 28th International Parallel and Distributed
Processing Symposium. [s.n.], 2014. p. 155–164. Available from Internet: <https://doi.
org/10.1109/IPDPS.2014.27>.

DRYDEN, N. et al. Clairvoyant prefetching for distributed machine learning i/o. In: Pro-
ceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis. New York, NY, USA: Association for Computing
Machinery, 2021. (SC ’21). ISBN 9781450384421. Available from Internet: <https:
//doi.org/10.1145/3458817.3476181>.

FOLK, M.; CHENG, A.; YATES, K. Hdf5: A file format and i/o library for high perfor-
mance computing applications. In: Proceedings of supercomputing. [S.l.: s.n.], 1999.
v. 99, p. 5–33.

FRAGALLA, J.; LOEWE, B.; PETERSEN, T. K. New lustre features to improve lustre
metadata and small-file performance. Concurrency and Computation: Practice and
Experience, Wiley Online Library, v. 32, n. 20, p. e5649, 2020. Available from Internet:
<https://doi.org/10.1002/cpe.5649>.

GAINARU, A. et al. Scheduling the i/o of hpc applications under congestion. In: 2015
IEEE International Parallel and Distributed Processing Symposium. [s.n.], 2015. p.
1013–1022. Available from Internet: <https://doi.org/10.1109/IPDPS.2015.116>.

GE, R. Evaluating parallel i/o energy efficiency. In: 2010 IEEE/ACM Int’l Conference
on Green Computing and Communications Int’l Conference on Cyber, Physical and
Social Computing. [s.n.], 2010. p. 213–220. Available from Internet: <https://doi.org/
10.1109/GreenCom-CPSCom.2010.130>.

GIANNOZZI, P. et al. Quantum espresso toward the exascale. The Journal of Chemical
Physics, v. 152, n. 15, p. 154105, 2020. Available from Internet: <https://doi.org/10.1063/
5.0005082>.

GODOY, W. F. et al. Adios 2: The adaptable input output system. a framework
for high-performance data management. SoftwareX, v. 12, p. 100561, 2020. ISSN
2352-7110. Available from Internet: <https://www.sciencedirect.com/science/article/pii/
S2352711019302560>.

GUNASEKARAN, R. et al. Comparative i/o workload characterization of two leader-
ship class storage clusters. In: Proceedings of the 10th Parallel Data Storage Work-
shop. New York, NY, USA: Association for Computing Machinery, 2015. (PDSW
’15), p. 31–36. ISBN 9781450340083. Available from Internet: <https://doi.org/10.1145/
2834976.2834985>.

HAN, J.; KIM, D.; EOM, H. Improving the performance of lustre file system in hpc
environments. In: 2016 IEEE 1st International Workshops on Foundations and Ap-
plications of Self Systems (FAS*W). [S.l.: s.n.], 2016. p. 84–89.

https://doi.org/10.1007/978-0-387-32833-1_214
https://doi.org/10.1109/IPDPS.2014.27
https://doi.org/10.1109/IPDPS.2014.27
https://doi.org/10.1145/3458817.3476181
https://doi.org/10.1145/3458817.3476181
https://doi.org/10.1002/cpe.5649
https://doi.org/10.1109/IPDPS.2015.116
https://doi.org/10.1109/GreenCom-CPSCom.2010.130
https://doi.org/10.1109/GreenCom-CPSCom.2010.130
https://doi.org/10.1063/5.0005082
https://doi.org/10.1063/5.0005082
https://www.sciencedirect.com/science/article/pii/S2352711019302560
https://www.sciencedirect.com/science/article/pii/S2352711019302560
https://doi.org/10.1145/2834976.2834985
https://doi.org/10.1145/2834976.2834985

86

HANSUN, S. A new approach of moving average method in time series analysis. In: 2013
Conference on New Media Studies (CoNMedia). [s.n.], 2013. p. 1–4. Available from
Internet: <https://doi.org/10.1109/CoNMedia.2013.6708545>.

HASHIMOTO, Y.; AIDA, K. Evaluation of performance degradation in hpc applications
with vm consolidation. In: 2012 Third International Conference on Networking and
Computing. [s.n.], 2012. p. 273–277. Available from Internet: <https://doi.org/10.1109/
ICNC.2012.50>.

HU, W. et al. Storage wall for exascale supercomputing. Frontiers of Information Tech-
nology and Electronic Engineering, v. 17, n. 11, p. 1154–1175, Nov 2016. ISSN 2095-
9230. Available from Internet: <https://doi.org/10.1631/FITEE.1601336>.

HWU, W.-m.; KEUTZER, K.; MATTSON, T. G. The concurrency challenge. IEEE
Design Test of Computers, v. 25, n. 4, p. 312–320, 2008. Available from Internet:
<https://doi.org/10.1109/MDT.2008.110>.

ISAKOV, M. et al. Hpc i/o throughput bottleneck analysis with explainable local models.
In: SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis. [s.n.], 2020. p. 1–13. Available from Internet: <https://doi.org/10.
1109/SC41405.2020.00037>.

JOKANOVIC, A. et al. Impact of inter-application contention in current and future hpc
systems. In: 2010 18th IEEE Symposium on High Performance Interconnects. [s.n.],
2010. p. 15–24. Available from Internet: <https://doi.org/10.1109/HOTI.2010.25>.

KIM, Y.; GUNASEKARAN, R. Understanding i/o workload characteristics of a peta-
scale storage system. Journal of Supercomputing, Springer, v. 71, n. 3, p. 761–780,
2015. Available from Internet: <https://doi.org/10.1007/s11227-014-1321-8>.

KUNKEL, J. M. et al. The 9th IO500 and the Virtual Institute of I/O Report. 2021.
Available from Internet: <https://io500.org/files/sc21-io500-slides.pdf>.

KUNKEL, J. M.; MARKOMANOLIS, G. S. Understanding metadata latency with
mdworkbench. In: SPRINGER. International Conference on High Performance
Computing. 2018. p. 75–88. Available from Internet: <https://doi.org/10.1007/
978-3-030-02465-9_5>.

LANDSTEINER, B. R. et al. Architecture and design of cray datawarp. In: . [S.l.: s.n.],
2016.

LANG, S. et al. I/o performance challenges at leadership scale. In: Proceedings of
the Conference on High Performance Computing Networking, Storage and Anal-
ysis. [s.n.], 2009. p. 1–12. Available from Internet: <https://doi.org/10.1145/1654059.
1654100>.

LATHAM, R. et al. HPC I/O for Computational Scientists. 2014. Available from Inter-
net: <https://extremecomputingtraining.anl.gov//files/2014/01/hpc-io-all-final.pdf>.

LAWRENCE, B. et al. Parallel I/O Performance Benchmarking and Inves-
tigation on Multiple HPC Architectures. [S.l.], 2017. Available from Inter-
net: <https://www.archer.ac.uk/documentation/white-papers/parallelIO-benchmarking/
ARCHER-Parallel-IO-1.4.pdf>.

https://doi.org/10.1109/CoNMedia.2013.6708545
https://doi.org/10.1109/ICNC.2012.50
https://doi.org/10.1109/ICNC.2012.50
https://doi.org/10.1631/FITEE.1601336
https://doi.org/10.1109/MDT.2008.110
https://doi.org/10.1109/SC41405.2020.00037
https://doi.org/10.1109/SC41405.2020.00037
https://doi.org/10.1109/HOTI.2010.25
https://doi.org/10.1007/s11227-014-1321-8
https://io500.org/files/sc21-io500-slides.pdf
https://doi.org/10.1007/978-3-030-02465-9_5
https://doi.org/10.1007/978-3-030-02465-9_5
https://doi.org/10.1145/1654059.1654100
https://doi.org/10.1145/1654059.1654100
https://extremecomputingtraining.anl.gov//files/2014/01/hpc-io-all-final.pdf
https://www.archer.ac.uk/documentation/white-papers/parallelIO-benchmarking/ARCHER-Parallel-IO-1.4.pdf
https://www.archer.ac.uk/documentation/white-papers/parallelIO-benchmarking/ARCHER-Parallel-IO-1.4.pdf

87

LI, H. et al. Pream: Enhancing hpc storage system performance with pre-allocated
metadata management mechanism. In: 2019 IEEE 21st International Conference on
High Performance Computing and Communications; IEEE 17th International Con-
ference on Smart City; IEEE 5th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS). [s.n.], 2019. p. 413–420. Available from Internet:
<https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00069>.

LIANG, W. et al. Cars: A contention-aware scheduler for efficient resource man-
agement of hpc storage systems. Parallel Computing, v. 87, p. 25–34, 2019. ISSN
0167-8191. Available from Internet: <https://www.sciencedirect.com/science/article/pii/
S016781911830382X>.

LIAO, W.-k.; CHOUDHARY, A. Dynamically adapting file domain partitioning methods
for collective i/o based on underlying parallel file system locking protocols. In: SC ’08:
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing. [s.n.], 2008. p.
1–12. Available from Internet: <https://doi.org/10.1109/SC.2008.5222722>.

LIU, N. et al. On the role of burst buffers in leadership-class storage systems. In: 2012
IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST). [s.n.],
2012. p. 1–11. Available from Internet: <https://doi.org/10.1109/MSST.2012.6232369>.

LIU, Y. et al. Raf: A random access first cache management to improve ssd-based disk
cache. In: 2010 IEEE Fifth International Conference on Networking, Architecture,
and Storage. [s.n.], 2010. p. 492–500. Available from Internet: <https://doi.org/10.1109/
NAS.2010.9>.

LOCKWOOD, G. K. et al. A quantitative approach to architecting all-flash lustre file
systems. In: High Performance Computing. [S.l.]: Springer International Publishing,
2019. p. 183–197.

LOCKWOOD, G. K. et al. A year in the life of a parallel file system. In: SC18: In-
ternational Conference for High Performance Computing, Networking, Storage and
Analysis. [s.n.], 2018. p. 931–943. Available from Internet: <https://doi.org/10.1109/SC.
2018.00077>.

LOCKWOOD, G. K. et al. Tokio on clusterstor: Connecting standard tools to enable
holistic i/o performance analysis. 1 2018. Available from Internet: <https://www.osti.
gov/biblio/1632125>.

LOFSTEAD, J. et al. Six degrees of scientific data: Reading patterns for extreme scale
science io. In: Proceedings of the 20th International Symposium on High Perfor-
mance Distributed Computing. New York, NY, USA: Association for Computing Ma-
chinery, 2011. (HPDC ’11), p. 49–60. ISBN 9781450305525. Available from Internet:
<https://doi.org/10.1145/1996130.1996139>.

LUU, H. et al. A multiplatform study of i/o behavior on petascale supercomputers. In:
Proceedings of the 24th International Symposium on High-Performance Parallel and
Distributed Computing. New York, NY, USA: Association for Computing Machinery,
2015. (HPDC ’15), p. 33–44. ISBN 9781450335508. Available from Internet: <https:
//doi.org/10.1145/2749246.2749269>.

https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00069
https://www.sciencedirect.com/science/article/pii/S016781911830382X
https://www.sciencedirect.com/science/article/pii/S016781911830382X
https://doi.org/10.1109/SC.2008.5222722
https://doi.org/10.1109/MSST.2012.6232369
https://doi.org/10.1109/NAS.2010.9
https://doi.org/10.1109/NAS.2010.9
https://doi.org/10.1109/SC.2018.00077
https://doi.org/10.1109/SC.2018.00077
https://www.osti.gov/biblio/1632125
https://www.osti.gov/biblio/1632125
https://doi.org/10.1145/1996130.1996139
https://doi.org/10.1145/2749246.2749269
https://doi.org/10.1145/2749246.2749269

88

MESNIER, M.; GANGER, G.; RIEDEL, E. Object-based storage. IEEE Communica-
tions Magazine, v. 41, n. 8, p. 84–90, 2003. Available from Internet: <https://doi.org/10.
1109/MCOM.2003.1222722>.

MICROSYSTEMS, S. High-Performance Storage Architecture and Scalable Clus-
ter File System. [S.l.], 2007. Available from Internet: <http://www.csee.ogi.edu/~zak/
cs506-pslc/lustrefilesystem.pdf>.

NEUWIRTH, S. et al. Automatic and transparent resource contention mitigation for im-
proving large-scale parallel file system performance. In: 2017 IEEE 23rd International
Conference on Parallel and Distributed Systems (ICPADS). [s.n.], 2017. p. 604–613.
Available from Internet: <https://doi.org/10.1109/ICPADS.2017.00084>.

NIEUWEJAAR, N. et al. File-access characteristics of parallel scientific workloads.
IEEE Transactions on Parallel and Distributed Systems, v. 7, n. 10, p. 1075–1089,
1996. Available from Internet: <https://doi.org/10.1109/71.539739>.

OHTA, K. et al. Optimization techniques at the i/o forwarding layer. In: 2010 IEEE
International Conference on Cluster Computing. [s.n.], 2010. p. 312–321. Available
from Internet: <https://doi.org/10.1109/CLUSTER.2010.36>.

OLIVARES, T. et al. Performance study of nfs over myrinet-based clusters for parallel
multimedia applications. In: Canadian Conference on Electrical and Computer Engi-
neering 2001. Conference Proceedings (Cat. No.01TH8555). [s.n.], 2001. v. 2, p. 999–
1004 vol.2. Available from Internet: <https://doi.org/10.1109/CCECE.2001.933579>.

PATEL, T. et al. Revisiting i/o behavior in large-scale storage systems: The expected
and the unexpected. In: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. New York, NY, USA: Associ-
ation for Computing Machinery, 2019. (SC ’19). ISBN 9781450362290. Available from
Internet: <https://doi.org/10.1145/3295500.3356183>.

PAUL, A. K. et al. Efficient metadata indexing for hpc storage systems. In: 2020 20th
IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing
(CCGRID). [s.n.], 2020. p. 162–171. Available from Internet: <https://doi.org/10.1109/
CCGrid49817.2020.00-77>.

PRABHAT; KOZIOL, Q. High Performance Parallel I/O. 1st. ed. [S.l.]: Chapman &
Hall/CRC Computational Science, 2014. ISBN 1466582340.

QIAN, Y. et al. Lpcc: Hierarchical persistent client caching for lustre. In: Proceed-
ings of the International Conference for High Performance Computing, Network-
ing, Storage and Analysis. New York, NY, USA: Association for Computing Machin-
ery, 2019. (SC ’19). ISBN 9781450362290. Available from Internet: <https://doi.org/10.
1145/3295500.3356139>.

REW, R.; DAVIS, G. Netcdf: an interface for scientific data access. IEEE Computer
Graphics and Applications, v. 10, n. 4, p. 76–82, 1990.

RODRíGUEZ-QUINTANA, C. et al. A new scalable approach for distributed metadata in
hpc. In: . [s.n.], 2016. v. 10048, p. 106–117. ISBN 978-3-319-49582-8. Available from
Internet: <https://doi.org/10.1007/978-3-319-49583-5_8>.

https://doi.org/10.1109/MCOM.2003.1222722
https://doi.org/10.1109/MCOM.2003.1222722
http://www.csee.ogi.edu/~zak/cs506-pslc/lustrefilesystem.pdf
http://www.csee.ogi.edu/~zak/cs506-pslc/lustrefilesystem.pdf
https://doi.org/10.1109/ICPADS.2017.00084
https://doi.org/10.1109/71.539739
https://doi.org/10.1109/CLUSTER.2010.36
https://doi.org/10.1109/CCECE.2001.933579
https://doi.org/10.1145/3295500.3356183
https://doi.org/10.1109/CCGrid49817.2020.00-77
https://doi.org/10.1109/CCGrid49817.2020.00-77
https://doi.org/10.1145/3295500.3356139
https://doi.org/10.1145/3295500.3356139
https://doi.org/10.1007/978-3-319-49583-5_8

89

SAINI, S. et al. I/o performance characterization of lustre and nasa applications on
pleiades. In: 2012 19th International Conference on High Performance Comput-
ing. [s.n.], 2012. p. 1–10. Available from Internet: <https://doi.org/10.1109/HiPC.2012.
6507507>.

SIMMONS, J. S. et al. Lustre distributed name space (dne) evaluation at
the oak ridge leadership computing facility (olcf). ORNL/TM–2015/608, 2016.
Available from Internet: <https://lustre.ornl.gov/ecosystem-2016/documents/papers/
LustreEco2016-Simmons-DNE.pdf>.

SIVALINGAM, K. et al. Lassi: Metric based i/o analytics for hpc. In: 2019 Spring
Simulation Conference (SpringSim). [s.n.], 2019. p. 1–12. Available from Internet:
<https://doi.org/10.23919/SpringSim.2019.8732903>.

SKINNER, D.; KRAMER, W. Understanding the causes of performance variability in
hpc workloads. In: IEEE International. 2005 Proceedings of the IEEE Workload
Characterization Symposium, 2005. [s.n.], 2005. p. 137–149. Available from Internet:
<https://doi.org/10.1109/IISWC.2005.1526010>.

SPEARMAN, C. The proof and measurement of association between two things. The
American Journ. of Psychology, University of Illinois Press, v. 15, n. 1, p. 72–101,
1904.

SUGIYAMA, S.; WALLACE, D. Cray dvs: Data virtualization service. In: Cray User
Group Annual Technical Conference. [S.l.: s.n.], 2008.

THAKUR, R.; GROPP, W.; LUSK, E. On implementing mpi-io portably and with high
performance. In: Proceedings of the Sixth Workshop on I/O in Parallel and Dis-
tributed Systems. New York, NY, USA: Association for Computing Machinery, 1999.
(IOPADS ’99), p. 23–32. ISBN 1581131232. Available from Internet: <https://doi.org/
10.1145/301816.301826>.

VISHWANATH, V. et al. Accelerating i/o forwarding in ibm blue gene/p systems. In: SC
’10: Proceedings of the 2010 ACM/IEEE International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. [S.l.: s.n.], 2010. p. 1–10.

WADHWA, B. et al. iez: Resource contention aware load balancing for large-scale par-
allel file systems. In: 2019 IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS). [s.n.], 2019. p. 610–620. Available from Internet: <https:
//doi.org/10.1109/IPDPS.2019.00070>.

WANG, K. et al. Exploring the design tradeoffs for extreme-scale high-performance com-
puting system software. IEEE Transactions on Parallel and Distributed Systems, v. 27,
n. 4, p. 1070–1084, 2016. Available from Internet: <https://doi.org/10.1109/TPDS.2015.
2430852>.

WANG, Z. et al. Various frameworks and libraries of machine learning and deep learning:
A survey. Archives of Computational Methods in Engineering, Feb 2019. ISSN 1886-
1784.

WARTENS, C. M. H.; GARLICK, J. lmt: Lustre Monitoring Tool. 2010. Available
from Internet: <https://github.com/LLNL/lmt>.

https://doi.org/10.1109/HiPC.2012.6507507
https://doi.org/10.1109/HiPC.2012.6507507
https://lustre.ornl.gov/ecosystem-2016/documents/papers/LustreEco2016-Simmons-DNE.pdf
https://lustre.ornl.gov/ecosystem-2016/documents/papers/LustreEco2016-Simmons-DNE.pdf
https://doi.org/10.23919/SpringSim.2019.8732903
https://doi.org/10.1109/IISWC.2005.1526010
https://doi.org/10.1145/301816.301826
https://doi.org/10.1145/301816.301826
https://doi.org/10.1109/IPDPS.2019.00070
https://doi.org/10.1109/IPDPS.2019.00070
https://doi.org/10.1109/TPDS.2015.2430852
https://doi.org/10.1109/TPDS.2015.2430852
https://github.com/LLNL/lmt

90

XIE, B. et al. Characterizing output bottlenecks in a supercomputer. In: SC ’12: Pro-
ceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis. [s.n.], 2012. p. 1–11. Available from Internet: <https:
//doi.org/10.1109/SC.2012.28>.

YILDIZ, O. et al. On the root causes of cross-application i/o interference in hpc storage
systems. In: 2016 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS). [s.n.], 2016. p. 750–759. Available from Internet: <https://doi.org/10.
1109/IPDPS.2016.50>.

YU, J. et al. Cross-layer coordination in the i/o software stack of extreme-scale systems.
Concurrency and Computation: Practice and Experience, v. 30, n. 10, p. e4396,
2018. E4396 cpe.4396. Available from Internet: <https://onlinelibrary.wiley.com/doi/abs/
10.1002/cpe.4396>.

ZHANG, X.; JIANG, S. <i>interferenceremoval</i>: Removing interference of disk ac-
cess for mpi programs through data replication. In: Proceedings of the 24th ACM Inter-
national Conference on Supercomputing. New York, NY, USA: Association for Com-
puting Machinery, 2010. (ICS ’10), p. 223–232. ISBN 9781450300186. Available from
Internet: <https://doi.org/10.1145/1810085.1810116>.

ZHANG, X. et al. ibridge: Improving unaligned parallel file access with solid-state drives.
In: 2013 IEEE 27th International Symposium on Parallel and Distributed Process-
ing. [s.n.], 2013. p. 381–392. Available from Internet: <https://doi.org/10.1109/IPDPS.
2013.21>.

ZHAO, D. et al. High-performance storage support for scientific applications on the cloud.
In: Proceedings of the 6th Workshop on Scientific Cloud Computing. New York, NY,
USA: Association for Computing Machinery, 2015. (ScienceCloud ’15), p. 33–36. ISBN
9781450335706. Available from Internet: <https://doi.org/10.1145/2755644.2755648>.

https://doi.org/10.1109/SC.2012.28
https://doi.org/10.1109/SC.2012.28
https://doi.org/10.1109/IPDPS.2016.50
https://doi.org/10.1109/IPDPS.2016.50
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4396
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4396
https://doi.org/10.1145/1810085.1810116
https://doi.org/10.1109/IPDPS.2013.21
https://doi.org/10.1109/IPDPS.2013.21
https://doi.org/10.1145/2755644.2755648

91

APPENDIX A — RESUMO EXPANDIDO

Supercomputadores, com centenas a milhares de nós computacionais, dominam

os ambientes de Processamento de Alto Desempenho (PAD). Esses sistemas de PAD são

utilizados para resolver os mais diversos problemas em vários domínios da ciência: bi-

ologia, química, física e ciências da saúde. Os pesquisadores das diferentes áreas utilizam

uma infinidade de aplicações científicas, onde cada uma possui diferentes requisitos. Por

exemplo, as aplicações podem ser seriais ou paralelas, e ler ou escrever diferentes quan-

tidades de dados em vários formatos e tamanhos. Esse cenário faz com que os supercom-

putadores precisem lidar com cargas de trabalho mistas.

A evolução dos chips de processamento e das redes de alta velocidade permitiu

aos supercomputadores processar enormes datasets. Além disso, a infraestrutura que

armazena esses datasets também precisa fornecer acesso de alto desempenho para que

as aplicações possam realizar suas operações de entrada e saída (E/S) de forma eficiente.

Para um ambiente de HPC, não é apenas a quantidade de FLOPS que afeta o desempenho,

mas também a quantidade de dados por segundo que eles conseguem efetivamente ler e

escrever no sistema de armazenamento.

Os Sistemas de Arquivo Paralelos (SAPs), um sistema de armazenamento descen-

tralizado onde máquinas dedicadas atuam como servidores de dados que reduzem a so-

brecarga do processamento das requisições de E/S, são os os principais tipos de sistemas

de arquivo utilizados em PAD. O Lustre (MICROSYSTEMS, 2007) é o SAP mais ado-

tado em sistemas PAD, representando ≈ 30.5% dos sistemas de arquivo presentes na lista

do IO500 1. Apesar dos avanços nas arquiteturas de armazenamento de dados fornecerem

melhor desempenho, como a utilização de dispositivos SSD, ainda há uma diferença con-

siderável de desempenho entre o quão rápido o sistema consegue lidar com as operações

de E/S e quão rápido ele consegue processar os dados. Essa diferença afeta como os super-

computadores conseguem ser utilizados produtivamente para novas descobertas científi-

cas. Mais pesquisas estão sendo realizadas com a rápida expansão dos supercomputadores

enquanto gerando mais dados a serem lidos e escritos, tornando o sistema compartilhado

de armazenamento de dados um dos principais gargalos para atingir um desempenho sus-

tentável. O SAP não é capaz de continuar fornecendo desempenho devido ao aumento da

concorrência e interferência (YILDIZ et al., 2016; YU et al., 2018). Além das operações

de E/S, outro importante fator no gerenciamento do armazenamento para PAD são as op-

1https://io500.org/

92

erações de metadados, que são responsáveis por manter a árvore de diretórios do sistema

de arquivo, permissões de acesso aos arquivos, timestamps, atributos etc. Conforme os

datasets ficam cada vez maiores, o desempenho dos metadados se torna um fator crítico

e pode rapidamente se tornar um gargalo (ALAM et al., 2011).

Lawrence et al. (2017) e Saini et al. (2012) demostram que diferentes aplicações

científicas têm seu desempenho impactado em diversas maneiras pelo Lustre, com algu-

mas utilizando os recursos de forma mais eficiente do que outras. Essa variação está ligada

à requisitos de carga de trabalho específicos e o Lustre tendo que lidar simultaneamente

com várias aplicações sob contenção. Alguns fatores que impõe limitações e afetam neg-

ativamente o desempenho do Lustre são padrões de acesso desalinhados (BARTZ et al.,

2015), carga desbalanceada entre os servidores de armazenamento (PATEL et al., 2019),

e contenção por recursos (NEUWIRTH et al., 2017). Além disso, é necessário considerar

que a pilha de E/S existente expõe uma infinidade de parâmetros ajustáveis, direcionados

a fornecer melhorias no desempenho das aplicações. Entretanto, a má configuração de

tais parâmetros devido ao usuário não conhecer o comportamento das operações de E/S

da sua aplicação pode contribuir para o baixo desempenho observado. Além do mais, uma

aplicação que esteja apresentando desempenho ineficiente pode também afetar negativa-

mente todas as outras em execução concorrentemente no sistema, pois o armazenamento

é compartilhado entre todas elas.

O objetivo do presente estudo é entender o impacto e identificar as necessidade do

armazenamento de dados em um supercomputador através da avaliação do desemepnho

do sistema de arquivos Lustre em relação à variadas cargas de trabalho de E/E e metada-

dos, provenientes de diferentes domínios. O comportamento da utilização do Lustre foi

estudado, realizando uma comparação entre dois período compreendendo três meses de

operação de dois anos: de Março a Maio de 2020 e 2021, quando foi movimentado 16, 50

PiB de dados através de 109, 79 bilhões de operações de E/S. O supercomputador Santos

Dumont (SDumont) 2 foi utilizado como um estudo de caso porque pouco é conhecido so-

bre o impacto do seu sistema armazenamento e a configuração da pilha de E/S, utilizados

pelo conjunto de aplicações executadas diariamente. O trabalho apresenta as seguintes

contribuições:

• Foi desenvolvida uma metodologia para coletar, analisar e visualizar dados de E/S

provenientes do sistema de arquivos paralelo, utilizando softwares open-source que

não necessitam de privilégios administrativos para serem instalados e utilizados,

2https://sdumont.lncc.br/

93

facilitando sua implementação e reprodução.

• Foi desenvolvida uma aplicação web para simplificar a visualização e análise dos

dados de utilização do sistema de arquivos paralelo. Essa ferramenta facilita a

reprodução da análise e o estudo de diferentes períodos de interesse.

• Foi investigado a carga de trabalho de E/S e o comportamento da utilização dos

Dispositivos de Armazenamento de Objetos do Lustre, e dos Nós Computacionais

do SDumont. O estudo demonstrou que a demanda por carga de trabalho não é

dominada por um único tipo de operação e pode variar significativamente através

do período.

• A análise individualizada dos dispositivos de armazenamento de objetos do Lustre

demonstrou haver um desbalanceamento de carga considerável através deles du-

rante a operação normal do sistema.

• Através do cruzamento das métricas de utilização de E/S dos nós computacionais

com informações provenientes do sistema gerenciador de jobs do SDumont, foi

possível identificar aplicações problemáticas que poderiam levar a degradação geral

do desempenho dos servidores do sistema de arquivos paralelo.

• A análise e caracterização das operações de metadados mostrou que há uma de-

manda considerável por esse tipo de operação, com os metadados sendo respon-

sáveis por 60% de todas as operações do sistema de arquivos.

	ACKNOWLEDGMENTS
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Symbols
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Contributions
	1.2 Document Organization

	2 Background
	2.1 Parallel File Systems
	2.2 Lustre Architecture and its Deployment on SDumont
	2.2.1 Lustre's Architecture
	2.2.2 The SDumont

	3 Related Work
	3.1 Performance Limiting Factors
	3.1.1 How applications interact with the PFS
	3.1.2 Concurrency, Contention, and Interference

	3.2 File System Evaluation

	4 Analysis and Visualization Methodology
	4.1 Data Gathering Step
	4.2 Data Pre-Processing Step
	4.3 Data Analysis Step

	5 Glancing at the Lustre File System
	5.1 Overview of Lustre Usage
	5.1.1 I/O Data Analysis
	5.1.2 Metadata Analysis

	5.2 Detailed View of a Region of Interest
	5.2.1 Applications I/O Data Analysis
	5.2.2 Applications Metadata Analysis

	6 Discussion
	7 Conclusion
	7.1 Future Work
	7.2 Publications

	References
	Appendix A — Resumo expandido

